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The Parallel Conditional 

S W Postma and N C K Phillips 
Department of Computer Science, University of Natal, P O Box 375, Pietermaritzburg, 3200 

Abstract 

The parallel conditional is a new but natural programming language construct. It is particularly suited to 
evaluation on parallel maclunes and generalizes other well known conditionals. 
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1. Introduction 

The programming languages in common use at any 
time tend to reflect the architecture of the computers 
that arc in use at that time. Thus the long use of the 
inherently sequential and deterministic von Neumann 
architecture machines has led to the widespread use of 
languages that are inherently sequential and 
deterministic. However, the advent of relatively 
affordable parallel machines has greatly stimulated 
interest in parallel programming languages, and in 
individual language constructs that are intended for 
parallel evaluation. Our present purpose is to explore 
one such new construct, the parallel conditional. 

The parallel conditional is a natural generalisation 
of both LISP's COND and Dijkstra's guarded 
conditional that is suited to parallel processing. It 
arose while designing the new language QUADLISP 
and experience wiLh it in this context suggested that 
it would be worthwhile to make an independent study 
of it, and of its relationship with other conditionals. 

Given n predicate-expression pairs (Pi,XJ a 
conditional selects an Xi according to some condition 
formulated in terms of the Pj. We investigate the 
guarded conditional of Dijkstra [l), the COND of 
LISP, and a new construct, the parallel conditional. 
In each case, following Dijkstra, the Pi are called 
guarm. 

2. Conditionals and Evaluation Strategies 

Dijkstra's conditional selects non-deterministically 
some Xi where Pi is true, provided that all Pj arc 
defined. If there is no such Pi or if some Pj is 
undefined, his conditional "aborts" - which we shall 
take to mean "becomes undefined". Dijkstra's 
notation for his conditional is 

if P1~X1 [] ... OPn~Xn fi 
and we call this expression DC (for Dijkstra's 
Conditional). 

LISP's COND conditional selects the Xi such that 
Pi is true and Pj is false for l$j<i. tr there is no 
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such Pi then the value of the COND is undefined. 
Note that if COND selects Xi then Pj may be 
undefined for j>i. The LISP notation for the COND 
conditional is (COND (P1 X1) ... (Pn Xn)), and we 
call this expression LC (for LISP' s Conditional). 

The parallel conditional is the simplest of the three 
conditionals to describe: it selects non­
deterministically an Xi such that Pi is true, although 
all Pj need not be defined, and is undefined if there is 
no such true Pi. Our notation for the parallel 

conditional is (P1~X1, ... ,Pn~Xn}, and we shall 
call this expression PC (for parallel Conditional). An 
essential difference between these conditionals lies in 
the evaluation strategies that are appropriate for the 
guards P1, ... ,Pn in each case. 

For PC it is appropriate to evaluate the Pj in 
parallel, and to return Xi, where Pi is a guard which 
evaluates to true. We intend non-determinism to be 
the "don't care" variety, so that it would be legal to 
return Xi where Pi is the first guard to evaluate to 
true. Note that the remaining guards may be true or 
false or even undefined: their attempted evaluation 
would be terminated on selecting Xj. 

For LC the sequence P1, ... ,Pn should be evaluated 
sequentially from the left until a true Pi is reached. 
Xi is then returned, and the remaining Pj are not 
evaluated (and could even be undefined). 

For DC the guards can be evaluated either in 
parallel or sequentially, but since it is required that 
they all be defined. their complete evaluation should 
be attempted before selecting an Xi. 

PC is defined if some Pi is true; LC is defined if 
some Pi is true and where Pj are defined for j<i; DC 
is defined if some Pi is true and all Pj are defined. 

3. Correspondence with Three Valued 
Regular Logics 

{P1~X1,P2~X2) is defined precisely when P1 por 
P2 is true, where por is the three-valued disjunction 
defined by the following truth table (# denoting 
undefined): 
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por, cor and wor are commonly called the parallel, 
conditional and weak three-valued disjunctions. Each 
of these, together with three-valued negation, 
generates one of the four regular three-valued logics 
of Kleene [2]. (The fourth regular three-valued logic 
is a trivial symmetric variation of the one that 
corresponds to cor.) The regular logics are the only 
three-valued extensions of two-valued logic that have 
the property that the propositional connectives are 
partial recursive predicates when applied to partial 
recursive arguments. 

