
The South African Institute of Computer Scientists
and

Information Technologists

Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.

26 & 27 September

Edited by

VevekRam

©1996 Copyrights reside with the original authors who may be contacted directly

ISBN 0-620-20568-7

Cover printed by Natal Printers (Pty) Ltd, Pietermaritzburg
Copying by the Multicopy Centre, University of Natal, Pietermaritzburg
Binding by Library Technical Services, University of Natal, Pietermaritzburg

The views expressed in this book are those of the individual authors

FOREWORD

This book is a collection of papers presented at the National Research and Development Conference
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September,
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by
the Department of Computer Science and Information Systems of The University: of Natal,
Pietennaritzburg.
The papers contained herein range from serious technical research to work-in-progress reports of
current research to industry and commercial practice and experience. It has been a difficult task
maintaining an adequate and representative spread of interests and a high standard of scholarship at
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program
committee decided not only to accept papers that are publishable in their present form, but also papers
which reflect this potential in order to encourage young researchers and to involve practitioners from
commerce and industry.
The organisers would like to thank IBM South Africa for their generous sponsorship and all the
members of the organising and program committees, and the referees for making the conference a
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for
promoting the conference among its members and also to the staff and management of the Interaction
Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
VevekRam

Editor and Program Chair
Pietennaritzburg, September 1996

Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof V evek Ram (UNP)

Program Committee

Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP

ii

Foreword
Organising Committee
List of Contributors

Keynote Speaker

Table of Contents

The Role of Formalism in Engineering Interactive Systems
M D Harrison and D J Duke

Plenary

11

1

Industry-Academic-Government Cooperation to boost Technological Innovation 15
and People Development in South Africa
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems 17
AJWalker

The JS Workers, they are a-changin' 29
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
HVenter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs
using a comput�tional network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation
on low-powered Mathematica workstations
H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

iii

35

43

63

75

87

89

95

107

113

Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller
tuning for control loops
M Mc�d and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, AL Steenkamp and V Ram

Database Systems

119

127

137

The Pearl Algorithm as a method to extract infomation out of a database 145
JWKruger

Theory meets Practice: Using Smith's Normalization in Complex Systems 151
A van der Merwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems · 159
K Renaud and P Kotze

Education

Computer-based applications for engineering education 171
AC Hansen and PW L Lyne

Software Engineering Development Methodologies applied to 179
Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment 187
NPillay

The Design and Usage of a new Southern African Information Systems Textbook 195
G J Erwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit 211
GGanchev

Teaching Turing Machines: Luxury or Necessity? 219
YVelinov

Practice and Experience

Lessons learnt from using C+ + and the Object Oriented Approach to 227
Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems 235
B Jankovic and VB Bajic

iv

Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
AC Leonard

Information Security Management: The Second Generation
R Von Sohns

Project Management in Practice
M le Roux

A Case-Study of Internet Publishing
A Morris

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson

Abstracts

243

257

267

271

285

On Total Systems Intervention as a Systemic Framework/or the Organisation 299
of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova

Modular Neural Networks Subroutines for Knowledge Extraction 300
AV ahed and I Cloete

Low�ost Medical Records System: A Model 30 I
0 A Dami and T Seipone

A Methodology for Integrating Legacy Systems with the Client/Server Environment 302
M Redelinghuys and AL Steenkamp

Information Systems Outsourcing and Organisational Structure 303
M Hart and Kvavatzandis

The relational organisation model 304
BLaauwen

The Practical Application of a New Class of Non-Linear Smoothers for 305
Digital Image Processing
E Cloete

A Technology Reference Model/or Client/Server Software Development 306
RC Nienaber

The Feasibility Problem in the Simplex Algorithm 307
T G Scott, J M Hattingh and T Steyn

Author Index 309

V

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
PO Box 953
Durban4000

C NBlewett
Department of Accounting
University of Natal
King George V A venue
Durban4001

Justin Cansfield
Department of Accounting
University of Natal
King George V A venue
Durban 4001

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 65 2
Cape Town

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

0 A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

Nirvani Devcharan
Umgeni Water
Box9
Pietermaritzburg
3200

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

List of Contributors

vi

Ruth de Villiers
Department of Computer Science and
Information Systems
UNISA
Box 392, Pretoria, 0001

G JErwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban4000

GGanchev
Computer Science Department
University of Botswana
PBag 0022
Gaberone, Botswana

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag XIO
Dalbridge 4014

Mike Hart
Department of Infonnation Systems
University of Cape Town
Rondebosch
7700

M. Hajek
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban4000

AC Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag XO 1
Scottsville 3209

JMHattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

Boris Jankovic
Centre for Engineering Research
Technikon Natal

P OBox 953 ,
Durban4000

Paula Kotze
Department of Computer Science and
Information Systems

UNISA
Box 392
Pretoria, 0001

JWKruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

AC Leonard
Dept of Informatics
University of Pret6ria
Pretoria
2000

Ben Laauwen
Laauwen and Associates
PO Box 13773
Sinoville

0129

Mari Le Roux
Information technology, development: project
leader
Telkom IT 1015
Box 2753

Pretoria 0001

PWLLyne
Dept of Agricultural Engineering
University of Natal
Private Bag X O 1
Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
BoxMP167

Harare, Zimbabwe

vii

Meredith McLeod
· Centre for Engineering Research,

Technikon Natal,
POBox953
Durban4000

DMoodley
Computer Management Systems
Box 451

Umhlanga Rocks
4320

Andrew Morris
POBox34200
Rhodes Gift
7707

RC Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680
Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600

Port Elizabeth 6000

Don Petkov
Department of Computer Science and
Information Systems

University of Natal
PBag xOl
Scottsville 3209

Olga Petkov
'rechnikon Natal
Box 11078

Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

VRam
Department of Computer Science and
Information Systems
University ofNatal
PBag xOl
Scottsville 3209

Melinda Redelinghuys
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

HNRoux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
25 20

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

Anette L Steenkamp
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 25 20

viii

H. Soleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

A Vahed
Department of Computer Science
University of Western Cape
Private Bag Xl 7
Beliville 7530

A Van der Merwe
Computer science and Informations Systems
UNISA
P0Box392
Pretoria,0001

Tjaart J Van Der Walt
Foundation for Research and Development
Box2600
Pretoria, 0001

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

Y Velinov
Dept Computer Science
University of Natal
Private Bag XOl
Scottsville 3209

HVenter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

RVonSolms
Department of lnformation Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000

AJWalker
Software Engineering Applications
Laboratory
Electrical Engineering

University of Witwatersrand
Johannesburg

PWarren
Computer Science Department
University of Natal

P/Bag XOl
Scottsville 3209

ix

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaberone
Botswana

TEACHING TURING MACHINES - LUXURY OR NECESSITY?
Y.Velinov

Department of Computer Science and Information Systems
University of Natal, Pietermaritzburg

yuri@cs. unp. ac.za

Abstract

The purpose of this paper is to outline an approach for the development of the Tape
Machines model in the Theory of Computation which is bound more closely to the real
computer world. The approach is based on a developed software consisting of a Tape
Machine Simulator and a Tape Machine Assembler. It gives possibility to achieve the
aims of the theory without any loss of mathematical rigor but in more natural, useful
and attractive manner.

Introduction

Tape Machines were introduced by A. Turing [1936] as a theoretical model of the concept of
computation several years before the real electronic computers appeared in practice. The hypothetical
devices originally considered by A. Turing (Tape Machines known now as Turing Machines) are
appealing because of their simplicity, transparency and completeness. On one hand, they embrace all
aspects of the algorithmic processes (the concept of data, the concept of a control device, the concept
of an algorithmic_: language), and on the other hand they convey a strong feeling of a mechanistic
device working by itself and independent of any human intellectual activity.

Nowadays, Tape Machines in their different forms are an indispensable pedagogical vehicle in
contemporary courses in the Theory of Computation. However, they and the ways the theory around
them is developed suffer some disadvantages. The first thing to note is that the original Turing
machines are extremely clumsy when really interesting computations have to be performed. There are
explicable reasons for that. From a purely theoretical point of view any model of computation must
face two discrepant requirements:

• The model must be as simple as possible in order to be convincing as a mechanical
approach and also in order to be easy to simulate it by other models of computation.

• The model must have as much expressive power (not just computational power) in order
to deal easily with the real computations and also in order to be able to simulate in an easy
way other models of computation.

