
T;,e Sc.dti\ .Afdc.aa InsfH.xte for Cornpui;.:1· ��c�c�rtists ant�
l r1f0 rm�� t· ;,c lJ Te�:h f!O l,,ei�; ts

{V_lv•·T·- .,� r, • l ... 19,.1· ., 'J I � 11 (l ! < ·-' - .•. J_ .,. <._, k_1 _!() ! t' .

.23--2 1:� l'\OVC\1IBE!11�,98
.;�A �'E T(HV��

Hosi:•.:J 0�· ((1c U:iivt:c'.i�) 0f {:�p;: To,,'n h ?�',-.)Cfodt'll n :01 t!tc CS5,\.
i\) (di�f�Ht:•·.�·H iJHJ..,�rsi{) for CHE aud

·n,\:. 1:r,h1 tnity r,f Nu!al

EIHTED nv

D. F·!tTKo:..,· ANL' L. Vc.:\in�R

SPONGOR�D BY.

The South African Institute for Computer Scientists and
Information Technologists

ANNUAL RESEARCH AND DEVELOPMENT

SYMPOSIUM

23-24 NOVEMBER 1998
CAPETOWN

Van Riebeeck hotel in Gordons Bay

Hosted by the University of Cape Town in association with the CSSA,
Potchefstroom University for CHE and

The University of Natal

GENERAL CHAIR: PROF G. HATTINGH, PU CHE

PROGRAMME CO-CHAIRS:
PROF. L VENTER, PU CHE (Vaal Triangle), PROF. D. PETKOV, UN-PMB

LOCAL ORGANISING CHAIR: PROF. P. LICKER, UCT - IS

PROCEEDINGS

EDITED BY
D. PETKOV AND L. VENTER

SYMPOSIUM THEME:

Development of a quality academic CS/IS infrastraucture in South Africa

SPONSORED BY

Copyrights reside with the original authors who may be contacted directly.

Proceedings of the 1998 Annual Research Conference of the South African Institute for Computer
Scientists and Information Technologists.
Edited by Prof. D. Petkov and Prof. L. Venter
Van Reebeck Hotel, Gordons Bay, 23-24 November 1998

ISBN: 1-86840-30�-3

Keywords: Computer Science, Information Systems, Software Engineering.

The views expressed in this book are those of the individual authors and not of the South African
Institute for Computer Scientists and Information Technologists.

Office of SAICSIT: Prof. J.M.Hatting, Department of Computer Science and information Systems,
Potchefstroom University for CHE, Private Bag X6001, Potchefstroom, 252�, RSA.

Produced by the Library COJ?Y Centre, University of Natal, Pietermaritzburg.

FOREWORD

The South African Institute for Computer Scientists and Information Technologists (SAICSIT) promotes the
cooperation of academics and industry in the area of research and development in Computer Science, Information
Systems and Technology and Software Engineering. The culmination of its activities throughout the year is the
annual research symposium. This book is a collection of papers presented at the 1998 such event taking place on
the 23'd and 24th of Noyember in Gordons Bay, Cape Town. The Conference is hosted by the Department of
Information Systems, University of Cape Town in cooperation with the Department of Computer Science,
Potchefstroom University for CHE and and Department of Computer Science and Information Systems of the
University of Natal, Pietermaritzburg.

There are a total of 46 papers. The speakers represent practitioners and academics from all the major Universities
and Technikons in the country. The number of industry based authors has increased compared to previous years.

We would like to express our gratitude to the referees and the paper contributors for their hard work on the papers
included in this volume. The Organising and Programme Committees would like to thank the keynote speaker, Prof
M.C.Jackson, Dean, University of Lincolshire and Humberside, United Kingdom, President of the International
Federation for Systems Research as well as the Computer Society of South Africa and The University of Cape

Town for the cooperation as well as the management and staff of the Potchefstroom University for CHE and the
University of Natal for their support and for making this event a success.

