
South African
Computer
Journal
Number 4
March 1991

Suid-Afrikaanse
Rekenaar­
tydskrif
Nommer 4
Maart 1991

The South Mrican
Computer Journal

An official publication of the South African
Computer Society and the South African Institute of

Computer Scientists

Editor
Professor Derrick G Kourie
Department of Computer Science
University of Pretoria
Hatfield 0083

Die Suid-Mrikaanse
Rekenaartydskrif

'n Amptelike pub/ikasie van die Suid-Afrikaanse
Rekenaa,vereniging en die Suid-Afrikaanse Instituut

vir Rekenaa,wetenskaplikes

Assistant Editor: Information Systems
Dr Peter Lay
P. 0. Box 2142
Windmeul 7630

Editorial Board

Professor Gerhard Barth
Director: German AI Research Institute
Postfach 2080

Professor Pieter Kritzinger
Department· of Computer Science
University of Cape Town
Rondebosch 7700 D-6750 Kaiserslautern

-- W.. est Germany

Professor Judy Bishop
Department of Computer Science
University of the Witwatersrand
Private Bag 3
WITS 2050

Professor Donald Cowan

Professor F H Lochovsky
Computer Systems Research Institute
University of Toronto
Sanford Fleming Building
10 King's College Road
Toronto, Ontario M5S 1A4
Canada

Department of Computing and Communications
University of Waterloo

Professor Stephen R Sch a ch
Computer Science Department
Vanderbilt University Waterloo, Ontario N2L 3G 1

Canada

Professor J iirg Gutknecht
Institut fiir Computersysteme
ETH
CH-8092 Zurich
Switzer land

Southern Africa:
Elsewhere:

Box 70, Station B
Nashville, Tennessee 37235
USA

Professor Basie von Solms
Departement Rekenaarwetenskap
Rand Afrikaanse U niversiteit
P.O. Box 524
Auckland Park 0010

Subscriptions
Annual Single copy
R32-00 R8-00
$32-00 $8-00

to be sent to:
Computer Society of South Africa

Box 1714 Halfway House 1685

Computer Science Department, University of Pretoria, Pretoria 0002
Phone: (012) 420-2843 Fax: (int)+ (012) +43-6454

Sigma Press

Guest Editorial

Does Today's Industry Need Qualified Computer Scientists?

Viewpoint I

Hans G Steiner
MBP Software and Systems GMBH

Semerteichestrasse 47-49
D4600 Dortmund 1

I would like to begin by recounting from my student
days a story that I consider to be relevant. While
attending a career forum for computer scientists,
mathematicians and physicists, the personnel officer
from IBM Germany was asked if he would consider
taking on mathematicians. The gist of his answer was as
follows: "Of course I must admit that I could just as
well give the mathematician's job to a theologian. What
is important is the ability to think logically. It is only
there, on the job, that he learns how to become
productive for us."

This episode occurred 14 years ago at a time when
graduating mathematicians did not necessarily learn
programming and when computer scientists were few
and far between. The situation has improved immensely
since then. Mechanical engineers, electrical engineers
and physicists, all with programming knowledge, have
for the most part taken· over many programming jobs.
This shows industry that, as time goes by, the answer to
the opening question is becoming an ever-louder and
more frequent "NO".

I support this opinion and in the remainder of this
essay I will expand on my reasons, as well as highlight
some exceptions.

An employee who is recruited directly from a
university should possess the following four capabilities:
1. An ability to think logically: One of the basic
requirements in our business is the ability to

recognise, analyze, structure, break down and solve a
problem as well as to fully synthesize the solution. The
important thing is to break down the problem in such
a way that the individual components can feasibly be
solved. This is what distinguishes an engineer/ scientist
from an arts scholar. The latter usually concentrates on
the complete problem and tends to settle for a
contentious, complex and partially non-feasible solution.
In our business, it is not enough to merely ask the
"right" questions.

This ability to think logically may be accentuated in
computer science; however engineers/scientists will
generally possess the ability to an equal extent.
2. Programming skills: Our employees' prime tool of
the trade is their ability to encode solutions to prob­
lems. Ideally, this ability ought to be held as abstract as
possible. In other words, the further away from the "bit",
the better. FORTRAN programmers who, for example,
concentrate on the multiple use of memory space of all
variables will never be successful programmers in an
object-oriented programming language.

The difference can be seen, even in today's univer­
sities. For example, one only has to read a PROLOG
program from a student who learned PASCAL in his
first semester and PROLOG in his fifth. On average,
this is always a "PASCAL program in PROLOG". The
various possibilities offered by a predicate calculus
language are only recognised and used by the best
students. Again, we do not need the average computer
science scholar who has spent between six and eight
years writing complicated PAS CAL programs, but
rather the "thinker" with basic programming knowledge
who is capable of abstracting the task. Once again, the
ability is independent of faculty.
3. Teamwork skills: Working successfully in a team

< :! i!hlsi §rbj iss11e is S~()~&r@~::~~ J I l :! </ : < <·

• .. ••••••J>~iiijHfu~#tM:Coffipiit~f$~i~ta~f •: · · · Jtltij~e~ trp~y¢fsit)' · · ·.· · · · · · ·.· · ·

SACJ/SART, No 4, 1991 1

requires assertiveness, tolerance, stability and one's own
ideas. Very few problems have solutions that can be
managed by one person successfully in the allocated
time. Out of 700 employees, we can only afford approx­
imately five "lone warriors" who are, in turn, the leading
specialists in a wide field. They have a strategic vision
which we follow. All remaining employees are
evaluated, for better or worse, on their team
performance. Some people have an in-built ability to
work in teams. A few universities - unfortunately not
enough - encourage this team-thinking. Again we see
that the ability is independent of university faculty.
4. Motivation: The ability to enjoy one's particular job
is a major driving force in every employee. Whereas in
the sixties everything had to be "bigger, faster and
better" and in the eighties "things had to be meaningful
to society'', the theme for the nineties is self-realization.
Those companies who succeed in incorporating different
employees (ie employees with different driving forces)
into the company culture and who motivate each
employee optimally will be successful in the nineties and
beyond. There are huge productivity gains to be had
from motivating employees. Compared with this, the
possibilities offered by CASE tools pale into
insignificance.

