38

Set-Oriented Functional Style of Programming

Conrad Steven Martin Mueller
Department of Computer Science
The University of the Witwatersrand, Johannesburg

A‘bstract'

A novel way of programming, which starts with specific details of a particular example

., and abstracts these details into generalised sets, is proposed. The whole program is

constructed arourid the definition of these sets. Once the structure and type of the sets have
‘been specified, the relationship between the sets is added to these set defintions. Thus, there
is a move away from seeing the description of the data and relationships between the data as
two separate parts, i.e., the data definition and the body of the block. This paper concentrates
on the method used to develop programs, using a tutorial approach to illustrate the ease of
programming, debugging and modifiablity. An interesting aspect of the method is how a
program can be developed by studying the details in the problem domain using a procedural
_approach and abstracting them into a final declarative definition.

[aad

)

Introduction

The author is currently involved in research considering the value of removing the need to
specify order in a program. As part of this research, a language was developed which
requires a new approach to programming. This paper focuses on this method of programming
rather than the language. While the language is used to illustrate the method, it is not dealt
with formally, but is explained in the context of examples.

A program can be seen as a relationship between two sets: the domain (i.e. the input) and
the range (1.¢. the output) of the relationship. The definition of a program is usually broken up
into two parts: the data definition describing the sets and the body describing the relationship.

Considerable attention has been given to ways in which to express these relationships and,

in different styles of programming, relationships are expressed 1n different ways. Programs
in the von Neumann style of language are expressed as procedures, which, when applied to
an element in the domain, produces an element in the range. In functional style languages, a
program is a function expressed as a composition of primitive functions [Glasser 1984].
Predicates, as in logic programming, can also be used to express relatlonshxps [Clocksin
1984].

The definition of the sets, between which these relationships are defined, has received

less attention. The only way of specifying these sets is by using types, which only became

widely accepted with the general use of Pascal [Jensen 1974). With object-oriented [Goldberg
1983] and abstract data types [Ghezzi 1982}, there has been 2 movement towards grouping the
data definition with the description of the relations on that data. The approach to programming
proposed in this paper takes this further: the definition of relationships between the sets forms
part of the definition of the data, and the programming task revolves around the specification
of sets rather than of relationships.

The method proposed here uses a functional style to express relationships, but instead of
expressing a relationship as a composition of functions, a relationship is expressed as related
sets. Programming becomes a task of specifying sets, and included as a part of this definition
is how a set is related to other sets. The emphasis is moved from programming relationships
to defining sets and the most important part of programming becomes that of identifying what
sets are required.

This method of programming is explained using a tutorial style. In this way, itis -

possible to illustrate the new methodology. A particular aim is to show that a procedural view
of programs can be used for development, but the final specification of the program is declara-
tive. Other features of the method are also highlighted, such as the ease of modification and
debugging.

Without extensive experimentation, it is difficult to conclusxvely show that the method
proposed is a better method than any other. However the method does appear to have some
advantages over other styles of programming. The programmer is dealing with sets, which
are much more concrete and tangible than descriptions of relationships. The method is based
on a functional style of programming and thus has the desirable mathematical properties of this
style. Thus the method has the potential to be easy to use, while at the same time being

mathematically sound.
Summation

The first example is used to introduce the method. This example shows how simple
iteration-works. The problem is to add up a list of numbers which are terminated with a zero.

The method’s first step is to study the problem, and relate elements identified in the .

problem area with sets in the language (i.e. the computational domain). This is done by
identifying elements in the problem area as belonging to sets with certain computational
properties. In this example, there are two easily identifiable sets: the set of all lists of
numbers, and the set consisting of all sums of lists of numbers. These sets need now to be

associated with a type in the computation structure of the program which can be done as .

follows:

387
list : SEQUENCE -
number : INTEGER
summation : INTEGER
The next step is to define a relationship between these two sets. If one assumes that an

operation ‘sum’ is defined, which maps a sequence of integers onto an integer, then the re-
lationship between the two sets can be specified as follows:

summation : INTEGER <- ,sum, list;

The above line reads as: ‘summation’ is a set of integers which is defined as ‘sum’ of ‘list’.
The set ‘list’ can in turn be defined in terms of the input as follows:

list : SEQUENCE <- input:
number : INTEGER <- input;

and the complete program is as follows:

summation : PROGRAM <- list:

list : SEQUENCE <- input:
number : INTEGER <- input;

summation : INTEGER <- ,sum, list;

summation : END.

