
VI

VI

I

PROCEEDINGS

· VI

HOT EL,

CALE DON

2 - 3 JULY 1991

� - I

VI

VI
EDITED BY VI

M H Linck

SPONSORE D

B Y

ISM

FRDV·

GENMIN

DEPARTMENT OF COMPUTER SCIENCE • UNIVERSITY OF CAPE TOWN

I
I

PROCEEDINGS / KONGRESOPSOMMINGS

6th

SOUTHERN AFRICAN COMPUTER

SYMPOSI�

6de

SUIDELIKE-AFRIKAANSE

REKENAARSIMPOSIUM

De Overberger Hotel, Caledon

2 - 3 JULY 1991

SPONSORED by

ISM
FRD

GENMIN

EDITED by

MHLINCK

Department of Computer Science

University of Cape Town

TABLE OF CONTENTS

Foreword 1

Organising Committee 2

Referees 3

Program 5

Papers (In order of presentation) 9

"A value can belong to many types"
B H Venter, University of Fort Hare 10

"A Transputer Based Embedded Controller Development System"
MR Webster, R G Harley, DC Levy & DR Woodward,
University of Natal 16

"Improving a Control and Sequencing Language"
G Smit & C Fair, University of Cape Town 25

"Design of an Object Orientated Framework/or Optimistic
Parallel Simulation on Shared-Memory Computers"
P Machanick, University of Witwatersrand 40

"Using Statecharts to Design and Specify the GMA
Direct-Manipulation User Interface"
L van Zijl & D Mitton, University of Stellenbosch 51

"Product Form Solutions/or Multiserver Centres
with Heirarchical Classes of Customers"
A Krzesinski, University of Stellenbosch and
R Schassberger, Technische U niversitat Braunschweig 69

"A Reusable Kernel for the Development of Control Software"
W Fouche and Pde Villiers, University of Stellenbosch 83

"An Implementation of Linda Tuple Space
under the, Helios Operating System"
PG Clayton, E P Wentworth, G C Wells and F de Heer-Menlah,
Rhodes University 95

"The Design and Analysis of Distributed Virtual Memory
Consistency Protocols in an Object Orientated Operating System
K Macgregor, University of Cape Town & R Campbell University
of Illinois at Urbana-Champaign 107

I '

"Concurrency Control Mecchanisms for Multidatabase Systems"
A Deacon, University of Stellenbosch

"Extending Local Recovery Techniques for Distributed Databases"
H L Victor & M H R ennhackkamp, University of Stellenbosch

"Analysing Routing Strategies in Sporadic Networks"
S Melville, University of Natal

The Design of a Speech Synthesis System for Afrikaans"

1 18

135

148

M J Wagener, University of P ort E lizabeth 167

"Expert Systems for Management Control: A Multiexpert Architecture"
V Ram, University of Natal 177

"Integrating Simularity-Based and Explanation-Based Learning"
G D Oosthuizen and C A venant, University of P retoria 187

"Efficient Evaluation of Regular Path Programs"
P Wocxi, University of Cape Town 201

"Object Orientation in Relational Databases"
M Rennhackkamp, University of Stellenbosch 2 1 1

"Building a secure database using self-protecting objects"
M Olivier and SH von Solms, R and A frikaans University 228

"Modelling the Algebra of Weakest Preconditions"
C Brink and I R ewitsky, University of Cape Town 242

"A Model Checker for Transition Systems"
Pde Villiers, University of Stellenbosch. 262

"A New Algorithm for Finding an Upper Bound of the Genus of a Graph"
DI Carson and OR Oellennann, University of Natal 276

FOREWORD

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the
tradition of providing an opportunity for the South African scientific computing
community to present research material to their peers.

It was heartening that 31 papers were offered for consideration. As before all these papers
were refereed. Thereafter a selection committee chose 21 for presentation at the
Symposium.

Several new dimensions are present in the 1991 symposium:

* The Symposium has been arranged for the day immediately after the SACLA
conference.

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia.

* I believe that it is first time that a Symposium has been held outside of the
Transvaal.

* Over 85 people will be attending. Nearly all will have attended both events.

* A Sponsorship package for both SACLA and the Research Symposium was
obtained. (This led to reduced hotel costs compared to previous symposia)

A major expense is the production of the Proceedings of the Symposium. To ensure
financial soundness authors have had to pay the page charge of R20 per page.

A thought for the future would be consideration of a poster session at the Symposium.
This could provide an alternative approach to presenting ideas or work.

I would sincerely hope that the twinning of SACLA and the Research Symposium is
considered successful enough for this combination survive. As to whether a Research
Symposium should be run each year after SACLA, or only every second year, is a matter
of need and taste.

A challenge for the future is to encourage an even greater number of MSc & PhD
students to attei:id the Symposium. Unlike this year, I would recommend that they be
accommodated at the same cost as everyone else. Only if it is financially necessary
should the sponsored number of students be limited.

I would like to thank the other members of the organising committee and my colleagues
at UCT for all the help that they have given me. A special word of thanks goes to Prof.
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the
organisation of this 6th Research Symposium.

MHLinck
Symposium Chairman

1

I I

I/
SYMPOSIUM CHAIRMAN

M H Linck, University of Cape Town

ORGANISING COMMITTEE

SPONSORS

D Kourie, Pretoria University.

PS Kritzinger, University of Cape Town.

M H L inck, University of Cape Town.

ISM

GENMIN

FRD

2

LIST OF REFEREES FOR 6th RESEARCH SYMPOSIUM

NAME INSTITUTION

Barnard, E Pretoria

Becker, Ronnie UCT

Berman S UCT

Bishop, Judy Wits

Berman, Sonia UCT

Brink, Chris UCT

Bodde, Ryn Networks Systems

Bornman, Chris UNISA

Brower, Pict UOFS

Cherenack, Paul UCT

Cook Donald UCT

de Jaeger, Gerhard UCT

de Villiers, Pieter , Stellenbosch

Ehlers, Elize RAU

Eloff, Jan RAU

Finnie, Gavin Natal

Gaynor, N AECI

Hutchinson, Andrew UCT

Jourdan, D Pretoria

Kourie Derrick Pretoria

Kritzinger, Pieter UCT

Krzesinski, Tony Stellenbosch

Laing, Doug ISM

Labuschagne, Willem UNISA

Levy, Dave Natal

3

"'-··-"

MacGregor, Ken

Machanick, Philip

Mattison Keith

Messerschmidt, Hans

Mutch, Laurie

Neishlos, N

Oosthuizen, Deon

Peters Joseph

Ram,V

Postma, Stef

Rennhackkamp, Martin

Shochot, John

Silverberg, Roger

Smit, Riel

Smith, Dereck

Terry, Pat

van den Heever, Roelf

van Zijl, Lynette

Venter, Herman

Victor, Hema

von Solms, Basie

Wagenaar,M

Wentworth, Peter

Wheeler, Graham

Wood, Peter

UCT

Wits

UCT

UOFS

Shell

Wits

Pretoria

Simon Fraser

Natal, Pmb.

