
VI

VI

I

PROCEEDINGS

· VI

HOT EL,

CALE DON

2 - 3 JULY 1991

� - I

VI

VI
EDITED BY VI

M H Linck

SPONSORE D

B Y

ISM

FRDV·

GENMIN

DEPARTMENT OF COMPUTER SCIENCE • UNIVERSITY OF CAPE TOWN

I
I

PROCEEDINGS / KONGRESOPSOMMINGS

6th

SOUTHERN AFRICAN COMPUTER

SYMPOSI�

6de

SUIDELIKE-AFRIKAANSE

REKENAARSIMPOSIUM

De Overberger Hotel, Caledon

2 - 3 JULY 1991

SPONSORED by

ISM
FRD

GENMIN

EDITED by

MHLINCK

Department of Computer Science

University of Cape Town

TABLE OF CONTENTS

Foreword 1

Organising Committee 2

Referees 3

Program 5

Papers (In order of presentation) 9

"A value can belong to many types"
B H Venter, University of Fort Hare 10

"A Transputer Based Embedded Controller Development System"
MR Webster, R G Harley, DC Levy & DR Woodward,
University of Natal 16

"Improving a Control and Sequencing Language"
G Smit & C Fair, University of Cape Town 25

"Design of an Object Orientated Framework/or Optimistic
Parallel Simulation on Shared-Memory Computers"
P Machanick, University of Witwatersrand 40

"Using Statecharts to Design and Specify the GMA
Direct-Manipulation User Interface"
L van Zijl & D Mitton, University of Stellenbosch 51

"Product Form Solutions/or Multiserver Centres
with Heirarchical Classes of Customers"
A Krzesinski, University of Stellenbosch and
R Schassberger, Technische U niversitat Braunschweig 69

"A Reusable Kernel for the Development of Control Software"
W Fouche and Pde Villiers, University of Stellenbosch 83

"An Implementation of Linda Tuple Space
under the, Helios Operating System"
PG Clayton, E P Wentworth, G C Wells and F de Heer-Menlah,
Rhodes University 95

"The Design and Analysis of Distributed Virtual Memory
Consistency Protocols in an Object Orientated Operating System
K Macgregor, University of Cape Town & R Campbell University
of Illinois at Urbana-Champaign 107

I '

"Concurrency Control Mecchanisms for Multidatabase Systems"
A Deacon, University of Stellenbosch

"Extending Local Recovery Techniques for Distributed Databases"
H L Victor & M H R ennhackkamp, University of Stellenbosch

"Analysing Routing Strategies in Sporadic Networks"
S Melville, University of Natal

The Design of a Speech Synthesis System for Afrikaans"

1 18

135

148

M J Wagener, University of P ort E lizabeth 167

"Expert Systems for Management Control: A Multiexpert Architecture"
V Ram, University of Natal 177

"Integrating Simularity-Based and Explanation-Based Learning"
G D Oosthuizen and C A venant, University of P retoria 187

"Efficient Evaluation of Regular Path Programs"
P Wocxi, University of Cape Town 201

"Object Orientation in Relational Databases"
M Rennhackkamp, University of Stellenbosch 2 1 1

"Building a secure database using self-protecting objects"
M Olivier and SH von Solms, R and A frikaans University 228

"Modelling the Algebra of Weakest Preconditions"
C Brink and I R ewitsky, University of Cape Town 242

"A Model Checker for Transition Systems"
Pde Villiers, University of Stellenbosch. 262

"A New Algorithm for Finding an Upper Bound of the Genus of a Graph"
DI Carson and OR Oellennann, University of Natal 276

FOREWORD

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the
tradition of providing an opportunity for the South African scientific computing
community to present research material to their peers.

It was heartening that 31 papers were offered for consideration. As before all these papers
were refereed. Thereafter a selection committee chose 21 for presentation at the
Symposium.

Several new dimensions are present in the 1991 symposium:

* The Symposium has been arranged for the day immediately after the SACLA
conference.

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia.

* I believe that it is first time that a Symposium has been held outside of the
Transvaal.

* Over 85 people will be attending. Nearly all will have attended both events.

* A Sponsorship package for both SACLA and the Research Symposium was
obtained. (This led to reduced hotel costs compared to previous symposia)

A major expense is the production of the Proceedings of the Symposium. To ensure
financial soundness authors have had to pay the page charge of R20 per page.

A thought for the future would be consideration of a poster session at the Symposium.
This could provide an alternative approach to presenting ideas or work.

I would sincerely hope that the twinning of SACLA and the Research Symposium is
considered successful enough for this combination survive. As to whether a Research
Symposium should be run each year after SACLA, or only every second year, is a matter
of need and taste.

A challenge for the future is to encourage an even greater number of MSc & PhD
students to attei:id the Symposium. Unlike this year, I would recommend that they be
accommodated at the same cost as everyone else. Only if it is financially necessary
should the sponsored number of students be limited.