Every model of computation balances these two requirements. Initially the first requirement was
considered more important (mainly for the model to be convincingly mechanistic) and the original
Turing machines were accepted as more sound. Typically, the theory developed around them consists
of descriptive languages for building Turing machines and series of lengthy (and I dare say,
cumbersome) theorems proving step by step what can be computed or modeled, where in the heap of
details it is quite easy to lose the essential ideas. Later on, sacrificing simplicity to gain more
convenience some other machine models, which move the balance from the first requirement to the
second one, were developed [Shepherdson, Sturgis 1963 , Minsky, 1967] . Regardless of their
attractiveness I still find the models unadequate for a very simple reason: developed historically in the
frame of pure mathematics and following its traditions, these models and the theory around them are a
successful, but not very comfortable attempt to build the theory of computation outside of the existing

/howadays in reality computing phenomena. As a result the courses in the Theory of Computation in
the Computer Science syllabi are frequently perceived as stand alone impractical outsiders which are
included there only to show some respect to the achievements of the mathematicians before the real
computer science came to life. This unsatisfactory state was discussed before (see for example [Brady
197 4]) but looking at the nowadays textbooks I still cannot see any significant changes in this respect.

Saicsit '96 219

The purpose of this paper is to o of Tape
Machines which is bound more closely to the real computer world. I will try to show that without any
loss of mathematical rigor the aims of the theory can be achieved in a more acceptable and natural
manner. That if we wish we can even rise the level of rigor. Finally, that the theory can outline ideas
used in the real computer practice.

Tape Machines

If the first of the requirements described above is regarded as essential the initial machine model
must be as simple and as transparent as the original Turing Machines are. This together with the fact
that writing programs is considered as the · most fundamental task in Computer Science makes the
machine proposed by Wang [1957] a natural candidate. In the further considerations I will accept as a
groundwork the modification of the Wang's machine which can work on arbitrary symbols.

A Tape Machine (fig.I) consists of three components: a data tape, a program tape and a
processor.

P R O C E S S O R
address : coun ter :

10 1

S TEP �r i te D E L = 0

Fig.I .

The data tape is infinite in both directions. Each of its cells can be empty (_ denotes the empty
symbol) or can contain exactly one symbol from a fixed alphabet A. Data, properly organized, are
situated on the otherwise empty data tape symbol by symbol. When the machine works the size of
the area which contains nonempty cells may change but is always finite.

The program tape has a beginning and is infinite in only one direction. Each of the cells of the
program tape can contain exactly one of the symbols from the alphabet

{'R' 'L' ·w· ·c· ·u· ' I '} u A u L} ' ' ' ' ' .
The purpose of the program tape is to store the instructions for the processor - the machine
commands. The machine commands are the symbols 1R 1

,
1L1 and the strings from the sets

{ 1U 1} + { 1 l 1 }
·, {'W'}+A or {'C'} •A• {' I '} • (here • stands for the concatenation operation). We

call the symbols 1R 1
,

1L1
, 'W', 'C' and 1U 1 the command codes; U is the code for unconditional jump,

C is the code for conditional jump, W is the code for write operation, R is the code for right
movement and L is the code for left movement. Only a finite number of cells in the programming
tape can contain nonempty symbols.
A continuous sequence of machine commands is called a machine program. A machine program
must be situated on the program tape symbol by symbol starting from the first cell, with no empty
cells between the commands. All unused by the program cells on the program tape must be empty.

220 Saicsit '96

The commands in a program are naturally numbered in · the order in which they appear with
consecutive positive integers starting from 1 . The ordinal numbers of the commands in a program
are used by the processor when implementing the jump commands.

The processor works in discrete time. The time scale is represented by the sequence of the natural
numbers. At every moment of its work the processor observes exactly one ·cell of the data tape and
one cell of the program tape. It can move the observation point on the data tape one cell to the left or
to the right or it can write in the observed cell any symbol from A U L}. It can also move the
observation point on the program tape one cell to the right, or one cell to the left if the observed cell
is not the first one. The processor is organized in such a way that it follows the commands written on
the program tape. At the beginning the processor observes the first cell of the program tape. If it has
just started working or it has just executed a command the observed cell on the program tape
contains a command code. The processor analyzes the command moving if necessary the
observation point on the program tape to the right cell by cell until next command code is reached. If
a syntactically well formed command is recognized the processor interprets it implementing some
actions according to the type of the command as follows:

• If the command code R is observed at some moment then at that moment the processor ·moves
the observation point on the data tape one cell to the right and moves the observation point on
the program tape one cell to the right to analyze the next command at the next moment.