Natal, Pmb

Stellenbosch

Wits

Council for Mineral Technology

UCT

UCT

Rhodes

UP

Stellenbosch

Fort Hare

Stellenbosch

RAU

UPE

Rhodes

UCT

UCT

4

6TH RESEARCH SYMPOSIUM - 1991

FINAL PROGRAM

TUESDAY 2nd July 1991

10h00 - 13h00

13h00 - 13h50

Registration

PUB LUNCH

14h00 - 15h30 SESSION lA

Venue: Hassner

Chairman: Prof Basie von Solrns

14h00 - 14h30
"A value can belong to many types. "
B H Venter, University of Fort Hare

14h30 - 15h00
"A Transputer Based Embedded
Controller Development System"
MR Webster, R G Harley, DC Levy &
D R Woodward, University of Natal

15h00 - 15h30
"Improving a Control and Sequencing
Language"
G Smit and C Fair, University of Cape
Town

15h30 · 16h00 TEA

5

SESSION lB

Venue: Hassner C

Chainnan:Prof Roelf v d Reever

14h00 - 14h30
"Design of an Object Orientated
Framework/or Optimistic Parallel
Simulation on Shared-Memory
Computers" P Machanick, University of
Witwatersrand

14h30 - 15h00
"Using Statechans to Design and
Specify the GMA Direct-Manipulation
User Interface" L van Zijl & D Mitton,
University of Stellenbosch

15h00 - 15h30
"Product Form Solutions/or Multiserver
Centres with Heirarchical Classes of
Customers" A Krzesinski, University of
Stellenbosch and R Schassberger,
Technische Universitlit Braunschweig

16h00 · 17h30 SESSION 2A

Venue: Hassner

Chairman: Prof Derrick Kourie

16h00 - 16h30
"A Reusable Kernel for the Development
of Control Software" W Fouche and P de
Villiers, University of Stellenbosch

16h30 - 17h00
"An Implementation of Linda Tuple
Space under the Helios Operating
System" P G Clayton, E P Wentworth, G
C Wells and F de-Heer-Menlah, Rhodes
University

17h00 - 17h30
"The Design and Analysis of Distributed
Virtual Memory Consistency Protocols
in an Object Orientated Operating
System" K MacGregor, University of
Cape Town & R Campbell, University
of lliinois at Urbana-Champaign

19h30

20h00

PRE-DINNER DRINKS

GALA CAPE DINNER
(Men: Jackets & ties)

6

WEDNESDAY 3rd ,July 1991

7h00 • 8h15 BREAKFAST

8h15 - 9h45 SESSION 3A

Venue: Hassner

Chairman: Assoc Prof P Wood

8h15 - 8h45
"Concurrency Control Mechanisms for
Multidatabase Systems" A Deacon,
University of Stellenbosch

8h45 - 9h15
"Extending Local Recovery Techniques
for Distributed Databases" H L Victor
& M H Rennhackkamp, University of
Stellenbosch

9h15 - 9h45
"Analysing Routing Strategies in
Sporadic Networks" S Melville,
University of Natal

9h45 - 10h15 TEA

10h15 - 11h00 SESSION 4

Venue: Hassner

Chairman: Prof P S Kritzinger
Invited paper: E Coffman

11h00 · 11h10 BREAK

7

SESSION 3B

Venue: Hassner C

Chairman: Prof G Finnie

8h15 - 8h45
The Design of a Speech Synthesis
System for Afrikaans" M J Wagener,
University of Port Elizabeth

8h45 - 9h15
"Expen Systems for Management
Control: A Multiexpert Architecture"
V Ram, University of Natal

9h15 - 9h45
"Integrating Simularity-Based and
Explanation-Based Learning"
G D Oosthuizen and C A venant,
University of Pretoria

11h10 • 12h40 SESSION SA

Venue: Hassner

Chairman: Prof C Bornman

11h10 - 11h40
"Efficient Evaluation of Regular Path
Programs"
P Wood, University of Cape Town

11h40 - 12h10
"Object Orientation in Relational
Databases"
M Rennhackkamp, University of
Stellenbosch

12h10 - 12h40
"Building a secure database using self­
protecting objects" M Olivier and S H
von Solms, Rand Afrikaans University

SESSION SB

Venue: Hassner C

Chairman: Prof A Krzesinski

11h10 - 11h40
"Modelling the Algebra of Weakest
Preconditions"
C Brink & I Rewitsky, University of
Cape Town

11h40 - 12h10
"A Model Checker for Transition
Systems"
P de Villiers, University of Stellenbosch

12h10 - 12h40
, "A New Algorithm for Finding an Upper

Bound of the Genus of a Graph"
D I Carson and O R Oellennann,
University of Natal

12h45-12h55 GENERAL MEETING of RESEARCH SYMPOSIUM ATTENDEES

Venue: Hassner

Chairman: Dr M H Linck

13h00 • 14h00 LUNCH

FINIS 6th COMPUTER SYMPOSIUM

8

PAPERS

ofthe

6TH RESEARCH SYMPOSIUM

9

The Design of a Speech Synthesis System for Afrikaans

M.J.Wagener
Department of Co mputer Science, Univeraity of Po rt Elizabe th,

PO Box 1 600, Po rt Elizabe th., 6000

ABSTRACT

The design of a speech synthesia syste m fo r the
ge nera tion of speech from text is prese nted. The
syste m accepts any Afrikaans se nte nce and the n
derives segme ntal and supraJegmental informa­
tion through vario us linguistic processes . The re ­
sultant info rmation is used to generate control
parame ters for a formant synthesizer.

Rele vant features of the most well-known e::e­
pe rime ntal speech synthesis syste ms are given,
follo wed by a specification of the design o bjec­
tives of the sys tem. The syatem design is ex­
plained in te rms of data modelling and data flow
analysis . Further explanation is provided for the
.imple mentation of the data struc ture, the data
struc ture manage r and a typical linguistic pro­
cess .

1 Introduction

The synthesis of speech by a computer can be
done in different ways, ranging from the simple
reproduction of previously recorded speech to the
synthesis of speech from text . Methods based on
prelecorded speech are easy to implement and
provide high quality sound but are restrictive in
terms of what speech can be reproduced. Speech
synthesis from text on the other hand, requires
complex implementation algorithms with a lower
speech quality but is completely flexible in its
application. The system presented here falls in
the latter cat egory. It takes unrestricted text
and uses linguistic knowledge to synthesize the
speech. The process consists of two main phases;

• the translation of text to a phonetic repre­
sentation and

• the generation of a speech signal from the
phonetic representation.

