
ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

Volume 5 • Number 2 October 1987

M.J. Wagener Rekenaar Spaaksintese: Die Omskakeling van Teks na 1
Klank

E.C. Anderssen A CAI Model of Space and Time with Special Refer- 7
S.H. von Sohns ence to Field Battles

H.A. Goosen A Model for Fault-Tolernat Computer Systems 16
C.H. Hoogendoorn

E.M. Ehlers Random Context Structure Grammars 23
S.H. von Solms

C.S.M. Mueller Set-Oriented Functional Style of Programming 29

P.J.S. Brower User Attitudes: Main Reason Why Information Sys- 40
terns Fail

C.F. Sc beepers Polygon Shading on Vector Type Devices 46

G.R. Finnie Novive Attitude Changes During a First Course in 56
Computing: A Case Study

P.O. Clayton Hands-On Microprogramming for Computer Science 63
Students

BOOK REVIEW 39

CONFERENCE ANNOUNCEMENT 68

An official publication of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid­
Afrikaanse Instituut van Rekenaarwetenskaplikes

I

QUJESTIONES INFORMATICJE

An official publication of the Computer Society of South Africa
and of the South African Institute or Computer Scientists

'n Amptelike tydskrlt van die Rekenaarverenlglng van Sold-Africa
en van- die Suld-Afrlkaanse lnstltuut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS •

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions Rl5 $14 £10

Computer Society of South Africa
Box 1714 Halfway House

Qu2stlones Informatlcz ls prepared by the CompQ.ter Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society or South Africa and the South African Institute or Computer Scientists.

HANDS-ON MICROPROGRAMMING FOR COMPUTER SCIENCE
STUDENTS

Peter G Clayton
Department of Computer Science

Rhodes University

ABSTRACT

This paper advocates hands-on training on microprogrammable hardware for Computer Science students, and
suggests an appropriate microprogram development approach for this purpose. The particular tool discussed is table
driven, and allows for the downloading of microinstructions onto a hardware prototyping board. The system has
been successfully implemented on an IBM PC microcomputer.
KEY WORDS Microprogram Education

1. INTRODUCTION

The more fundamental levels of Computer Science overlap naturally with Electronic
Engineering, and are included in most recommendations on Computer Science curricula[l,3].
Microprogramming is one of the few specialist options at this level which, if given more than
superficial coverage, gives the Computer Science student some contact with hardware design.

It is desirable from an educational point of view that students be able to verify their
microprogram designs. Walker[S] has argued that the success of teaching in this subject area is
heavily dependent on the nature of the teaching aids available to students for the execution of

microprogramming exercises. Another key aspect in the successful application of a practical
course is the degree of availability of equipment to the student

2. SIMULATORS AND HARDWARE-BASED INSTRUCTION TOOLS

There are considerably fewer obstacles to the learning process using interactive simulation
techniques than using hardware-based teaching aids. Most Computer Science students are
unacquainted with hardware debugging techniques. This situation is aggravated by the primitive
nature of the mah/machine interface of hardware development kits, and the fact that the successful
implementation of a hardware design is time consuming. Microprogram development hardware is
additionally handicapped as an instructional aid by its high purchase price and therefore limited
availability to large classes.

Simulators can overcome these encumbrances from a teaching point of view, and have been
the popular means[4] for allowing large numbers of students to actually experience
microprogramming, without incurring a large hardware expense or producing a contention
problem. Simulators give the benefit of source statement editing, compilation and interpretation in
a form familiar to computer users. Above all, trace statements can be included in a hardware
simulation without affecting its behaviour (since it cannot be regarded as running in real time),
and can be the basis for setting up a powerful debugging facility. This facility should allow the
user to control the rate of execution of the microprogram, and to interrupt execution to alter or
monitor the contents of registers, flipflops and memory locations.

From an educational perspective, simulators are restricted in two respects. Firstly, the
hardware configuration which they simulate is inflexible, and is often a highly simplified
processor. They can naturally be written to include a selection of hardware configurations, but
the user remains restricted by the author's imagination. Secondly, the Computer Science student
does not see any actual microprogrammable hardware.

At Rhodes University, an attempt has been made to exploit the benefits of both forms of
implementation by making use of a simulated controller sequencer to control a hardware
processor. The disadvantage of this approach is that the processor is never able to run in real
time. A user friendly system with good monitoring and debugging facilities is the compensatory
tutorial advantage. The student is given the opportunity of some hands-on hardware experience
while being reasonably sheltered from the problems of timing and hardware debugging. A
suggested exercise is to present the student with a working processor and require him to make
minor modifications to it. Students are encouraged to test their microprograms with the aid of a

63 quzstionea infonnaticc, 5, 2, pp 63-67, ilm 0254-%757

simulation of the processor before attempting to control the hardware.
It was felt that an improved development system for instructional purposes should provide

experience not only in microprogram design, but also in microinstruction design. Consequently,
a definition level below the microprogram specification stage was included in the Rhodes
University model, enabling the user to design the microinstruction format. This facility allows
flexibility in the configuration of the processor hardware.

