
ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

Volume 5 • Number 2 October 1987

M.J. Wagener Rekenaar Spaaksintese: Die Omskakeling van Teks na 1
Klank

E.C. Anderssen A CAI Model of Space and Time with Special Refer- 7
S.H. von Sohns ence to Field Battles

H.A. Goosen A Model for Fault-Tolernat Computer Systems 16
C.H. Hoogendoorn

E.M. Ehlers Random Context Structure Grammars 23
S.H. von Solms

C.S.M. Mueller Set-Oriented Functional Style of Programming 29

P.J.S. Brower User Attitudes: Main Reason Why Information Sys- 40
terns Fail

C.F. Sc beepers Polygon Shading on Vector Type Devices 46

G.R. Finnie Novive Attitude Changes During a First Course in 56
Computing: A Case Study

P.O. Clayton Hands-On Microprogramming for Computer Science 63
Students

BOOK REVIEW 39

CONFERENCE ANNOUNCEMENT 68

An official publication of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid­
Afrikaanse Instituut van Rekenaarwetenskaplikes

I

QUJESTIONES INFORMATICJE

An official publication of the Computer Society of South Africa
and of the South African Institute or Computer Scientists

'n Amptelike tydskrlt van die Rekenaarverenlglng van Sold-Africa
en van- die Suld-Afrlkaanse lnstltuut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS •

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions Rl5 $14 £10

Computer Society of South Africa
Box 1714 Halfway House

Qu2stlones Informatlcz ls prepared by the CompQ.ter Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society or South Africa and the South African Institute or Computer Scientists.

SET-ORIENTED FUNCTIONAL STYLE OF PROGRAMMING

Abstract

C. S. M. Mueller
Department of Computer Science

The University of the Witwatersrand, Johannesburg

A novel way of programming, which starts with specific details of a particular example and abstracts these
details into generalised sets, is proposed. The whole program is constructed around the definition of these sets.
Once the structure and type of the sets have been specified, the relationship between the sets is added to these set
defintions. Thus, there is a move away from seeing the description of the data and relationships between the data
as two separate parts, i.e., the data definition and the body of the block. This paper concentrates on the method
used to develop programs, using a tutorial approach to illustrate the ease of programming, debugging and
modifiablity. An interesting aspect of the method is how a program can be developed by studying the details in
the problem domain using a procedural approach and abstracting them into a final declarative definition.

1. INTRODUCTION

The author is currently involved in research considering the value of removing the need to
specify order in a program. As part of this research, a language was developed which requires
a new approach to programming. This paper focuses on this method of programming rather
than the language. While the language is used to illustrate the method, it is not dealt with
formally, but is explained in the context of examples.

A program can be seen as a relationship between two sets: the domain (i.e. the input) and
the range (i.e. the output) of the relationship. The definition of a program is usually broken up
into two parts: the data definition describing the sets and the body describing the relationship.

Considerable attention has been given to ways in which to express these relationships and,
in different styles of programming, relationships are expressed in different ways. Programs in
the von Neumann style of language are expressed as procedures, which, when applied to an
element in the domain, produces an element in the range. In functional style languages, a
program is a function expressed as a composition of primitive functions [Glasser 1984].
Predicates, as in logic programming, can also be used to express relationships
[Clocksin 1984].

The definition of the sets, between which these relationships are defined, has received less
attention. The only way of specifying these sets is by using types, which only became widely
accepted with the general use of Pascal [Jensen 1974]. With object-oriented [Goldberg 1983]
and abstract data types [Ghezzi 1982], there has been a movement towards grouping the data
definition with the description of the relations on that data. The approach to programming
proposed in this paper takes this further: the definition of relationships between the sets forms
part of the definition of the data, and the programming task revolves around the specification of
sets rather than of relationships.

The method proposed here uses a functional style to express relationships, but instead of
expressing a relationship as a composition of functions, a relationship is expressed as related
sets. Programming becomes a task of specifying sets, and included as a part of this definition
is how a set is related to other sets. The emphasis is moved from programming relationships to
defining sets and the most important part of programming becomes that of identifying what sets
are required.

