
The South African Institute of Computer Science
and

Information Technology

The 1997 National

Research and

Development

Conference

Riverside Sun
V anderbijlpark

13 & 14 November

Hosted by

Potchefstroomse Universiteit

vir Christelike Hoer O nderwys

The Department of Computer Science and Information Systems
Potchefstroom University for Christian Higher Education

Vaal Triangle Campus

PROCEEDINGS

s
A

I

C

s
I

T

97

Edited by L.M. Venter & R.R. Lombard

The South African Institute of Computer Science
and

Information Technology

Proceedings

ofthe

The 1997 National

Research and

Development

Conference

Towards 2000

Riverside Sun
V anderbijlpark

13 & 14 November

Edited by
L.M. Venter

R.R. Lombard

© 1997 Copyrights reside with the original authors who may be contacted directly

ISBN 1-86822-300-0

Printed and Binded by Xerox Printers, Potchefstroom

The views expressed in this book are those of the individual authors

Foreword

This book contains a collection of papers presented at a Research and Development
conference of the Soutn African Institute of Computer Scientists and Information
Technologists (SAICSIT). The conference was held on 13 & 14 November 1997 at the
Riverside Sun, Vanderbijlpark. Most of the organization for the conference was done
by the Department of Computer Science and Information Technology of the Vaal
Triangle Campus, Potchefstroom University for Christian Higher Education.

The programming committee accepted a wide selection of papers for the conference.
The papers range from detailed technical research work to reports of work in progress.
The papers originate mainly from Academia, but also describe work done in and for
Industry. It is hoped that the papers give a true reflection of the current research scene
in Computer Science and Information Technology in South Africa. Since one of the
aims of the conference is Research development, the papers were not subjected to a
refereeing process.

A number of people spent numerous hours helping with the organization of this
conference. In this regard, we wish to thank the members of the Organizing committee,
and the Programming committee who had very little time to screen the abstracts and
compile the program. A special thanks goes to the secretary of the department, Mrs
Helei Jooste., whose very able work was interrupted by the birth of her first child.

Organizing Committee

Conference General Chairs
Prof. J.M. Hattingh (PU for CHE)

Organizing Chair
Prof. Lucas Venter (PU for CHE)

Organizing Committee
Mrs. S. Gilliland
Mr. J.P. Jooste
Mr. R.R. Lombard
Mrs. M. Huisman

Secretariat
Mrs. H. Jooste

Program Chair
Prof A de W aal (PU for CHE)

Program Committee
Prof D. Kourie (UP)
Prof C. Bornman (UNISA)
Prof. L.M. Venter (PU for CHE)

11

Table of Contents

Foreword

Organizing Committee 11

List of Contributors vu

Software Objects Change : Problems and Solution 1
S.A. Ajila

Liming-like Curve Constructions 26
M.L.Baart and R. McLeod

A Model for Evaluating Information Security 27
L. Barnard and R. von Solms

Integrating Spatial Data Management and Object Store Technology 31
S. Berman, S. Buffler and E. Voges

Metamodelling in Automated Software Engineering 32
S. Berman and R. Figueira

Using Multimedia Technologyfor Social Upliftment in Deprived Communities 33
of Southern Africa
L. Bester and E. de Preez

Extending the Client-Server Mode/for Web-based Execution of Applications 36
L. Botha, J.M. Bishop and N.B. Serbedzija

Access Control Needs in an Electronic Workflow Environment 45
R.A. Botha

The Use of the Internet in an Academic Environment to Commercially 51
Supply and Support Software Products
B. Braude and A.J. Walker

Explanation Facilities in Expert Systems Using Hypertext Technology 63
T. Breetzke and T. Thomas

Theoretical Com[JUter Science: "What is it all about, and is it of any relevance to us? 75
C. Brink

Representing Quadrics on a Com[JUter 76
M.A. Coetzee and M.L. Baa.rt

111

The Generation of Pre-Interpretations for Detecting Unsolvable Planning Problems 77
D.A. de Waal, M. Denecker, M. Bruynooghe and M. Thielscher

The Emerging Role of the Chief Information Officer·in South Africa 87
B. Dekenah

A Java-Implemented Remote Respiratory Disease Diagnosis System on a 88
High Bandwidth Network
A. Foster

Early Results of a Comparative Evaluation of ISO 9001 and !SOI/EC 89
15504 Assessment Methods Applied to a Software Project
C. Gee and A.J. Walker

A Neural Network Model of a Fluidised Bed 99
M. Hajek

The Effects of Virtual Banking on the South African Banking Industry 100
M.L. Hart and M. Dunley-Owen

Linear Response Surface Analysis and Some Applications 1 18
J.M. Hattingh

Model Checking Software with Symbolic Trajectory Evaluation 120
A. Hazelhurst

A Risk Model to Allocate Resources to Different Computerized Systems 13 7
H.A. Kruger and J.M. Hattingh

Returns on the Stock Exchange 144
J.W. Kruger

Cardinality Constrained 0-1 Knapsack Problems 150
M.F. Kruger, J.M. Hattingh and T. Steyn

An Investigation in Software Process Improvement in the 151
Software Development of a large Electricity Utility
M. Lang and Ar Walker

Design and Implementation of a C + + Package for Two-Dimensional 162
Numerical Integration
D .P. Laurie, L Pluym and Ronald Cools

Algebraic Factorization of Integers Using BDE 's 169
H. Messerschmidt and J. Robertson

lV

Global Optimization of Routes after the Process of Recovery
M. Mphahlele and J.Roos

Using a Lattice to Enhance Adaptation Guided Retrieval in Example
Based Machine Translation
G.D. Oosthuizen and S.L. Serutla

