EXPERIENCE WITH A PATTERN-MATCHING OUDE GENERATOR

by

M A Mulders! D A Sewry” and ¥ R van Biljon
National Research Institute for Mathemitical Sciences, CSIR

1. Central Data Systems, Prime Park, Bedford View, Johannesburg
2. Department of Computer Science, Rhodes University, Crahamstown.

ABSTRACT

An implementation of a Graham-Glanville type pattern-matching code
generator for the NRIMS systems programming language SCRAP is discussed.
The simple heuristic algorithm on which the pattern matcher is based is
presented and compared to more exbaustive and complex algorithms
implemented elsewhere. Finally, optimal instruction selection as a
method of code improvement is discussed. The pattern matcher has been

implemented for the Perkin Elmer 3200 and the Motorola 68000 instruction
sets.

371

1. INTRODUCTION

Code optimization represents an area of ma jor interest in research on
languages and code generation. One optimization technique that has been
the subject of much work is that of optimal instruction selection. The
Graham-Glanville approach of table-driven pattern-matching code
generation was first introduced as a method of providing a
machine-independent code generation algorithm intended to facilitate the
construction of retargetable compilers [4]. Recently, this technique has
been advanced as having significant advantages in the area of optimal
instruction selection and in the specification and implementation of
efficient code generators [1,2,3].

This paper details the experiences of the project team involved in the
implementation of a pattern matching code generator for the systems
programming language SCRAP (Systems ConstRuction and Applications
Programming language) [5] developed and used at NRIMS. The compiler is
a bcotstrapped implementation (it is written in SCRAP). Two code
gene)ators have been implemented for a Perkin-Elmer 3200 series
minicomputer and a Motorola MC68000 microprocessor.

Extensive use of the language in a CPU-intensive graphics environment
dictated the main design goals of the code generator:

{a) the code generator should be simple to implement, port and
maintain;

(b) it should generate efficient code.
2. THE STRUCTURE OF THE CODE GENERATOR
The code generator is divided into three main phasgs;(Figure 1).
2.1 The Pre-Processor

The input to the code generator from the syntax stage is in the form of
triples, for example : *

DATA d; (% d defines the base address of)
INT a.,b; (% variables in the data block %)

ENDD d;

a:i=b+4

emits, from the semantic analyzer, the triples:

1. add address ADDRESS, (d) OFFSET (a)
2. add address ADDRESS, (d) OFFSET (b)

372

373

Triples

f?ree Construction
Pre- Tree Optimizations:

; ~— Common Sub-
rocessor . .
pro ° expression analysis

- Tree Orientation
-~ Constant Folding

—

/,__JL_“\\ -

Template to Tree

Templates Pattern Matching
Matcher Code Procedure
Invocation
N
/—_JL__\ -
Post— Code Emission
processor < .
Peephole Optimization
e
Object Code
Figure 1 The Structure of the Code Generator

3. value at (2)
4. add (3). constant (#4)
5. store at (4), (1)

The triples are built into binary expression trees by the pre-processor
(Figure 2).

Each node in the expression tree has the following structure:

node type - describes the operation or operand

type : - describes the type of the operand or the result.
use_fist | - list of tree numbers of trees using this node.
use_count - number of times that the value represented by this

node is referenced.

register - number of the register that holds this value.
left operand - pointer to left child.
right operand - poihter to right child.

A sequence of -triples for a whole procedure will result in a forest of
trees. The expression trees in the forest are connected at their roots
by links to the roots of the previous and next trees. The trees are
numbered sequentially as they are built. The left and right operand
pointers of a node point to its left and right children. As a result of
some simple common sub-expression analysis done in the pre-processor,
some pointers may point to nodes in other trees instead - some nodes are
then shared between several trees, with the result that the data
structure is in fact a directed, acyclic graph (DAG) [6]. although it is

useful to think of it in terms of trees (Figure 3). The use-count of
each node reflects the number of times it is referenced. For common
sub~e (pressions this value will thus be greater than one. The use_list

of a 1ode is a list of the numbers of all trees that reference the node.

