
Volume 5 • Number 1

G.R. Finnie

P.S. Kritzinger

S.Berman

P.C. Pirow

C.H. Hoogendoorn

C Levieux

D. Podevyn

J. ·Roos

L.J. van der Vegte

~ ..

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

April 1987

On Learning Styles and Novice Computer Use 1

Local Area Networks in Perspective 11

Semantic Information Management 19

Reard1 Computeraey 23

Experience with Teaching Software Engineering 36

FAlucation Rather than Training 41

Decaon·Tables ma~. Representation Formalism 46

The Protocol Specification Language ESTELLE S1

The Development of a Syntax Checker for LOTOS 63

· BOOK REVIEWS 71

QUlESTIONFS INFORMATICtE

An official publlcation of the Computer Society of South Africa and of the
South African Institute of Computer Scientis1s

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die
Suid-Afrikaanse lmtituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Qrculation and Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions R15 $14 £10

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

SEMANTIC INFORMATION MANAGEMENT

ABSTRACT

Sonia Berman
Department of Computer Science,

University of Cape Town

An information management system with a semantic data model interface is currently being developed at
UCT. This system provides high-level, non-procedural access to information and enforces powerful integrity and
security constraints on stored data. The definition of tasks, routines which can subsequently be invoked by
application programs, is included with the definition of the data itself.
KEY WORDS: information management, semantic model, database management system, integrity

1. INTRODUCTION

SDMS (the Semantic Data Management System) is being developed to improve database
programmer productivity and to provide semantic data model facilities that capture more of the
meaning of data in its definition and usage. This paper describes the data definition and
manipulation facilities provided by SDMS and gives an outline of its implementation. In
conclusion the system is evaluated and some suggestions for future work are made.

2. THE SDMS SCHEMA

An SDMS schema comprises a list of objects optionally followed by a list of tasks. Objects
are entities of interest about which information will be stored; tasks define special operations to
be performed when manipulating these objects and are based on a similar concept in the
theoretical language TAXIS [9]. Properties can be specified for objects to describe their
characteristics and behaviour. They can denote attributes (e.g. name of a person), relationship
(e.g. courses taken by students), actions (e.g. calculate average mark) or tests (e.g. to ensure
employed persons are of reasonable age.

To increase the semantic content of the schema, the following features of object properties
are supported. They can be designated "id-properties" if their value uniquely distinguishes
occurences of that object. They can be declared "class" [5] if they describe a class of object rather
than particular occurences of an object. (Examples: average-course-size and maximum­
course-length). Properties can be optional or mandatory, changeable or unchangeable (e.g.
birthdate), single- or multivalued and weak or independent. A weak property is one whose
existence depends on that of some other object: marks would be weak properties of students
because a mark is of no interest if the student who attained it is deleted - when this occurs the
student's marks must be deleted as well. Every property of objects has an associated valueclass
[5] which indicates what type of value(s) that property will assume. A property can thus be seen
as mapping from the object it describes to its valueclass. Name is a mapping from person to
strings, courses-taken is a mapping from students to courses, and so on. This mapping can be
defined as partial or total to indicate whether all objects of the valueclass must participate in such
a mapping, or can optionally be exempt from this. From this it can be seen that for any property,
both the mapping and its inverse are clearly described. Where applicable,i.e. where the
valueclass is "string", "real" or "integer", properties can have their exact format (types and sizes)
declared. It should be note that properties such as name represent ordinary printable attributes of
an object; while properties such as course-taken represent a relationship between two types of
object. One of the major reasons for the simplicity inherent in SDMS is its uniform treatment of
attributes and associations. ·

The semantic richness of the schema is especially evident in its facilities for defining
integrity constraints and data derivations. The latter enable a property to be defined as the sun:i,
minimum, average, maximum, count, union, intersection, subset or difference of other ~multi­
valued) properties. Examples: students-passed would be a "SUBSET OF students-registered

19
Qumstiones lnformatica:i, Vol 5 No 1, PP 19-22, ISSN 0254-2757

WHERE average-percent >= 50"; students failed could be "SUBTRACT students-passed FROM
students-registered". Alternatively a derivation can specify an arithmetic expression or formula by
which a single-valued property is to be computed from other single-valued properties. Integrity
constraints allow for the declaration of any logical expression which must hold between
properties and/or constants. Examples are "age<= 65 && age >= 16" and "tax<= 0.5 * salary".
Finally it should be stressed that redundancy in the data description is encouraged in SDMS, as
this increases the chances of obtaining a complete data definition and enhances its semantic
content. To handle this " inverse" and "match" must be specified wherever one property
represents the exact opposite, or exact same information as another property, respectively.

