
T;,e Sc.dti\ .Afdc.aa InsfH.xte for Cornpui;.:1· ��c�c�rtists ant�
l r1f0 rm�� t· ;,c lJ Te�:h f!O l,,ei�; ts

{V_lv•·T·- .,� r, • l ... 19,.1· ., 'J I � 11 (l ! < ·-' - .•. J_ .,. <._, k_1 _!() ! t' .

.23--2 1:� l'\OVC\1IBE!11�,98
.;�A �'E T(HV��

Hosi:•.:J 0�· ((1c U:iivt:c'.i�) 0f {:�p;: To,,'n h ?�',-.)Cfodt'll n :01 t!tc CS5,\.
i\) (di�f�Ht:•·.�·H iJHJ..,�rsi{) for CHE aud

·n,\:. 1:r,h1 tnity r,f Nu!al

EIHTED nv

D. F·!tTKo:..,· ANL' L. Vc.:\in�R

SPONGOR�D BY.

The South African Institute for Computer Scientists and
Information Technologists

ANNUAL RESEARCH AND DEVELOPMENT

SYMPOSIUM

23-24 NOVEMBER 1998
CAPETOWN

Van Riebeeck hotel in Gordons Bay

Hosted by the University of Cape Town in association with the CSSA,
Potchefstroom University for CHE and

The University of Natal

GENERAL CHAIR: PROF G. HATTINGH, PU CHE

PROGRAMME CO-CHAIRS:
PROF. L VENTER, PU CHE (Vaal Triangle), PROF. D. PETKOV, UN-PMB

LOCAL ORGANISING CHAIR: PROF. P. LICKER, UCT - IS

PROCEEDINGS

EDITED BY
D. PETKOV AND L. VENTER

SYMPOSIUM THEME:

Development of a quality academic CS/IS infrastraucture in South Africa

SPONSORED BY

Copyrights reside with the original authors who may be contacted directly.

Proceedings of the 1998 Annual Research Conference of the South African Institute for Computer
Scientists and Information Technologists.
Edited by Prof. D. Petkov and Prof. L. Venter
Van Reebeck Hotel, Gordons Bay, 23-24 November 1998

ISBN: 1-86840-30�-3

Keywords: Computer Science, Information Systems, Software Engineering.

The views expressed in this book are those of the individual authors and not of the South African
Institute for Computer Scientists and Information Technologists.

Office of SAICSIT: Prof. J.M.Hatting, Department of Computer Science and information Systems,
Potchefstroom University for CHE, Private Bag X6001, Potchefstroom, 252�, RSA.

Produced by the Library COJ?Y Centre, University of Natal, Pietermaritzburg.

FOREWORD

The South African Institute for Computer Scientists and Information Technologists (SAICSIT) promotes the
cooperation of academics and industry in the area of research and development in Computer Science, Information
Systems and Technology and Software Engineering. The culmination of its activities throughout the year is the
annual research symposium. This book is a collection of papers presented at the 1998 such event taking place on
the 23'd and 24th of Noyember in Gordons Bay, Cape Town. The Conference is hosted by the Department of
Information Systems, University of Cape Town in cooperation with the Department of Computer Science,
Potchefstroom University for CHE and and Department of Computer Science and Information Systems of the
University of Natal, Pietermaritzburg.

There are a total of 46 papers. The speakers represent practitioners and academics from all the major Universities
and Technikons in the country. The number of industry based authors has increased compared to previous years.

We would like to express our gratitude to the referees and the paper contributors for their hard work on the papers
included in this volume. The Organising and Programme Committees would like to thank the keynote speaker, Prof
M.C.Jackson, Dean, University of Lincolshire and Humberside, United Kingdom, President of the International
Federation for Systems Research as well as the Computer Society of South Africa and The University of Cape

Town for the cooperation as well as the management and staff of the Potchefstroom University for CHE and the
University of Natal for their support and for making this event a success.