This method of programming is explained using a tutorial style. In this way, it is possible
to illustrate the new methodology. A particular aim is to show that a procedural view of
programs can be used for development, but the final specification of the program is declara­
tive. Other features of the method are also highlighted, such as the ease of modification and
debugging.

Without extensive experimentation, it is difficult to conclusively show that the method
proposed is a better method than any other. However the method does appear to have some
advantages over other styles of programming. The programmer is dealing with sets, which are
much more concrete and tangible than descriptions of relationships. The method is based on a
functional style of programming and thus has the desirable mathematical properties of this
style. Thus the method has the potential to be easy to use, while at the same time being
mathematically sound.

2 9 qua,stiones infonnatica,, 5, 2, pp 29-39, issn 0254-2757

2. SUMMATION

The first example is used to introduce the method. This example shows how simple
iteration works. The problem is to add up a list of numbers which are terminated with a zero.

The method's first step is to study the problem, and relate elements identified in the
problem area with sets in the language (i.e. the computational domain). This is done by
identifying elements in the problem area as belonging to sets with certain computational
properties. In this example, there are two easily identifiable sets: the set of all lists of numbers,
and the set consisting of all sums of lists of numbers. These sets need now to be associated
with a type in the computation structure of the program which can be done as follows:

list : SEQUENCE
number : INTEGER

summation : INTEGER

The next step is to define a relationship between these two sets. If one assumes that an
operation 'sum' is defined, which maps a sequence of integers onto an integer, then the re­
lationship between the two sets can be specified as follows:

summation : INTEGER <- ,sum, list;

The above line reads as: 'summation' is a set of integers which is defined as 'sum' of 'list'.
The set 'list' can in turn be defined in terms of the input as follows:

list : SEQUENCE <- input:
number : INTEGER <- input;

and the complete program is as follows:

summation : PROGRAM <- list:

list : SEQUENCE <- input:
number : INTEGER <- input;

summation : INTEGER <- ,sum, list;

summation : END.

If no operation 'sum' exists then the relationship needs to be defined in terms of some
intermediate set or sets. The next step is to establish what these sets are. A possible method for
establishing what these sets are is to calculate the relationships manually for a given element in
the domain. The element, {5, 6, 7, 8, O} in the set 'list', has been chosen for the manual
calculation giving the following results:

running
list total result summation

number (1) 5 step (1) 5
number (2) 6 step (2) 11
number (3) 7 step (3) 18
number (4) 8 step (4) 26
number (5) 0 step (5) 26 26

The intermediate step in the calculation can be expressed by a set 'running' consisting of a
sequence of 'step's each of which is made up of the cartesian product of 'total' and 'result'.
The particular element of 'running' in the manually calculated example is: { [5, undefined], [11,
undefined], [18,undefined], [26,undefined], [undefined,26]}. The set 'running' can be
associated with a type as follows:

running : SEQUENCE
step : CARTESIAN

total : INTEGER
result : INTEGER

step : END

30

Having determined what sets are required, the next stage is to establish the relationships
between the three sets: 'list', 'running' and 'summation'. The relationship between 'running'
and 'summation' is easy to specify as the only defined set, 'result' in the sequence 'running',
needs to be mapped onto 'summation'. Since only one of the sets 'result' in 'running' is
defined, they can all be mapped onto 'summation' as follows:

summation: INTEGER<- running.(step).result;

The brackets around 'step' specifies that all the sets 'step' in the sequence 'running' must be
mapped onto 'summation'.

The next set to consider is 'running' which is define in terms of a more complex
relationship. The domain of this relationship needs first to be established. Writing down the
calculation in more detail gives a clearer picture as to what the domain of this relationship is.

list + last -> running
number (1) 5 0 total (1) 5
number (2) 6 total (1) 5 total (2) 11
number (3) 7 total (2) 11 total (3) 18
number (4) 8 total (3) 18 total (4) 26
number (5) 0 total (4) 26 result (5) 26

From the above calculation, there appears to be two sets which map onto 'running'. The one is
the sequence 'list' and the other is the sequence 'running' prefixed with the constant set zero.
Thus to be able to define the domain of 'running' (such that, the corresponding sets in the
domain map into the range), it is necessary to define a new sequence, 'last', which is made up
of the constant set, zero, followed by all the sets in the sequence 'running'. This set can be
de.fined as:

last:= {step:= [total:= O], running.,}

The curly brackets specify a sequence whereas the square brackets define a cartesian product.
The dot comma after 'running' indicates that all the sets of the sequence, 'running', form part
of the sequence, 'last'.

