
SUID-AFRIKAANSE REKENMRSIMPOSIUM

SOUTH AFRICAN COMPUTER SYMPOSIUM

HOUQAY INN PRETORl{I

JULIE 1 - 3 JULY 1987

Proceedings
of the

4th South African Computer Symposium

Bolldq Inn, Pretoria

1 - I July 1987

edited by

Pieter Krit1inger

Computer Science Department
University of Cape Town

PREFACE

Computer science is an emerging discipline which is having difficulty in being
recognised as a worthy member of the sciences. I will paraphrase John Hopcroft, co
winner of the 1986 Turing Award, when, during a recent interview, he said that the
primary reason for the lack of recognition, is the · age of our' researchers. Probably
not one of the researchers who presented their work at this symposium is older
than 45. I know of no computer scientist in South Africa who is in a position where
(s)he can affect funding priorities. As far as I know we have no representation
on any of the commit'tees of the Foundation for Research Development and for our
Afrikaans speaking fraternity, none who is a member of the A.bdemie vir Wetenslrap
en Kuns. n will take time and conscious effort to establish our presence. The same
is true of course for our universities. Again, with one exception, I know of no
dean of a science faculty, vice-principal or principal who is a computer scientist.
We consequently spend an enormous amount of time trying to explain the needs
of computer science and its difficulties. I believe this symposium is a further step
towards accreditation by our peers and superiors from the other sciences.

The total number of papers submitted. to the Programme Committee for con
sideration was 34. Each paper was reviewed by three persons knowledgeable in the
field it represents. Of those submitted., "23 were finally selected for inclusion in the
symposium. As a result the overall quality of the papers is high and as a computer
science community in Africa we can be justly proud of the final programme.

This is the fourth in the series of South African computer symposia. This year
the symposium is sponsored by the Computer Society of South Africa (CSSA), the
South African Institute for Computer Scientists and the local IFIP Committee. The
executive director of the CSSA and his staff deserve warm thanks for handling the
organisation as well as they have, while the Organising Committee provided Derrick
and I with very valuable advice.

Finally I would like to express my sincere appreciation to the authors, to the
members of the Programme Committee and particularly the reviewers. Without
the kind cooperation of everyone, this symposium would not have taken place.

Pieter IfritziD.ger
July 1981.

1.

SYMPOSIUM CHAIRMAN: PS Kritzinger, University of Cape Town.

SYMPOSIUM CO-CHAIRMAN: D Kourie, University of Pretoria.

MEMBERS OF THE PROGRAMME COMMITTEE

Judy Bishop, Witwatersrand University

Chris Bornman, UNISA

Hannes de Beer, Potchefstroom University

Gideon de Kock, Port Elizabeth University

Jaap Kies, Western Cape University

Derrick Kourie, Pretoria University

Pieter Kritzinger, Cape Town University

Tony Krzesinski, Stellenbosch University

Michael Laidlaw, Durban Westville University

Peter Lay, Cape Town University

Ken MacGregor, Cape Town University

Theo McDonald, Orange Free State University

Jan Oosthuizen, University of the North

Dennis Riordan, Rhodes University

Alan Sartori-Angus, Natal University

John Shochot, Witwatersrand University

Theuns Smith, Rand Afrikaans University

Trevor Turton, ISM (Pty) Ltd

Gerrit Wiechers, Infoplan.

ii

LIST OF REVIEWERS

BERMAN Sonia

BISHOP Judy

BORNMAN Chris

CAREY Chris

CHERENACK Paul

DE BEER Hannes

DE VILLIERS Pieter

GORRINGE Pen

KIES Jaap

KOURIE Derrick

KRITZINGER Pieter

KRZESINSKI Tony

LAIDLAW Michael

LAY Peter

MacGREGOR �en

MATTISON Keith

McDONALD Theo

RENNHACKKAMP Martin

RIORDAN Denis

SATORI-ANGUS Alan

SCHOCHOT John �··
SMITH Theuns

TURTON Trevor

VAN DEN HEEVER Roelf

VAN ROOYEN Hester

VON SOLMS Basie

VOS Koos

,.

iii

TABLE OF CONTENTS

Keynote Address

"An Extensible System and Programming Tool for
Workstation Computers.". . • • • . • • • • • • • • • • • . • • . . • . • • • • • • • • • • • 1
Niklaus Wirth, ETH, Zurich

Invited Lectures

"The Relationship of Natural and Artificial
Intelligence." .•.•.••....••.••. not included in Proceedings.
G Lasker, University of Windsor, Ontario. ,
"Software Engineering: What Can We Expect in
the Future?" ••••••.••.••••••••• not included in Proceedings.
D Teichrow, University of Michigan, U.S.A.

Computer Languages I

"SPS-Algo·l: Semantic Constructs for a Persistent
Programming Language." • • • • • • • . • • • . . • • • • • • • • • • • • • • • • • • • . . 13
s Berman, University of cape Town.

"Petri Net Topologies for a Specification Language." ..•• 25
R Watson, University of the Witwatersrand.

"Towards a Programming Environment Standard in LISP." •.• 45
R Mori, University of Cape Town

"ADA for Multiprocessors: Some Problems and Solutions." •• 63
J Bishop, University of the Witwatersrand.

Computer Graphics

"Polygon Shading on Vector Type Devices." ••.••••••••••.• 75
CF Scheepers, CSIR.

''Hidden Surface Elimination in Raster Graphics Using
Visigrams. '' . 97
P Gorringe, CSIR.

Database Systems I

"On Syntax and Semantics Related to Incomplete·
Information Databases." • . • • • • • • • • • . • . • • . . • . • • . • • • • 109
ME Or1owska, UNISA.

"Modelling Distributed Database Concurrency Control
overheads. '' · .. . 131
M H Rennhackkamp, University of Stellenbosch.

Operating Systems

"The Development of a Fault Tolerant System for a
Real-time Environment." . • . • • • • • . • • • • • . . . • • • . • • . . . • • • • • . 149
M Morris, CSIR.

"A New General-purpose Operating System." .•••••••••.••• ,161
B H Venter, CSIR.

iv

Computer Languages I I

"The Representation of Chemical Structures by Random
Context Structure Granunars." • • • • • . . • • • . . . • 17 5
EM Ehlers and B von Solms, RAU.

"A Generalised Expression Structure."••...•....• 189
w van Biljon, CSIR.

Computer Networks and Protocols I

"An Approximate Solution Method for Multiclass
Queueing Networks with State Dependent Routing and
Window Row Control." 203
A E Krzesinski, University of Stellenbosch.

"A Protocol Validation System." ••...........•...•.•.... 227
J Punt, University of Cape Town.

Computer Networks and Protocols II

"Protocol Performance Using Image Protocols."•.... 251
P S Kritzinger, University of Cape Town.

Artificial Intelligence

"A Data Structure for Exchanging Geographic
Information.'' .. 267
A Cooper, CS IR.

"The Design and Use of a Prolog Trace Generator
for CSP." ... 27 9
D G Kourie, University of Pretoria.

Database Systems I I

"An Approach to Direct End-user Usage of Multiple
Databases." • • • • • • • . . . • 297
M J Phillips, CS IR.

"A Semantic Data Model Approach to Logical Data
Independence. '' . 3 2 9

S Berman, University of Cape Town.

Information Systems

"The ELSIM Language: an FSM-based Language for the
ELSIM SEE.'' . • • • • . . 343
L du Plessis and C Bornman, UN ISA.

