
VI

VI

I

PROCEEDINGS

· VI

HOT EL,

CALE DON

2 - 3 JULY 1991

� - I

VI

VI
EDITED BY VI

M H Linck

SPONSORE D

B Y

ISM

FRDV·

GENMIN

DEPARTMENT OF COMPUTER SCIENCE • UNIVERSITY OF CAPE TOWN

I
I

PROCEEDINGS / KONGRESOPSOMMINGS

6th

SOUTHERN AFRICAN COMPUTER

SYMPOSI�

6de

SUIDELIKE-AFRIKAANSE

REKENAARSIMPOSIUM

De Overberger Hotel, Caledon

2 - 3 JULY 1991

SPONSORED by

ISM
FRD

GENMIN

EDITED by

MHLINCK

Department of Computer Science

University of Cape Town

TABLE OF CONTENTS

Foreword 1

Organising Committee 2

Referees 3

Program 5

Papers (In order of presentation) 9

"A value can belong to many types"
B H Venter, University of Fort Hare 10

"A Transputer Based Embedded Controller Development System"
MR Webster, R G Harley, DC Levy & DR Woodward,
University of Natal 16

"Improving a Control and Sequencing Language"
G Smit & C Fair, University of Cape Town 25

"Design of an Object Orientated Framework/or Optimistic
Parallel Simulation on Shared-Memory Computers"
P Machanick, University of Witwatersrand 40

"Using Statecharts to Design and Specify the GMA
Direct-Manipulation User Interface"
L van Zijl & D Mitton, University of Stellenbosch 51

"Product Form Solutions/or Multiserver Centres
with Heirarchical Classes of Customers"
A Krzesinski, University of Stellenbosch and
R Schassberger, Technische U niversitat Braunschweig 69

"A Reusable Kernel for the Development of Control Software"
W Fouche and Pde Villiers, University of Stellenbosch 83

"An Implementation of Linda Tuple Space
under the, Helios Operating System"
PG Clayton, E P Wentworth, G C Wells and F de Heer-Menlah,
Rhodes University 95

"The Design and Analysis of Distributed Virtual Memory
Consistency Protocols in an Object Orientated Operating System
K Macgregor, University of Cape Town & R Campbell University
of Illinois at Urbana-Champaign 107

I '

"Concurrency Control Mecchanisms for Multidatabase Systems"
A Deacon, University of Stellenbosch

"Extending Local Recovery Techniques for Distributed Databases"
H L Victor & M H R ennhackkamp, University of Stellenbosch

"Analysing Routing Strategies in Sporadic Networks"
S Melville, University of Natal

The Design of a Speech Synthesis System for Afrikaans"

1 18

135

148

M J Wagener, University of P ort E lizabeth 167

"Expert Systems for Management Control: A Multiexpert Architecture"
V Ram, University of Natal 177

"Integrating Simularity-Based and Explanation-Based Learning"
G D Oosthuizen and C A venant, University of P retoria 187

"Efficient Evaluation of Regular Path Programs"
P Wocxi, University of Cape Town 201

"Object Orientation in Relational Databases"
M Rennhackkamp, University of Stellenbosch 2 1 1

"Building a secure database using self-protecting objects"
M Olivier and SH von Solms, R and A frikaans University 228

"Modelling the Algebra of Weakest Preconditions"
C Brink and I R ewitsky, University of Cape Town 242

"A Model Checker for Transition Systems"
Pde Villiers, University of Stellenbosch. 262

"A New Algorithm for Finding an Upper Bound of the Genus of a Graph"
DI Carson and OR Oellennann, University of Natal 276

FOREWORD

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the
tradition of providing an opportunity for the South African scientific computing
community to present research material to their peers.

It was heartening that 31 papers were offered for consideration. As before all these papers
were refereed. Thereafter a selection committee chose 21 for presentation at the
Symposium.

Several new dimensions are present in the 1991 symposium:

* The Symposium has been arranged for the day immediately after the SACLA
conference.

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia.

* I believe that it is first time that a Symposium has been held outside of the
Transvaal.

* Over 85 people will be attending. Nearly all will have attended both events.

* A Sponsorship package for both SACLA and the Research Symposium was
obtained. (This led to reduced hotel costs compared to previous symposia)

A major expense is the production of the Proceedings of the Symposium. To ensure
financial soundness authors have had to pay the page charge of R20 per page.

A thought for the future would be consideration of a poster session at the Symposium.
This could provide an alternative approach to presenting ideas or work.

I would sincerely hope that the twinning of SACLA and the Research Symposium is
considered successful enough for this combination survive. As to whether a Research
Symposium should be run each year after SACLA, or only every second year, is a matter
of need and taste.

