SUID-AFRIKAANSE REKENAARSIMPOSIUM
SOUTH AFRICAN COMPUTER SYMPOSIUM

HOLIDAY INN PRETORIA
JULIE 1 -3 JULY 1987

Proceedings
of the

4th South African Computer Symposium

Holiday Inn, Pretoria
1 - 3 July 1087

edited by

~ Pieter Kritsinger

Computer Science Department
University of Cape Town

PREFACE

Computer science is an emerging discipline which is having difficulty in being
recognised as a worthy member of the sciences. I will paraphrase John Hopcroft, co-
winner of the 1986 Turing Award, when, during a recent interview, he said that the
primary reason for the lack of recognition, is the age of our researchers. Probably
not one of the researchers who presented their work at this symposium is older
than 45. I know of no computer scientist in South Africa who is in a position where
(s)he can affect funding priorities. As far as I know we have no representation
on any of the committees of the Foundation for Research Development and for our
Afrikaans speaking fraternity, none who is a member of the Akademie vir Wetenskap
en Kuns. It will take time and conscious effort to establish our presence. The same
is true of course for our universities. Again, with one exception, I know of no
dean of a science faculty, vice-principal or principal who is a computer scientist.
We consequently spend an enormous amount of time trying to explain the needs
of computer science and its difficulties. I believe this symposium is a further step
towards accreditation by our peers and superiors from the other sciences.

The total number of papers submitted to the Programme Committee for con-
sideration was 34. Each paper was reviewed by three persons knowledgeable in the
field it represents. Of those submitted, 23 were finally selected for inclusion in the
symposium. As a result the overall quality of the papers is high and as a computer
science community in Africa we can be justly proud of the final programme.

This is the fourth in the series of South African computer symposia. This year
~ the symposium is sponsored by the Computer Society of South Africa (CSSA), the
South African Institute for Computer Scientists and the local IFIP Committee. The
executive director of the CSSA and his staff deserve warm thanks for handling the
organisation as well as they have, while the Organising Committee provided Derrick
and I with very valuable advice.

Finally I would like to express my sincere appreciation to the authors, to the
‘members of the Programme Committee and particularly the reviewers. Without
the kind cooperation of everyone, this symposium would not have taken place.

Pieter Kritsinger
July 1987,

ii

SYMPOSIUM CHAIRMAN: PS Kritzinger, University of Cape Town.
SYMPOSIUM CO-CHAIRMAN: D Kourie, University of Pretoria.

MEMBERS OF THE PROGRAMME COMMITTEE

Judy Bishop, Witwatersrand University

Chris Bornman, UNISA

Hannes de Beer, Potchefstroom University
Gideon de Kock, Port Elizabeth University
Jaap Kies, Western Cape University

Derrick Kourie, Pretoria University

Pieter Kritzinger, Cape Town University
Tony Krzesinski, Stellenbosch University
Michael Laidlaw, Durban Westville University
Peter Lay, Cape Town University

Ken MacGregor, Cape Town University

Theo McDonald, Orange Free State University
Jan Oosthuizen, University of the North
Dennis Riordan, Rhodes University

Alan Sartori-Angus, Natal University

John Shochot, Witwatersrand University
Theuns Smith, Rand Afrikaans University
Trevor Turton, ISM (Pty) Ltd

Gerrit Wiechers, Infoplan.

LIST OF REVIEWERS

BERMAN Sonia
BISHOP Judy
BORNMAN Chris
CAREY Chris
CHERENACK Paul
DE BEER Hannes

DE VILLIERS Pieter
GORRINGE Pen

KIES Jaap

KOURIE Derrick
KRITZINGER Pieter
KRZESINSKI Tony
LAIDLAW Michael

LAY Peter

iii

MacGREGOR Ken
MATTISON Keith
McDONALD Theo
RENNHACKKAMP Martin
RIORDAN Denis
SATORI~-ANGUS Alan
SC%OCHOT John

SMITH Theuns

TURTON Trevor

VAN DEN HEEVER Roelf
VAN ROOYEN Hester
VON SOLMS Basie

VOS Koos

TABLE OF CONTENTS

Keynote Address

"An Extensible System and Programming Tool for
Workstation Computers.’ . .ceeeeeeesccssssssosssocssnse ceeess 1
Niklaus Wirth, ETH, 2urich

Invited Lectures

"The Relationship of Natural and Artificial
Intelligence." ..i.ieeeteeccccnnes not included in Proceedings.
G Lasker, University of Windsor, Ontario.’

"Software Engineering: What Can We Expect in
the Future?"ceceeeeeeeese..not included in Proceedings.
D Teichrow, University of Michigan, U.S.A.

Computer Languages I

"SPS-Algol: Semantic Constructs for a Persistent
Programming Language."eeceeeceeccesccsnscsooccnnssas 13
S Berman, University of Cape Town.

"Petri Net Topologies for a Specification Language." 25
R Watson, University of the Witwatersrand.

"Towards a Programming Environment Standard in LISP." ... 45
R Mori, University of Cape Town

"ADA for Multiproéessors: Some Problems and Solutions.".. 63
J Bishop, University of the Witwatersrand.

-Computer Graphics

"Polygon Shading on Vector Type Devices." .c.iiieeeceeecene 75
C F Scheepers, CSIR.

"Hidden Surface Elimination in Raster Graphics Using
ViSigramsS." ittt eeeeeeeeeeeeessssoossccssssssssscsssssasnscs 97
P Gorringe, CSIR.

Database Systems I

"On Syntax and Semantics Related to Incomplete
Information Databases.!iiiiieeeeeeesccccsaccsssoncns 109
M E Orlowska, UNISA.

"Modelling Distributed Database Concurrency Control
Overheads." ... eeeeceeeeceecsssssssscscoccsssssscsssssssssss 131
M H Rennhackkamp, University of Stellenbosch.

Operating Systems

"The Development of a Fault Tolerant System for a
Real—time EnVironment." © © 06 0606 060606 0060600000000 0 000000000000 149
M Morris, CSIR.

"A New General-purpose Operating System."cceec.... 161
B H Venter, CSIR.

iv

Computer Languages II

"The Representation of Chemical Structures by Random
Context Structure GrammarsS." ..c.ccececsecccsccsscsccscss 175
E M Ehlers and B von Solms, RAU.

"A Generalised Expression Structure."ccccceceee... 189
W van Bilion, CSIR.

Computer Networks and Protocols I

"An Approximate Solution Method for Multiclass

Queueing Networks with State Dependent Routing and

Window Row Control.! ...ceeeeeeceescssssosccssassssnssnaes 203
A E Krzesinski, University of Stelléenbosch.