2 Overview of speech syn­

thesis systems

The earliest speech synthesis systems concen­
trated on the production of a speech signal from
a given phonetic ,representation . Various types
of synthesizers were developed which c an be used
to gen'erate phonetic sounds. These synthesizers
fall into two broad classes namely articulatory
and formant synthesizers . The operat ion of ar­
t iculat ory synthesizers is based on the physic al
human articulation movements whereas formant
synthesizers attempt to reproduce the acoustic
signal associated with speech. This system and
most other experimental speech synthesis sys­
tems make use of a formant synthesizer.

During the 1970 's research was directed to­
wards the automatic translation of text to a pho­
net ic representation. In order to derive sufficient
information from text , linguist ic processes like
syllabification and stress assignment must be ap­
plied. Carlson and Granstrom [Car76J developed
the first system which separates the linguis tic
knowledge from the logic of the system. They
developed a special programming language that
allows the specification of linguistic knowledge in
terms of rules . Other systems like the Klattalk
system developed by D.H. Klatt [Kla82 J , also fol­
lowed this approach but went further in modu­
larizing the system in terms of separate linguistic
processes . This can also be seen in the SRS sys­
tem developed by S .R . Hertz [Her82] . The SRS
system uses .three different rule sets to perform
specific parts of the translation process.

A major shortcoming of these systems is that
they all operate on a linear data s tructure which
is semantically overloaded. This has a direct and
restrictive effect . on the expressive power of the
linguistic rules. A further shortcoming is that

167

the systems are geared for the synthesis of a spe­
cific language and fall short as general synthesis
environments.

These two shortcomings were addressed in the
development of the Delt a system [Her85] . The
Delta system is hailed as the ultimate synthesis
system. It uses a delta (an hierarchically inter­
connected structure) as the central dat a struc­
ture and a powerful programming language to
manipulate it . The user is required to do all
dat a typing and structuring and manipulate the
delta structure by following pointers and coding
loops and procedures . The expertise required by
a user is certainly on par with that of a third
generation programmer. The Delta system thus
addresses relevant issues concerned with the en­
gineering of a speech synthesis system, but in
trying to be a general speech synthesis environ­
ment, it has turned out to be another specialized
third generation language.

3 Design objectives

The above discussion of existing speech synthe­
sis systems gives an overview of their historic de­
velopment and identifies the majo� design issues
that were addressed in these systems. With this
overview in mind, the following objectives were
identified as important in the development of a
speech synthesis system for Afrikaans. The ob­
jectives are given with reference to the existing
systems.

• To provide a framework whereby the linguia­
tic theory for the generation of Afrikaans
speech can be practically implemented and
tested. The emphasis ia on designing a
speech synthesia environment specifically for
Afrikaans. It differs in this aspect from the
Delta system which caters for different lan­
guages. Although the system ia aimed at a
restricted application domain, it must still
be general and flexible enougp to be used as
an experimental environment for synthesis­
ing Afrikaans speech.

• To provide a system in which the linguia­
tic knowledge is �learly separated from the
logic of the system. This objective was al­
ready achieved by Carlson and Granstrom
and also in the later systems, but the Delta

system has gone backwards by combining
the specification of linguistic knowledge and
the logic of traversing the data structure.

• To provide a friendly and familiar interface
to the linguistic rule writer. The system
is aimed at linguists with none or very lit­
tle programming experience and must thus
provide an interface that suits the expertise
and needs of this type of user. The Delta
system requires knowledge of programming
concepts like data typing, data structuring,
loops and modularization, which makes it
unsuitable for use by pure linguists.

• To employ an internal data structure that
closely models the real world and provides
manipulative power. The use of a linear
data structure in the earlier systems like the
Klattalk and SRS systems, was one of the
major drawbacks of these systems. This was
addressed in the Delta system by introduc­
ing the so-called delt a. The critism against

- the Delta system is that it does not pro­
vide any abstract data model based on the
delta, but leaves it to the rule writer to do
the semantic data modelling. This level of
expertise is not expected from rule writers
using this system.

• To provide a functional decomposition of the
system that is 9rganized into levels of ab­
straction and semantics with clear interfaces
between these levels. This objective is to a
certain extent already a solution to some of
the problema raised earlier and fundamental
to the design of modern software systems.

Throughout this paper, special emphasis is
placed on explaining how these objectives influ­
enced the design of the synthesis system.

168

4 Designing the data struc­
ture

It was specified that the internal data structure
used in the system should represent the user's
perspective of the data. A top-down approach
ia followed whereby firstly the user's view of the
data is determined by an abstract data modelling

technique. The abstract data model is then im­
plemented in a physical dat a structure.

The sentence is taken as the synthesis unit be­
cause larger units like paragraphs, do not contain
more information that is derivable by the system.
The structural components of a sentence which
are of interest for this study are words, sylla­
bles and sound segments. The sound segments
further consists of parameter frames which con­
tain the parameter values for the formant syn­
thesizer . An abstract data model that repre­
sents all the required data e lements and the re­
lationships between them, is constructed by us­
ing entity-relationship modelling [How83J . The
ent ity-relationship model is shown graphically in
an entity-relationship diagram in figure 1 .

All the structural components of a sentence
namely words , syllables , sound segments and pa­
rameter frames are all represented in the model
by the SEGMENT entity. This ia pouible be­
cause they are all described by the same at­
tributes. Consequences of this generalisation are
first ly that the model is very simple and therefore
easy to manipulate and secondly that the model
is flexible in that other types of components, e .g.
clauses and morphemes, could also be accommo­
dated in the S EGMENT entity. Each occurence
of the SEGMENT entity can be associated with
certain features . All the features of interest to
the system are combined into one entity, called
the FEATURE entity. This again puts no re­
strictiolls on t he different types of features that
can be accommodated.

The relationship CONSISTS-OF represents
the internal structure of the data e.g. one word
consists of many syllables . The HAS relationship
shows that a segment can have many features but
also that it has one value for that aasociated fea­
ture.

5 Data flow analysis

Figure 2 shows a data flow context diagram of the
system. The rule writer provides linguistic rules
which are used to generate control parameters

· for a synthesiser from a sentence entered by the
user.

The flow of data inside the synthesis system
is shown in Figure 3. All processes operate on
the data structure through the data structure

manager. The dat a structure is initialized with
information from the input text , expanded by
various participating linguistic processes and fi­
nally used to generate control p arameters for the
synthesizer.

The processes are modularized according to
their linguistic function in the system. Processes
2, 3 and 4 work together to generate the seg­
mental information for the speech sign al. Seg­
mental information applies to individual sound
segments. The function and existence of t hese
processes are justified by the t heory of nat ural
generative phonology [Com87) . The transforma­
tion of a phonological sound segment to a pho­
netic' sound segment aa depicted in the design,
stands central to this theory. Processes 5, 6 and
7 generate suprasegmental or prosodic informa­
tion. Prosodic information haa a global effect on
speech and applies to larger segments like sen­
tences and words.

The different processes in the design are now
explained in more detail.