If no operation ‘sum? exists then the relationship needs to be defined in terms of some
intermediate set or sets. The next step is to establish what these sets are. A possible method
- forestablishing what these sets are is to calculate the relationships manually for a given element
in the domain. Theelement, {5, 6, 7, 8, 0} in the set ‘list’, has been chosen for the manual
calculation giving the following results:

running
list total result summation
number (1) § step (1) 5
number (2) 6 step (2) 11
number (3) 7 step (3) 18
- number (4) 8 step (4) 26
number (5) 0 step (5) 26 26

The intermediate step in the calculation can be expressed by a set ‘running’ consisting of a
sequence of ‘step’s each of which is made up of the cartesian product of ‘total’ and ‘result’.
The particular element of ‘running’ in the manually calculated example is: {[S, undefined], |11, .

undefined]}, [18,undefined], [26,undefined}, :undefined,26]}. The set ‘running’ can be
associated with a type as follows:

running : SEQUENCE 3 8 8
step : CARTESIAN
total :INTEGER
result : INTEGER
step :END

Having determined what sets are required, the next stage is to establish the relationships
between the three sets: ‘list’, ‘running’ and ‘summation’. The relationship between ‘running’
and ‘summation’ is easy to specify as the only defined set, ‘result’ in the sequence ‘running’,
needs to be mapped onto ‘summation’. Since only one of the sets ‘result’ in ‘running’ is
defined, they can all be mapped onto ‘summation’ as follows:

summation : INTEGER <- running.(step).result;

The brackets around ‘step’ specifies that all the sets ‘step’ in the sequence ‘running’ must be
mapped onto ‘summation’. .

The next set to consider is ‘running’ which is define in terms of a more complex
relationship. The domain of this relationship needs first to be established. Writing down the
calculation in more detail gives a clearer picture as to what the domain of this relationship is.

list + last -> running
number (1) 5 0 total (1) 5§
number (2) 6 total (1) 5 total (2) 11
number (3) 7 total (2) 11 total (3) 18
number (4) 8 total (3) 18 total (4) 26

number (5) 0 total (4) 26 - result(5) 26

From the above calculation, there appears to be two sets which map onto ‘running’. The one
is the sequence ‘list’ and the other is the sequence ‘running’ pr :fixed with the constant set zero.
Thus to be able to define the domain of ‘running’ (such that, the corresponding sets in the
domain map into the range), it is necessary to define a new sequence, ‘last’; which is made

up of the constant set, zero, followed by all the sets in the sequence ‘running’. This set can
be defined as: '

last:= {step:= [total:= 0), running.,)

The curly brackets specify a sequence whereas the square brackets define a cartesian product.
The dot comma after ‘running’ indicates that all the sets of the sequence, ‘running’, form part
of the sequence, ‘last’.

The definition of ‘running’ can now be extended to incorporate its domain as follows:

running : SEQUENCE <- fist, last:= {step:= [total:= 0], running.,}:
step : CARTESIAN
total :INTEGER
result : INTEGER
step :END

How the domain maps onto the range, is specified in terms of how each of the sets in the
sequences forming the domain, map into the corresponding sets in ‘running’. This is done by

- 3849
defining the sub-component ‘step’ in ‘running’. Since ‘step’ is also a complex component, itin

turn needs to be defined in terms of its sub-components. However, the domain of ‘step’ must

be specified first. The domain consists of the sets: ‘number’ in ‘list’, and ‘step’ in ‘last’.