The definition of 'running' can now be extended to incorporate its domain as follows:

running
step

: SEQUENCE<- list, last:= {step:= [total:= OJ, running.,}:
:CARTESIAN

total
result

step

: INTEGER
:INTEGER
:END

How the domain maps onto the range, is specified in terms of how each of the sets in the
sequences forming the domain, map into the corresponding sets in 'running'. This is done by
defining the sub-component 'step' in 'running'. Since 'step' is also a complex component, it in
turn needs to be defined in terms of its sub-components. However, the domain of 'step' must be
specified first. The domain consists of the sets: 'number' in 'list', and 'step' in 'last'. These
domain sets can be added to the definition as follows:

running : SEQUENCE<- list,+ last:= {step:= [total:= OJ, running.,}:
step : CARTESIAN <- number, step :

total : INTEGER
result : INTEGER

step : END

The definition of 'step' defines how the i'11 set 'step' in 'running' is defined in terms of the ith
set 'number' and 'step' in the domain. Everything to the left of the arrow (<-) refers to the
range, thus 'step' to the left of the arrow refers to 'step' which is part of 'running'. Everything
to the right of the arrow refers to the domain, thus 'step', here, is part of 'last', and 'number'
is part of 'list'.

The final stage is to define the sub-components 'total' and 'result'. 'Total' is equal to the
last 'total' plus the next 'number', if 'number' is not zero and 'result' is equal to the last 'total',
if 'number' is zero. This relationship can be expressed as:

31

running
step

total
result

step

:SEQUENCE
:CARTESIAN
:INTEGER
:INTEGER
:END;

<- list,+ last:= {step:= [total:= OJ, running.,}:
<- number, step:
<- /number,<>,0/ total,+,number;
<- /nuntJer,= ,Of total;

In the expressions above (which are italicized), bars bracket the guards which specifies when
the expressions, to the right of the guards, hold and can be read as:

total (an integer set) =total+ number
result(an integer set) = total

ff nuntJer <> a
ff nuntJer = a

The above definition of sets can now be incorporated into a program as follows:

summation : PROGRAM <- list:

list : SEQUENCE <- input:
number : INTEGER <- input;

running : SEQUENCE<- list, last:= {step:= [total:= OJ, running.,}:
step : CARTESIAN <- number, step :

total : INTEGER <- lnumber,<>,01 total,+,number;
result : INTEGER<- lnurrber,= ,01 total;

step : END

summation : INTEGER <- running.(step).result;

summation : END.

Books teaching a language such as Pascal spend a good proportion of the book covering
aspects such as: the structure of a program, iteration, selection and data defintions [Atkinson
1981, Keller 1982, Wilson 1978]. In this example, these concepts are introduced in a re­
latively short space.

3. GREATEST COMMON DIVISOR

This example shows the important features of selection and iteration in one program. The
algorithm used in this example is Euclid's classical algorithm for calculating the greatest
common divisor (gcd) as discussed in Dijkstra's book on structured programming [Dijkstra
1976]. This example is also used to illustrate how the program can be modified.