5 .1 Text normalization
This process serves as a filter of the text to con­
vert the input to a standard form, e .g. expand
abbreviations and numerals like "i .p.v." to "in
plaas van" and " 1" to "een" . The standard
form accepted by the system consists of only
words and punctuation symbols combined into
sentences. Any other special characters which
are not handled in the normalization rules will
be filtered out. The user can t hus customize this
module to suit his own needs.

5 .2 Generating sound segments

This process takes as input the ortographic char­
acters from the data structure and generates cor­
responding phonological representations. It also
aasigns initial feature information to the phono­
logical sound segments. The process closely cor­
responds with what is known as letter-to-sound
rules in other systems [Wag87], except that the
output ia a.n abstract phonological sound seg­
ment on which further phonological rules must
be applied before a phonetic representation is ac­
quired.

1 69

5 .3 Syllabification
This process groups the sound segments into syl­
lables and assigns feature information to each
syllable . A syllable typically consists of vowel
which is optionally surrounded by consonants.
Since phonological rules can change the syllable
boundaries , the syllabification rules must be ap­
plied again after the phonological rules .

5 .4 Application of phonological
rules

It is the task of this process to convert the under­
lying phonological representations to phonetic
represent at ions. This is achieved by different
types of phonological rules that insert , delete
and replace sound segments and also expand the
sound segment feature information. It uses as in­
put the existing sound segments and syllables as
well as the existing feature information of these
ent ities .

5 . 5 Partial syntax analysis
The current aim of the partial syntax analysis
of a sentence is to determine the syntactic role
of each word in the sentence. Since a natural
language parser is beyond the scope of this study,
this is achieved by maintaining a dictionary of
words with their parts of speech. The dict ionary
is searched for each word in the sentence and the
part of speech is added to the feature information
of the word.

5 .6 Sentence stress assignment
The syntactic role of words and punctuation
symbols are used to stress certain words in the
sentence and insert different pawies in appropri­
ate places in the sentence.

5 . 7 Word stress assignment
This process uses the syllabic information in the
data structure to apply a stress pattern within a
word. Syllables within a word are given contrast­
ing degrees of streu. Word stress and sentence
stress information together is used in the next
process to generate fundamental frequency, du­
ration and amplitude parameter values.

5.8 Parameter generation and in-
terpolation

The function of this process is to use the segmen­
tal and suprasegmental information generated by
the other linguistic processes and determine con­
trol paramet ers for the synthesizer. Parameter
values of neighbouring sound segments are in­
terpolated to provide smooth transit ions. The
parameters are targeted at a software formant
synthesizer [Kla80] that is used to construct a
digital representation of the speech s ignal.

6 Implementing the data

structure

The physical implementation of the abstract
data model has a file for the SEGMENT en­
tity and a file representing the HAS relation­
ship between SEGMENT and FEATURE. Each
segment is represented by a record in the SEG­
MENT file and each feature of a specific segment
is� stored aa oµe record in the SF file. (Note
that these files can also be seen as a sequence
of records stored in memory.) The relation­
ships between these records (eg . one segment
has many features) are implemented by keeping
pointer fields in the records. The record formats
of the two files are:

170

S!GMENT (information , parent_segment ,
f irst _ segment , last_segment ,
left_segment , right_segment ,
f irat _sf)

SF (name , value , parent_ segment ,
right_sf)

In the SEGMENT file the number field is rep­
reaented by the physical record number and is
therefore excluded from the record description.
The CONSISTS-OF relationship is implemented
by three types of pointers ; a bidirectional child
link, a child-parent link and a parent-to-first­
and-lut-child link. The bidirectional child link
connects segments which are all part of the same
larger se gment together and allows traversal of

these segments in both directions. The child­
parent link connects each segment to the seg­
ment in which it is contained, and the other two
pointers connect a segment with the first and
last segments of its list of subsegments. The re­
lationship between segments and features is im­
plemented by a pointer chain connecting firstly
a segment to its first feature (the first..sf field
in SEGMENT) and then e ach feature with the
next (the right..sf field in SF) . Each feature is
also connected to its parent segment by the par­
ent...segment field in SF. An example of part of
the physical dat a structure for the sentence "Ek
eet lekker" is given in figure 4. A feature list is
shown for the word "ek" .

7 Data structure manager

The data structure manager plays a very impor­
tant role as interface between the data structure
and the rest of the system. It provides an ab­
stract view of the physical d ata structures and
hides any physical changes that might occur in
the data structures , from the rest of the system.

The abstract view provided by the data struc­
ture manager can be described as a hierarchical
structure of segments in which each segment can
have a number of features. The . interface is for­
mally defined in terms of the dat a structure oper­
ations provided by the data structure manager.
The abstract data structure and . defined oper­
ations closely follows the approach followed in
traditional network dat abase management sys­
tems as proposed by the Data Base Task Group
[Dat86] . It hides all the intricacies of pointer
management from other components in the sys­
tem and provides complete and powerful opera­
tions on the abstract data structure.

Each segment and feature has a pointer or ad­
dress associated with it. The interface allows ac­
cess to these pointers which can then be used to
navigate through the data structure by means of
the operations. The example shown below serves
as an illustration of typical operations defined in
the data structure manager. In t his example the
feature "byw 1" is added to the last word in the
sentence in figure 4. Assume access to the ad­
dress of the sentence segment is obtained prior
to this code and stored in PARENT. CHILD is
another pointer variable and FOUND a boolean

variable.

FOUND : • f ind_f irst_aegm (CHILD , PARENT)
while FOUND do

FOUND : a find_right_segm (CHILD , CHILD)
insert_first_feat (CHILD , ' byw ' , 1)

The dat a structure manager provides the
other components in t he system with data in­
dependence. If �ny ch anges in the physical stor­
age of the data are made, it would not affect the
other components. These changes are absorbed
by the interface. It should also be noted that the
interface does not enforce t he semantics of speech
synthesis but provides a framework that is ideal
for such an implementation. The actual struc­
turing of a sentence into words , syllables , sound
segments and parameter frames is semantics en­
forced by other higher level components. Thus
the data structure manager in turn is protected
from changes in these semantics.

8 A typical linguistic pro­
cess

The internal decomposition of each of the lin­
guistic processes shown in Figure 3 is the same.
It consists of a rule compiler and an inference en­
gine. The interdependence of these components
is shown in figure 5. The · user enters linguistic
rules into an ASCII file using a text editor. The
rulee are analysed for syntactic errors and then
compiled into object code (which is Pasc al) . The
inference engine uses the output from the rule
compiler and manipulates the data structure via
the data structure manager.

17 1

Further attention is firstly given to the format
of the linguistic rules which will give an indica­
tion of the interface provided to the rule writer,
and secondly to the operation and reasons for
using an inference engine.

8.1 Rule format
The format of the linguistic rules is consistent
wit h the format of phonological rules used in the
linguistic literature [Com87J.