I would like to thank the other members of the organising committee and my colleagues
at UCT for all the help that they have given me. A special word of thanks goes to Prof.
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the
organisation of this 6th Research Symposium.

MHLinck
Symposium Chairman

1

I I

I/
SYMPOSIUM CHAIRMAN

M H Linck, University of Cape Town

ORGANISING COMMITTEE

SPONSORS

D Kourie, Pretoria University.

PS Kritzinger, University of Cape Town.

M H L inck, University of Cape Town.

ISM

GENMIN

FRD

2

LIST OF REFEREES FOR 6th RESEARCH SYMPOSIUM

NAME INSTITUTION

Barnard, E Pretoria

Becker, Ronnie UCT

Berman S UCT

Bishop, Judy Wits

Berman, Sonia UCT

Brink, Chris UCT

Bodde, Ryn Networks Systems

Bornman, Chris UNISA

Brower, Pict UOFS

Cherenack, Paul UCT

Cook Donald UCT

de Jaeger, Gerhard UCT

de Villiers, Pieter , Stellenbosch

Ehlers, Elize RAU

Eloff, Jan RAU

Finnie, Gavin Natal

Gaynor, N AECI

Hutchinson, Andrew UCT

Jourdan, D Pretoria

Kourie Derrick Pretoria

Kritzinger, Pieter UCT

Krzesinski, Tony Stellenbosch

Laing, Doug ISM

Labuschagne, Willem UNISA

Levy, Dave Natal

3

"'-··-"

MacGregor, Ken

Machanick, Philip

Mattison Keith

Messerschmidt, Hans

Mutch, Laurie

Neishlos, N

Oosthuizen, Deon

Peters Joseph

Ram,V

Postma, Stef

Rennhackkamp, Martin

Shochot, John

Silverberg, Roger

Smit, Riel

Smith, Dereck

Terry, Pat

van den Heever, Roelf

van Zijl, Lynette

Venter, Herman

Victor, Hema

von Solms, Basie

Wagenaar,M

Wentworth, Peter

Wheeler, Graham

Wood, Peter

UCT

Wits

UCT

UOFS

Shell

Wits

Pretoria

Simon Fraser

Natal, Pmb.

Natal, Pmb

Stellenbosch

Wits

Council for Mineral Technology

UCT

UCT

Rhodes

UP

Stellenbosch

Fort Hare

Stellenbosch

RAU

UPE

Rhodes

UCT

UCT

4

6TH RESEARCH SYMPOSIUM - 1991

FINAL PROGRAM

TUESDAY 2nd July 1991

10h00 - 13h00

13h00 - 13h50

Registration

PUB LUNCH

14h00 - 15h30 SESSION lA

Venue: Hassner

Chairman: Prof Basie von Solrns

14h00 - 14h30
"A value can belong to many types. "
B H Venter, University of Fort Hare

14h30 - 15h00
"A Transputer Based Embedded
Controller Development System"
MR Webster, R G Harley, DC Levy &
D R Woodward, University of Natal

15h00 - 15h30
"Improving a Control and Sequencing
Language"
G Smit and C Fair, University of Cape
Town

15h30 · 16h00 TEA

5

SESSION lB

Venue: Hassner C

Chainnan:Prof Roelf v d Reever

14h00 - 14h30
"Design of an Object Orientated
Framework/or Optimistic Parallel
Simulation on Shared-Memory
Computers" P Machanick, University of
Witwatersrand

14h30 - 15h00
"Using Statechans to Design and
Specify the GMA Direct-Manipulation
User Interface" L van Zijl & D Mitton,
University of Stellenbosch

15h00 - 15h30
"Product Form Solutions/or Multiserver
Centres with Heirarchical Classes of
Customers" A Krzesinski, University of
Stellenbosch and R Schassberger,
Technische Universitlit Braunschweig

16h00 · 17h30 SESSION 2A

Venue: Hassner

Chairman: Prof Derrick Kourie

16h00 - 16h30
"A Reusable Kernel for the Development
of Control Software" W Fouche and P de
Villiers, University of Stellenbosch

16h30 - 17h00
"An Implementation of Linda Tuple
Space under the Helios Operating
System" P G Clayton, E P Wentworth, G
C Wells and F de-Heer-Menlah, Rhodes
University

17h00 - 17h30
"The Design and Analysis of Distributed
Virtual Memory Consistency Protocols
in an Object Orientated Operating
System" K MacGregor, University of
Cape Town & R Campbell, University
of lliinois at Urbana-Champaign

19h30

20h00

PRE-DINNER DRINKS

GALA CAPE DINNER
(Men: Jackets & ties)

6

WEDNESDAY 3rd ,July 1991

7h00 • 8h15 BREAKFAST

8h15 - 9h45 SESSION 3A

Venue: Hassner

Chairman: Assoc Prof P Wood

8h15 - 8h45
"Concurrency Control Mechanisms for
Multidatabase Systems" A Deacon,
University of Stellenbosch