The problem domain consists of the set of the cartesian product of two sets of numbers and
the set of all possible gcds. The initial design assumes that the numbers are positive, and the
program is then modified to show how to extend the program to cater for all possible integers.
The two sets in the problem area can be associated with the computational structure as follows:

numbers : CARTESIAN gcx:f : INTEGER
x :INTEGER
y : INTEGER

numbers : END

The next step is to define a relationship between these two sets. As there is no existing
operations which can directly express this relationship, the programmer is required to define
the relationship via some intermediate set or sets. The task is to establish what this set is, or
these sets are. As before, the suggested approach is that the programmer should manually
calculate the relationship between the two sets for a particular element in the domain. The
resulting values calculated can then be related to a set or sets. Below is the calculation of the
gcd using Euclid's algorithm for the numbers, where xis 30 and y is 18.

numbers

X

y
result

30
18

calculation
step1 step2 step3 step4

12 12
18 6

32

6
6

6

gcd

6

The intermediate step can be expressed as the set 'calculation' which is made up of a sequence
of sets called 'step' where each 'step' is the cartesian product of the sets 'x', 'y' and 'result'.
The set 'calculation' can be associated with the computational domain as follows:

calculation : SEQUENCE
step : CARTESIAN

x : INTEGER
y : INTEGER
result : INTEGER

step: END

At this point, the programmer is ready to specify the relationship between the sets. The
programmer can deal with each set independently of the other and in any order. Here, the
mapping onto the set 'calculation' is chosen to start with. Each set, 'step', in the set 'calcula­
tion' is defined in terms of the previous 'step'; except for the first set which is defined in terms
of the set 'numbers'. Hence the domain of the relationship which maps onto the set
'calculation' is the sequence whose first set is the set 'numbers' followed by all the sets in the
sequence 'calculation'. The domain, of the relationship mapping onto 'calculation', can thus be
expressed as { step:=numbers, calculation.,}. The first line of the specification of 'calculation',
which specifies that 'calculation' is a sequence and what the domain of the relationship is, can
now be completed.

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,}:

How the domain relates to the range is specified in terms of each sub-component, 'step', in the
range. The next line of the specification follows easily on from the first because each 'step' in
the domain maps onto each 'step' in the range. The definition of 'calculation' can thus be
extended as follows:

calculation: SEQUENCE<- last {step:=numbers, calculation.,}:
step : CARTESIAN <- step:

The definition of each 'step' is defined in terms of the sub-components 'x', 'y' and 'result' as
follows:

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} :
step : CARTESIAN <- step:

x : INTEGER <- lx,>,YI x,-,Y IX,<,YI x;
y : INTEGER <- IY,>,XI y,-,X IY,<,XI y;
result : INTEGER <- lx,=,YI x;

step: END;

The definition of set 'gcd' is simple, in that, all the 'result' components of the set 'calculation'
are mapped onto it. The complete program looks as follows:

gcd : PROGRAM <- numbers:

numbers : CARTESIAN <- input:
x : INTEGER <- input;
y : INTEGER <- input;

numbers : END;

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} :
step : CARTESIAN <- step:

x : INTEGER <- IX,>,YI x,-,y IX,<,YI x;
y: INTEGER<- IY,>,XI y,-,x IY,<,XI y;
result : INTEGER <- lx,=,YI x;

step: END;

gcd : INTEGER <- calculation.(step).result;

gcd: END.

Going back to the manual calculation, each of the numbers written down can be associated with
an element in a set defined within the program as follows:

33

number
x=30
y = 18

calculation
step(1} step(2)

X = 12
y= 6

step(3)
x=6
y=6

step(4)
X = 12
y = 18

result= 6
gcd

6

The assumption is that the numbers are always positive. The program can now be modified
to deal with all integers. The set 'numbers' can first be mapped onto the set 'positive' which in
tum is mapped onto the set 'calculation'. The programmer may first wish to develop the
relationship, 'positive', first before incorporating it into his program. This can be done with the
following program.

positive : PROGRAM <- numbers:

numbers : CARTESIAN <- input:
x : INTEGER <- input;
y : INTEGER <- input;

numbers : END ;

positive : CARTESIAN <- numbers:
x : INTEGER<- IX,>=,01 x IX,<,01 ,-,x;
y : INTEGER<- IY,>=,01 y IY,<,01 ,-,y;

positive :END;

positive: END.

