
South African

Computer

Journal

Number 13

April 1995

Suid-Afrikaanse

Rekenaar­

tydskrif

Nommer 13

April 1995

The South African
Computer Journal

Die Suid-Afrikaanse
Rekenaartydskrif

An official publicalion of the Computer Society

of South Africa and the South African Institute of

Computer Scientists

'n Amptelike publikasie van die Rekenaarverenging

van Suid-Afrika en die Suid-Afrikaanse lnstituut

vir Rekenaarwetenskaplikes

Editor
Professor Derrick G Kourie
Department of Computer Science
University of Pretoria
Hatfield 0083
Email: dkourie@dos-lan.cs.up.ac.za

Subeditor: Information Systems
Prof Lucas Introna
Department of Informatics
University of Pretoria
Hatfield 0083
Email: lintrona@econ.up.ac.za

Production Editor
Dr Ri�l Smit
Mosaic Software (Pty) Ltd
P.O.Box 23906
Claremont 7735
Email: gds@mosaic.co.za

World-Wide Web: htLp://www.mosaic.co.za/sacj/

Professor Gerhard Barth
Director: German AI Research Institute

Professor Judy Bishop
University of Pretoria

Professor Donald D Cowan
University of Waterloo

Professor Jlirg Gutknecht
ETH, Zurich

Editorial Board

Professor Pieter Kritzinger
University of Cape Town

Professor Fred H Lochovsky
University of Science and Technology, Kowloon

Professor Stephen R Schach
Vanderbilt University

Professor Basie von Solms
Rand Afrikaanse Universiteit

Subscriptions

Annual Single copy
Southern Africa: R50,00 R25,00
Elsewhere: $30,00 $15,00

An additional $15 per year is charged for airmail outside Southern Africa

to be sent to:
Computer Society of South Africa

Box 1714 Halfway House 1685

Phone: +Tl (11) 315-1319 Fax: +Tl (11) 315-2Z76

Introduction

WOFACS '94: The Second Workshop on Formal Aspects of Computer Science

ChrisBrink
Laboratory for Formal Aspects and Complexity in Compu,er Science, Department of Mathematics,

University of Cape Town,
cbrink@maths.uct.ac.:ra

Following the success of WOFACS '92 (for the Proceed­
ings of which see SACJ 9 1993) another such event was
held at the University of Cape Town, from 27 June to 8
July 1994.

These Workshops on Formal Aspects of Computer Sci­
ence serve several purposes. First, they help to strengthen
a culture of studying formal aspects and developing formal
methods in Computer Science. Second, in doing so they
provide an impetus towards collaboration and interdisci­
plinarity- in this case bringing together Logic, Mathemat­
ics and Computer Science. Third, they provide a vehicle
for the inter-institutional training of postgraduate students.
And fourth, they contribute to international collaboration
by bringing a number of eminent scientists to South Africa.

WOFACS '94 was co-hosted by the Departments of
Mathematics and Computer Science at the University of
Cape Town, and was organised by the Laboratory for For­
mal Aspects and Complexity in Computer Science. It of­
fered 2-wcek lecture courses as follows:

• Dr Falko Bause (Dortmund University, Germany),
Petri Nets

• Prof Ed Brinksma (Technological University of
1\vente, Netherlands), Formal Design of Distributed
.Systems

• Prof Robert Goldblatt (Victoria University of Welling­
ton), Modal Logics of Programs

• Prof Austin Melton (Michigan Technological Univer­
sity), Denotational Semantics

• Dr Carroll Morgan (Oxford University), The Refine­
ment Calculus

About 80 participants attended WOFACS '94; of these

roughly half were academic staff and half were graduate
students from a number of Southern African Universities.
Panicipation from neighbouring countries was very encour­
aging. The lecture courses were again made available to all.
attending students as oredit-bearing courses at their home
Universities (by prior arrangement with the Departments
concerned). About 30 students were eventually evaluated
and had their WOFACS results incorporated into their re­
spective Honours programmes. Apart from travel and ac­
commodation costs and a small administrative· charge .for
registration WOFACS '94 was a free service to the com­
munity- no lecture fees of any kind were involved.

This volume of SACJ contains the Proceedings of
WOFACS '94: papers relating to their lecture courses by
Brinksma, Goldbtan, Melton and Morgan (and co-authors).
Unfortunately the Bause contribution to WOFACS '94 was
committed to a publisher before"the event, ind hence could
not be included here.

For the success ofWOFACS '94 I would like to express
my grateful thanks to:

• ourinvitedspeakers,fortheirhardworkand thequality
of their presentations; e . • . . ' .

• the Foundation for Research Developnient, the partic­
ipants of the Programme for Research Manpower in
Computer Science, theUCT Research Committee and
the Pepanment of National Education, for direct and
indirect sponsorship;

• my co-host, Professor Pieter Kritzinger;
• the indefatigable FACCS-Lab staff, particularly Diana

Dixon.and
• all participants.

SACJ is produced with kind support from
Mosaic Software (Pty) Ltd;

SACJ/SART, No 13, 1995 1

Modal Logics for Programs

Robert Goldblatt
Department of Mathematics, Victoria Univer,ity of Wellingt9n, P.O. Boz 600, Wellington, New Zealand

· Roi. Gold6latt0nw. ac. n.r

Abstract

These lectures provide an introduction to modal logic an,l it, use in formaliaing reasoning a6out t,e 6e6aviour
of computational processes. They 6egin with • general introduction to the syntaz, semantics, and proof-t/aeory of
modal languages, and their historical origins. There then follow •• ezposition of .some particular formalisms that
are particularly relevant to computer science: .dynamic logic, tAe temporal logic of concurrencJ, the Hennessy­
Milner logic of processes, and the powerful Mu-Calculu that encompu.ses all of these sJstema. The third part
ezplains technical methods (canonical models, filtrations) that hawe 6een developed to analJse particular logics,
and finally these methods are applied to give • proof of tAe completeness theorem for linear temporal logic.
Keywords: Modal Logic, Dynamic Logic, Linear Temporal Logic, Branching time logics, Henness,-Milner mod11l
Logic, Modal Mu Calculu
Computing Review Categories: F.3, F.,I

1 Modal Languages and Logics

Modal logic is an ancient subject, devised by philoeophen and modelled by mathematicians, with some of its most
significant development and application occurring in the lut two decades at the hands of computer scientists.

These lectures aim to provide
• an introduction to modal logic and its origins;
• a brief tour of some of the ways in which it has been used to formalise reasoning about the behaviour of

computational processes;
• an indication of some of the technical methods that are employed in analysing different logics;
• some pointers to the literature for those who wish to pursue these topics in greater depth.

Modalities:

linguistic constructions that qualify assertions about the truth of statements, and express various modes of truth:

A Formal Language

it is necessarily true that A.
it is possible/could be/might be that A is true.
probably A.
it has always been true that A.
it will eventually be true that A.
it ought to be that A.
it is permissible that A.
it is known that A.
it is believed that A.

it is provable that A.
after the program terminates, A will be true.
throughout the computation, A.
at the next state, A. '.
along all future paths, A.

"Syntaz": the way in which words are put together to form phrase, and sentences.
Formulae (sentences) A are constructed from a given set• of atomic formulae, and the consiant "False" formula
.L:

14 SACJ /SART, No 13; 1095

Atomic formulae: pE�
Formulae: Ae Fma(�)

A ::= p 1.1. I Ai -4 A2 I DA

Other connectives
These a.re introduced by the usual abbreviations.

Negation (not): -,A is A-4.L
"True": T lS -,.J..
Disjunction (or): Ai VA2 is (-,Ai) -4 A2
Conjunction (and): AiAA2 is -,(Ai -4 -,A2)
Equivalence (iff): Ai++ A2 is (A1 -4 A2) A (A2 -4 A1)
"Diamond": <> lS .,o.,A

Frames and Models
"Semantics": the study of meaning in language.

A frame is a pair :F = (S, R), where S is a non-empty set, and Ra binary relation on S: in symbols,
Rf S x S. Writ!:l sRt to mean that the pair (s, t) belongs to R.

A �-model on a frame is a triple M = (S, R, V), with V : � -4 28 • Here V is a valuation assigning to each
atomic formula p E '1> a subset V(p) of S. Informally V(p) is to be thought of as the set of points at which p is
"true" . Generally we drop the prefix '1>- in discussing models, provided the context is clear.

The relation "A is true (holds) at point s in model M ", denoted

MI=, A,

is defined inductively on the formation of A E Fma(IJ>) as follows.

MI=, P iff s E V(p)

M�,.L (i.e. not M I=, .J..)
M I=, (A1 -4 A2) iff M I=, Ai implies M I=, A2
MI=, DA ift' for all t ES, sRt implies M I=, A

hence
MI=, -,A iff not MI=, A
M I=, (A1 A A2) iff M I=, Ai and M I=, A2
M I=, (Ai V A2) iff M I=, Ai or M I=, A2
MI=, <)A if£ for some t E S, sRt and M Ft A.

Motivations

Leibniz: a necessary truth is one that holds in all ''possible worlds".

• Necessity. S may be thought of as a set of such worlds, with sRt when t is a conceivable alternative to s,
i.e. a .world in which all the necessary truths of s a.re realised. DA then means "A is necessarily true", while
<> A means "A is possible", i.e. true in some conceivable world.
Notions of logical and physical necessity may be distinguished.

• Temporal Logic. Here the members of S are taken to be moments of time. If sRt means "t is after (later
than) s", then DA means "hence-forth A", i.e. "at all future times A", while <)A means "eventually (a.t
some future time) A". Dually, if sRt means that t is before s, then D means "hitherto", and so on.

Natural time frames (S, R) for temporal logic a.re given by ta.king S as one .of the number �ets w (natural
numbers), Z (integers), Q (rationals), or JR (reals), and Ras one of the relations <, $, >, �.

• Program states. Rega.rd S as the set of possible states of a. computation process, with sRt meaning that there
is an execution of the program that starts in states and terminates in state t. A non-deterministic program
may admit more than one possible "outcome" t when started in s. Then DA means "every terminating
execution of the program brings about A", while <> A means that the program enables A, i.e. "there is some
execution that terminates with A true".

SACJ/SART, No 13, 1995 15

Truth and Validity
Formula A is troe in model M , denoted M I= A, if it is true at all points in M , i.e. if

M I=, A for all a E S.
A is valid in frame :F = (S, R) , denoted :F I= A, if

M . I= A for all models M ::; (S, R, V) based on :F.
If C is a class of models (respectively, frames), then A is troe (respectively, valid) in C, C I= A, if A is true
(respectively, valid) in all members of C.

A is falsifiable in model M if M � A, i .e . M �. A for some a , and is satisfiable in M if M � "'I.A, i.e.
M I=, A for some a.

Examples
(1) The schema DA -+ A is valid in :F ifl' R is reflu:ive, i.e. sRs for all • E S.
(2) The schema DA -+ ODA is valid in :F ifl' R is transitit1e, i.e. if sRt and tRu, then sRu.
(3) :,: I= A -+ O <) A ifl' R is symmetric, i.e. •Rt implies tRB.
(4) :,: I= DA -+ <)A ifl' R is total, i.e. Vs3t (sRt) ; while :F I= <)A -+ DA ifl' R is functional, i .e . •Rt and sRu

implies t = u.
Hence :,: I= <)A ++ DA ifl' R is a total function on S.

(5) ODA -+ DA is valid on (Q, <) but not on (Z, <) .
(6) (Q, <) I= A ift' (JR. , <) I= A, so there i s no modal formula in the present language whose validity distinguishes

(Q, <) and (JR. , <) .