3. A BRIEF OVERVIEW OF THE RHODES MICROPROGRAM SYNTHESISE

The system consists of two definition programs and a simulated controller sequencer, related
as in Figure 1. It has been written for use with any processor which can be controlled by the
chosen controller sequencer. The current design is based on the AMO 2910[2] architecture.

The controller sequencer has both a hardware and a software interface. This allows users of
the system to test experimental processor designs either by writing a simulation of their design,
or by building a prototype of the hardware.

figure 1
The Microprogram Synthesiser

3.1 Microinstruction Definition

This part of the system allows the user flexibility in deciding on the format of his
microinstructions, and the degree to which they are encoded. The particular choice of controller
sequencer device places obvious constraints on the freedom of design in this area. At the same
time, the user is able to specify a symbolic language for the micro-assembler.

The microinstruction definition program allows the user to define the formats of all possible
micro-orders (fields within the microinstruction), in a flexible notation which caters for fixed
value fields, variable fields and "don't care" fields, which may be overlayed with other
micro-orders at a later stage. Specific micro-order bit patterns may then be defined which
conform to these formats. This two-phase arrangement spares the user a significant amount of
typing and reduces the number of possible errors. Each micro-order definition must include a
name, or "mnemonic", by which the operation will be known. The set of mnemonics provide the
basis for a user defined symbolic language which is used in the next stage of the system to write
the microprogram.

As an example of the notation, consider some of the ALU functions available on the AMD
2901[2] bit-slice chip, shown in figure 2.

15 14 13
Pins: 27 28 26 operation

L L L ADD
L H H logical OR
H L L logical AND

figure 2

2901 ALU Functions

64

Having chosen a microinstruction width of 56 bits, a designer might decide to use bits 3 to 5
as a micro-order field to control the ALU function. A summary of the type of details which the
user is required to furnish in order to record this micro-order follows:

(a) Define the format:
Format number : 1
Description : ALU function
Format : 3x 3a 50x (i.e. xxxaaaxxxx ... x)

The letter "a" denotes the positions of the the active bits for this format, which need
not necessarily be adjacent. The letter "x" is used for "don't care" fields.

(b) Define the micro-orders which use the format description of (a) alx>ve.
To define the ADD operation:

Micro-order uses format number : 1
Mnemonic to represent value : ADD
Value of active field : 000

The other ALU operations are defined in the same way:
Use format number : 1
Mnemonic :OR
Value : 011
Use format number : 1
Mnemonic : AND
Value : 100

(Both definitions are required unless definition (a) has already been entered to describe a
previous micro-order of the same format, in which case only (b) is necessary).

In this way, a table is constructed in which each entry records a micro-order mnemonic, its
associated binary value, and its precise position in the microinstruction. Several micro-orders are
combined in later stages to construct a microinstruction. Built-in checks guard against such
obvious errors as conflicting or overlapping micro-order fields.

For example, if two more micro-order fields were defined as

(a) Format number
Description
Format
Format number
Description
Format

(b) Use format number
Mnemonic
Value
Use format number
Mnemonic
Value

:2
: ALU input
: 3a 53x
: 3
: A latch select
: 6x 4a46x
:2
:DA
: 101
: 3
:Areg
:n (Areg will take a numeric parameter)

it would be possible to specify that a microinstruction should add the data from the D-bus and
the A-latch, and that the A-latch should select register 12, using the notation:

ADD & DA & Areg #1100

Figure 3 shows the binary pattern which would be constructed.
Thus it can be seen that the microinstruction definition program essentially provides the

information for a table-driven micro-assembler for a particular hardware configuration.

3.2 Microprogram Definition

An interactive micro-assembler/editor allows the user to encode a microprogram in a
symbolic language and translate this representation of the microprogram into an absolute
representation for loading into control storage. This part of the system is driven by the tables set
up in the microinstruction definition stage, and enables the user to associate conventional machine

65

language mnemonics and symbolic labels with microprogram segments. Naturally, the design of
the computer should include an instruction decoder to map macro-instruction (conventional
machine level) opcodes to the addresses of the corresponding sequences of microinstructions.

1. ADD fills in the field defined by format 1 with the values associated with this mnemonic.

0 1 2 3
0

4 5
0 0

6 7 8 9 10 11 55

XX X a a a XX XX XX x

2. DA uses format 2.

0
1
a

1
0
a

2 3
1 0
a X

4 5
0 0
X X

6

X

7 8 9 10 11 55

X X X X X X

3. Areg #1100 fills in the field defined by format 3 with the value of the associated
parameter of Areg.

0 1 2 3
1 0 1 0
X X X X

4 5 6 7
0 0 1 1
x x a a

8 9
0 0
a a

10 11 55

X X X

figure 3

The Table-Driven Micro-Assembler's Action

For example, the JMP macro-instruction might be implemented at the microprogram level on
an AMO 2901 system by a microcode segment, comprising three microinstructions, which
fetches the instruction operand and loads it into the program counter. The type of information
supplied by the user is shown in figure 4. The notation used in this part of the microprogram
synthesiser allows for the use of symbolic names in place of absolute addresses (often unknown
at the time of writing the microprogram), and for the inclusion of comments.