One basic requirement is thus the recruitment of a
self-motivated employee who should at no stage become
demotivated, whether it be by company culture,
superiors or working conditions.

Again, this is not linked to a specific university
faculty and is independent of know-how.

As none of these four capabilities are necessarily
restricted to studies in computer science, the technical/­
scientific background of new employees who are being
recruited is largely irrelevant.

I would now like to point out a few exceptions
which might give a computer scientist the upper hand in
an interview. I refer exclusively to our own company
and our specific company tasks.
1. Porting our COBOL Compiler onto the latest
UNIX machine from the manufacturer XY. Knowledge
of the UNIX operating systems could be very valuable
and enable the new employee to rapidly become
productive.
2. Programming the 37th interface (special customer
request) for our ISDN card. Knowledge of interface
protocols or experience with protocol conversions would
be very useful and could be a decisive factor. Such
specialized knowledge is usually very rare.
3. Adapting our integrated office automation system
to the 17th foreign language. The employee must
command the language perfectly. Simply outsourcing the
translation would mean that this language version could
not be maintained or supported. From this example one
can see that specialized knowledge not only refers to
knowledge gained from computer science studies.

In the product business, it sometimes happens that
computer scientists with specialized knowledge are

2

sought. (This is almost impossible in the project
business, due to the variety of tasks to be performed.)
However such a "knowledge" advantage over others
usually only lasts about a year. After that, the
achievements of two different employees (one with
specialized knowledge and the other without) tends to
even out.

Most applicants who start out do not know our
products, as the flow of employees in this industry is
almost always from manufacturer to user. Hardware
and software manufacturers often lose their products
specialist to the products' users. Seldom do employees
change in the other direction.

In my opinion, universities can learn two things
from this essay:
1. Studies in computer science give basic knowledge
that can be used in various jobs. The student should
however be careful not to place all his eggs in one
basket.
2. Teamwork should be encouraged more. Time allows
for very few geniuses, acting as 'lone warriors', to
initiate progress in our society.

I have taken the liberty of basing my interpretation
and answer to the opening question on my own judge­
ment and experiences. I would be grateful for other
opinions and experiences on this topic.

I would like to conclude by expressing my gratitude
for having had this opportunity to express my views.

Viewpoint II

Pierre Visser
Grinaker Infomiatics, P.O.Box 29818,

Sunnyside, 0132

The title question currently generates as many view­
points as a counterpart question: "What is the correct
curriculum for a computer science qualification?" Such
questions stem from the many and diverse requirements
expected to be fulfilled by the still developing applied
science. A basic assumption of this editorial is that we
need to have an explosion and consolidation in comput­
er science theory. Only after this has occurred will a
more general consensus of opinion exist - as is the case
in other matured sciences.

An argument is presented here for the current
approach of striving towards a balance between im­
mediate industry needs and long term perceived
theoretical requirements of industry, even though the
balance, as viewed from either side, will always be
imperfect.

Industry can, of course, do without qualified com­
puter scientists - that is how it was established. Dedicat­
ed mathematicians, physicists, engineers and other
scientists will, as in the past, continue to effect improve­
ments. However, as one of those scientists from the

SACJ/SART, No 4, 1991

early days, it is difficult for me to understand why one
would choose to continue this way.

A computer science qualification is viewed here as
a university education (4 years) into theory that is not
obtainable otherwise. By definition, therefore, a qualif­
ied computer scientist is not trained to conform to
specific job requirements. Rather, the computer scientist
will possess knowledge that will serve him long past the
present day's computing technology.

Whether industry needs qualified computer scient­
ists depends on two issues. Firstly, can an education be
provided for computing technology that will serve as a
foundation for the student's next 45 years in industry;
and secondly, can industry build upon this foundation to
created wealth more effectively than without qualified
computer scientists.

It is widely accepted that, in broad terms, the
teaching of fundamental theory will serve the first
purpose. However, what subject matter to include from
the wealth of mathematics, physics, OR, and from
computing fields such as networking, operating systems
and others, remains the illusive issue. Universities can
merely strive to select the right mix for the perceived
future needs of industry. This requires insight into the
evolution of computing technology. I will later discuss
such insight as a basic requirement for a qualified
computer scientist.

What is important in teaching is to focus on fun­
damental theory. Just as the natural science student
needs to breed fruit flies in order to gain insight into
the dynamics of inheritance, so too the computer
science student needs to develop software. The purpose
should be to create understanding and insight into
fundamental theory, and, just as in the case of the
breeder of fruit flies, the software developed should
never be measured against efficiency requirements from
industry. ·

The second issue is whether industry can build on
this theoretical foundation to create wealth.

A depth of insight into computing technology, more
so than with other training, can be identified as the
focus of the potential value of a qualified computer
scientist to industry. Three areas which require such
insight are discussed below, namely organisation,
product definition and the application of new computing
technology in industry.

Computing products form an integral part of an
organisation, and represent a significant capital invest­
ment aimed at increasing efficiency. These products are
incorporated in an evolutionary way to match changing
organisational requirements with improving product
capabilities. Decisions to use products determine the
long term efficiency and cost-effective replacement.
Such decisions require insight into computing
technology and its evolution. A qualified computer
scientist can improve such decisions only if he gains
enough insight into computing technology ~s well as its
interaction with business through years of practice.

SACJ/SART, No 4, 1991

The success of products in some areas is dependent
on market requirements which depend on computing
technology and its evolution. The correct definition of
characteristics of products that interface to computers
is such an example. Insight into computing technology
is able to create the versatility, simplicity or other
improved selling features which can open new market
segments.