Giel Hattingh, Paul Licker, Lucas Venter and Don Petkov

Table of Contents

Lynette Drevin: Activities ofIFIP wg 11.8 (computer security education) &
IT related ethics education in Southern Africa

Reinhardt A. Botha and Jan H.P. ElofT: exA Security Interpretation of the
W orkflow Reference Model

Willem Krige and Rossouw von Solms: Effective information security
monitoring using data logs

Eileen Munyiri and Rossouw von Solms: Introducing Information Security:
A Comprehensive Approach

Carl Papenfus and Reinhardt A. Botha: A shell-based approach to
information security

Walter Smuts: A 6-Dimensional Security Classification for Information

Philip Macha nick and Pierre Salverda: Implications of emerging DRAM
technologies for the RAM page Memory hierarchy

Susan Brown: Practical Experience in Running a Virtual Class to Facilitate
On-Campus Under Graduate Teaching

H.D. Masethe, T.A Dandadzi: Quality Academic Development of CS/IS
Infrastructure in South Africa

Philip Machanick: The Skills Hierarchy and Curriculum

Theda Thomas: Handling diversity in Information Systems and Computer
Science Students: A social Constructivist Perspective

Udo Averweg and G J Erwin: Critical success factors for implementation of
Decision support systems

Magda Huisman: A conceptual model for the adoption and use of case
technology

Paul S. Licker: A Framework for Information Systems and National
Development Research

K. Niki Kunene and Don Petkov: On problem structuring in an Electronic
Brainstorming (EBS) environment

Page

1

3

9

12

15

20

27

41

49

54

63

70

78

79

89

Derek Smith: Characteristics of high-performing Information Systems Project
Managers and Project Teams

Lucas Venter: INST AP: Experiences in building a multimedia application

Scott Hazelhurst, Anton Fatti, and Andrew Henwood: Binary Decision
Diagram Representations of Firewall and Router Access Lists

Andre Joubert and Annelie Jordaan: Hardware System interfacing with
Delphi 3 to achieve quality academic integration between the fields of
Computer Systems and Software Engineering

Borislav Roussev: Experience with Java in an Advanced Operating Systems
Module

Conrad Mueller: A Static Programming Paradigm

Sipho Langa: Management Aspects of Client/Server Computing

T Nepal and T Andrew: An Integrated Research Programme in AI applied to
Telecommunications at� Sultan Technikon

Yuri Velinov: Electronic lectures for the mathematical subjects in Computer
Science

Philip Machanick: Disk delay lines

D Petkov and O Petkova: One way to make better decisions related to IT
Outsourcing

Jay van Zyl: Quality Learning, Learning Quality

Matthew O Adigun: A Case for Reuse Technology as a CS/IS Training
Infrastructure

Andy Bytheway and Grant Hearn: Academic CS/IS Infrastructure in South
Africa: An exploratory stakeholder perspective

Chantel van Niekerk: The Academic Institution and Software Vendor
Partnership

Christopher Chalmers: Quality aspects of the development of a rule-based
architecture

Rudi Harmse: Managing large programming classes using computer mediated
communication and cognitive modelling techniques

90

102

103

113

121

122

130

135

136

142

145

153

162

171

172

173

174

Michael Muller: How to gain Quality when developing a Repository Driven
User Interface

Elsabe Cloete and Lucas Venter: Reducing Fractal Encoding Complexities

Jean Bilbrough and Ian Sanders: Partial Edge Visibility in Linear Time

Philip Machanick: Design of a scalable Video on Demand architecture

Freddie Janssen: Quality considerations of Real Time access to
Multidimensional Matrices

Machiel Kruger and Giel Hattingh: A Partitioning Scheme for Solving the
Exact k-item 0-1 Knapsack Problem

Ian Sanders: Non-orthogonal Ray Guarding

Fanie Terblanche and Giel Hattingh: Response surface analysis as a
technique for the visualization oflinear models and data

Olga Petkova and Dewald Roode: A pluralist systemic framework for the
evaluation of factors aff�cting software development productivity