Once the programmer has tested this relationship, it can then be incorporated into the original
program as follows:

gcd : PROGRAM <- numbers:

numbers : CARTESIAN <- input:
x : INTEGER <- input;
y : INTEGER <- input;

numbers : END;

positive : CARTESIAN <- numbers:
X: INTEGER<- /X,>=,0/ x /X,<,0/ ,-,x;
y: INTEGER<- /y,>=,0/ y /y,<,0/ ,-,y;

positive :END;

calculation: SEQUENCE<- last:= {step:= positive, calculation.,} :
step : CARTESIAN <- step:

x : INTEGER<- lx,>,YI x,-,y lx,<,YI x;
y : INTEGER <- IY,>,xl y,-,x IY,<,XI y;
result : INTEGER<- lx,=,YI x;

step: END;

gcd: INTEGER<- calculation.step.result.;

gcd: END.

4. SORT

A sort example is a slightly more complex example than a typical first year exercise, and
yet one that can be expressed concisely. Sorting is an essential operation found in almost every
aspect of computing and hence is an important example to look at. The example given here is
based on the insert sort algorithm [Knuth 1973]. This example is also used to show how a
programmer goes about debugging his program. The program is developed with some aspects
not correctly specified and some idea is given as to how these errors can be detected and

34

corrected.
The problem consists of elements in two sequences: the set of unsorted sequences and the

set of sorted sequences. In this example, both the sorted and unsorted sequences are sequences
of integers. These two sequences can be then associated with the computational structure as
follows:

unsorted : SEQUENCE
number : INTEGER

sorted : SEQUENCE
number : INTEGER

The exercise is to define the relationship between these two sets. As in the previous
examples, the programmer needs to establish what intermediate sets are required to map the set
of unsorted sequences onto the set of sorted sequences. An element in the domain set,
'unsorted', can be selected, say {3, 8, 4, 2, 5}, and the relationship with an element in the
range set, 'sorted', can be established manually. Below this relationship is calculated manually
using the insert sort algorithm.

unsorted sort sorted
pass(1) pass(2) pass(3) pass(4) pass(5)

3 3 3 3 2 2 2
8 8 4 3 3 3

8 4 4 4
2 8 5 5
5 8 8

The intermediate values can be abstracted into a set called 'sort' which is made up of a
sequence of 'passes'. Each 'pass' set consists of a sequence of 'numbers'. The set 'sort' can
thus be associated with the computational domain as follows:

sort : SEQUENCE
pass : SEQUENCE

number : INTEGER

The programmer now needs to define the relationships between the three sets: 'unsorted',
'sort' and 'sorted'. The set 'sort' is defined in terms of the set 'unsorted' and itself, as each
'pass' of 'sort' inserts the next unsorted number into the previous pass of 'sort'. The domain
set specifying the previous pass needs to be defined. The previous pass is the set 'sort' itself
with some initial condition which needs to be chosen. In the manual calculation the initial set is
the empty sequence giving the following definition:

previous:= {pass:={}, sort.,}

The definition of the set 'sort' can now be extended as follows:

sort: SEQUENCE<- unsorted, previous:= {pass:={}, sort.,}:
pass : SEQUENCE

number : INTEGER

Each pass within the sequence 'sort' has as domain the previous 'pass' and the next set in the
sequence of 'unsorted'. To decide what the domain for each 'pass' is, it is useful to look in
more detail at the manual calculation as to how each set in 'pass' is calculated. An element in
the fifth set 'pass' in 'calculation' is considered below:

first second next sort
pass(4} pass(4) unsorted ·> pass(S)

number (1) 2 number (5) 5 number (1) 2 second
number (1) 2 number (2) 3 number (5) 5 number (2) 3 second
number (2) 3 number (3) 4 number (5) 5 number (3) 4 second
number (3) 4 number (4) 8 number (5) 5 number (4) 5 next
number (4) 8 number (5) 5 number (5) 8 first

The unsorted set needs to be slotted into the previous 'pass' between the two consecutive sets