A more striking relationship between conditionals 
and the regular three-valued logics will appear in the 
next section, but firstly we clarify what we mean by 
"undefined". 

The various meanings of "undefined" are manifest, 
and trying to be quite precise about them leads to 
sticky philosophical problems that we wish to avoid. 
In this article we have three situations in mind. 
Firstly, an expression may be defined for some 
values of sub-expressions, and undefined for others. 
For example, 4/c is undefined when c has value zero. 
Secondly, an expression is undefined if attempting to 
evaluate it results in a non-terminating process. A 
famous example of this from the lambda calculus is 
Lhe expression (h.(xx)h.(xx)). Lastly, if we are 
working in the context of three-valued logic, a partial 
predicate P is said to be undefined at (x 1, ... ,xn) if 
(x1, ... ,xn) is not in the domain of P, and in this case 
the trulh-value of P(x1, ... ,xn) is#. 
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4. Weakest Precondition Semantics for 
Conditiorum 

Weakest precondition semantics, invented by 
Dijkstra and described in [l], can be used to 
illuminate both the differences between the 
conditionals and their correspondence with regular 
logics. 

Let Q,R be predicates, X be a computer process. 
Then Q{X}R is the assertion: if Xis started with Q 
true, then X terminates, and on termination R is 
true. The weakest precondition for R to be true after 
executing X is defined to be the weakest Q such that 
Q{X}R, and is denoted wp(X,R). Weakest 
preconditions are total predicates. Thus for any X, 
wp(X,false) is false (here false is the constant 
predicate whose value is f), while if X is a non­
terminating process then, for any R, wp(X,R) is 
false. The semantics of a process X can be 
determined by specifying how wp(X,R) is 
constructed for any R. 

Assuming that all the guards, the Pi, are total, 
Dijkstra defined wp(DC,R) to be 

cPt or ... or Pn) and cPt~wp(Xi,R)) and ... and 
cPn~wp(Xn,R)) 

where the logical connectives are as usual in two-
valued logic. · 

We are interested in the case that the guards are 
partial predicates, especially since this is particularly 
appropriate to the conditionals LC and PC. In this 
case Dijkstra suggests that the above wp(DC,R) ••be 
prefixed, with a cand, by the requirement that the 
initial state lies in the domain of all the guards." 
(cand is the and of the regular logic determined by 
negation and cor). Since the use of cand already 
involves three-valued logic, we look for an 
alternative to Dijkstra's suggestion that will allow 
firstly, expressing "the initial state lies in the 
domain of all the guards" by using logical 
connectives, and secondly can be modified easily to 
produce wp's for the other conditionals. Our solution 
is to define wp(DC,R) to be 

cPt wor ... wor Pn) ').. (P1=>wp(X1.R)) ~ ... 'A 
cPn=>wp(Xn,R)) 

where wor is weak disjunction and~ and=> have the 

tables below. 

P?.Q P=>Q 

Q Q 
t f # t f # 

t t f f t t f f 
p f f f f p f t t t 

# f f f # t t t 

~ and :::> are respectively conjunction and implication 



in Bochvar's exterior logic which is discussed in 
Rescher [3]. ~ yields f if one of its arguments is#, 

so our expression for wp{DC,R) is a total predicate 
and has value f when one or more of the guards is 
undefined. In the case that all guards are total, our 
wp(DC,R) is equivalent to Dijkstra's. 

Some reflection on the informal semantics for 
LISP's COND reveals that wp(LC,R) can be defined 
tobe 

(P1 cor ... cor Pn) ~ (P1=>wp(X1,R) ~ ... ~ 

(P n=>wp(Xn.R)). 
From our earlier discussion of the informal 

semantics of the parallel conditional it should be 
clear that an approeriate expression for wp(PC,R) is 

(P1 por ... por Pn) ~ (P1=>wp(X1,R) ~ ... ~ 

cPn=>wp(Xn.R)). 
The weakest preconditions show clearly how the 

three conditionals correspond to the three regular 
logics. 

S. Relative Strength of the Parallel 
Conditional 

Several constructs, including the other conditionals, 
can be defined in terms of the parallel conditional and 
negation, so the parallel conditional is relatively 
strong. We list some results. 