A challenge for the future is to encourage an even greater number of MSc & PhD
students to attei:id the Symposium. Unlike this year, I would recommend that they be
accommodated at the same cost as everyone else. Only if it is financially necessary
should the sponsored number of students be limited.

I would like to thank the other members of the organising committee and my colleagues
at UCT for all the help that they have given me. A special word of thanks goes to Prof.
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the
organisation of this 6th Research Symposium.

MHLinck
Symposium Chairman

1

I I

I/
SYMPOSIUM CHAIRMAN

M H Linck, University of Cape Town

ORGANISING COMMITTEE

SPONSORS

D Kourie, Pretoria University.

PS Kritzinger, University of Cape Town.

M H L inck, University of Cape Town.

ISM

GENMIN

FRD

2

LIST OF REFEREES FOR 6th RESEARCH SYMPOSIUM

NAME INSTITUTION

Barnard, E Pretoria

Becker, Ronnie UCT

Berman S UCT

Bishop, Judy Wits

Berman, Sonia UCT

Brink, Chris UCT

Bodde, Ryn Networks Systems

Bornman, Chris UNISA

Brower, Pict UOFS

Cherenack, Paul UCT

Cook Donald UCT

de Jaeger, Gerhard UCT

de Villiers, Pieter , Stellenbosch

Ehlers, Elize RAU

Eloff, Jan RAU

Finnie, Gavin Natal

Gaynor, N AECI

Hutchinson, Andrew UCT

Jourdan, D Pretoria

Kourie Derrick Pretoria

Kritzinger, Pieter UCT

Krzesinski, Tony Stellenbosch

Laing, Doug ISM

Labuschagne, Willem UNISA

Levy, Dave Natal

3

"'-··-"

MacGregor, Ken

Machanick, Philip

Mattison Keith

Messerschmidt, Hans

Mutch, Laurie

Neishlos, N

Oosthuizen, Deon

Peters Joseph

Ram,V

Postma, Stef

Rennhackkamp, Martin

Shochot, John

Silverberg, Roger

Smit, Riel

Smith, Dereck

Terry, Pat

van den Heever, Roelf

van Zijl, Lynette

Venter, Herman

Victor, Hema

von Solms, Basie

Wagenaar,M

Wentworth, Peter

Wheeler, Graham

Wood, Peter

UCT

Wits

UCT

UOFS

Shell

Wits

Pretoria

Simon Fraser

Natal, Pmb.

Natal, Pmb

Stellenbosch

Wits

Council for Mineral Technology

UCT

UCT

Rhodes

UP

Stellenbosch

Fort Hare

Stellenbosch

RAU

UPE

Rhodes

UCT

UCT

4

6TH RESEARCH SYMPOSIUM - 1991

FINAL PROGRAM

TUESDAY 2nd July 1991

10h00 - 13h00

13h00 - 13h50

Registration

PUB LUNCH

14h00 - 15h30 SESSION lA

Venue: Hassner

Chairman: Prof Basie von Solrns

14h00 - 14h30
"A value can belong to many types. "
B H Venter, University of Fort Hare

14h30 - 15h00
"A Transputer Based Embedded
Controller Development System"
MR Webster, R G Harley, DC Levy &
D R Woodward, University of Natal

15h00 - 15h30
"Improving a Control and Sequencing
Language"
G Smit and C Fair, University of Cape
Town

15h30 · 16h00 TEA

5

SESSION lB

Venue: Hassner C

Chainnan:Prof Roelf v d Reever

14h00 - 14h30
"Design of an Object Orientated
Framework/or Optimistic Parallel
Simulation on Shared-Memory
Computers" P Machanick, University of
Witwatersrand

14h30 - 15h00
"Using Statechans to Design and
Specify the GMA Direct-Manipulation
User Interface" L van Zijl & D Mitton,
University of Stellenbosch

15h00 - 15h30
"Product Form Solutions/or Multiserver
Centres with Heirarchical Classes of
Customers" A Krzesinski, University of
Stellenbosch and R Schassberger,
Technische Universitlit Braunschweig

16h00 · 17h30 SESSION 2A

Venue: Hassner

Chairman: Prof Derrick Kourie

16h00 - 16h30
"A Reusable Kernel for the Development
of Control Software" W Fouche and P de
Villiers, University of Stellenbosch

16h30 - 17h00
"An Implementation of Linda Tuple
Space under the Helios Operating
System" P G Clayton, E P Wentworth, G
C Wells and F de-Heer-Menlah, Rhodes
University