Giel Hattingh, Paul Licker, Lucas Venter and Don Petkov

Table of Contents

Lynette Drevin: Activities ofIFIP wg 11.8 (computer security education) &
IT related ethics education in Southern Africa

Reinhardt A. Botha and Jan H.P. ElofT: exA Security Interpretation of the
W orkflow Reference Model

Willem Krige and Rossouw von Solms: Effective information security
monitoring using data logs

Eileen Munyiri and Rossouw von Solms: Introducing Information Security:
A Comprehensive Approach

Carl Papenfus and Reinhardt A. Botha: A shell-based approach to
information security

Walter Smuts: A 6-Dimensional Security Classification for Information

Philip Macha nick and Pierre Salverda: Implications of emerging DRAM
technologies for the RAM page Memory hierarchy

Susan Brown: Practical Experience in Running a Virtual Class to Facilitate
On-Campus Under Graduate Teaching

H.D. Masethe, T.A Dandadzi: Quality Academic Development of CS/IS
Infrastructure in South Africa

Philip Machanick: The Skills Hierarchy and Curriculum

Theda Thomas: Handling diversity in Information Systems and Computer
Science Students: A social Constructivist Perspective

Udo Averweg and G J Erwin: Critical success factors for implementation of
Decision support systems

Magda Huisman: A conceptual model for the adoption and use of case
technology

Paul S. Licker: A Framework for Information Systems and National
Development Research

K. Niki Kunene and Don Petkov: On problem structuring in an Electronic
Brainstorming (EBS) environment

Page

1

3

9

12

15

20

27

41

49

54

63

70

78

79

89

Derek Smith: Characteristics of high-performing Information Systems Project
Managers and Project Teams

Lucas Venter: INST AP: Experiences in building a multimedia application

Scott Hazelhurst, Anton Fatti, and Andrew Henwood: Binary Decision
Diagram Representations of Firewall and Router Access Lists

Andre Joubert and Annelie Jordaan: Hardware System interfacing with
Delphi 3 to achieve quality academic integration between the fields of
Computer Systems and Software Engineering

Borislav Roussev: Experience with Java in an Advanced Operating Systems
Module

Conrad Mueller: A Static Programming Paradigm

Sipho Langa: Management Aspects of Client/Server Computing

T Nepal and T Andrew: An Integrated Research Programme in AI applied to
Telecommunications at� Sultan Technikon

Yuri Velinov: Electronic lectures for the mathematical subjects in Computer
Science

Philip Machanick: Disk delay lines

D Petkov and O Petkova: One way to make better decisions related to IT
Outsourcing

Jay van Zyl: Quality Learning, Learning Quality

Matthew O Adigun: A Case for Reuse Technology as a CS/IS Training
Infrastructure

Andy Bytheway and Grant Hearn: Academic CS/IS Infrastructure in South
Africa: An exploratory stakeholder perspective

Chantel van Niekerk: The Academic Institution and Software Vendor
Partnership

Christopher Chalmers: Quality aspects of the development of a rule-based
architecture

Rudi Harmse: Managing large programming classes using computer mediated
communication and cognitive modelling techniques

90

102

103

113

121

122

130

135

136

142

145

153

162

171

172

173

174

Michael Muller: How to gain Quality when developing a Repository Driven
User Interface

Elsabe Cloete and Lucas Venter: Reducing Fractal Encoding Complexities

Jean Bilbrough and Ian Sanders: Partial Edge Visibility in Linear Time

Philip Machanick: Design of a scalable Video on Demand architecture

Freddie Janssen: Quality considerations of Real Time access to
Multidimensional Matrices

Machiel Kruger and Giel Hattingh: A Partitioning Scheme for Solving the
Exact k-item 0-1 Knapsack Problem

Ian Sanders: Non-orthogonal Ray Guarding

Fanie Terblanche and Giel Hattingh: Response surface analysis as a
technique for the visualization oflinear models and data

