
Volume 6 • Number 2 

JMende 

M JWagener 
G de V de Kock 

M H Rennhackkamp 
SH von Solms 

AK Cooper 

MEOrlowska 

S WPostma 

ISSN 0254-2757 

QU/ESTIONES 
INFORMATICJE 

September 1988 

A Classification of Partitioning Rules for Information Systems 63 
Design 

Rekenaar Spraaksintese: Die Omskakeling van Teks na klank - 67 
'n Prestasiemeting 

Modelling Distributed Database Concurrency Control 70 
Overhead 

A Data Structure for Exchanging Geographical Information 77 

On Syntax and Semantio, Related to Incomplete Information 83 
Systems 

Traversable Trees and Forests 89 

The official journal of the Computer Society of South Africa and of the South African 
Institute of Computer Scientists 

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die 
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes 



QUJESTIONESINFORMATICJE 

The official journal of the Computer Society of South Africa and of the South 
African Institute of Computer Scientists 

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die 
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes 

Editor 

Professor J M Bishop 
Department of Computer Science 
University of the Witwatersrand 
Johannesburg 
Wits 
2050 

Editorial Advisory Board 

Professor D W Barron 
Department of Mathematics 
The University 
Southampton S09 5NH 
UNITED KINGDOM 

Professor G W eichers 
77 Christine Road 
Lynwood Glen 
Pretoria 
0081 

Professor K MacGregor 
Department of Computer Science 
University of Cape Town 
Private Bag 
Rondebosch 
7700 

Prof H J Messerschmidt 
Die Universiteit van die Oranje-Vrystaat 
Bloemfontein 
9301 

DrP C Pirow 
Graduate School of Business Admin. 
University of the Witwatersrand 
PO Box 31170 
Braamfontein 
2017 

Professor SH von Solms 
Departement van Rekenaarwetenskap 
Rand Afrikaans University 
Auckland Park 
Johannesburg 
2001 

Professor M H Williams 
Department of Computer Science 
Herriot-Watt University 
Edinburgh 
Scotland 

Production 
MrQHGee 
Department of Computer Science 
University of the Witwatersrand 
Johannesburg 
Wits 
2050 

Subscriptions 

The annual subscription is 
SA US UK 

Individuals R20 $ 7 £ 5 
Institutions R30 $14 £ 10 

to be sent to: 
Computer Society of South Africa 
Box 1714 Halfway House 1685 

Qurestiones Informaticre is prepared by the Computer Science Department of the 
University of the Witwatersrand and printed by Printed Matter, for the Computer 
Society of South Africa and the South African Institute of Computer Scientists. 



Traversable Trees and Forests 

S WPostma 
Department of Computer Science.University of Natal, Pietermaritzburg, 3200 

Abstract 

Two topics are studied, related and generalised in this paper - the Knuth transform of an arbitrary tree to a 
binary tree, and Pfaltz' s definition of a data structure as a graph with assignments. Trees are defined in terms of 
undirected graphs, and the binary tree is shown to be a data structure. And/or graphs are considered and 
generalised to fans which are shown to be Knuth transformable. A (presumably most) general structure which 
is Knuth transformable is then defined, a possible notation is suggested, and its implementation in Octolisp is 
indicated. 
Computing Review Categories: E.l DATA STRUCTURES, G.2.2 GRAPH THEORY 
Keywords: Design, Theory, Languages, Undirected trees, abstract Knuth transform.fan structures, tree based 
data structures, Octolisp. 
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1. Graphs, Trees and Data Structures 

In this section we review some standard definitions 
and details may be found in Knuth [1] or Pfaltz [3]. 

Trees considered as data structures are common 
informatic objects, so common that we tend to forget 
the assumptions that we make about them. In 
particular we tend to consider only directed rooted 
structures although more general cases are considered 
in the literature [l],[3]. The basic ideas are developed 
in terms of graph theory in this section. 

A graph is a set Q of points, called the nodes 
together with a set E of edges where 

E = {{x,y} I xeQ & yeQ} 
Nodes are designated by node labels qO, ql, ... , qn, 

and the edge {qi, qj} by qiqj orby qjqi. If qiqjeE then 
qi and qj are said to be adjacent 

Adjacency is just a symmetric relation on the set 
Q. In informatics, adjacency is often considered to be 
a (two-way) access path. 

