
SUID-AFRIKAANSE REKENMRSIMPOSIUM

SOUTH AFRICAN COMPUTER SYMPOSIUM

HOUQAY INN PRETORl{I

JULIE 1 - 3 JULY 1987

Proceedings
of the

4th South African Computer Symposium

Bolldq Inn, Pretoria

1 - I July 1987

edited by

Pieter Krit1inger

Computer Science Department
University of Cape Town

PREFACE

Computer science is an emerging discipline which is having difficulty in being
recognised as a worthy member of the sciences. I will paraphrase John Hopcroft, co­
winner of the 1986 Turing Award, when, during a recent interview, he said that the
primary reason for the lack of recognition, is the · age of our' researchers. Probably
not one of the researchers who presented their work at this symposium is older
than 45. I know of no computer scientist in South Africa who is in a position where
(s)he can affect funding priorities. As far as I know we have no representation
on any of the commit'tees of the Foundation for Research Development and for our
Afrikaans speaking fraternity, none who is a member of the A.bdemie vir Wetenslrap
en Kuns. n will take time and conscious effort to establish our presence. The same
is true of course for our universities. Again, with one exception, I know of no
dean of a science faculty, vice-principal or principal who is a computer scientist.
We consequently spend an enormous amount of time trying to explain the needs
of computer science and its difficulties. I believe this symposium is a further step
towards accreditation by our peers and superiors from the other sciences.

The total number of papers submitted. to the Programme Committee for con­
sideration was 34. Each paper was reviewed by three persons knowledgeable in the
field it represents. Of those submitted., "23 were finally selected for inclusion in the
symposium. As a result the overall quality of the papers is high and as a computer
science community in Africa we can be justly proud of the final programme.

This is the fourth in the series of South African computer symposia. This year
the symposium is sponsored by the Computer Society of South Africa (CSSA), the
South African Institute for Computer Scientists and the local IFIP Committee. The
executive director of the CSSA and his staff deserve warm thanks for handling the
organisation as well as they have, while the Organising Committee provided Derrick
and I with very valuable advice.

Finally I would like to express my sincere appreciation to the authors, to the
members of the Programme Committee and particularly the reviewers. Without
the kind cooperation of everyone, this symposium would not have taken place.

Pieter IfritziD.ger
July 1981.

1.

SYMPOSIUM CHAIRMAN: PS Kritzinger, University of Cape Town.

SYMPOSIUM CO-CHAIRMAN: D Kourie, University of Pretoria.

MEMBERS OF THE PROGRAMME COMMITTEE

Judy Bishop, Witwatersrand University

Chris Bornman, UNISA

Hannes de Beer, Potchefstroom University

Gideon de Kock, Port Elizabeth University

Jaap Kies, Western Cape University

Derrick Kourie, Pretoria University

Pieter Kritzinger, Cape Town University

Tony Krzesinski, Stellenbosch University

Michael Laidlaw, Durban Westville University

Peter Lay, Cape Town University

Ken MacGregor, Cape Town University

Theo McDonald, Orange Free State University

Jan Oosthuizen, University of the North

Dennis Riordan, Rhodes University

Alan Sartori-Angus, Natal University

John Shochot, Witwatersrand University

Theuns Smith, Rand Afrikaans University

Trevor Turton, ISM (Pty) Ltd

Gerrit Wiechers, Infoplan.

ii

LIST OF REVIEWERS

BERMAN Sonia

BISHOP Judy

BORNMAN Chris

CAREY Chris

CHERENACK Paul

DE BEER Hannes

DE VILLIERS Pieter

GORRINGE Pen

KIES Jaap

KOURIE Derrick

KRITZINGER Pieter

KRZESINSKI Tony

LAIDLAW Michael

LAY Peter

MacGREGOR �en

MATTISON Keith

McDONALD Theo

RENNHACKKAMP Martin

RIORDAN Denis

SATORI-ANGUS Alan

SCHOCHOT John �··
SMITH Theuns

TURTON Trevor

VAN DEN HEEVER Roelf

VAN ROOYEN Hester

VON SOLMS Basie

VOS Koos

,.