Olga Petkova and Dewald Roode: A pluralist systemic framework for the
evaluation of factors aff�cting software development productivity

Peter Warren and Marcel Viljoen: Design patterns for user interfaces

Andre de \Vaal and Giel Hattingh: Refuting conjectures in first order
theories

Edna Randiki: Error analysis in Selected Medical Devices and Information
Systems

184

193

200

211

218

229

230

236

243

252

261

262

Abstract

THE SKILLS HIERARCHY AND CURRICULUM

Phi l ip Machanick
Department of Computer Science, University of the Witwatersrand

2050 Wits, South Africa
philip@cs. wits. ac.za

A commonly accepted h ierarchy of cognitive skills puts analysis and synthesis near the top,
with straightforward knowledge and comprehension at the bottom. A typical Computer
Science curriculum, though, usual ly starts with programming, an activity that requires both
analysis and synthesis. The student, without the right conceptual skil ls, attempts synthesis
without analysis, resulting in poor programming skil ls. This paper presents a view of
Computer Science curriculum, drawing on earlier work on abstraction-first learning
[Machanick 1998] , to propose a curriculum which starts from lower-order cognitive skil ls,
while working up to higher-order ski l ls in later years.

1. Introduction

It is commonly accepted that the hierarchy of cognitive ski l ls-as defined in Bloom's Taxonomy-has
analysis and synthesis near the top, and straightforward knowledge and comprehension at the bottom
[Bloom 1956]. If you look at a typical Computer Science curriculum, though, where does it start? Usual ly
with programming, an activity that requires both analysis and synthesis. What typically happens is that
the student, without the right conceptual ski l ls, attempts synthesis without analysis, resulting in poor
programming skills-we end up training hackers. This paper presents a �roposal to restructure the
Computer Science curriculum, drawing on earl ier work on abstraction-first learning [Machanick 1998], to
propose a curriculum which starts from lower-order cognitive ski lls, while working up to higher-order
ski l ls in later years.

Since the last major revision of the ACM/IEEE curriculum appeared in 199 1 [ACM 199 1] , perhaps it' s
time there was a major review of our underlying assumptions.

The proposed ordering is presented first in terms of an abstract breakdown of Computer Science, to avoid
assuming that current subjects or topics fit the new framework. A possible curriculum based on the
abstract breakdown is then presented.

The abstract breakdown is based on two principles: low-level-cognition-first (LLCF), and abstraction
first (AF) learning. The LLCF strategy is based on the following hierarchy of skil ls (with a further level
of breakdown) : know, comprehend and apply, and finally, analyze and synthesize. The highest- level ski l l
in Bloom's Taxonomy, evaluate, is reserved for graduate- level courses and research. The AF approach is
based on the following ordering: use an abstract virtual machine, understand its components, construct
with existing components, build new components, design new abstractions.

How can these orderings apply to setting up a Computer Science curriculum? The AF approach leads to
defining layers of a virtual machine, with emphasis on the outer layers early, and more depth of the inner
layers later. The LLCF strategy leads to deciding which cognitive ski l ls to exercise and evaluate at each
stage of the curricu lum.

The remainder of this paper discusses the proposed approaches in more detail. First, Bloom's Taxonomy
is revisited, then the AF approach is described, then the LLCF strategy. An combined strategy leading to
a curriculum proposal is put together next, and finally a conclusion presents a way forward.

54

2. Bloom's Taxonomy

2. 1 introduction

Bloom's Taxonomy has long been recognized as a valid approach for dividing skills into those at a
beginner's cognitive level, through to higher-level abilities. One of the strengths of this classification of
ski l ls is that a taxonomy, unlike a straightforward classification, is rooted in an objectively-determined
framework, whereas a classification in its more general sense may be based on arbitrary criteria [Bloom
1 956] . Bloom's Taxonomy is founded in extensive research and surveys of educators. Accordingly, it is a
useful framework for judging the appropriateness of a given kind of task for a given ski ll level.