• If the command cod L 'is observed at some moment then at that moment the processor moves
the observation point on the data tape one cell to the left and moves the observation point on the
program tape one cell to the right to analyze the next command at the next moment.

• If the command code W is observed at some moment the processor moves the observation
point on the program tape one cell to the right to see the symbol a situated there, then it changes
the content of the observed cell on the data tape to a and once more moves the observation point
on the program tape one cell to the right to analyze the next command on the tape at the next
moment.

• If a COIIllJland code U is observed the processor analyzes the content of the following cells
one after the other until a new command code is encountered. In the event of a syntax error the
processor stops. If a syntactically correct command - U with n symbols I after it, has been
recognized the general reaction of the processor to the command (we do not specify in details
how it reacts at each moment) is to move the observation point on the program tape at the
beginning of the n-th command to process it at the next moment.

• If a command code C is observed the processor analyzes the content of the following cells
sequentially until a new command code is encountered. In any case of syntactical incorrectness
the processor stops. If a �yntactically correct command - Ca with n symbols I after that, has
been recognized the general reaction of the processor is as follows:

in the case when a is observed on the data tape move the observation point on the program
tape at the b�ginning of the n-th command;
otherwise move the observation point on the program tape to the beginning of the next
command.

• The processor stops working if at the very beginning or just after the implementation of any
command a symbol other than a command code is observed.

One more possible step in order to make the Tape Machine more sound and correlated with the
other topics in Computer Science could be to describe the processor as a finite automaton. Following
this direction it deserves also to consider the relations between the Tape Machine and the original
Turing Machines. The "program" part of a Turing Machine is nothing else but a description of a finite
automaton, and we usually consider finite automata as hardware structures. It is also possible to show
that each program for a Tape Machine can be translated into a program for a Turing Machine and vice
versa. This underlines the important fact that the programs (with no· recursive calls) are equivalent to
the hardware constructions.

The imaginary Tape Machine described above can be brought to life in the form of a simulator on
a real computer. Fig. I shows the appearance of the screen of a simulator implemented for the IBM­
PC computers.

Saicsit . '96 221

Assembler for Tape Machines

Having a simulator at hand it is easy to demonstrate how inconvenient it is to write and change
machine programs. This naturally justifies a next step - the introduction of an assembly language and
an assembler for the Tape Machine. A simple form of an assembly language for the Tape Machine is
described below.

A program written in the assembly language for Tape Machines consists of a sequence of
commands each one written on a separate line. The commands have. a standard format consisting of 5
fields of fixed length though some of them can be empty:

I LABEL I CODE OF OPERA TiON I SYMBOL
4 symbols 3 symbols . .,, · 1 symbol

LABEL/NUMBER I COMMENTS I 4·.syinbols 15 symbols
In order to identify command lines (necessary for the conditional or unconditional jump operations)
the assembly language uses strings of symbols called "labels" . A label is a string which begins with a
character and contains no more than 4 characters. The LABEL FIELD may contain any label but no
two different lines may have the same label in it. A label in the label field of a line identifies the
command in it. The SYMBOL FIELD may contain any symbol accessible on the keyboard of an
ordinary computer. The CODE OF OPERATION FIELD may contain any of the strings 'LFT',
'RGT', 'WAT', 'BEQ', 'BN E', 'J M P', 'HLT' which are the operation codes . . The
ADDRESS/NUMBER FIELD may contain an label or a four digits positive integer number. The
COMMENTS FIELD may contain any sequence of symbols. It is not significant for the operation of
the program an can always be left empty.
The content of the different fields of a command line depends on the used operation code. The
meaning of the operations together with the format they require is described bellow, where 'nnnn'

denotes a four-digits number, 'mmmm' and '/ / / r - labels, 'x' - a symbol, and '_' - an empty space for
a symbol:

mmmm LFT nnnn

mmmm RGT nnnn

mmmm WRT x
mmmm B EQ x I I / /

mmmm B N E x / I / /

mmmm J M P / / / /
mmmm H LT

- Move the observation point on the data tapes nnnn cells to
the left.