A rule has a target level in the hierarchical
data structure associated with it . The target
level depends on the linguistic process in which
the rule is used. The phonological rules for in­
stance will operate on the sound segments . The
general function of a rule is to identify a specific
segment in the dat a structure and then to modify
the information and features of the segment. A
segment is identified by specifying the informa­
tion content and/or feature information of the
segment . Depending on the specific linguistic
process, the changes specified by the rule is ap­
plied to the same or next lower level of the hierar­
chy. A change c an be an insertion, deletion or up­
date of the current segment information. A seg­
ment can also be identified by specifying a con­
text in which it must appear. The context can
include one or more segments to the left and/or
right of the t arget segment. Matching any seg­
ment in the rule c an also be preceded and/or
followed by one or more statements . These state­
ments are primarily used to assign the reault of
Pascal expressions to predefined string, real and
integer variables.

8. 2 Inference engine
Each of the different linguistic processes in the
system uses an inference engine to apply lin­
guistic rules to the dat a structure. The algo­
rithms used in these inference engines only differ
in terms of the specific level of the data struc­
ture that they operate on. The main task of the
inference engine is to traverse through the appro­
priate level of the data structure, choose a rule
to apply and provide the procedures which are
called in the object code.

The inherent nature of the inference engines
enforces a specific semantic model on the data
structure. The inference engines use the data
structure manager to built a data representation
that reflects the linguistic structure of the input
data. By operating on a specific level of the dat a
structure , an inference engine adds a specific se­
mantic interpretation to that level. The parser
for instance, t akes its input from the first level
and generates segments for t he second level of the
data structure. This implies that the first level
represents the sentence and the second level the
different words from the sentence . If the syn­
thesis model is changed, the changes will be ab-

sorbed by the inference engines and it will not
affect the data structure manager.

Another important reason for using an infer­
ence engine is to separate the lin guist ic knowl­
edge , which is contained in the rule sets , from
the logic of the system.

9 Conclusions

In conclusion the system design is discussed in
terms of the original design objectives .

The system caters for all the relevant linguis­
tic processes involved in the translation of text to
speech and is therefore suitable for the prac tical
evaluation of these processes . It will thus be pos­
sible to determine if processes like syllabific at ion
aids in the synthesis of intelligible speech.

A clear distinction is made in the system be­
tween the specification and application of linguis­
tic knowledge. All the linguistic information is
represented in the rule sets and modifying these
rules does not affect the logic of applying them
to the data structure.

, It is further maintained that the system pro­
vides a friendly and familiar user interface be­
cause

• it uses a rule format that is consistent with
the rule format used in the linguistic theory.

• for each rule set the rule writer operates on
a data model that is appropriate to the spe­
cific linguistic process and equivalent to the
dat a model perceived in the linguistic the­
ory.

The data structure closely models the real
world and c an thua be easily manipulated. A ma­
jor advantage of the implement ation of the data
structure is the two levels of semantics associated
with it , namely the physical level provided by the
data structure manager and the logical level pro­
vided by the inference engines . This provides the
necessary abstraction in terms of the user inter­
face but at the same time provides a flexible sys­
tem which can be adapted for different synthesis
strategies and the synthesis of other languages.

A final comment regarding the design is that
it lends itself ideally to a parallel implementa­
tion. The diff'erent linguistic processes can be ex­
ecuted in parallel with communication amongst

172

them handled through the central data structure
manager. This will be pursued in a later version
of the system.

References

[All76] Allen, J . 1976. 'Synthesis of Speech from
Unrestricted Text. ' Proceedings of the
IEEE, 64(4) , April, pp433-442.

[Car76] Carlson, R . , Granstrom, B. 1976. 'A
Text-to-Speech System based entirely
on rules . ' IEEE CASSP, pp686-688 .

[Com87] Combrink, J .G.H. , De Stadler, L.G.
1987. 'Afrikaanse Fonologie . ' Macmillan
Suid-Afrika .

[Dat86] Date, C.J . 1986. 'An Introduction to
Database Systems. ' Volume 1 , Addison­
Wesley.

[Her82] Hertz , S .R. 1982 . 'From Text to S peech
with S RS . ' J. Acoust . Soc. Am. , 72(4) ,
October, ppl 155- l l 70.

[Her85] Hertz , S .R. , Kadin, J . , Karplus , K.J.
1985. 'The Delta Rule Development
System for Speech Synthesis from
Text. ' Proceedings of the IEEE, 73(1 1) ,
November, pp1589- 1601.

[How83] Howe, D . R. 1983. 'Dat a Analysis for
Data Base Design . ' Edward Arnold.

[Kla80] Klatt, D .H. 1980. 'Software for a cae­
cade/parallel formant synthesiser.' J.
Acoust . Soc. Am., 67{3) , March, pp971-
995 .

[Kla82] Klatt , D .H. 1982. 'The Klattalk text­
to-speech convenion system.' IEEE
CASSP, pp1589-1592.

[Wag87] Wagener, M.J. 1987. 'Reke-
naar Spraaksintese: Die Omsbkeling
van Teb na Klank.' Quaestiones Infor­
maticae, Vol 5 , No 2 , October, ppl-6.

173

S EGMENT

number
information

1

CONSISTS-OF

Rulewriter

M

M

rules

HAS

Figure 1 : ER Diagram

Synthesis
system

N

text

parameters

Parameter
file

Figure 2: DFD Context diagram

174

FEATURE

name

User

Genera.te
sound
segments

rules

sound
segments

Sylla.bi­
fica.tion

3

A_pply
phonological
rules

8 .

text

Norma.me
text

1

Da.ta.
structure

segments ·+
features

para,- para.-
meters meters

Interpolate
parameters

9

rules rules

Figure 3 : DFD Overview diagram

175

10

Synta.x
analysis

5

Apply
sentence
stress

Apply
word
stress

parameters

ek eet lekker

ek eet lekker

snw 1
�

klem 2

Figure 4: Example of physical data structure

�
Rules

�'-�������
�

��ru_l_e_s ���
Rule
compiler

2 . 1

Code and
data

Inference
engine

Code and
Code and data data

2.2

sound
seginents letters

Figure 5: DFD Level 1 diagram

176

EXPERT SYSTEMS FOR MANAGEMENT CONTROL: A MULTIEXPERT
ARCIIlTECfURE

VEVEK RAM
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF NATAL
PIETERMARITZBURG

ABSTRACT

The use of Expert Systems technology in management decision making domains is
increasing rapidly as business environments worldwide grow more turbulent and as the
cost of development tools decrease. Research effort in this field however, is
concentrated largely on confined areas such as market analysis, financial diagnosis and
production scheduling. The development of an Expert System to support a wider
management area presents problems of both size and complexity since such a system
would require a large monolithic knowledge base which would exhibit the associated
problems of maintainability, consistency and reduction in inference speed.