Much of the material in Bloom's report relates to artistic or creative work but relatively minor adaptation
makes the ideas suitable for Computer Science. For i llustrative purposes, examples from Computer
Science are added occasionally to this summary of Bloom's report; the major discussion of application to
Computer Science education follows in remaining sections of the paper.

The taxonomy orders skills as follows, from lowest cognitive skills to highest:

knowledge-factual knowledge

comprehension

application

analysis

synthesis

evaluation

While other breakdowns are possible (and the authors of the original report acknowledge this), it is useful
to use this broad breakdown as a basis for examining any curriculum in terms of the order it presents
material and the demands it makes of students at each stage of their studies. Any deviation from the order
suggested by Bloom's Taxonomy can of course be justified, but it is a useful start to compare ski l ls
against such an accepted taxonomy, to reveal any major problems in the way a curriculum is structured.
This paper is rooted in concerns that Computer Science curricula are designed with too much emphasis
on which topics to teach when, and too little on which cognitive ski lls to exercise and evaluate when.

Let us briefly consider the kinds of knowledge covered by each level of the taxonomy.

2.1 knowledge

Knowledge covers a range of areas from simple isolated facts, terminology, to specific facts. Educational
goals in these areas essentially cover simple recall, abil ity to recover knowledge from standard sources,
knowledge or properties of entities in a given knowledge domain, being able to define concepts, being
able to establish l imits on the meaning of words in a given (e.g. technical) context and being able to
converse intelligently about a given subject. After knowledge of specifics, there's knowledge of ways of
dealing with specifics: knowledge of conventions, knowledge of trends, knowledge of classifications and
categories, knowledge of criteria, and knowledge of methodology. The final level of the knowledge part

55

of the hierarchy is knowledge of universals and abstractions in a field: principles and generalizations, and
theories and structures.

Note that none of these points restrict the complexity or sophistication of the concepts being dealt with,
just the depth to which they need to be understood. In general, the educational objective at this level is
that the student should know concepts, without necessarily having a deep understanding.

2.2 comprehension

Comprehension is the next level. Here, the learner is expected to start to make sense of concepts, and be
able to deal with them in a way that shows understanding. Comprehension has to be tested in different
ways to factual knowledge: students have to demonstrate the ability to interpret their knowledge, and to
make predictions which extend their existing knowledge.

Bloom's report proposes testing skills in this area by translation, interpretation and extrapolation, very
different kinds of examination techniques than would be used in a straightforward knowledge assessment.

2.3 application

Application is distinguished from comprehension in that comprehension can be demonstrated by showing
that a student could do something; application by showing that the student will actually do it.

Bloom's report illustrates the difference between comprehension and application with an examf!)le where
the application-based test of skills starts with a problem for which the student must restructure the
problem domain to match a familiar example, classify the problem, selyct an abstraction (theory,
principle, etc.) and use the abstraction to solve the problem. By contrast, in a test of comprehension, the
student would be given the abstraction and be told to solve the problem.

By way of example, in Computer Science, application would be represented by giving a student a
problem for which a familiar algorithm would probably work, in which the problem was to find a suitable
algorithm, and show that it had the required properties (complexity, correctness, etc.). Comprehension on
the other hand would be tested by a problem in which the student was given the algorithm and asked to
show that it had the required properties.

2.4 analysis

Analysis is yet a more advanced form of application of knowledge, requiring skills in organizing and
structuring components of a solution, and ensuring that the overall solution works. Analysis is broken
down into elements of a solution, and combination of those elements.

Analysis of elements requires recognition of unstated assumptions, understanding the difference between
facts on the one hand and hypotheses or opinions on the other, and understanding the relationship
between a conclusion and the steps to arrive at a conclusion. Combination of elements requires
understanding relationships between components (what is and isn' t relevant, causal relationships and to
identify logical fallacies), and understanding how elements are organized (recognition of form and
pattern, recognize viewpoints in others' work).

