
The South African Institute of Computer Scientists
and

Information Technologists

Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.

26 & 27 September

Edited by

VevekRam

©1996 Copyrights reside with the original authors who may be contacted directly

ISBN 0-620-20568-7

Cover printed by Natal Printers (Pty) Ltd, Pietermaritzburg
Copying by the Multicopy Centre, University of Natal, Pietermaritzburg
Binding by Library Technical Services, University of Natal, Pietermaritzburg

The views expressed in this book are those of the individual authors

FOREWORD

This book is a collection of papers presented at the National Research and Development Conference
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September,
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by
the Department of Computer Science and Information Systems of The University: of Natal,
Pietennaritzburg.
The papers contained herein range from serious technical research to work-in-progress reports of
current research to industry and commercial practice and experience. It has been a difficult task
maintaining an adequate and representative spread of interests and a high standard of scholarship at
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program
committee decided not only to accept papers that are publishable in their present form, but also papers
which reflect this potential in order to encourage young researchers and to involve practitioners from
commerce and industry.
The organisers would like to thank IBM South Africa for their generous sponsorship and all the
members of the organising and program committees, and the referees for making the conference a
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for
promoting the conference among its members and also to the staff and management of the Interaction
Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
VevekRam

Editor and Program Chair
Pietennaritzburg, September 1996

Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof V evek Ram (UNP)

Program Committee

Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP

ii

Foreword
Organising Committee
List of Contributors

Keynote Speaker

Table of Contents

The Role of Formalism in Engineering Interactive Systems
M D Harrison and D J Duke

Plenary

11

1

Industry-Academic-Government Cooperation to boost Technological Innovation 15
and People Development in South Africa
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems 17
AJWalker

The JS Workers, they are a-changin' 29
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
HVenter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs
using a comput�tional network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation
on low-powered Mathematica workstations
H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

iii

35

43

63

75

87

89

95

107

113

Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller
tuning for control loops
M Mc�d and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, AL Steenkamp and V Ram

Database Systems

119

127

137

The Pearl Algorithm as a method to extract infomation out of a database 145
JWKruger

Theory meets Practice: Using Smith's Normalization in Complex Systems 151
A van der Merwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems · 159
K Renaud and P Kotze

Education

Computer-based applications for engineering education 171
AC Hansen and PW L Lyne

Software Engineering Development Methodologies applied to 179
Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment 187
NPillay

The Design and Usage of a new Southern African Information Systems Textbook 195
G J Erwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit 211
GGanchev

Teaching Turing Machines: Luxury or Necessity? 219
YVelinov

Practice and Experience

Lessons learnt from using C+ + and the Object Oriented Approach to 227
Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems 235
B Jankovic and VB Bajic

iv

Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
AC Leonard

Information Security Management: The Second Generation
R Von Sohns

Project Management in Practice
M le Roux

A Case-Study of Internet Publishing
A Morris

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson

Abstracts

243

257

267

271

285

On Total Systems Intervention as a Systemic Framework/or the Organisation 299
of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova

Modular Neural Networks Subroutines for Knowledge Extraction 300
AV ahed and I Cloete

Low�ost Medical Records System: A Model 30 I
0 A Dami and T Seipone

A Methodology for Integrating Legacy Systems with the Client/Server Environment 302
M Redelinghuys and AL Steenkamp

Information Systems Outsourcing and Organisational Structure 303
M Hart and Kvavatzandis

The relational organisation model 304
BLaauwen

The Practical Application of a New Class of Non-Linear Smoothers for 305
Digital Image Processing
E Cloete

A Technology Reference Model/or Client/Server Software Development 306
RC Nienaber

The Feasibility Problem in the Simplex Algorithm 307
T G Scott, J M Hattingh and T Steyn

Author Index 309

V

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
PO Box 953
Durban4000

C NBlewett
Department of Accounting
University of Natal
King George V A venue
Durban4001

Justin Cansfield
Department of Accounting
University of Natal
King George V A venue
Durban 4001

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 65 2
Cape Town

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

0 A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

Nirvani Devcharan
Umgeni Water
Box9
Pietermaritzburg
3200

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

List of Contributors

vi

Ruth de Villiers
Department of Computer Science and
Information Systems
UNISA
Box 392, Pretoria, 0001

G JErwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban4000

GGanchev
Computer Science Department
University of Botswana
PBag 0022
Gaberone, Botswana

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag XIO
Dalbridge 4014

Mike Hart
Department of Infonnation Systems
University of Cape Town
Rondebosch
7700

M. Hajek
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban4000

AC Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag XO 1
Scottsville 3209

JMHattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

Boris Jankovic
Centre for Engineering Research
Technikon Natal

P OBox 953 ,
Durban4000

Paula Kotze
Department of Computer Science and
Information Systems

UNISA
Box 392
Pretoria, 0001

JWKruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

AC Leonard
Dept of Informatics
University of Pret6ria
Pretoria
2000

Ben Laauwen
Laauwen and Associates
PO Box 13773
Sinoville

0129

Mari Le Roux
Information technology, development: project
leader
Telkom IT 1015
Box 2753

Pretoria 0001

PWLLyne
Dept of Agricultural Engineering
University of Natal
Private Bag X O 1
Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
BoxMP167

Harare, Zimbabwe

vii

Meredith McLeod
· Centre for Engineering Research,

Technikon Natal,
POBox953
Durban4000

DMoodley
Computer Management Systems
Box 451

Umhlanga Rocks
4320

Andrew Morris
POBox34200
Rhodes Gift
7707

RC Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680
Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600

Port Elizabeth 6000

Don Petkov
Department of Computer Science and
Information Systems

University of Natal
PBag xOl
Scottsville 3209

Olga Petkov
'rechnikon Natal
Box 11078

Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

VRam
Department of Computer Science and
Information Systems
University ofNatal
PBag xOl
Scottsville 3209

Melinda Redelinghuys
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

HNRoux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
25 20

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

Anette L Steenkamp
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 25 20

viii

H. Soleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

A Vahed
Department of Computer Science
University of Western Cape
Private Bag Xl 7
Beliville 7530

A Van der Merwe
Computer science and Informations Systems
UNISA
P0Box392
Pretoria,0001

Tjaart J Van Der Walt
Foundation for Research and Development
Box2600
Pretoria, 0001

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

Y Velinov
Dept Computer Science
University of Natal
Private Bag XOl
Scottsville 3209

HVenter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

RVonSolms
Department of lnformation Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000

AJWalker
Software Engineering Applications
Laboratory
Electrical Engineering

University of Witwatersrand
Johannesburg

PWarren
Computer Science Department
University of Natal

P/Bag XOl
Scottsville 3209

ix

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaberone
Botswana

Abstract

. CODIE: AN INTEGRATED COBOL ENVIRONMENT
N.Pillay

Department of Financial Studies
Technikon Natal - Pietermaritzburg

Development software is one of the courses that first year students studying towards a
Diploma in Financial Studies enrol for. This course contains an appreciable amount of
RM COBOL programming. Past experience is indicative of the fact that students seem to have
difficulty programming in RMCOBOL. This paper looks at some of the problems
experienced by these students and describes COBIE, a Cobol Integrate Environment,
developed to assist students overcome these problems. Furthermore the paper provides a
description of the students experience with COBIE. Attention is also given to the effect that
a student's learning style may have on the difficulty experienced by a student in using COBIE.
Fin ally ways in which COB IE can be extended to meet the needs of novice computer
programmers is examined.

Introduction

As part of the course on software development first year Financial Studies Students are required to complete
a course on COBOL programming. These students, majority of whom are novice computer users, experience
much difficulty in programming in RMCOBOL. This paper firstly provides an account of the problems
experienced by these students. It then goes on to illustrate how a phased development of a programming
environment can possibly provide a means of overcoming the problems experienced by students.

On outline of each of the phases involved in the development of this programming environment is then
provided. A detailed description of the first phase of the development of COBIE is given. This description
firstly examines the facilities provided by COBIE and then gives an account of the students' experiences with
COBIE.

Finally further extensions to the system in order to meet the needs of these novice programmers is reviewed.