"Three Packaging Rules for Information System Design." . 363
J Mende, University of the Witwatersrand.

V

computer Languages I I I

" Experience with a Pattern-matching Code Generator." ... 371
M A Mulders, DA sewry and W R van Biljon, CS IR.

"Set-oriented Functional Style of Programming."
c Mueller, University of the Witwatersrand.

Tutorial

385

The use of Modula-2 in Software Engineering."••... 399
N Wirth, ETH, Zurich.

vi

•

07h30

08h45

09h00

10h00

10h15

10h50

11h25

11h50

12h30

14h00

14h35

1 Shl S

15h30

16h05

18h00

Aegistration and Coffee.

Welcoming address, President of the South African Institute of Computer Scientists,
Dr. G. Wiechers.

Invited Lecture.
Professor D. Teichrow, University of Michigan.
Software Engineering, ... What Con We Expect in the Future.

COFFEE

Computer languages I. Chairman: G. Wiechers.

S. Sermon, University of Cape Town.
SP>Algol: Semantic Constructs for o Persistent Programming Language.

A. Watson, University of the Witwatersrand.
Petri Net Topologies for o Specification Language.

A. Mori, University of Cape Town.
Towards a Progrommiog Environment Standard in USP.

J. Bishop, University of the Witwatersrand.
ADA for Multiprocessors: Some Problems and Solutions.

LUNCH

Computer Graphics.
Chairman: D. Kot.Jrie

C. F. Scheepers, �IA.
Polygon Shading on Vector Type
Devices.

P. Gorringe, CSIA.
Hidden Surface Elimination in Roster
Graphics Using Visigroms.

COFFEE

Database Systems I.
Chairman: 8. von Solms.

ME. Orlowska, UNISA.

On Syntax and Semantics Related to
Incomplete Information Databases.

MH. Aennhackkamp,
Stellenbosch University.
Modelling Distributed Database
Concu"ency Control Overheads

Operating Systems.
Chairman: K. MacGregor.

fl\. Morris, UNISA.
The Development of o Fault Tolerant
St,1stem for o Reof-time Environment

8. H. Ve:nter, CSIA.
A New General-purpose Operating
Svstem.

COFFEE

Computer languages II.
Chairmon;..J;- Bishop.

E.M. Ehlers and 8. von Solms,
Randse Afrikaanse Universiteit.
The Representation of Chemical
Structures by Random Context
Structure Grammars.

W. van Biljon, CSIA.

A Generalised Expression Structure.

Cocktail Party in Cullinan Room A.

vii

ll)A\"' 11

I-

08h30

09h30

10h05

10h30

11h00

11h35

12h30

14h00

14h35

15h15

15h30

16h05

16h45

19h30

Keynote Address by Profesor Niklaus Wirth, Swiss Federal Institute
for Technology, Zurich.
An Extensible Svstem and a Programming Tool for
Worhstotion Computers.
Computer Networks and Protocols I. Chairman: P.S. Kritzinger.

A.E. Krzesinski, University of Stellenbosch.
An Approximate Solution Method for Multicloss Queueing Networks
with State Dependent Routing and Window Row Control.
J. Punt, Universitt; of Cope Town.
A Protocol Validation Svstem.
COFFEE

Computer Networks and Protocols II. Chairman: A. van der Heever.

P.S. Kritzinger, Universil:\J of Cape Town.
Protocol Performance using Image Protocols.
Invited Lecture by Professor G. lasker, University of Windsor, Ontario.
The Relationship of Natural and Artificiol Intelligence.
LUNCH

Artificial Intelligence.
Chairman: G. Lasker.

Database Systems II.
Chairman: C. Bornman.

MJ. Philips, CSIA.
An Approach to Direct End-user
Usage of Mutiple Databases.
S. Berman, University of Cape Town.

A Semantic Doto Model Approach
to Logical Doto Independence.

Information Systems.
Chairman: D. Teichrow.

L du Plessis and C. Bornman, UNISA.
The ElSIM Language: on FSM-bosed
Language for the ElSIM SEE

J. Mende, University of the
Witwatersrand.

Three Packaging Rules for
Information Svstem Design.
COFFEE

Computer languages Ill.
Chairman: N. Wirth.

W. van Biljon, CSIA.
Experience with a Pattern
matching Code Generator.
C. Mueller, University of
the Witwatersrand.
Set-oriented Functional
Sf:',Jle of Programming.

Open Forum with professors G. Lasker, D. Teichrow and N. Wirth.
Moderator: Dr. D. Jacobson.

Symposium Banquet in Cullinan Room.
Guest speaker, Dr. D. Jacobson,. Group Executive: Technology,
Allied Technologies Limited.

viii

A. Cooper, CSIA
R Doto Structure for Exchanging
Geographic Information.

08h00

08h30

12h15

12h30

Registration (Tutorial.only).

Tutorial.
The Tutorial will be given by professor Niklaus Wirth, Division of Computer Science,
Swiss Federal Institute of Technology, Zurich.

The use of Modu/a-2 in Software Engineering.
Topics to be covererd include:

What is Software Engineering?
Data types and structures.
Modularization and information hiding.
Definition and implementation parts.
Separate compilation with type checking.

· Facilities to express concurrency.
Pompous programming style.
What could be excluded?

Close of Symposiurri.

LUNCH

be ·

Abstract

A PROTOCOL VALIDATION SYSTEM

Janette L Punt
University of Cape Town

This paper discusses a protocol validation system . The input
to the system is a protocol def inition specif ied in the
specification language ESTELLE . The ESTELLE specification is
the input to a trans lator program which extracts the
protocol def inition and creates an output f i le which serves
as input to the validation routine .

The validation routine uses reachabi lity analys is to
validate the protocol . The validation routine reports the
fol lowing conditions : unspecified receptions , deadlock ,
channe l overf low and all those trans itions not exercised
during the validation . The routine output inc ludes a trace
of events , the set of all system states generated - all
errors are marked , a summary of the error conditions , a
reachability tree , etc . The validation routine was
successfully applied to several smaller protocols as wel l as
the CCITT X . 2 1 protocol . The system is implemented on an IBM
compatible PC .

This paper discusses the protocol validation system but with
emphasis on the validation routine .

22 7

1 .. Introduction

Protocols are an important aspect of data communications . A
protocol is a set of rules governing the interaction between
separate proces ses [ZAFI 8 2] . In order to ensure that a
protocol is completely def ined , that is without , deadlocks ,
endless looping , uncspecified receptions , etc . and that the
functions performed by the protocol are according to their
specification , it is necessary to validate or verify the
protocol . However , validation i s not the only step in the
deve lopment process .

In order to deal with all the steps in the development
process , the design approach should rely on the following :

• A common language or formal description technique (FDT)
to expres s protocol and service specif ications ·in such a
way that the written speci f ications · are complete and
unambiguous .

