
Volume 4 Number 2 May 1986 

G.R. Finnie Modeller : A DSS for Experimental Study of 
Human-Computer Interaction 

S.W. Postma New CS Syllabus ai Natal (Pmb} 

C.C. Handley Finding All Primes Less than Some Maximum 

A-K. Heng Some Remarks on Deleting a Node from at Bhtary Tree 

A-K.Heng A Summation Problem 

S. Bennan A Persistent Programming Languaae • Preliminary Report 

BOOK REVIEWS 

An offtclal publication of the Computw Society of South Africa and of 
the South African Institute of Computer Sdenti• 

1 

7 

15 

21 

23 

25 

14 
33 



QUAESTIONES INFORMATICAE 

An official publication of. the Computer Society of South Africa and of the South 
African Institute of Computer Scientists 

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die 
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes 

Editor 

Professor G. Wiechers 
INFOPLAN 
Private Bag 3002 
Monument Park 0105 

Editorial Advisory Board 

Professor D.W. Barron 
Department of Mathematics 
The University 
Southampton S09 SNH, England 

Professor J.M. Bishop 
Department of Computer Science 
University of the Witwatersrand 
1 Jans Smuts Avenue 
Johannesburg, 2001 

Professor K. MacGregor 
Department of Computer Science 
University of Cape Town 
Private Bag 
Rondebosch, 7700 

Dr H. Messerschmidt 
IBM South Africa 
P.O. Box 1419 
Johannesburg, 2000 

Subscriptions 

Annual subscription are as follows: 

Individuals 
Institutions 

SA US UK 
RlO $ 7 £ 5 
R15 $14 £10 

Dr P.C. Pirow 
Graduate School of Bussiness Admin. 
University of the Witwatersrand 
P.O. Box 31170, Braamfontein, 2017 

Mr P.P. Roets 
NRIMS 
CSIR 
P.O. Box 395 
Pertoria, 0001 

Professor S.H. van Solms 
Department of Computer Science 
Rand Afrikaans University 
Auckland Park 
Johannesburg, 2001 

Professor M.H. Williams 
Department of Computer Science 
Herriot-Watt University, Edinburgh 
Scotland 

Circulation and Production 

Mr C.S.M. Mueller 
Department of Computer Science 
University of the Witwatersrand 
1 Jan Smuts Avenue 
Johannesburg, 2001 

Quaestiones Informaticae is prepared by the Computer Science Department of the 
University of the Witwatersrand and printed by Printed Matter, for the Computer 
Society of South Africa and the South African Institute of Computer Scientists. 



NEW CS SYLLABUSES AT NATAL (PMB) 

Stef W Postma 
University of Natal 

Pietermaritzburg 3200 

The Department of Computer Science of the Pietermaritzburg Campus of the University of Natal is one of the 
youngest departments in the country, although service courses to the Faculty of Commerce have been available for 
some years. In 1985 the department is teaching its second lot of third year students, and is preparing to offer an 
Honours course in 1986. Masters and doctoral students are catered for on an individual basis. 

As a result of the experiences gained over the last four years, a slight expansion in the academic staff 
complement, the fifth generation ferment, and the requirements of the Honours degree, it was felt that the syllabuses 
[UNIV-85] should be revised. This paper sets out the final results of the revision and attempts to justify some of the 
decisions reached. It should however be realised that the revision did not involve a change of course amidstreams, 
but, in many instances, only minor adjustments. 

1. GENERAL AIMS AND PRINCIPLES 

The general principles for setting up syllabuses as outlined in Postma [Post-84] were 
followed. The soundness of this approach can only be appreciated if the remarks of Hoare (in 
Broy and Schmidt [BrSc-82]) are taken to heart (vide also Wulf, Shaw, Bilfinger and Flon 
[WuSh-81]: software engineering must be based on a solid scientific basis, or else, to paraphrase 
Dijkstra [Dijk-80] it is merely soft and not engineering). In the three year B.Sc., or four year 
Honours degree, there are actually few opportunities to do more than lay the foundations for a 
proper discipline of programming or the practice of informatics. 