From adjacency we can derive the transitive 
accessibility relation: qj is said to be accessible from 
qi if there is a sequence of nodes 

qi= qO, ql, ... , qn = qj 
such that qs :I: qt if s :I: t and also qs and qs+ 1 are 
adjacent for ~ 1. Such a sequence of nodes is 
called a path from qi to qj. Obviously qn, .... qO is a 
path from qj to qi. 

From the adjacency relation we· also obtain the 
adjacency function A:Q-+20:qi-+{qs I qiqs eE}. This 
function is to be used in other sections of this paper. 

A graph is said to be connected if for any two 
nodes, qi and qj, there is a path from qi to qj. A 
connected graph is said to be a free tree if there is at 
most one path between any two nodes, i.e. a free tree 
is a connected graph with no cycles. 

Quzstiones Infonnaticz 6 (2) 89-94, September 1988 89 

A rooted tree, or a tree, is a free tree in which one 
node is distinguished and is called the root of the 
tree. It is obvious that at most IQI rooted trees are 
obtainable from a given free tree with Q as nodeset 

A node qi, other than the root node, of a rooted tree 
is called a leaf, if IA(qi)I = 1. 

In (rooted) trees we are interested in a particular 
restriction of the accessibility relation - we are 
interested in paths from the root node to the other 
nodes and to the leaves in particular. We therefore 
define the following. 

We look at two sets of definitions of direct 
descendants and the direct descendancy function - the 
first is favoured by Phillips [4] and is as follows. 

Let qO be the root of a tree, then qj is a direct 
descendant of qi iff there is a path qO, ...• qi, qj, and 
qj is a descendant of qi if there is a path qO, ... , qi, 
... , qj. Furthermore D(qi) = {qjlqj is a direct 
descendant of qi}. The other definitions are: the direct 
descendancy function, D:Q-+2Q is defined inductively 
by: 

D(qO) = A(qO) where qO is the root node, 
at step i let 

fi = {qs I D(qs) is established} 
ni = u s{qi I qie D(qs), qse fi} 

'{{qj I qj is a leaf}u fi) 
If ni is empty then D is fully established, 
else take any qke ni and then D(qk) = A{ qk}\fi. 

In a rooted tree qj is said to be a direct descendant of 
qi if qj e D(qi), and qk is said to be a descendant of qi 
if there is a sequence of nodes qi = qO, qi, ... , qn = qk 
such that qk+l is a direct descendant of qk. We note. 
that every leaf is a descendant of the root node. 

Instead of defining our graphs in terms of edges { x, 
y}, we could have defined them in terms of arcs 



<x,y> such that <x,y> is an arc iff <y ,x.> is an arc. 
Each edge from E may be replaced by a pair of arcs 
from Ea. This point of view is now taken of the 
rooted trees, and the descendancy function D is used 
to partitio~ the set of arcs into two disjoint sets, 
called Ed and Eu, as follows 

Ed= { <x,y> I ye D(x)} 

Eu= {<y,x> lyeD(x)} 
i.e. Eu = Ea\Ed 

A tree then, which may be considered to be a 
system (Q; Ea; qO) is now considered to be the 
system (Q; Ed, Eu; qO). We note that the usual 
directed tree as a system (Q; Ed, { } ; qO). 

We have to consider Pfaltz's definition of a data 
structure. He defines a data structure as a graph with 
assignments to the nodes and/or the edges. A tree 
data structure is now provisionally defined to be a 
system 

[(Q; Ed, Eu; qO); Fq; Fe] 
where Fq: Q~ {X I X is a node value} 

Fe: Ea~{Y I Y is an edge value} 
and Fe is typically defined by cases to be 

Fd; Ed~{Yd I Yd is a down-edge value} 

Fu: Eu~{Yu I Yu is an up-edge value} 
Hence a data structure is the system 

[(Q; Ed, Eu; qO); Fq; Fd, Fu]. 

A more general definition of a data structure on a 
tree is to be developed in a later section. We note at 
this stage merely that in a data structure 
implementation, an arc is represented by a traversal 
access, and the value associated with an arc or node 
by a retrieval access. 

We conclude this section by noting that a forest is 
obtained when the root node is omitted and also all 
arcs to and from the root node. 