Peter Warren and Marcel Viljoen: Design patterns for user interfaces

Andre de \Vaal and Giel Hattingh: Refuting conjectures in first order
theories

Edna Randiki: Error analysis in Selected Medical Devices and Information
Systems

184

193

200

211

218

229

230

236

243

252

261

262

Abstract

QUALITY CONSIDERATIONS OF REAL TIME ACCESS TO
MULTIDIMENSIONAL MATRICES

F. Janssen
Rubico Engineering Server Products,

Postnet #22, Private Bag X87, Bryanston, 202 1

This paper investigates the quality considerations of real time access to multidimensional
matrices. Researchers have emphasised the relationship between multidimensional matrices
and data warehousing in the past; the multidimensional matrix concept may also be used to
store real time transaction data. Different models can be used to implement multidimensional
matrices. The application of the quality characteristics of Functionality, Reliabil ity, Usabi lity,
Maintainability, Portability and Efficiency, as related to software developed for the Matrix
Model is discussed. Efficient software must provide appropriate responses. Performance is an
inherent problem when accessing multidimensional matrices. Different techniques can be used
to optimise performance. Techniques such as aggregates and partitioning can provide
outstanding performance gains. The importance of quality is often recognised more by it' s
absence at the end of a software project, than by its presence at the start of a new project.
Quality cannot be added into a product after it has been developed, it must be built into it from
the start.

1. Introduction
This paper investigates the quality considerations of real time access to multidimensional matrices.
Researchers have emphasised the relationship between multidimensional matrices and data warehousing in
the past; the multidimensional matrix concept may also be used to store real time transaction data. The main
problem of real time access to multidimensional matrices is the s low response time of data access.

Section 1 contains a broad overview of multidimensional matrices. This section describes the Typical
Dimensional Model, which is mostly used for data warehousing, and the Matrix Model, which may be used
for both data warehousing and real time access. The Typical Dimensional Model contains a single fact table
and a number of dimension tables. The Matrix Model consist of a fact table; one combined dimension table,
which has relationships to a central repository; and a third table, where date related data is stored. The central
repository takes advantage of leading-edge data repository concepts and technologies .

Section 2 examines the quality characteristics of Functionality, Reliability, Usability, Maintainability,
Portabi l ity and Efficiency. The relevance of these characteristics to real time access will be identified.

The application of these six quality characteristics, as related to software developed for the Matrix Model is
discussed in Section 3 .

Section 4 briefly discusses the different techniques that can b e used to optimise performance. Performance
considerations correlate c losely to the physical data model . Intelligent data modelling, through techniques
such as aggregates and partitioning can provide outstanding performance gains and is covered in this last
section.

2. Multidimensional Matrices concepts
Multidimensional Matrices is a new name for an old technique of making databases s imple and
understandable. Multidimensional matrices allow you to visualise the database as a "cube" of dimensions.

2 1 8

The different dimensions are intimately related and can be stored, viewed and analysed from different
perspectives.

In Figure 1 there are three dimensions: Stores, Products and Time. We now have a 3 by 3 by 3
multidimensional matrix containing 27 cells. The Sales Volume figures are located at the intersections of the
dimension positions.

Sales Cube

s
t
0
r
e
s '--;::::::::::;:=':::;-__.JV/ !Time ! j Products

Figure 1 : Sales Cube

Different models can be used to present multidimensional matrices in a database. The most common model
used is the Typical Dimensional Model as illustrated in Figure 2 [2] .

Product D imens ion

. •product_key
�product_descri pt ion
.. b rand
f)Category

1

1 . . *

Facts Tim e D imens ion

4>t ime_key 4>t ime_key
�product_key �day_of_week
•sto re_key

1..*
•moth

�alue_so l d 1 #'quarter
�un it s so ld �yea r
�alue_cost •ho l i day _flag

1 . . *

1

Sto re D imens ion

.. sto re_key
qsto re name
�sto re_address
•floor_plan_type

Figure 2: Typical Dimensional Model

2 1 9

The Typical D imensional Model may also be referred to as the star join schema, because the mode l looks l ike
a star. There is one large central fact tab le and a few smaller dimension tables. A dimension acts as an index
for identifying values within the fact tab le. Every combination of dimension tables generates a record in the

· fact table; for example a particular product sold in a specific store, at a certain time, wi l l generate one record
in the fact table. The fact table, depicted above, may eas i ly contain b i l l ions of records .

The fact table is used to store numerical measurement data. Each measurement is taken at the intersection of
all three dimensions. In F igure 2 the measurement is the value so ld, units sold and the cost price of the sold
units. Relatively few dimension combinations usually exist in the fact tab le. In the above example it is very
unlikely that a l l the products w i l l be sold in all the different stores on the same date and time.