Computer Science, or Informatics, differs from all other sciences [Hart-81]. Two particular 
differences and a general aim that have to be appreciated are crucial and are indicated below: 

• Experiential component: Computer Science is not an experimental science (cf. Physics) but 
the student should learn how to conduct experiments - e.g., to establish what this compiler is 
capable of doing on that computer. Nor is Computer Science an observational science, but this 
is very important in systems analysis. Computer Science is an experiential science in that e.g., 
writing a large program can only be experienced, or as Metzger [Metz-73] says - if you have 
not done it before you are not developing but researching. 
The student then must practice, and experience, different types of program development styles 
and master the idioms and their combinations cf. Abelson and Sussman [AbSu-84]. This 
aspect is highlighted in the article of Feldman and Sutherland [FeSu-79]. 

• Feasibility : Computer Science has two natural boundaries; it is bound by the practicable on the 
one hand - a movable and moving boundary, and the limits of computability and constructivist 
mathematics on the other hand - an immovable boundary. The computer 
scientist/informaticist/informatician must know the limits of his endeavours, and must 
concentrate on the feasible [Hart-81], i.e. the spectrum from practicable through 'feasible' to 
constructive; the conceivably executable - definable - procedurally describable on a real or 
putative computing device. 

• Maturity: The programmer, the software engineer and of course the computer scientist requires 
mathematical maturity ([LiMi-79]; Hoare, Dijkstra, Bauer, etc. - too many to cite), and he 
requires algorithmic maturity. This maturity is only obtained by training,training from the 
concrete to the abstract. the latter principle cannot be emphasised enough - see e.g. Beth, 
quoted in Postma and Laing [PoLa-82]. Furthermore, maturity is only obtained by experience 
and thus an abstract approach must at some stage be reached; where the coder produces 
programs the computer scientist should be able to consider the program itself as an object of 
study. 

7 



2. THEMES OF THE COURSE 

The syllabuses of every year prescribe what material is to be covered in that year, and the 
horizontal integration of the topics in a given year is discussed in the next section. The vertical 
integration of the topics is described in terms of three themes which run from first year to 
honours. 

• Programming : idioms - algorithms -> construction : The professional should be able to 
describe his program, an interrelated, idiomatically combined, selection of algorithms - in the 
most appropriate language, then implement it effectively. The programming theme then 
comprises: 

B Sc I: 
II: 

III: 
Hons: 

Iterative programming- structured programming 
Recursive programming, assemblers 
Concurrent and stream programming, operating systems 
Applicative programming, software engineering 

• Data structures and analysis of algorithms : The professional programmer should be able to 
choose appropriate structures and algorithms, on criteria of efficiency and correctness. The data 
and analysis theme covers, i.a. : 

B Sc I: 
II: 

III: 

Using linear data structures, files 
Analysis of algorithms on linear data structures, correctness by inductive 
assertions, implementation: assembler programming. Using tree data structures. 
Analysis of recursive programs, and data structures. Axiomatic methods : data 
types. Unbounded (potentially infinite) data structures. Large systems - data 
bases. 

• Tools for abstraction : The basic techniques taught in mathematics need to be augmented (see 
Beckman [Beck-80], Tremblay and Manohar [TrMa-75], Broy and Schmidt [BrSc-82], Bauer 
and Wossner [BaWo-82]). Since not only a knowledge of discrete mathematics but rather 
mathematical/algorithmic maturity is the goal, the formal theme comprises: 

B Sc I: Set Theory - subsets of a universal set. Finite automata, regular grammars and 
regular sets. Model theoretic propositional calculus : Venn diagrams. 

II: Predicate calculus, axiomatic propositional calculus. Inductive assertion method. 
Push-down automata, context free grammars and languages. 

III: Lambda-calculus, operational semantics (e.g. SECD). Recursive and structural 
induction. Introduction to temporal logic. 