8h45 - 9h15
"Extending Local Recovery Techniques
for Distributed Databases" H L Victor
& M H Rennhackkamp, University of
Stellenbosch

9h15 - 9h45
"Analysing Routing Strategies in
Sporadic Networks" S Melville,
University of Natal

9h45 - 10h15 TEA

10h15 - 11h00 SESSION 4

Venue: Hassner

Chairman: Prof P S Kritzinger
Invited paper: E Coffman

11h00 · 11h10 BREAK

7

SESSION 3B

Venue: Hassner C

Chairman: Prof G Finnie

8h15 - 8h45
The Design of a Speech Synthesis
System for Afrikaans" M J Wagener,
University of Port Elizabeth

8h45 - 9h15
"Expen Systems for Management
Control: A Multiexpert Architecture"
V Ram, University of Natal

9h15 - 9h45
"Integrating Simularity-Based and
Explanation-Based Learning"
G D Oosthuizen and C A venant,
University of Pretoria

11h10 • 12h40 SESSION SA

Venue: Hassner

Chairman: Prof C Bornman

11h10 - 11h40
"Efficient Evaluation of Regular Path
Programs"
P Wood, University of Cape Town

11h40 - 12h10
"Object Orientation in Relational
Databases"
M Rennhackkamp, University of
Stellenbosch

12h10 - 12h40
"Building a secure database using self
protecting objects" M Olivier and S H
von Solms, Rand Afrikaans University

SESSION SB

Venue: Hassner C

Chairman: Prof A Krzesinski

11h10 - 11h40
"Modelling the Algebra of Weakest
Preconditions"
C Brink & I Rewitsky, University of
Cape Town

11h40 - 12h10
"A Model Checker for Transition
Systems"
P de Villiers, University of Stellenbosch

12h10 - 12h40
, "A New Algorithm for Finding an Upper

Bound of the Genus of a Graph"
D I Carson and O R Oellennann,
University of Natal

12h45-12h55 GENERAL MEETING of RESEARCH SYMPOSIUM ATTENDEES

Venue: Hassner

Chairman: Dr M H Linck

13h00 • 14h00 LUNCH

FINIS 6th COMPUTER SYMPOSIUM

8

PAPERS

ofthe

6TH RESEARCH SYMPOSIUM

9

An lmplementatlon of Llnda1 Tuple Space

under the Hellos2 Operating System.

P.G. Clayton", E.P. Wentworth, G.C. Wells and F.K. de-Heer-Menlah
Department of Computer Science, Rhodes University, Grahamstown, 6140 RSA

·internet: cspc@alpha.ru.ac.za

Abstract
We discuss the implementation of Rhoda, our Linda-like Tuple Space server which
,uns under the Helios operating system. The approach analyses and partitions tuple
space at compile time in order to reduce the run time- overhead of tuple matching.
The interaction between the concurrent processes and the tuple partitions is used as
the basis for distributing the partitions and processes in the network. The paper
presents some empirical results and discusses the suitability of the Helios nucleus
for supporting the approach.

Keywords: distributed systems, parallel processing, transputer, Linda, Helios.

1 . I ntroduction
The Linda programming paradigm is a simple and elegant approach to parallel processing, based
on the concept of generative communication [GEL 85). This is a form of communication in which
an active message (or tuple) may be converted through process creation and evaluation into a
passive value. Linda is not a language per se, it is a small set of control and coordination
operations which can be imbedded into a programming language (typically one of the well known
imperative programming languages) to introduce or enhance parallel capabilities.

At the center of the Linda programming model is a shared, associative memory called tuple space
(TS). Objects called tuples are output to · and input from · TS by components of the application
program. At the abstract programming leve� TS is global to all components of a parallel program,
even though they might be executing on individual processors which have no physical memory in
common. Parallel components of an application program (processes or tasks) never communicate
directly with each other, only with TS. Consequently, TS acts as a decoupling agent. This reduces
program complexity by allowing parallel programs to be decoupled both spatially and temporally.

A tuple is a sequence of typed (actual or formal) fields, rather similar in concept to a parameter
list. In addition to passive data values, the contents of a tuple may be a reference to active
executing or executable code. Tuples are selected from TS by associative matching.

To communicate with tuple space, Linda provides a set of six primitive o:;,erations:
out(t) output tuple t to the TS

1
Linda is a trademark of Scientific Computing Associates, Inc., New Haven.

2Helios is a trademark of Perihelion Software Ltd., Somerset, England.