Dimension tables are used to store descriptions of the different dimension combinations. In the store
dimension every store has a name, address and floor p lan. By modifying the database tab le, other attributes
such as manager and te lephone number could be added. Dimension table attributes usually serve as
constraints or row headers in queries.

The Typical D imensional model is generally used for data warehousing but the enthusiasm for data
warehousing is very dangerous. It i s often assumed that a warehouse wi l l so lve all the problems of an
organisation, when in reality, anention to operational systems might solve many problems. Building a data
warehouse often only provides a "'Band-Aid" solution for problems in operational systems. By using a
suitable design, operational data may provide the same functionality as the data in a data warehouse, with the
added advantage of real time access (!] .

The Matrix Model can be used for both real time access, for example, access to product sales prices; and data
warehousing, for example, storing sales history . This model consist of a fact table, one combined dimension
table (which has re lationships to a central repository) and a th ird table where date related data is stored. The
central repository has a threefold purpose of providing:

• Structures as a grouping mechan ism for items as il lustrated in F igure 3 . �tructures may consist e ither of
s ingle groups of items, or of h ierarchically re lated groups of items.

STRUCTURE
NAME

GROUPS

((Products J
ITEMS

��0
. 1Am1id

Figure 3: Structure

• A Virtual Database for hold ing attributes and their associated values as i l lustrated in Figure 4. An
attribute can be string, numeric, boolean or a date.

220

Virtual data.
c onfigu.rable.
linked to
anyt.h.in.g ·and
anywhere

I TEl'vlS

� llff. l. •� .. y,·.J.•

· .Mil\111$' ',t•

F lym o11J ''

Date

Pro d.
Pric e

Date

Figure 4: Virtual Database

• Configuration Capability to allow dynamic configuration of data requirements as per individual user ' s
business rules .

Instead of separate dimension tables the Matrix Model, as i l lustrated in Figure 5, use one combioed dimension
table. The combined dimension table is used to group structure items together. The dimension table has a
unique technical key (t_stvlnk). This key is a numeric attribute used as the primary key of the table.

Repos itory
¢structu res
�groups

I �attributes

I S1VLNK (D imens ions)
STAMTS (Facts) "t_stvl nk
4ent_name �t_stcube
�t_entity �t_stgr_o1
�t_stgroup ,0t_stgr_o2
�t_stdates �t_stgr_03
�trn_amt ,_ «:,t_stgr_0 4
c;amt_string 1 . . *1 .ot_stgr _05
�amt_date ,0t_stgr_06
�amt_sec �t_stgr_0 7
�amt_type <,1t_stgr_08
�amt_prec "t_stgr_0 9

I r ·* ,0t_stgr_ 1 O

STDATES (Dates)
�t_stdates
qt_stgroup
�t_maca l

�
qt_stdref
�from_dte 1
qto_dte
<>eff_dte
Qnarrative

Figure 5: The Matrix Model

-�- _ ___ ·:n 1

Different structure groupings or cubes can exist in the dimension table, for example one cube can consist of a
product and store grouping while another can be a resource and location grouping. The dimension table is
denormalized to improve performance; therefore the maximum number of structures that may by grouped
together, as a cube, is ten. Each cube must be configured in the repository. A unique technical key is
generated for every configured cube. This key is used to distinguish between the different cubes in the
dimension table (t_stcube).

The combination of repository structure items that makes up an occurrence in the dimension table is referred
to as a structure matrix. The technical keys of these items are stored in the t_ stgr _ nn columns. The number
of the column relates to a specific structure in the grouping.

For each record in the dimension table one or more records can exist in the fact table. The facttable is used to
store attributes for a specific structure matrix. The fact table has a combined technical key (ent_name,
t_entity, t_stgroup, t_stdates). The ent_name is the name of the table to which the record is related, in this
model it will be "STVLNK". The next field contains the primary key of the dimension table record that is
linked to that specific, fact table record. Every, attribute in the central repository for example Sales Volume
has a unique key (t_stgroup) and type. Valid types are string, date, numeric or boolean. Each record in the
fact table is linked to a specific date (t_stdates) record in the date table.