17h00 - 17h30
"The Design and Analysis of Distributed
Virtual Memory Consistency Protocols
in an Object Orientated Operating
System" K MacGregor, University of
Cape Town & R Campbell, University
of lliinois at Urbana-Champaign

19h30

20h00

PRE-DINNER DRINKS

GALA CAPE DINNER
(Men: Jackets & ties)

6

WEDNESDAY 3rd ,July 1991

7h00 • 8h15 BREAKFAST

8h15 - 9h45 SESSION 3A

Venue: Hassner

Chairman: Assoc Prof P Wood

8h15 - 8h45
"Concurrency Control Mechanisms for
Multidatabase Systems" A Deacon,
University of Stellenbosch

8h45 - 9h15
"Extending Local Recovery Techniques
for Distributed Databases" H L Victor
& M H Rennhackkamp, University of
Stellenbosch

9h15 - 9h45
"Analysing Routing Strategies in
Sporadic Networks" S Melville,
University of Natal

9h45 - 10h15 TEA

10h15 - 11h00 SESSION 4

Venue: Hassner

Chairman: Prof P S Kritzinger
Invited paper: E Coffman

11h00 · 11h10 BREAK

7

SESSION 3B

Venue: Hassner C

Chairman: Prof G Finnie

8h15 - 8h45
The Design of a Speech Synthesis
System for Afrikaans" M J Wagener,
University of Port Elizabeth

8h45 - 9h15
"Expen Systems for Management
Control: A Multiexpert Architecture"
V Ram, University of Natal

9h15 - 9h45
"Integrating Simularity-Based and
Explanation-Based Learning"
G D Oosthuizen and C A venant,
University of Pretoria

11h10 • 12h40 SESSION SA

Venue: Hassner

Chairman: Prof C Bornman

11h10 - 11h40
"Efficient Evaluation of Regular Path
Programs"
P Wood, University of Cape Town

11h40 - 12h10
"Object Orientation in Relational
Databases"
M Rennhackkamp, University of
Stellenbosch

12h10 - 12h40
"Building a secure database using self­
protecting objects" M Olivier and S H
von Solms, Rand Afrikaans University

SESSION SB

Venue: Hassner C

Chairman: Prof A Krzesinski

11h10 - 11h40
"Modelling the Algebra of Weakest
Preconditions"
C Brink & I Rewitsky, University of
Cape Town

11h40 - 12h10
"A Model Checker for Transition
Systems"
P de Villiers, University of Stellenbosch

12h10 - 12h40
, "A New Algorithm for Finding an Upper

Bound of the Genus of a Graph"
D I Carson and O R Oellennann,
University of Natal

12h45-12h55 GENERAL MEETING of RESEARCH SYMPOSIUM ATTENDEES

Venue: Hassner

Chairman: Dr M H Linck

13h00 • 14h00 LUNCH

FINIS 6th COMPUTER SYMPOSIUM

8

PAPERS

ofthe

6TH RESEARCH SYMPOSIUM

9

A Reusable Kernel For the Development of Control
Soft\vare

W. Fouche and P .J .A . de Villiers
Institute for Applied Computer S cience

University of Stellenbosch , S tellenbosch 7600

Abstract
A kernel has been developed which can be used to simplify the de­

velopment of control software . It can be used to cont'rol several p hysical
machines which are interconnected via a fast local area network . One
or more virtual machines are simulated on each physical machine . The
kernel was used to implement an operating system consisting of a file
server , a name server and a shell . However , i t can also be used to sup­
port control software for embedded systems . The performance of the
kernel has been measured and found to be comparable to other kernels .

1 I ntrod uction

The long term goal of the HYBRID project is to develop control software for dis­
tributed hardware . One method which simplifies t his t ask is to develop re usable
software modules. In this respect a programming language which directly supports
modules i s invaluable . We chose to use Modula-2 [20] . The programming of bare
hardware is a time consuming but necessary part of the development of most control
systems . Benefits ca� be obtained by packaging such low-level code as a reusable
kernel so t hat a designer can use it without necessarily understanding i ts implemen­
tation details . The design of electronic systems was simplified significantly when
engineers packaged reusable designs as integrated circui t s . Any integrated circuit
can be used as a "black box" as long as its function is understood properly, i t s
internal details being irrelevant . We believe that an efficient and reliable kernel can
do the same for the design of control software. The design and implementation of a
reusable , reliable and efficient kernel was therefore the major initial act ivity of this
project .