For Computer Science, analysis would include design skills-module structure of a program,
constructing algorithms out of other algorithms, design of data structures for complex programs, and
performing analysis of all of these elements of the programming task.

56

2.5 synthesis

Synthesis involves constructing complete solutions out of components. While there are aspects of this
skill in lower levels of the hierarchy, synthesis requires more complete understanding of the overall
process, and the ability to arrive at a more complete solution.

The aspects of synthesis most relevant to Computer Science include producing a plan to meet
requirements of a task (including proposing how to test an hypothesis and integrating results of research
into a solution plan, ability to produce a complete design from a given specification and the ability to use
theory to define a new process), ability to derive a new set of abstract relations (formulate hypotheses,
ability to convert specific instances to a conceptual structure, and ability to make generalizations).

2.6 evaluation

Evaluation in the sense used in Bloom's report is the ability to make judgments, and is intended to reflect
a higher level of cognitive skill than for example choosing between alternative methods, as might have to
be done in application, analysis or synthesis.

Assessment of students' judgment may be based on various criteria: the ability to assess accuracy of
reported facts, ability to apply given criteria to judge a piece of work, the ability to find logical fallacies
in a given piece of work, the ability to compare major theories and pieces of work, and the ability to
assess judgments and values involved in choices others have made.

3. Abstraction-First (AF) Ordering

The Abstraction-First (AF) approach is another classification (possibly taxonomy) of skills, which is
specific to Computer Science, though it may have other applications.

The general idea of the abstraction-first approach is to draw on ideas developed to simplify programming
to simplify the task of teaching programming. Another part of the motivation for the course is the
observation in industry that practicing reuse does not happen automatically; some form of re-education is
necessary, if programmers have been schooled in more traditional coding styles [Auer 1 995; Berg et al.
1 995; Fayad and Tsai 1 995 ; Frakes and Fox 1 995). Designing from scratch is meant to be harder than
using a library of reusable classes, so why not teach using reusable classes before introducing
programming from scratch? In particular, why teach students to program in a style that does not emphasis
good programming principles, then try to make them unlearn their bad habits? Examples of bad habits
that are hard to break include failure to design before coding, failure to break code down using
procedural abstraction, failure to use data abstraction to hide inessential design decisions and failure to
document interfaces. All of these practices are actually taught in many introductory programming
courses, just as many introductory programming courses in the early days of structured programming
started by teaching unstructured coding practices (monolithic main programs, even sometimes goto
before loops) which students were later expected to unlearn. In both cases, instructors are tempted to
think of the things they learnt first as " easy" and therefore should be first in the curriculum.

The AF approach is based on starting with the highest level of a virtual machine, and moves downward.
The order of topics in a data abstraction and algorithms course, for example, is:

user-level abstractions-non-computer examples, user interfaces

understanding abstractions created by others-working through examples built using class l ibraries
and frameworks

57

• reusing abstractions created by others-using class l ibraries and frameworks to construct simple
programs

• bui lding new abstractions-creating new classes

• building new general abstractions-creating new container classes

Interleaved with this is algorithm and data structure analysis, which is first introduced in terms of given
classes, and is extended to cover analysis of new classes and data structures.

The abstraction-first approach has been applied with some success in a C++-based data abstraction and
algorithms course at second-year level; the novel ordering appeared to work, in that students' results did
not suffer relative to an earlier more conventional course, despite the fact that much more ground was
covered [Machanick 1998].

It is proposed here that the AF approach be extended to other areas of the Computer Science curriculum'.
One way of doing this is for Computer Science to be seen as the study of layered virtual machines,
resulting from which it becomes appropriate to start with the highest-level virtual machine, and work
inwards to the lowest-level virtual machine.

4. Low-Level-Cognition-First (LLCF) Ordering

The Low-Level-Cognition-First (LLCF) ordering is a novel strategy, based on adapting Bloom's
Taxonomy to Computer Science.