These domain sets can be added to the definition as follows:

running : SEQUENCE <- list,+ last:= {step:= [total:= 0], running.,}:
step : CARTESIAN <- number, step :
total :INTEGER
result : INTEGER
step :END

The definition of ‘step’ defines how the i set ‘step’ in ‘running’ is defined in terms of the i
set ‘number’ and ‘step’ in the domain. Everything to the left of the arrow (<-) refers to the
range, thus ‘step’ to the left of the arrow refers to ‘step’ which is part of ‘running’.
Everything to the right of the arrow refers to the domain, thus ‘step’, here, is part of ‘last’,
and ‘number’ is part of ‘list’. :

The final stage is to define the sub-components ‘total’ and ‘result’. ‘Total’ is equal to the
last ‘total’ plus the next ‘number’, if ‘number’ is not zero and ‘result’ is equal to the last
‘total’, if ‘number’ is zero. This relationship can be expressed as:

running : SEQUENCE <-list,+ last:= {step:= [total:= 0], running. }:
step :CARTESIAN <- number, step :
total :INTEGER <- [number,<>,0/ total, +,number;
result : INTEGER < [number,= 0] total;
step :END;

In the expressions above (which are italicized), bars bracket the guards which specifies when
the expressions, to the right of the guards, hold and can be read as:

total (an integer set) = total + number if number <> 0
result(an integer set) = total ifnumber = 0

The above definition of sets can now be incorporated into a program as follows:

summation : PROGRAM <«- list:

list : SEQUENCE <- input:
number :INTEGER <- input;

running : SEQUENCE <- list, last:= {step:= [total:= 0], running.,}:
step : CARTESIAN <- number, step :

total :INTEGER <- |number,<>,0| total,+,number;
result | INTEGER <- |number,= ,0] total;
- step :END

summation :INTEGER <- running.(step).result;

summation : END.

Books teaching a language such as Pascal spend a good proportion of the book covering
aspects such as: the structure of a program, iteration, selection and data defintions [Atkinson

1981, Keller 1982, Wilson 1978]. In this example, these concepts are introduced in a re-
latively short space.

Greatest Common Divisor

This example shows the important features of selection and iteration in one program. The
algorithm used in this example is Euclid’s classical algorithm for calculating the greatest
common divisor (gcd) as discussed in Dijkstra’s book on structured programming [Dijkstra
1976]. This example is also used to illustrate how the program can be modified.

390

The problem domain consists of the set of the cartesian product of two sets of numbers and |

the set of all possible gcds. The initial design assumes that the numbers are positive, and the
program is then modified to show how to extend the program to cater for all possible integers.
The two sets in the problem area can be associated with the computational swructure as follows:

numbers : CARTESIAN ged 1 INTEGER
X T INTEGER
y 1 INTEGER

numbers : END

The next step is to define a relationship between these two sets. As there is no existing
operations which can directly express this relationship, the programmer is required to define
the relationship via some intermediate set or sets. The task is to establish what this set is, or
these sets are. As before, the suggested approach is that the programmer should manually
calculate the relationship between the two sets for a particular element in the domain. The
resulting values calculated can then be related to a set or sets. Below is-the calculation of the
gcd using Euclid’s algorithm for the numbers, where x is 30 and y is 18.

numbers calculationged
step1 step2 step3 stepd
X 30 12 12 6
y 18 18 6 6
result 6 6

The intermediate step can be expressed as the set ‘calculation’ which is made up of a sequence
of sets called ‘step’ where each ‘step’ is the cartesian product of the sets ‘x’, ‘y’ and ‘result’.
The set ‘calculation’ can be associated with the computational domain as follows:

calculation : SEQUENCE
step :CARTESIAN

X :INTEGER

y JINTEGER

result ;| INTEGER
step : END

At this point, the programmer is ready to specify the relationship between the sets. The
programmer can deal with each set independently of the other and in any order. Here, the
mapping onto the set ‘calculation’ is chosen to start with. Each set, ‘step’, in the set ‘calcula-
tion’ is defined in terms of the previous ‘step’; except for the first set which is defined in terms
of the set ‘numbers’. Hence the domain of the relationship which maps onto the set
‘calculation’ is the sequence whose first set is the set ‘numbers’ followed by all the sets in the
sequence ‘calculation’. The domain, of the relationship mapping onto ‘calculation’, can thus
be expressed as {step:=numbers, calculation.,}. The first line of the specification of
‘calculation’, which specifies that ‘calculation’ is a sequence and what the domain of the
relationship is, can now be completed.

