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FOREWORD 

This book is a collection of papers presented at the National Research and Development Conference 
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September, 
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by 
the Department of Computer Science and Information Systems of The University: of Natal, 
Pietennaritzburg. 
The papers contained herein range from serious technical research to work-in-progress reports of 
current research to industry and commercial practice and experience. It has been a difficult task 
maintaining an adequate and representative spread of interests and a high standard of scholarship at 
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program 
committee decided not only to accept papers that are publishable in their present form, but also papers 
which reflect this potential in order to encourage young researchers and to involve practitioners from 
commerce and industry. 
The organisers would like to thank IBM South Africa for their generous sponsorship and all the 
members of the organising and program committees, and the referees for making the conference a 
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for 
promoting the conference among its members and also to the staff and management of the Interaction 
Conference Centre for their contribution to the success of the conference. 

On behalf of the Organising Committee 
VevekRam 

Editor and Program Chair 
Pietennaritzburg, September 1996 



Organising Committee 

Conference General Chairs 
Mr Rob Dempster and Prof Peter Warren (UNP) 

Organising Chair 
Dr Don Petkov (UNP) 

Secretariat 
Mrs Jenny Wilson 

Program Chair 
Prof V evek Ram (UNP) 

Program Committee 

Prof Peter Wentworth, Rhodes 
Dr Milan Hajek, UDW 
Prof Derek Smith, UCT 
Prof Anthony Krzesinski, Stellenbosch 
Dr Don Petkov, UNP 
Mr Rob Dempster, UNP 
Prof Peter Warren, UNP 

ii 



Foreword 
Organising Committee 
List of Contributors 

Keynote Speaker 

Table of Contents 

The Role of Formalism in Engineering Interactive Systems 
M D Harrison and D J Duke 

Plenary 

11 

1 

Industry-Academic-Government Cooperation to boost Technological Innovation 15 
and People Development in South Africa 
Tjaart J Van Der Walt 

Checklist support for ISO 9001 audits of Software Quality Management Systems 17 
AJWalker 

The JS Workers, they are a-changin' 29 
Derek Smith 

Research 

Examination Timetabling 
E Parkinson and P R Warren 

Generating Compilers from Formal Semantics 
HVenter 

Efficient State-exploration 
J. Geldenhuys 

A Validation Model of the VMTP Transport Level Protocol 
H.N. Roux and P.J.A. de Villiers 

Intelligent Systems 

Automated Network Management using Artificial Intelligence 
M Watzenboeck 

A framework for executing multiple computational intelligent programs 
using a comput�tional network 
H L Viktor and I Cloete 

A Script-Based prototype for Dynamic Deadlock Avoidance 
C N Blewett and G J Erwin 

Parallelism: an effective Genetic Programming implementation 
on low-powered Mathematica workstations 
H. Suleman and M. Hajek 

Feature Extraction Preprocessors in Neural Networks for Image Recognition 
D Moodley and V Ram 

iii 

35 

43 

63 

75 

87 

89 

95 

107 

113 



Real-Time Systems 

The real-time control system model - an Holistic Approach to System Design 
T Considine 

Neural networks for process parameter identification and assisted controller 
tuning for control loops 
M Mc�d and VB Bajic 

Reference Model for the Process Control Domain of Application 
N Dhevcharran, AL Steenkamp and V Ram 

Database Systems 

119 

127 

137 

The Pearl Algorithm as a method to extract infomation out of a database 145 
JWKruger 

Theory meets Practice: Using Smith's Normalization in Complex Systems 151 
A van der Merwe and W Labuschagne 

A Comparison on Transaction Management Schemes in Multidatabase Systems · 159 
K Renaud and P Kotze 

Education 

Computer-based applications for engineering education 171 
AC Hansen and PW L Lyne 

Software Engineering Development Methodologies applied to 179 
Computer-Aided Instruction 
R de Villiers and P Kotze 

COBIE: A Cobol Integrated Environment 187 
NPillay 

The Design and Usage of a new Southern African Information Systems Textbook 195 
G J Erwin and C N Blewett 