The value of the attribute is stored in trn _ amt if it is numeric, in amt_ string if it is a string or boolean and in
amt_date if it is a date. The attribute type is stored in the amt_type field. If it is a numeric attribute the
precision will be stored in amt_prec.

The Dates table contains specific date ranges. Each date range has a start date (from_dte), end date (to_dte),
effective date and description (narritive). A date range always falls in a period (t_macal) and is linked to an
item in the calendar structure in the central repository. The date range makes it possible to store the same
attribute against a structure matrix combination for different dates.

The Matrix Model has various advantages when compared to the Typical Dimensional Model.

• Different cubes can be stored in the combined Multidimensional Model: Instead of creating new database
tables for every dimension, different structures can be grouped together. Every structure grouping has a
unique identifier (t_stcube) in the combined dimension table.

• Attributes can be added to the fact table without modifying the physical database table.
• The Matrix Model is part of the operational system. This solves the problem of data inconsistency

between the data warehouse and the operational system.
• The Matrix Model can be used for both real time access and data warehousing.

3. Quality Characteristics

Quality is often misunderstood when used within a software context. The concept of quality implies
excellence of some sort, but this is not what is implied in a software context. Quality in a software context
can be defined as the totality of features and characteristics of a product that sati&fy specified or implied
needs. Informally the quality of software can be stated as the extent to which the product satisfies its
specification [3] .

The quality characteristics of Functionality, Reliability, Usability, Maintainability, Portability and Efficiency
are very important considerations when developing software. The relevance of these quality characteristics in
real time access to multidimensional matrices can be identified as follow:

• Software must provide the required functionality. To ensure developed software is suitable for its
intended application, the software must provide an appropriate set of functions. To ensure accuracy tests
must be performed on the software. It is also important that the software can interact with other systems.

222

• A reliable system must have a high level of fault tolerance, which ensures that it maintains a high
perfonnance level in the event of software faults. To ensure availability, the system must be capable of
performing a required function at any given point in time.

• User procedures must be uncomplicated and effective, to allow individuals to operate the system
effectively.

• Software systems must be maintainable. Object Orientation techniques used in software development
simplify maintainability. Modified software must be tested.

• Portability is an important quality characteristic. This ensures that the software can be transferred from
one environment to another without any changes in the code. The developed software must be database
and operating system independent.

• Developed software must be efficient to meet its required outputs satisfactorily .

The application of the six quality characteristics as related to software developed for the Matrix Model, is
discussed in the following section.

4. Addressing of the quality characteristics

4. 1 Functionality

It is important that the software provides an appropriate set of functions for specified tasks and user
objectives. To ensure this, Requirements and Specification documents are created. The following functions to
manipulate attribute values in the fact table were identified: accumulation, subtracting, adding, deletion,
updating and reading. To manipulate records in the dimension table the "FETCH" functionality can be used.
"FETCH" functionality checks if a specified record exist in the dimension table. If the record exist, the
technical key of that record will be returned to the calling object. If the record doesn't exist, a new record will
be created for the specified structure matrix and the created technical key will be returned. The user must also
be able to step through the entire or specified dimension records and manipulate the fact table records. This
functionality is referred to as the "STEP" functionality. A list of all dimension records for a specific profile
can be obtained by using the "FETCHLIST" functionality. The data obtained by using the above
functionality must be presented to the users . For this reason, a suite of v isual objects was developed. The
visual objects invoke different actions on non-visual objects by firing rule events. Rules consist of conditions,
calculations and obj ect executions and are called from events within objects. The Rules Engine manages the
execution of rules.

The specification of a product c larifies what the product must do. Detail design in Unified Modelling
Language (UML) is used to determine how to do it. Detail design may detect faults in the Specification
document that can be resolved at this point.

The implementation of the product starts when the detail design is completed. The requirement,
specifications and detail design of the product ensures that the correct functionality is imp lemented in the
final product.

It is important that the developed software provides the correct and anticipated results. Testing, verification
and validation must ensure this.