95

eval(t) evaluate tuple t (This operation is similar to out in that it outputs tuple t to TS,
but t may be an active tuple whose result is yet to be evaluated.)

in(s) input a tuple t from TS which matches the template s (If no matching tuple is
available, the requesting process is suspended until one becomes available. If
more than one matching tuple exists in TS, an arbitrary matching tuple is
returned. The tuple is removed from TS.)

rd(s) read a tuple t from TS which matches the template s (rd is conceptually very
similar to in . It returns a copy of a tuple without removing it from TS.)

inp(s)
and

rdp(s) similar in function to in and rd, these operations are predicates which attempt to
match a tuple t to the template s, and return a failure value immediately if no
match is found. If the operation succeeds, both a tuple and a success value arc
returned.

These operators communicate only with TS, and none of the high-level system services which
distributed operating systems usually superimpose upon their transport layers are provided. A
Linda system may make use of the existing low-level transport layer provided by a distn'buted
operating system, or may require a specialized transport layer to--be written. In the former case,
application programs should be unconcerned about the particular target architecture, and about
whether they will run under an operating system or as standalone programs.

A number of informative articles on the use of the Linda approach to parallelism have already
appeared in print, some of which are listed among this paper's references [CAR 89a] [CAR 89b)
[GEL 88] [AHU 86]. We do not concern ourselves in this paper with presenting a suite of tutorial
examples, or with persuading readers of the merits of this programming approach; we concentrate
on implementation issues, assuming a rudimentary knowledge of the abstract programming
environment presented by the Linda primitives, and a conviction of its value to parallel processing.

This paper represents a status report on an implementation effort underway at Rhodes University
to build an efficient, distributed TS-manager for transputer-based parallel processing systems in
the Helios operating environment. To distinguish the experimental effort at Rhodes University
from existing commercially available implementations of Linda, our system is known as Rhoda.
For the purpose of this paper, the terms Linda and Rhoda are used interchangeably, although
Rhoda is generally used to refer specifically to the Rhodes implementation.

2. An overview of the Rhoda Implementation
A side effect of the high level of decoupling between parallel components of a Linda program is
that efficiency becomes more of a concern of the implementation and less of a concern of the
application programmer. This places pressure on the developers of a Linda implementation to
provide an efficient transport layer which will allow TS to be simultaneously visible to all
components of the application program. A range of strategies can be usec.' to implement a global
TS in a parallel processing environment in which processors do not have a shared physical
memory. At one extreme, TS could be stored at a dedicated central node which is accessed via
a transparent message routing system. Even if run-time hashing is used to improve search

96

performance in this approach, delays caused by message routing can degrade the performance of
the system, and a single centrali7.ed TS-manager can become a bottleneck which impedes massive
parallelism. At the opposite end of the implementation spectrum, TS could be replicated in each
processing node, and local TS-managers could transparently propagate changes through the
network. A major encumbrance to this approach is the provision of a locking mechanism which
ensures that program components wishing to remove tuples from TS are given exclusive delete
access.

The Rhoda implementation under Helios uses a centralized TS model, but partitions TS with the
view to reducing the run time matching overheads of Linda operations, �d so that distributed TS
managers can be used to control a small (possibly localized) group of related tuples. A partitioned
TS is in contrast to · the Linda programming assumption of a single shared TS. This section
provides a brief overview of the Rhoda compilation path, which adds additional housekeeping
information to source programs to enable them to work with the partitioned model described in
the remainder of the paper.

Rhoda

I
C 1-1 Rhoda . � C re-L-.._ execut abl e

p,og,..- :,.. • ..,.
: :-i;-: prog,q(•) - � plq(s)

t uple
analysi s

.. execut1an in the
.Rhoda run time

euvi rouae.11t

Figure 1 - Structure of the Rhoda compilation path .

Figure 1 depicts the compilation phases present in the Rhoda compiler. C is currently used as the
host language for Rhoda. Apart from the normal C pre-processor, Rhoda makes use of a second

pre-processor to compile and pass a list of all tuple operations, and the program components

which issue them, to a tuple analysis module. This module analyzes TS interaction with
components of the application program, to divide tuples into groups based on their structure, and
to suggest an appropriate placement strategy for tuple groups and application program
components in the processor network. The grouping of tuples is an integral feature of the Rhoda
implementation, and is described in more detail below. By grouping tuples at compile time, a
substantial matching overhead is avoided at run time. Distinct tuple groups also facilitate the
distribution of TS in the distributed memory environment. The initial placement strategy of the
Rhoda system divides a task force (application program components and TS-managers) into

appropriate process clusters for placement on the processor network, in positions which will incur
a relatively low inter-cluster communication cost. This aspect of TS analysis is described in more
detail by de-Heer-Menlah [DHM 90).

The tuple groupings determined by the analysis module are used by the Rhoda pre-processor to
translate ideal Linda syntax into concrete C syntax which opens, closes, and addresses tile-like
tuple partitions. A Rhoda program usually contains a number of components (for example, a
master process and a worker process), which must all be present during tuple analysis. The output

97

of the pre.processor stage is a series of C programs, one for each unique parallel component of
the original source.