391

calculation : SEQUENCE <- last:= {step:=numbers, calculation. }:

How the domain relates to the range is specified in terms of each sub-component, ‘step’, in
the range. The next line of the specification follows easily on from the first because each

‘step’ in the domain maps onto each ‘step’ in the range. The definition of ‘calculation’ can
thus be extended as follows:

calculation : SEQUENCE <- last {step:=numbers, calculation.,}:
step : CARTESIAN <- step:

The definition of each ‘step’ is defined in terms of the sub-components ‘x’, ‘y” and ‘result’ as
follows:

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} :
step : CARTESIAN <- step:
x 1 INTEGER <- [x,>,y] x,-y X,<¥1 X;
y : INTEGER <- ly,>.X] ¥,-x ly.<X] ¥;
result : INTEGER <- |x,=Y] X;
step : END;

The definition of set ‘ged’ is simple, in that, all the ‘result’ components of the set ‘calculation’
are mapped onto it. The complete program looks as follows:

ged : PROGRAM <- numbers:

numbers : CARTESIAN <-input:
x : INTEGER <- input;
y : INTEGER <- input;
numbers : END;

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} :
step : CARTESIAN <- step:
x : INTEGER <- {x,>,y| x,-y IX.<y] X;
y :INTEGER <- ly> x|y, x ly,<X Y;
result : INTEGER <- x,=yl x;
step : END;

ged @ INTEGER <- calculation.(step).result;
ged : END.

'Gping back to the manual calculation, each of the numbers written down can be associated
with an element in a set defined within the program as follows:

number dé:)d
x =30
y =18

calculation :
step(1) step(2) step(3) step(4)
x=12 X =12 x=6
y=18 y=6 y=6
result =6
gcd
6

The assumption is that the numbers are always positive. The program can now be
modified to deal with all integers. The set ‘numbers’ can first be mapped onto the set
‘positive’ which in turn is mapped onto the set ‘calculation’. The programmer may {irst wish
to develop the relationship, ‘positive’, first before incorporating it into his program. This can
be done with the following program.

positive : PROGRAM <- numbers:

numbers : CARTESIAN <- input:
x : INTEGER <- input;
y 1 INTEGER <- input;
numbers : END ;

positive : CARTESIAN <- numbers:
x : INTEGER <- |x,>=,0{ x {x,<,0},-.%;
y i INTEGER <- ly,>=.0ly 1y.<.0l .~y
positive :END;

positive : END.

Once the programmer has tested this relationship, it can then be incorporated nto the original
program as follows: '

ged : PROGRAM <- numbers:

numbers : CARTESIAN <- input:
x : INTEGER <- input;
y 1 INTEGER <- input;
numbers : END;

positive : CARTESIAN <- numbers:
x T INTEGER <- [x,>=,0] x [x,<0].-x;
y {INTEGER <- ly,>=,0ly [y.<.0].~y:
positive :END;

calculation : SEQUENCE «<- last:= {step:= positive, calculation.,} :
step : CARTESIAN <- step:
x : INTEGER <- [x,>.y] X,y x,<.¥] x;
y I INTEGER <- ly> x| y,-x ly,<Xxl Y,
result : INTEGER <- {x,=y| x;
step : END;

ged : INTEGER <- calculation.step.result,;

ged : END.

Sort

A sort example is a slightly more complex example than a typical first year exercise, and
yet one that can be expressed concisely. Sorting is an essential operation found in almost
every aspect of computing and hence is an important example to look at. The example given
here is based on the insert sort algorithm [Knuth 1973]. This example is also used to show
how a programmer goes about debugging his program. The program is developed with some
aspects not correctly specified and some idea is given as to how these errors can be detected
and corrected.

The problem consists of elements in two sequences: the set of unsorted sequences and the
set of sorted sequences. In this example, both the sorted and unsorted sequences are
sequences of integers. These two sequences can be then associated with the computational
structure as follows:

unsorted : SEQUENCE sorted : SEQUENCE
number : INTEGER number : INTEGER

The exercise is to define the relationship between these two sets. As in the previous
examples, the programmer needs to establish what intermediate sets are required to map the set
of unsorted sequences onto the set of sorted sequences. An element in the domain set,
‘unsorted’, can be selected, say {3, 8, 4, 2, 5}, and the relationship with an element in the
range set, ‘sorted’, can be established manually. Below this relationship is calculated
manually using the insert sort algorithm. '

unsorted sort sorted
.pass(1) pass(2) pass(3) pass(4) pass(5)
3 3 3 3 2 2 2
8 8 4 3 3 3
4 8 4 4 4
2 : 8 5 5
5 8 8