Hons: Recursive function theory, fixpoints. Justification of inductive assertion, recursive 
induction, etc. Correctness of concurrent programs. Formal abstract data types. 

3. THE SYLLJABUSES 

The following is given for each year : The objective of the year's study, the actual 
syllabuses, notes on material to be covered, approaches, etc. 

• B Sc I : 

Objective : A thorough grounding in iterative programming techniques based on Pascal. 
Syllabus : 100 lectures+ 26 practicals. 

Introduction to computers and computing; algorithms; programming in Pascal; sets; 
programming involving files and data structures. Number systems and representation of 
data in the computer; programming techniques and structured programming. Propositional 

8 



logic,· finite automata; regular expressions. 
Approach : The student is to concentrate on am,lied computin~, i.e. using computers to solve 
problems. This approach trains the student in the basic techniques of using the computer. It is 
thus suitable for the student taking only one course in computing and forms a basis for the 
concepts of the subject at more advanced levels. 

File processing, e.g. File updating, e.g. adding compound interest to records, etc. should be 
covered as well as an introduction to random files. 

Automata theory should not only be seen as a theory but as a source of interesting 
programming applications - vide Mallozzi and DeLillo [MaDe-84]. 

• B Sc II - Prerequisites : Computer Science 1; Mathematics 1. 

Objective : A thorough grounding in recursive programming techniques based on a functional 
subset of Lisp. An introduction to the implementation (assembler) and analysis (complexity, 
correctness) of algorithms on data structures. 

Syllabus: 100 lectures+ 26 tutorials+ 26 practicals. 
Design and analysis of algorithms with application to data structures; recursive 
programming and symbol manipulation,· assembler programming and pointers - systems 
software,· predicate logic - correctness of programs,· applied numerical methods,· error 
propagation,· complexity,· correctness. Push-down automata; regular and context1ree 
grammars - syntax analysis. 

Approach : The second year student studies, inter alia, the algorithms used in the first year 
w.r.t. implementation, time (and space) complexity, and their formal correctness by means of 
the method of inductive assertions. Most of the proofs have of course to be supplied by the 
lecturer. 

He learns to use the idioms of recursive programming, applied to trees and symbol 
manipulation. This gives a good grounding for later studies of artificial intelligence. The study 
of pda's are not only interesting for·the light they throw on computability, but ties in with the 
study of systems software via syntax analysis and an introduction to program translation as an 
example of program transformation. The latter again ties in with the functionals studied in the 
recursive programming. 

Only a small subset of Lisp, and a rather pure functional subset need to be studied - vide 
Henderson [Hend-80] chapters 1-3 and Postma [Post-85]. 

At the end of the second year of study the student should be comfortable with the idea of a 
program; a procedure, an algorithm as an object that can be studied, manipulated, transformed, 
passed as an argument and returned as a value. 

• B Sc Ill • Prerequisite: Computer Science 2. 
Corequlslte : Mathematics 2. 

Objective : A thorough grounding in concurrent, parallel and stream programming techniques, 
i.e. basics of real-time programming. Analysis of algorithms. An introduction to 
program(ming) language semantics. 

Syllabus : 150 lectures + 26 tutorials + 26 practicals. 
Operating systems; networks and data communications; computer architectures. 
Concurrency,· real;-time and stream programming; architectures. Systems analysis and 
design; design, implementation and theory of data bases; analysis and correctness of 
algorithms and data structures. Theory of computing applied to the design and analysis of 

9 



algorithms, and programming languages; lambda-calculus and operational semantics; 
temporal logic. 

Approach : At the end of the third year the student has covered the basic types of programming 
- iteration, recursive, concurrent, and should appreciate some of the problems of large scale 
programming. The latter is obtained by setting a group programming project in the third year, 
and careful attention to program construction methods during the practical sessions. 

Analysis of programs is extended to analysis of the means of expressing programs, i.e., 
program language semantics. The approach is again from the concrete to the abstract, thus 
denotational semantics is only encountered at the Honours level. 

