
Volume 6 • Number 2

JMende

M JWagener
G de V de Kock

M H Rennhackkamp
SH von Solms

AK Cooper

MEOrlowska

S WPostma

ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

September 1988

A Classification of Partitioning Rules for Information Systems 63
Design

Rekenaar Spraaksintese: Die Omskakeling van Teks na klank - 67
'n Prestasiemeting

Modelling Distributed Database Concurrency Control 70
Overhead

A Data Structure for Exchanging Geographical Information 77

On Syntax and Semantio, Related to Incomplete Information 83
Systems

Traversable Trees and Forests 89

The official journal of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes

QUJESTIONESINFORMATICJE

The official journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes

Editor

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Editorial Advisory Board

Professor D W Barron
Department of Mathematics
The University
Southampton S09 5NH
UNITED KINGDOM

Professor G W eichers
77 Christine Road
Lynwood Glen
Pretoria
0081

Professor K MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch
7700

Prof H J Messerschmidt
Die Universiteit van die Oranje-Vrystaat
Bloemfontein
9301

DrP C Pirow
Graduate School of Business Admin.
University of the Witwatersrand
PO Box 31170
Braamfontein
2017

Professor SH von Solms
Departement van Rekenaarwetenskap
Rand Afrikaans University
Auckland Park
Johannesburg
2001

Professor M H Williams
Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Production
MrQHGee
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Subscriptions

The annual subscription is
SA US UK

Individuals R20 $ 7 £ 5
Institutions R30 $14 £ 10

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

Traversable Trees and Forests

S WPostma
Department of Computer Science.University of Natal, Pietermaritzburg, 3200

Abstract

Two topics are studied, related and generalised in this paper - the Knuth transform of an arbitrary tree to a
binary tree, and Pfaltz' s definition of a data structure as a graph with assignments. Trees are defined in terms of
undirected graphs, and the binary tree is shown to be a data structure. And/or graphs are considered and
generalised to fans which are shown to be Knuth transformable. A (presumably most) general structure which
is Knuth transformable is then defined, a possible notation is suggested, and its implementation in Octolisp is
indicated.
Computing Review Categories: E.l DATA STRUCTURES, G.2.2 GRAPH THEORY
Keywords: Design, Theory, Languages, Undirected trees, abstract Knuth transform.fan structures, tree based
data structures, Octolisp.

Received October 1987, Accepted January 1988

1. Graphs, Trees and Data Structures

In this section we review some standard definitions
and details may be found in Knuth [1] or Pfaltz [3].

Trees considered as data structures are common
informatic objects, so common that we tend to forget
the assumptions that we make about them. In
particular we tend to consider only directed rooted
structures although more general cases are considered
in the literature [l],[3]. The basic ideas are developed
in terms of graph theory in this section.

A graph is a set Q of points, called the nodes
together with a set E of edges where

E = {{x,y} I xeQ & yeQ}
Nodes are designated by node labels qO, ql, ... , qn,

and the edge {qi, qj} by qiqj orby qjqi. If qiqjeE then
qi and qj are said to be adjacent

Adjacency is just a symmetric relation on the set
Q. In informatics, adjacency is often considered to be
a (two-way) access path.

From adjacency we can derive the transitive
accessibility relation: qj is said to be accessible from
qi if there is a sequence of nodes

qi= qO, ql, ... , qn = qj
such that qs :I: qt if s :I: t and also qs and qs+ 1 are
adjacent for ~ 1. Such a sequence of nodes is
called a path from qi to qj. Obviously qn, qO is a
path from qj to qi.

From the adjacency relation we· also obtain the
adjacency function A:Q-+20:qi-+{qs I qiqs eE}. This
function is to be used in other sections of this paper.

A graph is said to be connected if for any two
nodes, qi and qj, there is a path from qi to qj. A
connected graph is said to be a free tree if there is at
most one path between any two nodes, i.e. a free tree
is a connected graph with no cycles.

Quzstiones Infonnaticz 6 (2) 89-94, September 1988 89

A rooted tree, or a tree, is a free tree in which one
node is distinguished and is called the root of the
tree. It is obvious that at most IQI rooted trees are
obtainable from a given free tree with Q as nodeset

A node qi, other than the root node, of a rooted tree
is called a leaf, if IA(qi)I = 1.