Teaching a first course in Compilers with a simple Compiler Construction Toolkit 211 
GGanchev 

Teaching Turing Machines: Luxury or Necessity? 219 
YVelinov 

Practice and Experience 

Lessons learnt from using C+ + and the Object Oriented Approach to 227 
Software Development 
R Mazhindu-Shumba 

Parallel hierarchical algorithm for identification of large-scale industrial systems 235 
B Jankovic and VB Bajic 

iv 



Information Technology and Organizational Issues 

A cultural perspective on IT/End user relationships 
AC Leonard 

Information Security Management: The Second Generation 
R Von Sohns 

Project Management in Practice 
M le Roux 

A Case-Study of Internet Publishing 
A Morris 

The Role of IT in Business Process Reengineering 
C Blewett, J Cansfield and L Gibson 

Abstracts 

243 

257 

267 

271 

285 

On Total Systems Intervention as a Systemic Framework/or the Organisation 299 
of the Model Base of a Decision Support Systems Generator 
D Petkov and O Petkova 

Modular Neural Networks Subroutines for Knowledge Extraction 300 
AV ahed and I Cloete 

Low�ost Medical Records System: A Model 30 I 
0 A Dami and T Seipone 

A Methodology for Integrating Legacy Systems with the Client/Server Environment 302 
M Redelinghuys and AL Steenkamp 

Information Systems Outsourcing and Organisational Structure 303 
M Hart and Kvavatzandis 

The relational organisation model 304 
BLaauwen 

The Practical Application of a New Class of Non-Linear Smoothers for 305 
Digital Image Processing 
E Cloete 

A Technology Reference Model/or Client/Server Software Development 306 
RC Nienaber 

The Feasibility Problem in the Simplex Algorithm 307 
T G Scott, J M Hattingh and T Steyn 

Author Index 309 

V 



Vladimir B Bajic 
Centre for Engineering Research, 
Technikon Natal, 
PO Box 953 
Durban4000 

C NBlewett 
Department of Accounting 
University of Natal 
King George V A venue 
Durban4001 

Justin Cansfield 
Department of Accounting 
University of Natal 
King George V A venue 
Durban 4001 

Tom Considine 
Apron Services (Pty) Ltd 
P O Johannesburg 
International Airport 
1600 

Eric Cloete 
School of Electrical Engineering 
Cape Technikon 
Box 65 2 
Cape Town 

I Cloete 
Computer Science Department 
University of Stellenbosch 
Stellenbosch 
7600 

0 A Daini 
Department of Computer Science 
University of Botswana 
Gaborone 
Botswana 

Nirvani Devcharan 
Umgeni Water 
Box9 
Pietermaritzburg 
3200 

P J A de Villiers 
Department of Computer Science 
University of Stellenbosch 
Stellenbosch 
7700 

List of Contributors 

vi 

Ruth de Villiers 
Department of Computer Science and 
Information Systems 
UNISA 
Box 392, Pretoria, 0001 

G JErwin 
Business Information Systems 
University of Durban-Westville 
Private Bag X54001 
Durban4000 

GGanchev 
Computer Science Department 
University of Botswana 
PBag 0022 
Gaberone, Botswana 

J Geldenhuys 
Department of Computer Science 
University of Stellenbosch 
Stellenbosch 
7700 

Louise Gibson 
BIS, Dept Accounting & Finance 
University of Durban 
Pvt Bag XIO 
Dalbridge 4014 

Mike Hart 
Department of Infonnation Systems 
University of Cape Town 
Rondebosch 
7700 

M. Hajek 
Department of Computer Science 
University of Durban-Westville 
Pvt Bag X54001 
Durban4000 

AC Hansen 
Dept of Agricultural Engineering 
University of Natal 
Private Bag XO 1 
Scottsville 3209 

JMHattingh 
Department of Computer Science 
Potchefstroom University for CHE 
Potchefstroom 2520 



