ISSN 0254-2757

QU AESTIONES
INFORMATICAE

Volume 5 « Number 3 December 1987
M.E. Orlowska Common Approach to Some Informational Systems 1
S.P. Byron-Moore A Program Development Environment for Microcom-
puters 13
N.C.K. Phillips Pointers as a Data Type 21
S.W. Postma
P.J.S. Bruwer A Model to Evaluate the Success of Information Cen-
J.J. Groenewald tres in Organizations 24
J. Mende Three Packaging Rules for Information System Design 32
T. D. Crossman A Comparison of Academic and Practitioner Percep-
tions of the Changing Role of the Systems Analyst: an
Empiral Study 36
P.J.S. Bruwer Strategic Planning Models for Information Systems 44
S.H. von Solms Generating Relations Using Formal Grammars 51
A.L. du Plessis The ELSIM Language: an FSM-Based Language for
C.H. Bornman ELSIM SEE : 67
BOOK REVIEW 56
CONFERENCE ABSTRACTS 57

An ofﬁcnal pubhcatlon of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

’n Amptehke tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid-
Afrikaanse Instituut van Rekenaarwetenskaplikes

QUASTIONES INFORMATICA

An official publication of the Computer Society of South Africa
and of the South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa
en van die Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN

Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand

1 Jans Smuts Avenue

2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town

Private Bag

Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand

P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park

Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland :

g

Production

Mr C.S.M. Mueller

Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R10 $7 £5

Institutions R15 $14 £10

Computer Society of South Africa’
Box 1714 Halfway House

Queestiones Informaticee is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

THREE PACKAGING RULES FOR INFORMATION SYSTEM
DESIGN

J. Mende
Department of Accounting
University of the Witwatersrand
WITS 2050

ABSTRACT

After identifying the processing functions required in a computer based information system, the designer needs
to combine them into an optimal set of load units. Some “packaging” arrangements yield a better system than
others, depending upon characteristics of the data collected from external sources and the data extracted for external
users. An effective and technically efficient system satisfies three rules.

1. If two user data types are needed at different times, the corresponding extract functions should be

separated in different load units.

2. If source data predates the user data derived from it, the corresponding collect and extract functions

should be separated in different load units.

3. If two source data types are available at different frequencies, one being less frequent than the user

data derived from it, the corresponding collect functions should be separated in different load units.

1. PACKAGING RULES

Business, government and other organizations employ a majority of the computers in
existence today to transform raw data into useful information. The transformation process usually
involves a large number of distinct processing “functions” [4] such as validation, updating,
sorting, retrieval and accumulation. Computer memories today are often so large that all the
functions necessary to accomplish a complex transformation can be incorporated in one single
program. However, in many cases that arrangement wastes computing resources. So instead
those functions are incorporated into several smaller “load units” — programs, overlays,
subroutines, etc. Accordingly, in developing a new computer based information system the
designer has to decide how to divide the set of all necessary functions into separate load units.
However, this “packaging decision” is not always easy. The set of all functions can usually be
partitioned in many alternative ways: so finding the optimal arrangement represents a difficult
problem. To help him solve the problem, the designer needs formal packaging rules.

A parallel paper [11] demonstrates that the typical rule should consist of two parts — a
condition and a comparison. The condition identifies a particular kind of design situation .The
comparison predicts the better of two alternative functional arrangements in terms of some
criterion of success. Several kinds of conditions, functional arrangements and success criteria are
distinguishable. That means many different types of rules are needed.

Yourdon and Constantine [17] have established the most comprehensive set of packaging
rules currently available in the Information Systems literature [2,3,12,13,14]. Those rules are
concerned with one of three possible success criteria: “technical efficiency” [10]. They compare
two kinds of functional arrangement: (a) associative, i.e. functions combined in the same load
units, and (b) dissociative, i.e. functions separated in different load units.They address situations
in which functions are connected, sequentially incompatible, once-off and run-optional:

* Rule A. Include in the same load unit functions connected by iterated reference.

* Rule B. Include in the same load unit functions with high volume of access on connecting
references.