Denotations
A model M = (S, R, V) associates with each formula A the "truth set"

V(A) = {a E S : M I=, A} ,
which will be called the denotation of A in M . In this way the valuation V : � -+ 28 is extended to a function
V : Fma(�) -+ 28 which satisfies such properties as

V(-wA) = S - V(A)

V(A1 I\ A2) = V(A1) n V(A2)
V(A1 V A2) = V(A1) U V(A2)

V(OA) = {a : for all t E S, sRt implies t E V(A)}

V(<)A) = {s : for some t E S, sRt and t E V(A) } .

These equation could b e used inductively to directly define the extension of a given valuation V : � -+ 28 , and
this offers an alternative approach to semantics that will be used in Section 5 .

Observe that in terms of denotations, A is valid in frame (S, R) ift' V(A) = S for all valuations V : � -+ 28 •

Multimodal Syntax
The theory presented so far adapts readily to languages with more than one modal connective. Given a set � of
atomic formulae p, and a new collection of symbols { [i] : i E /} , a set Fma1 (�) of formulae A is generated by
the definition

A : := p I .L I A1 -+ A2 I [i]A,
so that there are now formulae [i]A for each A E Fma1(�) and each i E / . The connective [i] is to be treated
in the way O was treated above. The dual connective < i > is defined as -w[i]-w, and corresponds to <>.

Multimodal Semantics
A frame for this new language is a structure

:F = (S, {R; d E /}) ,
comprising a set S with a collection of binary relations R; � S x S, one for each i E /, A model M = (:F, V)
on :F is given by a function V : � -+ 28 , just as before. The definition of the relation M I=, A has the one new
clause

Hence
M I=, [i]A ifl' for all t E S, sR;t implies M l=t A.

M I=, < i > A ifl' for some t E S, sRit and M Ft A.
The definitions of truth in a model (M I= A) , and validity in a frame (:F I= A) , are unchanged.

16 SACJ/SART, No 13, 1995

Temporal Logic
This is based on a propositional language with two modal connectives, (F] and (P], meaning, respectively,
henceforth (at all future times), and hitherto (at all past times). Their dual connectives < F > and < P > mean
eventually (at some future time) and previously (at some past time) .

A frame for this language has the form (S, RF, Rp) , with the modelling

M I=• [F]A iff sRFt implies M l=e A,

M I=, [P]A iff sRpt implies M I=, A.

sRFt is read as "t is in the future of s" and sRpt as "t is in the past of s" . But the intended interpretation
is that [F] and [P] expre!jS properties of the same time-ordering, so that t should be in the past of s precisely
when s is in the future of t . This requires that

BRpt iff tRpB

(or, equivalently, ' that the relations Rp and RF are each the inverse of the other) , so that

M I=, [P]A iff tRps implies M l=e A.

In this context, the formula DA is taken as an abbreviation for

[P]A /\ A I\ [F]A,

which may be read "always A", i .e. at all times past present and future.

Exercises

(1) Rp and RF a.re mutually inverse iff the schemata.

a.re valid in F.
(2) The schema

A -+ [P] < F > A

A -+ [F] < P > A

O([P]A -+< F > [P]A) -+ ([P]A -+ [F]A)

is valid in (R , <, >) 1 but not in (Q, <, >) .

Truth-Valuations and Tautologies
Given a multimodal <!>-model M, and a fixed B ES, define

() _ {
true if s e V(p) ;

V. p -
false otherwise.

The function V. : <I> -+ {true, false} is a truth�valuation of the atomic formulae, a notion familiar from proposi­
tional logic. Using the standard truth-tables for propositional connectives, V. is extended to assign a truth-value
to any formula not containing any modal symbol [i] .

A formula A is quasi-atomic if either it is atomic (A E <!>), or else it begins with a [i) , i.e. A = [i]B for some
B. If <l>q is the set of all quasi-atomic formulae, then any formula A is constructible from members of <l>q U { .L}
using the connective -+ . Hence by using the truth-table for -+, any truth-valuation

V : <l>q -+ {true , false}

of the quasi-atomic formulae extends uniquely to a truth-valuation

V : Fma(<I>) -+ {true, / alse}

of all formulae .
A formula A is a tautology if V(A) = true for every truth-valuation V of its quasi-atomic subformula.e. Any

tautology is a substitution instance of a tautology of propositional logic (i.e. a [i]-free tautology). Tautologies
are always valid.

SACJ /SART, No. 13, 1995 17

Tautological Consequence

A formula A is a tautological consequence of formulae A1 , • . • , An if A . is 888igned true by every valuation that
aasigna true to all of A1 , . • • , An . In particular, a tautological consequence of the empty set of formulae is the
same thing as a tautology.

Logics

Problem: Characterise {A : M J= A} in a ayntactic, or proof-theoretic way.

Given a language based on a set • of atomic formulae, a logic is defined to be any set A s; Fmai(•) such that

• A includes all tautologies, and
• A is closed under the rule of Detadunent, i.e.,

if A, A -+ B E A then B E A.

Such a set is closed under tautological consequence, i .e. if A1 , • . . , An E A, then any tautological consequence of
A1 , . . . , An belongs to A.

The members of a logic are called its theorems, and the notation t-A A means that A is � A-theorem, i .e. ,

Examples of Logics
• PL = {A E Fmar (•) : A is a tautology} .

• For any class C ofmodels, or of frames (including the cases C = {M } and C = {F}) ,

Ac = { A : C I= A}

is a logic.

• Fmar(•) itself is a logic, the only one to contain l.. For any logic A,

• If {A1: : z E X} is a collection of logics, then their intersection

is a logic . Thus for any I' s; Fmar (•) there is a smallest logic Ar containing r, namely

Ar = n{A : A is a logic and I' S'; A} .

Instead of defining a logic A to include all tautologies, it would suffice to include a set of schemata from which
all tautologies can be derived by Detachment, e.g.

A -+ (B -+ A)

A -+ (B -+ D) -+ ((A -+ B) -+ (A -+ D))

-.-.A -+ A.

PL i s the smallest set of formulae that includes these three schemata .and i s closed under Detachment.

Soundness and Completeness

Let C be a class of frames, or of models. Then logic A is sound with respect to C if for all formulae A,

t-,t A implies C F A.

A is complete with respect to C, if, for any A,

C I= A implies t-A A.

A is determined by C if it is both sound and complete with respect to C.

18 SACJ/SART, No 13, 1995

Normal Logics
A logic A is normal if it contains the schema

Ki : [i](A -+ B) -+ ([i JA -+ [i]B) ,

and satisfies the Necessitation rule
f-4 A implies r4 (i]A,

for every i e /. The smallest normal logic will be denoted Kr.

in a n9rmal logic,

Examples of Normal Logics

if I-A A1 A . . . A An � B,

then rA (i)A1 A . • . A (i]An -+ [i)B.

• For any class C of models, or of frames,
Ac = {A : C I= A}

· is a normal logic. In fact (almost) all the logics we will be dealing with are normal .
. • If { A.11 : z e X} is a collection of normal logics, then

n{A. : z E X}

is normal. In particular,
Kr = n{A : A is a normal logic}

is the smallest normal logic . The use of the letter K here is in honour of Kripke.

The Kr-theorems are .valid in all frames, hence true in all models (Soundness). The first basic completeness
theorem in �odal logic is that the converse is true, so altogether Kr is determined by the clus of all frames, as
weil as by the class of all models.

A�oms for Ne,v Logics .
The· notation

K1E1 . . . En

denotes the smallest normal logic containing the schemata, or axioms, E1 1 • • • , En . Set-theoretically this logic-is
defined as

n{A t A is normal and E1 u . . . U En � A}.

Proof-theoretically, the logic is characterised by the following result.

Formula A is a theorem of K1E1 . . . En iff there is a finite " proof sequence"

such that for all k S m, A• is either
(i) a tautology ; or

(ii) an instance of a schema Ki ; or
(iii) an instance of some E; ; or

Ao , . . . , Am = A

(iv) deducible by Detachment from two previous members of the sequence, i.e. Ar = (A, -+ A1r) for some ·
r, s < k ; or

(v) deducible by Necessitation from some previous member of the sequence, i.e.
A• = [i]Ar for some r < k and some i E /.

To prove this, let T be the set of fommlae A for which there exists such a proof sequence. Then
• Any member of T belongs to K1E1 . . . En (by induction along proof sequences),
• T is a normal logic containing E1 U . . . U En , hence containing Kr E1 • • • IJn 1

so T = Ki:£1 . ; · !Jn ·

Delet�ng clause (iii) above leaves us with a proof-theoretic characterisation of the logic Kr determined by the
class of all models.

SACJ/SART, No .13, 1996 19

Finite Model Property
This concerns the issue of whether a logic A is determined by its finite models, in the sense that

if VA A, then there is a finite model M with M I= A and M � A.
In fact a strong version of this is needed, in which the size of the counter-model can be calculated.. A logic A has
the finite model property if there is a computable function / such that

if VA A, then there is a finite A-model that falsifies A and has at most /(n) elements, where n = IAI is the
"length" of A.

Now for a given n there are only finitely many models M of size at most /(n) . It is effectively decid�ble whether
a given formula A is true in a given finite model M . Moreover, if A is finitely aziomatiaable, meaning that
A = KE1 • • • E,. for some finite number of schemata E; , then the property "M I= A" is decidable: it suffices to
determine whether each E; is true in M. This yields an algorithm for determining, for each formula A, whether
or not t-A A : examine all models of size at most /(IAI) and check whether A is falsifiable (or ..,,A is satisfiable)
in any of those that are A-models. Hence

• a finitely aziomatiaable logic with the finite model property is decidable.
Actually the existence of the computable funciion / is not essential here: decidability can be shown assuming
only that A is determined by its finite models and is effectively enumerable. But most proofs of the finite model
property do involve showing that such an / exists (often it is an exponential function) and this is releveant to
determining the complexity of the decision problem for A-theoremhood.

Some Points in History
• Aristotle investigated logical relationships between the necessary, the impossible, the possible, ' and the .per­

mitted..
• The Stoic logician Diodorus described the possible in temporal terms as being that which either is or will

be, the ,necessary as that which being true, will not be false, etc.
• C. I. Lewis (A Surwy of S!lfflbolic Logic, 1918) , initiated the modem symbolic analysis of modality, defining

" A strictly implies .B" as I(A A -,B) , where I is an impossibility operator, and developing:the logical systems
S l - S5 based directly on axioms for strict implication.

• Kurt Godel 1932 put forward a modal logic based on "the ordinary propositional calculus" , with the schemata
K, DA -+ A , and DA -+ DOA and the rule of Necessitation. He propose

d
that DA be read as "A

is provable" , stated that his logic was equivalent to Lewis' S4, and described a translation into it from
intuitionistic logic.

• J . C. C. McKinsey 1941 used algebraic methods (Boolean algebras with operators) to prove the decidability
of Lewis' S2 and S4.

• Saul Kripke 1959, 1963 developed the relational semantics for modal logics described here.
• Vaughan Pratt 1976 introduced dynamic logic.
• Amir Pnueli 1977 proposed the use of temporal logic to formalise the behaviour of continually operating

concurrent programs.