The third area where insight into computing tech­
nology plays an important role is in the application of
new computing technology (or a new trend) in an
organisation. Examples include the introductory period
for networking, DBMS-technology, distributed
processing and document image processing. In areas
such as these, the newly qualified computer scientist can
be applied effectively and at the same time build up
insight through experience which he will require for the
other areas of organisational and product decisions
mentioned above.

A major dilemma in the continuous development of
insight into computing technology by qualified computer
scientists is their correct application in industry. The
identification of the opportunities within the three areas
discussed above, requires insight into computing tech­
nology itself. Winning companies that depend on
computing technology have this ability. In such com­
panies the insight of the qualified computer scientist
into computing technology as well as its contribution to
the business is constantly stimulated, turning the qualif­
ied computer scientist into a valuable company resource.

What has been neglected in this whole discussion is
the role of the "technician" and of the casual user of
computing technology. Such personnel are required to
implement selected computing technology of the day
efficiently, whether in accounting, chemical engineering
or other specialised disciplines. Their role and place is
unquestioned. However, it cannot be expected of them
to evaluate the potential of new computing technology,
formulate algorithms from fundamental theory or any
such decisions which require insight built upon a sound
theoretical knowledge of the field.

The final aspect in answering the opening question
is whether the qualified computer scientist can outper­
form other professionals who build up their own ex­
perience in computing technology. Many examples could
be cited of improvement brought about by non­
computer scientists in the past. However, these in­
dividuals formed part of the bootstrapping for computer
science theory and education. We should have faith in
this bootstrapping of computer science qualifications,
because computing technology will increasingly diversify
into many directions of specialisation in years to come,
each requiring a body of fundamental theory.

This complexity cannot be left to a casual develop­
ment of insight - industry requires qualified computer
scientists to experience interaction with business objec­
tives in order to cope successfully with future computing
technology.

3

Database Consistency under UNIX

H L Viktor and M H Rennhackkamp
Department of Computer Science, University of Stellenbosch, Stellenbosch, 7600

Abstract

A recovery techniqu, to facilitate the recovery from system failures should ensure a consistent database state at all times.
17ze UNIX write system call uses a delayed-write policy. Data blocks are kept in a buffer cache and are later
asynchronously written to disk. If a system f ai/ure occurs, logically complete transactions may be lost and the database
may contain incon-ect old data values. If a physical write was being executed when the failure occun-ed, the database
will be inconsistent, since an upd{lte in place policy is used when writing to disk. Differential files can provide database
consistency efficiently.
Keywords: Consistency, recovery, system failure, UNIX.
Computing Review Categories: D.4.3, H.2.2.

Recieved March 1990, Accepted October 1990

Introduction

The NRDNIX distributed database management
system (DDBMS) (6], currently under develop­
ment at the University of Stellenbosch, utilizes a
redo, no-undo recovery algorithm to facilitate the
recovery from system failures. In the event of a
system failure, the contents of main memory are
considered lost. A previous consistent database
state is constructed and a logical logging facility
is then used to redo transactions that have since
been committed. The DDBMS is implemented on
top of the UNIX operating system and accesses
the physical database through standard system
calls.

The UNIX write system call uses the delayed­
write policy. To reduce the amount of I/0 traffic,
accessed data are kept in a buff er cache. When
a write system call is issued, the corresponding
buffer is marked accordingly. The actual propa­
gation of the data is performed at a later stage.
If a system failure occurs, there could be logi­
cally complete but physically incomplete I/0 re­
quests in the buffers. These will be destroyed,
causing inconsistency between the user's view and
the physical database. If a failure occurs while a
physical write operation is taking place, both the
old and the new data values may be lost. In some
cases the determination of a previous consistent
database state may be impossible.

A mechanism using tagged differential files to
maintain a consistent database state, even in the
event of a system failure, is described. The ba­
sic idea is to ensure the existence of a previous
state at which the database was consistent. This
eliminates the problem associated with the UNIX

SACJ/SART, No 4, 1991

delayed-write and update-in-place policy.
In the following section a description of the

UNIX file system components is given and the
inconsistency problem is outlined and illustrated
by means of an example. This is followed by an
overview of the recovery techniques implemented
in the NRD NIX DD BMS. The implementation
of the differential file technique is described. The
consistency achieved by the recovery processing
algorithm is illustrated by means of the exam­
ple. It is concluded that the proposed method
provides the application with a consistent view
of the database.

1. The UNIX Kernel

One of the main objectives of the designers of the
UNIX operating system was to provide a small,
simple yet effective, operating system. This gives
users the freedom to design their own user in­
terfaces and other utility programs as needed.
The operating system consists of 10 000 lines C
code and approximately 1 000 line of assembler
code. The operating system is often called the
kernel, emphasizing its isolation from user pro­
grams. The kernel consists of two main compo­
nents: the process subsystem and the file subsys­
tem (5).

Processes
An application program is executed in an envi­
ronment called a user process. A user process
consists of a text, data and stack segment and
executes in user mode. Various processes are
concurrently executed in an interleaved fashion

25

as determined by the kernel's scheduling algo­
rithm. These processes communicate via system
calls. Processes are protected from interference
from others by ensuring that one process may not
read or write the data or stack of another. The
read-only text segment may be shared by various
processes.

When a system function is required, the user
process calls the system as a subroutine via one
of the standard UNIX system calls. This causes
a distinct switch of environment and the process
enters kernel mode until the completion of the
kernel subroutine. A separate stack is used for
the user and kernel modes, thus isolating the user
from the operating system routines.

The File System
The UNIX kernel implements a hierarchical file
system. A file system consists of a sequence of log­
ical blocks, each containing any convenient mul­
tiple of 512 bytes. This paper will use the term
'block' to refer to a logical block consisting of 512
bytes. Directories are used to implement the hier­
archical structure. The nodes of the hierarchy are
directories and the leaves are files, with the root
directory as the parent node of the system. A di­
rectory is a file consisting of file names as well as
information to access these files. Directories thus
provide the mapping between the names of files
and files themselves. Below the hierarchical file
subsystem a flat file subsystem is implemented by
means of a list of file definitions called an i-list.
These file definitions, called inodes, contain the
relevant file information to access and modify a
file. Below this flat file system is the I/0 subsys­
tem which carries out physical 1/0 operations on
devices. Below this is the physical hardware. Fig ..
ure 1 shows the relationship between the various
subsystems [1].

