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SET-ORIENTED FUNCTIONAL STYLE OF PROGRAMMING 

Abstract 

C. S. M. Mueller 
Department of Computer Science 

The University of the Witwatersrand, Johannesburg 

A novel way of programming, which starts with specific details of a particular example and abstracts these 
details into generalised sets, is proposed. The whole program is constructed around the definition of these sets. 
Once the structure and type of the sets have been specified, the relationship between the sets is added to these set 
defintions. Thus, there is a move away from seeing the description of the data and relationships between the data 
as two separate parts, i.e., the data definition and the body of the block. This paper concentrates on the method 
used to develop programs, using a tutorial approach to illustrate the ease of programming, debugging and 
modifiablity. An interesting aspect of the method is how a program can be developed by studying the details in 
the problem domain using a procedural approach and abstracting them into a final declarative definition. 

1. INTRODUCTION 

The author is currently involved in research considering the value of removing the need to 
specify order in a program. As part of this research, a language was developed which requires 
a new approach to programming. This paper focuses on this method of programming rather 
than the language. While the language is used to illustrate the method, it is not dealt with 
formally, but is explained in the context of examples. 

A program can be seen as a relationship between two sets: the domain (i.e. the input) and 
the range (i.e. the output) of the relationship. The definition of a program is usually broken up 
into two parts: the data definition describing the sets and the body describing the relationship. 

Considerable attention has been given to ways in which to express these relationships and, 
in different styles of programming, relationships are expressed in different ways. Programs in 
the von Neumann style of language are expressed as procedures, which, when applied to an 
element in the domain, produces an element in the range. In functional style languages, a 
program is a function expressed as a composition of primitive functions [Glasser 1984]. 
Predicates, as in logic programming, can also be used to express relationships 
[Clocksin 1984]. 

The definition of the sets, between which these relationships are defined, has received less 
attention. The only way of specifying these sets is by using types, which only became widely 
accepted with the general use of Pascal [Jensen 1974]. With object-oriented [Goldberg 1983] 
and abstract data types [Ghezzi 1982], there has been a movement towards grouping the data 
definition with the description of the relations on that data. The approach to programming 
proposed in this paper takes this further: the definition of relationships between the sets forms 
part of the definition of the data, and the programming task revolves around the specification of 
sets rather than of relationships. 

The method proposed here uses a functional style to express relationships, but instead of 
expressing a relationship as a composition of functions, a relationship is expressed as related 
sets. Programming becomes a task of specifying sets, and included as a part of this definition 
is how a set is related to other sets. The emphasis is moved from programming relationships to 
defining sets and the most important part of programming becomes that of identifying what sets 
are required. 

This method of programming is explained using a tutorial style. In this way, it is possible 
to illustrate the new methodology. A particular aim is to show that a procedural view of 
programs can be used for development, but the final specification of the program is declara­
tive. Other features of the method are also highlighted, such as the ease of modification and 
debugging. 

Without extensive experimentation, it is difficult to conclusively show that the method 
proposed is a better method than any other. However the method does appear to have some 
advantages over other styles of programming. The programmer is dealing with sets, which are 
much more concrete and tangible than descriptions of relationships. The method is based on a 
functional style of programming and thus has the desirable mathematical properties of this 
style. Thus the method has the potential to be easy to use, while at the same time being 
mathematically sound. 
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2. SUMMATION 

The first example is used to introduce the method. This example shows how simple 
iteration works. The problem is to add up a list of numbers which are terminated with a zero. 

The method's first step is to study the problem, and relate elements identified in the 
problem area with sets in the language (i.e. the computational domain). This is done by 
identifying elements in the problem area as belonging to sets with certain computational 
properties. In this example, there are two easily identifiable sets: the set of all lists of numbers, 
and the set consisting of all sums of lists of numbers. These sets need now to be associated 
with a type in the computation structure of the program which can be done as follows: 

list : SEQUENCE 
number : INTEGER 

summation : INTEGER 

The next step is to define a relationship between these two sets. If one assumes that an 
operation 'sum' is defined, which maps a sequence of integers onto an integer, then the re­
lationship between the two sets can be specified as follows: 

summation : INTEGER <- ,sum, list; 

The above line reads as: 'summation' is a set of integers which is defined as 'sum' of 'list'. 
The set 'list' can in turn be defined in terms of the input as follows: 

list : SEQUENCE <- input: 
number : INTEGER <- input; 

and the complete program is as follows: 

summation : PROGRAM <- list: 

list : SEQUENCE <- input: 
number : INTEGER <- input; 

summation : INTEGER <- ,sum, list; 

summation : END. 