References
Robert Goldblatt, Logics of Time and Computation, CSLI Lecture Notes No. 7, Centre for the Study of Language

and Information, Stanford University , Second Edition, 1992, (distributed by University of Chicago Press) .
Robert Goldblatt, Mathematics of Modality, CSLI Lecture Notes No. 43 , Centre for the Study of Language and

Information, Stanford University, 1993, (distributed. by University of Chicago Press) .
G . E . Hughes and M. J . Cresswell , An Introduction to Modal Logic, Methuen, 1968.
E. J. Lemmon (with Dana Scott) , An Introduction to Modal Logic, American Philosophical Quarterly Monograph

Series, no. 1 1 (ed. by Krister Segerberg) , Basil Blackwell, Oxford, 1977.

2 Propositional Dynamic Logic

PDL is an exogenous logic of programs: its programs occur explicitly as part of its syntax, and appear within
formulae. They are interpreted as input/output relations on states. Each program a is associated w:ith a modal
connective [a] , the formula [a]A being read "after a terminates, A" , i .e . "after every terminating execution of
a, A is true" (allowing that a non-deterministic a may be executed in more than one way) . The dual formula
< o >A then means "there is an execution of a that terminates with A true" .

20 SACJ/SART, No 13, 1995

Syntax

Intended meanings are:

[a]A
01 ; 02
a1 U a2
a•
A?

Atomic formulae: p e d>
Atomic programs: ,r e II
Formulae: A E Fma(d>, II)
Programs: a e Prog(d>, II)

A : := p I .L I A1 -+ A2 I [a]A

a : := 11' I a1 ; a2 I a1 U a2 I a• I A?

after o, A,
do 01 and then 02 (composition) ,
do either a 1 or a2 non-deterministically (alternation) ,
repeat a some finite number (� 0) of times (iteration) ,
test A : continue if A is true, otherwise "Cail" .

Further constructs are introduced by definitional abbreviation:

Standard Models

< a >A is
if A then o else /J is
while A do a is
repeat a until A is
skip is
abort is
a0 is
a"+l is

-.[a]-.A,
(A?; a) U (-.A?; /J)
(A?; a)* ; -.A?
a; (-.A?; a)•
T?
.L?
skip
(a; a")

A model for the language just described is a structure of the form

M = (S, { Ra : a E Prog(d>, II) } , V) ,

with Ra a binary relation on S for each program a, and

M F• [a)A iff' sRat implies M Fe A.

The binary relations Ra should reflect the intended meanings of programs a . Thus a model M will be defined
to be standard if it satisfies the following conditions:

Ra ;I' ::: Ra o R,, = { (s, t) : 3u(sRau &: uR,,t) } ;
Rauf' = Ra U Rp ;

Ra• = R� = ancestral , or reflexive-transitive closure, of Ra i
RA? = { (s , s) : M F• A} .

Hence sRa• t iff for some n � 0 there is a sequence

with s = Bo and Bn = t .
There are no constraints on the R,, 's. This means tlu!,t given a structure

(S, {R1r : 11' E ll} , V)

which assigns a binary relation to each atomic program, a uniquely determined standard model is obtained by
using the above standard model conditions to inductively define Ra for non-atomic programs a,

PDL is defined formally to be the logic determined by the standard models, i .e .

P DL = {A E Fma(d>, /1) : A is true in all standard models} .

SACJ /SART, No 13, 1995 21

Execution Sequences
In a standard model, any particular execution of a program consists of a finite sequence of atomic programs
and/or tests. To substantiate this, associate with each o a set r(o) of programs of this form, by defining

r(,r) = {,r}
r(A?) = {A?}

r(o1 ; 02) = {o; ,8 : o E r(o1) and ,8 E r(o2) }
r(o1 U 02) = r(o1) U r(o2)

r(a*) = Un �or(on) .

Then in a standard model, for any program a,

Partial Correctness Assertions

BRat ifl' aRpt for some ,8 E r(o) .

These are used t o specify program behaviour, and their derivation is part of the methodology of oerification of
programs. They typically take the form

if A is true before initiation of a, then B will be true when a terminates,

which is rendered symbolically as
A{a}B,

in a notation introduced by Hoare in 1969. Such a statement can be expressed in P DL-language as

A -+ [a)B.

For instance, the Iteration Rule of Hoare logic takes the form

A l\ B -+ [a)B
B -+ [while A do a J(B J\ -,A)

which is sound with respect to truth in standard models .

Small Model P roperty
By the filtration (quotient model) method, a formula A that is satisfiable in a standard model can be shown to
be satisfiable in one whose size is at most 2IAI , exponential in IAI . Hence PDL has the finite model property,
and is decidable. It has a decision procedure that runs in deterministic exponential time.

Axiomatisation
P DL is the smallest normal logic in Fma(IP, II) that contains the schemata

Test :
Comp:
Alt :
Mi:i::
Ind:

[A?]B ++ (A -+ B) ,
[a ; .B]A ++ [a] [.B]A ,

[o U .8]A ++ [a)A I\ [,B]A,
[a*]A -+ A I\ [a] [a*]A ,
[a*] (A -+ [a]A) -+ (A -+ [a*)A).

The last of these is the Induction axiom, expressing that if truth of A is preserved by program a , and .A is true
now, then it will remain true after any number of iterations of o. This axiom can be replaced by the inference
rule

Determinism

if .,_ A -+ [o]A then .,_ A -+ [a•]A.

A program is deterministic if its outcome is uniquely determined by its initial. state. The alternation (o U ,8) and
iteration (a*) constructs are inherently non-deterministic, but non-determinism also arises in PD L by allowing
atomic programs to be modelled by relations, rather than functions, between states.

22 SACJ /SART, No 13, 1995

The logic DP DL is determined by those standard P DL-models in which th� relations R,.. are functional for
all atomic programs ,r. This logic is axiomatised by adding to the P DL axioms the schema

l' ' " · '.

DP DL is decidable i n deterministic exponential time, and has the finite model property with a bound o n the
size of a model for satisfiable A of IAl2 · 4IAI .

Strict Deterministic Propositional Dynamic Logic (SD P DL) is the sublogic of DP DL obtained by syntacti­
cally restricting the program operators U and • to appear only in programs of the form

if A then er else /3 and while A do er .

SDP DL i s a strictly weaker logic than DP DL. I t is finitely axiomatisable and decidable, with a decision
procedure that runs in polynomial space.

Termination
The formula < er > T expresses that er has a halting execution, but does not imply that er must halt, since it
may also have non-halting executions if it is non-deterministic. Failure to terminate may arise because some
execution of (part of) er might "run forever" or "loop" , or because er can be repeatedly executed. The latter case
is expressed by a formula

repeat(er) ,

,vith the semantics

M I=• repeat(er) iff there exists an infinite sequence a = ao , s1 , s3 , . . .
such that BnRaBn+i for all n � O.

Extending the syntax of PDL to allow formation of formulae repeat(er) for all programs er, the system RPDL
is defined to be that determined by the standard P DL-models with this extended semantics.

The other notion of non-termination is given by formulae

loop(er) ,

with the inductively defined modelling

M �, loop(,r)
M �. loop(A?)
M I=• loop(er ; ,8)
M I=, loop(er U ,8)
M I=, loop(er•)

iff M I=. loop(er) or M I=• < er >loop(,8)
iff M F• loop(er) or M F• loop(,8)
iff M F, < er• >loop(er) or there exist s = Bo , s1 1 B3 , . . .

such that Bn Rasn+1 for all n � 0.

This defines a logic LPDL which is stronger than PDL but weaker than RPDL. In fact loop(er) can be
syntactically defined in RP DL by inductively putting

loop(,r) = loop(A?) = J.
loop(er; ,8) = loop(er) V < er >loop(,8)

loop(cr U /3) = loop(cr) ,V loop(P)
loop(er*) = < er• >loop(o) V repeat(er) .

1he formula halt(er) , defined as the negation
-.loop(er) ,

then. expresses "er always halts" , i .e. "every execution of er terminates" .
LPDL and RPDL. both have the finite model property and are decidable. The proof uses the theory of

automata on infinite tre.es.

SACJ/.SART, No 13, 1995 23

Total Correctness and Weakest Preconditions
The statement

if A is true before initiation of a, then e.recution of a must terminate, with B true afterwards,

asserts the total correctness of a with respect to pre- and post-conditions A and B. If a is deterministic, this
can be sy:rnbolised as

A -+ < a >B,

but in general •the appropriate formulation is

A -+ < a > T I\ halt(o) I\ [a]B.

The consequent
< a > T A halt(o) A [o]B

would appear to be an accurate representation of Dijkstra's weakest precondition wp(a, B) for program a corre­
sponding to post-condition B. This was defined by Dijkstra as

" the condition that characterises the set of all initial states. such that activation will certainly result in a
properly terminating happeningleaving the system in a final state satisfying a given post-condition,,,

Concurrent PDL
This extends the syntax of programs by the construct a n {J, interpreted as "a and /J executed in parallel,, , the
idea being that a and /J are processes acting independently at the same time.

The result of an execution started in state s will not now be a single terminal state t, but rather a set T of
states representing the terminal situations of all the parallel processes involved. Thus the relation Ra interpreting
command a is no longer a set of pairs (s, t) , but rather a set of pairs (s , T) , with s a member of the state-set S,
and T � S.

The meaning of < a >A as "there is an execution of a that terminates with A true,, , is modelled by putting

M l=a < a >,A ift' there exists T � S with sRcrT and T � V (A) ,

where V (A) is the denotation (page 16) given by

V(A) = {t E S : M I=, A}.

The modelling of [a]A as "after every terminating execution of a , A i s true" , becomes

M I=. [a]A ift' sRaT implies T � V(A) ,

making [a] and < a > no longer interdefinable via -..
The standard model condition for the new operation a n /J is

Rcrnp = { (s, T U W) : sRcrT and sRp W} ,

and the conditions for all the other program operations require reformulation.
Details of this logic, with proofs of decidability and the finite model property, can be found in Chapter 10 of

[Goldblatt , 1992] .

Quantificational Dynamic Logic
Although our concern is with propositional logic, let us briefly consider an example that demonstrates the strength
of the program modalities in the presence of quantifiers . The formula

Vy < :i: := O ; while z ::/:- 'I! do z := z + l >T,

in the language of the arithmetic of natural numbers, asserts that for all y the displayed program has a terminating
execution , i .e . that any y can be obtained by starting at O and repeatedly applying the successor operation
z t-+ :r: + 1 . In other words: any set of numbers that contains O and is closed under successors must contain
everything. But this is a version of the Peano Induction Postulate, a postulate which cannot be expressed in
the first-order language of the structure (w , :i: i-+ z + 1 , 0). There is a single formula of dynamic logic which
characterises this strueture up to isomorphism, and from this it follows, by standard arguments , that the set of
valid dynamic formulae is not effectively enumerable, unlike the case of non-modal quantification logic.

24 SACJ/SART, No 13, 1995

Further Study
T� -are · many other topics in PDL, including retrictions of test programs, converse programs, programs as
autbm&ta, recursively enumerable sets of execution sequences, undecidable logics, and logics without the finite
model property. Then there · is the extensive study of quantificational dynamic logic. The following surveys give
information about these, and provide references to an extensive literature.

David Harel , Dynamic Logic, in Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic,
D . Gabbay and F. Guenthner (eds .) , D. Reidel, 1984, pp. 497-604.

Dexter Kozen: & Jerzy Tiuryn, Logics of Programs, in Handbook of Theoretical Computer Science, vol . B, J. van
Leeuwen (ed .) , Elsevier/The MIT Press, 1990, pp. 789-840.

3 Temporal Logic of Concurrency

The language to be considered now is endogenous: there are no programs within the syntax, and formulae describe
th�CQmputational situation, over time, of a single implicit program. This is regarded aa particularly appropriate
to the specification and analysis of reactive programs, like operating systems and systems for airline reservation
or process control , that maintain an interaction with their environment and are not expected to terminate.