• A val idation methodology
behaviour of a protocol
prior to implementation .

to analyse
layer during

and predict the
the design · stage

• An implementation methodology
. automatic way a reference
cons idered protocol layer
[COUR8 6] .

to produce in
implementation

(for te�ting

a semi
of the

purposes)

The aim of this paper is to present a validation methodology
to be applied to a protocol specif ication written in the I SO
subgroup B formal description technique known as ESTELLE
(Extended State · Transi stion Language) . A model is extracted
from the ESTELLE protocol specif ication which · serves · as
input to a validation routine . The validatiop routine uses
the state exploration technique to validate the prot�c6��

In many works on protocol des ign and analys is the concepts
of validation and verif ication are considered as equivalent
or used interchangeably [PUNT8 6] . For the purpose of this
paper validation is defined to be concerned with the
determination whether or not the protoco l is sound and its
logical structure complete . Thus , validation of a protocol
wi ll determine whether or not the protocol is deadlock free ,
has no unspecif ie� receptions , contains no trans itions that
wi ll never be executed , etc . Verif ication is concerned with
what - the function of the protocol is and involves a
comparison of particular aspects of the protocol behaviour
with those intended by the designer [WEST7 8B] .

The place of validation and verif ication in the protocol
deve lopment process is i l lustrated in f igure 1 . 1 (CAST8 5] .

! r e g u i r e a e n t s j

I 1a e s c r i p t 1 o n i n a
n a t u r a l l a n g u a g e

f o r a a l
d e s c r i p t i on v a l i d a t i o n

1 a p l e a e n
t a t i o n

Figure 1 . 1 Protocol development process .

2 . System Overview

s o f t w a r e
t e s t i ng

The validation system cons ists of three parts as i l lustrated
in figure 2 . 1 . The first part permits the user to specify
the protoco l he wishes to validate . The user writes the
protocol specification in ESTELLE . To simplify the
trans lator program , some restrictions have been placed on
the use of ESTELLE . The restrictions and guidelines of how
to use ESTELLE to specify a protocol are discussed in
section 3 .

The second part of the validation system , the trans lator
program , take� the ESTELLE specif ication as input and
extracts the : state names , process names , f inite state
machines in matrix format , etc . and writes this information
as APL statements to a specif ication f i le . This
speci f ication f£le serves as input to the thi l ·d part of the
system , that is the part that performs the vali datiort .

The validation routine produces a trace of events during the
validation , the execution time (that is the CPU time to
validate the protocol) , the system states generated as wel l
a s the error conditions encountered . The error conditions
that are reported are deadlock , unspecified receptions ,
channel overf low and all transitions that were not exercised
during the validation process . The validation system can
also perform other functioris such as printing the protocol
definition and summariz ing the error conditions . In general
the output is presented in such a way that the user may
derive other information useful in understanding the system

· behaviour .

1 .

2 .

3 .

speci fication
in ESTELLE

trans lator
program

specification
f i le

validation
routine

trace
system

states &

. Figure 2 . 1 Layout of validation system

protocol
definition

The trans lator program is written in PASCAL and the
validation routine in APL . The ESTELLE specif ication , : the
trans lator program and the validation routine are now
discussed .

3 . Specifying the Protocol

An E$TELLE specif ication intended for the validation of a
protocol cons ists of the description of a set of . co
operating processes be longing to different , subsystems
interconnected by means of a lower layer service . From the
ESTELLE point of vi,.ew these protocol processes , as we ll as
the lower layer service , are cons idered as co-operating
modules [COUR8 6] .

The module is the bas ic component of an ESTELLE description
and is defined through a module header definition and · a
module body definition . The module header definition defines
the interaction points through which the module may exchange
interactions with its environment and the set of variables
exported by the module . The module body definition describes

the internal behaviour of any module instance associated
with this body in terms of a state trans ition model .

This state transition model i s based on a f inite state
machine extended with the addition of variables to the
states , parameters to the interactions , time constraints and
priorities to the transitions . A trans ition or set of
trans itions i s introduced by the keyword trans . The
following fragment demonstrates the general format of a
trans ition :

trans
priority
from
to
provided
when

begin

expression
state a
state-b
predicate
ip . event

{ trans ition block }

end

end

{ relationship to other trans . }
{ current state }
{ next state }
{ boolean express ion }
{ input required }

The priority and provided c lauses are not al lowed in thi s
validation system . The priority feature is lost but the
provided featune can be handled as fol lows . The trans ition
"from state a ' to state b provided x . . . " can be re-written
as "from state '- a ' to state b . . . " where state a ' is a new
state formed by combinding -state a and condition x . Note
that combining states in this manner wil l result in more
states and thus in a bigger f inite state machine .

The when clause introduces an input interaction . Spontaneous
trans itions do not have an input associated with them , that
is , they do not have a when clause .

Al l the states (names) in a module are def ined in a state
statement . The initial state of a module i s speci f ied in a
to c lause preceded by the keyword initialize in the
initialization part of the module body . The keyword channel
introduces a channel type def inition .

A protocol which cons ists of co-operating processes which
communicate by exchanging messages over channels wi ll be
specif ied in ESTELLE as a set of modules attached
(connected) via channels .

An example of a protocdl spec i f ied in ESTELLE can be found
in append.ix A .

2 3

4 ,. The Translate� Program

The input to the trans lator program is an ESTELLE
specif ication of a protocol and the output a specif ication
f i le containing a set of APL ass ignment statements . The APL
statements should def ine the following :

1 . The names and number of processes that make up the
protocol .

2 . The number of channels , what processes do they link and
the capacity (maximum number of messages in trans i t) of
every channe l .

3 . The number and the names of the events that may be
exchanged between processes via the channe ls . (An event is
the basic unit of corrununication between processes for
example an ACK or MESSAGE 1 .)

4 . The state names within every process within the system .
5 . The trans itions between the states in every process .
6 . The initial system state .

From the ESTELLE statements discussed in section 3 it is
c lear - f rom where the trans lator program wi l l obtain most of
its output . The trans lator program performs no syntax
checking on the ESTELLE code . However , if the translator
program is unable to obtain all the information to creat� a
complete def inition (1 - 6 as describe above) , it wi ll
report an error message indicating which item def in�tion (s)
it could not bui lt .

The spec if ication f i le cons ists
like :

NAME � ' Read / Wr ite Protocol '
NP � 2
NC � 2

s tate trans ition matrices
ST [l ; l ; l ;] � 0 1 0 0
ST [1 ; 1 ; 2 ;] � 4 0 3 0
ST [1 ; 1 ; 3 ;] � 0 0 0 2
ST [1 ; 1 ; 4 ;] � 3 0 4 0

of APL statements and iook

'protocol name
•no of processes
'no of channels

The specif ication f i le contains statements defining the
number of processes , number of channels , number of events
and their names . For every process there is a state
transition matrix . The state trans ition matrix indicates the
trans it ions between states in a process and the event
invo lved in the trans ition . The event is represented by a
number and the direction , that is send or receive , by the
sign of the number . A secorid matrix (same dimension as the
state trans ition matr ix) indicates in its corresponding

232

entry to which process an event i s send or f rom which
proces s an event is received .

When the trans lator program is activated , it wil l prompt th�
user for :

specify protocol name :
f i le name with specif ication :

After the user replied , the trans lator program will start
building the speci f ication f i le . Error messages are printed
as they are encountered . I f no errors were encountered the
message " Speci f ication f i le bui lt . No error s " is displayed
fol lowed by " please speci fy the channel capacities

- channel A to B : " and
" channe l B to A : " .

The user then supplies these capac ities . (A and B are two
process names as def ined in the module header .)

5 . The Validation Routine

5 . 1 The Validation Technique

I n the validation routine the protocols are def ined in terms
of interactions between two or more f inite state machines .
I nteractions · cons ists of the exchange of events (or
mess sages) that are transported via message queues in the
communication medium . The validation routine uses the state
exploration te�hnique or reachabi lity analys is .