The general idea is to treat subjects early on in the curriculum in a way which only requires lower-level
cognitive skil ls, gradual ly working up to the higher-level skills. The intent is to propose an alternative to
conventional curricula which start with programming, typically move on to systems subjects in the
second year and end with programming languages, software engineering and possibly more theoretical
areas in third year. There may be some variation around this ordering, but starting early with
programming in some form is almost universal.

The most important idea in the LLCF strategy is that the year in which content is placed is less important
than the kind of skills that are tested. Some areas-such as inventing a new theory, designing large
systems, or researching a new approach to instruction-set design-inherently use higher-level cognitive
skills than others. However, many subjects can be handled at different levels. For example, programming
can be explained in a factual way: this is what the task is, what a program does, what language elements
are. On the other hand, a complete understanding of programming from scratch (given a problem with no
hint as to solution method) requires analysis and synthesis.

A specific proposal for the use of the LLCF strategy is to deal with straight knowledge in introductory
courses, comprehension and application in intermediate courses, analysis and synthesis in advanced
courses, and to save evaluation for graduate-level courses and research. There can be some debate as to
where the dividing lines should be placed (for example, if comprehension should be intro�uced later in
the first year), but the fact that Bloom's Taxonomy is based on an objectively-determined hierarchy
makes a strong case for using it as a basis for ordering the depth at which subjects are taught.

In the LLCF model, then, understanding what a given program does, understanding what the building
blocks to create programs are, etc., are suitable introductory skills-but designing a program from scratch
is not. At most, learning to convert an algorithm to code could be considered an introductory ski ll, but

5 8

skills
hierarchy
know

compre
hend,
apply

analyze,

Table l : Combining the Orderings

I applications tools
virtual machine layers

I : systems
i

! hardware

programs, I know parts, higher-
l
run, use for problems purpose
(e.g. spreadsheet, DB), compilers,

'

of launch

Ii understand I/0 specs,
, measure performance
vs. known complexity

interfaces,
definition
interface' s
" contract"

libraries,
formal

of

organize work, use I level organization,
internet, use OS I size/performance/c
tools e.g. resource I ost issues
usage

combine components' automata and concurrency,
" contracts" : I/0 spec, formal languages, queuing,
pre- and post- relational database scheduling,
conditions, complexity and other models, resource
analysis normalization management,

computer organiz-

1
ation: logic circuits,

, quantitative design
(benchmarks, sim-
ulations)

:�s:i�
r

�:·d systems \
extend libraries, design projects projects

synthesize new software
architecture: board

' chip-level, instruc
tion-set, memory,
I/0, etc.

\ architectures
I

even that is doubtful, unless the algorithm requires little translation, as translation is a " comprehension" -
level skill in Bloom's T;ixonorpy.

5. Combined Strategy and Computer Science Curriculum

If the LLCF strategy is combined with the AF strategy, it suggests that ordering of topics should proceed
from higher-level to lower-level virtual machines, while also proceeding from lower-level cognitive skills
to higher-level skills. One possible way of achieving this ordering is to work from a high level to a low
level virtual machine across a year, while moving to a new cognitive ski l l level each year.

Table I illustrates how the two orderings can be combined, based on spreading virtual machine layers
across a year and skill levels down the years.

Table 2 reformulates Table 1 as a potential 3-year curriculum. Note how programming is moved later, yet
half of the third year is devoted to project work.

A slightly more detai led breakdown of each topic, illustrating how the skill levels are developed down the
years, follows.