2 A Kernel S upporting Virt ual Machines

The HYBRID kernel provides the basic functionality needed to implement control
systems: support for multiple processes , memory management , interprocess com­
munication and operations on peripheral devices . To simplify a control system it
is necessary to decompose i t into simpler subsystems . An efficient communication
facili ty is t herefore needed to enable t hese subsystems to cooperate . Communi­
cation must be based on simple but general principles in order to avoid subtle

83

errors . C S P [l 1] presents a theory which can be used as a bas is for the orderly de­
sign of concurrent systems . Concurrent processes are only allowed to communicate
by exchanging messages according to simple well -defined rules . The success of the
transputer provides evidence t hat CSP can be used as a basis for the design of prac­
tical systems . Although t ransputer networks can host control software efficiently, it
is rest rictive t hat t he number of transputers in a given network is fixed .

The HYBRID kernel tran sforms different physical machines , interconnected by a
high performance local area network, into several communicat ing virtual machines
(VMs) which are similar in many ways to transputers . VMs execute processes
which communicate according to the principles of C S P. Since VMs can be created
dynamically the HYBRID kernel relaxes a constraint of transputer networks-a
fixed number of t ransputers .

The kernel makes simple and elegant designs feasible because a virtual machine
can be dedicated to each autonomous task . If a task does not need the power of
a dedicated physical machine , more than one VM can be executed by t he same
physical machine . It is a matter of separating concerns : we believe that using the
concept of VMs , each dedicated to a specific t ask , can lead to elegant designs , while
multiplexing a physical machine among several VMs is a separate matter which is
handled by the kernel. A designer can thus ignore the underlying hardware and
think in terms of communicating VMs.

3 Design of t he Kernel

A detailed discussion of t he internal structure of the HYB RID kernel in which the
various design decisions are motivated i s presented in [9] . Here we present only an
overview of the most important concept s . The design of the kernel i s conservative
rather t han innovat ive , exploiting successful concepts found in existing systems
such as Amoeba[l4 , 1 9 , 1 5] , Chorus [IO , 18, 1] , Mach[l 7 , 16] and V [6 , 4, 5] . These
systems implement similar services by using different techniques as dictated by the
experience and beliefs of their designers .

In order to enable a system designer to think in terms of abstract concepts alone,
the kernel hides the properties of the underlying physical machine . Another impor­
tant feature of t he kernel is scalability-if bet ter performance i s needed another
processor can be added without changing the logical design of the control system
which i s designed in t erms of virtual machines . A VM is an abs trac t machine with
t he following properties :

t

• I t has a separate protected address space which contains code and data.

• A VM can execute one or more (light-weight) processes which share the same
address space .

• Processes communicate by sending and receiving messages .

84

Kernel

Physical Machine

Figure 1 : Multiple VMs Supported by a S ingle· Physical Machine

Figure 1 shows a single physical machine supporting several VMs. To maintain
system integrity the kernel prevents one VM from accessing the address space of
another. This makes it impossible for any VM to accidentally (or maliciously) mod­
i fy t he private memory area of another . Hardware support for memory protection
is thus essential .

A process i s represented in the kernel by i t s process descriptor which is used to
store i t s current state . Process descriptors of processes which are ready to run are
linked to form a process queue. In a similar way a VM is represented by i t s VM
descriptor . Each VM ,descriptor contains a pointer to i t s associated process queue.
VM descriptors of VMs which can be enabled are linked to form a VM queue. The
scheduler first selects a VM to activate and then selects an appropriate process to
run . VMs are time-sliced and may have different priorities , but a process i s allowed
to run until an interprocess communication (IP C) operation is invoked or until the
t ime-slice of i t s VM expires .

Unbuffered synchronous message pas sing is used to exchange information be­
tween processes via ports . Ports are global identifiers used to route messages to
their destinations . We assume most messages to be short . Bersh-ad e t al. [3] found
that nearly 80% of all messages transmitted in Topaz , the operating system of the
Firefly multiprocessor workstation developed at D EC S RC , are more or less 32
bytes in length . Thus i t was decided to use copying to transfer messages between
processes on the same machine . Alternatively, page remapping techniques(S] can
be used, but the extra complexity seems to be worthwhile only for large messages .
Three IPC operations are defined: Transact ion , ReceiveRequest and SendReply .
Transaction i s used to send a. request message to a process and to receive the asso­
ciated reply message . ReceiveRequest receives a. message and SendReply returns
a reply message to a process . A sender process , making use of the Transact ion

85

primitive to send a message, remains suspended until the request message has been
accepted and a reply message returned . Similar models for interprocess commu­
nication have been found to work well in the kernels of the Amoeba[1 5] and V[5]
systems .

