QUAESTIONES
INFORMATIC

Vol. 3 No. 3 August, 1985
K. J. MACGREGOR Quo Vadis, Computer Science? 2
M. HIRSCH, High-level Debugging Systems for Pascal : . 9
S. R. SCHACH AND Interpreter versus Compiler

W. R. VAN BILJON

R. SHORT A Consideration of Formalisms in Computing : * 14
G. SUTCLIFFE A Comparison of Methods used to Represent 19

A Graphs on a Computer i :

P. MACHANICK Tools for Creating Tools : 30

Programming in Artificial Intelligence

An official publication of the Computer Society of South Africa and of the
South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Afrika en van
die Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes



QUAESTIONES INFORMATICAE

"An official publication of the Computer Society of South Africa and of the
South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Afrika en van
die Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor: Prof G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

PROFESSOR D. W. BARRON
Department of Mathematics
The University
Southhampton S09 5NH
England

PROFESSOR J. M. BISHOP
Department of Computer Science
University of the Witwatersrand
1 Jan Smuts Aveénue
Johannesburg 2001

PROFESSOR K. MACGREGOR
Department of Computer Science
University of Cape Town

Private Bag
Rondebosch 7700

DR. H. MESSERSCHMIDT
IBM South Africa

P.O. Box 1419
Johannesburg 2000

Subscriptions

Annual subscriptions are as follows:

SA us UK
Individuals R10 $7 £5
Institutions R15 $14 £10

MR. P. C. PIROW

Graduate School of Business
Administration

University of the Witwatersrand
P.O. Box 31170

Braamfontein 2017

MR. P. P. ROETS
NRIMS

CSIR

P.O. Box 395
Pretoria 0001

PROFESSOR S. H. VON SOLMS
Department of Computer Science

Rand Afrikaans University
Auckiand Park

"Johannesburg 2001

PROFESSOR M. H. WILLIAMS
Department of Computer Science
Herriot-Watt University
Edinburgh

Scotland

Circulation and Production Manager

MR. C. S. M. Mueller
Department of Computer Science
University of the Witwatersrand
1 Jan Smuts Avenue
Johannesburg 2001

Quaestiones Informaticae is prepared by the Computer Centre and Central
Graphics Unit, and printed by the Central Printing Unit, all of the
University of the Witwatersrand, for the Computer Society of South Africa
and the South African Institute of Computer Scientists.



Editorial Note

I am happy to present the current issue of Quaestiones Informaticae.
As indicated in the last issue, Vol.3 No.2, it was necessary to look for
a new method to produce the journal. Thanks to the efforts of Prof. Judy
Bishop we have found a way to continue at an acceptable cost, and the
result is in your hands. Wits University's Computer Centre will do the
'typesetting’ using a laser printer. Judy will use Computer Science
students to do the proof reading, and Wits will also do the printing. On
behalf of myself, the Computer Society of SA and the SA Institute of
Computer Scientists, | want to express my appreciation for all their
efforts.

Conrad Mueller, of Wits' Computer Science department has agreed to

become the circulation manager for Ql. He will handle the business side
of our publication. A hearty welcome to him!

G. WIECHERS
Editor.

STOP PRESS

Ql is now on the official supplementary list of journals considered by the
National Department of Education for subsidy purposes.



High-level Debugging Systems for Pascal:
Interpreter versus Compiler

MICHAEL HIRSCH
Department of Applied Mathematics,
The Weizemann Institute of Science,

Rehovot,
76100 Israel

STEPHEN R. SCHACH
Department of Computer Science, Vanderbilt University,
Nashville, Tennessee 97235, U.S.A.

WILLEM R. VAN BILJON
Computer Science Division, NRIMS, CSIR
Pretoria, 7700 South Africa

ABSTRACT

Two approaches to high-level debugging systems for Pascal are
compared, namely the use of a debugging precompiler as against a de-
bugging interpreter. A description is given of a high-level Pascal de-
bugging interpreter which has the power of the precompiler approach,
but with none of the disadvantages.