The temporal logic is only briefly to be touched on, and is almost purely to be an introduction 
to the Honours, thus should not be emphasized in the examination. The lambda calculus is to 
include the Church-Rosser Theorem as a fact - the proof is not to be included in the syllabus. 
An extention to combinatory logic and reduction architectures cannot be covered at the third 
year level. 

• B Sc Honours - Prerequisites: Computer Science 3, some mathematical maturity 
- i.e. to the satisfaction of the Head of Department. 

Objective : Twinfold - solid grounding for the software engineer/programmarian/diagnostician, 
i.e. the professional; and solid basis for the MSc which should be an 'experiential' degree, not 
a Ph.D. (failed) [Wegn-72]. The Honours degree is the degree that is variously recognised to 
be the minimum professional qualification. 

Syllabus: 250 lectures+ practicals+ seminars. 
• A course in pure or applied mathematics or formal logic and recursive function 

theory. 
• A selection of/our courses from: 

1. Efficiency, effectiveness and equivalence of programs. 
2. Program languages and architectures. 
3. Axiomatic, operational and denotational semantics. 
4. Anificial intelligence. 
5. Data structures and data base theory. 
6. Software engineering and program construction. 
7. An honours course offered at the Durban campus, or any special topic offered. 
8. Any other course - on approval by the Head of Department. 

• A practical programming project, fully documented, in which a subminimum mark 
must be attained. 

Approach : The actual topics available in a given year will depend on the availability of staff 
and visitors, and students' interests. 

On completion of the Honours degree the student should have acquired the necessary 
background information to either : 

1. becoming a software engineer, capable of applying known scientific principles to the 
development of large software systems, or 

2. continuing a career in pure or applied research, where in applied research he will be 
concerned with the use of computers on solving problems, and thus may well find his way 
to a big industrial or computing company or a Technikon; and in pure research he will be 
concerned with any and all aspects of feasible algorithms and information structures as 
objects, using inductive reasoning, and deductive reasoning but above all reductive 
reasoning to establish the feasible. 

Given the current, and the future, acute shortage of trained people [Vand-85] the student 

10 



should be trained to be as effective as possible. 

4. NOTES ON THE TOPICS 

a) Formal logic and recursive function theory -

• Initially the logic will mainly cover propositional and predicate logic with some temporal 
logic. As the undergraduate logic programme develops the emphasis should change to more 
and more temporal logic and applications. 

• The recursive function theory yields additional insights into computability and justification 
of Church's thesis. 

• The fixpoint theorem is not only one of the central theorems in theoretical computer science, 
but affects program language design and is used in the justification of various formal 
techniques of program verification. The relation of this theory to denotational semantics has 
been studied by Scott [Scot-82]. 

b1) Efficiency, effectiveness and equivalence of programs : The first two topics -
efficiency and effectiveness - have been encountered at the undergraduate level. Depending 
on the lecturer's interests, and the class's background the course may be mainly on 
efficiency (interest related to mathematical analysis) or effectiveness or equivalence (interest 
related to algebra). A combination of the effective and equivalence with applications to 
program transformation in a theory of, say, predicate transformers or recursive functions or 
denotational semantics is probably preferable to other options. 

b2) Program languages and architectures : If b3 (semantics) is not taken then this course 
should concentrate on denotational description of programming languages with applications 
to standard architectures. If b3 is taken this course will probably concentrate on applicative 
programming with applications to, e.g. operating systems and reductive architectures based 
on combinators. 

b3) Axiomatic, operational and denotational semantics : The student will have some 
background in the lambda-calculus and SECD machines, and the course is therefore to 
cover the axiomatic approach, but is to concentrate on the denotational specification of 
programming languages. Both procedural and functional languages are to be considered and 
the overall appraoch to be that of 'complementary definitions' [Dona-76]. 