Shared Memory Parallelism
Consider the following description of a "concurrent" program. There are n different processes acting in parallel,
using a shared memory environment, so that each can alter the values of variables used by the others. For
illustrative purposes, the processes may be thought of as disjoint flowcharts, with labelled nodes. A typical node
of the i-th process is denoted mi . Each process has an entry node ml,. If the program variables are 111 , • • • , v1, ,
then a state may be defined as a vector

s = (m1 , . . . , m" , a1 1 • • • , a1,) ,

specifying a label for each process (denoting the point that the process is cuttently at) , and a current value ai
for each variable "• · Predicates ati of labels will be used, with the semantics

I=, at, (m) iff m = mi .

Each successive state is to be obtained from its predecessor by exactly one process being chosen to execute one
transition in its flow chart . Thus from an initial state

so = (m� 1 • • • , m� 1 a 1 1 • • • , a,,) ,

many different execution sequences so , s1 , • • . . . • may be generated, depending on which process gets chosen to
act at each step. Some interesting properties of such sequences can be formulated by reading the connective D
as "at all states from now on" . Thus we use the temporal modality [F] , and its dual < F >, interpreting them
as the state quantifiers "at all future states" and "at some future state" , respectively.

• Mutual Exclusion

[F J-.(ati (m) A at; (m'))

asserts that the program can never simultaneously access m and m' .

• Accessibility
[F] (at; (m) -+< F > at; (m'))

expresses that if the program ever reaches m it will eventually proceed from there to m' .

• Deadlock Freedom
Deadlock occurs when no processor can act. The requirement that deadlock does not occur at (m1 , • • • , m") can
be expressed by

(F] (at 1 (m1) A · · · A atn (m") -+ E1 V · · · V En) ,

where E; is the exit condition for node · m' consisting of the disjunction of the propositions labelling edges out of
. mi (the truth of such a proposition being the requirement for the process to be able to proceed along that edge) .

SACJ /SART, No 13, · 1995 25

• Fairness
The foi;mula [F l < F > A expresses that at a.I.I future states there will be a later st,-te at which A is true, i .e. A
will be true infinitely often. Now if a _ p,.rticular process is infinitely often able to act, then in fair scheduling of
processes it •bould not have to .wait forever. If A, expresses that the i-th process is enabled, and B, that it is
selected for execution, then one way to express this fairness requirement is by the formula

[F J < F > A; -+ [F) < F > B, .
. • Correctness
A partial corr�ness assertion about a program . states that if the program works as was intended, then a
certain post-condition B must be true after termination, given that some pre-condition A was true at the start.
Illustrating with a program having a single entry label mo , and exit me , this can be formalised as

at(mo) I\ A -+ [F] (at(me) -+ B) .
Total correctness includes the assertion that the program will halt:

at(mo) I\ A -+< F > (ot(me) I\ B) .
• Responsiveness
An operating system may receive requests (r,) from various agents, to whom it will signal (qi) when it grants the
request. The formula

[F) (r, -+< F > qi)
expresses that a request is always eventually honoured.

• Absence ·of Unsolicited Response
This uses the connective A U B ("it will be A until B") to express the requirement that if a response is to occur,
it will not do so until a request has been received:

< F > q, -+ (-,q;) Ur; .
Syntax
Given a set � of atomic formulae p as usual, define a set of formulae A e Fma(�) by the specification

A : := p 1 .1 1 Ai -+ A2 I [X]A I A1 UA2
[X) means "next" (i .e . a.t the next state) .
U means "until'' .
[F]A is defined as the formula -,(T U-,A) , and means "henceforth" (i .e. from now on, including the present) .
< F > A ("eventually A") is defined as T UA, so [F]A = -, < F > -,A,

Semantics
A state sequence is a pair :F = (S, er) , where er is a surjective function w -+ S enumerating S as a sequence

ero , er1 , . . . , er; ,
(possibly with repetition , for example when S is finite) .

A model M = (S, er, V) on a state sequence is defined in the usual way, and the relation
M I=; A,

meaning "A is true at the j-th state er; in M" , is given by
M F; p iff er; E V(p)
M �; .L
M F; A --t B
M F; [X]A
M F; A UB

iff M Fi A implies M I=; B
iff M F;+l A
iff for some k 2: j, M l=1c B and

for every i such that j 5 i < k ,
M Fi A.

The definitions of the relations M I= A and :F I= A are as usual .

The semantics gives

M I=; [F]A iff for all k 2: j, M F1r A
M I=; < F > A iff for some k 2: j, M l=1c A .

Intuitively, this amounts to interpreting [F] and < F > by the relation 5 , and [X] by the relation R, where jRk
iff k = i + L R is functional , and the connection between the two relations is that 5 is the ancestral (reflexive
transitive closure) of R. Thus [X] is indeed a "Box-type" modality.

26 SACJ/SART, No 13, 1995

Propositional Linear Temporal Logic

P£'7iL is the logic determined by the class of all (models on) state sequences. It has a polynomial space decision
�thm, and is finitely · axiomatisable, being the smallest [X]-normal logic in the present language that contains
tJ1e Elebemata ·.

Fun: [X] ,A ++ ,[X]A
Ul: AUB -+< F > B
U2: AUB ++ B V (A I\ [X](A UB))

and is closed under the < F>-Rule

and the Induction Rule

i/ r A -+ ,B then r< F> A -+< F> B,

i/ I- A -+ [X]A . then I- A -+ [F]A.

A proof that this axiomatisation is complete for the P LT L semantics will be presented in Section 7.
If the rule of Necessitation for [F] was included here, then the Induction Rule could be replaced by the

scheQla.. ,
[F] (A � [X]A) -+ (A -+ [F)A) ,

which is the analogue of the P DL-axiom Ind. As will be seen, it is the Induction Rule that lies at the heart of
the completeness proof, and Necessitation for [F] is not needed.

The analogue
[F]A -+ A I\ [X] [F]A

of the P DL axiom M iz is derivable from Fun and U2.

Branching Time

Linear Temporal Logic is concerned with logical properties of a single execution sequence so, ,1 , . . . • . • generated
by processes acting in parallel. As mentioned at the outset, each state willhave several possible successor states,
and so there will be many different sequences that have a given starting sta� Bo , Thus any particular sequence
will be but one "branch" of the "tree" of all possible future states . If we consider this tree as a whole, there a
number of interesting new modal connectives that can be used to formalise reasoning about future behaviour:

'v'< F >A:

3< F >A:

V[F]A:

3[F]A:
'v'[X]A:

3[X] A:
V(A UB) :
3(A UB) :

along any future branch there is a state at which A is true,
i .e. A is inevitable.
along some branch there is a state at which A is true,
i .e. A is potentially true.

along all branches, A holds at all states,
i .e. A is true at all possible future states.
along some branch, A holds at all states.
along every branch, A holds at the next state,
i.e. A holds at all possible successor states.
A holds at some successor state.
along every branch, it will be A until B .
along some branch, it will be A until B.

A logical system embodying these notions, known as Computational Tree Logic, will now be set out .

Syntax of CT L
This is specified by

A ::= p 1 .1. 1 A1 -+ A2 I 'v'[X]A I V(A1 UA2) I 3(A1 UA2)

The other connectives mentioned above are given by the following abbreviations .

V< F >A 18 'v'(T UA)
3< F >A is 3(T UA)
'v'[F]A 18 ,3(T U-.A)
3[F]A 18 ,V(T U,A)
3[X]A is ,'v'[X]-.A

Semantics
To define CT:£.amodels, consider a frame :F = (S, R) in which R is total, i.e. V•3t(dU). Here •Rt will be
interpretect to mean that t is a possible immediate succeuor to s. An R-brancb starting at • in :F • an infinite
sequence so , . . . , Bn , • • • with • = •o and anRsn+t for all n. An R-patb is a finite version of a branch, i.e. a
sequence so , . . . , B1, with Bn Rsn+l for all n < k. By totality of R, any path extends to a branch.

Given the usual notion of a model M = (S, R, V) on such a frame, satisfaction of CTL-formulae is given by
M I=, V[X)A ift' for all t e S, sRt implies M I=, A.
M I=, V(AU B) ift' for all R-branches s = s0Rs1R • · ·

there exists k with M I=,. B and
M t=,, A whenever O :S i < k.

M I=, 3(A UB) ift' for some R-branch , = s0Rs1R · · ·
there exists k with M I=,. B and
M I=,, A whenever . O :S i < k.

Axioms
CT L is the logic determined by the models just described. It is the smallest logic that contai111 the schemata

Kx : V[X] (A -+ B) -+ (V[X]A -+ V[X)B)
Dx: 3[X)T
3U: 3(AUB) ++ (B V (A A 3[X)3(A UB)))
VU: V(AUB) ++ (B V (A A V[X)V(A UB)))

and is closed under Necessitation for V [X] i.e. ,

._ A implies ._ V[X)A,
and under the following two rules:

3-/nd : ._ B V (A A 3[X)C) -+ C implies ._ 3(A UB) -+ C
V-/nd : ._ B V (A A V[X]C) -+ C implies ._ V(A UB) -+ C.

CT L is decidable in deterministic exponential time.

CTL*
In CTL, the branch quantifiers V and 3 are always tied to a single linear-time state quantifier (modality) , as
in the forms V< F > , 3[F J etc. They cannot be applied to combination of modalities, as in a formula like
V[F J < F > A, which would express "along every branch, A is true infinitely often" , of relevance to fairness
conditions on branches.

The logic CT L • allows path quantifiers to apply all formulae, whoee syntax is

A : := p I .L I A1 -+ A2 I [X]A I (A1 UA2) I VA
(some versions distinguish between branch-formulae (or path-formulae) and state-formulae, but this version will
suffice for illustration) .

The semantics of formulae is now given by a satisfaction relation

M , o- I=; A,

similar to that for PLTL, but which names the R-branch (state-sequence) O' explicitly. The truth conditions are

M , o- I=; P

M, o- �;.L
M , tr I=; A -+ B
M , o- I=; [X]A
M , o- I=; A UB

M , o- I=; VA

iff o-; E V(p)

ift' M , o- I=; A implies M , o- I=; B
iff M , o- l=;+i A

iff for some k � j, M , o- l=1, B and
for every i such that j :S i < k,
M , o- Fi A.

iff for all R-brancbes ti , and all k ,
i f o-; = er,,, then M , "' l=1r A.

This defines a logic that is substantially stronger than CTL, with a decision problem that is complete for
deterministic double exponential time (proven by the theory of automata on infinite trees) . The existence of a
(finite) axiomatisation of CTL* is an open question.

28 SACJ/SART, No 13, 1995

Applications: Model Checking and S�thesis
The model checking problem is that of deciding whether a given finite structure is a model of a particular formula.
The complexity of the.problem has been determined for various temporal logics, and it has practical applications,
for instance to the automatic verification of finite-state concurrent systems whose specifications are expressed by
tetnp<>ral formulae.

Another application of logics like LTL and CTL is to the synthesis (construction) of the synchronisation
akil•"'-" of a .concurr�t program, this being an abstraction of the actual program containing only details relevant
to','1\l�nisation. The method is to test the satisfiability of a formula specifying the required synchronisation
pll(?perije& ,and, if satisfiable, to use the finite model property to construct a finite model of it . The skeleton can
then' be read from this model.

Further Study
The article by Emerson in the following list of references provides the most extensive survey and bibliography of
the logics discussed here and their applications.