Boris Jankovic 
Centre for Engineering Research 
Technikon Natal 

P OBox 953 , 
Durban4000 

Paula Kotze 
Department of Computer Science and 
Information Systems 

UNISA 
Box 392 
Pretoria, 0001 

JWKruger 
Vista University 
Soweto Campus 
Box 359 
Westhoven 2124 

AC Leonard 
Dept of Informatics 
University of Pret6ria 
Pretoria 
2000 

Ben Laauwen 
Laauwen and Associates 
PO Box 13773 
Sinoville 

0129 

Mari Le Roux 
Information technology, development: project 
leader 
Telkom IT 1015 
Box 2753 

Pretoria 0001 

PWLLyne 
Dept of Agricultural Engineering 
University of Natal 
Private Bag X O  1 
Scottsville 3209 

Rose Mazhindu-Shumba 
Computer Science Department 
University of Zimbabwe 
BoxMP167 

Harare, Zimbabwe 

vii 

Meredith McLeod 
· Centre for Engineering Research, 

Technikon Natal, 
POBox953 
Durban4000 

DMoodley 
Computer Management Systems 
Box 451 

Umhlanga Rocks 
4320 

Andrew Morris 
POBox34200 
Rhodes Gift 
7707 

RC Nienaber 
Technikon Pretoria 
Dept of Information Technology 
Private Bag X680 
Pretoria 0001 

E Parkinson 
Department of Computer Science 
University of Port Elizabeth 
Box 1600 

Port Elizabeth 6000 

Don Petkov 
Department of Computer Science and 
Information Systems 

University of Natal 
PBag xOl 
Scottsville 3209 

Olga Petkov 
'rechnikon Natal 
Box 11078 

Dorpspruit 3206 
Pietermaritzburg 

N Pillay 
Technikon Natal 
Box 11078 
Dorpspruit 3206 
Pietermaritzburg 



VRam 
Department of Computer Science and 
Information Systems 
University ofNatal 
PBag xOl 
Scottsville 3209 

Melinda Redelinghuys 
Department of Computer Science and 
Information Systems 
UNISA 
Box 392 
Pretoria, 000 I 

Karen Renaud 
Computer Science and Information Systems 
UNISA 
Box 392 
Pretoria, 0001 

HNRoux 
Department of Computer Science 
University of Stellenbosch 
Stellenbosch 
7700 

T G Scott 
Department of Computer Science 
Potchefstroom University for CHE 
Potchefstroom 
25 20 

T Seipone 
Department of Computer Science 
University of Botswana 
Gaborone 
Botswana 

Derek Smith 
Department of Information Systems 
University of Cape Town 
Rondebosch 
7700 

Anette L Steenkamp 
Department of Computer Science and 
Information Systems 
UNISA 
Box 392 
Pretoria, 000 I 

T Steyn 
Department of Computer Science 
Potchefstroom University for CHE 
Potchefstroom 25 20 

viii 

H. Soleman 
Department of Computer Science 
University of Durban-Westville 
Pvt Bag X54001 
Durban 4000 

A Vahed 
Department of Computer Science 
University of Western Cape 
Private Bag Xl 7 
Beliville 7530 

A Van der Merwe 
Computer science and Informations Systems 
UNISA 
P0Box392 
Pretoria,0001 

Tjaart J Van Der Walt 
Foundation for Research and Development 
Box2600 
Pretoria, 0001 

K Vavatzandis 
Department of Information Systems 
University of Cape Town 
Rondebosch 
7700 

Y Velinov 
Dept Computer Science 
University of Natal 
Private Bag XOl 
Scottsville 3209 

HVenter 
Department of Computer Science 
University of Port Elizabeth 
Box 1600 
Port Elizabeth 6000 

H L Viktor 
Computer Science Department 
University of Stellenbosch 
Stellenbosch 
7600 

RVonSolms 
Department of lnformation Technology 
Port Elizabeth Technikon 
Private Bag X6011 
Port Elizabeth 6000 



