
Volume 6 • Number 3

ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

November 1988

T McDonald A Proposed Computer Network for R~rchers 95

TH C Smith F'mding a Cheap Matching 100

P J S Brower Ranking Infonnation System Problems in a User Environment 104

S W Postma . The ParaDel Conditional 109
N C K Phillips

D G Kourie Experiences in CSP Trace Generation 113
R J van den Heever

G de V de Kock Die Meting van Sukses van Naam~g.,algoritmes in 119
'n Genealogiese Data~ ·

R Short Learning the First Step in Requirements Specification 123

E C Anderssen Frame Clipping of Polygons 129
S Hvon Solms

The official journal of the Computer Society of South Mrica and of the South African
lmtitute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid:-Afrikaanse Instituut van Rekenaarwetenskaplikes

QUJESTIONES INFORMATICJE

The officia l journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannes burg
Wits
2050

Editorial Advisory Board

Professor D W Barron
Department of Mathematics
The University
Southampton 809 5NH
UNITED KINGDOM

Professor G Wiechers
77 Christine Road
Lyn wood Glen
Pretoria
0081

Professor K MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch
7700

Professor H J Messerschmidt
Die Universiteit van die Oranje-Vrystaat
Bloemfontein
9301

Dr PC Pirow
Graduate School of Business Admin.
University of the Witwatersrand
PO Box 31170
Braamfontein
2017

Professor S H van Solms
Departement van Rekenaarwetenskap
Randse Afrikaanse Universiteit
Auckland Park
Johannesburg
2001

Professor M H Williams
Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Production

Mr Q H Gee
Department of Computer Science
University of the Witwatersrand
Johannes burg
Wits
2050

Subscriptions

The annual subscription is
SA US UK

Individuals R20 $7 £5
Institutions R30 $14 £10

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand an~ printed by Printed Matter, for the Computer

Society of South Africa and the South African Institute of Computer Scientists.

The Parallel Conditional

S W Postma and N C K Phillips
Department of Computer Science, University of Natal, P O Box 375, Pietermaritzburg, 3200

Abstract

The parallel conditional is a new but natural programming language construct. It is particularly suited to
evaluation on parallel maclunes and generalizes other well known conditionals.

Received November 1987, Accepted August 1988

1. Introduction

The programming languages in common use at any
time tend to reflect the architecture of the computers
that arc in use at that time. Thus the long use of the
inherently sequential and deterministic von Neumann
architecture machines has led to the widespread use of
languages that are inherently sequential and
deterministic. However, the advent of relatively
affordable parallel machines has greatly stimulated
interest in parallel programming languages, and in
individual language constructs that are intended for
parallel evaluation. Our present purpose is to explore
one such new construct, the parallel conditional.

The parallel conditional is a natural generalisation
of both LISP's COND and Dijkstra's guarded
conditional that is suited to parallel processing. It
arose while designing the new language QUADLISP
and experience wiLh it in this context suggested that
it would be worthwhile to make an independent study
of it, and of its relationship with other conditionals.

Given n predicate-expression pairs (Pi,XJ a
conditional selects an Xi according to some condition
formulated in terms of the Pj. We investigate the
guarded conditional of Dijkstra [l), the COND of
LISP, and a new construct, the parallel conditional.
In each case, following Dijkstra, the Pi are called
guarm.

2. Conditionals and Evaluation Strategies

Dijkstra's conditional selects non-deterministically
some Xi where Pi is true, provided that all Pj arc
defined. If there is no such Pi or if some Pj is
undefined, his conditional "aborts" - which we shall
take to mean "becomes undefined". Dijkstra's
notation for his conditional is

if P1~X1 [] ... OPn~Xn fi
and we call this expression DC (for Dijkstra's
Conditional).

LISP's COND conditional selects the Xi such that
Pi is true and Pj is false for l$j<i. tr there is no

Qua:stioncs Informatica: 6 (3) 109-112, November 1988

such Pi then the value of the COND is undefined.
Note that if COND selects Xi then Pj may be
undefined for j>i. The LISP notation for the COND
conditional is (COND (P1 X1) ... (Pn Xn)), and we
call this expression LC (for LISP' s Conditional).