3. Partitioning tuple space
The syntax for tuple fields makes provision for actual fields in the form of constant values or run
time expressions, and for formal fields denoted by program variables which are preceded by the
"?" character. The Linda input primitives provide tuple templates against which tuples placed in
TS by output primitives are compared. It is common practice for Linda programmers to use a
constant valued field to ensure a correct tuple matching. For example, the initial field of a tuple
is frequently a string literal. The matching process is potentially a computationally expensive
operation, and is an area in which efficient implementation is a crucial issue.

The tuple templates of Linda operations are matched by associatively searching tuples within TS
which have the same structure. Examples of syntactically correct, matching Linda primitive
operations might be:

out("element", 3, 4, value) in("element", i + 1, j, '!result)

If the variables value, i, j, and result were all declared to be of the same type (integers for
example) , then the two tuples manipulated by the above in and out operatbns would be regarded
as having the same structure, viz. a string constant followed by three integer fields. The actual
expressions (value, i + I, and result) would contribute their current run-time values to the out
operation's tuple and the in operation's template. The formal field (result in the template used
for the in operation in this example) would return the value of a tuple whose first three fields
match those of the template. For example, if the values of i and j were 2 and 4 respectively, and
the tuple ("element'� 3, 4, 12) were present in TS, then result would have the value 12 after
execution of the in operation.

It is possible to detect at compile time that a Linda input in("row", ?i) could be matched to any
of the following tuples

("row", 4) ("row", 10) ("row", 500)

with the consequent actual to formal a�ignment for the variable i.

It is likewise clear at compile time that the template ("result", ?i) will not match any of the
following tuples, no matter what the run time values of variables are, because the type, order, or
number of fields differ.

("row", 6.42) G, "row") ("matrix size", 50, 20)

Nor will it match a tuple such as ("cor, 4) whose type, order, and number of fields agree, because
the value of the compile time string literal field of the tuple and template differ.

Since operations on one tuple group can never match tuples in another gr JUP, the partitioning of

98

tuples into disjoint groups at compile time can be done safely. Tuple operations can first be
coarsely classified into mutually exclusive groups based on their field structure (type, order, and
number of fields). A subsequent finer partitioning can be done based on field information; tuples
having the same field structure, but different compile time constant values in a particular field,
cannot be matched.

Once compile time constants have been examined and tuple groups have been formed, the
constant values are no longer of any use since all tuples (and tuple templates) within a particular
group will have identical constant values in their common constant fields. Discarding such
constant fields is a further compile time optimization. For example, Lintfa operations which refer
to the tuples

("row", i, j) ("row", i + 1, j + 1) ("row", ?m, ?n)

will be modified to calls to the same "row" tuple group using the tuples

(i, j) (i + l, j + l) (?m, ?n)

Efficient searching and matching strategies can now be devised for particular tuple groups. Taken
together, the dramatic reduction in the scope of a tuple search and the reduction in the number
of (mostly string) fields provide a major improvement in the run time overhead of tuple matching.
Analysis of the actual to formal relationships of the corresponding fields of a tuple template and
its TS group can lead to further efficiencies in run-time matching. Zenith [ZEN 90] suggests a
number of instances in which a' general tuple matching algorithm can be reduced to a far simpler
operation.

It is possible to take the TS analysis
further by considering which
components of the application
program make use of each tuple
group. This provides information for
the placement of TS groups relative
to the program components which
they serve in the processor network,
and allows an hierarchical TS
dependency structure to be built,
thereby facilitating an hierarchical
naming scheme for the distributed
TS. For example, a Linda application
program comprising three parallel
component processes, P, , P 2 , and P 8

coordinates its parallel activity using
three different tuple structures which
can be grouped at compile time into
three independent tuple groups. All
three processes make use of tuple

�

Figure 2 Three parallel
application processes referencing
three tuple groups .

99

groups 1 and 2, while only P 2 and P 3 make use of tuple group 3. Figure 2 demonstrates the
interaction of component processes and TS groups for this example, and figure 3 shows the
hierarchical relationship which results
from the partitioning of TS.

4. T h e H e l i o s

environment

Helios [PER 89] is a UNIX3-like4
,

distributed, parallel operating system.
The Helios nucleus, which must be
present on all Helios processors,
provides a small kernel (for managing
message passing, hardware resources,
and list handling) and a number of
basic servers which integrate the
p roce s so r i n t o the g loba l
environment. Helios servers are
based on the conventional client/server
model, in which a server task
manages a resource on behalf of its
clients. The minimum set of servers

TS-manager
which serves

P1 , P2 and P3

TS

TS-manager
...-;bich serves

pl and pl

rn
�

rnl
e

group
3

Figure 3 The
relationship of TS .

hierarchical

required by a Helios processor includes a loader, a processor mana·�cr for managing the
computing resources of the processor and for responding to requests to access executing tasks, and
a number of 1/0 controller (IOC) processes. Additional operating system servers might be loaded
on particular processors of the network to support specific facilities. These include the window
server, the disk server, the RS232 server, the console server, the network server responsible for
distributing and controlling the nucleus, and so on. Most importantly, Helios provides a server
library facility which can be used to implement additional servers for the system using a
standardized general server protocol.