"A Protocol Validation System."ccceeeen 50000000000 21
J Punt, University of Cape Town.

Computer Networks and Protocols II

"Protocol Performance Using Image Protocols." eeeee 251
P S Kritzinger, University of Cape Town.

Artificial Intelligence

"A Data Structure for Exchanging Geographic
15 oba(opa b= lo) ol S S S B 00 0 0B 00 0008660000060 000d000600000 267
A Cooper, CSIR.

"The Design and Use of a Prolog Trace Generator
for CSP." ...0.....0.....0"........................0.... 279
D G Kourie, University of Pretoria.

Database Systems II

"An Approach to Direct End-user Usage of Multiple
DR S S S S S 8 00 000 0000000000000 400000000000000000C 297
M J Phillips, CSIR.

"A Semantic Data Model Approach to Logical Data
Independence." ® © & & & 0 0 0 O O O O O O O O O O O SO SO OO O O O O e e 0 0 00 329

S Berman, University of Cape Town.

Information Systems

"The ELSIM Language: an FSM-based Language for the
ELSIMSEE." ® © & & & & & 0 0 & 0 O O O O O O O O O O O O O O O O 0 O 0 0 0 0 0 0 0 00 00000 343
L du Plessis and C Bornman, UNISA.

"Three Packaging Rules for Information System Design." . 363
J Mende, University of the Witwatersrand.

vi

Computer Languages III

"Experience with a Pattern-matching Code Generator." ... 371
M A Mulders, D A Sewry and W R van Biljon, CSIR.

"Set-oriented Functional Style of Programming.”" 385
C Mueller, University of the Witwatersrand.

Tutorial .

The use of Modula-2 in Software Engineering." 399
‘N Wirth, ETH, Zurich. '

vii

DAY 1

07h30 Registration and Coffee.

08h45 Welcoming address, President of the South African Institute of Computer Scientists,
Dr. G. Wiechers.

09h00 Invited Lecture.
Professor D. Teichrow, University of Michigan.
Software €ngineering, ... What Can We Expect in the Future.

10h00 COFfF€€
Computer Languages I. Chairman: G. Wiechers.

10h15 S.Berman, University of Cape Town.

_ SPS-AIgol: Semantic Constructs for a Persistent Programming language.

10h50 A. Watson, University of the Witwatersrand.
Petri Net Topologies for a Specification language.

11h25 R. Mori, University of Cape Town.
Towards a Programming €nvironment Standard in USP.

11h50 J. Bishop, University of the Witwatersrand.
ARDA for Multiprocessors: Some Problems and Solutions.

12h30 LWUNCH
Computer Graphics. Operating Systems.
Chairman: D. Kourie Chairman: K. MacGregor.

14h00 C. F. Scheepers, CSIR. . M. Morris, UNISA.
Polygon Shading on Vector Type The Development of a fault Tolerant
Devices. System for a Real-time €nvironment.

14h35 P. Gorringe, CSIR. B. H. Venter, CSIR.
Hidden Surface €limination in Raster A New General-purpose Operating
Graphics Using Visigrams. System.

~15h15 COfFee COffee

Database Systems I. Computer languages Il.
Chairman: B. von Solms. Chairman:-J-Bishop.

15h30 M.€. Orlowska, UNISA. €.M. €hlers and B. von Solms,

Randse Afrikaanse Universiteit.
On Syntax and Semantics Related to The Representation of Chemical
Incomplete Information Databases. Structures by Random Context
Structure Grammars.
16h05 M.H. Rennhackkamp, W. van Biljon, CSIR.
Stellenbosch University.

Modelling Distributed Database A Generalised €xpression Structure.
Concurrency Control Overheads

18h00

Cocktail Party in Cullinan Room A.

viii

DAY 2

08h30 Keynote Address by Profesor Niklaus Wirth, Swiss Federal Institute
for Technology, 2urich.
An Extensible System and a Programming Tool for
Worksstation Computers. ‘
Computer Networks and Protocols I. Chairman: P.S. Krizinger.
09h30 A.€. Krzesinski, University of Stellenbosch. |
An ARpproximate Solution Method for Multiclass Queueing Networks
with State Dependent Routing and Window FAlow Control.
10h05 J. Punt, University of Cape Town.
A Protocol Validation System. L
10h30 COFfEE)
Computer Networks and Protocols ll. Chairman: R. van der Heever.
11h00 P.S. Krizinger, University of Cape Town.
Protocol Performance using Image Protocols.
11h35 Invited Lecture by Professor G. Lasker, University of Windsor, Ontario.
The Relationship of Natural and Artificial Intelligence.) ,
12h30 LUNCH
Rrtificial Intelligence. Information Systems.
Chairman: G. Lasker. Chairman: D. Teichrow.
14h00 A. Cooper, CSIR L du Plessis and C. Bornman, UNISA.
A Data Structure for €xchanging The €LSIM language: an FSM-based
Geographic Information. language for the €ELSIM S€EE.
14h35 . I. Newcombe, University of Cape J. Mende, University of the
Town @nd R/Rada,Natiopql Library Witwatersrand.
of Medicing, Marjlard.
Strategyes/for Automatic Indexing Three Packaqging Rules for
and Thesaurus Building. Information System Design.
15h15 COffee COffee
Database Systems Il. Computer languages lil.
Chairman: C. Bornman. Chairman: N. Wirth.
15h30 MJ. Philips, CSIR. W. van Biljon, CSIA.
’ An Approach to Direct €nd-user Experience with a Pattern-
Usage of Mutiple Databases. matching Code Generator.
16h05 S. Berman, University of Cape Town. C. Mueller, University of
the Witwatersrand.
A Semantic Data Model Approach Set-oriented Functional
to logical Data Independence. Style of Programming.
16h45 Open Forum with professors G. Lasker, D. Teichrow and N. Wirth.
Moderator: Dr. D. Jacobson.
19h30 Symposium Banquet in Cullinan Room.

Guest speaker, Dr. D. Jacobson, Group €xecutive: Technology,

Allied Technologies Limited.

DAY 3

08h00
08h30

12h15
12h30

Registration (Tutorial only).

Tutorial.

The Tutorial will be given by professor Niklaus Wirth, Division of Computer Science,

Swiss Federal Institute of Technology, Zurich.

The use of Modula-2 in Software €ngineering.
Topics to be covererd include:

What is Software €ngineering?

Data types and structures.
Modularization and information hiding.
Definition and implementation parts.
Separate compilation with type checking.

- Facilities to express concurency.

Pompous programming style.
What could be excluded?