Information Systems Development and Multi Criteria Decision
Making I Systems Thinking
D. Petkov, 0. Petkova

The Development of a Tutoring System to Assist Students to Develop
Answering Techniques
N Pillay

Combining Rule-Based Artificial Intelligence with Geographic
Information Systems to Plan the Physical Layer of Wireless Networks in
Green.field Areas

K. Prag, P. Premjeeth and K. Sandrasegaran

A Distributed Approach to the Scheduling Problem
V. Ram and P. Warren

More readings than I thought : Quantifier Interaction in Analysing the
Temporal Structure of Repeated Eventualities
S. Rock

Ray Guarding Con.figuration of Adjacent Rectangles
I. Sanders, D. Lubinsky and M. Sears

Developing Soft Skills in Computer Students
C Schroder, T. Thomas

Information Security Awareness, a Must for Every Organization
M. Thomson and R von Sohns

Pia Va: A Lightweight Persistent Java Virtual Machine
S Tjasink and S. Berman

Beliefs on Resource-Bounded Agent
E. Viljoen

Object-Orientated Business Modelling and Re-engineering
M. Watzenboeck

V

176

177

192

193

194

202

203

221

239

250

253

267

268

On Indexing in Case Based Reasoning Applied to Pre-Transportation
Decision Making for Hazardous Waste Handling
K.L. Wortmann, D. Petkov and E.Senior

Author Index

V1

269

270

S.A. Ajila
Department of Mathematics and Computer
Science
National University of Lesotho
Roma, 180
Lesotho

L. Baart
Department of Mathematics
Vaal Triangle Campus of the PU for CHE
PO Box 1174
Vanderbijlpark, 1 gl)

L. Barnard
Faculty of Computer Studies
Port Elizabeth T echnikon
Private Bag X&J11
Port Elizabeth, &XX>

S. Berman
University of Cape Town
Rondebosch, 7701

L. Bester
Faculty of Computer Studies
Port Elizabeth T echnikon
Private Bag X&J11
Port Elizabeth &XX>

J.M. Bishop
Computer Science Department
University of Pretoria
Pretoria, CXXl2

L. Botha
Computer Science Department
University of Pretoria
Pretoria, CXXl2

R.A. Botha
Faculty of Computer Studies
Port Elizabeth T echnikon
PriVate Bag XtD11
Port Elizabeth, &XX>

B. Braude
Software Engineering Applications Laboratory,
Electrical Engineering

University of the Wiwatersrand
Private Bag 3

Wits,2CHl

T. Breetzke
F acuity of Computer Studies

. Port Elizabeth T echnikon
Private Bag X&J11
Port Elizabeth, &XX>

C. Brink
University of Cape Town
Rondebosch, 7700

M. Bruynooghe
Departement Computerwetenschappen
Katholieke Universiteit Leuven
Celestjinenlaan 2COA
B-3D1 Heverlee
Befgium

List of Contributors

vu

S. Buffler
University of Capetown
Rondebosch, 7701

M.A. Coetzee
Department of Mathematics
PU for CHE
Private Bag XED:>1
Potchefstroom, 2520

R. Cools
Katholieke Universiteit Leuven
Celestjinenlaan 2COA
B-3D1 Heverlee
Belgium

E. de Preez
Faculty of Computer Studies
Port Elizabeth Technikon
Private Bag X&J11
Port Elizabeth, &XX>

D.A. DeWaal
Department of Computer Science and
Information Systems
PU for CHE
Private Bag XEDl1
Potchefstroom, 2531

B. Dekenah
The Board of Executors

M. Denecker
Departement Computerwetenschappen
Katholieke Universiteit Leuven
Celestjinenlaan 2COA
B-3D1 Heverlee
Belgium

M. Dunley-Owen
Department of Information Systems
University of Cape Town
Rondebosch, 7700

R. Fiqueira
University of Cape Town
Rondebosch, 7701

A. Foster
Department of Computer Science
University of Cape Town
Rondebosch, 7701

C.Gee
Software Engineering Applications Laboratory,
Electrical Engineering

University of the Witwatersrand
Private Bag 3
Wits2CHl

M. Hajek
Department of Computer Science
University of Durban Westville
Private Bag X54001
Durban, 4CXX)

M.L. Hart
Department of Information Systems
University of Cape Town
Rondebosch, 7700

J.M. Hattingh
Department of Computer Science and
Information Systems
PU for CHE
Private Bag X&Xl1
Potchefstroom, -2520

S. Hazelhurst
Department of Computer Science
University of the Witwatersrand
Private Bag 3
Wits 2Ca)

H.A. Kruger
Department of Computer Science and
Information Systems
PU for CHE
Private Bag XEUl1
Potchefstroom, 2520

J.W. Kruger
University of the Witwatersrand
Private Bag 3
Wits, 2Ca)

M.F. Kruger
PU for CHE
Private Bag X&Xl1
Potchefstroom, 2520

M.T. Lang
Eskom Information Technology Department

D. Laurie
Department of Mathematics
Vaal Triangle Campus of the PU for CHE
PO Box 1174
Vanderbijlpark, 1900

D. Lubinsky
Department of Computer Science
University of the Witwatersrand
Private Bag 3
Wits, 2Ca)

R. Mcleod
Saltire Software Inc.
Tigard
Oregon
U.S.A

H.J. Messerschidt
Department of Computer Science and
Informatics
University of the Orange Free State
PO Box339
Bloemfontein, 9:Dl

M. Mphahlele
Department of Computer Science
University of the North
Private Bag X1106
Sovenga,On7

Vlll

G.D. Oosthuizen
Department of Computer Science
University of Pretoria
Pretoria, CXX)2