35

where one is greater and the other is less than or equal to the next 'unsorted' set. In the
calculation above, there are three sequences used in defining the next 'pass' of 'sort' which are
'first', 'second' and 'next'. The sequence 'first' consists of the previous 'pass' prefixed with
some initial condition. The programmer is now forced to think about this boundary case. For
simplicity the numbers to be sorted will be assumed to be greater than zero in which case this
set can be the set zero. The sequence 'second' consists of just the 'previous' 'pass' and the
sequence 'next' consists of the set 'number' in the sequence 'unsorted' which is the same
throughout the sequence 'next'. The domain of each pass can now be added to the definition of
the set 'sort' giving:

sort : SEQUENCE<- unsorted, previous:= {pass:={}, sort.,}:
pass: SEQUENCE<- next:= {number .. }, second:= pass, first:={number:=0,pass.,}:

number : INTEGER

In the definition of 'next', the double dot specifies that the set 'number' is the same throughout
the sequence 'next'. Each set 'number' in 'pass' within 'sort' is defined in terms of the 'next'
unsorted number and two consecutive sets 'first' and 'second' as follows:

number : INTEGER <- lsecond.number,<=,next.numberl second.number
lfirst.number,>,next.numberl first.number
lfirst.number,<=,next.number,&,
next.number,<,second.numberl next.number

In the above line it is necessary to qualify the sets 'number' in the domain as 'number' is a
sub-component of 'first', 'second' and 'next'. These sets are qualified by prefixing their
identifiers with the identifiers of the sets they are sub-components of. The complete definition
of 'sort' can now be extended to:

sort : SEQUENCE <- unsorted, previous:= {pass:= {}, sort.,}:
pass: SEQUENCE<- next:={number .. }, second:= pass, first:={number:=0, pass.,}:

number : INTEGER <- /second.number,<=,next.number/ second.number
/first.number,>,next.number/ first .number
/first.number,<=,next.number,&,
next.number, <,second.number/ next. number;

At this point, it is useful to re-examine the manual example to check if the relationships have
been correctly specified.

unsorted 3, 8, 4, 2, 5

sort
domain= (unsorted= { 3,8,4,2,5), previous= {{},{3,} ..

pass (1)
domain= (next= {3 .. J,first= {OJ, second={))
number (1) nothing defined error should have been 3

pass (2)
domain= (next= {8,8 ..), first= {0,3), second= {3})
number (1) = 3 because second(1) <= next(l)
number (2) nothing defined error should have been 8

pass (3)

•••
•••

domain= (next= {4,4,4 . .), first= {0,3,8), second= {3,8})
number (1) = 3 because second(l) <= next(l)
number (2) = 4 because first(2) <= next(2) < second(2)
number (3) nothing defined error should have been 8

There is clearly a problem with the boundary conditions in the example above as no
relationship holds for the last set in the sequence. This error was made in determining the initial
set for the sequence 'previous' for which the empty sequence was chosen. It now becomes
clear that this set is the boundary condition which specifies the end of the pass and a simple

36

solution is to make this set equal to the maximum number allowed. Also this sentinel should be
propagated to all subsequent passes. The definition of the sort can be altered to cater for this as
follows:

sort: SEQUENCE<- unsorted, previous:= {pass:= {number:=Max}, sort.,}:
pass : SEQUENCE<- next:= number, second:= pass, first:= {number:=0, pass.,}:

number: INTEGER<- 1second.number,<=,next.number1 second.number
lfirst.number,>,next.numberl first.number
lfirst.number,<=,next.number,&,
next.number,<,second.numberl next.number ;

Going back to the example, the change results in the following relationships:

unsorted 3, 8, 4, 2, 5, 6
sort

pass (1) next={3, .. }, first={O,Max}, second={Max}
number (1) = 3 ; second(l) <= next(l)
number (2) = Max ; first(2) > next(l)

pass (2) next={8,8, .. }, first={0,4,Max}, second={3,Max}
number (1) = 3 ; second(l) <= next(l)
number (2) = 8 ; first(2) <= next(2) < second(2)
number (3) = Max; next(3) < first(3)

pass (3) next={4,4,4, .. }, first={0,3,8,Max}, second={3,8,Max}
number (1) = 3 ; second(l) <= next(l)
number (2) = 4 ; first(2) <= next(2) < second(2)
number (3) = 8 ; next(3) < first(3)
number (4) = Max; next(4) < first(4)