J.\z\\7: de Bakker et. al. (eds.) , Linear Time, Branching Time and Partial Order in Logic, and Models for
Conc"rrencr,, Lecture Notes in Computer Science, vol. 354, Springer-Verlag, 1989.

E. Allen Emerson, Temporal and Modal Logic, in Handbook of Theoretical Computer Science, vol. B, J. van
Leeuwen (ed.) , Elsevier/The MIT Press, 1990, pp. 996-1072.

Antony Galton, , Temporal Logics and their Application,, Academic Press, 1987.
Brent T. Hailpem, Verifying Concummt Processe, Using Temporal Logic, Lecture Notes in Computer Science

vol. 129, Springer-Verlag, 1982.
Ben Monkowski, Ezecuting Temporal Logic P,wrams, Cambridge University Press, 1986.
Colin Stirling, Modal and Temporal Logics, in Handbook of Logic in Computer Science, vol. 2 , S. Ambramsky

et. al. (eds.) , Clarendon Press, Oxford, 1992, pp. 447-563.

4,i
.
i :Hennessy-Milner Logic of Processes

Milner's Calculus of Communicating Sr,,tems (CCS) is an algebraic theory that provides operations for con­
structing new processes from given ones, and uses a modal language to express 888ertions about transitions
between processes. Equivalence of processes can then be characterised in terms of this language: under certain

. conditions two processes prove to be equivalent just when they satisfy the same modal properties.
We will now develop enough of this conceptual framework to be able to explain this application of modal

logic to process algebra.

Proce1&es=States
An agent is a process that intemcts with its environment by performing actions which cause it to change its state.

Indeed in process algebra the words "agent" and "process" are synonymous, and processes are identified with
their state. The notation for transitions is

P@ > 0t >> Q,

w.bic:h means that process P can become Q by performing, or participating in, the action o. This could instead
be written

p Ro, Q,

indicating already where modal logic comes into the picture!

· Prefixing
This operation takes a process P and an action a and constructs a process o .P which can itself become P by
performing o. This yields the transition relation

o.P@ > o >> P

Choice . ·

P+:Q is ·a procet!S that ean act by doing either P or Q. Transitions involving this construct are obtain by the
derivation rules

S�CJ/SART; No 13, 1995

P@ > o >> P'
P + Q@ > 0t >> P'

Q@ > Ot >> Q'
P + Q@ > a >> Q'

29

Composition
P IQ is a proces& that, performs P · and Q �ncurrently. Its basic transition rules are

Concurrent Interaction

. Po' > a >> p, . Q@ > a >> Q'
PIQ@ > Ot > > P'IQ P IQ@ > Ot > > PIQ'

Processes P and Q may co11ununic:ate along a channel or at a port, provided one of them can perform an action a
(e.g. "send;;) that has iu{�ated co:.'.action i

i ("receive") that the other process can �rform. 'rhis interaction
is regard'ed as an internal' tiriobservable action, or silent step, performed by the composite process PIQ', and
denoted by T. It transition rule is ! '

P@ > a >> P' Q@ > a >> Q'
P IQ@ > T >> P1 IQ1

(Recursive) Definitions
Processes can be defined hr setting a process name equal to some process expression, which may itself alrea,dy
contain that name, as in

' . ' .

Cl := tick.tock:c1,
which defines a "clock" that ticks and then tocks forever. The rule for this is

A Vending Machine

· P@ >· a >> Q P := E
E@ > a >> Q

M := $1 . teabutton . collect.M + $2 . coffeebutton . collect.M

The Modal Language
In the foregoing situation we envisage a labelled transition system (1', {@ > a > > : a E .A}) , in which 1' is a set
of agents/processes/states, .A is a set of action labels, and @ > a >> is a binary transition relation on 1' for
each a e .A. The set Fma(.A) of associated formulae of Hennessy-Milner logic is generated by the syntax

A : := .i l�A I A1 A A2 I [a]A.

Note especially that there are no atomic formulae.

Satisfaction.
The relation P F A, meaning "process P satisfies property A" , is given by

P � .L

P F -,A iff P � A

iff P J= A1 and P F A2 . P t= A1 1\ A2
P F [a]A iff for all Q E 1', P@ > a >> Q implies Q F A.

Bisimulation
Two processes are regarded as equivalent if there is no observable action that either can perform to distinguish
them. Informally this means that to each action that one can perform there is an action that the other can
perform which is equivalent , i .e . leads to an equivalent outcome. Thus each process can simulate the other.

To formalise this, declare a binary relation p on 1' to be a bisimulation if whenever PpQ then for any a E A,

• if P@ > a >> P' then Q@ > a >> Q' and P' pQ' for some Q' ; and
• if Q@ > a >� Q' then P@ > a >> P' and P'pQ' for some P'.

Now put
P ,.., Q iff P pQ for some bisimulation p.

Then "" is the desired relation of observational, or bisimulation, equivalence.
Here is another way to view the definition of ""· For an arbitrary binary relation p � 1' x 1', let F(p) be the

set of all pairs (P, Q) . that satisfy the a,bove two "back-and-forth" clauses in the definition of bisimulation. Then
p is a bisimulation iff p � F(p) . H�nce

"" = U{p : p � F(p)} .
"" itself is a bisimulation and so is the greatest bisimulation on 1'.

30 SACJ/SART, No 13·, 1995

Image-Finiteness

A relation pis image-finite if, for each P, the image-set {Q: PpQ} is finite. If all transition relations are image­
finite, then there is a convenient alternative characterisation of.......,, To see this, define a sequence of.relations,n

inductively by

and th�n

This gives a decreasing sequence

and it turns out that

......,o = P x P (the largest relation on P)

......,n+l = F(......,n),

• if each transition relation @ > a > > is image-finite, then

Logical Equivalence

The foryµulae of the present language can express many natural properties concerning transitions. Thus P t= [a] .l
when P is unable to carry out action a, P F [a]< ,8 > T when any performance of a by P will yield a process
that can perform ,8, etc. In fact the language is sufficiently strong that the properties it expresses can characterise
bisimulation equivalence.

· Processes P and Q are logically equivalent, P = Q, iff they satisfy the· same formulae from Fma(A):

P = Q iff for all A E Fma(A), P t= A iff Q t= A.'

The equivalence relation = contains every bisimulation p, and hence

To show this it suffices to prove that

P......., Q impli�s P = Q.

for all P and Q, PpQ implies (P I= A iff Q t= A).

This is established by structural induction on the formation of A, with the back-and-forth clauses for p being
used to prove that if the result holds for A then it holds for [a]A.

The Characterisation.

A logical characterisation of bisimulation can now be given:

• if each transition relation@ > a > > is image-finite, then

Th� proof of this focuses on the set Fma(At of all formulae whose modal deg1·ee (depth of nesting of modalities)
is at most n. Let

P =n Q iff for all A E Fma(At, PI= A iff QI= A.

Then it is shown that in general,

Since

it follows that

But in the image-finite case

SACJ /SART·, No 13, 1995

P "'n Q iff '. P =n Q.

P = Q iff P =n Q for all n � 0,

31

Inftnltary Version

In the absence of image-finiteness, bisimulation equivalence can still be logically characterisec:J if the syntax of
the modal language is extended to allow the coltjunction .of an arbitrary set (J>088ibly infinite) of .formulae, The
generating definition becomes

A : := T I -,A I /\ A. I [a]A,
1e1

where / is an arbitrary indexing set (in practice I need be no larger in cardinality than P, as will emerge below) .
The new semantic clause is

P I= A,erA. ift' P I= A, for all i e /.

Let Fma(..4)00 be the resulting class of formulae, and 500 the relation of logical equivalence it induces between
processes. Then

• in any labelled transition •u•tem,
P - Q ift' P =oo Q.

The proof that - is contained in 500 is similar the one showing it is contained in =· For the converse, it is
enough to show that 500 is a bisimulation, for it will then be contained in the greatest bisimulation -.

So, suppose that P 500 Q, with a view to establishing the back and forth conditions for P and Q relative
to 500 • For the hack condition, let QO > a > > Q' , and let { P, : i E I} be an indexing of the image-set
{P' : PO > a >> P'} . Now if there were no � with P@ > a >> P, =oo Q', then for each i there would be a
formula satisfied at one of � · and Q', but not at the other. Since formulae can be negated, we can ilssume there
is some Ai with Q' I= A, and � V= A, . Let

Then Q' I= A, and so Q I= < a >A because Q@ > a >> Q' . Hence P I= < a >A, as P 500 Q. But P, � A for
all i e /, so there is no a-transition from P to a process satisfying A, whence P V= < a >A. This contradiction
forces ue to conelude that PO > a >> � =co Q' for some i.

The proof of the forth condition for =co is similar.

Further Study
This has been a brief introduction to the role of Hennessy-Milner logic. Process algebra is by now an extensively
developed subject, with many concepts and constructions for building processes, and many important variations
on the notion of observational equivalence relation, for instance taking into account the presence of silent steps.
Here are some suitable sources, beginning with the seminal work on the subject .

Matthew Hennessy and Robin Milner, Algeb1YJic Laws for Nondeterminism and Concurrency, J . Assoc. Comput.
Mach. 32 (1985) , 137-16 1 .

Robin Milner, Communication and Concurrency, Prentice Hall, 1989 .
Robin Milner, Opemtional and Algebmic Semantics of Concurrent Processes, in Handbook of Theoretical Com­

puter Science, vol . B , J. van Leeuwen (ed .) , Elsevier/The MIT Press, 1990, pp. 1201-1242 .
Colin Stirling, Modal Logics for Communicating Systems, Theoretical Computer Science 49 (1987) , 311-347 .

5 Modal Mu-Calculus

Computer Science a.bounds with concepts and objects that are defined recursively, or self-referentially. Many of
these have an elegant formulation as special fixed points of certain operations. Two examples of this will now be

. given, and then the general theory will be used to develop a powerful modal logic that incorporates all of the
other systems that we have looked at so far .

Transitive Closure

Suppose R � S2 . The transitive closure of R is the relation R+ defined by putting sR+ t ift' for some n ;?; 1 there
is a sequence

s = s0 Rs1 R . . . Rsn = t .

n+ is transitive and contains R, and i s the least such relation , i n the sense that

n+
= n{p � S2 : p is transitive and R � p} .

32 SACJ/SART. No 13. 1995

· Now a relation p is transitive just when p o p s; p, so being a transitive relation containing R amounts to having

:;:1�.(. " . . ' . R U (P o p) s; p.

; '[)�ning a function F on subsets of . S2 by
; . . i . •

F(p) = RU (p o p) ,

. (i) becomes
F(p) s; p,

80

(ii) R+ = n{p s; S2 : F(p) s; p} .

In fact R+ is a fixed point of F, meaning that F(R+) = R+ . From (ii) it follows that i t is the least' such fixed
point: if F(p) = p then R+ s; p.

Bisimulations as Fixed Points
In Section 4 we saw that a relation p on a transition system 'P is a bisimulation iff p s; F(p) , where F is a certain
function on subsets of 'P2 • The bisimulation-equivalence relation, satisfies

(iii), = LJ {p s; S2 : p s; F(p)} ,

and i n fact F(-) = "", so by (iii) F is the greatest fixed point o f F: i f F(p) = p then p s; -.

Monotone Operators
A function F : 25 -+ 25, defined on the powerset of a set S, will be called an operator on S. A subset T of S is

• a fixed point if F(T) = T,
• a pre-fixed point if F(T) s; T,
• a post-fixed point if T s; F(T) .

F is monotone if
T s; T' implies F(T) s; F(T') .