This ·technique \ i s based on exhaustive ly exploring all the
poss ible interactions of two or more entities wi thin a
layer . A compo� ite or global state of the system i s def ined
as compris ing of the states of the individual proces ses as
well as the states f rom the channels . The general principle
of reachabi l ity analys is is as fol lows .

First an executable model of a communication system is
developed , that inc ludes two or more communicating machines
running the protocol being validated and a model of the
communications medium that transports messages between them .
A communications medium between (say) process A and process
B wi l l be handled as two one way channe ls , one f rom process
A to process B and the other one from process B to process
A. An initial state of the system is def ined and all system
states reachable from the initial state are determined by
systematically exploring all poss ible trans itions (in
accordance with the transitions speci f ied in the component
process) from each system state reached . All reachable
states are analyzed to determine whether they manifest
errors . The process is repeated for each of the newly
generated states until no new states are generated . (Some
transitions lead back to already generated states .) As these

2 3 3

system states , are explored a reachability tree is
constructed starting at the initial system state .

The fol lowing example will i llustrate the principle .
Cons ider the read/write protocol in f igure 5 . 1 . This
protocol cons i sts of two processes A and B . Each process has
four states . The model has two one-way channels as
indicated . Initially both process A and proces s B are in the
RESET state and both channe ls are empty - this combination
wi ll form the initial system state . The only new state
poss ible from the initial state is when process A places a
WRITE event on the channe l A- >B and enters the PEND . WRITE
state . The state of the system wil l now be :

state of process A
state . of process B
channe l A- >B
channel B- >A :

PEND . WRITE
RESET
WRITE

From this system state another new state can be generated
(when process B receives the WRITE) . In total nine system
states can be generated f rom the initial state (see f igure
5 . l (b)) . The corresponding reachability tree is i llustrated
in figure 5 . l (c) .

The main advantage of reachability analys is i s its graphical
form and pos s ibility of automi z ation . The maj or disadvantage
i s state space explos ion , that i s , the generation of a
number of reachable system states exceeding the capacity of
the validation system . The example in appendix B i l lustrates
thi s disadvantage . The protocol in appendix B cons ists of
two processes , ea9h having four states . Although this i � a
very s imple protocol its corresponding reachabi lity tree
consists of 26 system states . A validation of the OSI
Session Layer us ing reachabi lity analys is generated 2 5 0 0 0
reachable states [WEST8 6] .

2 3 4

s ()()

r (x }

P r o c e s s A

s e n d x
r e c e i v e x

P r o c e s s B

f igure 5 � l (a) . read / wr ite protocol

s y s t e m
s t a t e

3
0
4

7

8

9
0

s t a t e
o f A

r e s e t
p e n d . w r i t e
p e n d . w r i t e
.p e n d . w r i t e

r e s e t
P t? L (1 . � r i t e

w r 1 .t e
p te n d . r e a d
p e n d . r e- a d
p e- r: d . r e a d

w r i t e.
p e rJ C . r E- c: Ci

r e .s e t

c h a nn e l
A --? B

w r .1. r., e

r e a a

f ig_ure 5 . 1 (b) . ·system states

s t a t e
o f B

r e s e t
r e s P t

p e r, d � w r i t e
r e s e t
r e s e t
w r i t e
w r i t e
w r i t e

p e n d . r e a d
Vi.1 r i t e
w r i t e
r E s e t
r e s e t

figure 5 . l (c) . reachabi lity tree

c h a n n e l
B � A

n e c k.

a c k

a c k

2 3 5

2 3 6

5 . 2 Protocol Properties Validated

The error analysi s emphasize the detection of errors that
are common to all protocols . The validation routine reports
the following error conditions :

1 . Unspecif ied receptions . That i s when the protocol system
reaches a state when a process has no spec if ied mechanism
for receiving an incoming event . To report a reception
error there only need to be one incoming event which can
cannot be received . Poss ible transmis sions or other
receptions do not inf luence this decision .

2 . Deadlocks or terminal states of the protocol system which
when entered , permit no further transition in the system .

3 . Channe l overf low which can occur i f a process tries to
send an event to another process in a way that a pre
defined maximum number of event underway between the
processes is exceeded .

4 . All trans itions within a process that were not exercised
during the validation .

This validation routine does not detect any types of errors
that are expressible in terms of event sequences but not in
terms of the system state at a given instant (for example
livelock) . Since , in general , there are more executable
sequences than reachable states , this type of error
detection wil l add complexity to the analys is (WEST8 6] .

5 . 3 Input and output

As discus sed in section 4 the input to · the validation
routine is a specification f i le containing APL assignment
statements which define the protocol . Thi s speci f ication
f i le ·is imported into the APL workspace after which it wi l l
be treated a s and APL function (routine) . To activate the
protocol def inition this function must be executed . When the
definition function is executed , the validation routine can
be started .

The validation routine produces several output reports which
are presented in such a way that the user can derive other
information useful in understanding the system behaviour .
For example the sequences that lead to errors can be' derived
from the output as well as all stable states , that is states
in which the message , 1ueues are empty . The latter
information is particular1� , useful in understanding the
synchroni z ation of the : ;ystem . The system does not
explicitly report the execution sequences which led to the
errors .

An example of the system ou(:put can be found in appendic c .

2 3 7
5 . 3 . 1 The Trace

The tr�ce is produced as the validation routine proceeds .
This continuous output wi l l appear on the screen . (The user
has the option to re-route this output to the printer .) The
validation routine repeats its actions for the initial and
all subsequent system states . The routine attempts to
generate as many new system states f rom each previous ly
generated system state . Tbe actions of the validation
ioutini in its attempt to c��ate new system states are
reported . The fol lowing fragment reports the actions taken
to generate new states f rom a system state .

1

2

� - ,[1. 1.

iv

iii [

THE J FOUND WAS NO 2 .
RECEPTION - EVENT 4 FROM 2 TO 1

FROM PROCESS 2
NOTHING IN CHANNEL TO RECEIVE 2 - 1

NO TRANSITION FROM 2 TO 2
RECEPTION - EVENT 3 FROM 2 TO 3

FROM PROCESS 2
NOTHING IN CHANNEL TO RECEIVE 2 - 3

NO TRANSITION FROM 2 TO 4

NO TRANSITION FROM 1 TO 1
RECEPTION ·- EVENT 1 FROM 1 , TO 2

FROM PROCESS 1
. . . . REST F IRST . . . 1

NO TRANSITION FROM 1 TO 3
NO TRANSITION FROM 1 TO 4

v PERTURB . • • 1
vi ,, ·MEMBER • • • . N

(1) indicates that the system state under inspection is
system state number 2 . " 1 " represents the possib le

· transmissions and receptions in proces s 1 and " 2 " _the
possible transmiss ions and receptions in process 2 . (i i)
.indicates that process 1 can receive event number 4 from
process 2 and thereby advance to state number 1 but the
message ' "NOTHING IN CHANNEL TO RECEIVE 2 - 1 " indicates that
there is nothing in the channel to receive which wi l l enab le
process 1 to go from state 2 to state 1 . In (i i i) we see
that process 2 can receive event number 1 (" . . . FIRST
1 ") and thereby go from state 1 to state 2 . The message "NO
TRANSITION FROM 2 TO 4 " (iv) indicates that process 1 can
never (nor by transmiss ion or reception) advance f rom state
2 to state 4 .