Year 1

• use and measurement of applications-know user interfaces and virtual machine concept; know
major components of a computer; know functionality of a range of programs; know how user
requirements are specified; know the purpose and use of user-level documentation; g iven a
complexity result, measure a program' s speed in a lab, and verify that a graph of run time matches
the predicted speed

59

Table 2 : A Sample Curriculum

topics
year I applications tools I systems hardware
I I use and measurement of introduction to basic NW and basic computer

I appl ications programming tools operating system organization
2 I basic program formal languages and advanced NW and computer organization

' construction databases operating system

3 advanced programm ing compiler and DB NW and operating advanced architecture
and software projects system projects
architecture

introduction to programming tools-know the difference between source code, compi led code and
l ibraries; know the steps in the program construction process; know the purpose of programming
environments including editors, compilers and linkers; know the need for error checking and
debugging; know the how correctness of software is specified and verified

basic NW and operating system-know the purpose of the operating system and networks; know the
aspects of the virtual machine which the network and operating system provide; know virtual
machines in more detail than before; know major operating system and networking concepts :
processes, schedul ing, resource management, memory hierarchy, protection, routing, the internet and
internet-based tools

basic computer organization-know the major components making up a computer; know the
difference between machine code/assembly language and h igh-level languages; know the major
microarchitecture components (registers, pipeline, buses, cache, main memory); know the role of 1/0
devices; know why the lower levels of the virtual machine are usually hidden

Year 2

basic program construction-given a l ibrary, understand its interfaces and use its components to add
to a given program; given an algorithm, construct a procedure or function to implement it; add a new
function or procedure into an existing program and show that it works as specified; given a
complexity result for an algorithm, prove it is correct; given two alternative algorithms, compare the
known complexity results, and determine both theoretically and experimentally which is the better;
given the specification of a data structure, use the data structure (implemented in a class library) in a
program

formal languages and databases-understand turing machines, finite automata and pushdown
automata; prove simple r�sults for each model; construct s imple programs in turing machines, and
simple recognizers in the other two (using supplied tools); understand the value of relations as a data
representation; given unnormalized relations, perform normalization; understand the application of
these concepts to databases; understand the general value and appl icabil ity of these formal
approaches

advanced NW and operating system-implement simple examples of concurrency, given algorithms
and interfaces to system calls; understand algorithms to implement queuing; understand issues in
implementation of concurrency primitives and how they are used (locks, semaphores, critical
regions, race conditions); understand resource management polic ies and algorithms inc luding paging

60

and scheduling; understand layered network models; understand major policy issues in networks
including routing, congestion control, switches, routers and media

computer organization-understand how logic circuits are building blocks of the major components;
understand how to simplify logic and combine elements to create c ircuits; understand how design
affects performance and how performance is measured; understand how assembly-language
programs are written; relate assembly language on one had to high-level languages and on the other
to the hardware; understand how I/0 devices interface to the hardware

Year 3

advanced programming and software architecture-understand the architecture of an existing library
or application and extend it; design a new relatively simple architecture (library or application) :
mainly project-oriented

compiler and DB projects-use principles of formal language to implement small projects, to
understand how compiler construction tools work (not only for parts of a compiler) ; do a database
project; report on the value of the formal methods in these areas

NW and operating system projects-implement software using operating system calls, including use
of pipes or other higher-level models of inter-application communicat ion, multithreaded
applications, use of low-level networking protocols such as UDP to implement higher-level
protocols; simulation

advanced architecture-design principles including instruction set architecture , performance impact
of variations in design, overall system design, hardware-software interactions; code generation and
assembly language

Notice how the first year is mainly about knowing, the second year is mainly about understanding, while
the final year focuses on constructing and designing. This is in keeping with a conventional engineering
curriculum, which builds background first, and only later introduces design and construction [Baber
1 997].

To complete the curriculum, mathematical background is discussed briefly. In the first year, little is
required. Algorithm analysis is given, and results need not be proved. However, some familiar ity w ith the
notion of complexity and the growth rates of functions should result from the applications topic. During
the first year, it would be opportune to build mathematical background in discrete mathematics,
especially proof by induction. It would also be useful to introduce some statistics as a prerequisite for the
advanced networks and operating systems course. An LLCF strategy of course could also be applied here,
but let us leave that for mathematics educators to debate. This discrete mathematics background would be
essential for the second year when basic program construction and formal languages are taught. The more
classical mathematical background of calculus could provide some useful background to the final year,
where application-specific projects may need calculus (e.g. if simulations are based on solution of
differential equations). It would therefore be useful if the second-year mathematics curriculum built on
the first year topics, and added in calculus.