At this stage advance global register booking is done. Register numbers
are booked for nodes with large use counts and for nodes that have been
heuristically identified as being "high activity" values. These include
FOR luop induction variables and USING statement (analogous o the Paseal
WITH) base addresses. Booking a register consists of setting the node’'s
regis er field to a register number and adding the node's tree number to
a lirt of that type kept for each register. Register allocation is
described more fully in a separate paper [7].

An important operacion.:performedvin the pre-processor is that of tree
orientation/modification. This will be mentioned again.

374

T 7 9Instg

5911 uorssoxdxg uy

(Q) 285440 (P) ssauppe

7

- ssouppe ppe

(C#) :A////////<\\\\\\\\\

+UE3SUOD Ie anrea

ssauppe ppe

1878403 s

(e) 385440

GALE

376

Figure 3 : A Forest of Trees

2. 2. The Pattern Matcher

The next phase is that of target instruction selection. For every
target machine instruction, an instruction template is created. These
templates are stored in the form of binary trees. Each template

consists of
- the type names of each node, stored in post order tree;

- a pointer to a procedure that must be called to generate code for
this template when it is matched to an input subtree;

- the location of a template result. This is the location of the
result of the operation specified by the template. Result
locations fall into three main types

1. Register (the computation result is left in a machine register).
2. Const (the result is a number).
3 Null result.

The root of each template is an operator (for example, plus, assignment,
procedure call). Templates are grouped into lists according to their root

operator. Each list will contain all the templates with a particular root
operator (and result type).

Finally the lists are grouped into tables according to their result type.

A table is set up for each of the possible template result types. All
lists with the same result type will be referenced in a table of that
type. Lists are placed in the table in the order of their (unique) root

operator type.’

Hatching algorithm:

The forest of binary trees, as constructed by the pre-processor is now
mitched against the templates, one tree (statement) at a time. The

algorithm for matching is as follows:

(2) Choose one of the result tables according to the result type

requiTted. For a root node this would be the main index table

{null-result).

(b) Use the root operator of the subtree as an index into the table
chosen in (a). This will result in a pointer to a list of
_templates, all of which have that operator as their root.

(c) A match is then attempted against each template in the list,
accessing the templates in the order in which they were stored.

(d) Matching proceeds as follows: Take the root node of the input
subtree and attempt to match its operands with the operands of the
current template. Matching is done first on the left operand and

then on the right operand.

377

(e) If the operands match, replace the subtree with the template result
and invoke the template's procedure to generate the corresponding
code.

(f) If the left operand does not match, view it as the root node of a
new subtree. The template's left operand then becomes the result

type required. We then consult the appropriate result table
(using the new root operator as an index) for a new template list.
If an appropriate result table exists and if a non-null list is
found at that index, we proceed (recursively) back to step {c).

(g) If no appropriate result tables exists,or no non-null list is found
we have failed to match the current template. This template is
then discarded in favour of the next in the current list. If no
more templates exist in the current list, we are forced to halt and
report a "failure to generate code for this expression” message.

(h) The same process is then repeated for the right operand.
Note that the algorithm is one of first-fit and that no cost function or
other suitability guideline is used in the matching process. The crux of
the algorithm is the ordering of the templates with the template lists.

Here a simple heuristic rule is followed

Place the templates in descending order of template (tree) size.

The rationale is: the bigger the template that is matched égainsc a given

subtree, the more work can.be accomplished by a single (corresponding}
instruction. This translates into fewer machine instructions per source
statement. Since no cost function or desirability expression is required
for each instruction (as in [3]), template preparation time is reduced.
The matching algorithm is also easier to design and implement. ’

2.3. The Post-Processor

The post~processor is concerned mainly with the task of code emission.
The code, together with directives required by the linker, is emitted to
an object file with a prescribed format. The last phase of code
optimization is also done here. The code is examined by a simple and
crude peephole optimizer. Redundant instructions are removed, and some
complex instructions are replaced by their equivalent simpler
instructions. For example: for the MO68000 the instruction:

CHPI #0,Dn is replaced by
TST Dn

to compare data register n with zero.