Close of Symposium.
LUNCH

A PROTOCOL VALIDATION SYSTEM

Janette L Punt
University of Cape Town

Abstract

This paper discusses a protocol validation system. The input
to the system is a protocol definition specified in the
specification language ESTELLE. The ESTELLE specification is
the input to a translator program which extracts the
protocol definition and creates an output file which serves
as input to the validation routine.

The validation routine uses reachability analysis to
validate the protocol. The wvalidation routine reports the
following conditions: unspecified receptions, deadlock,
channel overflow and all those transitions not exercised
during the wvalidation. The routine output includes a trace

of events, the set of all system states generated - all
errors are marked, a summary of the error conditions, a
reachability tree, etc. The validation routine was

successfully applied to several smaller protocols as well as
the CCITT X.21 protocol. The system is implemented on an IBM
compatible PC.

This paper discusses the protocol validation system but with
emphasis on the validation routine.

1. Introduction

Protocols are an important aspect of data communications. A
protocol is a set of rules governing the interaction between
separate processes [2AFI82]. In order to ensure that a
protocol is completely defined, that is without, deadlocks,
endless looping, uncspecified receptions, etc. and that the
functions performed by the protocol are according to their
specification, it 1is necessary to validate or verify the
protocol. However, validation is not the only step in the
development process.

In order to deal with all the steps in the development
process, the design approach should rely on the following:

e A common language or formal description technique (FDT)
to express protocol and service specifications in such a
way that the written specifications -are complete and
unambiguous. ‘

e A validatidn methodology to analyse and predict ' the
behaviour of a protocol layer during the design - stage
prior to implementation.

e An implementation methodology to produce in a semi-
~automatic way a reference implementation of the
considered protocol layer (for = testing purposes)
[COUR86] . ‘

The aim of this paper is to present a validation methodology
to be applied to a protocol specification written in the ISO
subgroup B formal description technique known as ESTELLE
(Extended State Transistion Language). A model is extracted
from the ESTELLE protocol specification which serves: as
input to a validation routine. The validation routine uses
the state exploration technique to validate the protocol.

In many works on protocol design and analysis the concepts
of validation and verification are considered as equivalent

29

or used interchangeably [PUNT86]. For the purpose of this

paper validation 1is defined to be concerned with the
determination whether or not the protocol is sound and its
logical structure complete. Thus, validation of a protocol
will determine whether or not the protocol is deadlock free,
has no unspecified receptions, contains no transitions that
will never be executed, etc. Verification is concerned with
what -the function of the protocol 1is and involves a
comparison of particular aspects of the protocol behaviour
with those intended by the designer [WEST78B].

N

229

-

The place of validation and verification in the protocol
development process is illustrated in figure 1.1 [CAST85].

‘requirelents} implemented software

l syeten testing

f

description in a | conformity
natural language testing

implemen-
verifi- tation

R

formal
specification

fcraal
descripticn validation

Figure 1.1 Protocol development process.
2. System Overview

The validation system consists of three parts as illustrated
in figure 2.1. The first part permits the user to specify
the protocol he wishes to validate. The user writes the
protocol specification in ESTELLE. To simplify the
translator program, some restrictions have been placed on
the use of ESTELLE. The restrictions and guidelines of how
to use ESTELLE to specify a protocol are discussed 1in
section 3.

The second part of the validation system, the translator
program, takes the ESTELLE specification as input and
extracts the . state names, process names, finite state
machines in matrix format, etc. and writes this information
as APL statements to a specification file. This
specification file serves as input to the third part of the
system, that is the part that performs the validation.

The validation routine produces a trace of events during the
validation, the execution time (that is the CPU time to
validate the protocol), the system states generated as well
as the error conditions encountered. The error conditions
that are reported are deadlock, unspecified receptions,
channel overflow and all transitions that were not exercised
during the validation process. The validation system can
also perform other functions such as printing the protocol
definition and summarizing the error conditions. 1In general
the output is presented in such a way that the user may
derive other information useful in understanding the system
“behaviour.

specification
in ESTELLE

l

2. translator
program

specification
file

'

3. validation
routine

L

system
trace states &
errors

_ protocol
««+ |definition

.Figure 2.1 Layout of validation system

The translator program is written in PASCAL and the
validation routine in APL. The ESTELLE specification, .the
translator program and the wvalidation routine are now
discussed.

3. Specifying the Protocol

An ESTELLE specification intended for the wvalidation of a
protocol consists of the description of a set of .co-
operating processes belonging to different subsystems
interconnected by means of a lower layer service. From the
ESTELLE point of view these protocol processes, as well as
the lower layer service, are considered as co-operating
modules [COUR86].

The module is the basic component of an ESTELLE description
and is defined through a module header definition and a
module body definition. The module header definition defines
the interaction points through which the module may exchange
interactions with its environment and the set of variables
exported by the module. The module body definition describes

oo

A
A=t

the internal behaviour of any module instance associated
with this body in terms of a state transition model. '

This state transition model is based on a finite state
machine extended with the addition of variables to the
states, parameters to the interactions, time constraints and
priorities to the transitions. A transition or set of
transitions 1is introduced by the keyword trans. The
following fragment demonstrates the general format of a
transition:

trans

priority expression {relationship to other trans.}
from state_a {current state}
to . state_b {next state}
provided predicate {boolean expression}
when . ip.event {input required}

begin

{transition block}
end
end

The priority and provided clauses are not allowed in this
validation system. The priority feature is 1lost but the
provided feature can be handled as follows. The transition
"from state_a to state_b provided x ..." can be re-written
as "from state_ a' to state_b ..." where state_a' is a new
state formed by combinding state_a and condition x. Note
that combining states in this manner will result in more
states and thus in a bigger finite state machine.

The when clause introduces an input interaction. Spontaneous
transitions do not have an input associated with them, that
is, they do not have a when clause.

All the states (names) 1in a module are defined in a state
statement. The 1initial state of a module is specified in a
to clause preceded by the keyword initialize in the
initialization part of the module body. The keyword channel
introduces a channel type definition.

A protocol which consists of co-operating processes which
communicate by exchanging messages over channels will be
specified in ESTELLE as a set of modules attached
(connected) wvia channels.

'An example of a protocol specified in ESTELLE can be found
in appendix A. ‘

4. The Translator Program

The input to the translator program is an ESTELLE
specification of a protocol and the output a specification
file containing a set of APL assignment statements. The APL
statements should define the following:

1l. The names and number of processes that make up the
protocol. '

2. The number of channels, what processes do they link and
the capacity (maximum number of messages in transit) of
every channel.

3. The number and the names of the events that may be
exchanged between processes via the channels.(An event is
the basic wunit of communication between processes for
example an ACK or MESSAGE_l1.)