If no operation 'sum' exists then the relationship needs to be defined in terms of some 
intermediate set or sets. The next step is to establish what these sets are. A possible method for 
establishing what these sets are is to calculate the relationships manually for a given element in 
the domain. The element, {5, 6, 7, 8, O} in the set 'list', has been chosen for the manual 
calculation giving the following results: 

running 
list total result summation 

number (1) 5 step (1) 5 
number (2) 6 step (2) 11 
number (3) 7 step (3) 18 
number (4) 8 step (4) 26 
number (5) 0 step (5) 26 26 

The intermediate step in the calculation can be expressed by a set 'running' consisting of a 
sequence of 'step's each of which is made up of the cartesian product of 'total' and 'result'. 
The particular element of 'running' in the manually calculated example is: { [5, undefined], [11, 
undefined], [18,undefined], [26,undefined], [undefined,26]}. The set 'running' can be 
associated with a type as follows: 

running : SEQUENCE 
step : CARTESIAN 

total : INTEGER 
result : INTEGER 

step : END 
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Having determined what sets are required, the next stage is to establish the relationships 
between the three sets: 'list', 'running' and 'summation'. The relationship between 'running' 
and 'summation' is easy to specify as the only defined set, 'result' in the sequence 'running', 
needs to be mapped onto 'summation'. Since only one of the sets 'result' in 'running' is 
defined, they can all be mapped onto 'summation' as follows: 

summation: INTEGER<- running.(step).result; 

The brackets around 'step' specifies that all the sets 'step' in the sequence 'running' must be 
mapped onto 'summation'. 

The next set to consider is 'running' which is define in terms of a more complex 
relationship. The domain of this relationship needs first to be established. Writing down the 
calculation in more detail gives a clearer picture as to what the domain of this relationship is. 

list + last -> running 
number (1) 5 0 total (1) 5 
number (2) 6 total (1) 5 total (2) 11 
number (3) 7 total (2) 11 total (3) 18 
number (4) 8 total (3) 18 total (4) 26 
number (5) 0 total (4) 26 result (5) 26 

From the above calculation, there appears to be two sets which map onto 'running'. The one is 
the sequence 'list' and the other is the sequence 'running' prefixed with the constant set zero. 
Thus to be able to define the domain of 'running' (such that, the corresponding sets in the 
domain map into the range), it is necessary to define a new sequence, 'last', which is made up 
of the constant set, zero, followed by all the sets in the sequence 'running'. This set can be 
de.fined as: 

last:= {step:= [total:= O], running.,} 

The curly brackets specify a sequence whereas the square brackets define a cartesian product. 
The dot comma after 'running' indicates that all the sets of the sequence, 'running', form part 
of the sequence, 'last'. 

The definition of 'running' can now be extended to incorporate its domain as follows: 

running 
step 

: SEQUENCE<- list, last:= {step:= [total:= OJ, running.,}: 
:CARTESIAN 

total 
result 

step 

: INTEGER 
:INTEGER 
:END 

How the domain maps onto the range, is specified in terms of how each of the sets in the 
sequences forming the domain, map into the corresponding sets in 'running'. This is done by 
defining the sub-component 'step' in 'running'. Since 'step' is also a complex component, it in 
turn needs to be defined in terms of its sub-components. However, the domain of 'step' must be 
specified first. The domain consists of the sets: 'number' in 'list', and 'step' in 'last'. These 
domain sets can be added to the definition as follows: 

running : SEQUENCE<- list,+ last:= {step:= [total:= OJ, running.,}: 
step : CARTESIAN <- number, step : 

total : INTEGER 
result : INTEGER 

step : END 

The definition of 'step' defines how the i'11 set 'step' in 'running' is defined in terms of the ith 
set 'number' and 'step' in the domain. Everything to the left of the arrow ( <-) refers to the 
range, thus 'step' to the left of the arrow refers to 'step' which is part of 'running'. Everything 
to the right of the arrow refers to the domain, thus 'step', here, is part of 'last', and 'number' 
is part of 'list'. 