- Move the observation point on the data tapes nnnn cells to the
right.

- Write the symbol x on the data tapes.
- If the observed symbol on the data tape is x continue the

execution of the program with the command labeled by I I / / or
otherwise continue with the next command.

- If the observed symbol on the data tape is not x continue the
execution of the program with the command labeled by / / / / or
otherwise continue with the next command.

- Continue the execution of the program with the command
labeled by I I I I.

- Stop the execution of the program.
The commands of the assembly language are executed one after the other in the natural order (from
top to bottom) of the lines they occupy, except when commands with code of operation J M P, BEQ
or B NE are encountered. Such commands change the natural order of execution of the commands
according to the meaning of the operations as it was described above.

It is necessary to show further that the programs written in the assembly language can be translated
into the machine language. Instead of giving a formal proof of this fact it is better to construct an
assembler. A two pass assembler seems more simple and convenient for the purpose. The assembler
itself should not be constructed on a tape machine. It should be considered only on algorithmic level
and of course could be designed in a high level language. The algorithm for its work stands for a proof
of the translatability. Moreover, the proof of the translatability can be supported further with a proof of
the correctness of the assembler algorithm. Fig.2 shows the appearance of the screen of an
implementation of the described assembler for the IBM-PC computers.

222 Saicsit '96

Though applied to a very simple assembly language, except for the subroutine calls which cannot
be introduced at this stage, the assembler for Tape Machines covers the most significant features of a
real assembler. For a more deep understanding of the assemblers structure, if this is regarded as
essential, a more rich assembly language with more commands can be introduced. Macrodefinitions
and even more - relocatable code together with linkers and loaders may also be considered.

t • j -,----- . -
.
• ---;- A : , TM l,,.IORK,. TAP [ll Z = C t l

LABEL COP S 'i'H REF/HUH COMMENT ERRORS

T I T REUERSE C O P 'i' o f a s tr ing of sy
T I T nbo l s a , b , c ; OP s onewhere · on . .
T I T t h e s tr i ng .

L1 R G T 1 f i nd r i gh t end
BHE L1

.LOOP L F T 1 cases o f observed sinbo l
BEO a A
BEH b B 0 100
BEO c c
HLT

case a
A l,,.IR T nark the p l ace w i th enp t y t o

b e ab l e t o re turn and �es tore
A l R G T 1

B N E Al
L I HE : 9

mrrfum no t a coru,and I

Fig.2 .
Assembly language level is not considered in the standard texts concerning Turing Machines.

Usually, only remarks that without really increasing the computational power of the machines some
additional commands can be introduces are present. The introduction of an assembly language and
an assembler not only relieves the exposition of the theoretical results but also combines the needs
of the theory with the practical aspects of Computer Science.

Register Tape Machines

The topic can be developed further by introducing a higher level language such as the language of
flow diagrams considered by Hermes [1965], but it is b�tter to continue in another direction - using the
assembly language to design a virtual Register Machine in order to incorporate the approaches of
Shepherdson-Sturgis [1963] or Minsky [1967] .

A Register Tape Machine uses unlimited but finite number of registers instead of cells. Each
register itself is a tape infinite in one direction, which can contain an infinite chain of symbols. The
registers can be simulated on the data tape of the ordinary Tape Machine with the aid of two additional
servicing symbols, say '#' and '$'. The symbol # is used to separate the different registers and $ - to
indicate the beginning and the end of the field of registers on the data tape. On the data tape the
registers are situated .attached, one immediately after the other. They can be distinguished by their
ordinal numbers or by appropriate names associated with them. The next figure shows a data tape with
2 registers containing some data.

l $ �· , # r b I a I b I # I I I 1 �r O -�� I
Since each of the the registers must be potentially infinite if a symbol is to be inserted in a register

at a certain place a free cell is created there by shifting all the cells till the end of the register field one

Saicsit '96 223

cell to the right. If a symbol in a register is to be deleted at a certain place all the cells from that place
to the end of the register field are shifted one cell to the left. Therefore, though implemented by a
single infinite tape, the virtual Register Machine appears to the user as a list of infinite tapes - registers
each one distinguished by a name or a number.