4. The state names within every process within the system.

5. The transitions between the states in every process.

6. The initial system state.

From the ESTELLE statements discussed in section 3 it is
clear from where the translator program will obtain most of
its output. The translator program performs no syntax
checking on the ESTELLE code. However, if the translator
program is unable to obtain all the information to creatée a
complete definition (1 - 6 as describe above), it will
report an error message indicating which item definition(s)
it could not built.

The specification file consists of APL statements and look
like: ' '

NAME ¢« 'Read / Write Protocol' 'protocol name
NP « 2 '‘no of processes

NC « 2 ‘no of channels

.

state transition matrices

ST[1l;1;1;] « 0100 ‘
ST(1;1;2;] « 4 0 3 0
ST(1;1;3;] « 00 0 2

« 3040

ST(1;1;4;

The specification file contains statements defining the
numpber of processes, number of channels, number of events
and ¢their names. For -every process there 1s a state
transition matrix. The state transition matrix indicates the
transitions between states 1in a process and the event
involved in the transition. The event 1is represented by a
number and the direction, that is send or receive, by the
sign of +the number. A second matrix (same dimension as the
state transition matrix) indicates in its corresponding

232

entry to which process an event 1s send or from which
process an event is received.

When the translator program is activated, it will prompt the
user for:

specify protocol name:

file name with specification:

After the user replied, the translator program will start
building the specification file. Error messages are printed
as they are encountered. If no errors were encountered the
message '"Specification file built. No errors" is displayed
followed by '"please specify the channel capacities

- channel A to B:" and

"channel B to A:".
The user then supplies these capacities. (A and B are two
process names as defined in the module header.)

5. The Validation Routine
5.1 The Validation Technique

In the validation routine the protocols are defined in terms
of interactions between two or more finite state machines.
Interactions consists of the exchange of events (or
messsages) that are transported via message queues in the
communication medium. The validation routine uses the state
exploration technique or reachability analysis.

This technique' is based on exhaustively exploring all the
possible interactions of two or more entities within a
layer. A composite or global state of the system is defined
as comprising of the states of the individual processes as

well as the states from the channels. The general principle

of reachability analysis is as follows.

First an executable model of a communication system is
developed, that includes two or more communicating machines
running the protocol being validated and a model of the
communications medium that transports messages between them.
A communications medium between (say) process A and process
B will be handled as two one way channels, one from process
A to process B and the other one from process B to process
A. An initial state of the system is defined and all system
states reachable from the initial state are determined by
systematically exploring all possible transitions (in
accordance with the transitions specified in the component
process) from each system state reached. All reachable
states are analyzed to determine whether they manifest
errors. The process is repeated for each of the newly
generated states until no new states are generated. (Some
transitions lead back to already generated states.) As these

233

system states. are explored a reachability tree is
constructed starting at the initial system state. '

The following example will illustrate the principle.
Consider the read/write protocol in figure 5.1. This
protocol consists of two processes A and B. Each process has
four states. The model has two one-way channels as
indicated. Initially both process A and process B are in the
RESET state and both channels are empty - this combination
will form the initial system state. The only new state
possible from the initial state is when process A places a
WRITE event on the channel A->B and enters the PEND.WRITE
state. The state of the system will now be:

state of process A : PEND.WRITE
state of process B : RESET
channel A->B : WRITE
channel B->A : -

From this system state another new state can be generated

(when process B receives the WRITE). In total nine system
states can be generated from the initial state (see figure
5.1(b)). The corresponding reachability tree is illustrated

in figure 5.1(c).

The main advantage of reachability analysis is its graphical
form and possibility of automization. The major disadvantage
is state space explosion, that is, the generation of a
number of reachable system states exceeding the capacity of
the validation system. The example in appendix B illustrates
this disadvantage. The protocol in appendix B consists'of
two processes, each having four states. Although this is a
very simple protocol its corresponding reachability tree
consists of 26 system states. A validation of the O0SI

Session Layer using reachability analysis generated 25000

reachable states [WESTS86].

i

Process A

Process B

"g(x) = send x
r(x) = receive x

figure 5.1(a). read / write protocol

system state
state of A
8] reset
1 pend.write
2 rend.write
3 rend.write
¢] reset
4 1.wIite

te

[soJENRRS LINs RN IS SN L

channel state
A—B of B
- reset
write Ieset
- pend.write
- reset
- Teset
- wriite
- write
read write
- pend.read
- write
- write
- reset
- reset

figure 5.l(b).isystem states

figure 5.1(c).

reachability tree

1

ck

[

23

5.2 Protocol Properties Validated

The error analysis emphasize the detection of errors that
are common to all protocols. The validation routine reports
the following error conditions:

1. Unspecified receptions. That is when the protocol system
reaches a state when a process has no specified mechanism
for receiving an incoming event. To report a reception
error there only need to be one incoming event which can-
cannot be received. Possible transmissions or other
receptions do not influence this decision.

2. Deadlocks or terminal states of the protocol system which
when entered, permit no further transition in the system.

3. Channel overflow which can occur if a process tries to
send an event to another process in a way that a pre-
defined maximum number of event underway between the
processes is exceeded.

4. All transitions within a process that were not exercised
during the validation.

This validation routine does not detect any types of errors
that are expressible in terms of event sequences but not in
terms of the system state at a given instant (for example
livelock). Since, 1in general, there are more executable
sequences than reachable states, this type of error
detection will add complexity to the analysis [WEST86].

5.3 Input and Output

As discussed 1in section 4 the input to the wvalidation

routine is a specification file containing APL assignment
statements which define the protocol. This specification
file is imported into the APL workspace after which it will
be treated as and APL function (routine). To activate the
protocol definition this function must be executed. When the
definition function 1is executed, the validation routine can
be started.

The validation routine produces several output reports which
are presented in such a way that the user can derive other
information useful in understanding the system behaviour.
For example the sequences that lead to errors can be derived
from the output as well as all stable states, that is states

in which the message ‘jueues are empty. The latter
information is particularls wuseful 1in understanding the
synchronization of the :ystem. The system does not

exXplicitly report the execution sequences which led to the
errors.

An example of the system oui:put can be found in appendic C.

A

(0]

5.3.1 The Trace

The trace 1is produced as the wvalidation routine proceeds.
This continuous output will appear on the screen. (The user
has the option to re-route this output to the printer.) The
validation routine repeats its actions for the initial and
all subsequent system states. The routine attempts to
generate as many new system states from each previously
generated system state. The actions of the validation
routine in its attempt to create new system states are
reported. The following fragment reports the actions taken
to generate new states from a system state.