* Rule C. Include in the same load unit functions with high frequency of access on
connecting references.

* Rule D. Include in the same load unit as the superordinate any functions with short interval
of time between activation.

* Rule E. Put into a separate load unit any optional function.

* RuleF. Put into a separate load unit any function used only once.

* Rule G. Put functions applied on input and output sides of a sort into separate load units.

However, certain situations occur which are not explicitly mentioned in these rules. In

32 jones informatice, S, 3, pp 32-35, issn 0254-2757

particular, the 1974 design technique of Waters [15,16] suggests that a designer often encounters
functions that receive inputs supplied by external data sources, or produce outputs consumed by
external information users, and that these should normally be separate. The same distinction was
re-iterated in 1982 [5] and 1983 [1]. The present paper follows up the Waters clue to establish
three new rules which may be added to the Yourdon-Constantine set. Following the methodo-
logical guidelines developed in three earlier papers [7,8,9] these rules will be derived logically
from three underlying premises about information systems.

2. UNDERLYING PREMISES

The first premise concerns system success. An information system inputs resources such as
labour, hardware, software and raw data from its environment; in exchange it outputs processed
data needed by the environment. The system is “successful” if the value v of its outputs exceeds
the cost ¢ of its inputs, i.e. the ratio v/c is maximal. It has been shown [10] that this ratio is the
product of three independent success criteria: (a) effectiveness, i.e. how well do outputs satisfy
environmental needs? (b) ecomonic efficiency, i.e. how cheap is the resource mix? (c) technical
efficiency, i.e. are resources wasted?

A second premise distinguishes between “load unit” and “function”. In order to transform
raw data into information, a computer typically performs many individual operations such as
reading, writing, addition, etc. These operations are initiated by instructions situated in some
rapidly accessible device which is defined here as the “program memory”. To get those
instructions into the program memory, the computer normally loads them from some kind of
external library. For the sake of technical efficiency, the loader transfers several instructions at a
time, so that execution only begins after an entire group of instructions has been loaded. Such a
group is defined as a load unit [17]. Packaging is only feasible if every function fits into some
load unit in its entirety. Therefore a function can be defined as a subset of a load unit which
accomplishes some subtask of a system’s overall transformation task.

The third premise distinguishes between “collect” and “extract” functions. An LS. provides
outputs needed by its environment: consequently the system must contain functions which
produce that output. Similarly, an I.S. receives inputs supplied by its environment, and therefore
the system must include functions which accept that input. As the terms “input” and “output”
denote many different things, the two functions will be defined more precisely:

i) acollect function inputs source data from its environment, and
il) an extract function outputs user data to its environment.

The term “source data” includes data received from the organization, its customers and
suppliers, as well as data received directly from other information systems. The term “user data”
includes information provided to the organization, its customers and suppliers, as well as data
transferred directly to other information systems.

The premises reflect features normally found in computer based information systems today.
They are not “universal” in the sense that they are true of every single information system in
existence, but there are so few exceptions that they represent the “typical” system. In contrast, the
remainder of this paper examines situations which are commonly encountered, but not so often
that they can be described as “typical”.

In the first situation, several functions are executed at inherently different times. For
example, in a batch-processing Debtors system, the statements-print function might be executed
once per month and the validate function once per week. In a real-time Debtors system, a
validation function might collect sales data in real-time; an update function might collect a file of
cash receipts once a day; a print function might produce statements once a month, and an enquiry
function might extract individual debtors accounts on demand. Such functions are “temporally
independent”. Consider two such functions, F and G. Suppose they were both included in the
same load unit. Then, whenever F needs to be executed, both F and G would be loaded into the
program memory — but G would not be needed. Similarly, whenever G needs to be executed,
both F and G would be loaded — but now F would not be needed. In both cases loading time
and program memory would be wasted. Therefore technical efficiency demands a dissociative
arrangement, and so the Yourdon-Constantine Rule E can be re-stated as

Rule 0: if two functions are temporally independent, a packaging arrangement which

separates them is more technically-efficient than an arrangement which combines
them in the same load unit.