Problems Encountered

The problems experienced by students are two-fold:

Problem 1 :

Students experienced difficul1y in using the RMCOBOL system. In order to create, run and compile COBOL
programs using RMCOBOL the following procedure had to be followed:

1 . The user had to create the source and data files in an editor or wordprocessor of his or her choice.
2. The user had to then evoke the RMCOBOL Compiler at the command line.
3. Step 2 resulted in a compiler listing either being scrolled across the screen or being written to a list

file if the user specified this option.
4./ To view the list file the user would have to again use an editor or word processor of his or her

choice.
5. Based on the listing described in steps 3 and 4 the user would then have to correct any errors listed

by the compiler in the source code.
6 . Finally the user would call the progrmn lltJNCOBOL at the DOS prompt to run the COBOL

program.

Saicsit '96 187

As a result these students, being novice computer users experienced much difficulty in just creating, editing,
compiling and ronning RMCOBOL programs. Students found the procedure that had to be followed to
complete these tasks difficuh to use and remember.

Problem 2:

Students experienced much difficulty and frustration in programming in COBOL. Barstow et al [BARS84]
define this as a "complexity barrier" which hampers the productivity of novice programmers. According to
Barstow et al this barrier can best be broken by building large programming support systems called
programming environments.

A possible solution to Problem 1 is for students to use RMCOSTAR which is a RMCOBOL project
manager and editor from which COBOL programs can be edited, compiled, run and debugged. Reasons for
not using RMCOSTAR include the following:
• RMCOSTAR is generally not sufficiently user friendly for novice computer users. For example

files are stored according to projects which can lead to these confusion.
• It would not be pos�ible to extend the RM COST AR system in order to provide a solut10n to the

difficulties specified in Problem 2.

Proposed Solution

According to Teitelman et al [BARS84] a programming environment that is "cooperative and helpful" will
prevent a novice programmer from spending most of his or her "tim� and energy fighting a system that at
times seems bent on :frus1rating his best efforts". Hence based on the literature surveyed it was decided that
a possible solution to the Problem 2 defined above would be to develop a programming environment which
these novice programmers would be "comfortable" using. Examples of such programming environments
already in existence include Cedar which was developed from the Mesa environment, Pecan, Pict, and the
Cornell Program Synthesiser just to name a few.

The foundation of the programming environment to be developed would be an integrated environment which
would help users overcome the difficulties specified in Problem 1 .

According to T eitelmu et al [BARS84] the contribution made by users in terms of suggestions of
improvements that should be made to Interlisp and facilities that should be provided by the Interlisp
Programming Environment have proven invaluable. Hence throughout this study much emphasis will be
placed on user feedback.

The development of COBIE will be undertaken in three phases:

Phase 1:

1 . The development of an integrated environment that enables the user to edit, compile, and run
COBOL programs in an attempt to provide a solution to Problem 1.

2. Evaluation of this environment.

Phase 2:

1 . During this phase improvements will be made to COBIE based on the evaluation in Phase 1 .

2. According to Barstow et al [BARS84] a programming environment must combine the powers of

188 Saicsit '96

a compiler, an editor, a debugging system, a documentation system and a problem solver. COBIE
will be extended to provided a debugger and documentation. During the process of debugging users
will be able to make necessary changes to the source code.

3 . Evaluation of the extended system.

Phase 3:

1 . Improvements made to the system based on the evaluation in Phase 2.

2. Additional mechanisms need to be added to COBIE to assist students to program in COBOL. The
following mechanisms will be examined in order to extend COB IE to a environment in which these
novice programmers are "comfortable" programming in:

• In their description of an integrated Prolog Programming Environment Schreweis et al [SCHR93]
emphasise that an "UNDO" option should be available to users. The importance of an "UNDO"
option is still further emphasised in Teitelman et al's description of the Interlisp programming
environment [BARS84].

• An automatic error correction facility:

T eitelman et al in their paper " Automated Programmering: The Programmer's Assistant"
[BARS84] describe DWIM a mechanism for automatically correcting trivial errors made by
programmers such as spelling mistakes and punctuation errors. The importance of such a facility
is furthe! stressed by the developers of the Interlisp environment.

• Barstow et al [BARS84] emphasis that "In writing a program, the use should not need to be
continually concerned with the exact form of the structures being used."