iii

TABLE OF CONTENTS

Keynote Address

"An Extensible System and Programming Tool for
Workstation Computers.". . • • • . • • • • • • • • • • • . • • . . • . • • • • • • • • • • • 1
Niklaus Wirth, ETH, Zurich

Invited Lectures

"The Relationship of Natural and Artificial
Intelligence." .•.•.••....••.••. not included in Proceedings.
G Lasker, University of Windsor, Ontario. ,
"Software Engineering: What Can We Expect in
the Future?" ••••••.••.••••••••• not included in Proceedings.
D Teichrow, University of Michigan, U.S.A.

Computer Languages I

"SPS-Algo·l: Semantic Constructs for a Persistent
Programming Language." • • • • • • • . • • • . . • • • • • • • • • • • • • • • • • • • . . 13
s Berman, University of cape Town.

"Petri Net Topologies for a Specification Language." ..•• 25
R Watson, University of the Witwatersrand.

"Towards a Programming Environment Standard in LISP." •.• 45
R Mori, University of Cape Town

"ADA for Multiprocessors: Some Problems and Solutions." •• 63
J Bishop, University of the Witwatersrand.

Computer Graphics

"Polygon Shading on Vector Type Devices." ••.••••••••••.• 75
CF Scheepers, CSIR.

''Hidden Surface Elimination in Raster Graphics Using
Visigrams. '' . 97
P Gorringe, CSIR.

Database Systems I

"On Syntax and Semantics Related to Incomplete·
Information Databases." • . • • • • • • • • • . • . • • . . • . • • . • • • • 109
ME Or1owska, UNISA.

"Modelling Distributed Database Concurrency Control
overheads. '' · .. . 131
M H Rennhackkamp, University of Stellenbosch.

Operating Systems

"The Development of a Fault Tolerant System for a
Real-time Environment." . • . • • • • • . • • • • • . . . • • • . • • . . . • • • • • . 149
M Morris, CSIR.

"A New General-purpose Operating System." .•••••••••.••• ,161
B H Venter, CSIR.

iv

Computer Languages I I

"The Representation of Chemical Structures by Random
Context Structure Granunars." • • • • • . . • • • . . . • 17 5
EM Ehlers and B von Solms, RAU.

"A Generalised Expression Structure."••...•....• 189
w van Biljon, CSIR.

Computer Networks and Protocols I

"An Approximate Solution Method for Multiclass
Queueing Networks with State Dependent Routing and
Window Row Control." 203
A E Krzesinski, University of Stellenbosch.

"A Protocol Validation System." ••...........•...•.•.... 227
J Punt, University of Cape Town.

Computer Networks and Protocols II

"Protocol Performance Using Image Protocols."•.... 251
P S Kritzinger, University of Cape Town.

Artificial Intelligence

"A Data Structure for Exchanging Geographic
Information.'' .. 267
A Cooper, CS IR.

"The Design and Use of a Prolog Trace Generator
for CSP." ... 27 9
D G Kourie, University of Pretoria.

Database Systems I I

"An Approach to Direct End-user Usage of Multiple
Databases." • • • • • • • . . . • 297
M J Phillips, CS IR.

"A Semantic Data Model Approach to Logical Data
Independence. '' . 3 2 9

S Berman, University of Cape Town.

Information Systems

"The ELSIM Language: an FSM-based Language for the
ELSIM SEE.'' . • • • • . . 343
L du Plessis and C Bornman, UN ISA.

"Three Packaging Rules for Information System Design." . 363
J Mende, University of the Witwatersrand.

V

computer Languages I I I

" Experience with a Pattern-matching Code Generator." ... 371
M A Mulders, DA sewry and W R van Biljon, CS IR.

"Set-oriented Functional Style of Programming."
c Mueller, University of the Witwatersrand.