Security constraints can be specified for properties, objects or tasks and are enforced by
means of passwords. Those defined for properties and objects can futher specify the operation(s)
for which that password is required. Comments can also be defined for any property, object or
task to clarify its exact meaning or purpose.

Object definitions can also include semantic information in the form of isa-hierarchies [11],
groupings [5], functional dependencies between properties of an object [4] and list of the tasks
that apply to each object. If "lecturer isa person" lecturers inherit all the properties of the object
person in addition to the stated properties of their own. This facility considerably reduces the
number of property declarations that have to be given; it also enables special constraints to be
enforced when an inherited property is redefined for the specialised object to restrict its range of
values (e.g. person property age might be redefined for lecturers to enforce "age > 21"). A
predicate can be defined when an "isa" association is declared, to indicate what condition an
object must satisfy to be classed as that special type of object. The predicate for lecturer would
probably be based on the value of its career property. A grouping allows an object to be defined
as a collection of other objects. Thus committee could be defined as a grouping of students and
lecturers. A predicate defining how groupings are to be formed is also supported.

To provide database administrators with some control over the physical storage of the data,
objects can have access methods defined for them, along with any keys to use. The options
available are isam, hash, heap, compressed isam, compressed hash, compressed heap and
truncated. These access methods are totally transparent to the programmer.

Tasks can be one of two types: base and auxiliary. The name of a base task is of the form
operation_ object or operation_ object_property. This implies that the task must be invoked when
the specified operation is performed on that perticular object or object-property, as some
additional processing has to be carried out as specified in the task body. Auxiliary tasks are
analogous to program modules; they can be called from any other task in the system. All tasks
comprise actions optional1y interspersed with tests. An action can be any SDMS or C [7]
statement, or a task invokation. A test has associated with it some predicate which, if it evaluates
to false, will raise an error and abort the task. Tests can optionally specify the name of an
exception-handling (auxiliary) task to deal with the error.

3. THE DATA MANIPULATION LANGUAGE (DML)

The SDMS data manipulation language is described in detail in a companion paper [2]. To
ensure ease of use there are few, simple commands. The language is non-procedural, relationally
complete [4] and provides associative retrieval (viz. data is accessed by conditions on any of its
properties). The SDMS data manipulation commands are GET, CREA TE, DELETE, UPDATE,
NULLIFY, INSERT and remove. NULLIFY alllows some (or all) of the values of a multivalued
property to be erased. REMOVE and INSERT permit de-/classification of objects in a specialised
object type or grouping. File input/output, aggregate functions (minimum, maximum, average,
sum, count) and "mappings" [5] are supported. A mapping enables properties of properties to be
referenced directly, as in "Thesis.Supervisor.Name". Any number of properties of different
objects can be specified in any order in the commands, all of which operate on collections of
objects rather than one at a time.

4. IMPLEMENTATION

SDMS comprises three major subsystems: a schema processor, a DML processor and a
browsing facility. It was decided to implement SDMS on top of a relational database system (viz.
Ingres [1 O]) as this greatly simplified the development of an access method. A relation scheme is
therefore designed from the given SDMS data definition and SDMS operations are executed by

20

manipulating the underlying relational database. This does not involve extra overheads compared
with Ingres, which also translates its DML into calls to Ingres routines; SDMS uses the same
routines but simply maps from a higher-level language.

The schema processor uses Lex [8] and YACC [6] to parse the schema, performs all
semantic checking and creates the internal representation of the schema. This metadata can
subsequently be accessed by all users in exactly the same way as the data content. This processor
also designs the relational scheme in which data will be stored. The design algorithm [l]
essentially creates one relation for each object and then decomposes this into third normal form
[4].

The DML processor performs syntactic and semantic checking of SDMS commands and
generates appropriate calls to Ingres routines to perform the required data manipulation. It
accesses the internal representation of the schema to check for program errors, to ascertain all
actions necessary to execute the operation correctly, and to determine whether any special task
must be invoked. In general one SDMS command is translated into several operations on the
underlying database. This occurs for the following reasons: the properties of an object are
scattered amongst several relations, an update or delete of an object must cascade through all
relations where that object is referenced, derived data values must be computed and "inverse" and
"match" properties must be correctly maintained.

The browsing facility guides the user through the schema to indicate what information is
available and then assists him in formulating a query. Conditions on data values of interest can be
specified using natural language. A query can be modified and rerun several times if desired.