6. Conclusion

The proposed curriculum in some ways seems a rather radical change from current practice. However, it
does offer a number of quite practical advantages. For one, the major equipment-related component of

6 1

the course is pushed to the final year; when classes are smal ler and students more capab le of looking after
themselves . For another, the notion that Computer Sc ience is just about learning to program is dispe l led.
The difficulty of dealing with c lasses where some students already know how to program and others have
never seen a computer before is also addressed: students who 've already learnt to program have
something new to learn from day one while real novices have a re latively gentle introduction. Another
useful gain is that programming too ls are dealt with purely as examples early in the course, so there is
much less pressure to adopt the latest technology and change the curriculum frequently, at least in the
more introductory years.

All of those gains though are a bonus . The real gain is in moving to a model where the content is a better
fit to the cognitive ski l l level that can be expected of students during each year of study. What 's more, we
move away from teaching students concepts they cannot fully comprehend, resulting in bad habits which
have to be unlearnt.

The most common argument against this approach (in discussion with colleagues) is that students expect
to be able to start programming early on. In this model, there is nothing to stop students who already
know how to program from extending given examples if they want to. However, the curriculum does not
require that kind of programming skil l early on, as all hands-on work in the first year uses pre-written
software. Perhaps in any case it is time to tel l students who have a hacker mentality that this is a mindset
that does not go w ith a university- level education in Computer Sc ience. After all, it i s not as if we are
short of students . In any case, students u ltimately go for the curriculum that is most appreciated in the job
market. If this model has the intended result-producing a more disciplined style of graduate who
understands the design process, the value of reusable l ibraries, virtual machines, etc.-such graduates
w i l l come to be in great demand in industry over time, once industry sees how much better their work is .

References
[ACM 1 99 1] A Summary of the ACM/IEEE-CS Joint Curriculum Task Force Report: Computing

Curricula 1 99 1 , Comm. ACM, vol. 34 no. 6 June 1 99 1 , pp 68-84 .
[Auer 1 995] Ken Auer. Smalltalk Training: As Innovative as the Environment, Comm. ACM, vol. 3 8 no.

I O October 1 995 , pp 1 1 5- 1 1 7 .
[Baber 1 997] Robert L. Baber. CS Education and an Engineering Approach to Software Development,

Proceedings of the 27th Southern African Computer Lecturer 's Association Conference, Wilderness,
South Africa, June 1 997 pp. 22-24.

[Berg et al. 1 995] Wil liam Berg, Marshall C l ine and Mike G irou. Lessons Learned from the operating
system/400 00 Project, Comm. ACM, vol. 38 no. 10 October 1 995 , pp 54-64.

[B loom I 956] Benjamin S B loom (ed.) . Taxonomy of Educational Objectives: Book I Cognitive Domain,
Longman, London, 1 956 .

[Fayad and Tsai 1 995] Mohamed E Fayad and Wei-Tek Tsai . Object-Oriented Experiences, Comm.
A CM, vol . 3 8 no. 1 0 October 1 995 , pp 5 1-53 .

[Frakes and Fox 1 995] Wil liam B Frakes and Christopher J Fox. S ixteen Questions About Software
Reuse, Comm. ACM, vol . 3 8 no. 6 June 1 995 , pp 75-87, 1 1 2 .

[Machan ick 1 998] Phil ip Machanick. The Abstraction-First Approach to Data Abstraction and
A lgorithms, Computers & Education, 1 998 , in press.

62

	1998_SAICSIT_Machanick(1)