— 1 - THE J FOUND WAS NO 2.
RECEPTION - EVENT 4 FROM 2 TO 1
ii FROM PROCESS 2
: NOTHING IN CHANNEL TO RECEIVE 2 -1
1 NO TRANSITION FROM 2 TO 2

RECEPTION - EVENT 3 FROM 2 TO 3

FROM PROCESS 2
. NOTHING IN CHANNEL TO RECEIVE 2 - 3
.L_ iv NO TRANSITION FROM 2 TO 4

NO TRANSITION FROM 1 TO 1

RECEPTION - EVENT 1 FROM 1 TO 2

2 iii FROM PROCESS 1
....REST.. «..FIRST...1

NO TRANSITION FROM 1 TO 3

NO TRANSITION FROM 1 TO 4

v PERTURB... 1
i 'MEMBERN ...

i

(i) indicates that the system state under inspection is

system state number 2. "1" represents the "possible
‘transmissions and receptions in process 1 and "2" the
possible transmissions and receptions in process 2. (ii)

indicates that process 1 can receive event number 4 from
process 2 and thereby advance to state number 1 but -the
message "NOTHING IN CHANNEL TO RECEIVE 2-1" indicates that
there is nothing in the channel to receive which will enable
process 1 to go from state 2 to state 1. In (iii) we see
that process 2 can receive event number 1 (" ... FIRST
1") and thereby go from state 1 to state 2. The message 'NO
TRANSITION FROM 2 TO 4" (iv) 1indicates that process 1 can

never (nor by transmission or reception) advance from state
2 to state 4.

"PERTURB ... 1" (v) indicates that one new system state was
formed from system state number 2. '"MEMBER ... N .." (vi)
~indicates that this new system state is not a member of the
set of existing system states. The new system state is now
added to the set of existing system states. The total number

(UL

of system states and the validation time are reported at the

end of the trace. An example of a trace can be found in

appendix C, section C.1.
5.3.2 The System States

The APL function PRTSYS lists the set of system states. The
state matrix and the associated channel contents for each
system state is listed. If a system state contains an error
an error message is displayed. For example the following
information will be listed for a system state. : :

STATE NO. 2
STATE MATRIX

2 1
0 1
CHANNEL CONTENTS
CHANNEL NO. 1 1lE

CHANNEL NO. 2

System state 2 represents the system state in which process
1l is in state 2, process 2 is in state 1 and there is one
message on the channel from process 1 to process 2. (The
"E" is an eliminator, for example 14E4 represents event 14
followed by event 4.) .

Section C.2, appendix C contains an example of a listing of
system states. '

5.3.3 Transitions not exercised

The APL function DEADTRANS lists for every process all those
transitions which were not exercised during the validation
process. Section C.3, appendix C contains an example of such
a listing. : '

'5 3.4 Protocol Definition

.The APL functlon PRINTDEF lists the protocol definition. It
lists the number of processes and their names,. the state
names for every process, the event names and the channel
numbers and what processes they connect. Section C.4,
appendix C contains a protocol definition listing.

5.3.5 Error Messages

Typical error messages are:
*** ERROR IN THIS STATE - UNSPEC. RECEP.
*** ERROR IN THIS STATE - DEADLOCK/TERM ST.
*** ERROR IN THIS STATE - CHANNEL OVERFLOW

These messages are displayed directly following the state
riratrix and channel contents for the particular system state.
Appendix D contains examples of error messages.

oo
N

5.4 Additional Functions

Apart from the APL functions discussed in 5.3.2, 5.3.3 and
5.3.4 there exist other functions to provide additional
information about the wvalidated protocol.

The function NUMERR summarizes the error conditions found
during the validation. It lists the number of system states,
deadlocks, unspecified receptions and channel overflows.

The function PRTTREE produces output which can be used in
constructing the reachability tree. The function lists the
number of every system state followed by the numbers of the
system states which were generated from it, that is,
connected to it in the tree.

The function PRTERR lists all those system states with
errors. An error message will indicate the type of error.

6. Applications

The validation routine was tested on several examples. Most
of these examples were obtained from articles and in all
cases the system state spaces and errors as described in the
articles were reproduced [WEST78B, GOUD85, ZAFI82].

The validation routine was also applied to the CCITT X.21
Recommendation. The X.21 interface is a recommendation for a
standard means of connecting Data Terminal Equipment (DTE)
to Data Circuit-termination Equipment (DCE) in a public data
network. The X.21 interface 1is formally defined in a state
diagram for the combined DTE-DCE ([X21-76]. The validation
routine can only be applied to a pair of separately defined
communicating processes. It is therefore necessary to derive
from the combined state diagram the logical structure of the
DCE and DTE. West used the combined state diagram to derived

two separate state diagrams (see appendix E) [WEST78]. These

two state diagrams were used in writing the ESTELLE
specification for the protocol. The protocol definition
includes two processes (DTE and DCE) with 23 states each and
12 events. There are two channels, one from the DTE to the
DCE and one from the DCE to the DTE. The channel capacities
were taken as 1.

The validation routine generated 331 system states. There
were 18 unspecified receptions and 129 channels overflows.
(The channel overflows should not be considered as errors,
but rather as states in which one or both of the processes
could proceed to another state but only if a channel was
empty.) The validation time on an Olivetti M24 was 1 hour 15
minutes 38,5 seconds.

Most of these unspecified receptions are the result of
collisions resulting when either the DCE or the DTE

indicates a transition to a NOT READY state at the same time
that the other is initiating a call establishment procedure
or is itself making a transition to a NOT READY state. These
errors are the result of incomplete specification of the

interface. These errors were also found in the validation by

West and Zafiropulo in [(WEST78].

7. Limitations of the Implementatioh

The main drawback of this validation system is the level of

sophistication of the translator program. This program
dictates how the ESTELLE specification should be written.
For example, the provided and priority clauses are not

allowed. No syntax checking of the ESTELLE code is done. A’

translator program which places no restrictions on how the
specification is written will be complex. In this wvalidation
system the emphasis is on the validation routine and
therefore the 1level of sophistication of the translator
program is acceptable.

In the wvalidation routine the choice of the data structure
(matrices) to represent the state transitions place a
limitation on the structure of the directed graph which
represents the protocol. For example the following subgraph’

will have to be represented as
®

(0
O

Although this is no major limitation it can be' removed by
using adjacency 1lists to represent the state transitions.
This limitation will be removed in future versions of the
validation routine.

8. Conclusion

Although this validation system is limited in some ways it
proved to worked well on the examples tested.. This method
has also been applied succesfully to the ISO Session Layer
specification [WEST86]. Numerous variations of the basic
reachability analysis method are known.