The Verification and Validation plan, created for the developed software, contains references to design
documents, tests and contains a test p lan for the product. The test plan includes the following:

• Test items
• Features to be tested
• Features not to be tested
• Approach (e.g. example static and dynamic testing)
• Item pass/fail criteria
• Test deliverables
• Testing tasks

223

• Environmental needs
• Responsibilities
• Staffing and training needs • Schedule • Risks and contingencies
• Test Designs • Test case specifications
• Test procedure
• Test reports

It is important to note that testing is not a separate phase in the development life cycle but an intrinsic
component of every phase.

By referencing the requirements, specifications and detail design different integration and implementation
testing, functionality groupings may be identified (testing to specifications). These groupings require that each
path through the software must be executed at least once (functional testing). The relationships between the
different groupings and the different paths of the groupings are modelled in the Verification and Validation
Plan.

The developed software is tested with a test engine that executes test scripts. Different test scripts are created
for every functionality grouping. A standard template is used to create the test script. Every test script as
well as all the other documents must be maintained under version control. The tester specifies the action to
execute, input for the action and expected or partial expected results in the test script. This information is
gathered by referencing the requirements, technical documents and verification and validation plan. The test
engine then reads the information from the file, executes the action with the specified input and compares the
results with the specified expected results. All the error messages and output are dumped to a new text file.
Non conforming issues, where the expected and true results are not the same, are dumped to another text file.
It is the tester' s responsibility to analyse and document all the non-conforming issues, in the verification and
validation plan. The developer is responsible for the necessary maintenance to the code. The changed
software will again be tested with the same test scripts. This process continues until no non-conforming
issues remain.

To ensure that the developed software can interact with other systems the Open Interface (01) architecture as
illustrated in Figure 6 is used. The Open Interface establishes an environment that supports:

• Services to be deployed, using ' plug and play' architecture within different technologies.
• External Clients to gain access to services through a set of client interface adapters.

The 01 architecture consists of client adapters, a broker and services. External clients; e.g. a Visual Basic or
Java application may access services through a client dependent Client Interface Adapter (CIA). The CIA is
dependent on the interfacing capabilities of the foreign technology (Level 1 API). The CIA encapsulates the
data retrieval and marshalling specifics prescribed by each client type and converts it to the level 2 APL

The broker expects data in a level 2 Application Program Interface (API). The level 2 API consists of a
service, error list and a list of parameters. The service can be an internal service; e.g. DynamicSQL, as
illustrated in Figure 6, or an external service that can be plugged into the system. The broker will then invoke
the service. Internal services are invoked using the level 3 APL This API consists of an error list and a list of
parameters . The described multidimensional matrix functionality is embedded in the Cube Maintenance
service.

The API levels show at which phases an external vendor or a new internal service may 'plug in' . Level 1 is
the most straightforw1ll"d, where the client specific CIA must be developed to convert the level 1 API call to a
level 2 API call . The level 3 API allows new services to be added. By using this architecture, any application
can interface w ith the developed multidimensional matrix software.

224

4.2 Reliability

Rules Eng ine

C l i ent
1
1

C l i ent Adapter

0
1

Broker

O . . *

Services

CubeMaintenance

<<Inte rface>>
01 Level 1 API

<<Int erface>>
01 Level 2 API

<< Interface>>
0 1 Level 3 API

Repos itory

Figure 6: Open Interface Architecture

It is impossible to develop reliable software without a set of standards and processes. The standards include
certain software development standards for, e.g. naming conventions and error checking. Certain processes
must be followed when developing software. These include the creation of a requirements document, detail
design using Unified Modelling Language (UML), the creation of a verification and validation plan and the
creation of technical documents.

Software vendors need to know if their products are reliable before they are delivered to customers.
Reliability is a measure of the frequency and criticality of product failure. Product failure, under permissible
operation conditions, is an unacceptable effect or behaviour that occurs as a consequence of a fault [4].

For system reliability, the system must have a high level of fault tolerance. This is to ensure that the system
maintains a high level of performance during software faults or during infringements of its specified interface.
Intensive error handling ensure this . Various corrective actions must be taken, depending on the severity of
the faults.

For real time access to multidimensional matrices, it is important that the system is avai lable, to perform a
required function, at a given point in time, under stated conditions of use. Only a reliable system will always
be available under the above circumstances. A disadvantage of a data warehouse based on the typical

225

dimensional model is the downtime when new data is loaded into the database. Using the Matrix Model,
downtime is minimised.