2. Knuth Transforms and Ordered Trees 

Pfaltz [3] defines a Knuth transfonn to be a mapping 
of an n-ary tree to a "Knuth binary tree" that 
"preserves features of interest." Now a Knuth binary 
tree is not a tree but is a data structure since Knuth 
defines such a binary tree to be "a finite set of nodes 
which is either empty, or consists of a root and two 
disjoint binary trees called the left and the right 
subtrees of the root." 

Two problems are raised: first, how do we 
characterise the "features of interest", and secondly, 
the use of the words "left" and "right" is just an 
instance of positional ordering of descendants of a 
node. The question is, how do we introduce 
positional order into our trees? Although the final 
results stated in section 6 resolve both problems 
simultaneously, we will approach the results by 
steps in this and the sections in between. 
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The abstract discussion is illustrated by examples, 
and we start off by considering the rooted tree 

(Q= {abcdefghijklmno};E= {abacadae 
cf cg dh di dj hk bl Im In lo}; a) 
which is represented graphically by 

b,1["'-d 
/1 /1.~ 

g l J/"' 
k /f""-

m n o 

Figure 1 

A possible Knuth transform of this given tree is 

/a 
b7c/ 
f--g i--j7 

k--1 

/ 
rn--n--o 

Figure 2 

It may be noted that the following features of 
interest are preserved: 

1. Descendancy 
2. Order - although it is a spurious order in the 

representation. 
In our representation we represented D(a) by the list 

(b e c d) instead of a set. We are thus led to define the 
abstract Knuth transform of a tree to be given by the 
descendancy function (i.e. D) written in the form 

node : set of direct descendants 
thus obtaining for the given tree 

a: {be: {fg} d: (h: {kl: (mno} ij} e} 
where the elements of each set in the transform are 
not positionally ordered. 

An order may be imposed on a set, and the notation 
(u v w ... ) will be used for the set (u v w ... ) with 



an imposed order u<v, v<W, w< .... In the tree above 
we may have, say, that o<n<m and also j<i<h, and 
we see that this is easily represented in our abstract 
Knuth transform as follows 

a: {b c: (f g} d: (j i h: {k 1: (on m)} )e} 
This is however, the transform of the object below, 

which is not a tree 

Figure3 

The object is however definable as a graph if we 
use arcs. We conclude that the abstract (generalised) 
Knuth transform is useful for mapping more general 
structures than trees, and will solve the 
characterisation problem for these structures in 
section 6. 

3. Data Structures on Trees 

The provisional definition for a data structure on a 
tree is given in section 1, namely that it is a system 

[(Q; Ea; qO); Fq; Fe] 
may be illustrated by the following example: 

a:A 

b0f'~D 
~:~ 

e:E f:F g:G h:H 

~ 
Figure4 

whereQ= {abcdefghi} 
Fq:Q-+{A BC ... I} as indicated 

Fe:QxQ-+{XY I xy e Ea} 

i: I 

In a data structure we typically leave out the node 
labels, and obtain the tree represented graphically by 
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A 

Y.~~ 
B Al D 

~~ 
E F G H 

~ 
Figures 

We now note that we can 'drop' the edge values to 
the direct descendants to obtain the representation 
(using'%' for 'no value') 

%:A 

/"' AB:B AD:D 

GI: I 

Figure 6 

Hence we modify the provisional definition of a 
data structure on a tree to a definition as follows. 

A basic tree data structure is a system 
[(Q; Ea; qO); F] 

where F:Q -+ Edge-values x Node-values 
The abstract Knuth transform of the final version of 

the data structure is 
%: A: {AB: B AC:·C: {CE: E CF: F CG: G: {GI: 

I} CH: H} AD: D} 
and we note that we have to add a constraint in that 
no two nodes that are siblings (i.e. direct descendants 
of the same parent node) may be assigned the same 
(pair of) values. 

4. Fans and their Data Structures 

A fan, as defined in this section, is a graph that is 
abstract Knuth transformable. The ordered trees 
considered in a previous section, and the AND/OR 
graphs of artificial intelligence [2) are shown to be 
data structures on fans. 

