
Taxonomies and Toolkits : Uses for the Mathematics of
Program Construction

'•

Tutorial Abstract

BRUCE W. WATSON
Faculty of Mathematics and Computing Science

Eindhoven University of Technology
5600 MB, Eindhoven, 'The Netherlands

E-Mail: watson©win . tue . nl

Facsimile: +31 4 0 4 36685

1 0 9

Abstract: In this extended abstract , we present a brief description of the tutorial . The primary
reference material, a book and some software (1] , is available for ftp from the Eindhoven University
of Technology.

Keywords: Taxonomy, algorithm derivation , generic programming

In this tutorial, we will consider a mathematical approach to the derivation of families of algorithms
solving a particular problem. These families of algorithms are easily translated into practical
toolkits of algorithms (C++ class libraries in our case) . In the following paragraphs, we briefly
describe why we need such toolkits, algorithm derivations , and a slightly non-standard algorithm
derivation method.

Generic programming (or template programming in C++) forms one of the cornerstones (along
with object-oriented programming) of component programming. Generic algorithm libraries fill
the need for standard algorithms such as sorting and string searching algorithms, freeing the
programmer from re-implementing such error prone components . The algorithms in a generic
library do not make unnecessary assumptions about the nature of the data being operated upon.
For example, a string searching library would work well with strings of characters or strings of
floating point numbers . The very nature of generic programs make them extremely difficult to
debug and test . Exhaustive testing is generally not possible since the number of types (for the
template parameter) is usually infinite. These practical difficulties can be alleviated by using the
mathematics of program construction to design the program correctly in the first place. In the
next paragraph , we will consider the mathematical appeal of taxonomies of algorithms.

There are a number of mature areas of computer science (such as finite automata construction
and string pattern matching) for which there are literally dozens of known algorithms. Many of
these algorithms remain without rigorous proof, despite the fact that they were developed over
twenty years ago. The differing presentation styles , and half-derivations of some of the algorithms
makes them particularly difficult to compare to one another, and even more difficult to implement
correctly.

Dijkstra's approach to correct program construction is rarely, if ever, used by software engineers
working on "real-life" projects . A great deal of time, patience, and practice are required to learn
and apply the method. Unfortunately, the strict use of Dijkstra's calculus is still best suited to
programming-in-the-small (the development of elegant algorithms solving small problems, such as
greatest-common-divisor) .

1 1 0

We will present a method of constructing taxonomies of algorithms . The method starts with ·
a naYve first algorithm, which is easy to prove correct but is impractical to implement . The
taxonomy will be grown as a ''family tree" , with the naYve algorithm at the root . At each step ,
a variant of Dijkstra's discipline of programming is used to add either an algorithm detail (some
algorithm transformation) or a problem detail (a problem restriction which allows an algorithmic
improvement) . The details are always added in a correctness-preserving manner, meaning that the
correctness proof of any derived algorithm is in the composition of t-he details . The aim is to arrive
at all of the known algorithms and hopefully derive some new ones.

Once such a taxonomy has been developed, it is finally possible to provide implementations (in the
form of class libraries) of all of the known algorithms solving a particular problem. The presence
of the correctness proofs in the taxonomy has yielded impressive code quality in the class libraries
(fewer than five bugs per 10,000 of code in the first release) . In the tutorial , we will also discuss
the implementation of one such class library.

Additional material: The primary reference for this materal is [l) . That document can be
obtained by ftp from ftp . win . tue . nl (the Faculty of Mathematics and Computing Science at the
Eindhoven University of Technology) as file /pub/techreports/pi/taxtk . ps . gz. Attendees of
the tutorial are encouraged to obtain the materials after the symposium. Any comments on the
taxonomies or the toolkits are welcome; they can be sent to me.

References

[l] Watson , B .W. 1 995 . Taxonomies and Toolkits of Regular Language Algorithms. Faculty of
Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, The
Netherlands.

	SAICSIT_1995_WATSON(1)