pass (4) next={2,2,2,2, .. }, first={0,3,4,8,Max}, second={3,4,8,Max}
number (1) = 2 ; first(l) <= next(l) < second(l)
number (2) = 3 ; next(2) < first(2)
number (3) = 4 ; next(3) < first(3)
number (4) = 8 ; next(4) < first(4)
number (5) = Max ; next(5) < first(5)

pass (5) next={5,5,5,5,5, .. }, first={0,2,3;4,8,Max}, second={2,3,4,8,Max}
number (1) = 2; second(l) <= next(l)
number (2) = 3; second(2) <= next(2)
number (3) = 4; second(3) <= next(3)
number (4) = 5; first(4) <= next(4) < second(4)
number (5) = 8; next(5) < first(5)
number (6) = Max; next(6) < first(6)

sorted 2, 3, 4, 5, 8

Defining the 'sort' sequence is the most complex relationship and the remaining relationships
are fairly straightforward, resulting in the following program:

sorted : PROGRAM <- unsorted:

unsorted : SEQUENCE <- input:
number : INTEGER <- input;

sort : SEQUENCE<- unsorted, previous:= {pass:= {number:=Max}, sort.,}:
pass : SEQUENCE <- next:={number .. }, second:= pass, first:= {number:=0, pass.,}:

nunt>er: INTEGER <- lsecond.number,<=,next.numberl second.number
~irst.number,>,next.numberl first .number
lfirst.number,<=,next.number,&,
next. number,<,second.numberl next.number

sorted : SEQUENCE <- sort, unsorted :
number : INTEGER <- lunsorted.number,=,endlsort.(pass).number;

sorted : END.

There are two important boundary conditions in the insert sort which determine either end of
the previous pass into which the next unsorted set is being inserted. These two boundary

37

conditions are required as initial sets in the definition of two domain sequences thus making it
difficult to accidentally overlook these boundary conditions.

Another interesting aspect of the above program is that although the algorithm was
manually worked out in a procedural way, the program itself is declarative. The program only
expresses relationships between sets.

5. CONCLUSIONS

Programming using this method is made easier by allowing the programmer to start by
working with the actual details of a problem. The programmer is able to take an actual case and
work through it. The programmer works through an example any way he wishes, which is
likely to be procedural. Having established a relationship for a particular element or elements in
the domain, he can abstract this relationship, so that it holds for all elements in the domain set.
The first part of the abstraction is to describe the sets as belonging to types or composition of
types. The structure of these sets is suggested by the elements used in the manual calculation.
The programmer is still able to associate with the problem domain and, in particular, the
example he worked out, because he is relating elements in the example with sets in the
program. The second part of the abstraction is to express the relationships between sets. The
relationships are expressed as simple expressions and these relationships hold for all the
elements in the sets. The programmer is in a sense working bottom-up: from the details to an
abstract definition. At the bottom, he is dealing with elements in a procedural way, which are
easy to work with. These details are abstracted into a declarative specification of sets and
relationships between sets, which is mathematically sound and easy to understand.

Debugging a program developed using this method becomes a process of establishing that
the relationships between sets are correct. An error in one relationship does not invalidate the
correctness of any other relationship. Thus, the relationships between sets can be checked
independently of the rest of the program. These relationships can be verified by comparing that
the domain elements map onto the appropriate range elements. As the examples show, this can
be done by associating the elements in the sets with the names of the sets and desk checking
can easily be done in this way. Debugging can also be done using the computer; by recording
every element (with its set identifier) created during the computation of the relationship. These
elements can then be sorted according to their identifiers and printed out. The relationships can
then be manually checked to verify that an element in the domain of a relationship maps onto
the correct range element. Errors appear to be easily identifiable as illustrated by the sort
example. Also, the source of the error is obvious. Again, the con- cepts of sets is useful in that
the programmer is dealing with identifiable sets to which elements belong and the programmer
can check that the relationships between these elements are correct. These sets have identifiers
which should correspond with the problem area, and so know- ledge of the particular problem
should assist in debugging.