It is this monotonicity that accounts for the preceding phenomena:

Knaster-Tarski Theorem
. If F is a monotone operator on a set S, then
· • F has a least fixed point, namely the intersection

µF = n{T s; S : F(T) s; T}

of all pre-fixed points of F; and
· • F has a greatest fixed point, namely the union

vF = LJ{T s; S : T � F(T)}

of all post-fixed points of F .

Thus µF and vF are solutions o f the equation

T = F(T) ,

and all such solutions satisfy
µF s; T s; vF.

Sometimes it is possible to construct µF by starting with the]east element 0 of 25 and applying F iteratively to
generate the increasing (by monotonicity) sequence

0 s; F(0) � F(F(0)) s; · · · · · · · · ·
and then obtain µF as the union of the sequence. The members of the sequence can be thought of as approxi-
mations to µF "from below" .

This works for instance with transitive closure, ultimately because R+ is the union of the relations

R, R o R, R o R o R, R o R oR o R,

In other cases the iteration must continue into the transfinite to reach µF from below in this way.
Dually, starting with the greatest element S of 25 produces

S 2 F(S) 2 F(F(S)) 2 · · · · · · · · ·

and for some operators vF is the intersection of this decreasing sequence of approximRt.ions "from above" . In
Section 4 we saw that this works for the bisimulation -, but only under the constraint of image-finiteness.

SACJ /SART, No 13, 1995 33

Formulae as Operator•
Let A be a formula containing an atomic formula p. In a model M = (S, . . , V) , A has a denotation V(A) which
is a subset of S, and which depends on the denotations of the atomic formulae in A. Now regard p as a variable
ranging over all subset. of S. As the denotation of p varies, so to will the denotation of A, and in this way A
induces an operator on S. For certain A this operator will be monotonic, typically when A has no negations -.,
or when each of the atomic variables of A occur only within the scope of an even number of negations.

We need a notation for describing the process of changing the valuation of a variable. Given a valuation V;
let

V,,::T

be the valu'°tion that differs from V only in that it assigns the subset T of S to p. Thus

V. ·- ()
= { V (q) if q � p

p.-T q T if q = p.

Then the operator induced by A relative to V as p varies is the function

T .-+ V,,::T (A) .

A fixed point of this operator might be though of as a solution of the syntactic equation

" p = A " .

Syntax for Mu-Calculus

Formula variables: p e �
Action labels: a e .A
Formulae: A e Fma(IP, .A)

A ::= p I J. I T I A1 A A2 I Ai V A2 I [a]A I < a >A I pp.A j 11p.A

pp.A and i,p.A are intended to denote the least and greatest solutions of the equation p = A. The operations pp.
and 11p. function like quantifiers, binding free occunences of p in A. Note that the syntax is negation-free.

Semantics
Let M = (S, {@ > o >> : o E A} , V) be a model on an A-labelled transition system. The valuation V : • � 25
extends to give a denotation V(A) to all formulae by the equations (cf. page 16) :

V(l.) = 0
V(T) = S

V(A1 A A2) = V(Ai) n V(A2)
V(A1 V A2) = V(At) U V(A2)

V ([a]A) = {s : for all t E S, s@ > a > > t implies t E V (A) }
V(< a >A) = {s : for some t e S , s@ > a > > t and t e V (A) }

V (µp.A) = n{T � S : V, ::T (A) � T}
V(vp.A) = LJ{T � S : T � V,::T (A) } .

Because of the absence of negation , the operator T .-+ V,::T (A) is always monotone, so this semantics does
indeed give the desired fixed point denotation to µp.A and 11p.A. The theory can be extended to allow negation ,
but then there has to be a restriction on the formation of µp.A and vp.A to gaura11tee monotonicity. 011 the
other band, with. negation available fewer connectives are needed, since vp.A can be defined as

,µp.,A[,p/p) ,

where A[,p/p] is the result of replacing (free) p by ,p in A. For instance ,µp.(a)p has the same meaning as
vp. < a >p.

34 S A C.l /SART, No 13, 1995

Ui,.derstanding Fixed Point Formulae

'D) ,get a sense of the meaning of µp.A and vp.A for particular A, think of them informally as solutions of the
equation p = A, so that we can replace occurrences of p in A by A itself, and keep on "unfolding" the equation
in this way. ·

For instance, consider the equation p = (A V < a >p). The unfolding produces

A V < a >(A V < o >(A V < o >(A V · · · · · · · · ·

Stopping at a finite stage gives a formula

A V < o >(A V < a >(A V · · V < a >A)) · . .)

which asserts that there is a finite a-path leading to a state in which A is true.
The meaning of the least fixed point here is given by asking that some finite-stage unfolding be true, i .e. that

there is some finite a-path ending with A true. But this assertion corresponds to the dynamic logic formula
< a* >A ! So that formula is equivalent to µp.(A V < o >p).

The formula vp.(A A. [a]p) has the unfolding

A A. (a](A A (o](A A [a] {A A. · · · · · · · · ·

To get the meaning of a greatest fixed point we must allow the possibility of the unfolding running forever, so
here we are saying that all finite a-paths must have A true at their end-points , an assertion which is expressed
by the PD £-formula [a•]A, dual to < a• > A.

For another example, consider the equation p = A A< o >p. The least fixed point i s just 0, reflecting the fact
that A A. < a >l. is equivalent to l.. The relevant unfolding is

AA < a >(A A < a >(A A. < a >(AA · · · · · · · · ·

Allowing the unfolding to run forever indicates that the property expressed by vp.A A. < a >p is that there exists
some infinite a-path with A true at every point.

Taking the case that A is T here, it follows that the meaning of vp.< a >p is that there exists an infinite
a-path starting from the present state. But this is the same as the meaning of the formula repeat(a) from
Section 2 .

Translation of P D L
PDL can b e translated into the Mu-Calculus, because [a•]A can b e identified with vp.(A A. [a]p), and the other
P DL-modalities Ca.I_l be reduced by the equivalences

(A?]B H (A -t B),
[a ; ,8]A H [a] (,8]A,
[o U ,8]A H [a]A A. [,8]A.

Formally this is done by the translation A t-+ A# , where

p# = p
j_# = J.

Furthermore, putting

(A1 -t A2) # = Af -t A(

([11']A)# = [11']A#

([A?]B)# = A# -t B#
([01 ; a2]A)# = ([a i] [o2]A)#

([o U ,8]A)# = ([o]A)# A([,8]A)#

({ o'"]A) # = vp. (A# A. ([a]p)#)

repeat(o)# = vp . < a >p

translates the logic RP DL into the Mu-Calculus. Since the formulae loop(a) are definable in RP DL, this leads
also to a translation of LP DL.

SACJ/SART, No 13, 1995 35

Translating CTL
A CTL-model can be viewed as a Mu-Calculus model with a single transition relation @ > a >>. Then
the following pairs of.formulae have the same meaning, indicating that there is a translation of CTL into the
Mu-Calculus.

V(X]A
3(X]A
3 (A UB)
V(A UB)

(cf. the CTL-axioms 3 U and VU on page 28) .

(a]A
< a >A
µp.B V (A A < a >p)
µp.B V (A A (a]p)

There is also a translation of CT L • , too complex to reproduce here (cf. the paper by Dam cited below) . The
formula

µp.A I\ (a] (a)p

expresses "along all branches A holds at every second state" , a property that is inexpressible in CT L • .

The Status of the Mu-Calculus
It is known that the Mu-Calculus has the finite model property, and is decidable in non-deterministic exponential
time. An axiomatisation has been given that uses an infinitary inference rule, but the existence of a finitary
deductive system remains unresolved. The semantics validates the schema

and is sound for the rule

A(µp.A/p) -+ µp.A

A(B/p] -+ B
µp.A -+ B

The schema. expresses that µp.A is a pre-fixed point of the operator defined by A, and the rule expresses that it
is the least such pre-fixed point .

It is natural to conjecture that the Mu-Calculus is the smallest normal logic to contain this rule and schema
and the corresponding ones for v .

References
. Julian Charles Bradfield , Verifying Temporal Properties of Systems, Birkha.user, 1992.
· Mads Dam, CTL* and ECTL* as Fragments of the Propositional µ- Calculus, Theoretical Computer Science 126

(1994) , 77-96 .
Dexter Kozen , Results on the Propositional µ- Calculus, Theoretical Computer Science 27 (1983) , 333-354.
Dexter Kozen , A Finite Model Theorem for the Propositional µ - Calculus, Studia Logica 47 (1988) , 233-241 .

6 Canonical Models and Filtrations

Let A be a normal logic in a multimodal language Fma1 (�) as in Section 1. To prove that A is complete with
respect to a certain class of models , it has to be shown that each non-theorem of A can be falsified by some model
in this class. To begin with we will construct a single canonical A-model

M A = (SA ' { Rt : i E /} , VA) ,

that falsifies every non-theorem of A . This may not however b e a model of the intended type - for instance
it may be infinite , so will not establish the finite model property - and hence its construction may only be an
intermediate step in obtaining the desired completeness proof.

The basic idea of M A is this . In any model M , each point s is associated with the set

I', = {A E Fma1 (;p) : M I=, A}

of all formulae true at s. The properties of membership of I'6 reflect the properties of the truth relation M I=. A,
and sets of the form I', can be characterised in a syntactic way. The members of SA wil l thus be defined as
certain sets of formulae whose properties are determined by the logic A. Moreover, in a model M, if sRtt then
[i]A E I', implies A E I't , so

{A E Fma1 (�) : [i]A E I'. } � I't ,

and this relationship will be used t o define the relation Rt in MA .

36 SACJ /SART, No 13, 1995

A-Maximal Sets

A set r � Fma(•) is A-inconsistent if there are finitely many formulae B1 , . . . , B,. in r such that

I-,t Bi A • • · A B,. -+ .L.

It this does not hold, I' is A-consistent . I' is defined to be A-marimal if

• I' is A-consistent, and

• for any A e Fma1 (•) , either A E I' or -,A e I'.

Put

Properties of A-Maximal Sets
If I' is A-maximal, then:

5A = {I' � Fma1(•> : r is A-maximal} .

• If A ft I', then I' U {A} is not A-consistent. Hence if I' � .a and .a is A-consistent, then I' = 4 (this explains
the use of the adjective "maximal") .

l�i/re A � I'.

• .L ft r.
• For any formula A, exactly one of A and -,A belongs to I', i.e. ,

-,A e r ift' A ft r.

• (A -+ B) E I' ift' (A E I' implies B E I') .

• A " B E r ift' A, B E r.
• A V B E I' ift' A E I' or B E I' .
• (A ++ B) E r ifl' (A E r ift' B E I') .

Lindenbaum's Lemma
Every A-consistent set of formulae I' is contained in a A-mazimal set .a.
Proof Assume • and J are countable, so that Fma1 (•) can be enumerated

Put

and then

Corollary

Proof

Ao , Ai , . . . , A,. ,

.ao = r

A _ { Lln U {A,. } ,
..1n+1 -

{ } .dn U -,A,. 1

Ll = LJ{Lln : n � O} .

if this is A-consistent
otherwise

l-,1 A ift' for all s e SA , A E s.

If If ,t A then {-,A} is A-consistent , so by Lindenbaum's Lemma there exists s e SA with { -,j)} � s, hence A ¢ s.

Box-Lemma

Define the relation Rf on SA by

sRft iff {A E Fma1 (•) : [i]A e s} � t .

Then for any s E SA , and any B E Fma(•) ,

[i JB E s iff for all t E 5A , sRAt implies . B E t .

SACJ /SART, No 13, 1995
;:.