This paper describes a blackboard based Multiexpert architecture that is capable
of integrating the problem solving capabilities of a range of confined expert systems in
order to provide problem solving support for a wide area such as management control
at the strategic level. The system consists of several dedicated expert modules in the
area of marketing, finance, production and so on as well as a control module that
handles problem decomposition, task allocation and dynamic scheduling. A prototype
version of such a system h,as been successfully implemented in Prolog.

INTRODUCTION

Many organizations engage in Long Term or Strategic Planning in order to match their
internal capabilities with the opportunities and threats that exist in their operating
environments. Such a match is characterised by the commitment of the organization's
resources to achieve a desired objective and is often referred to as the organization's
Strategic Posture. Management Control is the process whereby the organization
continually re-assesses the appropriateness of the match and re-aligns its Strategic
Posture to accommodate changes in the environment. The rate at which the organization
is able to respond to changes in the environment is known as the Strategic Response
Rate.

The intensification of global competition has emphasised the importance of a
rapid Strategic Response Rate as only those organizations that are able to seize
environmental opportunities early can compete effectively. Unfortunately, shifts in
Strategic Posture involve the whole organization and the effects of it have to be assessed
in various areas before changes can be implemented. This generates a lag in the
response. For most organizations, posture shifts involve a reorganization of marketing,
financial, production, research and human resources plans. Since these areas are
separate in most organizations, the response lag can be attributed to the actual delay in
assessment in each area ap.d also the delay that can arise due to the communication and
co-ordination between these departments. Computer-based systems in the form of
Decision Support Systems and Expert Systems have to a large extent provided assistance

177

in reducing the problem in the individual areas. Descriptions of such systems can be
found in King and Rodriques (1977), King and Dutta (1980), Klein and Newman (1980),
Bouwman (1983), Smith et al (1985), Cooper (1986), Chandrasekaran and Ramesh
(1987, 1988), Goul (1987), Lee and Lee (1987) and Biswas (1988). Although the problem
of communication and co-ordination can be solved by developing a single system that is
representative of the collective activities of the various organizational areas, such a
system would require a large and complex knowledge base. Large knowledge bases
exhibit problems of maintainability and consistency (Prerau et al 1990). Also, there is
a considerable reduction in inference speed and efficiency as the size of a knowledge
base increases. The other alternative is to build a system that can integrate the functions
of various individual systems by enabling them co-operate to solve a common problem
while at the same time retaining their individual status. This approach is used
extensively in the area of Distributed Artificial Intelligence and many useful techniques
have been developed as a result. Specifically, the blackboard architecture (Erman et al
(1980), Nii (1986) and Hayes-Roth, (1988)) and the centralised multiagent framework
(Cammarata, (1983)) is most readily applicable. The blackboard architecture is based
on a shared global data structure called the blackboard. The blackboard is divided into
levels of varying abstraction depending on the application. Independent knowledge
sources may read from and write to one or more levels of the blackboard. Multiagent
frameworks use a single agent or knowledge source or a group of knowledge sources to
form a coherent plan for solving a multiagent problem. Dependencies and potential
conflicts among the agents are identified ih advance. In centralised multiagent
frameworks, one agent acts as the controller and coordinator for the whole network of
agents. A combination of the centralised multiagent framework and the blackboard
architecture facilitates the integration of discrete knowledge sources and enables the
power of their collective knowledge to be used as a single large knowledge base without
the associated problems. The remainder of this paper describes the architecture and
operation of such a distributed system for use in the management control area.
Construction details for some of the more important aspects of the system is also
included.

ARCHITECTURE

The distributed management control system consists of a control module, a scanning
module and several functional modules as shown in Figure 1. A brief description of the
knowledge sources or modules and a discussion of their major roles in the distributed
network follows.

The Control Module.
The control module acts as the strategic management expert and also as the manager of
the network. As the strategic management expert, it controls the direction and format
of · the network problem solving process. It contains knowledge about the strategic
management process and it also contains meta-knowledge, which is knowledge about how
the rest of the system's knowledge is distributed throughout the network. This meta­
knowledge allows the control module to decide that interest rates concern the financial
expert, product cost concerns the production expert and so on. As the network
controller, the control module controls the execution of individual modules as well as
the management of the status of the blackboard.

178

SCANNING
MODULE

MARKETING
MODULE

CONTROL
MODULE

PRODUCTION
MODULE

FINANCE
MODULE

ORGANIZATIONAL
AND

ENVIRONMENTAL
DATABASE

OTHER
MODULE

ORGANIZATION
MODULE

'

Fig 1 . The Distributed System Architecture

The Scanning Module.
The scanning sub-system acts as the machine interface between the network and the
organization. The scanning module monitors a set of strategic factors and reports all
variances to the control module via the blackboard. It performs a simple but
nevertheless important role in the network. The module is non-intelligent in that it
reports all variances. The control module decides on the severity of an occurred
variance.

The Functional Knowledge modules.
There are currently four functional modules in the prototype network. Each module
contains conceptual knowledge of the domain area in general and also of specific policies
of the organization in that area. The domain areas are Marketing, Finance, Production
and Organizational. Each module has sufficient domain and control knowledge in order
to function as a stand alone expert or knowledge-based system. Additional modules for
other functional areas such as Research and Development or Distribution can be added
when required.

OPERATIONAL OVERVIEW

Each knowledge source is responsible for maintaining a set of strategic variables in its
own domain. Variables are categorised as either internal or external depending on
whether the entity that a variable relates to is changed from within or outside of the
organisation's boundary. As long as the values of these variables remain within
predefined limits, there is a balance between the organisational ability, environmental
pressure and a chosen strategy. Values for the intenial variables are held in the
organisational database which is constantly updated through the organisation's
information system. External variables are updated through manual input on a regular
basis. All variables are monitored by the scanning subsystem. When the value of a
variable changes, the scanning subsystem communicates this change to the control
module. The control module . decides on the degree of severity of the variance (and
others which may occur simultaneously), assigns priorities and then decides on which

179

modules need to be called in order to resolve the problem. It then posts a request with
parameters describing the nature of the variance on the blackboard and activates the
appropriate expert module or knowledge source. The individual knowledge source
assesses the impact of the change in relation to the present strategic posture and
communicates the result back to the control module via the blackboard. If the result
concerns other knowledge sources, these are then activated by the control module. The
process continues until a final result is obtained that is consistent with all the experts
individual results. If two or more experts put forward recommendations that are
conflicting, the control module can resolve the conflict by choosing the recommendation
with the highest utility value or by modifying and reposting variables on the blackboard
so that the individual experts reassess their respective recommendations and in so doing
resolve the conflict themselves after a number of cycles.

COMMUNICATION AND CONTROL

The System Blackboard.
The blackboard does not exist as a physical entity in the system but rather as a
communication mechanism through which the knowledge sources communicate both their
requests and their findings. All individual knowledge source activity is initiated from the
blackboard and all conclusions or results from knowledge sources are directed to the
blackboard. In this application, the blackboard is in the control of the strategy
formulation and control knowledge source. Th�e system blackboard is divided into three
main areas as shown in Figure 2.

