




Editorial Note 

am happy to present the current issue of Quaestiones I nformaticae. 
As indicated in the last issue, Vol.3 No.2, it was necessary to look for 
a new method to produce the journal. Than ks to the efforts of Prof. Judy 
Bishop we have found a way to continue at an acceptable cost, and the 
result is in your hands. Wits University's Computer Centre will do the 
'typesetting' using a laser printer. Judy will use Computer Science 
students to do the proof reading, and Wits will also do the printing. On 
behalf of myself, the Computer Society of SA and the SA Institute of 
Computer Scientists, I want to express my appreciation for all their 
efforts. 

Con rad Mueller, of Wits' Computer Science department has agreed to 
become the circulation manager for QI. He will handle the business side 
of our publication. A hearty welcome to him! 

G. WIECHERS 
Editor. 

STOP PRESS 

QI is now on the official supplementary list of journals considered by the 
National Department of Education for subsidy purposes. 

l 



High-level Debugging Systems for Pascal: 
Interpreter versus Compiler 

MICHAEL HIRSCH 
Department of Applied Mathematics, 

The Weizemann Institute of Science, 
Rehovot, 

76100 Israel 

STEPHEN R. SCHACH 
Department of Computer Science, Vanderbilt University, 

Nashville, Tennessee 97235, U.S.A. 

WILLEM R. VAN BILJON 
Computer Science Division, NRI!1S, CSIR 

Pretoria, 7700 South Africa 

ABSTRACT 

Two approaches to high-level debugging systems for Pascal are 
compared, namely the use of a debugging precompiler as against a de­
bugging interpreter. A description is given of a high-level Pascal de­
bugging interpreter which has the power of the precompiler approach, 
but with none of the disadvantages. 

INTRODUCTION 

A high-level debugger is one whose output reflects the high-level 
language in which the program being debugged was written. Three sys­
tems that support high-level debugging of Pascal programs are the 
PASCAL-I program development environment 1 , HEAPTRACE, a portable 
trace for the Pascal heap 2 , and the Pascal compiler of Watt and Findlay 3 

which provides forward and retrospective trace facilities and a 
post-mortem dump. A very high-level debugger displays a user's data 
structure in a format as close as possible to the way he conceptualizes 
that data structure, be it a tree, or a doubly linked list; GRAPHTRACE, 
a very high-level trace for the Pascal heap", is an example of a very 
high-level debugger for Pascal. 

The systems of Cichelli, and of Watt and Findlay, have a drawback 
in that neither supports dynamic variables. PASCAL-I is an interactive 
program development system for Pascal-S 5 , a subset of Pascal that ex­
cludes dynamic (heap) variables, while Watt and Findlay's high-level post 
mortem dump includes only static variables. A further disadvantage of 
PASCAL-I is that in order to to make use of of the wide variety of 
powerful features provided, the user has to learn a fairly extensive 
command language. 

While GRAPHTRACE and HEAPTRACE specifically provide high-level 
debugging of the heap, they suffer from major limitations as a conse­
quence of the fact they are written in standard Pascal (in order to 
achieve true portability) and as a result of the implementation ~trategies 
chosen. In both packages the user inserts debugging commands (in the 
form of comments) within his source code, which is passed through a 
precompiler. The Pascal output from the precompiler is then compiled 
and linked in the usual way. Tracing of the heap is achieved as follows: 
whenever the user creates (via the new command) a record to be traced, 
the system creates a "hyper-record" which is two-way linked to the 

9 



corresponding record. The hyper-records themselves are two-way linked. 
In this way the system can access any user defined record, even if the 
user has mismanaged his pointers. 

There are four major problems with HEAPTRACE and G RAPHTRACE. 

1. No information can be gained from either system after a run-time 
failure as, in order to achieve portability, both systems are de­
pendent on the Pascal run-time environment. 

2. No interactive modification of the trace commands is possible. The 
commands are inserted into the source code at places where the user 
surmises that diagnostic information would prove helpful; if the user 
now wishes to obtain information from elsewhere in the program, he 
must go through the edit-precompile-compile-link cycle. 