The final stage is to define the sub-components 'total' and 'result'. 'Total' is equal to the 
last 'total' plus the next 'number', if 'number' is not zero and 'result' is equal to the last 'total', 
if 'number' is zero. This relationship can be expressed as: 
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running 
step 

total 
result 

step 

:SEQUENCE 
:CARTESIAN 
:INTEGER 
:INTEGER 
:END; 

<- list,+ last:= {step:= [total:= OJ, running.,}: 
<- number, step: 
<- /number,<>,0/ total,+,number; 
<- /nuntJer,= ,Of total; 

In the expressions above (which are italicized), bars bracket the guards which specifies when 
the expressions, to the right of the guards, hold and can be read as: 

total (an integer set) =total+ number 
result(an integer set) = total 

ff nuntJer <> a 
ff nuntJer = a 

The above definition of sets can now be incorporated into a program as follows: 

summation : PROGRAM <- list: 

list : SEQUENCE <- input: 
number : INTEGER <- input; 

running : SEQUENCE<- list, last:= {step:= [total:= OJ, running.,}: 
step : CARTESIAN <- number, step : 

total : INTEGER <- lnumber,<>,01 total,+,number; 
result : INTEGER<- lnurrber,= ,01 total; 

step : END 

summation : INTEGER <- running.(step).result; 

summation : END. 

Books teaching a language such as Pascal spend a good proportion of the book covering 
aspects such as: the structure of a program, iteration, selection and data defintions [Atkinson 
1981, Keller 1982, Wilson 1978]. In this example, these concepts are introduced in a re­
latively short space. 

3. GREATEST COMMON DIVISOR 

This example shows the important features of selection and iteration in one program. The 
algorithm used in this example is Euclid's classical algorithm for calculating the greatest 
common divisor (gcd) as discussed in Dijkstra's book on structured programming [Dijkstra 
1976]. This example is also used to illustrate how the program can be modified. 

The problem domain consists of the set of the cartesian product of two sets of numbers and 
the set of all possible gcds. The initial design assumes that the numbers are positive, and the 
program is then modified to show how to extend the program to cater for all possible integers. 
The two sets in the problem area can be associated with the computational structure as follows: 

numbers : CARTESIAN gcx:f : INTEGER 
x :INTEGER 
y : INTEGER 

numbers : END 

The next step is to define a relationship between these two sets. As there is no existing 
operations which can directly express this relationship, the programmer is required to define 
the relationship via some intermediate set or sets. The task is to establish what this set is, or 
these sets are. As before, the suggested approach is that the programmer should manually 
calculate the relationship between the two sets for a particular element in the domain. The 
resulting values calculated can then be related to a set or sets. Below is the calculation of the 
gcd using Euclid's algorithm for the numbers, where xis 30 and y is 18. 

numbers 

X 

y 
result 

30 
18 

calculation 
step1 step2 step3 step4 

12 12 
18 6 
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The intermediate step can be expressed as the set 'calculation' which is made up of a sequence 
of sets called 'step' where each 'step' is the cartesian product of the sets 'x', 'y' and 'result'. 
The set 'calculation' can be associated with the computational domain as follows: 

calculation : SEQUENCE 
step : CARTESIAN 

x : INTEGER 
y : INTEGER 
result : INTEGER 

step: END 

At this point, the programmer is ready to specify the relationship between the sets. The 
programmer can deal with each set independently of the other and in any order. Here, the 
mapping onto the set 'calculation' is chosen to start with. Each set, 'step', in the set 'calcula­
tion' is defined in terms of the previous 'step'; except for the first set which is defined in terms 
of the set 'numbers'. Hence the domain of the relationship which maps onto the set 
'calculation' is the sequence whose first set is the set 'numbers' followed by all the sets in the 
sequence 'calculation'. The domain, of the relationship mapping onto 'calculation', can thus be 
expressed as { step:=numbers, calculation.,}. The first line of the specification of 'calculation', 
which specifies that 'calculation' is a sequence and what the domain of the relationship is, can 
now be completed. 