FUNCTIONAL
STRATEGY AREA

DYNAMIC AREA
GENERIC STRATEGY
AREA

STATIC AREA
STRATEGIC DATA
AREA

,

Figure 2. The System Blackboard

REQUEST
AREA

ABSTRACTION
LEVELS

These three areas are used for static knowledge, dynamic knowledge and control
knowledge respectively. Static knowledge is the domain specific knowledge that is
relevant to the problem and normally remains relatively stable during the solution
process. In the system blackboard, the static knowledge area holds the collection of
organizational data that is scanned by the scanning module. Dynamic knowledge is
knowledge that is generated during the execution of the system. It consists typically of
new facts, hypotheses and suggestions that are made by the knowledge sources. In the

1 80

system blackboard, the dynamic knowledge is divided into the generic strategy area and
the functional strategy area. The generic strategy area holds heuristic suggestions that
are made by the control module and which are used by the functional knowledge sources
to restrict their search spaces. The functional strategy area contains all the functional
strategies, which are the solutions to a strategic problem, that are generated by the
individual sources. Control knowledge is knowledge about the current state of the
network itself and also of the status of the problem solving. In the system blackboard,
the control knowledge is made up of a set of requests which form a dynamic queue. The
requests are either from the control module to a functional module or vice-versa. The
control module extracts from this request list a single request which it then converts into
a call to an individual module. The responsibility of keeping the blackboard "clean", that
is, erasing old or unwanted entries or archiving previous entries rests with the control
module. This is an essential activity since the blackboard tends to become cluttered after
a reasonable amount of network activity and tliis can lead to a degradation of the
network efficiency.

Scheduling and Control
Network control can be achieved by selecting an individual knowledge source and calling
on it to execute inside a problem solving cycle, or it can be achieved by placing
knowledge on the blackboard that will cause a knowledge source to execute on its own.
The support system uses the strategy formulation knowledge source as the network
controller and therefore makes use the former method. The network as a whole makes
use of three control mechanisms: Goal-Driven control, which is the control exerted on
the network to attain a network-wide or global system goal; Request-Driven control,
which is the control exerted on the network by inter knowledge-source requests, and
Event-Driven control, which is the control exerted on the network due to the occurrence
of certain events. The ·. goal-driven function of control . is the classical strategic
management function of monitoring and controlling of strategic and functional plans .
. The goal of the network is to ensure that the implemented strategy adheres to certain
performance limits that were used in the formulation of the strategy. Variances that
exist obviously affect the strategic posture as a whole and must be accommodated at the
strategic level. Variances are translated into network action by the event-driven control
mechanism. A variance is regarded by the scanning subsystem as a strategic event that
triggers the network into a resolution process. The event-driven control function is to
alert the control module into initiating the network. Individual knowledge sources would
then attempt to reduce the variance or the effects of it and failing this, to reevaluate the
strategy. The request-driven mechanism allows the control module as well as other
modules to alter the direction of the problem solving process in a dynamic way by
posting requests on the · blackboard. These requests may be for further information or
for initiating the activation of other modules. There may be many such requests on the
blackboard at any one time and in a serial network, that is a network in which the
knowledge sources cannot be executed in parallel, these requests need to be serviced
in some sort of order. This is accomplished by establishing a schedule of ready-to-be­
called modules. This schedule must be flexible enough to be dynamically modified since
the execution of one module may cause others that were ready to execute to be no
longer required or, the execution of one module may cause others that were not
executable, ready to execute. Also, there may be more than one consecutive request for
the same module, and the schedule must allow a single activation call with all the

1 8 1

requests consolidated rather than allow more than one consecutive call to the same
module.

IMPLEMENTATION

The prototype version of the distributed management control system has been
implemented in Prolog on a microcomputer. As the exact constructional details are
beyond the scope of this paper, only the more unusual aspects of communication, task
decomposition and dynamic scheduling are described. Also, as each individual
knowledge module is a conventional production rule and frame based Expert System
these will not be examined. Further detail can be found in Ram (1990a, 1990b).

Communication.
The mechanism used to control and facilitate the flow of information in the network is
the blackboard. The blackboard is a communication and storage mechanism which is
accessible by all the modules and which is divided into different levels. Prolog has an
internal database which can be modified during execution and can also be stored and
retrieved. This forms a convenient implementation of the blackboard. The different
levels can be distinguished by using a separate predicate for each level. At the static
level which holds organizational data for example, the predicate has the form;

Factval(FactorName,value)
An example of such a clause is Factval("lnterestRate","LOW").

The control level of the blackboard is used to hold control information for
the scheduling mechanism. This information is in the form of request clauses that are
inserted into the blackboard at the control level by those functional modules that require
assistance or additional information. Requests are held in the following format

Request(CallMod,DestMod,Factor,Action,Ref,Status)
CallMod identifies the module issuing the request, DestMod is the module to which the

request is directed, Factor and Action are as before, Ref is a request reference number
and Status indicates the status of the request. A status value of "U" denotes unresolved
and a status value of ''.OK" or "NotOK" denotes a resolved request. When the control
module assembles requests into a queue, it examines the status value in each request and
ignores requests that have already been resolved. An example of a request is

Request("MARK" "PRICE" "DEC" l "U") " ' ' ' .
This is a request from the marketing module requesting that the control module
investigate the possibility of a reduction in product price. Requests in the individual
modules are typically invoked by rules which test for the existence of required data. The
DestMod slot is left blank.,since the individual modules do not have knowledge of each
others expertise. The control module, through its decomposition procedure, decides on
the module to which it can best delegate the resolution of the request and fills the
DestMod slot before the delegated module is called. If the request can only be resolved
by more than one module, the control module issues as many requests as the
decomposition procedure generates.

Problem Decomposition
When an individual functional module encounters a subproblem during its problem
solving activity that is outside its domain of expertise, it would issue a request to the
control module for assistance. It is the function of the control module to redirect these
requests to the appropriate modules. A major problem for the control module in the

1 82

execution of this function i� "knowing" which module to call for a given request. A
simple and effective way to overcome this problem is to maintain a list that links all the
relevant organizational data items with the modules responsible for them. Such a list
represents Meta-level knowledge since it represents knowledge about the use of the
distributed expertise in the most efficient way. When a request that can be resolved by
a single module is received, the control module need only scan the list in order to
identify the module best suited to resolving the request. A problem arises when a
request is received that cannot be resolved by one module alone. Such a request has to
be decomposed into subrequests that can be resolved by individual modules. This
decomposition process can be implemented by organizing the decomposition
relationships into a taxonomy of meta-knowledge frames as follows.

where :
MFrame(Problem,PRef,DecompList,Dmodule)

MFrame is a label distinguishing the Meta-Knowledge frames from other frames
in the program;
Problem is the label identifying the problem that this instance of the frame is
representing;
PRef acts as a reference number for the problem represented by this frame and
is used to establish priorities in the problem solving process;
DecompList is a list of all the subproblems that Problem can be decomposed into;
Dmod is the Domain module responsible for solving Problem and is only present
in a frame if the DecompList contains a single element, or if it contains more
then one element, then all these elements are the responsibility of the same
domain module.

