
'·

A Method to Generate Occam Skeletons from

Formal Specifications

I.M. Ikram

Computer Science Department, Rhodes University,
P.O .Box 94, Grahamstown, 6140.

E-mail: csii@cs.ru. ac.za

Abstract
We consider the problem of automatically generating parallel programs

in the occam language. In particular, we are concerned with the gener
ation of program ,keleton, that define just those computations that are
common to a number of similar systems, leaving empty or 'stub' functions
or processes in the code which are to be filled in later in an application
specific manner.

Rather than attempt to solve the problem for arbitrary parallel sys
tems, we focus on data-parallel systems composed of iterative processes.
In this. paper, we propose a.n implementation strategy for a cellular au
tomaton. Only uniprocessor occam code is considered.

1 Intro�uction

In this pa.per we consider the problem of programming a. simulation of such
systems as cellular automata. (CA) in the concurrent programming language
occam [2) . Implementations of CA are quite common, for instance the one
proposed by Brinch-Hansen [1] . Our motive here is to demonstrate the viability
of a certain formal programming method ('formal ' in the sense of being amenable
to automation) by applying it to the task of implementing CA in occam.

The programming method under investigation attempts to generate code for
inter-process communication, given a high-level specification or description of
a concurrent system (the form and content of the specification are explained
in the next section) . The rest of the code, we assume, is developed manually.
Communication code is analogous to a skeleton, in that it provides a fixed
foundation upon which the main computational code of a concurrent system
is build. Changes in the computational component normally do not require
modification to the communications skeleton.

1 1 5

1 1 6

According to the occam model of communication, data is transmitted be
tween processes though unidirectional , point-to-point and synchronous channels.
For nontrivial systems, planning and managing inter-process communication can
contribute significantly to the ' difficulty' of parallel programming. Thus the
skeleton approach aims firstly at the establishment of a working inter-process
communication network , usable, perhaps, by a variety of applications . There
after code for application-specific computations may be added. These ideas
have been extended in the parallel-programming method known as 'algorithmic
skeletons . '

The work presented here i s directed towards the development o f an algorith
mic skeleton [3] based programming system for the class of so-called ' complex
systems' applications of which CA are a particularly simple example (by virtue
of their regular structure and simple component processes) . We work with oc
cam because of the close correspondence between the occam programming model
and the typical features of ' complex systems' such as replicated components and
purely local communications .

In Section 2 we present the theoretical foundation of the programming
method and the associated formal notation. In section 3 we briefly introduce
CA and proceed to develop an occam implementation of a simple instance . Fi
nally in section 4 we conclude with a description of our current research in this
area.

2 Model

2 .1 Introduction

We proceed to describe the adopted model of concurrent systems. The model
has been designed to aid in decomposing a system of interest into its component
objects, to specify the possible states in which those objects may exist , the
operations that transform their state, and their communications topology. A
final aspect of the model allows sequential dependencies between operations
to be specified. It will be seen in section 3 that this last aspect is central to
the proposed code generation mechanism and permits us to reason about the
system's mutual exclusion properties .

2 .2 Objects

A system is a collection of objects. Informally, an object corresponds directly
to a unique entity in the problem domain, therefore a unique identifier may be
associated with eacl{ object. Formally, a system composed of N objects having
identifiers o1 , 02 , . . . , ON is denoted by the set {o1 , 02 , . . . , ON } . For convenience,
we will hereafter refer to an object by mentioning its unique identifier.

Objects are only capable of communicating with other objects via occam
style channels. Disjoint subsets of a system may be identified and each one
referred to as a class.

2 .3 State

Objects encapsulate state. At any time, an object exists in a unique state. If
a class is said to have state-sets 81 , 82 , . . . , SN, then the instantaneous state
of any of its members is represented by an element belonging to the product
81 x 'S2 x . . . x SN ,

In the ensuing discussion, frequent i:eference will b e made t o the notion
of iilstantaneous state of objects. The notation used to denote an object at a
particular instant will be as follows: we associate the object o (belonging to some
class with state-sets 81 , 82 , . . . , SN within some system) with its instantaneous
state as the tuple (o, (s 1 , s2 , . . . , Bn)) , where Bi E Si for all i, when its state is
(s 1 , s 2 ,' . . . , Bn) , Individually, s 1 , s2 , . . . , sn are referred to as the attributes of o.

The instantaneous state of a system is the set of all the system's objects
associated with their current states.

2 .4 Topology

The topology of a system S is represented by a subset of the pairs in the product
S x S. If T is such a subset then the pair of objects (01 , 02) is an element of
T if and only if 01 passes messages to 02 . A topology may be visualized as a
directed graph with nodes corresponding to objects and edges orientated in the
direction of <rommunication between pairs of objects.