To facilitate communication between distributed tasks, the process manager of the Helios nucleus
spawns an IOC process for each new task, which acts as the task's interm�Jiary with the rest of
the system. The IOCs on one processor route requests to named objects on behalf of their tasks
by referencing a central name table. If a name is present in the table, the toe passes the request
directly to the server whose port is represented in the entry, if not, a distrib �ted search is initiated.
Provided the name exists elsewhere, an entry is installed in the name table so that subsequent uses
need not cause a search. Each physical link of the processor also has an IOC, responsible for
handling distributed searches and requests from remote tasks to local servers.

Helios supports an hierarchical naming scheme for all objects in the network. Each sub-network
(or cluster) is given a unique name, and the names of objects within sub-networks (processors,
files, file systems, servers, tasks, and so on) must not conflict when they a1:e identified by their

3uNIX is a trademark of AT&T.

4rhe Helios operating system includes a UNIX-compatible libnuy, which is based on the POSIX standard (IEE 88).

100

position in the network hierarchy.
All objects in Helios present a
directory interface through which any
information specific to the object may
be examined and manipulated. This
form of network addressing is a
logical extension of the conventional
hierarchical file system adopted by
many operating systems. Most Helios
commands which access the
hierarchical directory structure are
generic utilities which do not
differentiate between different types
of object in the hierarchy. Figure 4 is
an example of the hierarchical
naming scheme presented for a sub
network. In this example, the cluster
comprises three processors (00, 0 l,
and 02) and an I/0 server. The
Helios nucleus on each processor

· comprises a tasks directory, a number

Cluster

00 01 02 :co

tasks link: . O link: . 1

ProcMan Loader

Figure 4
represented
directory .

as
Helios objects

a hierarchical

of link IOCs, and so on. Objects within the tasks directory are the currently active tasks on that
processor.

Network naming is a totally distributed service in Helios, and a distributed name server is at the
heart of the naming scheme. It provides an hierarchy of names for an otherwise arbitrary topology

....
structure.

Helios servers may be localized or distributed. All servers adhere to the same general server
protocol (GSP). They are written as a set of calls to a distributed server library, plus a set of
application specific functions [GAR 89]. The server library provides support for a message
decoder and despatcher, which waits for messages on a specified port, validates them as GSP
messages, and forks a worker process to execute a service procedure. The forking of a service
procedure is an important aspect of Helios's support for distributed servers. The server essentially
consists of the despatcher process until such time as a request arrives from the server's request
port (looked up in the name table by the name server on behalf of a client process). To handle
the request, the despatcher process spawns a separate process to execute the required function.
This happens for each request. Normally, this process returns a reply at the end of the desired
service and terminates. However, if the function performed by the spawned service process is an
open operation (as in "open a file"), the service process remains active after a reply bas been sent,
and acts as a proxy server for any stream messages which are directed to it, until it is closed.

5. The tuple space server under Hellos
The hierarchical naming structure of Helios provides an ideal support environment for a TS which
can be grouped in such a way as to expose hierarchical relationships. TS in the Helios-Rhoda

101

system has been implemented along similar lines to a directory based fik server, in which each
"file" corresponds to a tuple group capable of manipulating streams of tuples with the same type
signature (as grouped by the tuple analysis module in the Rhoda pre-processor). By adopting the
Helios environment, we gain directory and sub-directory structures, and their concomitant
protection mechanisms, at no additional cost to the implementation; they are already part of the
existing Helios server protocol and libraries. TS is implemented as a Helios server, using the
standard GSP. The Rhoda TS server integrates very smoothly with rest of the Helios system
because it honours this protocol, and the generic utilities which operate on other Helios objects
are able to operate on TS structures as well. Each tuple group falls under the control of a TS
manager, but different tuple groups might be placed under the control of different TS-managers
distributed across the network.

The Helios strategy of routing all GSP requests to a single port, and then spawning (by way of the
despatcher) independent processes to service each of them, enables several clients to access the
same server concurrently. In the TS server, such GSP protocols are occasional events, which open
a tuple group and create a proxy process within the server to manage access to the tuple group
on behalf of a particular client. Thereafter, Linda operations are reduced to direct
communications between the client and the proxy process.

'·
All client processes which produce or consume tuples with a particular type signature will open
the same tuple group. To gain access to a tuple group, a client process must declare a tuple group
descriptor, specifying a name for the group and a type signature for tuples which conform to the
group. Thereafter, it is able to open the tuple group, use it, and close it again, simply by making
appropriate TS server calls and supplying the appropriate name of the tuple group along with each
such operation. The pre-processor prefixes each TS operation in the source code with a tuple
group descriptor for this purpose. The first reference to a TS server iniili�tes a dynamic network
search and establishes a connection path between the client and its proxy service process, enabling
the two to exchange messages without regard to the system topology. Thereafter the client process
has a point-to-point virtual link to a dedicated proxy process, which manipulates the tuple group
on its behalf, until it requests a close operation, at which time the proxy process terminates. Since
several clients are able to access the same tuple group simultaneously, the TS proxy processes
assume the responsibility for locking the tuple group and coordinating requests during operations
which update the group.