A test engine is one of the tools used to ensure that developed software is reliable. Different test scripts are
executed and records are kept of the frequency of failures. Software with a high frequency of failures will not
be released to customers.

There is no guarantee that using a test engine will identify all the faults in the software. It is possible to
exercise every path without detecting every fault. A path can also only be tested if it is present in the software
product. To further ensure that the software is reliable and that all the logical paths are present inspections are
performed. The inspection process consists out of four steps: Overview, Preparation, Inspection and Rework
[5].

• Step 1 . The designer first describes the overall area being addressed and then the specific area he has
designed in detail to the audit participants. Design documentation is distributed to all the inspection
participants on conclusion of the overview.

• Step 2 . The .participants of the code inspection prepare individually using the design documentation to
try and understand the design and logic of the product.

• Step 3. The presenter walks the inspection team through every line of code with the objective to find
errors. The purpose is only to find and document the errors, not to correct them.

• Step 4 . The following step is the rework where the designer or developer resolves all errors or problems
noted in the inspection report. In the follow-up phase the moderator must ensure that all the issues are
resolved.

Audits are performed on the software to ensure that:

• Coded software products adhere to design documentation.
• Testing requirements prescribed by the documentation are adequate for software product acceptance.
• Test data adhere to specifications.
• Software products have been successfully tested and meet their specifications.
• Test reports are correct and discrepancies between actual and expected results were resolved.
• User documentation complies with specified standards.
• The schedule adheres to the plans.

The Matrix Model architecture, test engine, code inspections and audits ensure that the developed software is
reliable.

4.3 Usability

The visual suite of multidimensional matrix objects is designed to be very user friendly. The term "user
friendl iness" refers to the ease with which computer users can communicate with the software product. If
users find it difficult to understand, learn and use the software, then the product will either be used incorectly
or not at all.

Check boxes, push buttons and radio buttons are used to provide the users with easy to use front ends. All the
fields have describing labels. When double clicking on text fields, list forms are displayed from where the
user can select the correct item. User documentation is included in the help facility. Information is presented
as a matrix of items and values. Future research must stil l be done to find different methods displaying the
data to users, e.g . example tree views.

The developed objects can be configured according to business needs. Therefore it is very important that the
persons responsible for the configuration is trained in cube concepts. Training sessions on multidimensional
matrix concepts and the related software is often presented. Detailed user manuals and object technical
documentation is used in these training · sessions. Objects aren ' t released before the user manuals and
technical documentation is created.

226

4.4 Maintainability

During the software life cycle most time is spent on maintenance. The total cost of maintaining a product
over its lifetime is more that twice what it costs to develop that product. This makes it very important to
develop maintainable software. Software is maintainable if corrective maintenance and enhancements can
easily be perfonned on the software.

Standards, object orientated techniques, detailed documentation, detail design and the test techniques ensure
that the developed software is maintainable. Development standards ensure that all the developed software
has the same look and feel, which simplifies the maintenance process.

Object oriented concepts such as inheritance, polymorphism and encapsulation make it easy to identify
problem areas. The problem areas can then be modified and only the modified objects have to be tested.
Enhancements can be implemented by creating new objects; most of the time existing objects don't have to
change.

Up to date detailed documentation and detail design for the product as a whole and for each individual object
is available. This makes it easy to analyse deficiencies or causes of failures and to minimise regression faults.
Regression faults occur when making a change to one part of the product may cause another part of the
product to fail. Executing the original test scripts with the test engine perfonns testing for regression faults.

Version numbers are used to track changes in objects. Whenever an object is changed the version of the
object is incremented and the reason for the change is documented.

The same techniques used to develop the original product that ensured that the quality characteristics are met
must be applied when maintaining the software.

4.5 Portability

A product is considered to be portable if it is significantly less expensive to adapt the product to run in a new
environment than to write a new product from scratch. This means that the product must be database and
platfonn independent.

To ensure that the developed software is operating system independent the development too l like Dynasty is
used. Dynasty is a fourth generation language that generates C code. Dynasty objects are partitionable,
platfonn independent and target independent. Code can be generated for different platfonns by changing a
setting in the program object. These platforms include Solaris, OS2, Windows, WINNT and many more.
This functionality makes it easy to deploy the software on different operating systems.