The parallel conditional is the simplest of the three
conditionals to describe: it selects non­
deterministically an Xi such that Pi is true, although
all Pj need not be defined, and is undefined if there is
no such true Pi. Our notation for the parallel

conditional is (P1~X1, ... ,Pn~Xn}, and we shall
call this expression PC (for parallel Conditional). An
essential difference between these conditionals lies in
the evaluation strategies that are appropriate for the
guards P1, ... ,Pn in each case.

For PC it is appropriate to evaluate the Pj in
parallel, and to return Xi, where Pi is a guard which
evaluates to true. We intend non-determinism to be
the "don't care" variety, so that it would be legal to
return Xi where Pi is the first guard to evaluate to
true. Note that the remaining guards may be true or
false or even undefined: their attempted evaluation
would be terminated on selecting Xj.

For LC the sequence P1, ... ,Pn should be evaluated
sequentially from the left until a true Pi is reached.
Xi is then returned, and the remaining Pj are not
evaluated (and could even be undefined).

For DC the guards can be evaluated either in
parallel or sequentially, but since it is required that
they all be defined. their complete evaluation should
be attempted before selecting an Xi.

PC is defined if some Pi is true; LC is defined if
some Pi is true and where Pj are defined for j<i; DC
is defined if some Pi is true and all Pj are defined.

3. Correspondence with Three Valued
Regular Logics

{P1~X1,P2~X2) is defined precisely when P1 por
P2 is true, where por is the three-valued disjunction
defined by the following truth table (# denoting
undefined):

109

P2
t f #

Pt porP2:
t t t t

Pt f t f #
t # #

(COND cPtXt) (P2X2)) is defined precisely when
P1 cor P2 is true, where cor is defined by:

t
f

P2
t f #

t
t

t
f

t

if Pt ~X 1 [l .. O P2~X2 fi is defined precisely when
Pt wor P2 is true, where wor is defined by:

t
f

P2
t f #

t
t

t
f

por, cor and wor are commonly called the parallel,
conditional and weak three-valued disjunctions. Each
of these, together with three-valued negation,
generates one of the four regular three-valued logics
of Kleene [2]. (The fourth regular three-valued logic
is a trivial symmetric variation of the one that
corresponds to cor.) The regular logics are the only
three-valued extensions of two-valued logic that have
the property that the propositional connectives are
partial recursive predicates when applied to partial
recursive arguments.

A more striking relationship between conditionals
and the regular three-valued logics will appear in the
next section, but firstly we clarify what we mean by
"undefined".

The various meanings of "undefined" are manifest,
and trying to be quite precise about them leads to
sticky philosophical problems that we wish to avoid.
In this article we have three situations in mind.
Firstly, an expression may be defined for some
values of sub-expressions, and undefined for others.
For example, 4/c is undefined when c has value zero.
Secondly, an expression is undefined if attempting to
evaluate it results in a non-terminating process. A
famous example of this from the lambda calculus is
Lhe expression (h.(xx)h.(xx)). Lastly, if we are
working in the context of three-valued logic, a partial
predicate P is said to be undefined at (x 1, ... ,xn) if
(x1, ... ,xn) is not in the domain of P, and in this case
the trulh-value of P(x1, ... ,xn) is#.

Quzstiones Informaticz 6 3 1988 110

4. Weakest Precondition Semantics for
Conditiorum

Weakest precondition semantics, invented by
Dijkstra and described in [l], can be used to
illuminate both the differences between the
conditionals and their correspondence with regular
logics.

Let Q,R be predicates, X be a computer process.
Then Q{X}R is the assertion: if Xis started with Q
true, then X terminates, and on termination R is
true. The weakest precondition for R to be true after
executing X is defined to be the weakest Q such that
Q{X}R, and is denoted wp(X,R). Weakest
preconditions are total predicates. Thus for any X,
wp(X,false) is false (here false is the constant
predicate whose value is f), while if X is a non­
terminating process then, for any R, wp(X,R) is
false. The semantics of a process X can be
determined by specifying how wp(X,R) is
constructed for any R.