AJWalker 
Software Engineering Applications 
Laboratory 
Electrical Engineering 

University of Witwatersrand 
Johannesburg 

PWarren 
Computer Science Department 
University of Natal 

P/Bag XOl 
Scottsville 3209 

ix 

Max Watzenboeck 
University of Botswana 
Private Bag 0022 
Gaberone 
Botswana 



EXAMINATION TIMETABLING 

E. Parkinson and P.R. Warren 
Department of Computer Science 

University of Natal, Pietermaritzburg 

Abstract 

We investigate the performance of simulated annealing and tabu search, two new general 
problem solving heuristics, on an examination timetabling problem. These two techniques 
are described here and issues arising from applying them to examination timetabling are 
discussed. The problem we use as a test case is one that appears in Fang ( 1992) in which 
genetic algorithms were used to produce approximate solutions and experimental results 
were presented showing the performance of genetic algorithms on this problem. Finally, we 
compare tabu search, simulated annealing and genetic algorithms on the basis of 
experimental results and draw some conclusions. 

Introduction 

Timetabling examinations is an activity that takes place regularly in almost all univers1t1es and 
educational institutions. Ever since the advent of digital computers, the possibility of applying them to 
timetabling has been researched---the idea of reducing the time and manpower required to construct 
timetables being an attractive prospect. For an overview of this research see for example Schmidt and 
Strohlein ( 1979) which gives an annotated bibliography of work on timetabling that appeared before 
1 980, de Werra ( 1985) and Carter ( 1986)  which deals more specifically with examination timetabling. 
In order to construct timetables that will be convenient for. both students and teachers, sophisticated 
scheduling algorithms are needed. The timetabling problem however, like many other scheduling 
problems, usually takes the form of a hard combinatorial optimization problem and no fast exact 
algorithms exist for solving it, making it necessary to resort to heuristic methods. The types of 
constraints on the timetable that should be incorporated can differ greatly from one institution to the next 
and most algorithms are designed for either simple general exam timetable models or for very specific 
types of constraints and models. Few algorithms can be applied to a broad range of problems and new 
algorithms and heuristics have to be developed if the problem changes (de Werra 1985). 
Over the last few years, three stochastic techniques \lave been applied to combinatorial optimization and 
other problems with some success: genetic algorithms (GAs), simulated annealing (SA) and tabu search 
(TS). These methods are designed to be robust general problem solving algorithms, that is, they perform 
well over a wide range of problems due to the fact that they make use of very little problem specific 
heuristics or information. All three techniques proceed by generating possible solutions from a solution 
space, trying to find a solution that minimizes (or maximizes in some cases) an objective function 
defined over the solution space. Usually the objective function takes the form of a penalty or cost function 
that indicates, for eacl1 solution in the solution space, the penalty associated with it. In cases were the 
solution space is too large to find an optimal solution by evaluating the objective function for all 
solutions, even when controlled backtracking and advanced tree pruning techniques are used, these 
stochastic methods can find near optimal solutions quickly by evaluating only a very small fraction of the 
total number of possible solt1ti011s. They can �tso be used to find good approximate solutions to many 
optimization problems provided that we earl associate a cost or penalty with each solution in the search 

/ space, and therefore these methods can be used on a very wide range of problems. 
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The Edinburgh Problem 

Fang ( 1992) describes an examination timetabling problem encountered at the university of Edinburgh. 
He also goes on to investigate the perfonnance of several genetic algorithms using different parameters 
and genetic operators on this problem. We won't discuss genetic algorithms in detail here. In�tead we 
will compare tabu search and simulated annealing with the results Fang obtained with genetic .algorithms 
for the Edinburgh problem. 
The timetabling problem in Fang (1992) is specified as an optimization problem and is therefore highly 
suitable to the GA, TS and SA approaches. A number of exams have to be scheduled in a number of 
days, where· each day is divided into 4 sessions - 2 sessions each half day before and after lunch. A 
timetable in N days is an assignment of sessions numbered N to 4N to the set of exams numbered 1 to K , 
for K exams that have to be scheduled. For each i,O � i  � N-1, the sessions 4i+l and 4i+2 are the first 
two exam sessions of day (i+ 1) and constitutes the first half day, while sessions 4i+3 and 4i+4 are the 
next 2 sessions of the (i+ l )'th day and are in the second half day. The constraints which must be taken 
into account by the scheduling algorithm are described by Fang as: 
STRONG CONSTRAINTS: 
[ 1]  The same student cannot take two different exams at the same time. In other words, the exams 

cannot clash for any student. (30) 
[2] Very strongly prefer no more than 2 exams per day for a given student. (10) 