It should be noted that reachability analysis is only one of
many different validation methods and the protocol
properties validated in this implementation only a subset of
all protocol properties [PUNT86].

i ()

9. References

[CAST85] R Castanet, P Guitton and O Rafig, "An Automatic
System for the study of Protocols: A Presentation and
Critque based on a worked example", Symposium on Protocol
Specification, Testing and Verification IV, Y Yemini, R
Strom, S Yemini (eds), North-Holland, 1985,pp 111-126.

[COURS86] J P Courtiat et al, "A Simulation Environment for
Protocol Specifications described in ESTELLE", Symposium on
Protocol Specification, Testing and Verification V, M Diaz
(ed), North-Holland, 1986, pp 297-312.

[GOUD85] M G Gouda and Ji-Yun Han, "Protocol Validation by
Fair Progress State Exploration'", Computer Networks and ISDN
Systems, No 9, 1985, pp 353-361.

[PUNT86] J L Punt, "Protocol Validation Methods", Technical
Report CS-86-05-00, December 1986, Department of Computer
Science, University of Cape Town.

(WEST78] C H West and P Zafiropulo, "Automated Validation
of a . Communications Protocol: The CCITT X.21
Recommendation", IBM J of Res. Develop., Vol 22, No 1,

January 1978, pp 60-71.

[WEST78B] C H West, "General Technique for Communications
Protocol Validation", 1IBM J of Res. Develop., Vol 22, No 4,
July 1978, pp 393-404.

[WEST86] C H West, '"Protocol Validation by Random State
Exploration'", IBM Zurich Research Laboratory, 8803
Ruschlikon, Switzerland, February 1986.

[ZAF1I82] P Zafiropulo et al, "Protocol Analysis and
Synthesis using a State Transition Model", Computer Network
Architectures and Protocols, P E Green (ed), Plenum Press,
1982.

[X21-76] Recommendation X.21l, "General purpose interface
between data terminal equipment (DTE) and data circuit-
terminating equipment (DCE) for synchronous operation on
public data networks'", CCITT, 1976, pp.38-56.

241

appendix A -

—~
»

] read/write |
[, pmm == , |
I 1 el I p2 | |
| Ve le e ' oo v i

| I
|network | |network |

layout of specification:
Specification Read _Write Example
type as necessary

user and read_write processes
read_write

body for user as external
body for network as external

body for read_write
const, type, ...

body for processl
const, type, var, state, procedures,
initialization part, transition part

end of processl body

body for process2
const, type, var, state, procedures,
initialization part, transition part

end of process2 body

var part of read_write

initialization part of read_write

end of body for read_write

e e e el e e el e e N e R i NN e e e R e e R N Wt NP NP NPT NN

var part of specification
initialization part of specification
end of specification

P T T . L T T S L L T S S A Y

~ e~~~ m N~~~

.

(* channel definitions
channel U_access_point (user, provider)

channel N_access_point (user, provider)

(* module header definitions

module user_type process

module read write_type process
(U:U_access_point; '
N:N_access_point; param ...)

module network_type process

(* body definitions

body network_body for network_type; external;
body user_body for user_type; external;

body read _write_body for read_write_type:;
const ..
var ..

.

(* module definitions within read write_body
module processl_type process
(U:U_access_point;

N:N_access_point;)

module processZ_type process
(U:U_access_point;
N:N_access_point;)

An ESTELLE Specification

IR R R R RS R R R R RS R R R R R R R RS R o RS R R RS RN ERERERRR R

Read / Write Protocol - refer figure 5.

1

channel definitions to be used between network,

module header definitions for network, user and

module neader definitions processl, process2

I B R R R R R R R R R R R R S R R SRR R EE NN

*)

(* body for processl

body processl_body for.ptocessl_type;

const ...

type

var

-gtate: (reset, write.,
(* procedures & functions

procedure send()

procedure remove ()

initialize (*
to reset
begin

processl

end;

pend.write,

*)

(* transition part for process 1

trans
from reset
to pend.write
begin
send(WRITE)

end;
from pend.write
when N.data.id =
to reset
begin
remove()
end;
from pend.write
when N.data.id =
to write
begin
remove()

end:;
from write
to pend.read
begin
s?nd(READ)
~end;
from pend.read

NACK

ACK

when N.data.id = NACK

to write
begin
remove()
end;
from pend.read
when N.data.id. =
to reset
begin
remove()

end;
end;
;

(* body for process2

body process2_body for processZ_type;

const ...

type

VAT .« .

state: (reset, write,
(* procedures & functions

procedure send()

procedure remove ()

initialize (*
to reset
begin

process?2

end;

ACK

(* end of processl body *)

pend.write,

*)

pend.read);

pend.read):

243

*)

*)

(* transition part for process 2
trans
from reset
when N.data.id = WRITE
to pend.write
begin
remove()

end;
froa pend.write
to reset
begin
send (NACK)
end:;
from pend.write
to write
begin
send (ACK)

end;
from write
when N.data.id = READ
to pend.read
begin
remove()
end;
from pend.read
to write
begin
send (NACK)

end;
from pend.read
to reset
begin
" send(ACK)

end;
end; (* end of process2 body %)

(* end of module declaration part of read_write body
initialize (* initialization part of read_write body

begin
init process) with processl_body(name);
init process2 with process2_body(namej;

attach U to ...
attach N to ...
end:; (* end of read_write body *)
(* read_write body has no transition part
(* variable declaration part of the specification
var

(* initialization part of the specification
intialize

begin
init ...
all ...
begin
init ...
init ...

connect ...
connect ...
end;
end; (* end of module initializetion part

end; (* end of specification. Specification has no

(* transition part.

*)

» »

» » *

(RN

*)
*)

-~

244

Appendix B - Protocol and Reachability Tree

=X

+x

PROCESS PROCESS
Py P2

STATE
{ss)

P - P L4

P LIE S &4
STSTEM < RATER e
CHARNEL STATE /

05t {

> st 183 s4le 1
\‘ S((\/ L g i 8%
\$ st S

v/‘;c;’;&* 548 st
3 \

g P TR
(KZ’ J Sh

> -(
.ﬁznu" 133}
N3] /'C 41‘

’ i
vm B

o587 w3520

§5145
J? £
13t
3524} ¢ I 4 \ '&SSQ‘
L33 I ! { o 51 «552)
@.’ XFIF;
\73/. st S 91,
j*?
.(5:593 '(:S\“
send(x)

receive(x)

‘ Appendix C - System Output
C.1l Trace '