Hierarchical File System

Flat File System

I/ 0 Subsystem

Physical Hardware

Figure 1: The various file subsystems.

A directory entry contains a file name and
a pointer to the file, called the i-number of the

26

file. The i-number is used as an index to the i-list
stored in a known part of the device on which the
directory resides. The inode found thereby con­
tains a description of the file. A copy of the inode
is kept on disk when the file is not active. When
a file is accessed, the inode is read to main mem­
ory. The kernel uses the file descriptor to access
the file descriptor table. It follows pointers to a
global file table and inode entry. The physical lo­
cation of the data file is found by inspecting the
inode. The in-core inode is kept locked to ensure
its consistency during update. The use of inodes
simplifies the design and maintenance of the file
system.

The 1/0 subsystem allows processes to com­
municate with peripheral devices such as disks,
tapes and printers. The kernel modules that con­
trol devices are known as device drivers. An ap­
plication interfaces devices through the file sys­
tem, accessing the device by means of a name
similar to a file name.

The actual 1/0 to disk is controlled by the de­
vice driver. The driver supervises the transmis­
sion of data between primary storage and disk. A
disk may be partitioned into several units, each
containing one or more file systems. The kernel
deals on a logical level with file systems rather
than with disks. The conversion between logical
device addresses and physical device addresses is
done by the disk driver. The disk driver trans­
lates a file system address, consisting of a logical
device number and a block number, to a particu­
lar sector on disk. A disk may be accessed in ei­
ther block or character mode. The standard read
and write system calls use the block I/ 0 system.
Figure 2 shows the execution path of a disk ac­
cess.

The Buffer Cache
The kernel attempts to minimize the frequency of
disk access by keeping a pool of internal buffers,
called the buffer cache, containing the recently
accessed disk blocks. The cache acts as an inter­
face between the file system and the block device
driver.

When a read system call is executed, the ker­
nel first attempts to read from the buffer cache. If
the data are located in the cache, the kernel does
not have to read from disk. If not, the disk block
on which the data are located is read to the cache.
The data are copied from the cache to the user
address space and the corresponding cache buffer
is released. The kernel locks the corresponding in­
ode for the duration of the call. This ensures that
no other process may update the block of data
during the read system call. The kernel unlocks
the inode between various system calls. If another
process changes the file between two read system

SACJ/SART, No 4, 1991

calls, the first process may read unexpected data
although the kernel data structure remains coi;,.­
sistent. The system does not guarantee that the
data in a file remains the same after the file has
been opened.

User Mode

Kernel Mode

Hardware

User address space

System call

System call interlace

File subsystems

Block I/0 subsystems

Disk device driver

Disk controller

Disk

Figure 2: The execution path of a disk ac­
cess.

Similarly, data written to disk are cached for
enhanced retrieval time. If the kernel informs the
disk driver that it has a buffer whose contents
should be output, the disk driver schedules the
block for 1/0. When a delayed-write is executed,
the buffer is marked-as waiting to be written and
is not immediately written to disk. If the file does
not contain a block corresponding to the byte off­
set to be written when issuing the write system
call, the kernel allocates a new block correspond­
ing to the logical byte offset to be written. Blocks
are iteratively written to disk. During each iter­
ation, it is determined whether the whole block

SACJ/SART, No 4, 1991

should be written to disk or only part of it. If
only part of it is written, the block is first read
from disk to avoid overwriting the part that will
remain the same. Otherwise, the whole block is
written to disk.

File System Inconsistencies
Due to the design of the 1/ 0 system, write op­
erations could cause an inconsistent file system,
resulting in loss of information.

• The asynchronous nature of the delayed-write
algorithm makes error reporting and mean­
ingful user error handling alma1t impossible,
resulting in possible undetectable inconsisten­
cies.

• The physical write is delayed as long as possi­
ble, saving extra 1/0 operations. Since the
kernel does not immediately write data to
disk, the system is vulnerable to ·crashes that
leave the disk data in an incorrect state. If
a system failure occurs there could be logi­
cally complete, but physically incomplete 1/0
in the buffers. The standard 1/0 packages
available to C language programs include a
fflush call. This function call flushes data
from buffers in the user address space into the
kernel. Periodic use of this function helps, but
does not solve the problem, since the applica­
tion still does not know when the kernel writes
the data to the disk.

• An update-in-place policy is used when writ­
ing a block of data to disk. If a system failure
occurs during this process, the resulting file
can be in any of the following states:

- The write was logically complete, but
the physical write had not been initiated.
This results in loss of information.

- The write was in progress when the fail­
ure occurred, resulting in an inconsistent
block of data.

- The write was both logically and physi-
cally complete.

An application issuing a UNIX write system call
is not notified when the data are physically writ­
ten. The number of disk writes are reduced at
the expense of possible loss of information in the
event of a system failure.

In a database environment such as NRDNIX,
operations are grouped into transactions that are
concurrenctly executed on the database files. The
consistency and currency of data must be en­
sured. This is achieved by requiring that the ef­
fects of a transaction inust be atomic. They are
either totally reflected in the database files or not
at all. When the normal UNIX system calls are
used, the atomicity cannot be guaranteed, as il­
lustrated by means of the following example.

27

ExaD1ple 1
A simple example is used throughout this paper,
A client at a departmental store is identified by a
number and is further described by age and credit
balance. A bonus of RSO is given to clients older
than 65, with a balance greater than R100, result­
ing in the following transaction:

BEGIN TRANSACTION;
UPDATE client
SET balance = balance+ 50
WHERE age > 65 AND

balance > 100;
COMMIT;
The records of four fictitious clients prior to

the update are shown in figure 3. The records of
Client 1 and Client 2 are located on page 1 of the
database file and those of Client 3 and Client 4
on page 2. Each client's account has not yet been
incremented by R50.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 950

Chent 2 68 2100
Page 2 Cllent 3 77 40000

Client 4 89 840

Figure 3: The data values before the exe­
cution of the update transaction.