2.5 Operations

2.5.1 Pre- and Post-state

Objects may change their state, perform input or output as part of an operation.
Essentially, we adopt the same philosophy as the Z notation [4] in specifying an
operation by indicating both its pre-state and post-state and then asserting a
relationship between those two states. In our usage, an operation performed on
the objects of system S will be given as a function mapping the instantaneous
pre-state , written St to instantaneous post-state, written 811 .

For the sake of illustration, suppose that S consists of a number of objects
belonging to the same class and possessing the, single state-set {O, l } . Then an
operation O setting the state of o E S to some function f of the pre-state of o
is written as the following mapping from St to S11 :

O : (o, a) - (o, /.a) (o e S, a e {0, 1})

1 1 7

1 1 8

A more complicated operation may involve 3 distinct objects in S: o1 , o2
and 03 , and set the state of 03 to some function g of the pre-states of o1 , 02 and
03 . We would write such an operation P as a mapping from St x St x St to Sn:

P : (01 , a) , (02 , b) , (03 , c) - (03, g . (a , b , c))
(01 , 02 , 03 E S, 01 :/= 02 :/= o3 , a, b , c E {O , 1 })

In cases such as P above, where the operation depends upon the pre-state of
more than one object , it is conventional to write the pre-state of the object
undergoing state-change as the last argument . The range-set of an operation on
system S has to be 811, and not a product , as is permissible for the domain-set .
This is to say that all operations must be so defined as to , alter the state of a
single object .

Note that it is possible to examine such definitions of operations and deduce
both the flow of data from object to object and also the identity of the single
object whose state is altered by the operation. With O, the argument and
result objects were identical (o) so no communication is involved. With P , the
objects 01 , 02 and 03 are the arguments and 03 the result , so we have implicitly
stated a requirement that the states of 01 and �o2 be communicated to 03 prior
to state-change.

2.5.2 Order of Actions

We will need to express formally the order in which operations are required to
take place in a system of interest . Supposing the operation P defined in the
previous section were to be performed firstly on the object z , taking inputs from
z and y. Supposing thereafter that exactly the same operation is to be repeated
and that finally, P is to be performed on z taking inputs from objects y and z.
The following notation may be employed, for example, with the operator · - ·
standing fo r the binary precedence relationship :

P:r:,'11 ,:i - P:r:,'II ,•
P:r:,'/l ,Z - P'/1,11 ,:r:

P:r:,'11 ," and P'll ,:i ,:r: are called instances of operation P. Operationally, an instance,
say P:r:,'11 ," , is meant to signify th�t some parts of the current state of z. and y
are output to z , resulting in a change to the state of system S.

The above notation is unsatisfactory as the second line is ambiguous as
to whether the instance P'll , • ,:r: should take place after the first or the second
occurrence of P:r: , '11 , " (or even after both) . We resolve this by 'time-stamping'
each instance of an operation, by an occurrence-count, as follows:

w X

y z

Figure 1 : One-dimesional cellular a�tomaton consisting of four cells.

P:c,11 ,z , l - P:c,y ,z ,2

P:c,y,z ,2 - Py ,z ,z , l

Instances so written are called actions.

3 Cellular Automaton

3.1 Description

We approach the problem of generating communication code for a cellular au
tomaton (CA) implementation by specifying the CA according to the model and
notation presented in section 2 , and going on to apply general rewriting rules
according to information extracted from the specification.

The CA to be modelled. here is a ring of four cells , connected so that each
cell has two neighbouring cells (see figure 1) . At any time each cell can be in a
state represented by an element of some non-empty set A. All cells undergo a
fixed number, G, of state-transitions according to a state-transition rule. The
rule in this instance is given by some function / mapping both the received state
of neighbouring cells and the current state of the cell onto the next state of the
cell .

In contrast to most familiar cellular automata (e.g. the Game of Life) , we
do not insist that the state-transitions be globally synchronized among all the
cells. State-transitions may be asynchronous , placing this CA in the class of
asynchronous cellular automata.

3.2 Specification

The CA described in the previous section will be considered a system, C, com
posed of objects with identifiers w, z, y and z. Objects correspond directly to

1 1 9

1 20

Figure 2 : Toplogy of the cellular automaton system. Each edge represents a
member of the set Topology.

cells . The objects are assigned two attributes: the first , taking values from A,
gives the current output of the cell (this corresponds to what has been called
the state of the cell , above) ; and the second, taking values from A x A, gives
the two values received from neighbouring cells .