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,}: 

How the domain relates to the range is specified in terms of each sub-component, 'step', in the 
range. The next line of the specification follows easily on from the first because each 'step' in 
the domain maps onto each 'step' in the range. The definition of 'calculation' can thus be 
extended as follows: 

calculation: SEQUENCE<- last {step:=numbers, calculation.,}: 
step : CARTESIAN <- step: 

The definition of each 'step' is defined in terms of the sub-components 'x', 'y' and 'result' as 
follows: 

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} : 
step : CARTESIAN <- step: 

x : INTEGER <- lx,>,YI x,-,Y IX,<,YI x; 
y : INTEGER <- IY,>,XI y,-,X IY,<,XI y; 
result : INTEGER <- lx,=,YI x; 

step: END; 

The definition of set 'gcd' is simple, in that, all the 'result' components of the set 'calculation' 
are mapped onto it. The complete program looks as follows: 

gcd : PROGRAM <- numbers: 

numbers : CARTESIAN <- input: 
x : INTEGER <- input; 
y : INTEGER <- input; 

numbers : END; 

calculation : SEQUENCE <- last:= {step:=numbers, calculation.,} : 
step : CARTESIAN <- step: 

x : INTEGER <- IX,>,YI x,-,y IX,<,YI x; 
y: INTEGER<- IY,>,XI y,-,x IY,<,XI y; 
result : INTEGER <- lx,=,YI x; 

step: END; 

gcd : INTEGER <- calculation.(step).result; 

gcd: END. 

Going back to the manual calculation, each of the numbers written down can be associated with 
an element in a set defined within the program as follows: 
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number 
x=30 
y = 18 

calculation 
step(1} step(2) 

X = 12 
y= 6 

step(3) 
x=6 
y=6 

step(4) 
X = 12 
y = 18 

result= 6 
gcd 

6 

The assumption is that the numbers are always positive. The program can now be modified 
to deal with all integers. The set 'numbers' can first be mapped onto the set 'positive' which in 
tum is mapped onto the set 'calculation'. The programmer may first wish to develop the 
relationship, 'positive', first before incorporating it into his program. This can be done with the 
following program. 

positive : PROGRAM <- numbers: 

numbers : CARTESIAN <- input: 
x : INTEGER <- input; 
y : INTEGER <- input; 

numbers : END ; 

positive : CARTESIAN <- numbers: 
x : INTEGER<- IX,>=,01 x IX,<,01 ,-,x; 
y : INTEGER<- IY,>=,01 y IY,<,01 ,-,y; 

positive :END; 

positive: END. 

Once the programmer has tested this relationship, it can then be incorporated into the original 
program as follows: 

gcd : PROGRAM <- numbers: 

numbers : CARTESIAN <- input: 
x : INTEGER <- input; 
y : INTEGER <- input; 

numbers : END; 

positive : CARTESIAN <- numbers: 
X: INTEGER<- /X,>=,0/ x /X,<,0/ ,-,x; 
y: INTEGER<- /y,>=,0/ y /y,<,0/ ,-,y; 

positive :END; 

calculation: SEQUENCE<- last:= {step:= positive, calculation.,} : 
step : CARTESIAN <- step: 

x : INTEGER<- lx,>,YI x,-,y lx,<,YI x; 
y : INTEGER <- IY,>,xl y,-,x IY,<,XI y; 
result : INTEGER<- lx,=,YI x; 

step: END; 

gcd: INTEGER<- calculation.step.result.; 

gcd: END. 

4. SORT 

A sort example is a slightly more complex example than a typical first year exercise, and 
yet one that can be expressed concisely. Sorting is an essential operation found in almost every 
aspect of computing and hence is an important example to look at. The example given here is 
based on the insert sort algorithm [Knuth 1973]. This example is also used to show how a 
programmer goes about debugging his program. The program is developed with some aspects 
not correctly specified and some idea is given as to how these errors can be detected and 
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corrected. 
The problem consists of elements in two sequences: the set of unsorted sequences and the 

set of sorted sequences. In this example, both the sorted and unsorted sequences are sequences 
of integers. These two sequences can be then associated with the computational structure as 
follows: 

unsorted : SEQUENCE 
number : INTEGER 

sorted : SEQUENCE 
number : INTEGER 

The exercise is to define the relationship between these two sets. As in the previous 
examples, the programmer needs to establish what intermediate sets are required to map the set 
of unsorted sequences onto the set of sorted sequences. An element in the domain set, 
'unsorted', can be selected, say {3, 8, 4, 2, 5}, and the relationship with an element in the 
range set, 'sorted', can be established manually. Below this relationship is calculated manually 
using the insert sort algorithm. 

unsorted sort sorted 
pass(1) pass(2) pass(3) pass(4) pass(5) 