3. OBSERVATIONS AND EXPERIENCE

The quality of instruction selection by this rather simple heuristic
pattern matcher was surprising. In almost all cases the template lists
could be ordered such that the largest possible subtree would be matched

378

to a suitable target machine instruction. Furthermore, the premise of
"fewer instructions - better code"” in general proved to be valid for both
the Perkin-Elmer 3200 and MC68000 series.

A comparison of code generated with that of other compilers on the
Perkin-Elmer minicomputer showed the code to compare favourably with far

more complex compilers. The Dhrystone benchmark (8] was coded, and
recorded results are:

Perkin-Elmer Pascal compiler : 888 dhrystones/second

Perkin-Elmer Optimizing

Pascal Compiler (10 pass) 1379

Scrap II1 compiler : 714

Scrap IV compiler 721

C _ 625

The Scrap IIl compil er utilized a primitive code generator based on
simple macro-expansion of triples.

The results of . the simple heuristic pattern matcher compare very
favourably with those of a number of the pattern matchers utilizing more

complex rule algorithms. When we compared our generated code to that.of
Scheuneman .(as given in [3]) for equivalent source constructs, the code
was virtually identical. Scheunemans algorithm is however, one of

exhaustive best-fit (using instruction cost functions).
4. PROBLEMS : >

The development of the pattern matcher was not without its difficul ties,
however, and the implementation is not without its shortcomings:

1. The static representation of the templates, lists and tables as
initialized constant blocks posed difficulties. Maintenance of
the compiler proved to be non-trivial: as the number of templates

was increased, the recursive nature of the matching algorithm meant.

that tracing the flow of control became increasingly arduous.
Fur thermore, the learning curve for new project members proved to
be rather more formidable than we had hoped.

2. Storage requirements for the code generator inevitably resulted in
trade-offs. To ensure fast access all templates were kept in memory
during compilation. Storage for the trees was allocated on a
node-for-node basis as they were built. As trees are reduced by the
pattern matcher, this storage becomes available for re-use.
However, this piecemeal approach to storage allocation/disposal

“proved to be too expensive in terms of garbage collection. A
mark/release mechanism was implemented instead - storage levels
were marked before code generation for a source language block;
storage were allocated above that mark as required and recleased

~back to that mark (only) after generation for the block was
completed. This complicated storage allocation for other
structures, which are required throughout code generation (for
example, linked lists of linker directives). ‘

379

3. Storage requirements had repercussions within the matching
algorithm itself. It proved too costly to keep a record of input
tree configurations at each stage of the matching process. This had
the consequent implication that all reductions made to an input
tree were irreversible. An attempt to match a tree can result in a
reduction in an offspring subtree. If the match of the larger tree
later failed, it was impossible to undo the work done on parts of
it. Thus an additional constraint was placed on the ordering of
templates in the template list. Templates of near equivalent size
had to be ordered such that during the match of template n, no part
of the input subtree contained in template ntl was reduced before
the entire subtree was matched. This added to the complexity of
template preparation.

4. Generality among templates in the pattern matcher was difficult to
: achieve. In a sense it became a matter of matching a large number
of ’'special cases’'. Ease of maintenance and program clarity versus
code quality were trade-offs as an ever growing number of templates
were constructed to cover most source statement configurations. For
example, the MC68000 addressing mode [d.An,Am,] is found in a large
number of instructions and also corresponds to a large number of
possible input subtrees (Figure 4). To create a separate template
for each instruction type for this one addressing mode would be
laborious and would result in longer compilation times as the
matcher scan times increased. It was simpler to allow the
pre—processor to orientate all input trees containing this
addressing subtree into a prescribed configuration (for example,
tree 1 in Figure 4) before matching was done.