Tutorial

385

The use of Modula-2 in Software Engineering."••... 399
N Wirth, ETH, Zurich.

vi

•

07h30

08h45

09h00

10h00

10h15

10h50

11h25

11h50

12h30

14h00

14h35

1 Shl S

15h30

16h05

18h00

Aegistration and Coffee.

Welcoming address, President of the South African Institute of Computer Scientists,
Dr. G. Wiechers.

Invited Lecture.
Professor D. Teichrow, University of Michigan.
Software Engineering, ... What Con We Expect in the Future.

COFFEE

Computer languages I. Chairman: G. Wiechers.

S. Sermon, University of Cape Town.
SP>Algol: Semantic Constructs for o Persistent Programming Language.

A. Watson, University of the Witwatersrand.
Petri Net Topologies for o Specification Language.

A. Mori, University of Cape Town.
Towards a Progrommiog Environment Standard in USP.

J. Bishop, University of the Witwatersrand.
ADA for Multiprocessors: Some Problems and Solutions.

LUNCH

Computer Graphics.
Chairman: D. Kot.Jrie

C. F. Scheepers, �IA.
Polygon Shading on Vector Type
Devices.

P. Gorringe, CSIA.
Hidden Surface Elimination in Roster
Graphics Using Visigroms.

COFFEE

Database Systems I.
Chairman: 8. von Solms.

ME. Orlowska, UNISA.

On Syntax and Semantics Related to
Incomplete Information Databases.

MH. Aennhackkamp,
Stellenbosch University.
Modelling Distributed Database
Concu"ency Control Overheads

Operating Systems.
Chairman: K. MacGregor.

fl\. Morris, UNISA.
The Development of o Fault Tolerant
St,1stem for o Reof-time Environment

8. H. Ve:nter, CSIA.
A New General-purpose Operating
Svstem.

COFFEE

Computer languages II.
Chairmon;..J;- Bishop.

E.M. Ehlers and 8. von Solms,
Randse Afrikaanse Universiteit.
The Representation of Chemical
Structures by Random Context
Structure Grammars.

W. van Biljon, CSIA.

A Generalised Expression Structure.

Cocktail Party in Cullinan Room A.

vii

ll)A\"' 11

I-

08h30

09h30

10h05

10h30

11h00

11h35

12h30

14h00

14h35

15h15

15h30

16h05

16h45

19h30

Keynote Address by Profesor Niklaus Wirth, Swiss Federal Institute
for Technology, Zurich.
An Extensible Svstem and a Programming Tool for
Worhstotion Computers.
Computer Networks and Protocols I. Chairman: P.S. Kritzinger.

A.E. Krzesinski, University of Stellenbosch.
An Approximate Solution Method for Multicloss Queueing Networks
with State Dependent Routing and Window Row Control.
J. Punt, Universitt; of Cope Town.
A Protocol Validation Svstem.
COFFEE

Computer Networks and Protocols II. Chairman: A. van der Heever.

P.S. Kritzinger, Universil:\J of Cape Town.
Protocol Performance using Image Protocols.
Invited Lecture by Professor G. lasker, University of Windsor, Ontario.
The Relationship of Natural and Artificiol Intelligence.
LUNCH

Artificial Intelligence.
Chairman: G. Lasker.

Database Systems II.
Chairman: C. Bornman.

MJ. Philips, CSIA.
An Approach to Direct End-user
Usage of Mutiple Databases.
S. Berman, University of Cape Town.

A Semantic Doto Model Approach
to Logical Doto Independence.

Information Systems.
Chairman: D. Teichrow.

L du Plessis and C. Bornman, UNISA.
The ElSIM Language: on FSM-bosed
Language for the ElSIM SEE

J. Mende, University of the
Witwatersrand.

Three Packaging Rules for
Information Svstem Design.
COFFEE

Computer languages Ill.
Chairman: N. Wirth.

W. van Biljon, CSIA.
Experience with a Pattern­
matching Code Generator.
C. Mueller, University of
the Witwatersrand.
Set-oriented Functional
Sf:',Jle of Programming.