J. Owen
University of Cape Town
Rondebosch, 7701

D. Petkov
Department of Computer Science
University of Natal
Private Bag X01
Scotsville, 3200

0. Petkova
Technikon Natal
PO Box 101112
Scotsville, 3200

N. Pillay
Department of Financial Studies
Technikon Natal, Pietermaritzburg
PO Box 101112
Scotsville, 32CQ

L. Pluym
Katholieke Universiteit Leuven
Celestjinenlaan 2CXlA
B-3D1 Heverlee
Belgium

K. Prag
Department of electrical Engineering
University of Durban-Westville
Private Bag X54001
Durban, 4CXX)

P. Premjeeth
Department of electrical Engineering
University of Durban-Westville
Private Bag XS4001
Durban, 4CXD

V.Ram
Department of Computer Science
University of Natal
Private Bag X01
Scotsville, 32CQ

J. Robertson
Department of Computer Science and
Informatics
University of the Orange Free State
PO Box339
Bloemfontein, 9:Dl

S. Rock
Department of Artificial Intelligence
Edinburgh University
United Kingdom

J. Roos
Department of Computer Science
University of Pretoria
Pretoria, CXXl2

I. Sanders
Department of Computer Science
University of the Witwatersrand
Private Bag 3
Wits, 2Ca)

K. Sandrasegaran
Department of electrical Engineering
University of Durban-Westville
Private Bag X54001
Durban, 4CXX)

C. Schader
Faculty of Computer Studies
Port Elizabeth Technikon
Private Bag X0011
Port Elizabeth, &XXl

M. Sears
Department of Mathematics
University of the Witwatersrand
Private Bag 3
Wits, 2Cl50

E. Senior
International Center for Waste Technology
University of Natal, Pietermaritzburg
Private Bag X01
Scotsville, 3209

N.B. Serbedzija
GMO FIRST
Rudower Chausee 5
D-12489 Berlin
Germany

S. L. Serutla
Department of Computer Science
The University of Pretoria
Pretoria, COJ2

T. Steyn
PU for CHE
Private Bag X6ll1
Potchefstroom, 2520

M. Thielscher
Fachgebiet lntellektik, Fachgebiet lnformatik
T echnische Hochschule Darmstadt
Alexanderstrasse 10
0-64283 Darmstadt
Germany

T. Thomas
F acuity of Computer Studies
Port Elizabeth T echnikon
Private Bag X0011
Port Elizab€th. EUXl

M. Thom-:;:�::
Faculty c- 1;,µuter Studies
Port Eli:t'.Y ;� T echnikon
Private ;3,;,;J, ::::01 1
Port Eli.?i:i .. mth, EUXl

S. Tjasink
University of Cape Town
Rondebosch, 7700

E. Viljoen
Department of Computer Science and
Information Systems
University of South Africa
PO Box392
Pretoria, CXDI

E. Voges
University of Cape Town
Rondebosch, 7701

IX

R. Von Solms
Faculty of Computer Studies
Port Elizabeth T echnikon
Private Bag X0011
Port Elizabeth, &XXl

A.J. Walker
Software Engineering Applications Laboratory,
Electrical Engineering

University of the Witwatersrand
Private Bag 3
Wits, 2050

P. Warren
Department of Computer Science
University of Natal
Private Bag X01
Scotsville, 3203

M. Watzenboeck
University of Botswana
Private Bag 0022
Gaberone
Botswana

K.L. Wortmann
Department of Computer Science
University of_ Natal, Pietermaritzburg
Private Bag X01
Scotsville, 32CB

The Generation of Pre-Interpretations for Detecting Unsolvable

Planning Problems

D.A. de Waal Department of Computer Science and Information Systems, Potchefstroom University for Christian Higher Education, Pri_vate Bag X6001 , Potchefstroom, 2531 , South Africa Tel : +27 (0148) 299 2535, Fax: +27 (0148) 299 2799 RKWDADW@puknet.puk.ac.za M. Denecker M. Bruynooghe Departement Computerwetenschappen, Celestijnenlaan 200A , Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium { marcd,maurice }@cs.kuleuven.ac. be M. Thielscher Fachgebiet Intellektik , Fachbereich Informatik, Technische Hochschule Darmstadt , Alexanderstrasse 10 , D-64283 Darmstadt , Germany mit@intellektik .informatik.th-darmstadt.de
August 5, 1 997

Keywords: Deductive, Planning, Model Generation, Abstract Interpretation

1 Introduction

In deductive planning, there exists a· particular class of planning problems, called unsolvable planning
problems, which although successfully treated theoretically, turns out to be undetectable using ordinary
resolution methods as infinite sequences of useless actions have to be considered. These problems are
�xacerb�ted when we extend our problem domains to infinite domains of resources , e.g. a blocks world
with a ("theoretically") unlimited number of blocks or an electric circuit with an unlimited number of
switches . Furthermore, the introduction of new objects, by means of "generating" actions (see Section
4) , poses huge problems to most if not all existing planning approaches. This "discrepancy" between
theory and practise is annoying and prevents us from deciding interesting unsolvable planning problems.
Our aim in this paper is therefore to develop an analysis method specifically for the detection of such
problems.

Winston in (10] gives an algorithm that , amongst other things , also detects some impossible plans. His
algorithm is a search procedure that extends partial plans into complete plans. Although the algorithm
may detect some impossible plans (unsolvable planning problems) it relies on a loop detection mechanism
to detect failure. Furthermore, it tries to extend partial plans (starting from the empty p lan) to complete
plans by enumerating all partial plans. If we now have a planning problem with an infinite number of
partial plans of which none can be extended to a complete plan, we clearly have a problem as the
algorithm will not terminate.