3. Both systems disable the (non-standard) garbage disposal procedure 
release, because the portability constraint requires the hyper-records 
to be stored on the heap itself, and hence no interference with the 
structure of the heap can be permitted. 

4. Finally, the problems of uninitialized variables in general (and 
pointers in particular) require the user to initialize all fields of re­
cords to be traced. 

In this note we describe a debugging system that solves problems 
1) to 4) above, while still providing high-level debugging of all variables, 
including heap variables. In addition, the user need not learn a complex 
command language; debugging commands are almost all specified in the 
form of Pascal statements. Finally, the system is fully portable, being 
written in standard Pascal. 

SYSTEM OVERVIEW 

The debugging interpreter supports all the high-level heap debug­
ging features of HEAP.TRACE 2 , as well as conventional high-level de­
bugging tools. These include a line-by-line execution trace in which each 
source line is printed before it is executed, and a control flow trace (at 
each branch in the program the source line is printed, and information 
as to which branch was taken is given). There is also a variables trace; 
for each I-value, the appropriate source line, the scope of the variable, 
its name, old value and new value are printed. 

The system consists of the portable P compiler 6 , minimally modified, 
together with a debugging P-code interpreter. The compiler generates 
P-code from the user's Pascal source code. The source code, P-code, and 
compiler symbol table are all passed to the interpreter. Hyper-records 
are maintained in a similar fashion to HEAPTRACE and GRAPHTRACE, 
but on a separate heap. The user interacts with the system at run-time 
to enter debugging statements expressed in Pascal. 

This method solves all four of the above problems. Firstly since the 
interpreter flags all run-time errors when they occur, the user may enter 
any debugging statements after his program has crashed, including the 
equivalent of requesting a selective post-mortem dump. The debugging 
statements can be entered either in the source code, or interactively at 
run-time, or both, thus solving problem two. The separate heap for the 
hyper-records solves the third problem; if a record is deleted from the 
program heap via a release command, the heap of hyper-records is ap­
propriately modified. Finally, the interpreter is able to distinguish un­
initialized scalar variables thus enabling the user to trace or to dump 
uninitialized variables. 

The system has no explicit debugging language. It is assumed that 
a programmer debugging a Pascal program is already familiar with Pascal, 
and thus it is the obvious command language. Typical commands are: 

10 



writeln (employeeptrt.socialsecuritynumber); 

or (to change the values of two variables) 

begin 

end; 

y2:=1; 
y3:=2 

However, it was found that Pascal is inadequate for certain debugging 
functions, especially examining the heap. The decision was therefore 
taken to augment Pascal by ten additional standard procedures, such as 
breakpoint (to effect a suspension of execution at a desired point), and 
heapdump·. 

IMPLEMENTATION NOTES 

The system effectively consists of three components, the compiler, 
the interpreter, and the debugger. The compiler generates P-code (for 
a hypothetical stack computer) from the user's source program when 
called by the interpreter, and from the debugging commands when called 
by the debugger. The interpreter simulates the hypothetical stack com­
puter. The debugger is invoked by the interpreter whenever a run-time 
exception occurs. 

The P compiler was extended to accept the ten additional standard 
procedures, and to generate two additional stack computer instructions, 
namely LNO (line number), generated at the start of each statement and 
after each condition, but before the conditional jump, and CDP (call de­
bugging procedure), generated by each of the additional standard pro­
cedures. CDP is analogous to CSP (call standard procedure). Finally 
changes were made so that the system runs in compile-and-go fashion. 

The interpreter is based on the hypothetical stack computer model. 
Extensions were made to this model to allow for a simple tagged archi­
tecture, to monitor the heap, and to interpret the added instructions. 

The architecture of the stack computer has three main stores, namely 
the data store, the code store, and the hyper-heap (where the 
hyper-records are stored), as well as six registers. The registers are 
Stack Pointer (SP), Program Counter (PC), Markstack Pointer (MP), 
Extremestack Pointer, New Pointer and Line Number. The SP, PC and 
MP registers are implemented as value parameters of the interpreter, so 
that recursive calls on the interpreter implicitly permit the enviroment 
to be saved. 