Open Forum with professors G. Lasker, D. Teichrow and N. Wirth.
Moderator: Dr. D. Jacobson.

Symposium Banquet in Cullinan Room.
Guest speaker, Dr. D. Jacobson,. Group Executive: Technology,
Allied Technologies Limited.

viii

A. Cooper, CSIA
R Doto Structure for Exchanging
Geographic Information.

08h00

08h30

12h15

12h30

Registration (Tutorial.only).

Tutorial.
The Tutorial will be given by professor Niklaus Wirth, Division of Computer Science,
Swiss Federal Institute of Technology, Zurich.

The use of Modu/a-2 in Software Engineering.
Topics to be covererd include:

What is Software Engineering?
Data types and structures.
Modularization and information hiding.
Definition and implementation parts.
Separate compilation with type checking.

· Facilities to express concurrency.
Pompous programming style.
What could be excluded?

Close of Symposiurri.

LUNCH

be ·

THREE PACl<AGING RULES FOR INFORMATION SYSTEM DESIGN

J. Mende

Department of Acoounting
University of the Witwatersrand

WITS 2050

ABSTRACT

After identifying the processing functions requi red in a
computer based information system, the designer needs to
comb ine them into an opt i mal set of load un i ts . Some
"packaging" arrangements yield a better system than others,
depending upon characteristics of the data collected f rom
external sources and the data extracted for external users. An
effective and technically effici ent system sati sf ies th ree
rules.

1 . If two user data t�s are needed at different times, the
cor responding extract functions should be separated in
different load units.

2 . I f source data predates the user data derived from it, the
corresponding collect and extract functions should be
separated in different load units.

3 . If two source data types are available at different
frequencies, one being less frequent than the user data
der ived from it, the cor responding collect functions
should be separated in different load units.

363

3 6 4

Business, government and other organi sations employ a maj ority of the
computers in exi stence today to transform raw data into useful
information. '!be transformation process usually involves a large number
of distinct processing "functions" (4) such as val idation, updating,
sorting, retrieval and accumulation. Computer memories today are often
so large that al l the functions necessary to accompl ish a complex
transformation can be incorporated in one single program. However, in
many cases that arrangement wastes computing resources. So instead those
functions are incorporated into sever al smaller "load units" - programs,
overlays, subroutines, etc. Accordingly, in developing a new computer
based information system the designer has to decide how to divide the set
of all necessary functions into separate load units. However , this
"packaging decision" is not always easy. The set of all functions can
usually be partitioned in many alternative ways: so finding the optimal
ar rangement represents a d ifficult probl em. To help him solve the
problem, the designer needs formal packaging rulE 9•

A parallel pa:per {11) demonstrates that the typical rule should consist
of two parts - a condition and a comparison. The condition identifies a
particular kind of design situation. '!be comparison predicts the bette;r
of two alternative functional arrangements in terms of some criterion of
success. Several kinds of conditions , functional , arrangements and
success criteria are distinguishable. That means many different ty�s of
rules are needed.

Yourdon and Constantine (17) have established the most comprehensive set
of packaging rules currently available in the Information Systems
l iterature (2 ,3 ,1 2 ,1 3 ,1 4) . Those rules are concerned w ith one of three
possible success c riteria : "technical efficiency" { 1 0) • . They compare
two kinds of functional arrangement:

- "associative" , i.e. functions combined in the same load unit , and

- "dissociative" i .e. functions separated in di fferent load un its .

They address situations in which functions are connected, sequentially
incomr;atible, once-off and run-optional :

- Rule A.

- Rule B.

Rule C .

- Rule D .

Include in the same load unit funct ions connected by
iterated reference.

Include in the same load unit functions with high volume of
access on connecting references .

Include in the same load unit functions with high frequency
of access on connecting references .

Include in the same load un i t as the superordinate any
functions with short interval of time between activation.

- Rule E .

- Rule F .

- Rule G .

36 5

Put into a separate load unit any optional function .