This idea forms the basis of the Cornell Program Synthesizer (CPS). CPS is a programming
environments that provides users with templates of the grammars of each simplified statement of
a programming language. All the user has to do is provide the arguments or expressions at a cursor
position in these templates. The-use of such COBOL templates in COBIE will be looked at.

Question and answering:

Barstow et al [BARS94] describe a question and answering technique to help uses identify the
effects of making certain changes in their programs prior to making these changes.

• An interactive browser to display various view of the current state of computation of a program.
• According to Schreweis [SCHR.93] " The human mind is strongly visual oriented and acquires

information at a significantly higher rate by discovery of graphical relationships in complex pictures
than by reading text''. The significance of the use of visual environments is further stressed by Shu
[GLIN90] who states that pictures are more powerful than words as a means of communication.

An example of a visual environment is PECAN. Shu describes PECAN as a system which supports
multiple views of a user's program. These views include a syntax directed editor, a Nassi­
Schneiderman flowchart, a module interconnection diagram of how the program is organised, and
stack data view showing the current state of the data stack.

Other examples of visual environments include Pict, PIGS and Xerox Star System. The effect of
COBIE being extended to a visual environment based on the above examples will be examined.

Various monitoring mechanisms silliilar to those described by Barstow et al [BARS84] to keep track of
statistics regarding the utilization of the facilities provided by COBIE at each stage in this phase will be built

Saicsit '96 189

into the system.

Cobol Integrated Environment (COBQ:)

The integrated environment developed to meet the objectives of Phase l described above was created using
Turbo Vision and is similar to the Integrated Development Environment (IDE) provided by Turbo P,ascal.

System Specifications

COBIE, like RMCOBOL, is a DOS based system which can be run on any IBM compatible microcomputer.

CODIE Interface

The COBIE interface consists of three components namely a pull down menu, a status bar and a desktop.

According to Kay [GLIN90] multiple windows that have the following characteristics:
• displays associated with several user tasks which could be viewed simultaneously;
• switching between tasks must be done with the press of a button;
• no information will be lost in the process of switching; and
• screen space would be used economically;

formed the basis of an "integrated environment. COBIE provides users with this multiple window facility
in which to implement the necessary tasks required.

Facilities Offered by CODIE

The pull down menu which forms part of the COBIE interface is comprised of three submenus namely File,
Cobol, and View.

The File submenu provides the user with the option of creating new source and data files or editing existing
files, and saving these files.

The Cobol submenu provides the user with a Compile and Run option. Upon choosing the Compile option
the user is prompted to confirm the name of the file to be compiled. The RMCOBOL compiler is then
evoked. Thereafter the user's screen is divided into two windows:
• one containing the source program; this window contains a line number indicator to assist the user

find any errors indicated in the compiler listing;
• one containing the listing produced by the compiler.

The user can switch between the two windows and hence correct errors specified in the compiler listing in
the source code. The Run option results in the RMCOBOL program RUNCODOL being implemented.
Upon choosing the Run option the user is required to confirm the name of the COBOL file to be run.

The View submenu provides the user with the options of viewing a particular compiler listing or a report file
that has been created as the result of running a specific COBOL program.

190 Saicsit '96

EvJluation of the COBIE System

"Hands-on" sessions with COBIE were held during which students were required to firstly make minor
changes to two COBOL programs and then compile and mn these programs. In order to evaluate the COBIE
environment at the end of these sessions students were issued with questionnaire. Eighteen students of the
twenty two enrolled for the course completed and returned the questionnaire. This questionnaire was
designed based on that used by Glinert et al [GLIN90] in their student evaluation of the Pict system. A list
of the questions contained in the questionnaire are listed in Table 1 .

Table 1 : Evaluation Questionnaire
1 .
2.
3.
4.
5. What improvements do vou think should be made to the program?
6. List an
7 .

8. Anv other comments

tasks?

To obtain a measure of the effect of students' learning styles prior to the use of the system a survey was
conducted using Kolb's Inventory to determine the learning styles of these students. Nineteen of the twenty
two students enrolled for the course completed and returned the questionnaires.

In order to obtain a correlation between a student's learning style and his or her experience with COBIE only
the feedback of those students that responded to both questionnaires was examined. Sixteen students
responded to both questionnaires of which nine were female and seven male.