‘ VALID
INITIALIZATION COMPLETED

THE J FOUND WAS NO 1.
‘ TRANSMISSION - EVENT *1 FROM 1 TO 2
TO PROCESS 2 THE J FOUND WAS NO 7.
RECEPTION - EVENT 3 FROM 4 TO 1
RECEFTICN - EVENT 1 FROM 1 TC 2 FROM PROCESS 2
FROM FROCE3S 1 NOTHING IN CHANNEL TO RECEIVE 4 - 1
‘ NCTHING IN CHANNEL TQO RECEIVE i - 2 RECEPTIGN - EVENT 4 FROM 4 TO 3
FROM PROCESS 2
PEFTURE... 1 NOTHING IN CHANNEL TD RECEIVE 4 - 3

MEMEEE....N...1..TEMF. ...
RECEPTION - EVENT 2 FROM 3 TO 4
FROM PROCESS 1

THE J FCUND WAS NO 2.REST.. ...FIRST...2
RECEFTION - EVENT 4 FRCM ¢ TO 1
FROM PROCESS 2 FEETURB... 1

RECEFTION - EVENT 3 FROM 2 TO 3

‘ ! NOTHING IN CHANNEL TO RECEIVE 2 - 1 MEMBER....N...7..TEMP....
FROM PROCESS &

NOTHING IN CHANNEL TO RECEIVE 2 - 3 THE J FOUND WAS NO 8.
| RECEPTION - EVENT 3 FROM 4! TO 1
"RECEPTION - EVENT 1 FROM 1 TO 2 FROM PROCESS 2
‘ FROM PROCESS 1 NOTHING IN CHANNEL TO RECEIVE 4 - 1
.REST.. ...FIRST...1 RECEFTICN - EVENT 4 FRCM 4 TO 3
FROM FPROCESS 2
PERTURE... 1 NCTHING IN CHANNEL TO RECEIVE 4 - 3

MEMBER....N...2..TEMF....
’ TRANSMISSION - EVENT *3 FROM 4 TO 1
TO PROCESS 1

THE J FCUND WAS NO &, TRANSMISSION - EVENT *4 FROM 4 TO 3
RECEFTIGN - EVENT 4 FROM 2 TC 1 TG PROCESS 1
FROM FROTESE 2
NOTHING IN CHANNEL TZ RECEIVE 2 - 1 PERTURE... &
RECEPTION - EVENT 3 FROM 2 TO 3 MEMEER....N...&..

FROM FROCESS 2 MEMEER....N...9..
NCTHING IN CHANNEL TO RECEIVE 2 - 3

TRANSMIZSION - EVENT *4 FROM 2 TC 1
TC: FROCESS |

TRANSMISSION - EVENT *3 FROM 2 TG 3
TC FROCESS 1
TEE J FOUND WAS NO .
PERTURE. .. 2 RECEFTION - EVENT 3 FROM 4 70 1
MEMEER....N...3..TEMF.. FRON PROCESS 2
MEMEER....N...4..TEME.... -RE:T.. - FIRST...3
RECESTION - EVENT 4 FFOM 4 TO 3
FROM PRGCESS 2
. . FEET.. ...FIR 3 .
. FIRIT IN CHANKEL 2
NCTHING IN CHANNEL T¢ RECEIVE 4 - &
THE I FOUND WAS NO &. I ~
RECEPTION - EYENT 4 FROM 2 TG 3 RECEFTICON - EVENT | FROM 1 TO 2
FROM PROCESS 2 FROK PROCESS 1
.. .. FIRST...3 NOTHING IN CHANNEL TO EECEIVE ! - 2
CHANNEL 3 ' ' FERTUEE \
¢ IN CHANNEL ‘TC RECEIVE 2 - 1 ERIURS... _
vENT 3 FROM 2 TG 3 MEMAER....Y...:..TEMF....
FRCK PROCESS 2
.. REST.. ...FIKST...3
THE & FOUND WAS NO 10.
RECEPTION - EVENT 2 FROM 3 TO 4 RECEXTION - EVENT 5 FROM 4 70 13
FROM PRGCESS) FROM PROCESS 2
NOTHING IN CHANNEL TG RECEIVE 3 - 4 - -REST. .. -FIRET...4
FIRET IN CPANNEL 4
NGTEING IN CHANNEL TG RECEIVE 4 - 1
5. TEMP. ... RECEFTION - EVENT 4 FROM 4 TO 2
FROX PROCESS 2
....REST FIRST...4
THE J FOUND WAS NG 6. o)
TRANSMISSION - EVENT 2 FRCM 3 TC 4 - EVENT 2 FPUM 3 TC 4
T¢ PROCESS 2 FrOh FROGCESS 1

NOTHING IN CHANNEL TO REGEIVE % - 4
PECEFTION - EVENT 2 FROM 3 TO 4
PrnTIIRR
FROM PROCESS 1 PERTURE. .. , e
NOTHING IN CHANNEL TO RECEIVE 3 - 4 MEMBEE....Y...¢..TEMP. ... -
VALIDATION COMFLETED. NUMBER OF S.STATES 10.
PEFTURE... 1

MEMBER....N...6..TEMF.... ** VALIDATION TIME: ©:40:430

CHANNEL CONTENTS:
CHANNEL NC. 1.....
CHANNEL NO. 2.....

STATE NG. 2.
STATE MATRIX:

a3
2 1

C 1

CHANNEL CONTENTS:
CHANNEL NO. i..... 1E
CHANNEL NO. 2Z.....

STATE NO. 3.
STATE MATRIX:
20
02
CHANNEL CONTENTS:
CHANNEL NO. l.....
CHANNEL NO. 2.....

STATE NO. 4.
STATE MATRIX:
2 0
11
CHANNEL CONTENTS:
CHANNEL NO. 1.....
CHANNEL NC. 2..... 4E

STATE NO. &.
STATE MATRIX:
2z 0
13
CHANNEL CONTENTS:
CHANNEL NO. 1.....
CHANNEL NG. Z..... 3E

STATE NC. €.
STATE MATRIX:

30

C 3

CHANNEL CONTENTS:
CHANNEL NC. 1.....
CHANNEL .NO. 2.....

STATE NO. 7.
STATE MATRIX:
4 1
2 3
CHANNEL CONTENTS:
CHANNEL NO. 1..... 2E
CHANNEL NO. 2.....

STATE NC. €.
STATE MATEKIX:
4 C
G 4
CHANNEL -CONTENTS:
CHANNEL NO. 1.....
CHANNEL NC. Z2.....

STATE NoO. ¢.
STATE MATRIX:

4 0

11

CHANNEL CONTENTIS:
CHANNEL NO. i.....
CHANNEL N2, 2.....3FE

STATE NO. 16.
STATE MATRIY:

4 0

13

CHANNEL CONTENTS:
CHANNEL NO. l.....