In (rooted) trees we are interested in a particular
restriction of the accessibility relation - we are
interested in paths from the root node to the other
nodes and to the leaves in particular. We therefore
define the following.

We look at two sets of definitions of direct
descendants and the direct descendancy function - the
first is favoured by Phillips [4] and is as follows.

Let qO be the root of a tree, then qj is a direct
descendant of qi iff there is a path qO, ...• qi, qj, and
qj is a descendant of qi if there is a path qO, ... , qi,
... , qj. Furthermore D(qi) = {qjlqj is a direct
descendant of qi}. The other definitions are: the direct
descendancy function, D:Q-+2Q is defined inductively
by:

D(qO) = A(qO) where qO is the root node,
at step i let

fi = {qs I D(qs) is established}
ni = u s{qi I qie D(qs), qse fi}

'{{qj I qj is a leaf}u fi)
If ni is empty then D is fully established,
else take any qke ni and then D(qk) = A{ qk}\fi.

In a rooted tree qj is said to be a direct descendant of
qi if qj e D(qi), and qk is said to be a descendant of qi
if there is a sequence of nodes qi = qO, qi, ... , qn = qk
such that qk+l is a direct descendant of qk. We note.
that every leaf is a descendant of the root node.

Instead of defining our graphs in terms of edges { x,
y}, we could have defined them in terms of arcs

<x,y> such that <x,y> is an arc iff <y ,x.> is an arc.
Each edge from E may be replaced by a pair of arcs
from Ea. This point of view is now taken of the
rooted trees, and the descendancy function D is used
to partitio~ the set of arcs into two disjoint sets,
called Ed and Eu, as follows

Ed= { <x,y> I ye D(x)}

Eu= {<y,x> lyeD(x)}
i.e. Eu = Ea\Ed

A tree then, which may be considered to be a
system (Q; Ea; qO) is now considered to be the
system (Q; Ed, Eu; qO). We note that the usual
directed tree as a system (Q; Ed, { } ; qO).

We have to consider Pfaltz's definition of a data
structure. He defines a data structure as a graph with
assignments to the nodes and/or the edges. A tree
data structure is now provisionally defined to be a
system

[(Q; Ed, Eu; qO); Fq; Fe]
where Fq: Q~ {X I X is a node value}

Fe: Ea~{Y I Y is an edge value}
and Fe is typically defined by cases to be

Fd; Ed~{Yd I Yd is a down-edge value}

Fu: Eu~{Yu I Yu is an up-edge value}
Hence a data structure is the system

[(Q; Ed, Eu; qO); Fq; Fd, Fu].

A more general definition of a data structure on a
tree is to be developed in a later section. We note at
this stage merely that in a data structure
implementation, an arc is represented by a traversal
access, and the value associated with an arc or node
by a retrieval access.

We conclude this section by noting that a forest is
obtained when the root node is omitted and also all
arcs to and from the root node.

2. Knuth Transforms and Ordered Trees

Pfaltz [3] defines a Knuth transfonn to be a mapping
of an n-ary tree to a "Knuth binary tree" that
"preserves features of interest." Now a Knuth binary
tree is not a tree but is a data structure since Knuth
defines such a binary tree to be "a finite set of nodes
which is either empty, or consists of a root and two
disjoint binary trees called the left and the right
subtrees of the root."

Two problems are raised: first, how do we
characterise the "features of interest", and secondly,
the use of the words "left" and "right" is just an
instance of positional ordering of descendants of a
node. The question is, how do we introduce
positional order into our trees? Although the final
results stated in section 6 resolve both problems
simultaneously, we will approach the results by
steps in this and the sections in between.

Qua:stiones Informatica: 6 2 1988 90

The abstract discussion is illustrated by examples,
and we start off by considering the rooted tree

(Q= {abcdefghijklmno};E= {abacadae
cf cg dh di dj hk bl Im In lo}; a)
which is represented graphically by

b,1["'-d
/1 /1.~

g l J/"'
k /f""-

m n o

Figure 1

A possible Knuth transform of this given tree is

/a
b7c/
f--g i--j7

k--1

/
rn--n--o

Figure 2

It may be noted that the following features of
interest are preserved:

1. Descendancy
2. Order - although it is a spurious order in the

representation.
In our representation we represented D(a) by the list

(b e c d) instead of a set. We are thus led to define the
abstract Knuth transform of a tree to be given by the
descendancy function (i.e. D) written in the form

node : set of direct descendants
thus obtaining for the given tree

a: {be: {fg} d: (h: {kl: (mno} ij} e}
where the elements of each set in the transform are
not positionally ordered.