The intermediate values can be abstracted into a set called ‘sort’ which is made up of a
sequence of ‘passes’. Each ‘pass’ set consists of a sequence of ‘numbers’. The set ‘sort’ can
thus be associated with the computational domain as follows:

sort : SEQUENCE
pass : SEQUENCE
number : INTEGER

The programmer now needs to define the relationships between the three sets: ‘unsorted’,
‘sort’ and ‘sorted’. The set ‘sort’ is defined in terms of the set ‘unsorted’ and itself, as each
‘pass’ of ‘sort’ inserts the next unsorted number into the previous pass of ‘sort’. The domain
set specifying the previous pass needs to be defined. The previous pass is the set ‘sort’ itself
with some initial condition which needs to be chosen. In the manual calculation the initial set
is the empty sequence giving the following definition:

previous:= {pass:= {}, sort.,}

The definition of the set ‘sort’ can now be extended as follows:

393

sequence
more detai

sub-component of
identifiers with the i
of ‘sort’ can now be extended to:

sort : SEQUENGE <- unsorted, previous:= {pass:={}, sort.,}:
pass : SEQUENCE
number : INTEGER

Each pass within the sequence ‘sort’
of ‘unsorted’. To decide

first
pass(4)

number (1) 2
number (2) 3
number (3) 4
number (4) 8

The unsorted set needs to be
where one is greater and th
calculation above, there aret
‘first’, ‘second’ and ‘next’. The sequence
some initial condition. The
simplicity the numbers to be sorte
set can be the set zero. The sequence ‘second’
sequence ‘next’ consists of the
throughout the sequence ‘next’.
of the set ‘sort’ giving:

second
pass(4)

number (1) 2
number (2) 3
number (3) 4
number (4) 8

number : INTEGER

the sequence ‘next’.
unsorted number and two consecutive set

number : INTEGER <-

what the domain for each
1 at the manual calculation as to how each set in ‘pas
the fifth set ‘pass’ in ‘calculation’ is considered below:

next

unsorted ->

number (5) S
number (5) 5
number (5) 5
number (5) 5
number (5) 5

hree sequences used in de
set ‘number’ in the seque

The domain of each pass ¢

In the definition of ‘next’, the double dot specifies that the set ‘nu
Each set ‘number’ in ‘pass’ within ‘sort’ is

“first’ consists of
programmer is now

sort -
pass(d)

number (1) 2
number (2) 3
number (3) 4
number (4) 5

has as domain the previous ‘pass’ and the nextset in the
‘pass’ is, it is useful tolook in’
¢’ is calculated. An element in

second
second
second .
next

number (5) 8 first

slotted into the previous ‘pass’ between the two consecutive sets
e other is less than or equal to the next ‘unsorted’ set. In the
fining the next ‘pass’ of ‘sort” which are
the previous ‘pass’ prefixed with
forced to think about this boundary case. For’
d will be assumed to be

greater than zero in which case this

sort : SEQUENCE <- unsorted, previous:= {pass:={}, sort.,}:
pass : SEQUENCE <- next:= {number..}, second:= pass, first:

|first.number,<=,next.number.&,
next.number,<,second.number| next.number

In the above line it is necessary to qualify the sets ‘number’ in th
“first’, ‘second’ and ‘next’.

number..}, second:= pass, first:=
[second.number,<=,next.number| second.number

These sets are q
dentifiers of the sets they are sub-components O

sort : SEQUENCE <- unsorted, previous:= {pass:= {}, sort.,):
pass : SEQUENCE <- next:=(
number : INTEGER <-

consists of just the ‘previous’ ‘pass’ and the
nece ‘unsorted’” which is the same
an now be added to the definition

={number:=0,pass.,}:

mber’ is the same throughout .
defined in terms of the ‘next’
s “first’ and ‘second’ as follows:

|second.number,<=,next.number\ second.number
[first.number,>,next.number| first.number

e domain as ‘number’ is a
ualified by prefixing their
f. The complete definition

{number:=0, pass.,}:

[first.number,>,next.number]| first .number
[first.number, <=,next.number,&,
next.number,<,second.number| next.number;