Each tuple group within the TS server is a data structure which contains control information such
as its name, size, number of clients, protection attributes, mode information, parent directory, a
locking semaphore to ensure exclusive update access, and so on. It also keeps track of current
tuple values, and keeps a queue of blocked clients together with their transaction templates.

To handle the blocking semantics of the Linda primitives rd and in, proxy server processes are
suspended until a suitable tuple arrives. This has the effect of suspending the client as well, while
it awaits a reply from the server. A TS proxy server handles an unmatched request by queueing
it, along with a semaphore, in the waiting queue for the tuple group it supports. The proxy then
suspends itself by waiting on the semaphore. Each time a new tuple arrives for a particular tuple
group as a result of an output operation, the waiting queue for that group is searched, comparing
the new tuple to pending requests. To satisfy the different semantics of the Linda in and rd

102

operations, a pass is made through the queue, locating each matching rd transaction which can be
completed, up to the first matching in transaction. The in transaction must also be completed, and
will consume the new tuple. If there is no pending in operation, the tuple is added to TS in the
normal way. Completion of a pending transaction is achieved by allowing the output primitive to
complete its transaction, and then waking those proxy processes whose outstanding transactions
can be satisfied.

Figure 5 illustrates the integration of
the TS server into the hierarchical
Helios naming structure. In this
example, a TS server has been
initiated on processor 00, and one or
more client processes have opened
two tuple groups, named rows and
results. Client processes residing
· anywhere within the network are able
to open either of these tuple groups,
and a proxy service process will be
spawned on processor 00 (within this
TS server) for each such request. So,
process A, executing on processor 02,
which uses both of these tuple
groups, will cause two independent
proxy processes to be spawned within
this TS server. Process B, executing
on processor 00, which uses tuple
group results, will cause yet anot!ier

0 0

tsserver

rows results

Figure 5 A TS server in the
Heiios hierarchical structure.

proxy process to be spawned. There might well be additional TS servers residing on other
processors in the network and managing access to other tuple groups, provided their names do
not conflict with the name of this server in the naming hierarchy. Processes A and B could well
be making use of these additional servers as well.

The Rhoda system makes use of the Helios processor manager to implement the eval primitive
operation. The processor manager is a server which is present as part of the essential nucleus on
all Helios processors. It sees to the creation and management of tasks on that processor, and is
able to load and execute programs on behalf of clients executing on remote processors.

During the Rhoda pre-processing phase, each source function that is invoked by eval is
transformed into a free-standing executable program by encapsulating it in a suitable code
skeleton. Since an in or rd template can never match an active tuple, tuples generated by eval
operations will be placed into their own active tuple groups. When a TS server is invoked, it must
be supplied with the names of the processors on which it may execute active tuples. The TS server
spawns a manager task for each such target processor, and establishes a link to that processor's
processor manager. These manager tasks are responsible for monitoring the TS server's active
tuple group, and remotely invoking processes to evaluate tuples when necessary.

103

Remote program invokation is a relatively expensive operation, particularly if the executable code
has to be fetched from a central filing system5• The Rhoda implementation alleviates this
overhead by modifying the skeleton that encapsulates evai-ed functions so that, once invoked, they
repeatedly fetch and execute active tuples until a request for an active tuple matching their
particular type fails. This has the same effect as reinvoking the function for every tuple of that
type, but is considerably more efficient.

For monitoring purposes, each Rhoda TS server also provides statistical information, which
appears to a client process wishing to monitor TS as just another set of tuples, which can always
be read (i.e. they are created "on the fly" when they are requested).

6. Observations and conclusions
A number of desirable qualities are present in the Helios-Rhoda implementation:

The system is able to execute on any transputer network with an arbitrary topology.

With TS implemented as a distributed server (essentially present as part of the system

nucleus on all processing nodes) no processors are dedicated to supporting TS, or are excluded
by the presence of a TS-manager from supporting part of the application task force.

The division of TS into individually addressable tuple -groups 1 educes the potentially
expensive operation of associative matching to a far simpler operation, and provides a natural
mechanism for partitioning TS space into distributable sub-spaces.

The hierarchical structure of TS partitions and the inheritance of the normal filing system
security ·mechanisms allow concepts such as private tuple spaces and tuple spaces within tuple
spaces [LEL 90) to be exploited.