INTRODUCTION

A high-level debugger is one whose output reflects the high-level
language in which the program being debugged was written. Three sys-
tems that support high-level debugging of Pascal programs are the
PASCAL-! program development environment!, HEAPTRACE, a portable
trace for the Pascal heap?, and the Pascal compiler of Watt and Findlay?
which provides forward and retrospective trace facilities and a
post-mortem dump. A very high-level debugger displays a user's data
structure in a format as close as possible to the way he conceptualizes
that data structure, be it a tree, or a doubly linked list; GRAPHTRACE,
a very high-level trace for the Pascal heap“, is an example of a very
high-level debugger for Pascal.

The systems of Cichelli, and of Watt and Findlay, have a drawback
in that neither supports dynamic variables. PASCAL-Il is an interactive
program development system for Pascal-S®, a subset of Pascal that ex-
cludes dynamic (heap) variables, while Watt and Findlay's high-level post
mortem dump includes only static variables. A further disadvantage of
PASCAL-I is that in order to to make use of of the wide variety of
powerful features provided, the user has to learn a fairly extensive
command language.

While GRAPHTRACE and HEAPTRACE specifically provide high-level
debugging of the heap, they suffer from major limitations as a conse-
quence of the fact they are written in standard Pascal (in order to
achieve true portability) and as a result of the implementation strategies
chosen. In both packages the user inserts debugging commands (in the
form of comments) within his source code, which is passed through a
precompiler. The Pascal output from the precompiler is then compiled
and linked in the usual way. Tracing of the heap is achieved as follows:
whenever the user creates (via the new command) a record to be traced,
the system creates a "hyper-record" which is two-way linked to the



corresponding record. The hyper-records themselves are two-way linked.
In this way the system can access any user defined record, even if the
user has mismanaged his pointers.

There are four major problems with HEAPTRACE and GRAPHTRACE.

1. No information can be gained from either system after a run-time
failure as, in order to achieve portability, both systems are de-
pendent on the Pascal run-time environment.

2. No interactive modification of the trace commands is possible. The
commands are inserted into the source code at places where the user
surmises that diagnostic information would prove helpful; if the user
now wishes to obtain information from elsewhere in the program, he
must go through the edit-precompile-compile-link cycle.

3. Both systems disable the (non-standard) garbage disposal procedure
release, because the portability constraint requires the hyper-records
to be stored on the heap itself, and hence no interference with the
structure of the heap can be permitted.

4. Finally, the problems of uninitialized variables in general (and
pointers in particular) require the user to initialize all fields of re-
cords to be traced.

In this note we describe a debugging system that solves problems
1) to 4) above, while still providing high-level debugging of all variables,
including heap variables. In addition, the user need not learn a complex
command language; debugging commands are almost all specified in the
form of Pascal statements. Finally, the system is fully portable, being
written in standard Pascal.

SYSTEM OVERVIEW

The debugging interpreter supports all the high-level heap debug-
ging features of HEAPTRACE?, as well as conventional high-level de-
bugging tools. These include a line-by-line execution trace in which each
source line is printed before it is executed, and a control flow trace (at
each branch in the program the source line is printed, and information
as to which branch was taken is given). There is also a variables trace;
for each |-value, the appropriate source line, the scope of the variable,
its name, old value and new value are printed.

The system consists of the portable P compiler®, minimally modified,
together with a debugging P-code interpreter. The compiler generates
P-code from the user's Pascal source code. The source code, P-code, and
compiler symbol table are all passed to the interpreter. Hyper-records
are maintained in a similar fashion to HEAPTRACE and GRAPHTRACE,
but on a separate heap. The user interacts with the system at run-time
to enter debugging statements expressed in Pascal.

This method solves all four of the above problems. Firstly since the
interpreter flags all run-time errors when they occur, the user may enter
any debugging statements after his program has crashed, including the
equivalent of requesting a selective post-mortem dump. The debugging
statements can be entered either in the source code, or interactively at
run-time, or both, thus solving problem two. The separate heap for the
hyper-records solves the third problem; if a record is deleted from the
program heap via a release command, the heap of hyper-records is ap-
propriately modified. Finally, the interpreter is able to distinguish un-
initialized scalar variables thus enabling the user to trace or to dump
uninitialized variables.

The system has no explicit debugging language. It is assumed that

a programmer debugging a Pascal program is already familiar with Pascal,
and thus it is the obvious command language. Typical commands are:

10



writeln (employeeptrisocialsecuritynumber);
or (to change the values of two variables)

begin
y2:=1;
y3:=2

end;

However, it was found that Pascal is inadequate for certain debugging
functions, especially examining the heap. The decision was therefore
taken to augment Pascal by ten additional standard procedures, such as
breakpoint (to effect a suspension of execution at a desired point), and
heapdump.