All device servers (peripheral drivers) are coded in a similar way and it is nec­
essary to understand just a few basic principles in order to add a server for a new
peripheral device . A device server receives requests which are entered in a request
queue. While requests are available, one is selected from this queue and the ap­
propriat e peripheral operation is started . The device server is then deactivated by
calling the scheduler to resume the next ready process . The interrupt which signals
completion of t he peripheral operation reactivates the device server in order to start
the next peripheral operation .

It can thus b e seen that interrupt handling, process scheduling and message
passing are closely interconnected although this is of no concern to a programmer
at the user level-a VM is a clearly defined deterministic machine which supports
a natural execution environment for one or more cooperating sequential processes .
The IPC facility provides a simple means of process synchronisation.

Although the development of the HYBRID kernel was motivated primarily by
a requirement to implement an operating system for distributed hardware, we later
realised that with minor modifications the kernel C!>uld also support other classes
of control software.

4 A VM-based Operating System

The operating system which was developed as a first application of t he kernel is used
for research and educational purposes . Since an operating system is an example
of a complex control system this application represents a reasonable test of the
kernel . The system is based on the client-server concept and was deliberately kept
as simple as possible, i t s various services b eing made accessible via the s tandard
communication facilities offered by the kernel. Efficient servers can be designed as
a group of cooperating processes which are supported naturally by a VM. Clients
request servers to perform operations on their behalf by transmitting messages .
Servers send reply messages to inform client s of the outcome of requested operations
or to return requested data to them. Sophisticated services may involve more than
one server VM implying t hat the functionality of the operating system is dis t ributed
across several VMs.

4.1 Implementing a File Service

One of t he more important services provided by an opera.ting system is a file service
which is implemented by a file system . The internal details of the file system can
be hidden from the user by separating the logical s tructure of the file system from
its physical structure. This is done by partitioning the file access facilities into two

86

File Name User File Name User
Server Server Process Server Server Process

Kernel J I Kernel

Physical Machine J I Physical Machine

Figure 2: A Distributed System Based on VMs

functions , namely, the actual organisation of the file in terms of records on the disk
as maintained by the file server and the file naming and protection mechanisms
which are provided by the name server. The file server and name server are each
implemented by a VM as illustrated in Figure 2 .

The file server VM maintains a set o f files , each file consisting of a linked list of
disk blocks . A unique identifier (UID) is associated with every file . The file server
implements operat ions on files such as read, open and write.

Clients refer to files by name. A name is a text s tring such as "/usr/joe/report5"
which makes sense to a user. Such a file name is translated by the name server to a
UID which i s more convenient for the file system to handle . Directory structures are
thus implemented by the name server . For reasons of efficiency there can be more
than one name server in a dis t ributed environment as long as a consistent dat abase
of names is maintained . The same .resource can also be known to different users by
different names if that is convenient .

4 . 2 User- level P rocesses

A user starts a session by logging in. This creates a single VM (with an associated
screen and keyboard) which executes a single process-a Unix-like shell-capable of
interpreting commands entered from the keyboard . Another session can be started
by entering a command to create an addi tional V M . This may be repeated a prede­
t ermined number of t imes . For instance a user can have a VM (session) for editing
and another for compiling and testing a program. The keyboard and screen can be
transferred from one VM to another to allow a user to switch between sessions .

A schematic v iew of the dis t ributed system consisting of the kernel resident on
each physical machine and an operating system supported by various VMs is given
in Figure 2 .

87

5 Performance of t he Kernel

In order to determine the efficiency of the kernel a series of test programs were con­
structed. All tests were conducted on machines with a 25 MHz Intel-386 processor.
Remote communication depends to a large extent on hardware speeds , but initial
tes ts seem to indicate that a basic speed of 3 Mbits per second over an ethernet of
1 0 Mbits per second i s attainable . Here we concentrated on measuring t he efficiency
of the kernel soft ware : local interprocess communication overhead and the cost of
t he process and VM management facilities .

5 . 1 Interprocess Communicat ion Facility

Two sets of test programs were used to evaluate the efficiency of the IPC facil­
i ty. Firstly, messages of different lengths were transmit ted from a process on one
VM to a process on a different VM, both VMs residing on the same physical ma­
chine . The receiving process acknowledges receip t of t he message by sending back
an empty reply message . Such an interaction between two processes i s called a mes­
sage transaction[13] which i s a simple form of a remote procedure call . Secondly,
messages were transmitted between processes supported by the same VM.

An init ial (perhaps naive) implementation of IPC yielded the performance fig­
ures shown in Table 1 . The delay to transmit a single.message is given in milli seconds
and the communication bandwidth i s given in terms of both Kbytes per second and
a percentage of t he maximum speed at which the machine can copy data from one
memory area to another.