Assuming that all the guards, the Pi, are total,
Dijkstra defined wp(DC,R) to be

cPt or ... or Pn) and cPt~wp(Xi,R)) and ... and
cPn~wp(Xn,R))

where the logical connectives are as usual in two-
valued logic. ·

We are interested in the case that the guards are
partial predicates, especially since this is particularly
appropriate to the conditionals LC and PC. In this
case Dijkstra suggests that the above wp(DC,R) ••be
prefixed, with a cand, by the requirement that the
initial state lies in the domain of all the guards."
(cand is the and of the regular logic determined by
negation and cor). Since the use of cand already
involves three-valued logic, we look for an
alternative to Dijkstra's suggestion that will allow
firstly, expressing "the initial state lies in the
domain of all the guards" by using logical
connectives, and secondly can be modified easily to
produce wp's for the other conditionals. Our solution
is to define wp(DC,R) to be

cPt wor ... wor Pn) ').. (P1=>wp(X1.R)) ~ ... 'A
cPn=>wp(Xn,R))

where wor is weak disjunction and~ and=> have the

tables below.

P?.Q P=>Q

Q Q
t f # t f #

t t f f t t f f
p f f f f p f t t t

f f f # t t t

~ and :::> are respectively conjunction and implication

in Bochvar's exterior logic which is discussed in
Rescher [3]. ~ yields f if one of its arguments is#,

so our expression for wp{DC,R) is a total predicate
and has value f when one or more of the guards is
undefined. In the case that all guards are total, our
wp(DC,R) is equivalent to Dijkstra's.

Some reflection on the informal semantics for
LISP's COND reveals that wp(LC,R) can be defined
tobe

(P1 cor ... cor Pn) ~ (P1=>wp(X1,R) ~ ... ~

(P n=>wp(Xn.R)).
From our earlier discussion of the informal

semantics of the parallel conditional it should be
clear that an approeriate expression for wp(PC,R) is

(P1 por ... por Pn) ~ (P1=>wp(X1,R) ~ ... ~

cPn=>wp(Xn.R)).
The weakest preconditions show clearly how the

three conditionals correspond to the three regular
logics.

S. Relative Strength of the Parallel
Conditional

Several constructs, including the other conditionals,
can be defined in terms of the parallel conditional and
negation, so the parallel conditional is relatively
strong. We list some results.

1. The parallel conditional and negation can define
the regular logics. To show this we need only
define por, cor and wor.
P por Q = {P-+t,Q-+t.-P-+ { Q-+t,-Q-+f),

--Q-+{P-+t.-P-+f)
P cor Q = {P-+t.-P-+{Q-+t.-Q-+f})
PworQ= {P-+{Q-+t.-Q-+t},Q-+{P-+t.

-P-+t} }-P-+{Q-+t,-Q-+f) ,-Q-+(P-+t.-P-+f)

2. The parallel conditional and negation can define
if-then-else. For, define if P then X else Y to
be {P-+X,-P-+ Y).

3. The parallel conditional and negation can define
LISP's COND. For, define
(COND (P1 X1)) to be {P1,Xi} and
(COND (P1 X1) ... (Pn Xn)) to be

{P1-+X1,-P1-+(COND (P2 X2) ... (P0 Xn))}
if n>l.

4. The parallel conditional and negation can define
if P1-+X10. .. ~Pn-+Xn fi. For, define
if P1 -+X 1 fi to be {P1-+X i},
if P1-X1DP2-+X2 fi to be {P1-+{P2-+X1,

-P2-+X1}.P2-+{P1-+X2,-P1-+X2} },
and ifn>2,
if P1-+X10. .. DPn-+Xn fi to be {P1-+Y1, ...

Pn-+Yn}

Questiones Informatica: 6 3 1988 111

where, for 1~~. Yi is the expression which

results on removing Pi-+Xi and -Pi-+Xi from

if P1 -+XiD-P1-+Xi[). .. [J>n-+XiD-Pn-+Xn fi.

5. The parallel conditional can select one of
X1, ... ,Xn non-deterministically. For, {t-+X1,

... ,t-+ Xnl does this selection.

Finally, it must be mentioned that several other
parallel non-deterministic operators have been
proposed in the literature. It is difficult to quantify
the relative strength of these operators, since rarely is
one obtainable from another without using
considerable additional machinery. For example,
consider the ambiguous function amb of McCarthy
[4]. amb(x,y) selects non-deterministically one ofx,y
if both are defined, otherwise whichever is defined,
but is itself undefined if neither is defined. In the case
that all of X1, ... ,Xn are defined, amb(X1, ... ,Xn) is