394

At this point, it is useful to re-examine the manual example to check if the relationships have
been correctly specified.

unsorted 3,8,4,2,5

sort
domain= (unsorted= { 3,8,4,2,5}, previous= {{}.{3.}..

pass (1)
domain= (next= {3..}, first= {0}, second= {})
number (1) nothing defined error should have been 3

pass (2)
domain= (next= {8,8..}, first= {0,3}, second= {3})
number (1) = 3 because second(1) <= next(1) .
number (2) nothing defined error should have been 8

pass (3)
domain= (next= {4,4,4.}, first= {0,3,8}, second = {3.8})
number (1) = 3 because second(l) <= next(1)
number (2) = 4 because first(2) <= next(2) < second(2)
number (3) nothing defined error should have been 8

soe

There is clearly a problem with the boundary conditions in the example above as no
relationship holds for the last set in the sequence. This error was made in determining the
initial set for the sequence ‘previous’ for which the empty sequence was chosen. It now
becomes clear that this set is the boundary condition which specifies the end of the pass and a
simple solution is to make this set equal to the maximum number allowed. Also this sentinel

should be propagated to all subsequent passes. ‘The definition of the sort can be altered to
cater for this as follows:

sort : SEQUENCE <- unsorted, previous:= {pass:= {number:=Max}, sort.,}.
pass : SEQUENCE <- next:= number, second:= pass, first:= {number:=0, pass.,}):
number : INTEGER <- |second.number,<=,next.number| second.number
[first.number,>,next.number] first.number
|first.number,<=,next.number,&,
next.number,<,second.number| next.number ;

Going back to the example, the change results in the following relationships:

395

unsorted 3,8,4,2,5,6 396

sort
pass (1) next={3,.}, first={0,Max}, second={Max}
number (1)=3; second(1) <= next(l)
number (2) = Max ; first(2) > next(1)

pass (2) next={8,8,.}, first={0,4,Max}, second={3,Max}

number (1) =3 second(1) <= next(1)

number (2) = 8 ; first(2) <= next(2) < second(2)
number (3) = Max; next(3) < first(3)

pass (3) next={44,4,.}, first={0,3,8;Max}, second={3,8,Max}

number (1) =3 ; second(1) <= next(1)

number (2) =4 ; first(2) <= next(2) < second(2)
number (3) =8 ; next(3) < first(3)

number (4) = Max; next(4) < first(4)

pass (4) next={2,2,2,2,.}, first={0,3,4,8,Max], second={3,4,8,Max}
number (1) =2 first(1) <= next(l) <second(l)

number (2) =3 next(2) < first(2)
number (3) =4 ; next(3) < first(3)
number (4) =8 ; : next(4) < first(4)
number (5) = Max ; next(5) < first(5)
pass (5) next={5,5,5,5.5,.}, first={0,2,3,4,8,Max}, second={2,3,4,8,Max}
number (1) = 2; second(1) <= next(l) '
number (2) = 3; second(2) <= next(2)
number (3) = 4; second(3) <= next(3) :
number (4) = 3; first(4) <= next(4) < second(4)
number (5) = 8; next(5) < first(5)

number (6) = Max; next(6) < first(6)
sorted 2,3,4,5,8

Defining the ‘sort’ sequence is the most complex relationship and the remaining relationships
are fairly straightforward, resulting in the following program:

sorted : PROGRAM <- unsorted:

unsorted : SEQUENCE <- input:
number : INTEGER <- input; .

sort : SEQUENCE < unsorted, previous:= {pass:= {number:=Max}, sort.,}:
pass : SEQUENCE <- next:={number..}, second:= pass, first:= {number:=0, pass..}:
number : | {TEGER <- |second.number,<=,next.number| second.number
|first.number,> nextnumber] first .number
|first.number,<=,next.number,&,
next.number,<,second.number| next.number

sorted : SEQUENCE «- sort, unsorted :
number : INTEGER <- |unsorted.number,=,end|sort.(pass).number;

sorted : END.

There are two important boundary conditions in the insert sort which determine either end of
the previous pass into which the next unsorted set is being inserted. These two boundary
conditions are required as initial sets in the definition of two domain sequences thus making it
difficult to accidentally overlook these boundary conditions.