WEAK CONSTRAINTS: 
[3] Strongly prefer not to have exams consecutive on the same half day for the same student. (3) 
[4] Prefer not to have exams consecutive on different half days of the same day for the same student. (1) 
In order to model these constraints as an optimization problem, a penalty is given to each instance of a 
violation of a constraint in a timetable being evaluated. Given a timetable, its cost is calculated as 
follows: For each occurrence of a violation of one of the constraints above, the number in  brackets next to 
it is added to the total cost of that timetable. To do this a list of courses taken by each student is examined 
and is used to check which constraints have beett violated for each course combination taken. 
Fang (1992) then compares the performance of several GAs, having different parameter settings and 
operators, with the timetable generated manually by human experts. Each GA is run l O times to generate 
10 different timetables. The GA that performed the best produced a six day timetable with cost 45 as the 
best of 10 nms, compared to the timetable generated manually by a human expert which had a cost of 
101 in spite of using seven days. In addition, the IO runs of the GA takes about 20-:30 minutes while the 
human expert usually takes about an hour to construct a first draft timetable followed by consultation 
with the students to evaluate the timetable, and then modifications are made to the first draft. 
According to Fang (1992), the GA method is clearly superior to the manual method since it is faster and 
constructs better timetables. The question we address next is how tabu search and simulated annealing 
compares with the genetic algorithm approach for this specific timetabling problem. We start by 
describing simulated annealing and tabu search and how we applied it to this exam timetabling problem. 
Tahu Search and Simulated Annealing 

Both TS and SA are based on an operations research technique known as local optimization that is often 
used to solve combinatorial optimization problems (Eiselt and Laporte, 1987). In order to use any of 
these techniques to find an approximate solution to some instance of a minimization problem, we need to 
define the set X of feasible solutions and the objective function c : X � 91 that we are trying to 
minimize. That is, we are trying to find a solution Sbejf which c(Sbes,) is as close to the minimum of c 
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over X as we can find with the heuristic method in limited time. In addition, we need to define a 
neighbourhood structure for the set of feasible solutions. · We do this by defining the function 
N: X � 2x such that for each S E X, N(S) � X is the set of solutions defined to be adjacent to S, 
also called the neighbourhood of S. Note that we are in effect defining a directed neighbourhood graph G 
= (X,E) where the set of vertices is the set of solutions X and the set of edges 
E = {(S, S' ) Is E x /\ s· E N(S)} .  