In (2] we also investigated the detection of unsolvable planning problems using logic programming analysis
and transformation techniques [1] . In our approach, a logic program was written [2] implementing
the equational logic programming approach to deductive planning (5, 6] . This logic program was first
specialized with respect to a particular goal (defining an unsolvable planning problem) with partial

Siacsit '97 77

l 1

evaluation [8] . Second, the result of partial evaluation was approximated using a regular approximation
tool [4] . As failure is decidable in a regular approximation, we can test if the goal we are interested in
fails in the approximation . If this is the case, we have detected an unsolvable planning problem.

The presented approach however suffered from the imprecision caused by a loss of argument depen
dency information in the analysis, e .g. in the Blocks World (10] the set of terms { on(a , b) , on(b, a)}
is approximated by the superset {on(a , a) , on(a , b) , on(b , a) , on(b , b) } . This causes a considerable loss of
information and prevents the detection of some interesting unsolvable planning problems. Other do
mains in planning , such as the Kitchen domain used in [9] , also have binary functors and a similar loss
of argument dependency information may be experienced when analyzing these domains with similar
approximation systems. Furthermore, regular approximations are notoriously bad at counting, as they
usually count 0 , 1 , many or even 0, many. This property of regular approximations makes it difficult to
keep track of the number of blocks in a blocks world or the number of resources occurring in a problem.

In our approach, the intended semantics of a planning problem is assumed to be given by its least
Herbrand model . The idea is to compute a finite abstract model that is a safe approximation of the least
Herbrand model of the deductive planning problem. For a large class of formulas, falsity of a formula in
the abstract model implies falsity in the least Herbrand model . We show how this approach can be used
to decide that interesting planning problems are unsolvable.

The construction of the abstract model and checking of failure in the abstract model is done using
available techniques [3] . The method is based on augmenting a logic program, representing a planning
problem, with "denotes" predicates that implements a generated pre-interpretation. An immediate
consequence operator (similar to Tp) is then used to construct the Least Abstract Model (also called
the Least non-Herbrand Model in [3]) of the program. Interesting program properties can be proved by
interpreting · the results generated in the Lea.st Abstract Model . In this context , we reformulate their
results solely for proving failure . No interpretation of the results generated by their method is needed
beyond the checking of failure in the abstract model and transferring the result to the least Herbrand
model (see Section 3 for more details) .

The rest of this paper is organized as follows. ·First , we explain what comprises an unsolvable planning
problem. The model-based analysis is explained in Section 3. In Section 4 we demonstrate the detection
of unsolvable problems with two examples. The automation of the proposed method is investigated in
Section 5. We conclude with a brief discussion.

We assume the reader is familiar with the notions of a first-order language, pre-interpretation, interpre
tation and model as defined in (7] .

2 Unsolvable Planning Problems

Before we can define an unsolvable planning problem, we recall the logic program from [2] implementing
the equational logic programming approach to deductive planning [5, 6] . The original approach employs
a specific equational theory, called ACl [6] , to formalize situation descriptions, which , essentially, are
multisets of resources that are available in the situation. In contrast , the following program represents
situations by lists of resources, and the matching operation with respect to ACl is encoded via additional
clauses. Hence, the program is executable using SLD-resolution.

causes (I , vo id , I) .
caus es (I , plan(A , P) , G) · - act ion(C , A , E) ,

ac1_match (C , I , Z) ,
append(E , Z , S) ,
caus es (S , P , G) .

ac 1_match (S , T , Z) : - mult_subset (S , T , Z) .

mult_subs et (0 , T , T) .
mult_subs et ([E I S] , T , R)

Siacsit '97

mult_minus (T , E , T2) ,

78

mult_subset (S , T2 , R) .

mult_minus ([E I R] , E , R) .
mult_minus ([E I R] , E1 , [E I R1])

append ([] , X , X) .

mult_minus (R , E 1 , R1) .

append ([X I Xs] , Y , [X I Zs]) : - append (Xs , Y , z·s) .

An instance of causes(! , J, I<) is true if the plan J (sequence of action names) transforms an initial
situation I into a final situation 1(1 . The predicate action(C, A , E) defines the action descriptions of
our deductive planning problems where C and E are respectively the condition and effect (multisets of
resources represented by lists) and A is the name of the action . Such an action is applicable in a situation
if the latter contains condition C, and the resulting situation is obtained by removing the resources in
C from the situation and adding the resources in E.
The resulting program is a definite logic program. The intended semantics of the planning program P
is given by its Least Herbrand Model MLn . A planning problem can then , be formulated as

?- caus es (I , P , G) , ac1_match ([l 1 , . . . , ln] , G , Z) .

where I is a multiset of resources representing the initial situat ion and G the final situation containing
resources [/ 1 , . . . , In] (resources Q1.ay contain variables, but variables as resources are not allowed) .
A solution to a planning problem is given by a substitution O such that

Ahn F V(causes(I, P, G) , acLmatch([l l , . . . , In] , G, Z)O) .

A planning problem, is unsolvable iff no answer substitution exists, i .e .
Ahn F V-.(causes(I, P, G) , acLmatch([l l , . . . , In] , G, Z)) .

N o finite SLD-tree will therefore exist when we have an unsolvable planning problem.
It would have been simpler if we could only allow queries of the form

?- causes (I , P , G) .