Another interesting aspect of the above program is that although the algorithm was
manually worked out in a procedural way, the program itself is declarative. The program
only expresses relationships between sets.

Conclusions

Programming using this method is made easier by allowing the programmer to start by
working with the actual details of a problem. The programmer is able to take an actual case
and work through it. The programmer works through an example any way he wishes, which
is likely to be procedural. Having established a relationship for a particular element or
elements in the domain, he can abstract this relationship, so that it holds for all elements in the
domain set. The first part of the abstraction is to describe the sets as belonging to types or
composition of types. The structure of these sets is suggested by the elements used in the
manual calculation. The programmer is still able to associate with the problem domain and,
in particular, the example he worked out, because he is relating elements in the example with
sets in the program. The second part of the abstraction is to express the relationships between
sets. The relationships are expressed as simple expressions and these relationships hold for all
the elements in the sets. The programmer is in a sense working bottom-up: from the details to
an abstract definition. At the bottom, he is dealing with elements in a procedural way, which
are easy to work with. These details are abstracted into a declarative specification of sets and
relationships between sets, which is mathematically sound and easy to understand.

Debugging a program developed using this method becomes a process’ of establishing that
the relationships between sets are correct. An error in one relationship does not invalidate the
correctness of any other relationship. Thus, the relationships between sets can be checked
independently of the rest of the program. These relationships can be verified by comparing
that the domain elements map onto the appropriate range elements. As the examples show,
this can be done by associating the elements in the sets with the names of the sets and desk
checking can easily be done in this way. Debugging can also be done using the computer; by
recording every element-(with its set identifier) created during the computation of the
relationship. These elements can then be sorted according to their identifiers and printed out.
The relationships can then be manually checked to verify that an element in the domain of a
relationship maps onto the correct range element. Errors appear to be easily identifiable as
illustrated by the sort example. Also, the source of thé error is obvious. Again, the con-
cepts of sets is useful in that the programmer is dealing with identifiable sets to which elements
belong and the programmer can check that the relationships between these elements are correct.
These sets have identifiers which should correspond with the problem area, and so know-
ledge of the particular problem should assist in debugging.

The ged example shows how easy it is to modify a program. The relationship of one set
in terms of its domain is independent of other relationships within the program. Also, a pro-
gram is a definition of sets and the definition of a set includes how it is related to other sets.
The two above facts make a program easy to modify as a modification is localised to only those
sets which need to be changed. The programmer is not concerned with the effect a change will
have on the overall program. A modification is to a set and its correctness is determined only
by whether the relationship with its domain is correctly specified. A program, which is
described using sets, does not have an overall structure — only sets are structured. Thus a
change to the structure of a set does not affect the overall structure of a program.

Even though this research has not developed far, it does show promise of finding a better
tool for programming. The method relies heavily on a new way of expressing programs
which requires a different style of language. While a language has been designed and imple-

mented to write and test the examples given in this paper, there are questions, as to whether
this can be done efficiently.

397

9
REFERENCES ' ‘ _ 3 3 8

« Atkinson L., [1981), Pascal Programming, John Wiley and Sons, Chichester.

« Clocksin W.F., and Mellish C.S,, [1984], Programming in Prolog, 2nd ed., Springer Verlag, New York.
« Dijkswa E.W., [1976), A Discipline of Programming, Prentice-Hall.

+ Ghezzi C. and Jazayeri M. [1982]}, Programming Language Concepts, John Wiley, New York.

+ Glaser H, Hankin C. and Till D,, [1984], Functional Programming, Prentice-Hall.

« Goldberg A. and Robson D., [1983], Smalltalk-80: The Language and its Implementation., Addison Wesley,
Reading, Massachusetts.

Jensen K. and Wirth N, [1974), Pascal User Manual and Report., Lecture Notes in Computer Science 18,
Springer-Verlag, New York.

« Knuth D.E., [1973], The Art of Computer Programming: Volume 3 /| Sorting and Searching,
Addison-Wesley, Reading, Masachusetts.

Keller AM., (1982), Computer Programming using Pascal, Computer Science Press, MacGraw-Hill, New
York.

» Wilson LR. and Addyman AM., [1978), A Practical Introduction to Pascal, MacMillan, London.