A local optimization algorithm starts with some initial solution S = S
init 

, S
init 

E X and searches N(S) 
for a solution S' E N ( S) , such that c( S' ) < c( S) . Then it assigns S = S' and repeats the process, 
terminating when a solution S10e E X  is reached for which c(S10J � c(S' ), VS' E N(S10J. Such a 
solution is known as a local minimum. The fact N ( S1oc ) does not contain a better solution does not 
imply that S10e is a global minimum - a solution for which c is minimized over the entire solution 
space X 
Both TS and SA also move through the neighbourhood graph defined on the search space X by moving 
from one solution to a next along the edges of the neighbourhood graph, keeping track of the best 
solution encountered up to that point in an attempt to find a solution with low cost. They differ, however, 
in the method used to select the next solution from the neighbourhood of the current one. They also differ 
from local optimization because they do not get trapped in local minima and do not have to terminate 
when a local minimum is reached. 
Simulated Annealing 
Simulated annealing is a process that has its roots in statistical mechanics (see Davis, 1 987b). It was first 
proposed as a possible technique for finding near global minimum solutions to large scale optimization 
problems by Kirkpatrick, Gelatt and Vecchi ( 1 983). Since then SA has been successfully applied to a 
number of such problems, for example the travelling salesman problem (Kirkpatrick, Gelatt and Vecchi, 
1 983) and graph colouring (Chams, Hertz and de Werra 1987 and Johnson, Aragon, McGeoch and 
Schevon, ( 199 1). 
SA is based on local optimization with one important difference: When the current solution is S and a 
solution S' E N ( S) is randomly selected with c( S' ) � c( S) that solution is immediately accepted and 
made the �urrent solution. If, however, a solution S' E N(S) is generated with c(S' ) > c(S) , it has a 
probability e -(e(S')-c(S))IT of being accepted. Each selection of a solution from N ( S) is called a trial, 
irrespective of whether that solution is accepted. T in the above expression is a variable of the algorithm 
known as the temperature. The temperature (a term that comes from the statistical mechanics analogy) is 
initialized to some large value at the start of the SA process and is decreased gradually as the search 
progresses. This will make it increasingly less likely that solutions with higher costs than that of the 
current one will be accepted. It is known that, in theory, under certain conditions and when the 
temperatur� is decreased sufficiently slowly, the SA process will eventually find a global minimum for 
many classes of problems (see Faigle and Kern, 1991) .  However little is �nown about how to implement 
the SA process to find good, near optimal solutions to practical problems quickly (see Johnson, Aragon, 
McGeoch and Schevon, 1991 ). 
To apply the general SA algorithm to any problem, the following parameters have to be specified: The 
�niti�l temperature T;n;, , together with the temperature factor a E (0,,) by which the temperature is 

/ multiplied every rep trials to simulate the gradual lowering of the temperature. We also have to specify 
the terminating condition for the search. These issues will be discussed at the end of section 3 .  
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Tahu Search 

Tabu Search is another stochastic technique based on local optimization that has had some succe.ss with 
combinatorial optimization problems, including graph colouring (Hertz and de Werra, 1987)· and also 
timetabling (H�rtz, 1991  and 1992). It was originally proposed by Glover for a specific application and 
was later generalized (see Glover 1986). It seems less popular than SA, however, and little has been 
published on the theoretical aspects of TS. 

TS operates in a fashion similar to SA and local optimization, traversing the neighbourhood graph by 
moving from one solution to the next along the edges of the graph, but differs in how, at each step of this 
iterated process, the next solution to visit is selected from the neighbourhood of the current solution. If 
the current solution is S, TS generates a random sample of solutions V • c N { S) with size 
IV• 1 = sample_ size, where sample_ size is a parameter of the TS algorithm. If a solution v; is 
found while constructi�g v·, such that c(v; ) < c(S), then v; is immediately accepted as the new current 
solution and the process is repeated. If, however we generate the entire sample consisting of 
sample_ size solutions without finding a better · solution, the candidate in v· with the lowest cost is 
accepted. This process allows TS to escape from local minima w)lere traditional local minimization 
algorithms would have had to terminate. 

In order to prevent TS from cycling indefinitely between a small number of solutions or vertices in the 
neighbourhood graph, a structure known as a tabu list is employed. When TS moves from the current 
solution S to a new current solution S' , the reverse of the move that transforms S into S' is added to 
the tabu list and that move is said to be tabu. In general, the exact nature of a move in this sense depends 
on the application. For assignment problems a move usually consists of changing the value assigned to 
one of the variables of the problem. For example if we transform the current solution by only changing 
the value assigned to variable V; from Ct to c2, then the reverse of this move is taken to be any 
transformation that reassigns value Ct to variable Vt . In such a case we normally store the pair (i, ci ) in 
the tabu list to indicate that assigning c1 to variable Vt is a tabu move. Whenever a move is made its 
reverse is added to the tabu list and moves that are tabu are prohibited from being made under a number 
of conditions we will explain next. Moves do not stay tabu forever, instead only the reverses of the last 
T_size (a parameter of the TS algorithm) moves made are recorded in the tabu list and the tabu status of 
older moves are dropped when newer ones are added. The tabu list prevents TS from returning to a 
solution it has already visited during the previous T_sjze moves. However, it also makes moves to 
solutions not yet visited tabu when we define moves as we have done here. It could happen that a solution 
with a cost lower than the best solution found up to tliat point can be reached from the current solution, 
but that that solution is tabu. In order to reduce the risk of making solutions tabu that are worth 
investigating, Glover ( 1 986) proposed the use of an aspiration function. 