b4) Artificial Intelligence : Basic symbol manipulation techniques have been covered at the 
undergraduate level, and logic at various levels. Students who wish to specialize in AI are 
furthermore encouraged to include statistics in their curriculum. The course will concentrate 
on production systems, and then, depending on lecturer and students, on either theorem 
proving with applications to program correctness or expert systems. 

b5) Data structures and database theory : If efficiency is not covered in bl then this 
course should contain a fair amount on efficiency. The course however is meant to cover the 
axiomatic, set-theoretic and algebraic approaches to data in all its forms and manipulations. 

b6) Software engineering and program construction : Where most of the other courses 
are concerned with programming in the small, this course is concerned with programming 
in the large. If it is not taken then aspects of it must be incorporated in C: programming 
project, by means of seminars. 

b7) Durban course/special topic : Allows the student to take a specialist topic at Durban, 
e.g. image processing; or a specialist topic offered by a visitor. (Potential visitors should 
note that Pietermaritzburg offers cheap living, and is 80 kilometres from either sea or 
mountains.) 

11 



b8) Any other course : Such a course may be at the post-graduate level, if the student is 
admitted by that department, but could also be at the undergraduate level, say mathematical 
statistics 2 for a student who has decided that AI is his 'scene'. Thus either a potential 
applications area may be studied or ancillaries may be catered for. 

C. Programming project : 
A fully documented programming project is to be completed, including at least one 
structured walk-thru presentation as a seminar. The documentation must cover: 

A - Analysis of the problem and specifications of program. 
B - handBook for using the program. 
C-Cocling. 
D - Debugging and Development. 
E - Evaluation with suggestions for Extentions, etc. 
F - Formal efficiency and correctness. 

If the student is so inclined, he may use undergraduate students to help in the coding phase. 

5. CRITICISM 

The immediate expected response to the syllabus 'it is too theoretic' is refuted by the 
authors cited, and by pointing out that it would indeed be too theoretical if the practicals were 
incorrectly approached. In particular much of the teaching of programming languages per se 
could be done in these periods. It should further be noted that training for research has a high 
priority at the University of Natal, which is rated [CSIR-85] ahead of many universities, 
excepting Witwatersrand and Cape Town, as a research institution. 

To judge the syllabus one should realize that the material covered has been chosen with the 
idea that the student should at the end of the course be able to read at least some journals in order 
to keep up to date (e.g. Communications of the ACM, Journal of British Computer Society), and 
also have acquired insight into the techniques which may be in vogue ten years after graduation. 

A prognosticati~n of important directions with ratings of the syllabus follows : 

1. Functional / applicative programming - well covered. 
2. Formal approaches - well covered. 
3. Program development - well covered. 
4. Artificial intelligence/ expert systems - solid basis. 
5. Data base - systems analysis - solid basis. 
6. Architectures - covered. 
7. IPSE/Software engineering - basics. 
8. Nonprocedural/ 4th generation/ Prolog - basics. 

A compariso:q "}'ith topics taught at the Australian universities given by Postma [Post-84b] 
indicates that the syllabus, for a small university, compares very favourably in that all the major 
areas are covered (exceptions in brackets): Architecture; artificial intelligence; operating systems; 
programming languages; functional programming; algorithms-complexity; numerical; 
( compilers )-automata; computability-meta- theory; (information systems) software engineering. 

Finally a comparison with the syllabus requirements of the ACM/IEEE [MuDa-84] draft 
accreditation report shows that the syllabus presented is better than that available at many 
universities in the United States of America. 

ACKNOWLEDGEMENTS 

The syllabus was finalised with the cooperation of the whole department - NC K Phillips, 
giving input and comment all the way from Illinois where he is on sabbatical, G Finnie, R 

12 



Dempster and C Scogings. Without positive and critical input from everybody the syllabus would 
have mirrored the prejudices of an individual. 

REFERENCES 

[AbSu-85] Abelson, H; Sussman, G J (with Sussman, J): Structure and Interpretation of Computer Programs; The MIT 
Press, Cambridge Mass., 1985, ISBN: 0-262-01077-1. 