CHANNEL NO. z..... 4E

C.3 Transitions not exercised

TRANSMISSIONS/RECEPTIONS NOT TAKEN

NO TRANSMIZSION/RECEFTION FROM STATE 3
NO TEANEZMISSION/RECEFTION FROM STATE ¢

NG THRANSM ON/RECEFTIION FROM STATE 1

ION/RECEPTION FROM STATE 4

C.4 Protocol Definition

TO

PRGTOCOL DEFINITION (READ/WRITE

NUMEER OF PROCESSES:
1. FROC_A
2. PROC_B

o

NUMEEE OF CHANNELS: 2
c

NC. 1 FRON FPOCESS PROC_A TO PROC_B
VG. 2 FRCM PRGCESS FPROC_B TO PROC_A
STATE NAMES FOR PROCESS 1 (PROC A)
STATE NO. ! - RESET -
STAIE NG. 2 - FEND.WRITE
STATE NG. 3 - WRITE
STATE NO. 4 - FEND.READ
STATE NAMES FOR PROCESS 2 (PROC_B)
STATE NO. 1 - RESET
STATE N®. - - PEND.WRITE
STATE NO. 3 - WRITE
STATE NG. 4 - PEND.READ
S:l4
WRITE
REAT

[N}

o

2438

appendix D - Error Messages

THE J FOUND WAS NO 5.
TRANSMISSION - EVENT *1 FROM 1 TO 2
TO PROCESS 2
*¢#¢+ OVERFLOW:1 - 2 EV *1 P 2

TRANSMISSION - EVENT *1 FROM 2 TO 1
TO PROCESS 3

CANNOT RECEIVE..4..CHANNEL..1
***+ RECEPTION ERROR ------

RECEPTION - EVENT 3 FROM 1 TO 1
FROM PROCESS 2
NOTHING IN CHANNEL TO RECEIVE 1 - 1
RECEPTION - EVENT 1 FROM 1 TO 2
FROM PROCESS 2
NOTHING IN CHANNEL TO RECEIVE 1 - 2

PERTURB... 2
MEMBER....N...6..TEMP....
MEMEER....N...7..TEMP....
PERTURB... 0 !

LR N

STATE NO. 7.
‘=" STATE MATRIX:

220

020

001

CHANNEL CONTENTS: .
CHANNEL NO. 1..... 4E1E

CHANNEL NO. 2.....
CHANNEL NO. 3..... b
**+ ERROR IN THIS STATE - CHANNEL OVERFLOW

STATE NO. 8.
STATE MATRIX:

110

011

001

CHANNEL CONTENTS:
CHANNEL NO. 1..... 4E
CHANNEL NO. 2..... 1E

CHANNEL NO. 3.....
**+ ERROR IN THIS STATE - UNSPEC. RECEP.

J

STATE NO. 14.
STATE MATRIX:
300
010
003
CHANNEL CONTENTS:
CHANNEL NO. 1.....
CHANNEL NO. 2.....
CHANNEL NO. 3.....
***+ ERROR IN THIS STATE - DEADLOCK/TERM.ST

ERROR CONDITIONS - SYSTEM STATES

NUMBER OF SYSTEM STATES: 1
NUMBER OF DEADLOCKS: 1
NUMBER OF UNSPEC. RECEP: }
NUMBER OF OVERFLOWS: 4

Appendix E - X.21 Recommendation State Diagrams

s{0.0FF} R{O.OFF]

16
DTE CLEAR
RFQUEST

19
DCE CLEAR
INDICATION

16
OTF € LEAR
REQUES!

19
DCECLEAR
INDICATION

R{(.OFF] s[0. oFF} s|0.0FF]

i i
21

®{0. OFF])

y

21

17 DCE READY 20 17 DCE READY 20
OCE CLEAR < {DTE UNCONTROLLED Z DTE CLEAR DCE CLEAR {DTE UNCONTROLLED ry DTE CLEAR
ONFIRMATION NOT READY} CONFIRMATION CONFIR b NOY
CONFIRMAT [.ore] [oFF) MATION OT READY) 1. ore] NCONFIRMATION
I I}
s{0.oFF} s{i.0FF] CIEURSYS &1, 0FF]
18 14 18 t4
DTE READY DTE CONTROLLED DTE READY DTE CONTROLLED
{DCE NOT READY) i1, OFF] § siOlLorF) NOT READY {DCE NOT READY } s{1.0FF] b R(O1.0FF] NOT READY
R{(. OFF} \ sfi.oFF} s[0. oFF] R{1, OFF}
READY
s[0.on] EADY

R{0. N}

RiBEL, OFF]
2 8
CALL REQUEST INCOMING CALL

S{BEL.OFF}

-

8

R{BEL. OFF] CALL REQUEST STBEL OFF] INCOMING CALL
s10.0N] R[O, oN
R{+, OFF] 15 s{1.0n] s{+. oFF] ! x{1, 0N}
{ CALL COLLISION y 0
3 r[+,0FF} si+. 0FF}
9
PROCEED TO CALL ACCEPTED caLL c95 TE
SELECTY N . ALL ACCEPTED
s[145, oN| R{1A3, OFF] s{1AS. oFF}
| y
4 10 10 81s 4 10 10 8is
SELECTION CALLED LINE CALLING LINE SELECTION CALLED LINE CALLING LINE
SIGNALS IDENTIFICATION IDENTIFICATION SIGNALS IDENTIFICATION IDENTIFICATION
s{1,0n] 4 R[SV~ OFF] R{SYN.OFF] wf1l.on] S{SVN, OFF]
) R{1aS. OFF] . ! s[1aS, oFF] s{syN, OFF] t
s 68 6c S 68 6¢c
DTE WAITING DCE WAITING DCE WAITING DTE WAITING DCE WAITING DCE WAITING
b uqu.oss) R{1.0FF} :] {145, OFF)
R{SYN, OFF] R[SYN,OFF] s[sv~. OFF} P R s{1.0FF]
. y s{SYN. OFF} {
Y v 1 i

7

CALL PROGRESS

1
CONNECTION

?

6a
DCE WAITING

1
CONNECTION

6a
DCE WAITING

CALL PROGRESS

SIGNALS IN PROGRESS SIGNALS IN PROGRESS
[1a5. 0FF] . {1a5, UFF}
HR[1 0N sti, on]
\]
12 12
- READY FOR READY FOR
DATA DATA
{a) ib)

Derived state diagrams for the DTE (a) and DCE (b). where S indicates send and R receive.

	SAICSIT_1987_Punt
	Front_Cover.pdf
	Front_Cover