5. CONCLUSION

SDMS enables information systems to be designed and used with less effort than would be
the case using conventional database or filing systems. It should thus substantially improve
programmer productivity. The non-proceduralarity of the access language provides navigational
problems and its high-level primitives avoid the complexity of relational joins. The security and
integrity of data is enhanced because of the rich semantic content of the data description.
Complete data independence is achieved since the user's view of the information simply
comprises a collection of objects and their properties and no internal data structuring. Maintaining
tasks along with the data deffoition increases the semantic content as ·well as ease of use. The
project has opened several avenues for future research. Incorporation of subschemas, database
design tools, historic data and automatic program- and documentation- generation could be
investigated.

APPENDIX • (PARTIAL) SCHEMA EXAMPLE

DATABASE uct
OBJECT person
ACCESS hash USING idnurnber

ID-PROPERTY
firstname
initials
surname
birthdate

ID-PROPERTY

STRING C12 M:1
STRING A6 M:1
STRING C24 M:1
date M:l

unchangeable
unchangeable;
compulsory;
unchangeable;

compulsory;

idnurnber STRING Dl3 1:1 unchangeable compulsory;
PROPRTIES

sex
medicalaid

personsex
boolean

M:1 unchangeable compulsory;
M: l;

pensionfund boolean M: 1
maritial maritalstatus M:l;
children person 2:M
numdependents INTEGER M:1 count children;

OBJECT lecturer ISA person
LOCK DELETE "*(&"%"; UPDATE : "3y28#";

PROPERTIES
position : academicstatus M:1 compulsory;

21

dep
office
telnos
salary
supervises
lectures

contacts

department
STRING C4
telephonenum
money
student
course

student

subsidy boolean
FDS telno -> office;
SPECIAL-TASKS

M: 1 compulsory;
2:1 compulsory; /* max 2 per office*/
4:2 total; /* max 2 phones per chap*/
M: 1 compulsory
1:M match with supervisor of project;
M:M compulsory total inverse of

course-lecturers
M:M union of supervises and

lectures.attendants
M:1;

DELETE_lecturer; UPDATE_lecturer_marital;

TASKS
DELETE lecturer

precondition
actiondone

: TEST COUNT (supervises) == O;
: DELETE lecturer

/* add his position to "posts" - a multivalued property: */

END

officefreed UPDATE dept (freerooms = freerooms + 1;
posts= lecturer.position) WHERE

phone freed
postcondition

name== lecturer.dep.name;
UPDATE university(freephones=freephones+COUNT(telnos));
TEST COUNT(dep.posts) !=dep.numposts ERROR emptydep();

UPDATE lecturer marital - -
/* a married female cannot legally be subsidised! */

execute UPDATE person;
checksubsidy: TEST sex== "F" && marital== "M" && subsidy "Y"

ERROR illegalsubsidy ();
END

REFERENCES

1. Berman, S., [1983], ADD - The Automated Database Design Tool, Qufl!stiones lnformaticfl!, 2, pp 25-27.
2. Berman, S. and Walker L., [1986], A High-Level Language Interface to a Relational Database, Qufl!stiones

Informaticfl!, 4, pp 7-12.
3. Chen, P.P.S., [1976], The Entity-Relationship Model: Toward a Unified View of Data, ACM Trans. on

Database Syst., 1, pp 9-36.
4. Codd, E.F., [1970], A Relational Model for Large Shared Data Banks, Communications of the ACM, 13,

pp 377-387,
5. Hammer, M. and McLeod, D., [1981], Database Description with SOM: a Semantic Datatbase Model, ACM

Trans. on Database Syst., 6, pp 351-386.
6. Johnson, S.C., [1975], Yacc: Yet Another Compiler Compiler, Computer Science Technical Report No. 32,

Bell Laboratories, New Jersey.
7. Kernighan, B.W. and Ritchie, D.M., [1978], The C Programming Language, Englewood Cliffs NJ,

Prentice-Hall.
8. Lesk, M.E., [1975], Lex - A Lexical Analyser Generator, Computer Science Technical Report No. 39, Bell

Laboratories, New Jersey.
9. Mylopolous, J., Bernstein, P.A. and Wong, H.K.T., [1980], A Language Facility for Designing

Datbase-Intensive Applications, ACM Trans. on Database Syst., 5, pp 185-207.
10.NCR Corp., [1983], TOWER Database Manager, Relational Technology Inc.
I I.Smith, J.M. and Smith, D.C.P., [1977], Database Abstractions: Aggregation and Generalization, ACM Trans.

on Database Syst., 2, pp 105-133.

22

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papen w.m. be vested in
the publisher.

Letters
A section -0f "Letters to the EditDr" (each

limited to about 500 words) 'Will prcwide a for­
um for discussion of recent pioblems.