The aspiration function A initialized as A(c) = c, V costs c when TS starts. Whenever we move from a 
solution S1 with cost c 1 =c(St ) to a solution S2 with cost c2 = c(S2 ) < A(c1 ), we set A(c 1 ) = c2 . The 
interpretation of the aspiration function is that when A ( x) = y, then the lowest cost of a solution ever 
moved to from any solution with cost x is y. Thus whenever we can move from a solution S1 to S2 and 
c(s2 ) < A(c(St )), we know that this transition has not been made earlier during the search. With this 
in mind, we can safely ignore the tabu status of a tnove that itnptoves on the aspiration value of the cost 
of the current solution, knowing that this ttnMHion has not been made previously and that this is 
consistent with the goal of preventing cyelitt-g. 
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Applying TS and SA to the Edinburgh problem. 

The above two general algorithms, SA and TS, were applied to the Edinburgh AI/CS M.Sc. 9 1/92 exam 
problem as described by Fang. This requires that the exams be scheduled in 6 days subject to the 
constraints given in section 2. In order to do this, a neighbourhood structure has to be defined for SA and 
TS, terminating conditions defined and values assigned to the parameters of the two algorithms. 

The neighbourhood structure 

Both SA and TS require that a solution space, neighbourhood structure and cost function for the problem 
be specified. The solution space, X, and cost function, c, we take to be equivalent to Fang's ( 1992) 
definition as described in section 2. The solution space is defined to consist of all assignments of the 4N 
exam sessions available to the K exams. For this particular problem, K = 44 and N =6. The cost function 
we also take to be identical to that of Fang that we described in section 2. This allows us to compare the 
costs of solutions found by TS and SA to those found by Fang's GAs. 

Unlike the GA approach, SA and TS need a neighbourhood structure imposed on the solution space. We 
use the same structure for both SA and TS: For any solution S E X we define N ( S) to consist of all 
assignments in X that differ from S by the session assigned to exactly one exam. 

Another aspect to consider is the method used in both SA and TS to generate an initial solution. A 
number of possibilities are available. One is to use for an initial solution one that was found by some 
other heuristic algorithm (if such an algorithm was available) and the use SA or TS to attempt to 
improve on that. We choose the siinplest method for generating initial solutions, since it was sufficient 
for our gurposes: The initial solution was taken to be some randomly generated solution from the solution 
space. 

The terminating condition 

For both TS and SA we need to define terminating conditions for the search. In order to compare our 
approach with that of Fang we need some condition that will ensure that the amount of work done in that 
case of SA and TS is approximately equal to that done by the GAs. Ideally we want to restrict running 
times to be the same for all 3 methods, but this would depend on the relative speed of the system on 
which Fang implemented his GAs. Fortunately there is a good alternative. By far the most 
computationally expensive operation for all 3 these techniques is evaluating the cost of a -solution by 
iterating through the list of students to determine for each student the penalty due to violating the 
constraints listed in section 2. Thus to ensure that one run of our implementations of SA and TS does 
approximately the same amount of work as one nin of the GA that we are comparing it with, . we 
tenninate the search when 1 5000 solutions have been evaluated -- the same number that one run of the 
GA evaluates. Note that 1 5000 is a very small fraction of the approximately K4N 

� 2.7 x 1 039 solutions 
in the search space. 