Our approach differs from the Yale precompiler in that we view a parallt-! job as a single program
comprising a number of sections. Our system requires that all the components are compiled and
analysed together. Once the tuples have been partitioned and common fields have been factored
out, the discarded information can no longer be retrieved unless the whole job is recompiled. By
contrast, the Yale effort [CAR 90) supports separate compilation, and provides a pre-linking stage
which analyses and specializes the tuple space access procedures. Their goal is to optimize the
accesses, but to carry enough run-time information so that the original unoptimized data can be
reconstructed. This will allow new participants to join the computation dynamically.

Some aspects of the system are still under development, notably the distributed TS-managers, and
the system has only been tested with relatively small numbers of processing nodes (up to 16). The
performance we have observed is encouraging. We have used the Rhoda implementation to
support a number of parallel algorithms, including a state-space search and a 2-D FFT
transformation. The Rhoda system is also being used as a platform for implementing a parallel
version of a popular scientific and engineering matrix manipulation package[WEN 91), and as a
means of parallelizing existing animation and graphics rendering applications. Figure 6 shows the
almost linear improvement in speed obtained for an existing ray tracing application moved onto
the Rhoda system, and for a queens placement algorithm, as the number of worker processes is

5rhis can be improved by program caching.

104

increased.

We have been happy with the
performance of our TS transport
layer to date, and our experience also
confirms the claims in the literature
[CAR 89a] [CAR 89b] [GEL 88]
[AHU 86] that it is easier to write
parallel programs using the Linda
model than it is with traditional tools.
The high level abstract programming
environment of the Linda operators
has enabled us to think about
parallelism in ways which were not
always obvious when we were
constrained by the concepts of
semaphores and point-to-point
messages.

u
•

! 1�

! �
,ll •
" u

� I " ...
4

37 5 . 7
G._

--- -..:ia.a.-
--- --- -s ._190 . o

!la,.... --. ' ' S. 97 , l
132 . 8 ._ ._ --- ---

67 . 7 ---,;:, 49 . 9

20 . 0
u..__�---�---...:.-�-----•

Figure 6 Performance of ray
tracing and queen placement
algorithms running on the Rhoda
system , as the number of worker
processes is increased .

From an implementor's point of view, Helios encourages a client/server programming model, and
this has had a definite influence on our design. Without the presence of simple operating system
mechanisms for creating and controlling tasks, topology independent message routing, and support

· for hierarchies of structures, we would not have envisaged the system as it is currently structured.
This conviction is strengthened by our experience of designing a previous TS prototype on a
network of PC's running DOS, an environment which constrained our thinking severely. Moreover,
Helios's Unix-like development environment...and the ANSI-C language support have isolated us
from the awkwardness of the transputer's underlying RISC-like architecture, and this has improved
our productivity. It is unlikely that we would have made similar progress using TDS and Occam,
the customary systems programming tools used with transputers.

References

[AHU 86]

[CAR 89a]

[CAR 89b)

[CAR 90]

[DHM 90]

[GAR 89]

Ahuja, S., Carriero, N. and Gelemter, D. (1986), Domestic Parallelism - Linda
and Friends, Computer (USA), 19(8), 26-34.
Carriero, N. and Gelemter, D. (1989), How to Write Parallel Programs: A Guide
to the Perplexed, ACM Comp. Surveys, 21(3), 323-357.
Carriero, N. and Gelemter, D. (1989), Linda in Context, Comm. ACM, 32(4),
444-458.
Carriero, N. and Gelemter, D. (1990), Tuple Analyses and Partial Evaluation
Strategies in the Linda Precompiler, in Languages and Compilers for Parallel
Computing, Eds. Gelemter, Nicolau and Padua, Pitman, 114-125.
de-Heer-Menlah, F.K. (1990), Analyzing Communication Flow and Process
Placement in Linda Programs on Transputers, Technical Document 90/4, Dept.
Computer Science, Rhodes University.
Garnett, N. (1989), Writing a Helios Server, Technical Report No. 8, Perihelion

105

[GEL 85)

[GEL 88)
[IEE 88)
[LEL 90}
[PER 89)

[WEN 91)

[ZEN 90]

Software Ltd.
Gelemter, D. (1985), Generative Commw:iication in Linda, ACM TOPI.AS, 7(1),
80-112.
Gelemter, D. (1988), Getting the Job Done, Byte, 13(12), 301-308.
IEEE (1988), The Proposed POSIX Standard, IEEE Std 1003.1.
Leler, W.M. (1990), Linda meets Unix, Computer, 23(4), 43-54.
Perihelion Software Ltd. (1989), The Helios Operating System, Prentice-Hall,
London.
Wentworth, E.P., Clayton, P.G., (1991) Matlab Meets Rhoda, IEEE Symposium
on Parallel Processing - Design and Implementation, CSIR June 1991.
Zenith, S.E. (1990), Linda Coordination Language; Subsystem Kemel Architecture
(on Transputers), YALE Research Report DCSIRR-794.

106

	1991_SAICSIT_Clayton
	Front_Page.pdf
	Front_Page