Macro-instruction Mnemonic : JMP
Hexadecimal opcode : 60
Microcode segment

Arcg #0000 & Breg #0000 & RAMA & ZB & ADD & CO=I &1-U & YB-AR &CY; get jump address
DR-DB & BREG #0000 & DZ & ADD & RAMP & 1-U & CY ; put jump address into program count
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF ; go to instruction fetch cycle

figure 4

Microcode Sequence for an Assembler Level Jump

4. GENERAL REMARKS

The present implementation has been developed in Pascal on the MSDOS™ operating
system, and is characterised by a user friendly man/machine interface. The sample processor,
constructed on a plug-in prototyping board for the IBM PC using AMD 2901[2] bit-slice chips,
can optionally be simulated.

Microprogramming courses have been run at Rhodes University in the fourth year of the
Computer Science Curriculum both with and without the practical component described in this
paper. Although difficult to measure quantitatively (the presence of a practical facility has partially
altered the course approach), the introduction of the practical component has coincided with a
visible increase in the general level of enthusiasm for and comprehension of the subject. The
system has undergone several levels of refinement, with many suggested improvements coming
from the students themselves.

66

ACKNOWLEDGEMENT

The author gratefully acknowledges the contribution made by Michael Ward in his
implementation of the Rhodes Microprogram Development System.

REFERENCES

1. ACM Curriculum Committee on Computer Science, [1979], Recommendations for the
Undergraduate Program in Computer Science, CACM, 22, 3, 147-165.

2. Advanced Micro Devices, [1979], The 2900 Family Data Book with Related Support Chips,
AMD.

3. Capper L., [1986], A Philosophy for the Teaching of Computer Science and Information
Technology, Computer Journal, 29, 1, 83-89.

4. Parker J.R. and Becker K., [1984], A Microprogramming Simulator for Instructional Use,
ACM SIGCSE BULLETIN, 16, 1, (Proceedings of the Fifteenth SIGCSE Technical
Symposium on Computer Science Education).

5. Walker A.J., [1981], Teaching Bit-Slice Microprocessor Applications using Simulation
Techniques, Microprocessors and Microsystems, 5, 9.

67

SECOND
ANNUAL SUMMER SCHOOL AND COLLOQUIUM IN INFORMATICS

The second ASSCI, sponsored by the South African Institute of Computer Scientists and the
Department of Computer Science of the University of Natal, Pietermaritzburg, will take place

from the 12th to the 15th January 1988

The summer school will take place on the first two days and will involve learning to program in
LISP or in PROLOG with hands-on experience or studying an advanced functional programming
language. Lectures in these areas will be drawn from:

Prof. N Phillips
Prof. S Postma
Dr. KDanhof
Mr. P Wentworth
Mr. CAmmann

University Natal, Pietermaritzburg
University Natal, Pietermaritzburg
South Illinois University
University Pon Elizabeth
University Natal, Durban

The colloquium on the last two days will include discussions on logic programming and
functional programming and in particular discussions on

Functional programming environments and applications, and
parallelism and distributed processing infunctional and logic programming.

The keynote address will be given on Thursday 14th January by Dr Kenneth J Danhof of
Southern Illinios University at Carbonale. His topic will be

Parallel Prolog and Database Applications

Delegates may register separately for the summer school and/or the colloquium if they wish. All
sessions will be held on the Main Campus of the University of Natal Pietermaritzburg.
Accommodation will be available in a University residence (bed and breakfast only). Any
dependents wishing to stay in residence and not attend the ASSCI will be welcome. Teas will be
provided and lunches and suppers are easily obtainable locally. Transport to/from the
Pietermaritzburg airport and/or Pietermaritzburg railway station will be provided free of charge.

For further information contact the organizer:

Fees

Mr Chris Scogings
Department of Computer Science
University of Natal
PO Box 375, Pietermaritzburg 3200
Telephone : 0331-63320 ext 642/646

Summer School and Colloquium
Summer School

R240 (SAICS members R120)
R200 (SAICS members RlOO)
R 50 (SAICS members R 25)
R 20 per night per person

Colloquium
Accommodation

68

12-15 January
12-13 January
14-15 January

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
ferred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Table~ and figures
-Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted· and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided. if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
New York, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papers will be vested in
the publisher. ·

Letters
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a for­
um for discussion of recent problems.

I

• I