Parameter tuning 
I 

Next we address the question of assigning good values to the parameters of the SA and TS algorithms. 
Deciding on parameter values is a tricky business. Often the only way to find parameter values is by 
using a combination of extensive experimentation, intuition and educated guesswork. This approach was 
used to find the optimal parameter settings for SA and TS too. The parameters for TS were the easiest to 
decide on. There are only 2 :  T size and sample size. Glover ( 1986) noted that the optimum value for 

/ / T_size, the size of the tabu list,appears to be approximately 7 and that this seems to be largely problem 
independent. We found that smaller values for T_size tends to deteriorate the quality of the best solution 
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found in 15000 evaluations, while much larger values have very little effect in terms of the quality of 
solutions, but that larger tabu lists slow down the search slightly. The best value for sample_ size was 
found through experimenting with a number of different values to be 50 . This seems to confim1 the 
.assertion by Hertz (1992) that a good value for T_size when using TS for a scheduling problem is to take 
T _ size= number of objects to schedule. Remember that in our problem that the number of exams to be 
scheduled =K=44. After some experiments with TS seemed .to confirm this, we decided that T_size=1 
and sample _size=50 were good parameter settings. (It is interesting to note that Fang (1992) found that 
with GAs the best population size was also about 50 ). 
The 3 parameters for SA were slightly more difficult to decide on. The parameters we needed to find 
values for are: T;n;t, a and rep. The parameters a and rep together determine the rate at which the initial 
temperature T;n;t is reduced. Unlike TS there are no simple general guidelines for determining parameter 
settings for SA. After extensive experimentation, good values for these parameters were found to be: 
T;n;t =2, rep=2000 and a=0 .8. 
Results 

Now we report on the performance of TS and SA. Remember that Fang's (1992) best GA found a 
solution with cost =45 in one of 10 runs with each run evaluating 15000 solutions. Also note that we are 
restricting SA and TS also to 15000 evaluations and running each algorithm 10 times with the parameter 
settings we indicated in the previous section. 

Table 1 .  TS. -SA and GA oeru 10 
Method #Evaluations 5000 10000 15000 
SA Best 43 .0 40 .0 31 .0 

Avg. 49.1 47.9 46.6 
TS Best 37 .0 37 .0 37 .0 

Avg. 58 .5 56 .3 55 .1 
GA Best - - 45 .0 

The above table shows for SA and TS the best solution found during 10 runs after 5000 , 10000 and 
15000 evaluations and also the average cost of the best solution found by each of the ten runs after 5000 , 
10000 , and 15000 evaluations. For Fang's best GA, only the best solution found after 15000 evaluations 
is known. 

Conclusions 

From table 1 we can see that both TS and SA found solutions significantly better than those reported by 
Fang. Even after 5000 iterations both SA and TS in one of the 10 runs of each found solutions better than 
that reported for the GA after 10 runs of 15000 evaluations. The best run of TS found a solution with cost 
37 after only 3947 evaluations without improving it further after that. This might lead one to think that 
TS converges to a good solution �ore quickly than SA, but the gradual decrease in the average best 
solution found by each of the 10 runs of TS would seem to refute this when we compare it to the average 
values for SA. 
Armed with table 1 one might be tempted to conclude that SA is better than TS and that TS is better than 
GAs. This would be a hasty assumption. Firstly these results apply to only one very specific problem. It is 
entirely possible that with slight changes to the problem the situation might be different. On the other 
hand it is reasonable to expect that the greater the similarity a problem has to the one we experimented 
with, the more relevant our resuHs wi11 be. there are also very many variations of GAs and it may be that 
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other variations may perform better on this problem. The results reported on here provide no evidence of 
this, however. 
SA and TS are obviously worth considering for timetabling problems similar to the one we examined. 
SA, of course, is good because it produced the best results. But in order for SA to perform well careful 
selection of the parameters is necessary. If we make bad choices for the parameters SA will not perfonn 
very well. In addition, the parameter values for SA tend to be rather problem dependent and we mjght 
have to reconsider parameter choices when the problem changes slightly. In contrast to this, TS would be 
a good method to use if we do not want to spend time optimizing parameters manually. The two 
parameters of TS are largely problem independent and if we choose T _ size=? and sample _size= number 
of exams to schedule we are likely to achieve good results. 
SA and TS were also applied to the UPE timetabling problem, with similar results. The algorithms 
discovered timetables considerably better than the manually generated timetable. While these are only 
two specific cases, the fact that such good results were obtained with general problem solving algorithms 
should be encouraging to others who wish to apply SA and TS to exam timetabling. 
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