The reason why message passing between different VMs was slow in t he initial
implementation of the kernel is that messages were copied first from the sending VM
to the kernel and t hen from the kernel to the receiving VM. Many context switches
were necessary since long messages were copied one 4Kbyte physical memory page
at a t ime. It was much simpler to transfer messages between processes on the same
VM. In this case no context switches were necessary and the whole message could be
copied in one go . Since the ke�nel is meant to support control software designed as
several communicating VMs, i t was mandatory to improve the efficiency of message
passing between processes located on different VMs .

The hardware of the 386 allows a VM to have a 4Gbyte address , space , each
VM having its own page table. By reducing the maximum allowable size of the
address space of a VM to 2Gbytes , only the lower half of the page table of each VM
i s used . The upper half of each page fable can now be used to gain access to the
source or destination address space of a message, whichever i s appropriate . This
technique allows us to use exactly the same code to handle message passing between
processes on the same VM and processes on different VMs. It significantly improved
the efficiency of message passing between processes on different VMs as shown in
Table 2 . Although the same code i s used to t ransfer messages between processes on
the same VM and processes on different VMs , the performance i s different . If it is

88

IPC speed for processes on different V Ms
Messa.ge Size Dela.y Ba.ndwidth Ba.ndwidth expressed a.s a.

(K bytes) (milliseconds) (K bytes per second) % of ma.x. copy speed
0 2 . 6 9 o . 0 . 0
1 3 . 3 6 298 2 . 0
2 4 .00 49 9 3 . 3
4 5 . 2 7 7 5 9 5 . 0
8 7 . 9 3 1 0 09 6 . 6
1 6 1 3 . 1 7 1 2 1 5 8 . 0
32 2 3 .6 5 1 35 3 8 . 9

I PC speed fo r processes o n the sa.me Vr;f
Messa.ge Size Dela.y B a.ndwidth, Ba.ndwidth expressed a.s a.

(K bytes) (milliseconds) (K bytes per second) % of ma.x. copy speed
0 0 . 5 1 0 0 . 0
1 0 . 77 1 2 99 8 . 5
2 1 . 03 1 942 1 2 . 7
4 1 . 55 2572 1 6 . 8
8 2 . 60 3083 20 . 2

1 6 4 .68 34 1 9 22 .4
32 8 .84 36 1 8 2 3 . 7

Table 1 : Initial Implementation of IPC

kept in mind that page t able entries are cached by the 386 , this can be explained .
The cache (translation lookaside buffer or TLB) is a buffer of fixed size and it i s
flushed on each conte?(t switch . When a message is transmitted between processes
on the same VM a context switch is unnecessary and the TLB helps to speed up
the task of copying the message . However , when messages are transmitted between
processes on different VMs it is a�kward to avoid a context switch and the extra
amount of testing required to do so i s not considered worthwhile . However , this
possibili ty has not yet been explored thoroughly.

By carefully rewrit ing the procedure which is used to copy data in assembly
language , an addi tional improvement in the transfer rate was possible-see Table 3 .
With messages o f 32K in length a data transfer rate o f 12400 KBytes per second
can be sustained between two processes on the same VM. This is within 80% of the
maximum speed at which the test machine· can transfer data from one location to
another in memory.

5 . 2 V M and P rocess Management Facilit ies

The creation of a new VM requires the establishment of a virtual address space , the
creation of a process to execute code and the initialization of the VM. The minimum
time required to create and terminate a VM is 12 . 1 milliseconds . This includes the
time needed to : install an executable program on a VM, create and terminate a

89

IPC speed for processes on different VMs
Message Size Delay Bandwidth Bandwidth expressed as a

(Kbytes) (milliseconds) (Kby tes per second) % of max. copy speed
0 0 . 8 0 0 0 . 0
1 1 . 24 8 1 0 5 . 3
2 1 . 66 1 2 0 1 7 . 9
4 2 . 49 1 6 06 1 0 . 5
8 4 . 1 6 1 9 2 1 1 2 .6
1 6 7 . 53 2 1 25 1 3 . 9
3 2 14 . 24 2246 1 4 . 7

Table 2 : Copying data directly

IPC speed for processes on different VMs
Message Size Delay Bandwidth Bandwidth expressed as a.

(Kbytes) (milliseconds) (K bytes per second) % of ma.x. �opy speed
0 0 . 78 0 0 . 0
1 0 . 89 1 1 1 7 7 . 3
2 1 . 00 2000 1 3 . l
4 1 . 2 2 3 2 9 2 2 1 .6
8 1 . 63 4893 3 2 . 1

1 6 2 . 47 6465 42 .4
32 4 . 1 6 76 92 50 .4

IPC speed for processes on the sa.me VM
M essa.ge Size Dela.y B a.ndwidth Ba.ndwidth expressed as a.