IMPLEMENTATION NOTES

The system effectively consists of three components, the compiler,
the interpreter, and the debugger. The compiler generates P-code (for
a hypothetical stack computer) from the user's source program when
called by the interpreter, and from the debugging commands when called
by the debugger. The interpreter simulates the hypothetical stack com-
puter. The debugger is invoked by the interpreter whenever a run-time
exception occurs.

The P compiler was extended to accept the ten additional standard
procedures, and to generate two additional stack computer instructions,
namely LNO (line number), generated at the start of each statement and
after each condition, but before the conditional jump, and CDP (call de-
bugging procedure), generated by each of the additional standard pro-
cedures. CDP is analogous to CSP (call standard procedure). Finally
changes were made so that the system runs in compile-and-go fashion.

The interpreter is based on the hypothetical stack computer model.
Extensions were made to this mode! to allow for a simple tagged archi-
tecture, to monitor the heap, and to interpret the added instructions.

The architecture of the stack computer has three main stores, namely
the data store, the code store, and the hyper-heap (where the
hyper-records are stored), as well as six registers. The registers are
Stack Pointer (SP), Program Counter (PC), Markstack Pointer (MP),
Extremestack Pointer, New Pointer and Line Number. The SP, PC and
MP registers are implemented as value parameters of the interpreter, so
that recursive calls on the interpreter implicitly permit the enviroment
to be saved.

The data store is implemented as an array of variant records, with
the type of that word of store (integer, character, etc.) as tag field.
Two Boolean flags are provided, one to denote if the variable is unde-
fined, the other to indicate whether the word in question is being traced.
The data store contains the stack growing up from 0, and the heap
growing down. The code store is maintained separately from the data
store.

The hyper-heap is implemented as an array of hyper-records. The
fields of a hyper-record include a pointer to the start of the corre-
sponding structure on the heap (i.e. in the data store), and a pointer
to the record in the symbol table containing the type information for that
structure.

The task of the debugger is exception handling. It reports the ex-
ception to the user, then reconstructs the display from the static link,

11



and calls the compiler to solicit a Pascal statement from the user. Finally,
it calls the interpreter recursively to execute this statement. If possible,
execution of the user's program is then resumed.

RESULTS AND CONCLUSIONS

The system has demonstrated that it is possible to avoid the major
drawbacks of Pascal high-level debugging systems based on precompilers
by using an interpreter. The system is portable, and uses Pascal as
command language, thereby obviating the need for the user to learn a
separate command language.

It must be pointed out that, despite this success, the
debugger-interpreter has some dnsadvantages of its own. As a conse-
quence of the decision to make only minimal changes to the P compiler,
certain limitations have been forced on the system. Firstly since the P
compiler treats enumeration types as integer constants, no type infor-
mation is on hand when certain errors occur. Insufficient information is
available to supply high-level debugging information for handling a ‘value
out of range error (generated by instruction CHK) or a 'no case provided
for value” error (generated by UJC); the relevant enumeration value
cannot be displayed without the introduction of a third additional P-code.

More serious is the fact that the compiler does not support any tagged
features, forcing items to be traced or debugged by address. When
tracing an array, the address of the array compiles to the same address
as its first element, causing only the first element to be traced. Similarly,
when dumping structures, the largest possible structure starting at the
given address is printed. A request for a dump of the first element of
an array will thus result in the printing of the whole array. Analogous
action is taken in the case of records.

However, these problems can be solved by writing a Pascal inter-
preter (or an interpreter for an abstract syntax tree representation of
a Pascal program), rather than.modifying an existing compiler. All data
type and lexical information can then immediately be made available.

On the grounds of our experiences with precompiler-based Pascal
debuggers as well as the debugging interpreter described above, it ap-
pears that a Pascal debugging interpreter can provide all the facilities
of a precompiler-based debugger, but with none of the disadvantages.
It remains to be seen whether this result is equally applicable to other
programming languages.

ACKNOWLEDGEMENT
The work of Michael Hirsch and Willem van Biljon was supported (in

part) by the South African Council for Scientific and Industrial Research,
Pretoria.