The resulting values after the successful exe­
cution of the update transaction is shown in figure
4.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 1000

Cllent 2 68 2150
Page 2 Client 3 77 40050

Client 4 89 890

Figure 4: The data values after the execu­
tion of the transaction.

In general, if a system failure occurs during
the execution of the update transaction, the re­
sulting database can be in any of the following
states:
1. The writes were logically complete, but the

physical writes had not been initiated. The
resulting database is in the state depicted by
figure 3, with the accounts of all the clients
containing the values prior to the transaction.

2. The write was both logically and physically
complete, as in figure 4. Here, no loss of in­
formation occurs. The accounts of the clients

28

all contain the additional RSO as result of the
transaction.

3. The write was in progress when the failure
occurred. The data values on page 1 are up­
dated before those on page 2. Assume that
the write to page 2 was in progress when the
failure occurred, resulting in an inconsistent
block of data, with some current and some
invalid old data. The amounts shown in fig­
ure 5 reflect the accounts of the clients when
the failure occurred. The accounts of Client
1, Client 2 and Client 3 are current, but not
that of Client 4.

The state of the system no longer reflects
a consistent database. It is not possible to
reconstruct a previous database state from
the current state.. If the transaction is re­
executed, the accounts of the first three clients
will contain RSO too much. Alternatively,
if the effects of the transaction are removed
from the database, the account of client 4 will
incorrectly be decremented by R50.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 1000

Chent 2 68 2150
Page 2 Client 3 77 40050

Client 4 89 840

Figure 5: Data values during the update
prior to crash.

Since no additional data is recorded, it is not
possible to determine in which one of the above
three states the current database is. An incorrect
re-execution or rollback of a transaction will lead
to an inconsistent database state. It follows that
a mechanism should be implemented to facilitate
the recovery from this type of situation, bearing
in mind the uncertainty incurred by the UNIX
delayed-write policy.

Possible Solutions
A possible solution would be to bypass the UNIX
file system and access the data directly. This
method is dangerous because it can destroy the
consistency of the file system data. The file sys­
tem algorithms coordinate disk I/ 0 operations to
maintain a consistent view of the disk data struc­
ture, including the list of free blocks and inode
information .. The application may write to blocks
that are either considered free by the file system
or used by the file system. The list of free blocks
maintained by the file system may become incor­
rect, resulting in inconsistent data values. This
solution should therefore be avoided.

SACJ/SART, No 4, 1991

The UNIX system does provide a file system
maintenance algorithm, which performs consis­
tency checks to repair in ode references and free
block lists after a system failure. This algorithm
aims to regain the consistency of the i-list and
the list of free blocks, making use of salvation
techniques. However, no provision is made for
the recovery of data which was residing in main
memory when the failure occurred, as depicted
in case 3 of example 1. This data will be lost if
the application does not·. explicitly utilize an al­
gorithm which eliminates this problem.

A third solution is to implement a recovery
mechanism to supplement the UNIX kernel. This
mechanism utilizes the facilities offered by the
system and ensures the consistency of files on
disk. Such a mechanism is used in the NRD NIX
DDBMS and is described in the next section.

2. The NRDNIX DDBMS

The NRDNIX distributed database management
system is implemented as a number of processes,
called Managers, on a version of UNIX System V.
Interested readers are referred to Rennhackkamp
(6] for a detailed description of the system.

Access to a local physical database is attained
through the UNIX kernel. The Database Man­
ager of the local DBMS interacts with the UNIX
kernel via system calls. The kernel uses the
block 1/0 interface when accessing the physical
database files on behalf of the Database Manager.
All low level operations on the database files are
therefore controlled by the UNIX file system, thus
abstracting the D B~S from the physical disk ac­
cesses.

Operations on the database are grouped into
logical units called transactions. A transaction
consists of a number of read and write operations
on the database records. The Database Man­
ager of the NRDNIX DDBMS controls user space
memory management and physical database ac­
cess. If access to a record is requested, the
Database Manager issues the read system call.
The read operation is performed, the block is read
to cache and the transaction is executed. The op­
erations performed on the database a~e logically
written to the log prior to their actual execution.
Upon a write system call, the updates to data val­
ues are first written to the buffer cache and then
to the differential file.

Recovery data ar~ accumulated during normal
processing. This data is used by the Recovery
Manager when recovering from failures. Various
recovery techniques are combined to recover to
a consistent database in the event of a system
failure.

SACJ/SART, No 4, 1991

Logical Log Facility

A logical write ahead log is implemented. The
decomposed relational algebra statements are
recorded in a log file prior to the actual execu­
tion thereof. Additional information, including
the transaction identifier and timestamp, is also
logged. New log information is appended at the
end of the log file. No physical representation
of the data items are logged, thus reducing stor­
age and 1/0 overhead. The log information is
written to disk using the UNIX write system call
and is therefore subject to the problem incurred
with delayed-writes. To minimize this, the buffer
associated with the log is flushed at the end of
every transaction. If a failure occurs when logi­
cally complete log information had not yet been
written to the physical log, this can simply be ig­
nored due to the no-undo policy. A log garbage
collection facility [4] is implemented to remove re­
dundant data from the log.

Checkpointing is used to reduce the amount
of work when recovering from a failure. A check­
point indicates the currently active transactions
as well as transactions committed and aborted
since the previous checkpoint. In addition, a flush
of the NRDNIX database cache is forced. Check­
point generation is performed at regular intervals
to provide a highly consistent database.

Differential Files
The abstraction of the log information from the
physical data, achieved by making use of the log­
ical logging facility, implies that no record of the
previous state of a data item is kept. This in­
creases the complexity of undoing uncommitted
updates and could result in inconsistent data val­
ues.