Put into a separate load unit any function used only once.

Put funct ions appl ied on input and output s ides of a sort
into separate load units .

However, certain situations occur which are not explicitly mentioned in
these rules. In particular, the 197 4 design technique of Waters (15 ,16)
suggests that a designer often encounters functions that receive inputs
supplied by exte rnal data source s , or produce outputs consumed by
external information users, and that these should normally be separate.
The same di stinction was re- iterated in ·1 9 82 (5) and 1 9 83 (1) . The
present pape r fol low s up the Waters cl ue to establ ish three new rules
wh ich may be added to the Yourdon-Constantine set. Following the
methodological guidelines developed in three earlier papers (7 ,8 ,9) these
rules w ill be der ived logical ly from three unde rlying pr emi ses about
information systems.

The first premise concerns system success. An information system inputs
, resources such as labour , hardware, software and r aw data from its

env ironment ; in exchange it outputs pr oce ssed data needed by the
env i ronment. The system is "successful " if the value v of its output s
exceeds the cost c of its inputs , i . e. th e ratio v/c i s maximal . I t has
been shown (1 0) that thi s ratio is the product of three independent
success criteria:

effectiveness, i.e. how well do outputs sati sfy environmental needs?

economic efficiency, i . e . how cheap is the resource mix?

technical efficiency , i . e . are resources wasted?

A second premi se distingui shes between "load unit" and "function". In
orde r to transform raw data into informati on , a computer typi cally
performs many individual o:perations such as reading, writing, addition,
etc. These operations are ini tiated by instr uct i ons situated in som e
rapidly accessible device which is defined here as the "program memory".
To get those instructions into the program memory, the computer normally
loads them from some kind of external library. For the sake of technical
efficiency, the loader transfers several instructions at a time, so that
execution only begins after an entire g roup of instructions has been
J,._oaded. Such a group is def ined as a load uni t (17) . Packaging is only
feasible if eve ry function f its into son,e load unit in its enti rety.
Therefore a funct ion can be def ined as a subset of a -l oad unit which
accomplishes some subtask of a system' s overall transformation task.

3 6 6

The th i r d . pr em i se di st i ngu i sh e s between "collect" and " extract"
functions. An I .S. provide s output s needed by i t s envi ronment :
consequently the system must contain functions which produce that output.
Simila rly, an I .S. receives inputs supplied by its environment , and
therefore the system must include functions which accept that input. As
the te rms "input" and "output" denote many different things, the two
functions will be defined more precisely:

a collect function inputs source data fran its environment

an extract function outputs user data to its environment .

The term "source data" includes data received from the organisation, its
custom ers and suppl ier s , as well as data received di rectly f rom other
information systems. The term "user data" includes information provided
to the organisation , its customers and suppl iers , as well as data
transferred directly to other information systems.

The pr em i ses refl ect featu r e s normally found in computer based
information systems today. They are not "universal " in the sense that
they are true of every single information system in existence , but there
are so few exceptions that they represent the "typical" system. In
contrast , the remainder of this paper exam ines situations which are
commonly encountered, but not so often that they can be described as
"typical" .

In the first situation , several functions are executed at inherently
different times. For example, in a batch-processing Debtors system, the
statements pr int funct ion might be executed once per month and the
val idate function once per week. In a real-time Debtors system, a
val idation function might col lect sal es data in real-time; an update
function might collect a f ile of cash receipts once a day ; a print
function might produce statements once a month , and an enquiry function
might extract individual debtors accounts on demand. Such functions are
"temporally inder,endent". Consider two such ftmctions, F and G. Suppose
they were both included in the same load unit. Then, whenever F needs to
be executed, both F and G would be loaded into the program memory - but G
would not be needed. Similarly, whenever G needs to be executed, both F
and G would be loaded - but now F would not be needed. In both cases
loading time and program memory would be wasted. The ref ore technical
efficiency demands a di ssociative arrangement, and so the Yourdon­
Constantine Rule E can be re-stated as

Rule O : if two funct ions are temporal ly independent , a
pac kag ing a r rangement wh i ch separate s th em i s more
technically-efficient than an arrangement which combines them
in the ,same load unit.