An order may be imposed on a set, and the notation
(u v w ...) will be used for the set (u v w ...) with

an imposed order u<v, v<W, w< In the tree above
we may have, say, that o<n<m and also j<i<h, and
we see that this is easily represented in our abstract
Knuth transform as follows

a: {b c: (f g} d: (j i h: {k 1: (on m)})e}
This is however, the transform of the object below,

which is not a tree

Figure3

The object is however definable as a graph if we
use arcs. We conclude that the abstract (generalised)
Knuth transform is useful for mapping more general
structures than trees, and will solve the
characterisation problem for these structures in
section 6.

3. Data Structures on Trees

The provisional definition for a data structure on a
tree is given in section 1, namely that it is a system

[(Q; Ea; qO); Fq; Fe]
may be illustrated by the following example:

a:A

b0f'~D
~:~

e:E f:F g:G h:H

~
Figure4

whereQ= {abcdefghi}
Fq:Q-+{A BC ... I} as indicated

Fe:QxQ-+{XY I xy e Ea}

i: I

In a data structure we typically leave out the node
labels, and obtain the tree represented graphically by

Qu~stiones Informatic~ 6 2 1988 91

A

Y.~~
B Al D

~~
E F G H

~
Figures

We now note that we can 'drop' the edge values to
the direct descendants to obtain the representation
(using'%' for 'no value')

%:A

/"' AB:B AD:D

GI: I

Figure 6

Hence we modify the provisional definition of a
data structure on a tree to a definition as follows.

A basic tree data structure is a system
[(Q; Ea; qO); F]

where F:Q -+ Edge-values x Node-values
The abstract Knuth transform of the final version of

the data structure is
%: A: {AB: B AC:·C: {CE: E CF: F CG: G: {GI:

I} CH: H} AD: D}
and we note that we have to add a constraint in that
no two nodes that are siblings (i.e. direct descendants
of the same parent node) may be assigned the same
(pair of) values.

4. Fans and their Data Structures

A fan, as defined in this section, is a graph that is
abstract Knuth transformable. The ordered trees
considered in a previous section, and the AND/OR
graphs of artificial intelligence [2) are shown to be
data structures on fans.

Consider the following example of a fan

a

1
/i
y--z

Figure7

A fan is a system
(Q; Ed, Eu, Er; qO)
such that (Q; Ed, Eu; qO) is a tree;
and xy e Er implies x and y are siblings;
and Er is a forest of simple paths.
If any interior node of a fan is considered, say qi,

then we see that its set of direct descendants, D(qi),
may be partitioned into subsets that are connected,
and these are denoted by R(qi). For the fan illustrated
above we have, e.g.

R(a)= {{be) {d} {efgh) {i} U}}
We are now tempted to define a generalised abstract

Knuth transform by talcing the abstract Knuth ·
transform of the underlying tree, and in addition
enclosing every element of each R(qi) in brackets -
for the sake of simplicity brackets are omitted around
single elements. For our example we would obtain

1. Abstract Knuth transform of the underlying tree:
a: {b: {k 1 m n} c d: {op q} e f: {rs t} g h: {u v w}

ij: {x: {yz}}}
and

2. Generalised abstract Knuth transform of the fan:
a: {(h: (klmn} c} d: {(op}q} {ef: {{rst}} gh:

{uvw} }ij: {x: {{yz}}}}
It now seems easy to define data structures on fans.

For example, the edges defined by Er could be taken
to be AND relations in the fan is considered as an
AND/OR graph. Or we could consider the relation of
positional ordering, and for orders defined by: b<c,
e<f <g<h, 0<p, r<s<t and y<z we would have:

2.' a:{ (b: (klmn} c)d: {(op)q} (ef: {(rst)}
gh: (uvw})ij: (x: ((yz))}}
which would have the obvious and simplified form

(ql ... qn) for {(ql ... qn)}.
Two observations on fans justifies the definitions

to be given in the next section. First, we note that in
the generalised abstract Knuth transform the term,
e.g. { e f: ... g h: ... } is used, and the set notation
docs not convey the information that we are dealing
with edges ef, fg and gh. Secondly, it is clear from
AND/OR graphs that the sub-fan representation a:
{ ... { e f g h} ... } is actually correct; considered as a
grouping the relationships should be represented by
the full graph {ef eg eh fg fh gh} (cf. [5]). We may
say that what we actually have is that the pictorial
representation of the fan should be considered to be a
'name' in the same way that { a b c} is the 'name' of
the sets {b a c} or {a ab b c} etc., but a better
solution is at hand.