However , using only catises as goal restricts the queries we can state as it is impossible to write that
resources / 1 , . . . , In are included in the effect . Furthermore, it is clear that to check if our planning
problem is unsolvable we only need to examine the result computed for causes(!, P, G) in the abstract
model , although the given query provides the general form of queries allowed in our planning problems.
For simplicity of presentation we restrict ourselves to the case n = 1 .

3 Model-Based Analysis

The intended semantics of a planning program P is given by its Least Herbrand Model MLn . This
means that for a given query formulated as a first order sentence F, we are interested whether or not F
is true or false in MLn , i . e . whether MLn F F or MLn F -,p .
Our technique is based on the generation of a model in which a sentence F is false . The existence of
such a model entails that F is not logically implied by P, i .e . P � F . In general , this sort of answer
is weaker than. the intended answer, namely that MLn F -,p, However, due to the minimality .of the
Least Her brand Model, it holds for a large class of sentences F that MLn F F iff P F F. The following
theorem asserts this .

Theorem 3.1 Given is a definite program P with Least Herbrand Model MLn and a sentence F con
taining only the connectives /\, V and 3, then P F F ¢? MLH F F.

1 It is assumed that we have complete information about relevant facts in the initial situation.

Siacsit '97 79

Hence, by constructing a model M of P in which M � F, the theorem allows to conclude safely that
MLH � F, or equivalently that MLH F -,F. The model we construct is the least model according
to some well �hosen pre-interpretation. The queries used to formulate a p lanning problem satisfy the
syntactic restrictions of Theorem 1 .

4 Generating Pre-Interpretations

A pre-interpretation consists of a domain and , for each function , a mapping over domain elements. We
firsi illustrate the selection of a pre-interpretation with an example unsolvable problem. The problem is
from the classical Blocks World domain (10) , but the description is augmented with two action description
that can add two blocks or delete two blocks from our blocks world (see action descriptions (5) and (6)
below) . The robot arm may hold (or not hold) a block , represented by ho(V) and em respectively, where
the variable V represents a block. A block may be on a table or on top of another block, represented by ta(V) and on(V, W) respectively, where V and W represent blocks . A block V is clear if there are no
other blocks on i t . This is represented by cl(V).
act ion([ho (V)] , put_down (V) , [ta (V) , cl (V) , em]) . (1)
act ion([cl (V) , ta(V) , em] , pick_up (V) , [ho (V)]) . (2)
act ion ([ho (V) , cl (W)] , stack (V , W) , [on (V , W) , cl (V) , em]) . (3)
act ion([cl (V) , on (V , W) , em] , unstack(V) , [ho (V) , cl (W)]) . (4)
act ion ([on (V , W) , cl (V) , em] , add_two ,

[on (s (s (V)) , s (V)) , on (s (V) , V) , on (V , W) , cl (s (s (V)) , em]) . (5)
act ion ([on (s (s (V)) , s (V)) , on (s (V) , V) , on (V , W) , cl (s (s (V)) , em] , delet e_two ,

[on (V , W) , cl (V) , em]) . (6)

We now have a more complex problem description than i s normally the case i n Blocks World problems, as
the number of blocks is not fixed: we have therefore named ("numbered") the blocks using the s,uccessor
function, e .g . 0, s(O) , s(s(O)) , This greatly increases the complexity of unsolvable problems in this
domain (problems may become undecidable) . We can also think of this problem description as describing
a blocks world with a block dispensing machine or a block manufahuring machine that can produce and
recycle blocks (two at a time) and a robot hand that can stack and unstack the blocks on a table .
Note that it is impossible to represent an infinite number of resources directly in our current framework
without resorting to ad hoc procedures, as we are only able to represent finite multisets of resources
using the standard list notation . These action descriptions therefore illustrate a general method when
attempting to reason over infinite domains of resources., Define one or more action descriptions to
implement a generator procedure that can systematically generate successive resources in some domain.
Although at any stage of the planning process , only a finite number of resources can be generated, this
method is powerful enough to model most problems: an infinite number of situations with a finite number
of resources in each situation can be generated. Our second example further illustrates this point .
A query that we may be interested in is2 :

?- causes ([on (s (O) , O) , ta (O) , cl (s (O)) , em] , Plan ,
[on (s (s (O)) , s (O)) , on (s (O) , O) , ta (O) , cl (s (s (O))) , em]) .

This is obviously an unsolvable planning problem as we start off with an even number of blocks in our
initial situation and our final situation requires an odd number of blocks3 • Detecting this however is
not straightforward as we have a possibly increasing (or decreasing) number of resources that are being
produced (or consumed) .
What w e are aiming at is a pre-interpretation where the model of causes is

causes(good, _ , good) causes(bad, _ , bad)

2 Thls query can easily be rewritten in the form given in Section 2.
3 Thls example is kept simple to aid understanding.

Siacsit '97 80

and where our query is mapped to causes(bad, _ , good) or causes(good, _ , bad) .
Note that the plan is ignored as it does not contribute to detecting that our problem is unsolvable:
it can therefore be mapped to good or bad without influencing the rest of the discussion. Because
causes(bad, _ , good) (or causes(good, _ , bad)) is false in the generated abstract model , our query is not
a logical consequence of our program P and therefore false in the Least Her brand .Model of P . We have
detected an unsolvable problem.
In the rest of this section we explore ways of generating a pre-interpretation such that we get a model
similar to the one sketched above. Our query

?- caus es ([on (s (O) , 0) -, ta (O) , cl (s (O)) , em] , Plan ,
[on (s (s (O)) , s (O)) , on (s (O) , O) , ta (O) , cl (s (s (O))) , em]) .