33

3. THREE NEW RULES

The second situation involves an information system environment which demands different
kinds of user data at different times. For example, users of a Debtors system might require
real-time answers to ad-hoc enquiries on the one hand, and monthly statements on the other. A
Sales Orders system might be required to produce hourly picking lists, as well as a daily transfer
file of sales data to the Debtors system. Users of a Stores system might need daily stock reorder
lists, and real-time answers to stock-level enquiries. In these and many other systems the various
user data types are temporally independent: each is needed at an inherently different time.
Suppose such a system contains an extract function E which produces user data type U. Then
there are three alternatives.

+ E may be executed well after U is needed. In this case U will be late and therefore the
system will be ineffective.

+ E may be executed well before U is needed. In this case U may be incomplete, as source
data collected in the interval u to x cannot be reflected in U; so U will be ineffective.

« E may be executed close to the time U is needed. This alternative avoids the previous
drawbacks: so U is maximally effective.

Next, consider two extract functions E1 and E2 whose user data U1 and U2 are needed at
different times, u1 and u2. If E1 and E2 are executed at the same time, say x, then there are three
timing alternatives: (a) x may be close to ui, in which case U2 will be ineffective; (b) x may be
close to u2, in which case U1 will be ineffective; (c) x is close to neither, so both U1 and U2 will
be ineffective. However, if E1 were executed near ul and E2 near u2, then both U1 and U2 will
be effective. Therefore Rule 0 leads to ...

Rule 1: if two user data types are temporally independent, a packaging arrangement
which separates the corresponding extract functions is more effective and technically
efficient than an arrangement which combines them in the same load unit.

The third situation involves an environment which needs user data based on source data
generated a relatively long time ago. For example, users of a Debtors system might need
month-end statements which summarize sales and cash transactions that occurred at the beginning
and middle of the month. Users of a Budgeting system might need variance analyses based on
plans made up to a year ago. Users of a Sales Forecasting system might require forecasts based
on invoices generated during the past three to five years. In these and many other systems source
data “predates” user data. Consider a collect function C and an extract function E, where the
source data S received by C predates the user data U produced by E. As shown for temporally
independent user data, the system can only be effective if E is executed near u, the time at which
U is needed. U cannot be produced unless S has previously been collected, so C must be
executed at some time x prior to u. That time may be close to u or well before u. Suppose x is
close to u. Then as there is always some chance that source data may contain errors which will be
rejected by C, and those errors are unlikely to be corrected before E is executed, there is a finite
probability that U will be incomplete. After the system has been used a few times, that probability
becomes a certainty, and the system would be ineffective. So C should be executed well before
E, and therefore Rule O leads to ...

Rule 2: if source data predates user data, a packaging arrangement which separates the
corresponding collect and extract functions is more effective and technically efficient
than an arrangement which combines them in the same load unit.

The last situation involves an environment which supplies different kinds of source data at
different frequencies. For example, in a Debtors system sales data might arrive every few
minutes from a terminal; a transfer file of receipts data might be available once per month;
statements might be needed at month-end, and customer accounts might have to be displayed at
any time. In a Stores system, material movements data may be generated continuously; a transfer
file of purchase orders may be available once per day; a stock reorder list might be needed once
per day, and stock levels might have to be displayed at any time. In a Budgeting system, plan
data might be generated annually; performance data might be available weekly, and variance
reports might be needed monthly. Consider an extract function E and two collect functions C1
and C2 in such a system. Source data are generated at frequencies s1 and s2: the user data are

34

needed at frequency u. Suppose s1 > u but s2 < u. As in Rule 1, effectiveness demands that E
should be executed at frequency u. Now if C1 were executed less frequently than E, then E
would not always have data available to it: so effectiveness also demands that C1 be executed at
frequency c1> u. However, a C2 execution frequency c2 > s is futile: so c2 <s2. Ass2<uandu
< c1 that means c2 < c1 . Therefore C1 and C2 should be executed at different times. So Rule 0
leads to ...