5. Classification Mappings

The classification mappings defined in this section
are used in the next section to define data structures
on trees, such data structures to be generally abstract
Knuth transformable.

Consider an arbitrary set, say {sl s2 ... sn}, and
define a classification domain for that set as follows.

s

P(S)

p3(S)

P4(S)

Figures

Quiestiones Informaticz 6 2 1988 92

Let P(S) = {Sl S2 ... Sk}
such that ('v si e S) (3 Sj) (si e Sj),

and the Si are pairwise disjoint
andk<n.
P(S) is a partition of S.
If all the conditions cannot be met then P(S) = { } .

If P { S} is not empty then it is a set and we can find
a P(P(S)), hence we define C(S), the classification
domain to be Ui pi(S) where pi(S) = P(Pi-l(S)).

For example, let S = { a b c d e f g h i j}
Then one classification domain for S is:
P(S) = {{abed} {e} {f} {g hi} {j} }
p2(S)= {{{abed} {e}} {{f} U}} {{ghi}}}
P3(S)= {{ {{abed} {e}} {{ghi}}} { {{f} U}}} l
P4(S)= ({ {{{abed} {el} {{ghi}}} {{{f} {j}}}}}
and C(S) = P(S) u p2(S) u P3(S) u P4(S).
Each classification domain has an associated tree,

and for the domain of the example we have the
diagram shown in Figure 8. ·

A classification mapping on a set is a mapping
F: C(S) -... V defined by cases on the pi(S) subsets

of C(S). That is
F:P(S)-... Vl

p2(S)-... V2

pi(S)-... Vi where pi+l(S) = (}

and Vl u V2 u Vi~ V

6. Generamed Tree Based Data Structures

This section contains the final results of the papaer.
It was shown in a preceding section that it is

sufficient to consider only mappings to nodes in
defining a data structure, and hence we define:

A tree based data structure is a basic tree data
structure together with a classification mapping for

the root node and each set of siblings. The definition
is easily extended to forests.

A forest based data structure is a forest of basic tree
data structures together with a classification mapping
for each set of siblings and a classification mapping
for the set of root nodes.

Since each classification mapping has a
corresponding tree it is obvious that we can find an
abstract Knuth transform for the tree and if we add
information about the classification mapping we call
it an extended Knuth transform which is defined
below.

Our range sets VO, used for the basic tree data
structures, are actually product sets in that they may
contain node-values and/or edge-values. In our
extended tranformation we use the convention:

node-value:
edge-value: -
edge-value: - node-value:
i.e. node-value: corresponds to %: - node-value:
and edge-value: - corresponds to edge-value: -%:
Two cases occur as values of the Vi, i> 1, sets with

such regularity that a special notation is justified.
These are the cases where positional ordering is
specified, or the set-like unordered structure is
maintained. When ordering is specified, e.g. the
element {ABC D} is mapped to {<A, B>, <B, D>,
<D,C>} it is indicated by parentheses, e.g. (A B D
C}, otherwise square brackets are used, i.e. [ABC
D]. The element {ABC D} may also be mapped to
some other value, say X, in which case that value is
shown as follows:

unordered case [: =X AB CD]
ordered case (: =X AB C D)

i.e. (AB DC)
is [: ={ <A,B>, <B, D>, <D,C>} A B C D]
or is [: =XS AB C D]

where XS = (<A,B>, <B, D>, <D, C>}
An example is considered before the abstract

formulation is finalised.

Figure9

Quzstiones Informatica: 6 2 1988 93

a b C d

~y
{ <a,bb>, <b,c>, <c,d>}

e

~)
*f<j

order

&
Figure 10

which is to have the extended transfonn:
A: (:=$(a: -B: [:=& d: -% I] b: -J) (: =* C: (: =/

e:-K f:-[L M] g:-% N) c:-0 [: =+ h:-PQ])]
Let us consider the example of the tree associated

with a classification mapping from the previous
section again, but with the values from the Vi
shown at the nodes. We get, e.g Figure 10.