The data store is implemented as an array of variant records, with 
the type of that word of store (integer, character, etc.) as tag field. 
Two Boolean flags are provided, one to denote if the variable is unde­
fined, the other to indicate whether the word in question is being traced. 
The data store contains the stack growing up from 0, and the heap 
growing down. The code store is maintained separately from the data 
store. 

The hyper-heap is implemented as an array of hyper-records. The 
fields of a hyper-record include a pointer to the start of the corre­
sponding structure on the heap (i.e. in the data store), and a pointer 
to the record in the symbol table containing the type information for that 
structure. 

The task of the debugger is exception handling. It reports the ex­
ception to the user, then reconstructs the display from the static link, 

11 



and calls the compiler to solicit a Pascal statement from the user. Finally, 
it calls the interpreter recursively to execute this statement. If possible, 
execution of the user's program is then resumed. 

RESULTS AND CONCLUSIONS 

The system has demonstrated that it is possible to avoid the major 
drawbacks of Pascal high-level debugging systems based on precompilers 
by using an interpreter. The system is portable, and uses Pascal as 
command language, thereby obviating the need for the user to learn a 
separate command language. 

It must be pointed out that, despite this success, the 
debugger-interpreter has some disadvantages of its own. As a conse­
quence of the decision to make only minimal changes to the P compiler, 
certain limitations have been forced on the system. Firstly since the P 
compiler treats enumeration types as integer constants, no type infor­
mation is on hand when certain errors occur. Insufficient information is 
available to supply high-level debugging information for handling a 'value 
out of range' error (generated by instruction CHK) or a 'no case provided 
for value' error (g~enerated by UJC); the relevant enumeration value 
cannot be displayed without the introduction of a third additional P-code. 

More serious is the fact that the compiler does not support any tagged 
features, forcing items to be traced or debugged by address. When 
tracing an array, the address of the array compiles to the same address 
as its first element, causing only the first element to be traced. Similarly, 
when dumping structures, the largest possible structure starting at the 
given address is printed. A request for a dump of the first element of 
an array will thus result in the printing of the whole array. Analogous 
action is taken in the case of records. 

However, these problems can be solved by writing a Pascal inter­
preter (or an interpreter for an abstract syntax tree representation of 
a Pascal program), rather than .modifying an existing compiler. All data 
type and lexical information can then immediately be made available. 

On the grounds of our experiences with precompiler-based Pascal 
debuggers as well as the debugging interpreter described above, it ap­
pears that a Pascal debugging interpreter can provide all the facilities 
of a precompiler-based debugger, but with none of the disadvantages. 
It remains to be seen whether this result is equally applicable to other 
programming languages. 

ACKNOWLEDGEMENT 

The work of Michael Hirsch and Willem van Biljon was supported (in 
part) by the South African Council for Scientific and Industrial Research, 
Pretoria. 

REFERENCES 

1. R. Cichelli, Pascal-I - Interactive, conversational Pascal-S, Assoc. 
Comput. nach. SIGPLAN Notices, 15(1), 34-44 (1980). 

2. S. R. Schach, A portable trace for the Pascal heap, Software -
Practice and Experience, 10, 421-426(1980). 

12 



3. D. A. Watt and W. Findlay, A Pascal diagnostic system, in Pascal: 
The Language and its Implementation (Ed. D. H. Barron), Wiley, 
Chichester, 1981. 

4. S. L. Getz, G. Kalligiannis and S. R. Schach, A very high-level 
interactive graphical trace for the Pascal heap, IEEE Trans. Software 
Engineering, SE-9, 179-185 (1983). 

5. N. Wirth, Pascal-S: A subset and its implementation, in Pascal: The 
Language and its Implementation (Ed. D. H. Barron), Wiley, 
Chichester, 1981. 

6. K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli and Ch. Jacobi, 
Pascal-P implementation notes in Pascal: The Language and its Imple­
mentation (Ed. D. H. Barron), Wiley, Chichester, 1981. 

13 