3 3 3 3 2 2 2 
8 8 4 3 3 3 

8 4 4 4 
2 8 5 5 
5 8 8 

The intermediate values can be abstracted into a set called 'sort' which is made up of a 
sequence of 'passes'. Each 'pass' set consists of a sequence of 'numbers'. The set 'sort' can 
thus be associated with the computational domain as follows: 

sort : SEQUENCE 
pass : SEQUENCE 

number : INTEGER 

The programmer now needs to define the relationships between the three sets: 'unsorted', 
'sort' and 'sorted'. The set 'sort' is defined in terms of the set 'unsorted' and itself, as each 
'pass' of 'sort' inserts the next unsorted number into the previous pass of 'sort'. The domain 
set specifying the previous pass needs to be defined. The previous pass is the set 'sort' itself 
with some initial condition which needs to be chosen. In the manual calculation the initial set is 
the empty sequence giving the following definition: 

previous:= {pass:={}, sort.,} 

The definition of the set 'sort' can now be extended as follows: 

sort: SEQUENCE<- unsorted, previous:= {pass:={}, sort.,}: 
pass : SEQUENCE 

number : INTEGER 

Each pass within the sequence 'sort' has as domain the previous 'pass' and the next set in the 
sequence of 'unsorted'. To decide what the domain for each 'pass' is, it is useful to look in 
more detail at the manual calculation as to how each set in 'pass' is calculated. An element in 
the fifth set 'pass' in 'calculation' is considered below: 

first second next sort 
pass(4} pass(4) unsorted ·> pass(S) 

number (1) 2 number (5) 5 number (1) 2 second 
number (1) 2 number (2) 3 number (5) 5 number (2) 3 second 
number (2) 3 number (3) 4 number (5) 5 number (3) 4 second 
number (3) 4 number (4) 8 number (5) 5 number (4) 5 next 
number (4) 8 number (5) 5 number (5) 8 first 

The unsorted set needs to be slotted into the previous 'pass' between the two consecutive sets 
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where one is greater and the other is less than or equal to the next 'unsorted' set. In the 
calculation above, there are three sequences used in defining the next 'pass' of 'sort' which are 
'first', 'second' and 'next'. The sequence 'first' consists of the previous 'pass' prefixed with 
some initial condition. The programmer is now forced to think about this boundary case. For 
simplicity the numbers to be sorted will be assumed to be greater than zero in which case this 
set can be the set zero. The sequence 'second' consists of just the 'previous' 'pass' and the 
sequence 'next' consists of the set 'number' in the sequence 'unsorted' which is the same 
throughout the sequence 'next'. The domain of each pass can now be added to the definition of 
the set 'sort' giving: 

sort : SEQUENCE<- unsorted, previous:= {pass:={}, sort.,}: 
pass: SEQUENCE<- next:= {number .. }, second:= pass, first:={number:=0,pass.,}: 

number : INTEGER 

In the definition of 'next', the double dot specifies that the set 'number' is the same throughout 
the sequence 'next'. Each set 'number' in 'pass' within 'sort' is defined in terms of the 'next' 
unsorted number and two consecutive sets 'first' and 'second' as follows: 

number : INTEGER <- lsecond.number,<=,next.numberl second.number 
lfirst.number,>,next.numberl first.number 
lfirst.number,<=,next.number,&, 
next.number,<,second.numberl next.number 

In the above line it is necessary to qualify the sets 'number' in the domain as 'number' is a 
sub-component of 'first', 'second' and 'next'. These sets are qualified by prefixing their 
identifiers with the identifiers of the sets they are sub-components of. The complete definition 
of 'sort' can now be extended to: 

sort : SEQUENCE <- unsorted, previous:= {pass:= {}, sort.,}: 
pass: SEQUENCE<- next:={number .. }, second:= pass, first:={number:=0, pass.,}: 

number : INTEGER <- /second.number,<=,next.number/ second.number 
/first.number,>,next.number/ first .number 
/first.number,<=,next.number,&, 
next.number, <,second.number/ next. number; 

At this point, it is useful to re-examine the manual example to check if the relationships have 
been correctly specified. 

unsorted 3, 8, 4, 2, 5 

sort 
domain= (unsorted= { 3,8,4,2,5), previous= {{},{3,} .. 

pass (1) 
domain= (next= {3 .. J,first= {OJ, second={)) 
number (1) nothing defined error should have been 3 

pass (2) 
domain= (next= {8,8 .. ), first= {0,3), second= {3}) 
number (1) = 3 because second( 1) <= next(l) 
number (2) nothing defined error should have been 8 

pass (3) 