If we take a modified Knuth transform, i.e. node
value written following, not preceding. the open
brackets, we get:

[: =&[:=order[:=% [: ={<ab> ... } ab c d] [: =% e
]] [: =% [: =& g h i]]] [: =% [: =Order [: =* f] [:
=%j]]]]

The whole set {a b ... j} is a set of siblings,
descendants of say, of a node with value A, and we
write

A: [: =& ...]. Each of the a, ... , j represents a
subtree and its transform may be substituted for the
given nodes.

7. Conclusion: Applications

Three aspects of applications of the theory expounded
are considered in this section: implementation in a
program language, models for ADT's (abstract data
types) and program specification.

The current version of Quadlisp, QL/86, is being
revised to obtain Octolisp. As a part of the revision
the trees (and forests) described in this paper are
implemented with the restriction that an interior node
must have an edge-value or a node-value but not
both, and the notation:
t ... } for
t ... J for [, =& ...]
,f • . . ~ for [: =/ ...]
~ ...). for
.(... J for (: =& ...)
{ ... ~ for (:=I ...)
f ... f for [: =- ...]

[...]
conjunction
disjunction
(...) ordered
ordered conjunction
ordered disjunction
negation

Qu:estioncs lnformaticre 6 2 1988 94

In all cases the additional specification : =val, e.g.
t: =Sigma ... } is allowed.

Furthennore the trees or forests may at a sibling
level be considered to be streams.

A second application for these generalised tree data
structures is to set up models for ADT's defined for
tree or forest structures. Since the generalised tree
data structures are mathematical objects this will
solve existence problems constructively.

Finally, in program specification we need concepts
that are as general as possible.· We surmise that the
objects defined in this paper are the most general
objects that have abstract Knuth transforms.

As an open problem we leave the (mathematical)
investigation of the possibility of defining
classification mappings on the trees associated with
classification mappings. We surmise that such
structures may be useful in semantics and program
verification.

References

[l] D.E. Knuth, [1968], The Art of Computer
Programming - Vol 1, Fundamental Algorithms,
Addison Wesley, Reading Mass.
[2] NJ. Nilsson, [1971], Problem Solving Methods
in Artificial Intelligence, McGraw Hill, New York.
[3] J.L. Pfaltz, [1977), Computer Data Structures,
McGraw-Hill, New York.
[4] N.C.K. Phillips, [1987]. personal
communication.
[5] S. Postma, [1982]. On the definition and
implementation of the programming language
Quadlisp, Ph D Thesis, UNISA, Pretoria.

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles, re­
view articles and exploratory articles of gener­
al interest to readers of the journal. The pre­
ferred languages of the journal will be the
congress languages of IFIP although papers
in other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Form of manuscript
Manuscripts should be in double-space

typing on one side only of sheets of A4 size
with wide margins.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Manuscripts may be provided on disc us­
ing any Apple Macintosh package or in ASCII
format.

For authors wishing to provide camera­
ready copy, a page specification is freely
available on request from the Editor.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables
should be typed on separate sheets and should
be numbered consecutively and titled.

Figures should also be supplied on separ­
ate sheets, and each should be clearly identi­
fied on the back in pencil and the author's
name and figure number. Original line draw­
ings (not photocopies) should be submitted
and should include all the relevant details.
Photographs used as illustrations should be

avoided if possible. If this cannot be avoided.
glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end ot

the manuscript in alphabetic order of the au­
thor's name, and cited in the text in square
brackets. Journal references should be ar­
ranged thus:

[1] E. Ashcroft and Z. Manna, [1972], The
Translation of 'GOTO' Programs to
'WHILE' programs, Proceedings of
IFIP Congress 71, North-Holland ,
Amsterdam, 250-255.

[2] C. Bohm and G. Jacopini, [1966] ,
Flow Diagrams, Turing Machines and
Languages with only Two Formation
Rules, Comm. ACM, 9, 366-371.

[3] S. Ginsburg, [1966], Mathematical
Theory of Context-free Languages
McGraw Hill, New York.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correct! y typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimise the risk of the author\
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papers will be vested
in the publisher.

Letters
A section of "Letters to the Editor' · (eacti

limited to about 500 words) will provide a f0
rum for discussion of recent problems