will be used as a starting point of our analysis.
An examination ofour query shows that (on(s(O) , 0) , ta(O) , cl(s(O)) , em] must be mapped to good and
[on(s(s(O)) , s(O)) , on(s(O) , 0) , ta(O) , cl(s(s(O))) , em] to bad (or vice versa) . Because we are interested in
constructing the simplest pre-interpretation sufficient for detecting that our query (actually, the mapping
of our query using the generated pre-interpretation) is false in the generated abstract model , we try to
generate as few domain elements in the domain of pre-interpretation as possible. To achieve this aim,
we examine the "difference" between the two lists of resources occurring in our query. If we for the
moment only concentrate on the outer functors occurring in resources , our starting situation has one on
and our final situation two (ta , .c/ and em occur in equal numbers in the starting and final situations) .
on is therefore mapped to good and ta , cl and em to bad. What remain is to fill in the mappings for
concatenation on lists :

[goodlgood],?
[badlgood] --+?

[goodl bad] --+?
[badlbad] --+?

An examination of the final situation in our query forces the following mapping:

[good lgood] - b'ad

(the mappings of the starting and final situations must be different) . Furthermore, we do not want the
resources that occurred 1n equal numbers in the starting and final situations (not part of the difference
in starting and final situations) to change our mappings. This forces the following mappings:

[X l bad] - X [badlX] --+ X

where X is a variable. As the only domain elements we have so far are good and bad, we instantiate X
to good and bad respectively to get the following three mappings:

[good l bad] - good
[badl bad] --+- bad (2x)

[badlgood] --+ good

The only outstanding mappings are that of the empty list [] and ho (it does not occur in our query
but in an action description). The same reasoning applies here , in that we do not want the empty list ,
denoting no resources , and ho to change our mappings ([] and ho therefore falls into the same catagory
as ta , cl and em) . The follo�ing mappings therefore results:

[] --+ bad ho -+ bad

If we now map all the numbered blocks to a domain element block , we have constructed the following
pre-interpretation over D = {block, good, bad} :

0 - block s(block) --+ block

Siacsit '97 81

[] - bad
ho(block) - bad
on(block , block) - good
[good lgood] - bad
[good lbad] - good

em - bad
ta(block) - bad
cl(block) - bad
[badlgood] - good
[badl bad] - bad

Without any further complications we can compute the finite abstract model based on this pre-interpre
tation. Unfortunately, the model of causes is

causes(good, _ , good)
causes(bad, _ , good)

causes(good, _ , bad)
causes(bad, _ , bad)

and we have failed to detect that the problem is unsolvable as causes(good, _ , bad) is true in this model .
As a second step , we have to "debug" the constructed pre-interpretation to try and determine why

causes(good, _ , bad) causes(bad, _ , good)

are also in our abstract model .
From action description (3) we can see that the condition is mapped to bad and the effect to good.
The execution of this action description has as result the generation of one of the unwanted causes
consequences in our abstract model . As we want action descriptions to preserve mappings (an action
descript ion with good in the condition must also have good in the effect , and similarly for bad) , we must
alter our mappings. If the mapping for ho is changed to good, action description (3) cannot contribute to
these unwanted consequences any more. But , now action descriptions (1) and (2) may generate unwanted
consequences (the condition of (1) is mapped to good and the effect to bad, and vice versa for (2)) . If
we also change the mapping for ta to good, the unwanted consequences generated by action descriptions
(1) and (2) also disappear . Our generated pre-interpretation over D = {block , good, bad} is :

0 - block
[] - bad
ho(block) - good
on(block , block) - good
[goodjgood] - bad
[good l bad] - good

s(block) - block
, em - bad

ta(block) - good
cl(block) - bad
[badlgood] - good
[badlbad] - bad

The intuition is that we count blocks: terms that identify one block are mapped to good, being the
abstraction of an odd number of blocks, and other terms are mapped to bad, being the abstracti«;m of an
even (including zero) number of blocks. Terms identifying one block are: ho(block) (a block being hel�
by the robot) , ta (block) (a block standing on a table) and on(block , block) (a block standing on another
block) . cl (block) is mapped to bad (the block is counted when the other terms are considered) . As em
identifies no block, it is also mapped to bad.
If we replace good with odd and bad with even in the generated pre-interpretation, we get the following
abstract model .

Siacsit '97

causes(even, _ , even)
acl_match(even , even, even)
acl_match(odd, even , odd)
mulLminus(even , even , even)
mulLminus(odd, even , odd)
mulLsubset (even , even , even)
mulLsubset(odd, even, odd)
append(even , even , even)
append(odd, even , odd)
act ion(odd, _ , odd)

causes(odd, _ , odd)
acl_match(even, odd, odd)
acl_match(odd, odd, even)
mulLminus(even , odd, odd)
mulLminus(odd, odd, even)
mulLsubset(even, odd, odd)
mult_s,ubset(odd, odd, even)
append(even, odd, odd)
append(odd, odd, even)
append(even, _ , even)

.82

It takes 0 . 35 seconds on a 133 MHz Pentium computer using Sicstus Prolog 3 .3 and a naive im
plementation of a model generator to compute the least abstract model . Note that the interpreta
tion of (on(s(O) , 0) , ta(O) , cl(s(O)) , em] is even and the interpretation of (on(s(s(O)) , s(O)) , on(s(O) , 0) ,
ta(O) , cl(s(s(O))) , em] is odd. Since any causes fact in the abstract model that has even as its first ar
gument also has even as third argument , we have proved that we have an unsolvable planning problem:
causes(even , _ , odd) is false . Our query can therefore never succeed and we have detected an unsolvable
planning problem.

The reader should note that we have to balance the following two opposing goals :

• precision of the analysis and

• size of the resulting abstract model .