{t-+X1, ... ,t-+Xn), But if the Xi are possibly all
undefined, amb(X1, ... ,Xn) is {is-dermed(X1)-+X1, ... ,

is-defined(Xn)-+ Xn), where is-defined(X)=t if X is
defined, f otherwise. Since the is-defined predicate is
in general not computable, this relationship between
am b and the strong conditional is not very
illuminating. On the other hand, if amb and local
scoping were available in LISP, then consider

(letG(amb(if P1 then 1 else LOOP) ... (if P0 then n
else LOOP)))) (COND ((equal j 1) X 1) ... (equal j n)
Xn)))

where LOOP is a non-terminating LISP process.
This would have the effect of {P1-+X1, ... ,P0 -.+X0),

but again this is not very illuminating, especially
since we have used COND, which we have shown
can itself be considered to be a special case of the
parallel conditional.

6. Implementation

By distributing processes to parallel processors, a
useful result can be obtained even if some of the
individual processes might abort in error or loop
forever. The straightforward way to implement -the
parallel conditional is to distribute the evaluation of
the guards to parallel processors. From the
implementation point of view the only interesting
problem is how to ensure clean termination of the
evaluation of remaining guards after a Pi has been
found to be true. Such problems have been
extensively studied and a variety of solutions can be
found in Brinch Hansen [5], Hoare [6] and elsewhere.

We arc implementing the parallel conditional in an
extension of LISP called QUADLISP [7].

7. Conclusion

The parallel conditional proves to be a powerful
unifying concept. In programming languages it has the
same role as the (unbounded) minimisation operator in
recursive function theory - it is used to specify partial
functions. The concept can thus be used to simplify
the definition of the semantics of programming
languages in readily understood concepts, and also
used to simplify the implementation of language
processors by requiring fewer basic implementation
routines.

Qurestiones Infonnaticre 6 3 1988 112

References

[l) E W Dijkstra, [1976), A Discipline of
Programming, Prentice-Hall, New Jersey.
[2] S C Kleene, [1952), Introduction to
metamathematics, North-Holland, Amsterdam.
[3] W Rescher, [1969), Manyvalued Logic, McGraw­
Hill, New York.
[4] J McCarthy, [1963], A Basis for a Mathematical
Theory of Computation, in Computer Programming
and Formal Systems, North-Holland, 33-70.
[5] P Brinch Hansen, [1978], Distributed processes:
A Concurrent Programming Concept, Comm. ACM,
21 (11), 934-941.
[8] CAR Hoare, [1978), Communicating Sequential
Processes, Comm. ACM, 21 (8), 888-877.
[7] SW Postma, [1985], Introduction to Quadlisp/88,
Technical Report, Dept of Computer Science,
University of Natal, Pietermaritzburg.

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review articles and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Professor J M Bisho:13 Y, C - <.ow,z;;. E
Department of Computer Science
Universit o~the itwatersrand
Jo~an sb}lrg I
"vv1 (____ \
2 50

Fonn of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view Categories.

Manuscripts may be provided on disc ~

possible. If this cannot be avoided, glossy
bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther ·handwritten or typewritten. Greek letters
and unusual symbols ' should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
J oumal references should be arranged thus:

[l] E. Ashcroft and Z. Manna, [1972],
The Translation of 'GOTO' Programs
to 'WHILE' programs, Proceedings of
IFIP Congress 71, North-Holland,
Amsterdam, 250-255.

[2] C. Bohm and G. Jacopini, [1966],
Flow Diagrams, Turing Machines and
Languages with ·only Two Formation
Rules, Comm. ACM, 9, 366-371.

[3] S. Ginsburg, [1966], Mathematical
Theory of Context-free Languages,
McGraw Hill, New York.

· in ASCil., Proofs
formati ~ ~ a r;" - -f /i';f'ur ~~Proofs will be sent to the author to ensure

For authors wishinfl r v1dd' camera- that the papers have been correctly typeset and
ready copy, a page specification is free ly not for the addition of new material or major
available on request from the Editor. amendment to the texts. Excessive alterations

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables
should be typed on separate sheets and should
be numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be .clearly identified
on the back in pencil with the authors name
and figure number. Original line drawings
(not photocopies) should be submitted and
should include all the relevant details. Photo­

raphs as illustrations should be avoided if
4

~

may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimise the risk of the author's
contribution having to be held over to a later
issue.

Only original papers will be accepted, and
copyright in published papers will be vested in
the ~ublisher.

Letterli
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a fo­
rum for discussio-.