" PERTURB . . . l " (v) indicates that one new system state was
formed from system state number 2 . "MEMBER . . . N . . " (vi)
indicates that this new system state is not a m�mber of the
set of existing system states . The new system state is now
added to the set of exi sting system states . The total number

o f system states and the validation time are reported a t the
end of the trace . An example of a trace can be found in
appendix c , iection C . 1 .

5 . ·3 . 2 The System States

The APL function PRTSYS lists the set of system� states . The
�tate �atrix and the associated channe l contents for each
system state is listed . I f a system state contains an erro�
an error message is displayed . For example the following
information wi l l be listed for a system state .

STATE NO . 2
STATE MATRIX

2 1
0 1

CHANNEL CONTENTS
CHANNEL NO . 1 lE
CHANNEL NO . 2

System state 2 represents the system state in which process
1 is in state 2 , process 2 is in state 1 and there is one
message on the channe l from process 1 to process 2 . (The
" E " is an eliminator , for example � 4E4 rep:i;esents event 1 4
followed by event 4 .)

Section C . 2 , appendix c contains an example of a listing of
system states .

5 . 3 . 3 Transitions not exercised

The APL function DEADTRANS lists for every process all those
trans itions which were not exercised during the validation
process . Section C . 3 , appendix C contains an example of such
a listing .

5 . 3 . 4 Protocol Definition

The APL function PRINTDEF lists the protocol def inition. I t
lists the number o f processes and their names , the state
names for every process , the event names and the channe l
numbers and what processes they connect . Section C . 4 ,
appendix C contains a protocol def inition listing .

5 . 3 . 5 Error Messages

Typical error messages are :
* * * ERROR IN THI S STATE - UNSPEC . RECEP .
* * * ERROR IN THI S STATE - DEADLOCK/TERM ST .
* * * ERROR IN THI S STATE - CHANNEL OVERFLOW

These messages are displayed directly following the state
natrix and channe l contents for the particular system state .
Appendix D c6ntains examples of error messages .

5 . 4 Additional Functions

Apart from the APL functions discussed in 5 . 3 . 2 , 5 . 3 . 3 and
5 . 3 . 4 there exist other functions to provide additional
information about the validated protocol .

The function NUMERR summarizes the error conditions found
during the validation . I t l ists the number of system states ,
deadlocks , unspecif ied receptions and channel overf lows .

The function PRTTREE produces output which can be used in
constru.cting the reachability tree . The function lists the
number of every system state followed by the numbers of the
system states which were generated from it , · that is ,
connected to it in the tree .

The function PRTERR lists all those system states with
errors . Ah error message wil l indicate the type of error .

6 . Applications

The validat.ion routine was tested on several examples . Most
of these examples were obtained from articles and in all
cases the system state spaces and errors as described in the
articles were reproduced [WEST7 8B , GOUD8 5 , ZAFI 8 2] .

The validation routine was also applied to the CCITT X . 2 1
Recommendation . The X . 2 1 interface is a recommendation for a
standard means · of connecting Data Terminal Equipment (DTE)
to Data Circuit-termination Equipment (DCE) in a public data
network . The X . 2 1 interface is formal ly defined in a state
diagram for the combined DTE-DCE [X2 1 - 7 6] . The validation
routine can only be applied to a pair of separately defined
communicating processes . I t is therefore necessary to derive
from the combined state diagram the logical structure of the
DCE and . DTE . West used the combined state diagram to derived
two separate state diagrams (see appendix E) [WEST7 8] . These
two state diagrams were used in writing the ESTELLE
ipecification for the protocol . The protocol definition
inc ludes two processes (DTE and DCE) with 23 states each and
1 2 events . There are two channe ls , one from the DTE to the
DCE and one from the DCE to the DTE . The channe l capacities
were taken as 1 .

The validation routine generated 3 3 1 system states . There
were 18 unspecif ied receptions and 1 2 9 channels overf lows .
(The channel overf lows should not be cons idered as errors ,
but rather as states in which one or both of the processes
could proceed to another state but only if a channel was
empty .) The validation time on an Olivetti M2 4 was 1 hour 1 5
minutes 3 8 , 5 seconds .

Most of these unspecif ied receptions are the result of
collis ions resulting when either the DCE or the DTE

indicates a tr�nsition to a NOT READY state at the same time
that the other i s initiating a cal l establi shment procedure
or· ig itself making a transition to a NOT . READY state . These
errors are the result of incomplete speci f ication of the
interface . These errors were also found in the validation · by
We�t and Zafiropulo in [WEST7 8] .

7 . Limitations of the Implementation

The main drawback of thi s validation system is the leve l of _
sophistication of the trans lator program . This program
dictates how the ESTELLE specification should be written .
For example , the provided and priority c lauses are not
allowed . No syntax checking of the ESTELLE code is done . A
trans lator program which places no reatrictions on how the
specif ication i s written wi l l be comp lex . I n thi s validation
system the emphas i s i s on the validation routine and
therefore the level of sophistication of the trans lator
program is acceptable .

In the validation routine the choice of the data structure.
(matrice s) to represent the state transitions place ' a
l imitation on the structure of the directed graph which
represents the protocol . For example the fol lowing subgraph

0
wi ll have to be - represented as

0
Although this i s no maj or limitation it can · be' . removed by
using adj acency lists to represent the state ttans itio�� .
This limitation wi l l be removed in future versions of the
validation routine .

8 . Conclusion

Although this validation system is limi ted in some' ways it
proved to worked well on the examples tested . . This method
has also been applied succesfully to the I SO Sess ion Layer
specif ication [WEST8 6] . Numerous variations of the basic
reachability analys is method are known .

I t should be noted that reachabi lity analys is i s only one of
many different validation methods and the protocol
properties validated in this implementation only a subset of
a ll protocol properties [PUNT8 6] .

9 . References

(CAST8 5] R Castanet , P Gui tton and O Rafiq , "An Automatic
System for the s tudy of Protocols : A Presentation and
Critque based on a worked example" , Sympos ium on Protocol
Specification , Tes ti ng and Ver i fication IV , Y Yemini , R
Strom , S Yemini (eds) , Nor th-Ho l land , 1 9 8 5 , pp 1 1 1 - 1 2 6 .

(COUR8 6] J P Courtiat et al , "A S imulation Environment for
Protocol Speci fications described in ESTELLE " , Sympos ium on
Protocol Speci f ication , Tes t ing and Ver i f ication V , M Diaz
(ed) , North-Holland , 1 9 8 6 , pp 2 9 7 - 3 1 2 .

(GO:tJD8 5] M G Gouda and Ji -Yun Han , " Pro.tocol Val idation by
Fair Progres s S tate Exploration" , Computer Networks and I SDN
Systems , No 9 , 1 9 8 5 , pp 3 5 3 - 3 6 1 .

(PUNT8 6] J L Punt , " Protocol Val idation Methods " , Technical
Report CS- 8 6 - 0 5 - 0 0 , December 1 9 8 6 , Department of Computer
Science , Universi ty of Cape Town .

(WEST78] C H Wes t and P Zaf i ropulo , "Automated Val idat ion
of a Communications Protocol : The CCITT X . 2 1
Recommendation" , IBM J o f Res . Develop . , Vol 2 2 , No 1 ,
January 1 9 7 8 , pp 6 0 - 7 1 .

(WEST7 8B] C H Wes t , " General Technique for Communications
Protocol Val idation" , IBM J of Res . Develop . , Vol 2 2 , No 4 ,
July 1 9 7 8 , pp 3 9 3 - 4 0 4 .