. . . . 37

Proo/. .
From left to right holds by definition of Rf. For the converse, suppose [i] B (/. 8. We have to construct a t E SA

with B (/. t . Let
I' = {A E Fma1 (•) ; [i]A E 8} .

If I' U { -.B} were not A-consistent then there would exist formulae A 1, . . . , An E I' such that

I-A Ai A • . • A An A -.B -+ .1,

and hence
I-A Ai A . . . A An -+ B.

But then as A is normal,
I-A [i]A1 A • • . A [i]An -+ [i)B

(cf. page 21) . But [i]A1 , . . • , [i)An E 8 1 and so this would imply [i]B E 8, contrary to hypothesis.
It follows by Lindenbaum's Lemma that there exists a t E SA with I' U {-.B} � t . But then I' � t makes

8Rf t, and -.B Et forces B (/. t , as desired.

The definition of MA is completed by defining

Then the Box Lemma and the earlier listed properties of maximal sets lead to the following result.

Truth Lemma

For any A E Fma1 (4>) and any 8 E SA ,
M A I=, A iff A E 8 ,

Since in general I-A A ift' A belongs to all A-maximal sets, this yields

showing that the canonical A-model determines the logic A. In particular, the smallest normal logic K1 is
determined by its canonical model, and hence by the class of all models for the given language.

Properties of MA

If the logic A contains the schema

(T) [i JA -+ A ,

then all instances of it belong to any A-maximal set s E SA . Consequently

{A E Fma1 (4>) : [i]A E s} � s,

making sRf s , so Rf is reflexive. In this way it is seen that the smallest normal logic containing schema (T) is
determined by its reflexive canonical model , and hence by the class of models in which Ri is reflexive.

Similarly, the schema
[i]A -+ [i] [i]A

forces Rf to be transitive,
A --t [i] < i > A

makes it symmetric, and
[i]-.A ++ -.[i]A

makes it a total function on SA .
This technique provides a general method for completeness proofs, by connecting the proof-theoretic proper­

ties of A (derivability of various schemata) to the model-theoretic properties of MA .

38 SACJ/SART, No 13, 1995

Filtrations

We have seen that if VA A then there will be some point in the canonical model MA at which A is false. But
in its capacity as a falsifying model for a particular non-theorem A , M A provides a good deal of superfluous
information . To calculate the truth-value of A at points in MA , we need only know the truth-values in MA

of the members of the set Sf(A) of subformulae of A, whereas MA provides truth-values for all formulae
whatsoever . Moreover , if (]j and/or I is infinite, then SA will be infinite (in fact uncountable) , and so a point of
M A will in general be indistinguishable from many other points as to how it treats the finitely many members
of Sf(A) . Thus we many as well identify points that assign the same truth-values to all members of Sf(A) .
The identification process allows us to collapse M A to form a new falsifying model for A, one that has room for
variety in its definition. This process, known as filtration , gives a way of proving certain technical results (finite
model property, decidability) about certain logics A. It also gives a new way of constructing models that comes
into its own in cases where M A is not of the desired type for a completeness theorem.

Here, for the record, is a formal definition of S/(A) :

Sf(p) = {p}

S/(J.) = { J.}

Sf(A1 -+ A2) = {A1 -+ A2} U S/(A1) U S/(A2)

S/([i]A) = { [i]A} U Sf(A) .

Now fix a. logic A and a set I' � Fma((]j) that is closed under subformulae, i .e .

A e I' implies Sf(A) � I'.

Define an equivalence relation ""'r on SA by

Let

s ,..., r t ifl' s n r = t n r
ifl' for all A e r, A e s ifl' A e t .

Is l = {t E S : s ""I' t}

be the -r-equivalence class of s , and define

Sr = { I s l : s e S}

to be the set of all such equivalence classes . Then

Is l = lt l ifl' s n r = t n r,

and so the map I s l 1-t s n I' is a well-defined injection of Sr into the powerset of I' . In particular ,

• if I' is finite, then Sr is finite and has at most 2n elements, where n is the number of elements of I' .

Now let Ir = { i E I : [i] occurs in I'} , and let (]j r = (]j n I' b e the set of atomic formulae that belong t o I' .
Define

by putting
I s l E Vr (p) ifl' p e s

whenever p E (]jr (since then p E I' , Vr is well-defined) .
We are going to consider {]jr-models of the form

M = (Sr , {Ri : i E Ir } , Vr)

with the property that the truth-values of members of I' in M and in M A a.re left invariant by the correspondence
s 1-t Is l . Reflection on what is required to make this work leads to the following definition .

A binary relation Ri on Sr is called a I'-filtration of Rf if it satisfies

(Fl) if sRf t , then l s llli lt l ; and
(F2) if l s llli l t l , then {A : [i]A E s n I'} � t .

Any {]jr-model M = (Sr , { Ri : i E Ir } , Vr) i n which each Ri satisfies Fl and F 2 is called a I'-filtration of the
model M A . The crucial property of such an M is the

SACJ/SART, No 13, 1995 39

Filtration Lemma
If A E I', then for any a E SA ,

Existence of Filtrations
There are always at least two:

M 1=1, 1 A ijJ A E a .

• The smallest filtration R'{ is given by

• The largest filtration Rt has

Any other filtration .Ri of Rf has

Finite Model Property for Kr

l• IRf !t i ift' 3s' e 1• 1 3t' e !t i (•' R;ft') .

l• IRf lt l ift' {A : [i]A e s n I'} � t .

Suppose VK, A. Then there is a point s in the canonical Kr-model at which A is false , i .e . A (J. s. Let I' = S/(A) .
Then I' is closed under subformulae, so we can construct I'-filtrations M of MK, as above. By the Filtration
Lemma, A is false at l• I in any such model . Moroever, M has at most 2n elements, where n is the number of
subformulae of A.

Extending the Method
To apply this technique to a logics A containing Kr , it is necessary to prove that the filtration M is a A-model ,
i .e . M I= A.

For example, if Rf is reflexive, then the filtration condition Fl guarantees that .Ri is reflexive in M, whence
M I= [i]A -t A. This leads to a proof of the finite model property for the smallest normal logic that contains
the schema T.

Other conditions are not so readily preserved in passing from the canonical model to a filtration , and require
more careful analysis , or further modification of the quotient model . In the next section the method will be
adapted to the context of linear temporal logic, and for this application the following important feature of
filtrations will be needed.

Definability Lemma
If I' is finite, then for any subset X � Sr there is a formula Ax such that for all s E SA ,

Proof.

Ax E s iff Is l E X.

For each t E SA let At be the conjunction of the members of

{ A E r : A E t } u {-.A : A E r & A � t } .

Then
At E B iff s n I' = t n r iff l s l = lt l .

Now if
X = { lt 1 I , • : · , ltn l } ,

put
Ax = At 1 V · · · V At ,. .

7 Compl�teness of Linear Temporal Logic

40 SACJ/SART, No 13, 1995

Recall from Section 3 that propositional linear temporal logic has the syntax

Atomic formulae: p e �
Formulae: A e Fma(�)

A : := p 1 1. 1 A1 � A2 I [X]A I A1 UA2 ,

with < F > A = T U A , and [F] = -, < F > -.4.. P L T L i s defined t o b e the set of all formulae i n this language
that are true in all models on state sequences.

Let A be the smallest [X]-normal logic in Fma(�) that contains the schemata

and is closed under the < F> -Rule

Fun: [X]-,A ++ -,[X]A

Ul : A UB �< F > B

U2: AUB ++ B V (A A [X] (A UB))

if I- A � B then 1-< F> A �< F> B,

and the Induction Rule
if I- A � [X]A then I- A � [F]A.

It will now be shown that A = PLTL . That A � PLTL {soundness) is straightforward: all A-axioms are
true in models on state sequences, and the rules of Necessitation for [X] and Induction , and the < F >-Rule, all
preserve this property. Hence PLTL is a logic that contains these schemata and is closed under these rules , so
it contains the smallest such logic A.

For the converse, fix a formula D (/. A, with the objective of showing D is falsifiable on some state sequence
model. This involves a process of I'-filtration, in which I' will need to contain more than just the subformulae
of D. Its required closure properties are:

D e r;
I' is closed under subformulae;

A UB e I' implies [X] (AUB) , < F > B E I'.

Putting
I' = S/(D) U {T} U { [X] (AUB) , < F > B, [X) (T UB) : A UB E S/(D)}

provides a finite set with these properties. I' has no more than 4n elements, where n is the number of subformulae
of D.
Let SA be the set of A-maximal subsets of Fma(�) , and Rx the relation on SA induced by the modality [X] , i .e

sRxt iff {A : (X]A e s} � t .

Define the finite quotient set Sr as in Section 6 , and let R be the least I'-filtration of Rx , so that for :r: , y e Sr ,

zRy iff 3s e z 3t E y (sRxt) .

Admissible Sequences
A sequence O"o , 0"1 , • . . , O'j , • • • • • • of points in SA is admissible if for all j � 0 ,

• IO'; IRI0";+1 I. in Sr , and .

• if < F > B E O"; n r, then B E O'fc for some k � j .

Admissibility Lemma
If u is an admissible sequence in SA , then for all j � 0,

(1) if [X]A E I', then [X]A E O"j ijJ A E O"j+i i
(2) if A UB E I', then A UB E u; iff for some k 2: j , B E O'fc and for every i such that j � i < k, A E u, .

This Lemma will be proven below . What it states is that for formulae from I', membership of a point in an
admissible sequence behaves exactly like truth at that point in a model on the sequence. Thus, defining a model
M = (O', V) by putting

V(p) = {O"; : p E u;} ,

an inductive argument based on the Admissibility Lemma and properties of A-maximal sets establishes the

SACJ /SAftT, No 13, 1995 41

Truth Lemma
For any A E I' and any j � 0, M I=; A •ff A E tr; .
The problem then is to show that there are any admissible sequences.

Sequence Lemma
For any s e S11 , there erists an admissible sequence tr starting with s.
This is the deepest part of the argument, and again will be proven below. The result allows us to construct the
desired falsifying model for D, thereby finishing the completeness theorem: since D (/. A there exists & A-maximal
s e S11 with D r/. s. Taking an admissible sequence tr in SA with tro = s, and the model M on u as above, it
then follows by the Truth Lemm& that M �o D.

Proof of the Admissibility Lemma

(1) Let [X]A e I'. Now ltr; IRlu;+1 I by admissibility, and R is & filtration of Rx, 80 by filtration condition
F2,

{B : [X]B e tr; n I'} � tr;+ l ·

I t is then immediate that [X]A e tr; implies A e trJ+l · Conversely, suppose A e tr;+ l · Now by definition
of R, there exist s e ltr; I and t e ltr;+1 I with sRxt . Then A e t , as A e I' and t -r tr;+1 · Hence
-.A (/. t , and 80 [X J-.A " s as sRxt . Thus by axiom Fun, -i[X]A " s, 80 [X]A e s, which finally yields
[X]A e tr; because s -r tr; .

(2) Let AUB e r. Suppose AUB e tr; . Then by axiom U l , < F > B e tr; . But by the closure conditions
on I', < F >E I', 80 admissibility entails that B e u1c for some k � j . Take the least such k . We have
then to show that A e tri whenever j $ i < k. If k = j there is nothing to prove, so assume j < k . Then
by definition of k, B (/. tri whenever j $ i < k .