Checkpoint orientated differential files are im­
plemented to overcome this problem. A file con­
sists of two parts: the main file which is un­
changed and the differential file which records all
the alterations requested for the main file. Only
the results of committed transactions are written
to the database and the currently active records
are maintained in a differential file. Since only the
effects of committed transactions remain in the
differential file, and only these values are eventu­
ally merged with the physical database, the undo
of uncommitted values is eliminated (10].

At each checkpoint, a new differential file is
opened. Data records currently in use are moved
from the current differential file to the newly
opened differential file. The contents of the cur­
rent differential file only include the results of
committed transactions. The new differential file
now becomes the current copy and updates are
performed to this file.

29

The Bloom Filtering Algorithm
When access to a record is required, the location
(i.e. in the differential or main database file) of
the record is obtained by making use of a pre­
search Bloom filtering algorithm. When a data
record is accessed, the filtering algorithm is used
to determine whether the block associated with
the record is located in the differential file or the
main file. This reduces the amount of additional
access time usually associated with the differen­
tial file method.

A bit vector of length M is kept in main mem­
ory. This vector is initiated to 0. In addition, n
different hash functions X1. ,Xn are implemented.
The identifier of a record r is used as a seed
to each of the different hashing functions, thus
yielding n hash table locations, valued x1. ,Xn,

When a record is accessed in the main file and
copied to the differential file, the values at loca­
tions x1. ,Xn in the bit vector are set to 1. To
determine whether a record is in the differential
file, the identifier is hashed and the XOR of the
corresponding bits at locations x1 .. xn are deter­
mined. If the result of the XOR is equal to 1,
the record is probably in the differential file. (It
is not certain, since filtering errors may occur.)
Otherwise, the record is fetched from the main
file. The frequency of filtering errors can be con­
trolled by manipulating the values selected for M
and n by using a formula described by Severance
and Lohman [7].

The Tagging Mechanism
The last operation prior to the closure of the dif­
ferential file consists of appending a sequence of
bytes to the end of the file. This sequence (the tag
of the differential file) consists of the unique cur­
rent tirnestamp associated with the correspond­
ing checkpoint as well as a predefined sequence
of reserved characters, thus uniquely identifying
the differential file. The tagging mechanism en­
sures that all the required physical write opera­
tions have been performed when a differential file
has been successfully closed. The differential file
can then be merged with the physical database
using the UNIX read and write system calls.

The Merging Algorithm
The merging algorithm reads a data from the dif­
ferential file to the UNIX buffer cache. The data
are written to the physical database using the
delayed-write policy implemented by the write
system call. Data are transferred in blocks with
a size corresponding to a page.

Since a failure may occur while the merge is
in progress, a mechanism to indicate the current

30

differential file block that is being merged is im­
plemented. The merging algorithm proceeds as
follows:
1. Before the block of data are read from the dif­

ferential file, a flag which indicates the logical
block number in the differential file, is written
to a predetermined location on disk.

2. The differential file block is read to the
buffer cache and written to the correspond­
ing database file block.

3. The flag is changed to a predefined reserved
block sequence indicating that the merge was
successful. The flag will always correspond to
this sequence if no merge operation is taking
place.
The flag is written to a predetermined loca­

tion on disk. In the event of a system failure,
the recovery manager determines which logical
database file block was being updated. This en­
sures that the state of the database prior to the
failure can be determined if the failure occurred
during the execution of a merge.

Recovery Processing
Upon recovery from a site failure, a redo, no-undo
algorithm is executed. Al~ committed transac­
tions that have possibly not yet been propagated,
are redone. The following recovery steps are taken:
1. If a merge operation was taking place when

the failure occurred, the differential file is re­
merged.

• If the failure occurred while either writ­
ing the flag to disk or unflagging, the
predetermined location will either con­
tain the reserved sequence or the logical
block number. If it contains the reserved
sequence, the recovery manager will re­
initiate the merging algorithm. If the flag
was successfully written to disk prior to
the failure, only the merging of the block
is redone.

• If a differential file block was in the pro­
cess of being merged with the database
file, the existence of the flag will indicate
this. The block corresponding to the flag
address is released and the merging is re­
done. Since the data values will be safely
recorded in the differential file, no infor­
mation is lost.

2. A previous consistent state, consisting of an
old copy of the physical database, is con­
structed. The corresponding differential file
is obtained. All closed but not yet merged
files are subsequently merged into the main
file.

3. The checkpoint record corresponding to the
latest differential file is consulted to obtain a

SACJ/SART, No 4, 1991

list of the transactions to be redone. These
transactions are re- executed.

4. Global system recovery is performed. One
of the advantages of a distributed database
versus its centralized counterpart is that sites
continue processing in the event of failures of
other sites. This implies that the updates on
local copies of the data must be obtained and
executed by the site. Upon recovery, the site
obtains the missed updates from other sites
and performs the necessary updates to the
database [7].

5. After the successful completion of the recov­
ery algorithm, normal processing is resumed.
The NRD NIX Recovery Manager provides the

application with a consistent view of the database
at all times. The application of the recovery tech­
nique is illustrated on the previous example.

Example 2
Consider again the update transaction of example
1:

BEGIN TRANSACTION;
UPDATE client
SET balance= balance+ 50
WHERE age > 65 AND

balance > 100;
COMMIT;
The record values of the corresponding clients

prior to the update are depicted by figure 6 and
the result by figure 7. The records of Client 1 and
Client 2 are located on page 1 of the database file
and those of Client 3 and Client 4 on page 2. The
resulting values are located on pages Id and 2d
in a differential file.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 950

Chent 2 68 2100
Page 2 L;llent 3 77 40000

Ghent 4 89 840

Figure 6: Data values before the execution
of the update transaction.

ff a system failure occurs during the update,
the database may be in any ·of the following
states:
1. The writes were all logically complete, but the

physical writes have not ·been initiated. The
accounts of all the clients therefore still con­
tain the old values as in figure 6. Upon re­
covery, the timestamp of the last successfully
closed differential file is consulted. The result

SACJ/SART, No 4, 1991

PAGE CLIENT AGE BALANCE
Page Id Client 1 67 1000

Client 2 68 2150
Page 2d Client 3 77 40050

Chent 4 89 890

Figure 7: Data values after the successful
completion of the update transaction.

of the update will not be found in the differ­
ential file since it had not yet been written to
disk. It will therefore correctly be concluded
that the results of the transaction had not yet
been propagated. The transaction will be re­
done by using the information recorded in the
local log, resulting in the correct values writ­
ten to all the accounts.