[WEST8 6] C H Wes t , " Protocol Val idation
Exploration' ' , IBM Zurich Research
Ruschlikon , Switzerland , February 1 9 8 6 .

by Random
Laboratory ,

State
8 8 0 3

[ZAFI 8 2] P Zaf iropulo et a l , "Protocol Analysi s and
Synthes i s using a State Trans i tion Mode l " , Computer Network
Architectures and Protocols , P E Green (ed) , P lenum P.res s ,
1 9 8 2 .

(X2 1 - 7 6] Recommendat ion X . 2 1 , " General purpose interface
between data terminal equipment (DTE) and data c i rcui t
terminating equipment (DCE) f o r synchronous operation on
public data networks ' ' , CCITT , 1 9 7 6 , pp . 3 8 - 5 6 .

24 1

Appendix A - An ESTELLE Specification
(.
(*
(*
(*
(.
(.

• • • * * * • * * * * * * * * * * * * * • * * * * -- *
R e a d / W r i t e P r o to c o l � re f e r f i gure 5 . 1

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
t)

(.
(t
(*
(*
(*
(*
(*
(*
(*
(*

u s e r · - - - - - - - - ·

P i I ' - - - - - ·

I n e t w o r k · - - - - - - - - ·

u s e r
' ·- - - - - - - - '

r e ad / w r i t e

p 2

! ne t w o r k · - - - - - - - - ' *)
(* *)
(* l ay o u t o f s p e c i f i c a t i o n : *)
(* S p e c i f i c a t i o n R e a d _W r i t e Exam p l e *)
(* t y p e a s n e c e s s a ry *)
(* c h an n e l d e f i n i t i o n s t o be u s e d b e t w e e n n e t w o rk , *)
(* u s e r a n d r e a d _w r i t e p r o c e s s e s *)
(* m o d u l e h e a d e r d e f i n i t i o n s f o r n e t wo r k , u s e r a nd *)
(* r e a d _w r i t e
(*
(* b o d y f o r u s e r a s e x t e r n a l
(* b o d y f o r n e t w o r k a s e x t e r n a l
(*
(* b o d y f o r r e a d _w r i te
(* c o n s t , t y p e ,

*)
*)
*)
*)

*)
*)
*)

(*
(*
(*
(*
(*

{ *
(*
(*
(*
(*
(*

(.

m o d u l e n e a d e r d e f i n i t i o n s p r o c e s s l ,
b o d y f o r p r c c e s s l

p r o c e s s 2
- *)

*)
*)

(*

(*

c o n s t , t y p e , va r , s t a t e , p r o c e d u r e s ,
i n i t i a l i z a t i o n p a r t , t ra n s i t i o n p a r t

e n d o f p r o c e s s l b o d y
b o d y f o r p ro c e s s 2

c a n s t , t y p e , va r , s t a t e , p r o c e d u r e s ,
i n i t i a l i z a t i o n p a r t , t ra n s i t i o n p a r t

e n d o f p r o c e s s 2 b o d y
v a r p a r t o f read_w r i t e
i n i t i a l i z a t i o n p a r t o f r e a d _w r i t e

e n d o f b o d y f o r r e a d _w r i t e

(* v a r p a r t o f s p e c i f i c a t i o n
(* i n i t i a l i z a t i o n pa r t o f s p e c i f i c a t i o n
(* e n d o f s p e c i f i c a t i o n

f u n c t n *)
*)
*)
*)

f u n c t n *)
*)
*)
*)
*)
t)

*)
*)
*)
*)

(* t t t t t t t t • • • • • *)

(* c h a n n e l d e f i n i t i o n s *)
c ha n n e l U_a c c e s s __p o i n t (u s e r , p r o v i d e r)

c h a nn e l N_a c c e s s __p o i n t (u s e r , p r o v i d e r)

(* m o du l e h e a d e r d e f i n i t i o n s *)
a o du l e u s e r _t y p e p r o c e s s

a o du l e r e ad _w r i t e _t y p e p ro c e s s
(U : U _a c c e s s _p o i n t , ,

N : N _a c c e s s _p o i n t ; p a ram . . .)

aodu l e n e t w o r k _t y p e p r o c e s s

(* b o d y d e f i n i t i o n s
b o d y n e t w o r k _b o d y f o r n e t w o r k _t y p e ; e x t e rna l ;
body u s e r_b o d y f o r u s e r _t y p e ; e x t e r na l ;

b o d y r e a d __ w r i. t e b o d y f o r r e a d _w r i t e _t y p e ;
c a n s t
v a r . ,

(* m o d u l e d e f i n i t i o n s w i t h i n r e a d _w r i t e _b o d y
m o d u l e p r o c e s s l _t y p e p r o c e s s
(U : U _a c c e s s _p o i h t ;

N : N _a c c e s s _p o i n t ;)

m o d u l e p r o c e s s 2 _t y p e p r o c e s s
(U : U a c c e s s p o i n t ,

N : N =a c c e s s =p o i n t ;)

*)

*)

2 4 2

(* body f o r p r o ce s s l
body p r.a c e s s I _b ody f o r p r o c e s s I _t y p e ;

c o n s t • • .
type . • . •
var • . . .
s tate : (re s e t , w r i t e , pend . w r i t e , pend . r� a d) ; _

*)

(* p r o c e d u r e s & func t i o ns *)
p ro c edure s e n d ()
p r o c edure r e m o v e (

i n i t i a l i z e
t o re s e t

beg i n

(* p r o c e s s l *)

e n d ;
(* � ra n s i t i on p a r t f o r p r o c e s s l

t ra n s
f roa r e s e t

t o pend . w r i t e
beg i n

s � nd (W R I TE)

e n d ;
froa pend . w r i te

when N . d a t a . i d
t o r e s e t

beg i n
remov e (

e n d ;
f roa p e n d . w r i t e

NACK

when N. d a t a . i d ACK
t o w r i t e

beg i n
r e m ov e (

e n d ;
f roa w r i t e

t o p e n d . r e a d
beg i n

s e nd (READ)

e n d ;
f rom p e n d . r e a d

w h e n N . d a t a . i d
t o w r i t e

beg i n
remove (

e n d ;
f roa pend . r e a d

N ACK

when N. d o t a . i d . ACK
t o re s e t

b e g i n
remove (

e n d ;
end; (* e n d o f p r o c e s s } b o d y

. (* b o d y f o r p r o c e s s 2

*)

body p r o c e s s 2 _b o d y f o r p r o c e s s 2 _t yp e ;
c o n s t . . .
ty p e
va r
s tate : (r e s e t , w r i t e , pend . w r i t e , p e n d . re a d) ;

*)

*)

(* p r o c e d u r e s & fun c t i o n s *)
p r o c e d u re s e nd ()
p r o c e d u re r e m o v e (

i n i t i a l i z e
t o r e s e t

beg i n

end ;

(* p r o c e s s 2 *)

(* t r an s i t i o n p a r t f o r p r oc e s s 2
t ra n s

f ro a r e s e t
whe n N . d a t a . i d

t o p e n d . w r i t e
beg i n

r e m ov e (

e n d ;
f roa p e n d . w r i t e

t o r e s e t
b e g i n

s e n d (NACK)

e n d ;
f ro a p e n d . w r i t e

t o w r i t e
b e g i n

s e n d (ACK)

e n d ;
f r o a w r i t e

when N . d a t a . i d
t o p e n d . r e a d

beg i n
r e m o v e (

e n d ;
f roa p e n d . r e a d

t o w r i t e
b eg i n

s e n d (NACK)

e n d ;
f ro a ' p e n d . r e a d

t o r e s e t
beg i n

s e n d (ACK)

e nd ;