(K bytes) (milliseconds) (Kbytes per second) % of ma.x. copy speed
0 0 .47 0 0 . 0
1 0 . 5 5 1 8 1 8 1 1 .9
2 0 . 62 3252 2 1 .3
4 0 .75 5333 34 .9
8 1 . 0 1 · 7921 5 1 .9

1 6 1 . 53 10458 6 8 . 5
32 2 . 5 8 I 1 2403 8 1 .3

Table 3 : Hand-optimised implementation

90

System ratio of RPC to PC V 182 : 1 Amoeba 200: 1 HYBRID 295: 1 Mach 4 1 6 : 1
Table 4 : Efficiency of RPC compared t o a simple procedure call

process and to allocate and deallocate a small address spate . In general this figure depends on the size of t he VM because the act ual t ime required to create a new VM depen_ds on the s ize of i t s address space and the size of the executable program. The total time taken to create and terminate a process amounts to 0 .55 mil­liseconds . This . includes the allocation of a new process descrip tor and s tack for the process in the kernel, a run- time stack in user space , two context switches and deallocation of memory assigned to the process .
5 . 3 Comparing Simple and Remote P ro cedure Calls

The kernel has been in operation for some time and although some improvements are still possible, its performance i s considered to be acceptable . Although we tried to make IPC operations as efficient as possible, remote procedure calls remain expensive when compared to simple procedure calls . The main reason for this seems to be the interaction with the scheduler . An interesting idea to be expk>red in this respect is upcalls[7] . Comparing the performance of different systems is normally meaningless unless the same hardware is used . Since this is seldom the case in practice , the best we could do w� to compare the speed ratio between remote procedure calls and simple procedure calls . Similar measurements are available for a number of well-known kernels . As shown in Table 4 the HYBRID kernel is comparable in efficiency to the Amoeba, Mach and V kernels in thi s respect .
6 Conclusion

Several dis t ributed systems were developed since the mid 1970 's when RIG(2, 1 2] , t he first major distributed system, became operational. All these systems were based on small message based kernels . Chorus , Mach, Amoeba. and the S tanford V system are representative of the current s tate of the art . Although they reflect different philosophies regarding communication and process management , all proved to be successful . The first goal of the HYBRID project was to exploit t he best ideas from these experimental systems to produce a kernel which i s useful as a practical tool to simplify the implementation of control software. Because most designers of control systems find i t natural to work with machines of some kind, we

9 1

have designed a kernel which transforms the physical machine which is awkward to program into one or more virtual machines which are easier to program. VMs which can support multiple processes , are similar to team spaces in the V system, tasks in Mach and process clusters in Amoeba. VMs can be used to group cooperating processes together to optimise interprocess communication . The problem is to find the right abstractions which can hide irrelevant detail of the underlying physical machine without hiding its power. Whether VMs can do this will have to be seen , but design at tempts undertaken so far are encouraging. The functionality defined by the VM abstraction decouples a control system from the underlying hardware. It is therefore possible to use the same control software on different hardware platforms by porting the kernel . Preliminary experiments led to a simple kernel for a Data General minicomputer by May 1 989 . We gained valuable experience regarding process and peripheral man­agement during these early experiments . Relying on this experience we redesigned the kernel and a functionally complete HYBRID kernel for an Intel 386- based ma­chine has been operational since the end of 1990 . To date, the kernel has been used to develop a distributed operating system for research and educational purposes . Its performance is comparable to a commercial Unix system executing on the same hardware . The kernel has now been running without problems for about six months and appears to be reliable . Although currently use..._d to support an operating sys­tem the kernel can be reused to support other applications . For example, a terminal concentrater can be designed as a number of cooperating VMs supported by a single physical machine .
7 Acknowledgement s

The first device drivers for the kernel were written by Harry Lewis . As the first user of the kernel he detected a few subtle coding errors . The operating system which represented the first test of the kernel was developed jointly by William Howard and Harry Lewis .
References

[1] V . Abrossimov and M. Rozier, "Generic Virtual Memory Management for Op­erating System Kernels" , in Proceedings of the 12th A CM Symposium on Op­
erating System Principles, pp. 1 23� 136 , Published as ACM Operating Systems Review , Vol . 23, No. 5, December 1 989 .

I

[2] J . E . B all , J . A . Feldman , J . R . Low , R . F . Rashid , and P . D . Rovner, "RIG , Rochester's Intelligent Gateway : System Overview" , IEEE Transactions on
Software Engineering, vol . 2 , no . 4 , pp . 32 1-328, December 1 976 .