[BaWo-82] Bauer, FL; Wossner, H: Algorithmic Language and Program Development; Springer-Verlag, Berlin, 1982, 
ISBN: 3-540-11148-4. 

[Beck-80] Beckman, F S : Mathematical Foundations of Programming; Addison-Wesley Publ. Co., Reading, Mass., 
1980, ISBN: 0-201-14462-X. 

[BrSc-82] Broy, M; Schmidt, G (Eds): Theoretical Foundations of Programming Methodology; D. Reidel Publ. Co., 
Dordrecht, Holland, 1982, ISBN: 90-277-1460-6. 

[CSIR-85] CSIR - Foundation for Research Developmant Report of the Main Research Support Programme; S.A. 
National Scientific Programmes Report No. lOlE, February 1985, ISBN: 0-7988-3372-6 

[Dijk-80] Dijkstra, E W: My hopes of computing science; pp 95-110 in [FrLe-80]. 
[Dona-76] Donahue, J E: Complementary Definitions of Programming Language Semantics; Springer-Verlag, Berlin, 

1976, LNCS 42, ISBN: 3-540-07628-X. 
[FeSu-79] Feldman, J A; Sutherland, W R (Eds): Rejuvenating experimental computer science; Comm. ACM 22, 9, 

September 1979, pp 497-502. 
[FrLe-80] Freeman, H; Lewis, P M (II) (Eds): Software Engineering: Academic Press, New York, NY, 1980, ISBN: 

0-12-267160-0. 
[Hart-81] Hartmanis, J: Quoted participant in: Traub, J F (Ed): Quo Vadimus: Computer Science in a Decade; Comm. 

ACM 24, 6, June 1981, pp 351-369. 
[Hend-80] Henderson, P: Functional Programming Application and Implementation; Prentice-Hall, Englewood Cliffs, 

NJ, 1980, ISBN: 0-13-331579-7. 
[LiMi-79] Linger, R C; Mills, H D; Witt, B I: Structured Programming Theory and Practice; Addison-Wesley Publ. 

Co., Reading, Mass., 1979, ISBN: 0-201-14461-1. . 
[MaDe-84] Mallozzi, J S; De Lille, N J: Computability with Pascal; Prentice-Hall Inc., Englewood Cliffs, NJ, 1984, 

ISBN: 0-13-164443-2. 
[Metz-73] Metzger, P W: Managing a Programming Project: Prentice-Hall Inc., Englewood Cliffs, NJ, 1973, ISBN: 

0-13-550756-1. 
[Post-84] Postma, S W: Syllabi for Computer Science as a scientific discipline; Quaestiones /nformaticae,3, 2, July 

1984, pp 3-5. . 
[Post-84b] Postma, S W: The study of Computer Sciences in Australia at tertiary education levels; pp 127-136 in: 

Procs. 14th CSLA Conf. - Hluhluwe - June 1984. 
[Post-85] Postma, S W: Introduction to Functional Lisp; Technical Report PMB-TR/85-3, Dept Computer Science 

University of Natal, 1985, ISN: 0-86980-448-0. 
[PoLa-82] Postma, S W; Laing, I D G: Programmers, programmarians and programmaticasters - on the training of -

;Procs., WCCE, Lausanne 1981, also in AEDS Monitor 20, 4-6, 1981, pp 28-31. 
[Scot-82] Scott, D S: Lectures on mathematical theory of computation; pp 145-292 in [BrSc-82] 
[TrMa-75] Tremblay J P; Manohar, R P: Discrete Mathematical Structures with Applications to Computer Science: 

McGraw-Hill, New York, NY, 1975 ISBN: 0-07-065142-6. 
[UNIV-85] University of Natal Calender 1985, pp K60-K61. 
[Vand-85] Van der Veer, G: Quoted in Computer Week, 8, 18, 13 May 1985, Frontpage. 
[Wegn-72] Wegner, P: A view of Computer Science education; pp 1515-1522 in: Information Processing 71; North 

Holland Publ. Co, Amsterdam, 1972. 
[WuSh-81] Wulf, W A; Shaw, M; Hilfinger, P N; Flon, L: Fundamental Structures of Computer Science; 

Addison-Wesley Publ. Co., Reading, Mass., 1981, ISBN: 0-201-08725-1. 