3 6 7

The second situation involves an information system environment which
demands different kinds of user data at different times. For example,
users of a Debtors system might requi re real-time answers to ad-hoc
enquiries on the one hand, and monthly statements on the other. A Sales
Orders system might be r€quired to produce hourly picking lists, as well
as a daily transfer file of sales data to the Debtors system. Users of a
Stores system might need daily stock reorder l ists, and real-time answers
to stock-level enqui ries. In these and many other systems the various
user data types are temporally independent : each is needed at an
inherently different time. Suppose such a system contains an extract
function E which produces user data type u. Then there are three
alternatives .

E may be executed wel l after U is needed. I n this case U will be
late and therefore the systan will be ineffective.

E may be executed wel l before U is needed. In this case U may be
incomplete, as source data collected in the interval u to x cannot
be reflected in U; so again U wil l be ineffective.

E may be executed close to the tim e U i s needed. Thi s alternative
avoids the previous drawbacks: so U is maximally effective.

Next , consider two extract functions E, and E� whose user data u, and U2
are needed at different times , u , and Uz · I f E , and E 2 are executed at
the same time, say x, then there are three timing alternatives:

x may be close to u , , in which case U2 will be ineffective

x may be c�ose to u1 , in which case U t will be ineffective

x : i s close to neither, so both U 1 and U2 wil l be ineffective.

However , if E I were executed near u , and E 2 near u2 , then both u,
and u1 will be effective. Therefore Rule O leads to • ••

Rule 1 : if two user data types are temporally independent , a
packaging arrangement which separates the corresJ;X)nding extract
functions is more effective and technically efficient than an

. arrangement which combines them in the same load unit.

The third situation involves an environment which needs user data based
011 source data generated a relatively long time ago. For example, users
of a Debtors system might need statements which summarise sales and cash
transactions that occur red at the beginning and m iddle of the month.
Users of a Budgeting system might need variance analyses based on plans
made up to a year ago. Users of a Sales Forecasting system might require
forecasts based en invoices generated dur ing the past three to five
years. In these a!1d many other systems source data "predates" user data.
Consider a collect function C and an extract function E, where the source
data S received by C predates the user data U produced by E. As shown for

368

temporally independent user data, the system can only be effective if E
is executed near u, the time at which U is needed. U cannot be produced
unless S has previously been collected, so C must be executed at some
time x prior to u. That time may be close to u or well before u.
Sup:[X)se x is close to u. 'Ihen as there is always some chance that source
data may contain errors which wil l be rej ected by C, and those errors
are unl ikely to be cor rected before E is executed, there is a finite
probability that U will be incomplete. After the system has been used a
few times, that probability becomes a certainty, and the system would be
ineffective. So C should be executed well before E, and therefore Rule O
leads to

Rule 2 : i f source data predates user data, a packaging
arrangement which separates the cor responding collect and
extract ftmctions is more effective and technically efficient
than an arrangement which combines them in the same load unit.

The last situation involves an environment which supplies different kinds
of source data at different frequencies. For example, in a Debtors
system sal es data might ar rive every few minutes f rom a terminal ; a
transfer file of receipts data might be available once per month;
statements m ight be needed at month-end, and custom er accounts might
have to be displayed at any time. In a Stores system, material movements
data may be generated continuously; a transfe r file of purchase orders
may be available once per day; a stock reorder list might be needed once
per day , and stock levels might ha� ·e to be di splayed at any time. In a
Budgeting system, plan data might be generated annually; performance data
might be available weekly, and variance re:E,X>rts might be needed monthly.
Consider an extract function E and two collect functions C 1 and C2 in
such a system . Source data are generated at f requencies s , and s1 ; the
user data are needed at frequency u. Sup:[X)se