WR I TE

READ

end; (* e n d of p r o c e s s 2 b o d y *)

*)

(* e n d o f m o d u l e d e c l a r at i o n p a r t o f r e a d _w r i t e b o d y *)
i n i t i a l i z e { * i n i t i a l i z a t i o n p a r t o f r e a d _w r i t e b o d y *)
beg i n

i n i t p r o c e s s l w i t h p r o c e s s l _b o d y (n am e) ;
i n i t p r o c e s s 2 w i th p r o c e s s 2 _b o d y (na a e) ;

a t t a c h U t o
a t t a c h N t o

end,; (* e n d o f r e a d _w r i t e b o d y *)
(* r e a d _w r i t e b o d y h a s n o t r a n s i t i o n p a r t *)
(* v a r i a b l e d e c l a r a t i o n p a r t o f t h e s p e c i f i c a t i o n *)
var

(* i n i t i a l i z a t i o n p a r t o f t h e s p e c i f i c a t i o n
i n t i a l i z e

beg i n
i n i t
a l l
be g i n

i n i t
i n i t
c o n n e c t
c o n ne c t . . .

*)

e n d ;
e n d ; (* e nd o f m o d u l e i n i t i a l i z a t i o n p a r t *)

e n d ; (• e n d o f s p e c i f i c a t i o n . S p e c i f i c a t i o n h a s n o *)
(* t r a n s i t i o n p a r t . *)

Appendix B - Protocol and R�achability Tree

+ 3

-x = send (�)

PROC E S S
P 1

+x = receive (x)

PROCESS
P 2

+ 1

1 1 ·

Appendix C - System Output

C . 1 Trace

V A L I D
I N I T I A L I Z A T I ON COM PLETED

T H E J FOU N D W A S N O l .
TRA N S M I S S I O N - E V E N T ' l FROM l TO 2

T O P ROCE S S 2

RECEPT I ON - E V ENT l FROM l TO 2
FROM F R OC E :3 S 1

NOTH l N G I N C H A N N EL T O R E CE I V E

PEP T U RB . • . :
M E M F; E ?. . . . • N . . . l • • TEM P . • • •

THE J F O U N D W A S N G 2 .
RECEPT I ON - E V E N T 4 FROM 2 T O 1

FROM PROCES S 2

- 2

NOTH I NG I N C H A N N E L TO R ECE I V E 2 - 1
RECEPTION - EVENT 3 FROM 2 TO 3

FROM PRO C E S S 2
NOTH I NG I N C H A N N E L T O R ECE I V E 2 - 3

- RECEPT I ON - E V E N T 1 F R OM 1 TO 2
F R O M PROC E S S l

. . . . R E S T F I R S T . . . 1

PER T U R B . . . l
!':EMBER N . . . 2 . . T E M F

THE J FOUND W A S N O 3 .
RECEPT I O N - E V E N T 4 FROM 2 TO l

FROM :F'ROC E S S 2
NOTH I N G I N CHANNE� TO RECE I V E 2 - l

R ECEPT I ON - E V E N T 3 FROM 2 TO 3
F R O M PROCE S S 2

NOTH I N G I N CHANNEL T O RECE I V E 2 - 3

TR A N S M I S S I O N

T R A N S M I S S I O N

.F E: R TL' R B . . . 2

E V ENT • 4 F R O M � TO
TC) F'hvCE .S S 1
E V E � T • 3 FROM 2 TO
TO PROCE S S 1

M t: M b E R • • • . N • • . 3 • • T E M P • • • •
M E: l"'. f. ER • . • . N • • • 4 . • T E M I' • . . •

THE � FOU N D W A S N O �
R EC E P T I O N - E V E N T 4 FROM 2 TO l

FR.OH PR OCE S S 2
. . . . R E S T F I R S T . . , 3
F I R S T I N C H A N N E L 3
NOTH I N G I N CHANNEL T0 R EC E I V E 2 -

R EC E P T I O N - EVENT 3 FRO� 2 TO 3
FROM PROCE S S 2

. • • F I R S T . • • 3

R EC E PT I ON - E V E N T 2 FROM 3 TO 4
F R 0 H PROCE S S l

NOTH I NG I N C H A N NEL TO R ECE I VE 3 - 4

PEhTU R B . . . l
H E M B E R N . . . 5 . . T F. M F

THE J FOUND W A S N O 6 .
T R A N S M I S S I ON - E V E N T ' 2 F R O M 3 TC 4

TO PRC1C E S S 2

PECE P T I ON - E V ENT 2 F R O M 3 TO 4
FROM PROC E S S l

NOTH I N G I N C H A N N E L T O R ECE I V E 3 - 4

PER TURB . . . 1
MEM B E R • • . • N . • . 6 • • TEMP

THE J FOUND WAS NO 7 .
RECE PT I ON - EVENT 3 FROM 4 TO 1

FROH PROC E S S 2
NOTH I N G I N CHA N NEL TO RECE I V E 4 - l

RECE P T I O N - EVENT 4 FROM 4 TO 3
FROM PROCE S S 2

NOT H I NG I N CHANNEL TO R ECE I V E 4 - 3

R E C E P T I O N - E V EN T 2 FROM 3 TO 4
FROM PROC E S S l

. • . . R E .S T F I R S T • . • 2

F' E P. T U R B . . . l
K E M E E r: N • • • 7 . • T E M F . . • •

T H E J FOU N D W A S NO 8 .
R E C E PT I O N - EVENT 3 FROM 4 i TO l

FROM PROCES S 2
NO T H I NG I N CHAN NEL TO RECE I V E 4

RECEPT I O N - EVENT 4 FROM 4 TO 3
FROM PROC E S S 2

N O T H I NG I N C H A NNEL TO RECE I VE 4 - 3

T R A N S M I S S I ON - EVENT ' 3 FROM TO
TO PROC E S S 1

TR A N S M I S S i qN - EVENT • 4 FROM 4 TO 3
TO PROC E S S 1

PEE T U R B . . • 2
M E M B E R N • • . 8 . • TEMP
M EM E E R N . . . 9 . . TEMP

THE J FOUND W A S N O 9 .
RECE P T I ON - EVE�T 3 FROM 4 TO I

. F ROM PF:C,CE S .S 2
, . . . R E S ': F I R S T . . . 3

R EC E P T I O N - E V E N T 4 F?OM 4 TO 3
FRC; r, PRCCES S 2

• . • . R E .'.:: ! . • . . • F I R .S 'l. . . . 3
F ! R [7 I N CHANNEL 3
N G ! h I N� : N C H A N N E L T O P E C E ! V E 4

R E C E ? T l 0 N - E V E N 7 l F ROM l TO 2
r n si f".' PRocr .s :=: 1

N J ! H ! NG I N C H A N N E L TO RECE I V E l - 2

PEF: T L' F, E . . . J
K E M 3 E�; . • . • Y • • . 1 . • TEM F

T H E J F O U N D W A S NO 1 0 .
RECE P T I O N - EVENT 3 FROM 4 TO J

FROM FF<C>C E' S S 2
. . . . R E S '.: . . • . • F I F .S T . . • 4
F ::: i-: S, ']' I N C P. A N t� E L 4
N O T H I N G I N C H A N N E L TO R ECE I V E 4 - 1

RECEPT I O N - EVEN : 4 F R O � 4 TO 3
FROM PROCES S 2

. . � . P. E s ·:- . . . , .. F r R = -r . . . 4

R E C' E P T J CO N - f. 'i" E N T 2 F'P(: � 3 TC- 4
f' R C! !'i FFl:OCES.S l

NOTH I NG I N CHA NNEL TO RECE I V E - 4

PERTURB . • • l
M E M B F:F:' Y . . . t . . T E M P
V A � I D A T I O N COMFLETED . N U � B E R O F S . STATES 1 0 .