••• 
••• 

domain= (next= {4,4,4 . .), first= {0,3,8), second= {3,8}) 
number (1) = 3 because second(l) <= next(l) 
number (2) = 4 because first(2) <= next(2) < second(2) 
number (3) nothing defined error should have been 8 

There is clearly a problem with the boundary conditions in the example above as no 
relationship holds for the last set in the sequence. This error was made in determining the initial 
set for the sequence 'previous' for which the empty sequence was chosen. It now becomes 
clear that this set is the boundary condition which specifies the end of the pass and a simple 
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solution is to make this set equal to the maximum number allowed. Also this sentinel should be 
propagated to all subsequent passes. The definition of the sort can be altered to cater for this as 
follows: 

sort: SEQUENCE<- unsorted, previous:= {pass:= {number:=Max}, sort.,}: 
pass : SEQUENCE<- next:= number, second:= pass, first:= {number:=0, pass.,}: 

number: INTEGER<- 1second.number,<=,next.number1 second.number 
lfirst.number,>,next.numberl first.number 
lfirst.number,<=,next.number,&, 
next.number,<,second.numberl next.number ; 

Going back to the example, the change results in the following relationships: 

unsorted 3, 8, 4, 2, 5, 6 
sort 

pass (1) next={3, .. }, first={O,Max}, second={Max} 
number (1) = 3 ; second(l) <= next(l) 
number (2) = Max ; first(2) > next(l) 

pass (2) next={8,8, .. }, first={0,4,Max}, second={3,Max} 
number (1) = 3 ; second(l) <= next(l) 
number (2) = 8 ; first(2) <= next(2) < second(2) 
number (3) = Max; next(3) < first(3) 

pass (3) next={4,4,4, .. }, first={0,3,8,Max}, second={3,8,Max} 
number (1) = 3 ; second(l) <= next(l) 
number (2) = 4 ; first(2) <= next(2) < second(2) 
number (3) = 8 ; next(3) < first(3) 
number (4) = Max; next(4) < first(4) 

pass (4) next={2,2,2,2, .. }, first={0,3,4,8,Max}, second={3,4,8,Max} 
number (1) = 2 ; first(l) <= next(l) < second(l) 
number (2) = 3 ; next(2) < first(2) 
number (3) = 4 ; next(3) < first(3) 
number (4) = 8 ; next(4) < first(4) 
number (5) = Max ; next(5) < first(5) 

pass (5) next={5,5,5,5,5, .. }, first={0,2,3;4,8,Max}, second={2,3,4,8,Max} 
number (1) = 2; second(l) <= next(l) 
number (2) = 3; second(2) <= next(2) 
number (3) = 4; second(3) <= next(3) 
number (4) = 5; first(4) <= next(4) < second(4) 
number (5) = 8; next(5) < first(5) 
number (6) = Max; next(6) < first(6) 

sorted 2, 3, 4, 5, 8 

Defining the 'sort' sequence is the most complex relationship and the remaining relationships 
are fairly straightforward, resulting in the following program: 

sorted : PROGRAM <- unsorted: 

unsorted : SEQUENCE <- input: 
number : INTEGER <- input; 

sort : SEQUENCE<- unsorted, previous:= {pass:= {number:=Max}, sort.,}: 
pass : SEQUENCE <- next:={number .. }, second:= pass, first:= {number:=0, pass.,}: 

nunt>er: INTEGER <- lsecond.number,<=,next.numberl second.number 
~irst.number,>,next.numberl first .number 
lfirst.number,<=,next.number,&, 
next. number,<,second.numberl next.number 

sorted : SEQUENCE <- sort, unsorted : 
number : INTEGER <- lunsorted.number,=,endlsort.(pass).number; 

sorted : END. 

There are two important boundary conditions in the insert sort which determine either end of 
the previous pass into which the next unsorted set is being inserted. These two boundary 
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conditions are required as initial sets in the definition of two domain sequences thus making it 
difficult to accidentally overlook these boundary conditions. 

Another interesting aspect of the above program is that although the algorithm was 
manually worked out in a procedural way, the program itself is declarative. The program only 
expresses relationships between sets. 