92

[3] B . N . Bershad , T . E . Anderson , E . D . La.zowska, and H . M . Levy, "Lightweight
Remote Procedure Call" , Technical Report 89-04-02 , Department of Computer
Science, University of Washington , April 1 989 .

[4] D . R. Cheriton , "An Experiment using Registers for Fast Message-Based In­
terprocess Communication" , A CM Operating Systems Review, vol . 1 8 , no. 4,
pp. 1 2-20 , October 1 984 .

[5] D . R. Cheriton , "The V Distributed System" , Commu nications of the A CM,
vol . 3 1 , no. 3 , pp . 3 14-333 , March 1 988 .

I

[6] D . R . Cheriton and W . Zwaenepoel , "The Distributed V Kernel and i ts Per-
formance for Diskless Workstations" , Proceedings of the 9th A CM Symposium
on Operating System Principles, pp . 1 29-140, 1 983 .

[7] D . C . Clark , "The structuring of systems using. upcalls" , A CM Operating Sys­
tems Review, vol . 1 9 , no. 5 , pp . 1 7 1-180 , December 1 985 .

[8] R . Fitzgerald and R . F . Rashid , "The Integration of Virtual Memory Man­
agement and Interprocess Communication in Accent" , A CM Transactions on
Computer Systems, vol . 4 , no . 2 , pp . 147- 1 77 , May 1 986 .

[9] W . Fouche, "The HYBRID kernel" , Tech . Rep . ITR-90-0 1 - 00 , Institute for
Applied Computer Science, University of Stellenbosch , April 1 990 .

[1 0] M. Guillemont , "The Chorus Distributed Operating System: Design and Im­
plementation" , in Local Computer Networks, (P. C. Ravasio , G. Hopkins , and
N . Naffah , eds .) , ' pp . 207-223 , Proceedings of the IFIP TC 6 International In­
Depth Symposium on Local Computer Networks , Florence, Italy, (1 9- 2 1 Apri l) ,
North-Holland Publishing Company, 1982 .

[1 1] C . A . R . Hoare , Communicating Sequential Processes. International Series in
Computer Science, Englewood Cliffs , New Jersey : Prentice-Hall International ,
1 985 .

(1 2] K . A . Lantz , J . A . Feldman , and R. F . Rashid , "Rochester's Intelligent Gate­
way" , Computer, vol. 1 5 , no . 10 , pp . 54-68 , October 1 982 .

(1 3] S . J . Mullender, "Distributed Operating Systems" , Comp u ter Sta ndards and
Interfaces, vol . 6, no. 1 , pp . 37-44 , 1 987 '.

(14] S . J . Mullender and A . S . Tanenbaum, "The Design of a Capability-B ased
Distributed Operating System" , The Co,riputer Jou rnal, vol . 29, no. 4 , pp . 289-
299, 1986 .

93

(1 5] S . J . Mullender , G . van Rossum, A . S . Tanenbaum , R . van Renesse , and H. van S taveren , "Amoeba: A Distributed Operating System for the 1 990s" ,
IEEE Computer, vol . 23 , no . 5 , pp . 44-53 , May 1 990 .

[16] R . Rashid , A. Tevanian , M . Young, D . Golub , R . Baron , D . Black , W. J . Bolosky, and J . Chew, "Machine-Independent Virtual Memory Manage­ment for Paged Uniprocessor and Multiprocessor Architectures" , IEEE Trans­
actions on Computers, vol . 37 , no. 8 , pp . 896-907, August 1 988 .

(1 7] R . F . Rashid , "From RIG to Accent to Mach : The Evolution of a Network Op­erating System" , Proceedings of the A CM/IEEE Computer Society Fall Joint
Conference, pp . 1 1 28-1 137 , November 1 986 .

[1 8] M . Rozier and J . L . Martins , "The CHORUS Distributed Operating System: Some Design Issues" , in Distribu ted Operating Systems: Theory and Practice, (Y. Paker , J. Banatre, and M . Bozyigi t , eds .) , pp . 26 1-287 , Springer-Verlag, 1987 .
[1 9] R . Van Renesse , H . Van Staveren , and A . S . Tanenbaum, "The Performance of the Amoeba Distributed Operating System" , Software -Practice and Expe­

rience, vol . 1 9 , no . 3, pp . 223-234, March 1989 .
·�

[20] N . Wirth , Programming in Modula-2. Springer-Verlag, 2 ed . , 1 983 .

94

	1991_SAICSIT_Founche
	Front_Page.pdf
	Front_Page