The language for the Register Machine can be constructed directly to be of assembly type. The
commands could be of the same format as the format for the commands of the assembly language for
Tape Machines. The minimal set of commands must include a command of the type DR xx.xx (define
register) used to introduce a new register on the data tape and associate it with the name ,;xxx',
commands for attaching a symbol at the left (right) side of a register and conditional jump commands
depending on the first observed symbol in a register (or distinguishing an empty register). More
complex commands can be introduced to compare the content of any two registers. Furthermore, the
natural numbers can be represented in unary code as sequences build u_sing a fixed symbol and stored
in a register. Then commands for arithmetical operations can be considered or simulated. At this stage
all significant commands can be implemented by appropriate sequences of ordinary Tape Machine
commands to justify the claim for virtuality of the Register Machine. Further, in order to make the
virtual Register Machine more convenient, in analogy with the real computers, some standard resisters
can be introduced. For example an accumulator and a stack. The stack gives further possibility to
introduce subroutines, a mechanism for recursive calls, mechanisms for passing parameters and so on.
A higher level language can also be introduced if necessary.

With the virtual Register Machine at hand the development of tl)e topic can continue to reach the
typical goals of the theory of computation (like p�oving the equivalence of different models of
computation, or establishing validity of important theorems like the Theorem of the three indexes or
the Theorem of Recursion) but in different stile - by designing programs instead of by proving
theorems. And the level of rigor can be raised by proving the programs correct.

Conclusions

Let us summarize what can be achieved if the approach described above is followed.
First of all, on the expense of building several levels of languages and machines, and considering

their interrelations the theoretical results �an'.· be achieved more easy. The formal troubles in most of
the proves are shifted in advance on the constructions of the assembly language or higher level
languages and their translation to the machine language. As a result the proves !hemselves become
more clear and communicate better the underlying ideas. This can be expected - the introduction of
several levels of languages reflects the popular in the Computer Science methodological principle
"divide and conquer" developed there under the pressure of the problem of solving real complicated
problems.

Further, the stile of the proofs is unified and consists of construction of programs and proving
them correct.

Finally, building an assembly language and the corresponding assembler, constructing a virtual
machine and a language to deal with it is beneficial by itself for the computer science education. The
ideas of how an assembly language is designed and how an assembler is constructed are developed in a
simple way and become more clear and understandable. This gives opportunity to introduce them at
the early stage of education.

As a whole this approach brings nearer the theory and the practice in the Computer Science to the
benefit of both. But there is also another reason supporting it. The variety of ready available high level
languages on one hand and the complexity of the contemporary real assembley languages on the other
lead to a decreasing interest in studying the assembley language level. There is a tendency to elude
assembley language courses in the software directed syllabi. As a result the students lose the touch
with the low level programming. The proposed approach is an alternative which gives possibliliy to
incorporate it into the theoretical courses.

The ideas described above were experimented quite successfully, at different stages of their
development, with first and second year students. As it could be expected the introduction of
simulators made the topic much attractive. The students enjoyed playing with the software supporting
the course and prefered it to the blackboard presentntions. But playing they succeeded to rich faster
more deep understanding of the material.

224 Saicsit '96

References

Brady, J.M.,
A Programming Approach to Some Concepts and Results in the Theory of Computation, The
Computer Journal, Vl9, N3, p.234, (1974)

Hermes, H.,
Enumerability, Decidability, Computability., Springer (1965.)

Minsky, M.,
Computation: Finite and Infinite Machines., Prentice-Hall, (1967).

Shepherdson,J.C., Sturgis,H.E.,
Computability of Recursive Functions., JACM,Vol. 10, p.2 1 7-255 (1963).

Turing, A.,
On Computable Numbers With an Application to the Entscheidungsproblem., Proc. London Math
Soc. Ser.2, 42 (1936).

Wang Hao,
A variant to Turing's Theory of Computing Machines., JACM, 4, I (1957).

Saicsit '96 225

	1996_“SAICSIT”_26_27_Velinon
	Blank Page