The topology is a doubly-linked ring consisting of eight object-pairs (see
figure 2) .

We distinguish two operations upon the .state of C , corresponding exactly
to the updating of the two attributes of each object : the first applies f to the
values received from the neighbours of an object and sets its new output to be
the result :

0 : (o, out , (in1 , in2)) - (o, f · (in1 , in2 , out) , (in1 , in2))
(o e C, out , in1 , in2 e A)

This is to be interpreted as saying that operation 0, when performed on an
object o in system C, sets the first attribute of o (its current output) to be
the result of applying state-transition function f to both the received state of
neighbours (in1 and in2) as well as o's previous output out .

The second operation upon C alters the second attribute of its objects ac
cording to the following definition:

J : (01 , out 1 , (a, b)) , (02, out2 , (c, d)) - (02 , out1 , insert · (01 , 02 , out 1 , (c, d)))
((01 , 02) e Topology, out1 , ouh, a , b , c, d e A) .

This operation takes two arguments, so it maps c, x Cr to C11, as explained
in section 2. The above definition states that I takes object 01 as argument
and effects a state-change in object 02 , such that 01 's current output , out1 , is
added to 02 's second attribute. The auxiliary function insert is employed to
decide which obsolete input value, either c or d above, is to be replaced by

out 1 • To take an example, we may decide that the two components of the
second attribute of objects are to be arranged thus: the first component will
contain the value received from the left neighbour as represented in figure 1 ,
while the second components will b e similarly related t o the right neighbour.
Then insert · (w , z, 1 , (0, 0)) would give (1 , 0) and insert · (z, z, 1 , (0, 0)) would
give (0 , 1) .

Having defined the operations, we turn t o task of enumerating the operation
instances that may occur in the system, as described in section 2 .5 .2 . For
operation O we know that there are four possible inl!tances , one corresponding
to each object , thus we have Ow , Oz , 011 and Oz . For I there are eight instances ,
for each pair in Topology (Iw ,z , Iz ,z , Iz ,11 ; 111 ,w and their reversed counterparts) .

From the system description given in section 3 . 1 the number of state-transitions
required of each cell is G. Since O is the operation effecting state-transition ,
there must be G occurrences of each of the four 0-instances . We conclude that
there will be 4G 0-actions, namely Ow ,i , Oz,i , 011 ,i and Oz ,i for all 1 :S i :S G.

Similarly, there will be G occurrences of each I-instance because every 0-
instance must be preceded by the two I-instances corresponding to the input of
state from two neighbours. Thus we have 8G I-actions.

We are now equipped with sufficient notation to state the relative timing
of actions in four simple rules: the first two state precedence relations that are
true by definition:

and

Oo,i - Oo,i+l ('vi : 1 � i < G, "lo E C)

101 , 0 , ,i - 101 , 0, , .+1. ('vi : 1 $ i < G, "1(01 , 02) E Topology)

More interestingly, we can state that:

I01 , o, , i - Oo, ,i ('v'(01 , 02) E Topology, "Ii : 1 :S i :S G)

That is , object o1 should output its current state to o2 before 02 may update its
state. The final rule states that , after having undergone its i-th state-transition,
01 is to output its new state to 02 :

001 ,; - I01 ,o, ,i+1 ('v'(o1 , 02) E Topology, "Ii : 1 :S i < G)

Note that the occurrence count of the I-action in this last rule is one greater
that the occurrence count of the preceding 0-action. This is because we count
a single iteration of a cell as consisting (firstly) of input of neighbouring cells '
state and (secondly) update of local state.

1 2 1

1 2 2

I 4,3,1 14,3,2

Figure 3: Directed acyclic graph of actions in system C, for G = 2. Labelled
edges represent actions while edges represent action-precedence constraints.

The information stated in these rules may be presented alternatively as a di
rected acyclic graph (DAG) of actions, for example figure 3 (cf. event-structures
[5]) .

3.3 Program Skeleton

Using the precedence information derived in the above specification, we now
decompose the system into a collection of concurrent processes. These processes
have already been identified in the specification as cell objects. Thus in the case
of the present CA we have four cell processes . The communication channels
connecting these processes are apparent from Topology, in fact there is a one
to-one correspondence between the edges of that set and the required channels .
Using meaningful identifiers, the top level occam skeleton for the CA is of the
form (where P is the appropriate channel protocol) :