Responses to questionnaire

Table 2 lists the responses to the first four questions:

Table 2: Re �sponses to quesuonnarre
QUESTION YES NO UNSURE NO

NUMBER RESPONSE
I 9 7 - -

2 12 2 2 -
3 10 5 - I
4 1 5 - - I

From Table 2 it is clear that a majority of the students found the COBIE system easy to use. Comments
made by students included:
/
"The program eliminated time wasting and irritating procedures."

"Steps were not difficult. "

"Easy to grasp, understand and remember. 11

Saicsit '96 191

However seven students did not find the program easy to use. Comments made by these students included
"as time goes on it will be easier"; "Not easy - because it was my first time to use it".
This is consistent with responses obtained by Glinert et al [GUN90] in the evaluation of the Pict system.
Students attributed the lack of ease of use of the Pict system to the fact that it was the first time that they were
using the system.

It is evident from Table 2 that again a majority of students found that they could easily remember the sJeps
that were required to edit, compile and run COBOL programs using COBIE.

All students with the exception of one student who did not respond to this question indicated that they
definitely wanted to use the COBIE system again.

Two problems were listed by students:

I . · Firstly due to COBIE being used in a network environment students were prompted to "Insert a disk
in drive A:" four times during the compilation process. This made compiling of a program rather
tedious and :frustrating.

2. Secondly if a compiler listing of a source program could not be created a blank window was
displayed on the screen by COBIE and this window could not be "closed" .

Improvements mentioned by students were based on these two problems experienced.

Comments desctjbing the students experience with COBIE included:

"It was most educational."

" I found it interesting and fun to use. The steps were easy to remember, however I experienced some
difficulties when trying to compile my program."

"Challenging"

"At the moment the program is fine because I understand what we've done at this point in time."

Only five students provided any additional comments. This comments emphasised that students required
more practical sessions with COBIE.

The Effect of Learning Styles on the ease of use of CODIE

Finnie [FINN90] defines four learning styles namely, Converger, Diverger, Assimilator and Accommodator
as derived by Kolb. From the study conducted it was found that students who responded positively to the
questions "Have you found the program easy to use?" and "Could you easily remember the steps that were
required to carry out the necessary tasks?" predominately possessed a the Converger or Accommodator
learning style. Those students that responded negatively to these questions predominately possessed either
a Diverger or Assimilator learning style. Hence it is evident that students possessing a Converger or
Accomodator learning style experience less difficulties in using the integrated COBOL environment
compared to students possessing a Diverger or Assimilator learning style.

Conclusion

From the study conducted it is evident that the COBIE system has helped novice programmers overcome
some of the difficulties experienced with ttsittg the RM COBOL system. Certain improvements have been
made to COBIE based on the feedback obtained from. students. Currently the COBIE system is being used
by first year students to write COBOL programs.

COBIE will be extended further to provide a debugging and documentation system. Finally a number of

192 Saicsit '96

mechanisms (as outlined above) such as the use of syntactical templates and visual programming
environments will be examined in order to obtain a means by which these novice programmers can be
assisted to program in COBOL.

References

[BARS84]

[DONA85]

[FINN90]

[GLIN90]

[SCHR93]

[SWEE85]

Saicsit '96

Interactive Programming Environments, David R. Barston, Howard E. Shrobe,
Erik Sandewill, Mcgraw Hill, 1 984.

Integration Techniques in Cedar, James Donahue, Sigplan Notices, Vol 20,
No 7, July 1985, Pages 265 - 286.

· On Learning Styles and Novice Computer Use, G.R. Finnie, Quaestiones
Informaticae, Vol 5., No. I , 1990, Pages 1 - 10.

Visual programming Environments - Paradigms and Systems, E.P. Glinert,
IEEE Computer Society Press, 1 990.

An Integrated Prolog Programming Environment, U. Schreiweis, A Kenne, H.
Langendorfer, ACM Sigplan Notices, Vol. 28, Part 2, 1 993 .

The Mesa Programming Environment, RE. Sweet, Sigplan Notices, Vol. 20,
No.7, July 1985, Pages 2 16-229.

193

	1996_“SAICSIT”_26_27_Pillay
	Blank Page