Consider the following example of a fan 



a 

1 
/i 
y--z 

Figure7 

A fan is a system 
(Q; Ed, Eu, Er; qO) 
such that (Q; Ed, Eu; qO) is a tree; 
and xy e Er implies x and y are siblings; 
and Er is a forest of simple paths. 
If any interior node of a fan is considered, say qi, 

then we see that its set of direct descendants, D(qi), 
may be partitioned into subsets that are connected, 
and these are denoted by R(qi). For the fan illustrated 
above we have, e.g. 

R(a)= {{be) {d} {efgh) {i} U}} 
We are now tempted to define a generalised abstract 

Knuth transform by talcing the abstract Knuth · 
transform of the underlying tree, and in addition 
enclosing every element of each R(qi) in brackets -
for the sake of simplicity brackets are omitted around 
single elements. For our example we would obtain 

1. Abstract Knuth transform of the underlying tree: 
a: {b: {k 1 m n} c d: {op q} e f: {rs t} g h: {u v w} 

ij: {x: {yz}}} 
and 

2. Generalised abstract Knuth transform of the fan: 
a: {(h: (klmn} c} d: {(op}q} {ef: {{rst}} gh: 

{uvw} }ij: {x: {{yz}}}} 
It now seems easy to define data structures on fans. 

For example, the edges defined by Er could be taken 
to be AND relations in the fan is considered as an 
AND/OR graph. Or we could consider the relation of 
positional ordering, and for orders defined by: b<c, 
e<f <g<h, 0<p, r<s<t and y<z we would have: 

2.' a:{ (b: (klmn} c)d: {(op)q} (ef: {(rst)} 
gh: (uvw})ij: (x: ((yz))}} 
which would have the obvious and simplified form 

(ql ... qn) for {(ql ... qn)}. 
Two observations on fans justifies the definitions 

to be given in the next section. First, we note that in 
the generalised abstract Knuth transform the term, 
e.g. { e f: ... g h: ... } is used, and the set notation 
docs not convey the information that we are dealing 
with edges ef, fg and gh. Secondly, it is clear from 
AND/OR graphs that the sub-fan representation a: 
{ ... { e f g h} ... } is actually correct; considered as a 
grouping the relationships should be represented by 
the full graph {ef eg eh fg fh gh} (cf. [5]). We may 
say that what we actually have is that the pictorial 
representation of the fan should be considered to be a 
'name' in the same way that { a b c} is the 'name' of 
the sets {b a c} or {a ab b c} etc., but a better 
solution is at hand. 

5. Classification Mappings 

The classification mappings defined in this section 
are used in the next section to define data structures 
on trees, such data structures to be generally abstract 
Knuth transformable. 

Consider an arbitrary set, say {sl s2 ... sn}, and 
define a classification domain for that set as follows. 

s 

P(S) 

p3(S) 

P4(S) 

Figures 
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Let P(S) = {Sl S2 ... Sk} 
such that ('v si e S) (3 Sj) (si e Sj), 

and the Si are pairwise disjoint 
andk<n. 
P(S) is a partition of S. 
If all the conditions cannot be met then P(S) = { } . 

If P { S} is not empty then it is a set and we can find 
a P(P(S)), hence we define C(S), the classification 
domain to be Ui pi(S) where pi(S) = P(Pi-l(S)). 

For example, let S = { a b c d e f g h i j} 
Then one classification domain for S is: 
P(S) = {{abed} {e} {f} {g hi} {j} } 
p2(S)= {{{abed} {e}} {{f} U}} {{ghi}}} 
P3(S)= {{ {{abed} {e}} {{ghi}}} { {{f} U}}} l 
P4(S)= ({ {{{abed} {el} {{ghi}}} {{{f} {j}}}}} 
and C(S) = P(S) u p2(S) u P3(S) u P4(S). 
Each classification domain has an associated tree, 

and for the domain of the example we have the 
diagram shown in Figure 8. · 

A classification mapping on a set is a mapping 
F: C(S) -... V defined by cases on the pi(S) subsets 

of C(S). That is 
F:P(S)-... Vl 

p2(S)-... V2 

pi(S)-... Vi where pi+l(S) = ( } 

and Vl u V2 u ...... Vi~ V 

6. Generamed Tree Based Data Structures 

This section contains the final results of the papaer. 
It was shown in a preceding section that it is 

sufficient to consider only mappings to nodes in 
defining a data structure, and hence we define: 

A tree based data structure is a basic tree data 
structure together with a classification mapping for 

the root node and each set of siblings. The definition 
is easily extended to forests. 