5. CONCLUSIONS 

Programming using this method is made easier by allowing the programmer to start by 
working with the actual details of a problem. The programmer is able to take an actual case and 
work through it. The programmer works through an example any way he wishes, which is 
likely to be procedural. Having established a relationship for a particular element or elements in 
the domain, he can abstract this relationship, so that it holds for all elements in the domain set. 
The first part of the abstraction is to describe the sets as belonging to types or composition of 
types. The structure of these sets is suggested by the elements used in the manual calculation. 
The programmer is still able to associate with the problem domain and, in particular, the 
example he worked out, because he is relating elements in the example with sets in the 
program. The second part of the abstraction is to express the relationships between sets. The 
relationships are expressed as simple expressions and these relationships hold for all the 
elements in the sets. The programmer is in a sense working bottom-up: from the details to an 
abstract definition. At the bottom, he is dealing with elements in a procedural way, which are 
easy to work with. These details are abstracted into a declarative specification of sets and 
relationships between sets, which is mathematically sound and easy to understand. 

Debugging a program developed using this method becomes a process of establishing that 
the relationships between sets are correct. An error in one relationship does not invalidate the 
correctness of any other relationship. Thus, the relationships between sets can be checked 
independently of the rest of the program. These relationships can be verified by comparing that 
the domain elements map onto the appropriate range elements. As the examples show, this can 
be done by associating the elements in the sets with the names of the sets and desk checking 
can easily be done in this way. Debugging can also be done using the computer; by recording 
every element (with its set identifier) created during the computation of the relationship. These 
elements can then be sorted according to their identifiers and printed out. The relationships can 
then be manually checked to verify that an element in the domain of a relationship maps onto 
the correct range element. Errors appear to be easily identifiable as illustrated by the sort 
example. Also, the source of the error is obvious. Again, the con- cepts of sets is useful in that 
the programmer is dealing with identifiable sets to which elements belong and the programmer 
can check that the relationships between these elements are correct. These sets have identifiers 
which should correspond with the problem area, and so know- ledge of the particular problem 
should assist in debugging. 

The gcd example shows how easy it is to modify a program. The relationship of one set in 
terms of its domain is independent of other relationships within the program. Also, a pro- gram 
is a definition of sets and the definition of a set includes how it is related to other sets. The two 
above facts make a program easy to modify as a modification is localised to only those sets 
which need to be changed. The programmer is not concerned with the effect a change will have 
on the overall program. A modification is to a set and its correctness is determined only by 
whether the relationship with its domain is correctly specified. A program, which is described 
using sets, does not have an overall structure - only sets are structured. Thus a change to the 
structure of a set does not affect the overall structure of a program. 

Even though this research has not developed far, it does show promise of finding a better 
tool for programming. The method relies heavily on a new way of expressing programs which 
requires a different style of language. While a language has been designed and imple- mented 
to write and test the examples given in this paper, there are questions, as to whether this can be 
done efficiently. 
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BOOK REVIEW: 
Artificial Intelligence: Promise and Performance, Alain Bonnet, 
Prentice-Hall International, London, 1985 Paperback, 221 pages. Chapter 
references, glossary, index. ISBN 0-13-048869 0. 

reviewed by: G. R. Finnie, 

The resurgence of interest in artificial intelligence (Al) in general (and expert systems in 
particular) has been accompanied by a flood of books dealing with aspects of this field. This 
text is a translation from the French version, a fact which occasionally surfaces in rather 
labqured English (e.g. "Given that no algorithm is known, recourse is had to" heuristics" , 
that is, informal (in contrast to formal) methods which are not guaranteed tosucceed." 
(pg.18)). 

Although the title suggests an overview of artificial intelligence, this book concentrates 
specifically on the areas of understanding natural languages and on expert systems, with a look 
at the representation of knowledge and of reasoning. However, for a book of this length an 
in-depth view of even these topics would be impossible and most of the coverage is cursory, 
with some extremeiy short chapters being included, e.g. a three page chapter on procedural 
representations. Despite this major weakness, many important areas of research are at least 
mentioned by name and the good reference lists in each chapter provide a strong base for 
further reading in specific topics. 

According to the cover, the book is aimed at two types of reader - the non-specialist who 
wants to know something of the state of the art and the computer scientist working in fields 
other than AI who requires some description of AI approaches and methods. For individuals in 
these categories, the overview approach taken (coupled with the in-depth references) allows the 
reader to gain some feel for the area while allowing interesting topics to be pursued further. 
The book is unlikely to prove a good student text with the wide ranking but relatively shallow 
coverage. For AI practitioners the text provides a handy reference source while the preface by 
Jacques Pitrat is an amusing warning to those who might be called upon to honour similar 
requests. 
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