Consider as an example, that the scanning module has picked up a drop in the market
share. One option for strategic realignment is to restore the situation by stimulating
primary market demand which expands the total market or by stimulating selective
demand which increases market share within the existing market. A marketing action
plan of reducing product price or increasing advertising can achieve both these. Since
product price is outside the domain of the marketing module, it will request the control
module to investigate the feasibility of price reduction. The control modµle has to refer
this request to the appropriate module or modules and makes use of the meta-knowledge
frame taxonomy search to decide which module or modules are appropriate. The search
begins by finding a frame which has price as the label in the problem slot.

MFrame("Price", 1, ("Cost","Margin"],)
The PRef slot is arbitrarily set to 1 and the domain slot is empty since DecompList
contains more than one element. This frame represents the decomposition of the price
problem into the two subproblems of cost and margin. The search then continues by
finding a frame for each of the elements in the Decom.List. These are found as

MFrame(''Cost", l, ["ProdCost","Ohead"],)
MFrame("Margin", l, ("Margin"],FIN)

The first frame further decomposes the cost problem into the two subproblems of
production cost and production overhead. The second frame asserts that margin cannot
be decomposed further and that it is the responsibility of the FIN or Financial module.
The control module continues the search by finding frames with Prodcost and Ohead as
labels in the problem slot. This produces the following frames

MFrame("Prodcost", 1 , ["ProdCost"],PROD)

1 83

MFrame("OHead", l, ["OHead"] ,FIN)
· Since both these frames contain only one element in their respective DecomLists, the
search terminates and the control module posts a request to the PROD or production
module to investigate the reduction in product cost. The production module contains
rules that relate product cost to raw material and labour costs and so is able to function
independently in solving this subproblem. The control module also posts a request to
the FIN or financial module to investigate the possibility of a reduction in profit margin
and production overhead. Both the financial and the production modules communicate
the results of their investigations to the control module. Both the requests derived from
the decomposition have the same PRef number as the original request and the
scheduling mechanism uses this number to keep them in the same logical group.

Control of Dynamic Scheduling
Dynamic Scheduling is accomplished by establishing and managing a queue of Ready-to­
be-called modules. The queue is represented by a prolog list and is constructed by
examining all the requests held in the control level of the blackboard. The scheduling
procedure terminates when the queue is empty which occurs when there are no
unresolved requests on the blackboard. Once a queue has been constructed, the control
module calls the functional module represented by the first entry in the queue. When
the call terminates, that is, when the functional module has completed its task, the
control module then reconstructs the queue anfi the process is repeated. Reconstructing
the queue each time a functional module call is terminated, ensures that the scheduling
mechanism makes use of the most current problem solving knowledge available. This
is necessary since at any stage, a called module may issue a request and suspend its
problem solving activity until the request is resolved. . The module chosen for
investigating this new request must be inserted at the head of the queue and called. On
its termination, the original module which is waiting for the response is called and
continues its task.

CONCLUSION

A description of a distributed knowledge-based management control system has been
presented. A prototype version which has been implemented in Prolog, has generated
very favourable results in an important area. It is hoped that the success on this limited
scale will encourage further research in other areas. It is considered that the most
important aspect of this work is the illustration that complex areas .requiring knowledge­
based support can be structured into relatively self-contained knowledge modules which
can then be integrated into a system which, while addressing the original problem, is
easier to build, debug and maintain.

REFERENCES

Biswas, G., Oliff, M. and Sen, A, (1988), An Expert Decision Support System for
Production Control, Decision Support Systems, 4, 235-248.

Bouwman, M.J., (1983), Human diagnostic reasoning by Computer: An Illustration from
financial analysis, Management Science, 29 (6), 653-672.

1 84

Cammarata, S. et al, (1983), Strategies of Cooperation in Distributed Problem Solving,
Proceedings of the UCAI.

Chandrasekar, G. and Ramesh, R., (1987), Microcomputer Based Multiple Criteria
Decision Support System for Strategic Planning, Information and Management, 12, 163-
172.

Chandrasekar, G. and Ramesh, R., (1988), An Integrated Framework for Decision
Support in Corporate Planning, Decision Support Systems, 4, 365-375 .

Cooper, P., (1986), Expert Systems in Management Science, in Bertold, T., (ed), Expert
Systems and Knowledge Engineering, 6 1-71, Elsevier, Holland.

Erman, L, Hayes-Roth, F., Lesser, V. and Reddy, D., (1980), The Hearsay II speech
understanding system: Integrating knowledge to resolve uncertainty, Computing Surveys,
12 (2), 213-253.

Goul, M., (1987), On Building Expert Systems for Strategic Planners: A Knowledge
Engineers experience, Information and Management, 12, 13 1- 141 .

Hayes-Roth, B., (1988), A Blackboard Architecture for Control, in Bond, AH. and
Gasser, L., Readings in Distributed Artificial Intelligence, 505-540, California, Morgan
Kaufman.

King, W.R. and Dutta, B.P., (1980), A Competitive Scenario Modelling System,
Management Science, 26, 261-273.

King, W.R. and Rodriquez, J.I., (1977), Competitive Information Systems, Long Range
Planning, 10, 59-64.

Klein, H. and Newman, W., (1980), How to use Spire: A systematic Procedure for
Identifying Relevent Environments for Strategic Planning, Journal of Business Strategy,
Summer, 32-45 .

Lee, J.K. and Lee, H.G., Interaction of Strategic Planning and Short-Term Planning: An
Intelligent DSS by the Post-Model Analysis Approach, Decision Support Systems, 3, 14 1-
154.

Nii, H.P., (1986), Blackboard Systems, The Blackboard model of Problem Solving and
the evolution of Blackboard Architectures, AI Magazine, 7 (3) .

Prerau, D.S., Gunderson, AS., Reinke, R.E. and Adler, M.R., (1990), Maintainability
techniques in Developing Large Expert Systems, IEEE Expert, June, 71-79.

Ram, V., (1990a), A System of Cooperating Experts for Strategic Planning Support in
Business, in Mallouppas, A, (Ed), Management Technology: Control Tools for the 90's,
London, Peter Perigrinus Ltd.

Ram, V., (1990b), A Distributed Knowledge-Based Support System for Strategic

1 85

Management, Unpublished PhD Thesis, University of Natal, Pietermaritzburg.

Smith, L.D., Blodgett, J., Janson, M. and Bartle V., (1985), Decision Support for
Marketing Research and Corporate Planning, Information and Management, 8, 133-145.

1 86

	1991_SAICSIT_Wagener
	Front_Page.pdf
	Front_Page