Rule 3: if two source data types are available at different frequencies, one being less
frequent than the user data type derived from it, then a packaging arrangement which
separates the corresponding collect functions is more effective and technically
efficient than an arrangement which combines them in the same load unit.

4. IMPLICATIONS

The Yourdon-Constantine packaging rules are aimed at technical efficiency and primarily
address intra-system situations: connected modules, processing sequence and internal frequency.
(Only Rule E can be applied in situations involving a system’s environment). In contrast, rules 1
- 3 are aimed at effectiveness and primarily address inter-system situations: interactions between
an information system and a business system or another information system. Therefore they
should serve as significant extensions to the internally-oriented Yourdon-Constantine set.

The way the new rules have been established is also significant. The validity of the
Yourdon-Constantine rules rests on their intuitive appeal. They “make sense” in the case studies
presented by the authors; and an experienced designer can recall many additional instances in
which they are consistent with his own packaging decisions. In contrast, the present paper
presents formal proofs. It shows that Information Systems principles can be derived by chains of
logical reasoning from underlying patterns. This suggests that proofs can be also constructed for
our other unsubstantiated “rules of thumb”, so that the subject Information Systems may well
become more scientific one day [6].

REFERENCES

1. Clifton, M.D. [1973]. Business Data Systems. 2nd ed. Prentice-Hall International,
London, 229.

2. Gomaa, H. [1984]. A software design method for real-time systems.
Communications of the ACM, 27,938 -949.

3. Jackson, M.A. [1983]. System Development. Prentice-Hall International, London.

4. Jensen, R.W. and Tonies, C.C. [1979]. Software Engineering. Prentice-Hall,Englewood
Cliffs,New Jersey, 120.

5. Mende, J. [1982]. Teach systems the deductive way. The Commerce Teacher, 14, 43-45.

6. Mende, J. [1986]. Research Directions in Information Systems. Quaestiones Informaticae,
4,1,1 -4.

7. Mende, J. [1986]. Laws and Techniques of Information Systems. Quaestiones
Informaticae, 4, 3, 1 -6.

8. Mende, J. [1987]. A Structural Model of Information Systems Theory. To appear in
Quaestiones Informaticae.

9. Mende, J. [1987]. A Methodology for Research on Information Systems. Working paper,

University of the Witwatersrand.

Mende, J. [1987]. Three objectives of information system design. SACLA Conference,

Pretoria.

11. Mende, J. [1987]. A classification of information systems decomposition rules.SACLA
conference, Pretoria.

12. Myers, G.J. [1978]. Composite Structured Design. Van Nostrand Reinhold, New York.

13. Randell, B [1986]. System Design and Structuring. The Computer Journal, 29, 300-306.

14. Stevens, W.P. [1981]. Using Structured Design. Wiley-Interscience, New York.

15. Waters, S.J. [1974]. Methodology of computer systems design. The Computer Journal,
17, 17-24.

16. Waters, S.J. [1974]. Introduction to Computer Systems Design. NCC Publications,
Manchester.

17. Yourdon, E. & Constantine L. [1979]. Structured Design. Prentice-Hall, Englewood
Cliffs, New Jersey, 276 -289.

fa—y
e

35

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub-
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen-
eral interest to readers of the journal. The pre-
ferred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN

Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript

Manuscripts should be in double-space typ-
ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re-
view categories.

Tables and figures

Tables and figures should not be included
in the text, although tables and figures should
be referred to in the printed text. Tables
should be typed on separate sheets and should
be numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel-
evant details. Photographs as illustrations
should be avoided if possible. If this cannot

be avoided, glossy bromide prints are re-
quired.

Symbols

Mathematical and other symbols may be ei-
ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be-
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References

References should be listed at the end of the
manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans-
lation of ‘GOTO’ Programs to “WHILE’
programs., Proceedings of IFIP Con-
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia-
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs

Proofs will be sent to the author to ensure
that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papers will be vested in
the publisher.

Letters

A section of “Letters to the Editor” (each
limited to about 500 words) will provide a fo-
rum for discussion of recent problems.