For the software to be database independent, open database connectivity (ODBC) is used. One central object
is used to manage the database interaction. For this reason, modifying a single object may solve database
incompatibilities. Database interaction is done with Structured Query Language (SQL) as defined by the
American National Standards Institute (ANSI).

4.6 Efficiency
It is essential that the developed product provide the appropriate response to be efficient. Small single-table
queries need to be performed instantaneous. Large join queries are expected to run for seconds or minutes.
Performance is an inherent problem when accessing multidimensional matrices. The following techniques
have been used to increase the response time of the developed software: Denormalization of database tables,
Indexes, Temporary database tables and Stored procedures.

4.6 . 1 Denormalization
Denormalization improves performance by reducing the number of joins required during query execution.
This technique was applied to the dimension table in the Matrix Model . Instead of joining the dimension
table to an additional table containing the structure matrix technical keys, the dimension table was
denormalized to contain these keys in the t_stgr_nn columns. (Refer to Figure 5)

227

4. 6. 2 Indexes

Performance is further improved by using indexes. In the dimension table there are indexes on the primary
key (t_stvlnk) and a combined index on t_stcube and all the t_stgr_nn columns. Two indexes exist on the fact
table. The first index on the primary key (ent_name, t_stdates, t_stgroup and t_entity) and the second index
on ent_name, t_entity and t_stdates. All database queries in the developed software make use of the indexes.

The developed software creates temporary database tables. A specific subset of the data in the permanent
dimension table is copied to a temporary table. Instead of joining the permanent dimension table to the fact
table the smaller temporary table is jo ined to the dimension table.

4.6 .3 . Stored procedures
Stored procedures are used for database intensive queries. Instead of sending different SQL statements across
the network to the database server a single statement to invoke the stored procedure is sent across. This
concept reduces network traffic. In the database stored procedures, SQL cursors are used to join the
dimension table record to its related fact table records, one at a time; instead of joining all the dimension table
records to the related fact table records in one join .

5. Performance optimisation
Different techniques can be used to optimise the performance of multidimensional matrices. These
techniques include partitioning, parallel processing, multidimensional servers and aggregates.
• In a partitioned data model, the data is segmented into logical areas. Data can, for example, be

partitioned by month. Instead of having one fact table, different fact tables can exist for every date range.
• Parallel processing divides the workload among multiple processors. Therefore one processor is able to

scan the database, while another sorts data.
• A specialised database can be created on a dedicated multidimensional server that will maintain the data

in a format geared toward the type of maintenance and retrieval users wi1l be making.
• Aggregates can be pre-computed on some subsets of dimensions and their corresponding hierarchies to

speed op access to multidimensional data. These aggregates improve query response times [2] .

6. Conclusion
Future research will be done to further optimise the software developed for the Matrix Model . Different tools
and techniques will be used to do this.

The importance of quality is often recognised more by it' s absence at the end of a software project, than by its
presence at the start of a new project. Quality cannot be added into a product after it has been developed, it
must be built into it from the· start. In this paper it is shown how it is possible to develop software with a high
degree of excellence that provides real time access to multidimensional matrices.

A supporter of data warehousing can argue that transaction processing and decision support activities must be
separated into different databases. In this paper we have proved that the Matrix Model can hold years of
history, require relatively little additional disk space, have integrated data and can provide high quality real
time data without being separated into a different database .

References
1 . J . Giles. "Is data warehousing only First Aid", Database programming & Design, 1 1 :34-39,47, 1 998
2 . K. Kimball . The Data Warehouse Toolkit. JOHN WILEY & SONS, INC, New York, 1 996.

3. J . Knight. Software Quality: Principles. SEAL, Johannesburg, 1 994.

4 . S .R. Schach. Software Engineering. 2nd edition. IRWIN, Burr Ridge, 1 993 .

5 . D . Wheeler, B . Brykczynski and N. Meeson. Software Inspection an Industry Best Practice. IEEE
Computer Society Press, Los Alamitos, 1 996.

228

	1998_SAICSIT_Janssen