• • V A L I D A T I O N T I M E : 0 : 4 0 : 4 3 0

States

S Y S':"EH STATES :
£, T A T E NO . l .

S 'Z' AT E H P. T R I X :
l 0
0 l

C H A N NEL CONTEN T S :
CHANNEL NO . 1 . . • • •
CHANNEL NO . 2

STATE N O . 2 .
S T A T E M A 7 R I X :

2 1
0 l

CHANNEL CONTENTS :
CHAN NE. N O . i . . • • • l E
C H A NNEL NO .

STATE NO . 3 .
STATE M A TR I X :

2 0
0 2

2 • • . • •

CHANNEL CONTEN T S :
CHANNEL NO . 1
CHANNEL N O . 2

STATE NO . 4 .
STATE MAT R I X :

2 0
l 1
C H A N NEL CONTEN T S :

CHANNEL NO . l . . . • .
CHAN NEL N O . 2 4 E

STATE NO . 5 .
S T ATE MATR I X :

2 0
1 3
C H A N N EL CONTE N T S :

CHANNEL N O . 1 . • . • .
C H A N N E L N O . 2 • • • • • 3 E

S T ATE N O . 6 .
STATE M A T R I X :

3 0
0 3

CHAN N EL CONTENT S :
CHANNEL N C . l . . • • .
C H A N N EL NO . 2

S TATE N O . 7 .
S TATE M /..TR I X :

4 1
0 3

CHANNEL CONTEN T S :
CHANNEL N O . l . . • • . 2 E
CHA N N E L N O . G , • • • •

S T A T E NC• . 8 .
STATE M A T ! U X :

4 C
0 4

CHANNEL CONTEN T S :
CHANNEL N O .
CHANNEL NO . L • • • • •

ST .b. TE Nu . 9 .
S TATE M A T R I X :

4 0
1 i
CHA N N EL CONTEN T S :

CH A N N E L NO . j • • • • •
CHANNEL NO . 2 3 E

STATE N (J . J O .
S TATE M A TR I X :

4 0
l 3

C H A N N E L CONTENT S :
CHANNEL NO . J • • • • •
CHANNEL N O . 2 4 E

, , .· '. I 1

� ·:i '

C . 3 Transitions not exercised

T R A S 5M I S S 1 0 N S t R 8C E P T I G N S N O T T A E EN -
PROC E S S l

N O T R A N S M I S S I ON / R ECEFT I ON F R O M STATE 3 TO 2
NO T R A N S M � S S ! O N / R E CE P T I ON FROM STATE 6 TO 5

N O T E A N S H ! S S I ON ! R E C E P T I O� F R O � S T A T E 1 TO 6
N O T R A N S M I S S l O N / P EC E P T I O N F R O M S T A T E 4 TO 3

= � = = = = - = - - = - - - - - - - � - - - - � - - - - - - - - - - - - - - - - -

C . 4 Protocol Definition

PROTOCOL DEF I N I T I ON (READ/ W R I T E)

N U M B E R O F PROCES S E S : 2
1 . FROC_A
2 . FROC_B

N U M B E h O F CHANNELS : 2
N O .
N O . 2

F R O M FPOC E S S PROC A TO
FRCM PROC E S S P R O C _B TO

S T ATE N A M E S FOR PROCES S 1
S T A T E N O . - R E S ET
ST A 1 E N (> • " - F :E N D . WR I T E
S T A T E N n 1 - WR I T E
S T A T E NO . 4 - F E N D . R E A D

S T A T E � A K E S FOR PROC E S S 2
S T A T E NC' . - R E S E T
S T A T E N O . - P E N D . W R I T E
S TA T E N O . J - W P I TE
S T A T E N O . 4 - P E N D . REA[,

N U � I E R OF E V E N T S : 4
E v E N N (' . i - wR I "I E
E V E N N : . ; [A :
EV E' ." N O . _ A C E
E V EN N 0 . 4 - N A(K

PROC A

PROC_B

PROC_B
P R O C _A

Appendix D - Error Messages
THE J FOUN D WAS NO 5 .

TRAN SMI SS I ON - EVENT • 1 FROM 1 TO 2
TO PROCES S 2

* * * * OVERFLOW : l - 2 EV • 1 P 2

TRAN S M I S S ION - EVENT • 1 FROH 2 TO l
TO PROCESS 3

CANNOT RECEI V E . . 4 • • CHANNEL . • l
* * * * RECEPTI ON ERROR - � - - - -

RECEPT I ON - EVENT 3 FROM 1 T O l
FROM PROCES S 2

NOTH I NG I N CHANNEL TO RECEI V E l - 1
RECEPT I ON - EVENT 1 FROM l TO 2

FROM PROCESS 2
NOT H I NG I N CHANNEL TO RECEI VE l - 2

PERTURB . . . 2
MEMBER N . . . 6 • • TEMP
HEHBER N . . . 1 . • • TEMP

PERTURB . . . 0
* * * * THE 1 4 T H STATE : DEADLOCK/ TER M IN A L STATE ! ! ! ! !

STATE NO . 7 .
· sTATE MATR I X :
2 2 0
0 2 0
0 0 l

CHANNEL CONTENTS :
CHANNEL NO . 1 4 E l E
CHANNEL NO . 2
CHANNEL NO . 3

* * * ERROR I N TH I S STATE - CHANNEL OVERFLOW

STATE NO . 8 .
STATE MATRI X :

l l 0
0 l l
0 0 1

CHANNEL CONTENTS :
CHANNEL NO . 1 4 E
CHANNEL NO . 2 l E
CHANNEL NO . 3 . . . • .

* * * ERROR I N TH I S STATE - U N SPEC . RECEP .

)

STATE NO . 1 4 .
STATE MATRI X :

3 0 0
0 1 0
0 0 3

CHANNEL CONTENT S :
CHANNEL NO . 1
CHANNEL NO . 2
CHANNEL NO . 3

* * * ERROR I N TH I S STATE - DEADLOCK/ TERM . ST

ERROR CONDI T IONS - SYSTEM STATES

NUMBER OF SY STEM STATES : 1 5
NUMBER OF DEADLOCKS :
NUMBER OF UNSPEC . RECEP :
NUMBER OF OVERFLOW S : 4

2 4 9

Appendix E -- x .. 21 Recommendation State Diagrams

4

SELECTION

SIGSALS

10

C � L l. f P L IS E

IDE :- T I F IC� nos

(a)

1 0 BIS

CALLI:--G L I S E

IDE S TfFICATION

SIG""LS

(b)

Derived s tate diagrams for the DTE (a) and DCE (b) . where S indicates send and R receive .

2 5 0

	SAICSIT_1987_Punt
	Front_Cover.pdf
	Front_Cover