2. The physical write was in progress when the
failure occurred, as shown in figure8. The
accounts of the first two clients contain the
new values R950 and R2100 and those lo­
cated on page 2d still contain the old values.
These pages are located in the differential file,
since only the effects of closed differential files
are merged with the main database file. The
physical database was not influenced. Upon
recovery, the contents of the incomplete dif­
ferential file are discarded and the update is
redone by using the log information.

PAGE CLIEN'! AGE BALANCE
Page ld Client 1 67 1000

Client 2 68 2150
Page 2d Client 3 77 40000

L;lient 4 89 840

Figure 8: Data values during the execution
of the update transaction.

3. The write was both logically and physically
complete, but the merge had not yet been
executed. Again, the updated records were
written to the differential file and the main
database was not effected. The differential
file thus contains the correct amounts for all
the relevant clients shown in figure 7. ff the
differential file was already closed by using
the previously described method, it is merged
with the main database file, the result being
a consistent and current database. ff not, the

31

database is rolled back to the state prior to
the beginning of the differential file and all
the relevant transactions, including the up­
date, are redone by using the log.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 1000

Client 2 68 2150
Page 2 Client 3 77 40050

Client 4 89 840

Figure 9: Data values during the execu­
tion of the merging algorithm in the main
database file.

4. ff the differential file and the main database
file were being merged as shown in figure 8
when the failure occurred, the effects of the
update are recorded in the local log. The un­
merge algorithm is executed. The database
is rolled back to the state prior to the begin­
ning of the differential file and all the rele­
vant transactions, including the updates, are
redone by using the log.

5. ff the merge was successfully completed, as
shown in figure 10, the data values in the ac­
counts of all four clients are up to date. The
transaction's effects are valid and secure.

PAGE CLIENT AGE BALANCE
Page 1 Client 1 67 1000

Client 2 68 2150
Page 2 Client 3 77 40050

Client 4 89 890

Figure 10: The resulting data values in the
main database file after the merge process.

The example illustrates that the recovery al­
gorithm is sufficient to recover from any of the
above situations. The amounts in the clients' ac­
counts are correct and no information is lost when
using this scheme.

Conclusion

The loss of information due to the delayed-write
policy of the UNIX buff er cache is eliminated
by the use of logical logging and differential file
recovery techniques. Committed, but unpropa­
gated, transactions are redone by executing the

32

described recovery algorithm. The merging algo­
rithm is used to construct a previous consistent
database state by combining the main database
file and all the closed, but not yet merged, dif­
ferential files. The use of a tagging mechanism
ensures that only the effects of committed trans­
actions are written to the physical database. The
tag also indicates the last complete differential
file in the system. The timestamp of this differ­
ential file is then used to obtain the corresponding
checkpoint record, thereby ensuring that the nec­
essary transactions are redone. In the event of
a failure during the merge process, the unmerge
algorithm is used to construct a previous consis­
tent state. This ensures the reconstruction of a
previous consistent database state.

Differential files can be used when implement­
ing an incremental dumping recovery facility to
facilitate the recovery from disk failures. Closed
differential files are written to auxilary storage
together with a previous consistent database file.
In the event of a disk failure, a previous consistent
database is constructed by executing the merging
algorithm on the files located on the auxilary stor­
age. This increases the reliability of the DDBMS.

The above mechanisms overcome the short­
comings of UNIX and are· implemented as user
processes. They interface with the UNIX kernel
through standard system calls. It was not neces­
sary to modify the UNIX kernel. The DD BMS,
developed in C, is therefore highly portable and
system independent. One of the main objectives
of the NRD NIX DD BMS, namely to provide a
consistent, but highly portable system, is there­
fore met.

References
[1] J A Anyanwu, [1985], A Reliable Stable

Storage System for UNIX, Software - Prac­
tice and Experience, 15(10).

[2] M J Bach, [1986], The Design of the Unix
Operating System, Prentice-Hall Interna­
tional, Inc.

[3] A Borg et al, [1989], Fault Tolerance un­
der Unix, A CM Transactions on Computer·
Systems, 7(1), 1- 24.

[4] A Deacon, [1988], Global Consistency us­
ing Logical Logs, Technical Report, Depart­
ment of Computer Science, University of
Stellenbosch.

[5] D M Ritchie, [1979], The UNIX 1/0 Sys­
tem, UNIX Programmer's Manual, Seventh
Edition, 522-528.

[6] M H Rennhackkamp, [1990], The NRDNIX
Distributed Database Management System,
South African Computer Journal, 1(1), 5-
10.

SACJ/SART, No 4, 1991

[7] D G Severance and G M Lohman, [1976],
Differential Files: Their Application to
the Maintenance of Large Databases, A CM
Tranactions on Database Systems, 1(3),
256-267.

[8] M Stonebraker, [1981], Operating System
Support !"or Database Management, Com­
munications of the A CM, 24(7), 412-417.

[9] M Stonebraker, [1988], Problems in Sup­
porting Transactions in an Operating Sys­
tem Transaction Manager, ACM Operating
System Review, 19(1), 6-14

[10] H L Viktor, [1988], Distributed Database
Recovery, Proceeding of the RCP Group
Conference for Masters and Ph.D. Students
in Computer Science.

[11] P J Weinberger, [1982], Making UNIX Op­
erating Systems Safe for Databases, The
Bell System Technical Journal, 61(9), 2407-
2423.