S 1 � U but S2 < U.
As in Rul e 1 , effectiveness demands that E should be executed at
frequency u. Now if C , were executed less f requently than E, then E
would not always have data available to it : so effectiveness also demands
that c , be executed at f requency c , � u. However , a C2 execution
frequency c2 > s2 i s futile : so c2 � s2 • As

S2 < U and U � C 1

that means c2 < c , • Therefore C 1 and C2 should be executed at different
times. So Rule O leads to • • • •

Rul e 3 : i f two source data types are available at di fferent
frequencies, one being less frequent than the user data type
derived from it, then a packaging arrangement which separates
the corresponding collect functions is more effective and
technically efficient than an arrangement which combines them
in the same load unit.

The Yourdon-Constantine packaging rules are aimed at technical efficiency
and primar ily address intra system s ituations : connected modules,
processing sequence and internal frequency. (Only Rule E can be applied
in situations involving a system's environment) . In contrast, rules 1 -
3 are aimed at effectiveness and pr imar ily address inter-system
situations: interactions between an information system and a business
system or another information system . Therefore they should se rve as
significant extensions to the internally-oriented Yourdon-Constantine
$et.

The way the new rul es have been establ ished is also s igni ficant. The
val idity of the Yourdon-Constantine rules rests on thei r intuitive
appeal. They "make sense" in the case studies presented by the authors;
and an experienced designer can recall many additional instances in which
they are consistent with his own packaging decisions. In contrast, the
present· paper · presents formal proofs. It shows that Information Systems
principles can be derived by chains of logical reasoning from underlying
patterns. This suggests that proofs can be also constructed for our
other unsubstantiated "rules of thumb", so that the subject Information
Systems may well become more scientific one day (6) .

3 6 9

REFERENCES

1 . Cl ifton, M.D. (197 3) . Business Data Systems. 2nd ed.
Prentice-Hall International, London, p229 .

2 . C-0maa, H. (1984) . A software design method for real-time systems.
Camn. ACM, Zl , 938 - 949 .

3 . Jackson, M.A. (1983) . System Developnent.
Prentice-Hall International , London .

4 . Jensen , R.W. and Tonies , C .C . (1 97 9) . Software Engineering.
Prentice-Hal l ,Englewood Cl iffs,New Jersey, pl20 .

5 . Mende, J. (1982) . Teach systems the deductive way.
The Camnerce Teacher , 14 , 43 - 45 .

6 . Mende, J. (1986) . Research Directions in Information Systerns .
Quaestiones Informaticae, 4 (1) , 1 - 4 .

. 7 . Mende, J • (1986) . Laws and Techniques of Infonnation Systems .
Quaestiones Informaticae , 4 (3) , 1 - 6 .

8 . Mende, J . (1987) • A Structural Model of Information Systerns Theory .
To appear in Quaestiones Informaticae .

9 . Mende, J . (1987) . A Methodology for Research on Information Systems .
Working paper , University of the Witwatersrand.

10 . Mende, J . (1987) . Three objectives of information system design .
SACLA Conference , Pretoria .

11 . Mende, J. (1987) . A classification of information systems decanp::>sition
rules . SACLA conference , Pretoria .

12 . Myers, G. J . (1 97 8) . Can:[X>site Structured Design.
Van Nostrand Reinhold, New York , p. 6 .

13 . Randell, B (19 86) . System Design ·and Structuring .
The Canputer Journal , 2 9 , 300 - 306 .

14 . Stevens, W. P . (1981) . Using Structured Design .
Wiley-Interscience , New York .

15 . Waters , S . J . (1 97 4) . Methodology of canputer systems design .
The Canputer Journal , 17 , 17 - 24 .

16 . Waters, S .J . (1 97 4) . Introduction to Canputer Systems Design .
NCC Public.ations , Manchester .

17 . Yourdon, E. & Constantine L. (1 97 9) . Structured Design.
Prentice-Hall , Englavooo Cliffs, New Jersey, p.276 - 289 •

	SAICSIT_1987_Mende
	Front_Cover.pdf
	Front_Cover