PROC cell(CHAN OF P from.left , to.left, from.right , to .right)
. . . body

CHAN OF P w.to.x, x.to.w, . . . , y.to.w, w.to.y :
PAR

cell{y.to.w, w.to.y, x.to .w, w.to.x) - Cell w .
cell(w.to.x, x.to.w, z .to.x, x.to.z) - Cell x.
cell(z .to .y, y.to.z , w .to.y, y.to.w) - Cell y.
cell(x.to .z , z .to.x, y.to.z , z . to.y) - Cell z .
APJ an object-based decomposition h as been followed, the variables used

by each process are simply the attributes possessed by the respective objects .
Again, using meaningful identifiers, the following declarations may be made at
the top of the body of procedure cell (where T is the appropriate variable type) :
T left , right : - The received state of neighbours.
T state : - Local state
. . . rest of procedure cell 's body

Before proceeding to expand the remainder of this procedure, further exam
ination of the operations O and I is required. From the definition of O above,
its effect on the state of a cell is to assign the local state attribute (the first at
tribute) to the result of applying the state-transition function. We can deduce
that each 0-action may be implemented as an assignment statement :
state := f(left, right , state) - Compute the next state.

The definition of operation I implies the input from one neighbour of its cur
rent state, followed by assignment to either one of the components of the second
attribute . For each pair of outputting and inputting objects, depending on the
definition of the auxiliary function insert, one of the following two processes is
appropriate:
PAR

to.right ! state - Performed by outputting cell .
from.left ? left - Performed by inputting cell .

PAR
to.left ! state - Performed by outputting cell .
from.right ? right - Performed by inputting cell .
Having established the range of possible statements composing the procedure

cell , we go ori to order the statements using the action-precedence DAG. Seeing
that the only actions without precedent in the DAG are those I-actions with
occurrence-count 1 , and that there are two such actions for each cell (represent
ing input from each neighbour, respectively) , we deduce that the first process
in procedure cell should input neighbours ' state (along with complementary
outputs to neighbours) :

1 2 3

1 24

PAR
to .left ! state
to.right ! state
from.left ? left
from.right ? right
NJ a general principle , actions not connected by a path in the DAG are

permitted to execute concurrently, as there is no danger of breaking mutual
exclusion from state attributes.

From the DAG , immediately following a pair of I-actions is an 0-action
effecting state-transition:
PAR

to.left ! state
to.right ! state
from.left ? left
from.right ? right

state := f(left, right , state)

This completes the first iteration of a cell . NJ the DAG has a regular and
repeating structure, further expansion of the body of procedure cell reveals
identical code to the above, repeated G tim�.

4 Conclusion

We have developed a prototype of a system that translates specifications such
as given in section 3 .2 into a set of precedence relationships. Work is under
way to automate the next step (demonstrated in section 3 .3) of actually gen
erating occam skeletons from those precedence relationships and from further
information given in specifications.

We have found that the specification model described in section 2 to be
adequate for the task of specifying a number of systems within our domain
of interest (notably various models of neural networks and parallel genetic al
gorithms) . These systems are of a data-parallel nature, consisting of simple
replicated, iterative processes.

The scheme presented in this paper has a number of undesirable properties
and deficiencies that we are seeking to eliminate or correct . Firstly, operations
refine to either assignment statements or input/output statements, but not to
looping constructs. Thus , as ,seen in section 3 .3 , the size of generated code
grows with the parameter G, the number of iterations required. A mechanism
is required to detect regularities in the action-precedence DAG and deduce the
possibility of 'rolling' repeated code into loop statements. Secondly, in practice
it is often not possible to specify a value for G, as we would like the system to
iterate until some termination condition is satisfied . Thirdly, due to considera
tions of execution speed , it may be desirable to sequentialize some of the code

and thereby reduce the number of parallel processes occupying a single pro
cessor. We are therefore interested in integrating automated sequentialization
strategies into this scheme.

A future research goal is to embed sufficient intelligence into the code gen
eration system to exploit true parallel processing on a network of processes .

References
[l] Per Brinch Hansen. Parallel cellular automata: A model program for com

putational science. Concurrency: Practice and Experience, 5(5) :425-448,
August 1993 .

[2] Alan Burns. Programming in occam 2. Addison-Wesley, 1988 .

[3] Murray Cole. Algorithmic Skeletons: a Structured Approach to th e Man age
ment of Parallel Computation. Pitman, 1989.

[4] J .M . Spivey. The Z Notation. Prentice Hall , 1989.

[5] Glynn Winskel. An introduction to event structures. In J .W. Bakker, W .-P.
de Roever , and G. Rozenberg, editors, Linear Time, Branching Tim e and
Partial Order in Logics and Models for Concurrency, volume 354 of Lecture
Notes in Computer Science, pages 364-397. Springer-Verlag, 1989 .

1 2 5

	SAICSIT_1995_IKRAM