The gcd example shows how easy it is to modify a program. The relationship of one set in
terms of its domain is independent of other relationships within the program. Also, a pro- gram
is a definition of sets and the definition of a set includes how it is related to other sets. The two
above facts make a program easy to modify as a modification is localised to only those sets
which need to be changed. The programmer is not concerned with the effect a change will have
on the overall program. A modification is to a set and its correctness is determined only by
whether the relationship with its domain is correctly specified. A program, which is described
using sets, does not have an overall structure - only sets are structured. Thus a change to the
structure of a set does not affect the overall structure of a program.

Even though this research has not developed far, it does show promise of finding a better
tool for programming. The method relies heavily on a new way of expressing programs which
requires a different style of language. While a language has been designed and imple- mented
to write and test the examples given in this paper, there are questions, as to whether this can be
done efficiently.

REFERENCES

1. Atkinson L., [1981], Pascal Programming, John Wiley and Sons, Chichester.
2. Clocksin W.F., and Mellish C.S., [1984], Programming in Prolog, 2nd ed., Springer

Verlag, New York.
3. Dijkstra E.W., [1976], A Discipline of Programming, Prentice-Hall.
4. Ghezzi C. and Jazayeri M. [1982], Programming Language Concepts, John Wiley, New

38

York.
5. Glaser H., Hankin C. and Till D., [1984], Functional Programming, Prentice-Hall.
6. Goldberg A. and Robson D., [1983], Smalltalk-80: The Language and its

Implementation., Addison Wesley, Reading, Massachusetts.
7. Jensen K. and Wirth N., [1974], Pascal User Manual and Report., Lecture Notes in

Computer Science 18, Springer-Verlag, New York.
8. Knuth D.E., [1973], The Art of Computer Programming: Volume 3 I Sorting and

Searching, Addison-Wesley, Reading, Masachusetts.
9. Keller A.M., [1982], Computer Programming using Pascal, Computer Science Press,

MacGraw-Hill, New York.
10. Wilson I.R. and Addyman A.M., [1978], A Practical Introduction to Pascal, MacMillan,

London.

BOOK REVIEW:
Artificial Intelligence: Promise and Performance, Alain Bonnet,
Prentice-Hall International, London, 1985 Paperback, 221 pages. Chapter
references, glossary, index. ISBN 0-13-048869 0.

reviewed by: G. R. Finnie,

The resurgence of interest in artificial intelligence (Al) in general (and expert systems in
particular) has been accompanied by a flood of books dealing with aspects of this field. This
text is a translation from the French version, a fact which occasionally surfaces in rather
labqured English (e.g. "Given that no algorithm is known, recourse is had to" heuristics" ,
that is, informal (in contrast to formal) methods which are not guaranteed tosucceed."
(pg.18)).

Although the title suggests an overview of artificial intelligence, this book concentrates
specifically on the areas of understanding natural languages and on expert systems, with a look
at the representation of knowledge and of reasoning. However, for a book of this length an
in-depth view of even these topics would be impossible and most of the coverage is cursory,
with some extremeiy short chapters being included, e.g. a three page chapter on procedural
representations. Despite this major weakness, many important areas of research are at least
mentioned by name and the good reference lists in each chapter provide a strong base for
further reading in specific topics.

According to the cover, the book is aimed at two types of reader - the non-specialist who
wants to know something of the state of the art and the computer scientist working in fields
other than AI who requires some description of AI approaches and methods. For individuals in
these categories, the overview approach taken (coupled with the in-depth references) allows the
reader to gain some feel for the area while allowing interesting topics to be pursued further.
The book is unlikely to prove a good student text with the wide ranking but relatively shallow
coverage. For AI practitioners the text provides a handy reference source while the preface by
Jacques Pitrat is an amusing warning to those who might be called upon to honour similar
requests.

39

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
ferred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Table~ and figures
-Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted· and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided. if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
New York, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papers will be vested in
the publisher. ·

Letters
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a for­
um for discussion of recent problems.

I

• I