[¢)]

zode optimization.
The project afforded an opportunity to evaluate instruction selection as
an optimization technique. Often the results were disappointing:
(a) Consider the MCS8000 - one of its most complex instructions is

MOIVE [dl. An, Am] . [d2, Ax, Ay] (cycle time = 32)

which could be matched in its entirety to a source language statement of
the type

ARRAY [0:10] OF BYTE a,b;

INT i, j;

a[i] := b[j]:
The 68000 MOVE instruction allows more than eight addressing modes for
both the source and destination operands. Therefore, (o enable the

pattern matcher to select an instruction of this type would precipitate
the construction of a template list of ‘more than 60 items. Once again,
this is both laborious and leads to significantly higher matcher scan

DRCLUSION - Optimal instruction selection versus other forms of"

o

G

<:::> add_address

add_address index_register A

index_register B offset

add_address

N

add_address offset

AN

index_register A index_register B

add_address

O

index_register A add_address

index_register B of fset
Figure 4 : Some configurations of the (d, An, Am)

mode.

addressing

times. The alternative is to allow the match to take place in two

stages, using a temporary register, that is

MOVE [dl, An,Am] , Da {(Cycle time = 18)
MOVE Da, {dl, An, Am] (Cycle time = 18)

A comparison of cycle times reveals that we gain a mere 4 cycles out of
36 for the latter sequence, an improvement of only 11%.

{b) Certain instruction selection optimizations are difficult or
impossible to effect in our simple pattern matcher. Some machines provide
a choice of instructions to implement a source construct. Code quality
of ten depends critically on the selection of the most appropriate
instruction. For ‘example; an "increment” can be used instead of an "add
1", that is

INC Dx versus ADD #1, Dx {add 1 to data register x}

In order to add a specific template to allow the increment instruction to
be selected, we must ensure that our matcher recognizes both a distinct
register type (a data register) and distinct constant range (number 1).
This would add to the specific nature of the templates and consequently,
the matching algorithm. It would further frustrate our atltempts (o
generalize the matching process and to reduce the number of specific
temp lates. In our compiler such optimizations proved easier to
implement in the post-processor (peephole) optimizer. The instruction is
generated as an ADD by the pattern matcher and later optimized in the
pos t-processor. Other examples include the TST instruction described
earlier.

{c) Simple manipulations performed in the pre-processor, such as changing
the tree orientation and constant folding {(particularly type conversions
on constants), also significantly reduced the number of templates and
matching times.

It can therefore be concluded that instruction selection represents but a
small fraction of the optimization possible in a compiler of this size
and perhaps, not the most useful. Furthermore, the current trend to
pipelined architectures largely invalidates the 'fewer instruction -
better code" premise.

Also, the impact of the technique is lessened for RISC architectures
where instructions tend to the same order of complexity (or tree size).

REFERENCES

P.J. Hatcher and T.W. Christopher, ‘High Quality Code Ceneration
via Bottom-Up Tree Pattern Matching' Proceedings of the 13th CM
Symposium on the Principles of Programming Languages., 119-130
(1986). : :

A.V. Aho and M. Ganapathi, 'Efficient Tree Pattern Matching: An Aid
to Code Generation’ Proceedings of the 13th Acm Symposium on the
Principles of Programming Languages, 334-340 (1986).

A. Scheuneman, ‘A machine independent approach to automatic code
generation' M.Sc. Thesis, School of Computer Science, McGill
University, (1982).

S.L. Graham and R.S. Glanville, "The use of a machine description
for compiler code generation' Information Technology, North-Holland
Publishing Company, 509-514 (1978).

M.H. van Rooyen, ‘'Die Definisie en Implementasie van die taal
Scrap' Quaestiones Informaticae 2,2 29-35 (May 1983).

A.V. Aho, R. Sethi, J.D. Ullman, ‘Compiler Principies, Techniques,
and Tools', Addison-Wesley, 1986.

W.R. van Biljon, D.A. Sewry and M.A. Mulders, 'Register allocation

in a pattern matching code generator' TWISK 492, CSIR, Pretoria,
(1986).

R.P. Weicker ‘Dhrystone: A synthetic Systems Programming
benchmark', Comm ACM, Vol 27, no 10, 1984.

R.N. Horspool and A. Scheunemann, ‘Automating the Selection of Code

Templates®' Sof tware - Practice and Experience, 15,5 503-514, (May
1985).

333