A forest based data structure is a forest of basic tree 
data structures together with a classification mapping 
for each set of siblings and a classification mapping 
for the set of root nodes. 

Since each classification mapping has a 
corresponding tree it is obvious that we can find an 
abstract Knuth transform for the tree and if we add 
information about the classification mapping we call 
it an extended Knuth transform which is defined 
below. 

Our range sets VO, used for the basic tree data 
structures, are actually product sets in that they may 
contain node-values and/or edge-values. In our 
extended tranformation we use the convention: 

node-value: 
edge-value: -
edge-value: - node-value: 
i.e. node-value: corresponds to %: - node-value: 
and edge-value: - corresponds to edge-value: -%: 
Two cases occur as values of the Vi, i> 1, sets with 

such regularity that a special notation is justified. 
These are the cases where positional ordering is 
specified, or the set-like unordered structure is 
maintained. When ordering is specified, e.g. the 
element {ABC D} is mapped to {<A, B>, <B, D>, 
<D,C>} it is indicated by parentheses, e.g. (A B D 
C}, otherwise square brackets are used, i.e. [ABC 
D]. The element {ABC D} may also be mapped to 
some other value, say X, in which case that value is 
shown as follows: 

unordered case [: =X AB CD] 
ordered case (: =X AB C D) 

i.e. (AB DC) 
is [: ={ <A,B>, <B, D>, <D,C>} A B C D] 
or is [: =XS AB C D] 

where XS = ( <A,B>, <B, D>, <D, C>} 
An example is considered before the abstract 

formulation is finalised. 

Figure9 
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a b C d 

~y 
{ <a,bb>, <b,c>, <c,d>} 

e 

~) 
*f<j 

order 

& 
Figure 10 

which is to have the extended transfonn: 
A: (:=$(a: -B: [:=& d: -% I] b: -J) (: =* C: (: =/ 

e:-K f:-[L M] g:-% N) c:-0 [: =+ h:-PQ])] 
Let us consider the example of the tree associated 

with a classification mapping from the previous 
section again, but with the values from the Vi 
shown at the nodes. We get, e.g Figure 10. 

If we take a modified Knuth transform, i.e. node 
value written following, not preceding. the open 
brackets, we get: 

[: =&[:=order[:=% [: ={<ab> ... } ab c d] [: =% e 
] ] [: =% [: =& g h i ] ] ] [: =% [: =Order [: =* f] [: 
=%j]]]] 

The whole set {a b ... j} is a set of siblings, 
descendants of say, of a node with value A, and we 
write 

A: [: =& ... ]. Each of the a, ... , j represents a 
subtree and its transform may be substituted for the 
given nodes. 

7. Conclusion: Applications 

Three aspects of applications of the theory expounded 
are considered in this section: implementation in a 
program language, models for ADT's (abstract data 
types) and program specification. 

The current version of Quadlisp, QL/86, is being 
revised to obtain Octolisp. As a part of the revision 
the trees (and forests) described in this paper are 
implemented with the restriction that an interior node 
must have an edge-value or a node-value but not 
both, and the notation: 
t ... } for 
t ... J for [, =& ... ] 
,f • . . ~ for [: =/ ... ] 
~ ... ). for 
.( ... J for (: =& ... ) 
{ ... ~ for (:=I ... ) 
f ... f for [: =- ... ] 

[ ... ] 
conjunction 
disjunction 
( ... ) ordered 
ordered conjunction 
ordered disjunction 
negation 
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In all cases the additional specification : =val, e.g. 
t: =Sigma ... } is allowed. 

Furthennore the trees or forests may at a sibling 
level be considered to be streams. 

A second application for these generalised tree data 
structures is to set up models for ADT's defined for 
tree or forest structures. Since the generalised tree 
data structures are mathematical objects this will 
solve existence problems constructively. 

Finally, in program specification we need concepts 
that are as general as possible.· We surmise that the 
objects defined in this paper are the most general 
objects that have abstract Knuth transforms. 

As an open problem we leave the (mathematical) 
investigation of the possibility of defining 
classification mappings on the trees associated with 
classification mappings. We surmise that such 
structures may be useful in semantics and program 
verification. 
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