SACJ/SART, No 4, 1991 33

Notes for Contributors

The prime purpose of the journal is to publish original
research papers in the fields of Computer Science and
Information Systems, as well as shorter technical
research papers. However, non-refereed review and
exploratory articles of interest to the journal's readers
will be considered for publication under sections
marked as a Communications or Viewpoints. While
English is the preferred language of the journal papers
in Afrikaans will also be accepted. Typed manuscripts
for review should be submitted in triplicate to the
editor.

Form of Manuscript
Manuscripts for review should be prepared according
to the following guidelines.
• Use double-space typing on one side only of A4

paper, and provide wide margins.
• The first page should include:

title (as brief as possible);
author's initials and surname;
author's affiliation and address;
an abstract of less than 200 words;
an appropriate keyword list;
a list of relevant Computing Review Categories.

• Tables and figures should be on separate sheets of
A4 paper, and should be numbered and titled. Figu­
res should be submitted as original line drawings,
and not photocopies.

• Mathematical and other symbols may be either
handwritten or typed. Greek letters and unusual
symbols should be identified in the margin, if they
are not clear in the; text.

• References should be listed at the end of the text in
alphabetic order of the (first) author's surname, and
should be cited in the text in square brackets.
References should thus take the following form:
[1] E Ashcroft and Z Manna, [1972], The translation
of 'GOTO' programs to 'WHILE' programs, Pro­
ceedings of IFIP Congress 71, North-Holland, Am­
sterdam, 250-255.
[2] C Bohm and G J acopini, [1966], Flow diagrams,
Turing machines and languages with only two
formation rules, Comm. ACM, 9, 366-371.
[3] S Ginsburg, [1966], Mathematical theory of context
free languages, McGraw Hill, New York.

Manuscripts accepted for publication should comply
with the above guidelines, and may be provided in one
of the following formats:
• in a typed form (i.e. suitable for scanning);
• as an ASCII file on diskette; or
• as a WordPerfect, TEX or LATEX or file; or

•in camera-ready format.
A page specification is available on request from

the editor, for authors wishing to provide camera­
ready copies. A styles file is available from the
editor for Wordperfect, TEX or LATEX documents.

Charges
Charges per final page will be levied on papers
accepted for publication. They will be scaled to
reflect scanning, typesetting, reproduction and other
costs. Currently, the minimum rate is R20-00 per
final page for camera-ready contributions and the
maximum is Rl00-00 per page for contributions in
typed format.

These charges may be waived upon request of
the author and at the discretion of the editor.

Proofs
Proofs of accepted papers will be sent to the author
to ensure that typesetting is correct, and not for
addition of new material or major amendments to
the text. Corrected proofs should be returned to the
production editor within three days.

Note that, in the case of camera-ready submiss­
ions, it is the author's responsibility to ensure that
such submissions are error-free. However, the
editor may recommend minor typesetting changes
to be made before publication.

Letters and Communications
Letters to the editor are welcomed. They should be.
signed, and should be limited to about 500 words.

Announcements and communications of interest
to the readership will be considered for publication
in a separate section of the journal. Communica­
tions may also reflect minor research contributions.
However, such communications will not be refereed
and will not be deemed as fully-fledged publications
for state subsidy purposes.

Book reviews
Contributions in this regard will be welcomed.
Views and opinions expressed in such reviews
should, however, be regarded as those of the re­
viewer alone.

Advertisement
Placement of advertisements at Rl000-00 per full
page per issue and R500-00 per half page per issue
will be considered. These charges exclude special­
ized production costs which will be borne by the
advertiser. Enquiries should be directed to the
editor.

~.,:~:.:.;.: .. ,.: : .. :::::i:::;:;:::::<:::::•:•:::::::::::;:::::::;:;:::::::=:·:·:::·:::::.·:.: •,•,•,•,•,•,•,•,•,•:·.·.·:·.·.·······:·.·.·.•.•,•.·:·.·.·:·.·.·:·.·:·.·.·.•,·.·:·.·.·.·.·.·.·.·.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.;.;.;.;.;.;.;.;.;.;.;.;.:.;.;.;.;.;.;.;.;.:.:.;.:::.:.:.:.:.:.:.;.:.:.;.;.:.:.;.:.:::.:.;.:.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.:.:.;.;.;.;.:.:.:::.:.:::::.:.:.;.:.:.:.

South African
Computer
Journal

Number 4, March 1991
ISSN 1015-7999

Suid-Mrikaanse
Rekenaar­

tydskrif

N ommer 4, Maart 1991
ISSN 1015-7999

1111111111tlltilllll11"1illl\lllllfttlf.lliltllll

Cori tents

GUEST EDITORIAL

Does Today's Industry Need Qualified Computer Scientists?
Viewpoint I : H S Steiner' . ! • • ~ • • • • F
Viewpoint II : P Visser ... :·. : : . . . 2

RESEARCH ARTICLES

Hypertext for Browsing in Computer Aided Learning
J Barrow 4

CID3: An Extension of ID3 for Attributes with Ordered Domains
I Cloete and H Theron . : 10

The Universal Relation as a Database Interface
M J Philips and S Berman . 17

Database Consistency under UNIX
H L Viktor·and M l{Rennhackkamp 25

An Interrupt Driven Paradigm_ of Con~urrent Programming
P Clayton · ; :-··;-'·: ·. 34

An ADA Compatible Specification Language·
R Bosua and A L du Plessis· ... · .. :.. 46

Knowledge-Based Selection and Combination of Forecasting Methods
GR Finnie . ; ... 1

••••••••••••••••••••••••••••••• •••••••••••• •. • • • .• • • • • • • • • • • • 55

A Causal Analysis qf Job Turnover among Systerti Analysts
· D C Smith, A L Hanson and N C Oosthuizen :. : _. 64

An Analysis of the Usage of Systems Development Methods in South Africa
S Erlank, D Pelteret and M Meskin ·. 68

COMMUNICATIQNS AND REPORTS

Book Reviews .' ·. 78
Editorial Comment : · 80
Automatic Vectorisation

L D Tidwell and S R Schach . 81