If each resource is mapped to a different domain element and also each combination of resources is
mapped to a different domain element , we get very good precision in the resulting abstract model ,
but constructing it becomes prohibitively expensive because of the enormous numbers of mappings and
therefore also formulas involved . As we are also interested in constructing the simplest model that
preserves failure of our planning problem, we want the pre-interpretation with the least number of
constants that suffices for this goal . These are clearly two opposing goals that we have to balance . As
model generation techniques improve we could then also improve the precision of the proposed analysis
method .

The "debugging algorithm" is loosely based on the notion of the preservation of some property /properties
(possibly unknown at analysis time) between situations. In classical Blocks World problems, one property
that always gets preserved between situations when executing actions, is that the number of blocks in a
problem stays the same. In this example, the properties that get preserved are :

1 . if our starting situation contains an even number of blocks, all subsequent situations wil l contain
an even number .of blocks, regardless of the number and identity of the action description executed ,
and

2. if our starting situation contains an odd number of blocks, all subsequent situations will contain
an odd number of .blocks, regardless of the number and identity of the action description executed.

For the described method to work automatically on even more complex examples, we have to:

1. take more than the outer functors of resources into account ,

2 . be prepared to introduce more than three domain elements in D, and

3. refine our "debugging algorithm" .

We end this section with another example from the Blocks World. Some of the refinements just described
are needed to detect that this probfem is also unsolvable. Consider the problem of generating blocks,
putting them on a stack , and checking for a specific block on the stack. The action descriptions defining
this problem are :

action ([ho (V)] , put�down (V) , [ta(V) , cl (V) , em]) .
action ([cl (V) , ta(V) , em] , pick_up (V) , [ho (V)]) .
act ion ([ho (V) , cl (W)] , stack (V , W) , [on(V , W) , cl (V) , em]) .
act ion,(,[cl (Vr , on (V , W) , em] , unstack (V) , [ho (V) , cl (W)]) .
act ion ([on (X , Y) , cl (X) , em] , generate_block ,

[on (s (X) , X) , on(X , Y) , cl (s (X)) , em]) .

(1b)
(2b)
(3 b)
(4b)

(Sb)

Note the generator o f new blocks i n action description (5b) . The query representing our unsolvable
planning problem is :

Siacsit '97 83

?- ca us es ([on (s (s (O.)) , s (0)) , c 1 (s (s (0))) , em] , P , G) ,
ac 1_match ([on (s (O) , O)] , G , Z) .

This query "loosely" represents the following problem: is it possible to generate block zero when gener
ating blocks with successive numbers starting from blocks one and two. This is an unsolvable p lanning
problem, but detecting it is again not straightforward. Note that we have an infinite number of cases to
consider , but each situation contains only a finite number of blocks. This ' is., obviously not possible to
detect that we have an unsolvable problem using resolution based methods. Furthermore, our previous
outer functor abstraction is also not powerful enough as we need do differentiate between block zero and
the rest of the blocks.
The following mappings however define a pre-interpretation over D = { zero, rest } , sufficiently precise
to prove that our problem is unsolvable .

0 .- zero
s(rest) .- rest
on(zero, zero) .- zero
on(rest , zero) .- zero
cl(zero) .- zero
ho(zero) .- zero
cl(zero) .- zero
[zero l zero] .- zero
[rest l zero] -- zero

s(zero) .- rest
em -- rest
on(zero, rest) .- zero
on(rest , rest) .- rest
cl(rest) -- rest
ho(rest) .- rest
cl(rest) .- rest
[zerol rest] -- zero
[rest l rest] .- rest

The least abstract model (generated in 0 .66 seconds) is:

causes(zero, _ , zero)
acl_match(rest , rest , rest)
acl_match(zero, zero, rest)
mulLminus(rest , rest , rest)
mulLminus(zero, zero, rest)
mulLsubset(rest , rest , rest)
mulLsubset(zero, zero, rest)
append(rest , rest , rest)
append(zero, rest , zero)
act ion(rest , _ , rest)

causes(rest , _ , rest)
acl_match(rest , zero, zero)
acl_match(zero, zero, zero)
mult�minus(zero, rest , zero)
mulLminus(zero, zero, zero)
mulLsubset (rest , zero, zero)
mulLsubset(zero, zero, zero)
append(rest , zero, zero)
append(zero; zero, zero)
act ion(zero, _ , zero)

causes(rest , _ , zero) is false in this model and we have proved that we have an unsolvable p lanning
problem.

5 Automation of the Proposed Method

The proposed method will be further enhanced if it can be automated. In this section we discuss two
directions for automation that are being investigated: the first is based on the enumeration of domain
elements in D and the second on a refinement of the reasoning of Section 3 .
For a method based on enumeration of domain elements in D to be practical , the number of domain
elements needs to be small , otherwise the number of mappings that needs to be investigated becomes
unmanageable. Although we have not proved it, we have strong evidence from the examples tried so far
that very few domain elements are needed to detect failure using the described model-based analysis.
The intuition behind this statement is that we are usually trying to capture one property of a problem,
e.g. an even or odd number of blocks, preservation of the number of blocks, etc. This is achieved by the
mapping of resources and objects in the problem under investigation to two or more domain elements
representing positive and negative occurrences of the different properties we are interested in.
The second method is based on a refinement of that presented earlier. In Section 4 we ignored all
arguments to resources . A more precise approach might be to identify the objects in the problem

Siacsit '97 84

description , map them to unique domain elements , and map all other objects that might be generated
during execution of action descriptions to one other unique domain element . In our second example, we
have blocks 0 , s(O) and s(s(O)) occurring in the query and no other blocks in the action descriptions.
Possible mappings that may be generated are :