Now i t will be shown that A UB e O'i for j $ i < k , by induction on i . If i = j , the result hold by
the assumption A UB e u; . For the induction step, if A UB e tri and j < i + 1 < k , then as B (/. u, ,
axiom U2 yields [X] (A UB) e tri . But [X) (A UB) e I', 80 by part (1) of this Lemma, A UB e tr,+1 ,
and the induction argument is finished.

Fina.Uy, if j $ i < It we now have A UB E "' and B (/. tr, , from which U2 yields A e tri as desired .

Conversely, assume that B e t11c for some k � j, with A e tr, whenever j $ i < k. We then show
that A U B e tri whenever j $ i $ k, by backwards induction on i, giving finally A U B e tr; to complete
the Lemma.

For the case i = k, since B e tr1c , AUB e tr1c is immediate by U2. For the induction step, if
A UB E tri with j < i $ k, then [X] (A UB) e ",- 1 by part (1) again, and A e tri- l by assumption, and
this is enough to force A U B E ",- 1 by U2 once more.

Proof of tbe Sequence Lemma
This originates in work of Gabbay, Pnueli , Shelah and Stavi . The exposition given here uses the elegant notion
of a scheduler due to Stirling [1992, § 6 .3] .

For each z E Sr , let
z+ = {y E Sr : zRy}

be the set of all R-successo,·s of z . Then z+ is non-empty, because R is a total relation on Sr , This follows by
the axiom Fun, which implies

l-11 [X] T -+ -. [X] .L .

Since Necessitation implies I-" [X] T , for any s E S" we get [X] .L (/. s , so there is some t e S11 with sRxt (Box
Lemma, page 37) . But then ls lR l t l in Sr ,

Fair Sequences
Consider a.n R-branch (infinite R-sequence)

roRr1 R · · · RrnR · · · · · . . · ·

in Sr . r will be called fair if it satisfies the condition

• if z occurs infinitely often in r, then so too does every member of :-.+ .

42 SACJ /SART, No 13, 1995

The role of the Induction Rule is conveyed by the next result, which uses the Definability Lemma (page 40)
stating that for any subset X s;;; Sr there is a formula Ax such that for all s E SA ,

Induction Lemma
If T is a fair R-bmnch in Sr , and

Ax E s iff I s l EX.

X = {.1: E Sr : :,; occurs infinitely often in T},

then 1-;1 Ax -+ [F]Ax .

Proof.
By the Induction Rule, it is enough to show

l-;1 Ax -+ [X]Ax,

so by properties of maximal sets it is enough to show that any A-maximal set containing Ax must contain
[X]Ax.

So, let Ax E s E SA . Then Is l E X. Now if sRxt, then l s lRlt l , 80 l t l E Is l+ . The fairness condition on r then
implies that lt l is also in X, so Ax Et. We thus have

sRxt implies Ax Et,

which by the Box Lemma y ields [X]Ax E s as desired.

Fairness Lemma
If .,. is a fair R-bmnch in Sr , and u is any sequence in 5A with <r; E T; for all j � 0, then u is admissible.

Proof.
The requirement lu; I Rl <r; +1I, i.e. r; Rr;+1, is immediate from the definition of R-branch.

Now let < F > B E u; n I'. We have to show B E <Tk for some k � j. Suppose, for the sake of contradiction,
that B rt <Tk for all k � j . Let X be as in the Induction Lemma. Then if s E SA lias Ax E s, I s l occurs infinitely
often in r, so I s l = Tk for some k � j. Then s ""r <Tk E T'k, so as B E I' and B rt <Tk we get B rt s . It follows,
contra.positively, that every A-maximal set that does contain B cannot contain Ax . Hence

I-A B -+ -.Ax .

Then by the < F >-Rule

and so

(i) l-;1 < F > B -+ -.[F]Ax

as -,[F]A = -,-, < F > -.A.
Now since Sr is finite , there must indeed be points that occur infinitely often in r, and so there must be a.

k 2:: j with f'k E X. Then we show that < F > B E <Ti whenever j $ i $ k, by induction on i. The case i = j
is immediate from the assumption < F > B E u;. For the induction step, suppose < F > B E <Ti and j $ i < k.
Since ri RTi+i, there exist s E r; and t E Ti+i with sRxt. Then < F > B E s as s -r <Ti. Likewise B ¢ s, as
B rt <Ti by assumption. But putting A = T in axiom U2 gives

l-;1 T UB H B V (T A [X] (T UB)),

yielding
l-;1 < F > B -+ B V [X] < F > B.

It follows from this that [X] < F > B E s . Hence < F > B E t as sRxt, s o finally < F > B E u,+1 as t ""r <Ti+l ·
This finishes the inductive argument.

We have now established that < F > B E <Tk, so from (i), -.[F]Ax E <r1c and therefore [F]Ax rt u1c. But
luk l = T), EX, 80 Ax E u1c and hence the Induction Lemma implies the contradictory conclusion [F]Ax E u,, .

This contradiction forces us to accept that B E u1c for some k 2:: j, and the proof is complete.

SACJ/SART, No 13, 1995 43

Listings and Schedules
The task before us is now reduced to the constr11ction of fair R-branches.

A listing of x+ is a finite sequence Yo, . . . Yn of members of z+ that includes each member of z+ exactly once
(i .e. a permutation of z+) . A schedule is a function E that assigns to each z E Sr a listing E(z) of z+ . The
purpose of a schedule is to specify the order in which successors of z are chosen in defining a fair branch.

Now given an arbitrary z E Sr , define a sequence of points r; and schedules E; by induction, starting by
putting 1'b = z and letting Eo be an arbitarily chosen schedule. For the induction step, supposing r; and E; are
defined, let E; (T;), the listing of r/ given by E; , be Yo, . . . y,. . Put

!

and define a new schedule E;+1 by declaring

E;+1 (r;) = Yi , . . , , Yn , Yo

and otherwise keeping E;+1 the same as E; .
Since T;+i is selected from r/, we have T; Rr;+i , so this process generates an R-branch. But the effect of

the scheduling is that once selected, T; +1 is moved to the back of the queue, so will not be selected again at a
later stage until all other members of T/ have been selected. Therefore as a particular point re-occurs in the
sequence it will be followed by each of its R-successors in turn. In particular, if a point z occurs infinitely often,
the scheduler will cycle infinitely often through z+ , so each member of z+ will occur infinitely often, and a fair
R-branch is generated.

The proof of the Sequence Lemma can now be completed. Given s E SA , construct a fair R-branch r by the
process just described, starting with ro = I s l . Put o-o = s and otherwise let a-; be any member of r; . By the
Fairness Lemma, O' is an admissible sequence starting with s.

References

D. Gabbay, A. Pnueli, S . Shelah, J. Stavi, On the Temporal A nalysis of Fairness, Proc. 7th ACM Symposium on
Principles of Programming Languages, 1980, pp. 163-173.

Colin Stirling, Modal and Temporal Logics, in Handbook of Logic in Computer Science, vol. 2, S. Ambramsky
et. al. (eds.), Clarendon Press, Oxford, 1992, pp. 447-563.

44 SACJ / SART , No 13, 1995

Notes for Contributors

The prime purpose of the journal is to publish original
research papers in the fields of Computer Science and In­
formation Systems, as well as shorter technical research
papers. However, non-refereed review and exploratory ar­
ticles of interest to the journal's readers will be considered
for publication under sections marked as Communications
or Viewpoints. While English is the preferred language
of the journal, papers in Afrikaans will also be accepted.
Typed manuscripts for review should be submitted in trip­
licate to the editor.

Form of Manuscript

Manuscripts for review should be prepared according to the
following guidelines.

• Use wide margins and 1 � or double spacing.
• The first page should include:

- title (as brief as possible) ;
- author 's initials and surname;
- author 's affiliation and address;
- an abstract of less than 200 words;
- an appropriate keyword list;
- a list bf relevant Computing Review Categories.

• Tables and figures should be numbered and titled.
Figures should be submitted as original line draw­
ings/printouts, and not photocopies.

• References should be listed at the end of the text in
alphabeti� order of the (first) author 's surname, and
should be cited in the text in square brackets [l-3] .
References should take the form shown at the end of
these notes.

Manuscripts accepted for publication should comply with
the above guidelines (except for the spacing requirements) ,
and may be provided in one of the following formats (listed
in order of preference):

1 . As (a) 18-TEX file(s) , either on a diskette, or via e­
mail/ftp - a 18-TEX style file is available from the pro­
duction editor;

2. As an ASCII file accompanied by a hard-copy showing
formatting intentions:

• Tables and figures should be on separate sheets of
paper, clearly numbered on the back and ready for
cutting and pasting. Figure titles should appear
in the text where the figures are to be placed.

• Mathematical and other symbols may be either
handwritten or typed. Greek letters and unusual
symbols should be identified in the margin, if
they are not clear in the text.

Further instructions on how to reduce page charges can
be obtained from the production editor.

3 . In camera-ready format - a detailed page specification
is available from the production editor;

4. In a typed form, suitable for scanning.
Authors will be expected to sign a copyright release form.

Charges

Charges per final page will be levied on papers accepted
for publication. They will be scaled to reflect scanning,
typesetting, reproduction and other costs. Currently, the
minimum rate is R30-00 per final page for 18-TEX or camera­
ready contributions that require no further attention. The
maximum is R 120-00 per page for contributions in typed
format (charges include VAT).

These charges may be waived upon request of the au­
thor and at the discretion of the editor.

Proofs

Proofs of accepted papers in categories 2 and 4 above may
be sent to the author to ensure that typesetting is correct,
and not for addition of new material or major amendments
to the text. Corrected proofs should be returned to the
production editor within three days.

Camera-ready submissions will only be accepted if
they are in strict accordance with the detailed guidelines.
It is the responsibility of the authors to ensure that their
submissions are error-free.

Letters and Communications

Letters to the editor are welcomed. They should be signed,
and should be limited to less than about 500 words.

Announcements and communications of interest to the
readership will be considered for publication in a separate
section of the journal. Communications may also reflect
minor research contributions. However, such communi­
cations will not be refereed and will not be deemed as
fully-fledged publications for state subsidy purposes.

Book reviews

Contributions in this regard w11l be welcomed. Views and
opinions expressed in such reviews should, however, be
regarded as those of the reviewer alone.

Advertisement

Placement of advertisements at R 1000-00 per full page per
issue and R500-00 per half page per issue will be consid­
ered. These charges exclude specialized production costs
which will be borne by the advertiser. Enquiries should be
directed to the editor.

References

1 . E Ashcroft and Z Manna. 'The translation of 'goto'
programs to 'while' programs' . In Proceedings of JFIP

Congress 71 , pp. 250-255, Amsterdam, (1972).
2. C Bohm and G Jacopini. 'Flow diagrams, turing ma­

chines and languages with only two formation rules ' .
Communications of the ACM, 9:366---37 1 , (1966) .

3. S Ginsburg. Mathematical theory of context free lan­

guages. McGraw Hil l , New York, 1966.

South African
Computer
Journal

Number 1 3 , April 1 995
ISSN 10 1 5-7999

INTRODUCTION

Contents

WOFACS '94 : The Second Workshop on Formal Aspects of Computer Science
C Brink . .

PROCEEDINGS

Suid-Afrikaanse
Rekenaar­

tydskrif

Nommer 1 3 , April 1 995
ISSN 1 0 1 5-7999

Functionality Decomposition by Compositional Correctness Preserving Transfonnation
E Brinksma and R Langerak .

Modal Logics for Programs
R Goldblatt

A Gentle Introduction to Domain Theory: Domains and Powerdomains -
- J Goslett and A Melton .

The Refinement Calculus
C Morgan

n n @rukkers
� o rinlers

2

14

45

64