1. The parallel conditional and negation can define 
the regular logics. To show this we need only 
define por, cor and wor. 
P por Q = {P-+t,Q-+t.-P-+ { Q-+t,-Q-+f), 

--Q-+{P-+t.-P-+f) 
P cor Q = {P-+t.-P-+{Q-+t.-Q-+f}) 
PworQ= {P-+{Q-+t.-Q-+t},Q-+{P-+t. 

-P-+t} }-P-+{Q-+t,-Q-+f) ,-Q-+(P-+t.-P-+f) 

2. The parallel conditional and negation can define 
if-then-else. For, define if P then X else Y to 
be {P-+X,-P-+ Y). 

3. The parallel conditional and negation can define 
LISP's COND. For, define 
(COND (P1 X1)) to be {P1,Xi} and 
(COND (P1 X1) ... (Pn Xn)) to be 

{P1-+X1,-P1-+(COND (P2 X2) ... (P0 Xn))} 
if n>l. 

4. The parallel conditional and negation can define 
if P1-+X10. .. ~Pn-+Xn fi. For, define 
if P1 -+X 1 fi to be {P1-+X i}, 
if P1-X1DP2-+X2 fi to be {P1-+{P2-+X1, 

-P2-+X1}.P2-+{P1-+X2,-P1-+X2} }, 
and ifn>2, 
if P1-+X10. .. DPn-+Xn fi to be {P1-+Y1, ... 

Pn-+Yn} 

Questiones Informatica: 6 3 1988 111 

where, for 1~~. Yi is the expression which 

results on removing Pi-+Xi and -Pi-+Xi from 

if P1 -+XiD-P1-+Xi[). .. [J>n-+XiD-Pn-+Xn fi. 

5. The parallel conditional can select one of 
X1, ... ,Xn non-deterministically. For, {t-+X1, 

... ,t-+ Xnl does this selection. 

Finally, it must be mentioned that several other 
parallel non-deterministic operators have been 
proposed in the literature. It is difficult to quantify 
the relative strength of these operators, since rarely is 
one obtainable from another without using 
considerable additional machinery. For example, 
consider the ambiguous function amb of McCarthy 
[4]. amb(x,y) selects non-deterministically one ofx,y 
if both are defined, otherwise whichever is defined, 
but is itself undefined if neither is defined. In the case 
that all of X1, ... ,Xn are defined, amb(X1, ... ,Xn) is 

{t-+X1, ... ,t-+Xn), But if the Xi are possibly all 
undefined, amb(X1, ... ,Xn) is {is-dermed(X1)-+X1, ... , 

is-defined(Xn)-+ Xn), where is-defined(X)=t if X is 
defined, f otherwise. Since the is-defined predicate is 
in general not computable, this relationship between 
am b and the strong conditional is not very 
illuminating. On the other hand, if amb and local 
scoping were available in LISP, then consider 

(letG(amb(if P1 then 1 else LOOP) ... (if P0 then n 
else LOOP)))) (COND ((equal j 1) X 1) ... (equal j n) 
Xn))) 

where LOOP is a non-terminating LISP process. 
This would have the effect of {P1-+X1, ... ,P0 -.+X0 ), 

but again this is not very illuminating, especially 
since we have used COND, which we have shown 
can itself be considered to be a special case of the 
parallel conditional. 

6. Implementation 

By distributing processes to parallel processors, a 
useful result can be obtained even if some of the 
individual processes might abort in error or loop 
forever. The straightforward way to implement -the 
parallel conditional is to distribute the evaluation of 
the guards to parallel processors. From the 
implementation point of view the only interesting 
problem is how to ensure clean termination of the 
evaluation of remaining guards after a Pi has been 
found to be true. Such problems have been 
extensively studied and a variety of solutions can be 
found in Brinch Hansen [5], Hoare [6] and elsewhere. 

We arc implementing the parallel conditional in an 
extension of LISP called QUADLISP [7]. 



7. Conclusion 

The parallel conditional proves to be a powerful 
unifying concept. In programming languages it has the 
same role as the (unbounded) minimisation operator in 
recursive function theory - it is used to specify partial 
functions. The concept can thus be used to simplify 
the definition of the semantics of programming 
languages in readily understood concepts, and also 
used to simplify the implementation of language 
processors by requiring fewer basic implementation 
routines. 
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