13 



BOOK REVIEW 

The Al Business: Commercial Uses of Artificial Intelligence, Patrick Henry 
Winston and Karen A. Prendergast (editors), (The MIT Press, Cambridge, 
Massachusetts, 1984; ISBN 0-262-23117-4); 324 pages, $19.95. 

Reviewed by: Philip Machanick, University of the Witwat~rsrand, Johannesburg 2001 

The AI Business is essentially the proceedings of a colloquium held at MIT, which brought 
together academics, financiers, industrial R&D people and end-users. Aimed at a non-technical 
audience, it says little new about AI (though Alan Kay offers some insights-if mainly into how 
big business sees research). 

That is not to say the book is not entirely without interest: it is a good starting point for 
reading up an area you are not familiar with. Even so, as a survey it lacks balance. Expert 
systems are, of course, extensively covered, though with emphasis on selected case-studies 
(XCON, DIPMETER ADVISOR, CADUCEUS, The Programmer's Apprentice). Natural language 
receives some coverage, with emphasis on front ends-Roger Schank's Cognitive Systems, 
Inc. and Artificial Intelligence Corp.' s INTELLECT. 

The other major section is robotics. This area has appeared less and less in tlhe mainstream 
AI literature. and more and more in its own specialized journals. From these papers and the 
discussion, it is obvious why. It is only comparatively recently that AI work in visa (although 
applied in research by Michie et al. in Edinbutgh over ten years ago [l]) has found1.m way into 
industrial robots. Scant mention is made of planning systems (remember the blocis world?). 
Most of the robots in use now are not using AI at all, and Paw M. RUS50 of Genera>J: Electric 
talces pains to minimize the impact of AI on his field. 

There are some glaring omissions: given that 1!lie eolloquimn was fuomg at 
commercializatio~ the lack of representation of purveyors of AI mars iJs strange: Even AI 
workstations are given littllc mention. Daisy Systems Cmp.,, who mmake a VLSI mign 
workstation are then:~ but deq, being an AI comJ!mly. The only other tep!!aentative of this; area 
is John Seely Brow1lll <>f Xerox, whose main contribution -besicks, m lengthy historical 
review--is an unconvnm::ing op)anation of why the Alto was not.co~ viable. 

Marvin Minsky rs \lery m'IIIICh in the wilderness at this colloquium. ][~one else iif ctither 
optimistic or pleased with wha.t they were doing as long as no one calls it.All.. Minsky's problem 
is the lack of basic research: "'Marvellous things are happening, butt.many of them are happening 
because of research done ten O£ fifteen years ago ... In 1970 nmmory costr a penny a bit or so 
... Processors are much cheaper and faster. It is odd, then, tfurt industry is using software 
developed a long time ago under other conditions.." 

If the book is not an altogether convincing- survey, itd.& 1~ convirucing as a harbinger of 
vast profits from AI. Minsky and Kay are not fully an&llR:Rd in thew misgivings about 
business's understanding of basic research, and business lie:t:l'WDS skeptircal of the cG>mmetcial 
value of Al, besides obviously successfw applications sudltasDIPMETERADVISORamlXCON. 
Still, it is good light reading and will help to take the mySbi:!y out of AI for the na'ivcm:aderin a 
slightly less melodramatic fashion than another well-known book [2]. 

References 

1. Michie D., On Machine Intelligence, Edinburgh University Press, Edinburgh, 1974. ISBN 0-852!24-262-X. 

2. Feigenbaum E. A. and McCorduck P., The Fifth Generation: Artificial Intelligence and Japan's Computer 
Challenge to the World, Addison-Wesley, Reading, Massachusetts, 1983. ISBN 0-201-1]519-0. 

14 