0 --+ zero
s(one) ---+- two
s(rest) --+ rest

s(zero) ---+- one
s(t wo) ---+- rest ·

These mappings are precise enough to prove that our problem is unsolvable. However, we have redundant
domain elements that may complicate the generation of the pre-interpretation. A similar argument as
presented earlier may now be used to reason about action descriptions using the mappings we just
defined.
Note that all the objections over previous methods, namely loss of argument dependency information as
well as inexact counting may be overcome with the proposed pre-interpretation method. The set of terms
{ on(a , b) , on (b , a)} may be mapped to two domains elements over D = { 1 , 2, 3 , 4} and { on(a , a) , on(b , b) }
to a third and fourth domain element :

on(a , a) ---+- 1
on(b , a) ---+- 3

on(a , b) ---+- 2
on(b, b) --+ 4

No confusion is therefore possible and no loss of informations occurs. Furthermore, we may count blocks
to where necessary as the following mappings illustrate:

(] --+ zero
[on l on e] - two
[on l three] --+ rest

[on] --+ one
[on l two] --+ three
[on l rest] --+ rest

In the example we counted up to four-represented by the term rest .

Our expectations are that the presented method holds the most promise of all the methods evaluated
so far for the detection of unsolvable problems. All unsolvable problems investigated could be detected
using the model based analysis and it is difficult to envisage a problem for which this method will not
work. However, only further research will show if the presented method can meet our expectation in the
long run.

6 Conclusions

The proposed method developed in the previous sections has been restricted to planning problems· (and
in particular the logic programming approach to deductive planning) for the following reasons:

1. the logic program implementing our planning problem is a definite logic program,
2. the action descriptions are represented by facts,
3 . the resources are represented by multisets (lists where the order of elements in the l ist is not

important) and
4 . there is a well defined �elationship between the resources occurring in the condition and effect of

an action description.

These restrictions on general logic programs (and even definite logic programs) make construction of an
algorithm for deriving a suitable pre-interpretation to detect failure slightly easier than would be the
case for other logic programs . The analysis method is however general and can be used to analyze any
definite logic program even though the analysis is not yet completely automatic. The automation of the

Siacsit '97 85

presented method as well as the extension of the method to definite logic programs in general and Horn
clause theorem proving is the subject of current research.

The decision to treat conditions and effects in action descriptions as reversible multisets of resources may
effect the precision of the analysis on more complex examples where the direction of actions (from con
dition to effect) is important . An analysis of other domains will show if this simplification compromises
the precision of the analysis or not . An idea may be to develop two analyses: one analyzing the problem
forward from the condition in the goal or query and another analyzing the problem backward form the
effect in the goal or query. Each analysis may then exploit knowledge about the direction of analysis
to obtain further precision. The complexity of the proposed procedure is furthermore dominated by the
model generation process. We therefore largely depend on techniques for the fast generation of models
for the success of our method.
In (9] planning with abstraction was also investigated. The idea in their work is to find an abstract plan
that can be instantiated into a concrete plan for a given planning problem. However, their main aim
is to improve the planning efficiency and not to detect unsolvable planning problems. The detection
of unsolvable planning problems is mostly a "side effect" of their procedure (as was also the case for
Winston (10]) .
An investigation of what we achieved with this analysis shows that we have detected infinitely failed
computations . In particular , we have detected an infinite number of finitely failed SLD-trees . Further
more, we introduced into logic programming (and Artificial Intelligence) a semi-automatic model-based
analysis method for the detection of unsolvable problems (non-theorems) . We further showed that the
model-generation method is a viable alternative to "classical" abstract interpretation frameworks giv
ing useful results on interesting problems. The analysis method is elegant in the sense that it is only
based on some of the core definitions of the semantics of first order logic, namely pre-interpretation and
model. Stopping short of computing (enumerating) the least Her brand model of a program, we have an
extremely simple framework for detecting non-theorems (as we have shown in previous sections) .

References

(1] D .A . de Waal. Analysis and Transformation of Proof Procedures. PhD thesis , University of Bristol ,
October 1994.

(2] D .A. de Waal and M. Thielscher. Solving deductive planning problems using program analysis and
transformation. In Logic Program Synthesis and Transformation. Springer-Verlag, 1996 .

(3] J . Gallagher, D . Boulanger , and H . Saglam. Practical model-based static analysis for definite logic
programs. In Proceedings 1995 International Logic Programming Symposium. MIT Press , 1995 .

(4) J . Gallagher and D .A. de Waal. Fast and precise regular approximations of logic programs. In
Proceedings of the Eleventh International Conference on Logic Programming, pages 599-613 . MIT
Press, 1994.

(5] S . Holldobler and J. Schneeberger . A New Deductive Approach to Planning. New generation
Computing, 8 :225-244, 1990.

[6] Steffen Holldobler and Michael Thielscher. Computing change and specificity with equational logic
programs. A nnals of Mathematics and Artificial Intelligence, 14(1) :99-133, 1 995 .

[7) J .W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.

(8] J .W. Lloyd and J .C . Shepherdson. Partial evaluation in logic programming. Journal of Logic
Programming, 1 1 (3) :2 17-242, 1912 .

(9] Y. Okubo and M . Haraguchi. Planning with abstraction based on partial predicate mappings. New
Generation Computing, 12 :409-437 , 1994.

(10] P .H . Winston . Artificial Intelligence. Addison-Wesley, third edition, 1992.

Siacsit '97 86

	1997_SAICSIT_de_Waal
	Front_Cover.pdf
	Front_Cover