REFERENCES

1. R. Cichelli, Pascal-1 - Interactive, conversational Pascal-S, A4ssoc.
Comput. Mach. SIGPLAN Notices, 15(1), 34-44 (1980).

2. S. R. Schach, A portable trace for the Pascal heap, Software -
Practice and Experzence, 10, 421- 426(1980)

12



D. A. Watt and W. Findlay, A Pascal diagnostic system, in Pascal:
The Language and its Implementation (Ed. D. H. Barron), Wiley,
Chichester, 1981.

S. L. Getz, G. Kalligiannis and S. R. Schach, A very high-level
interactive graphical trace for the Pascal heap, 7EEE Trans. Software
Engineering, SE-9, 179-185 (1983).

N. Wirth, Pascal-S: A subset and its implementation, in Pascal: The
Language and its Implementation (Ed. D. H. Barron), Wiley,
Chichester, 1981.

K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli and Ch. Jacobi,

Pascal-P implementation notes in Pascal: The Language and its Imple-
mentation (Ed. D. H. Barron), Wiley, Chichester, 1981.

13



original papers in any field of computing. Papers

submitted may be research articles, review

o articles, exploratory articles of general interest to
= Ty readers of the Journal. The preferred languages
Bl of the Journal will be the congress languages of
& - IFIP although papers in other languages will not
Nl be precluded.

[
]5‘,' The purpose of this journal will be to publish

Manuscripts should be submitted in triplicate to:
~ Prof. G. Wiechérs at:
~ INFOPLAN
- Private Bag 3002
Monument Park 0105

-.".-'—,_—-"_ Form of manuscript

- Manuscripts should be in double-space typing on

~ one side only of sheets of A4 size with wide
- _margins. The original ribbon copy of the typed
- manuscript should be submitted. Authors should
~ write concisely.

~ The first page should include the article title

- (which should be brief), the author's name, and

- the affiliation and address. Each paper must be

~ accompanied by an abstract less than 200 words
- which will be printed immediately below the title
- at the beginning of the paper, together with an

- ~ appropriate key word list and a list of relevant

- Computing Review categories.

~ Tables and figures
~ lllustrations and tables should not be included in

- the text, although the author should indicate the
- S ired location of each in the printed text. Tables

- should be typed on separate sheets and should be
- numbered consecutively and titled.

llustrations should also be supplied on separate

sheets, and each should be clearly identified on

‘the back in pencil with the Author's name and

Original line drawings (not

rints) should be submitted and should
ude all relevant details. Drawings etc., should

. ) and should include all relevant

. Drawings etc., should be about twice the

size required and lettering must be clear and

- open’ and sufficiently large to permit the
- necessary reduction of size in block-making.

- Where photographs are submitted, glossy bromide
~Pr are required. If words or numbers are to
on a photograph, two prints should be

the lettering being clearly indicated on one
] Computer programs or output should
on clear original printouts and preferably

linod p"aper so that they can be reproduced
graphically.

:

; NOTES FOR CONTRIBUTORS

Figure legends should be typed on a separate sheet
and placed at the end of the manuscript.

Symbols

Mathematical and other symbols may be either
handwritten or typewritten. Greek letters and
unusual symbols should be identified in the margin.
Distinction= should be made between capital and
lower case letters; between the letter O and zero;
between the letter |, the number one and prime;
between K and kappa.

References

References should be listed at the end of the
manuscript in alphabetical order of author’'s name,
and cited in the text by number in sqguare
brackets. Journal references should be arranged
thus:

1. ASHCROFT,E. and MANNA,Z.(1972).The
Translation of 'GOTO' Programs to 'WHILE'
Programs, in Proceedings of IFIP Congress
71,North-Holiand, Amsterdam, 250-255.

2. BOHM.,C. and JACOPINI,G. (19€6) . Flow
Diagrams, Turing Machines and Languages with
only Two Formation Rules, Comm.ACM,
9,366-371.

3. GINSBURG,S.(1966). Mathematical Theory of
context-free Languages, McGraw Hill, New
York.

Proofs and reprints

Galley proofs will be sent to the author to ensure
that the papers have been been correctly set up
in type and not for the addition of new material
or amendment of texts. Excessive alterations may
have to be disallowed or the cost charged to the
author. Corrected galley proofs, together with the
original typescript, must be returned to the editor
within three days to minimize the risk of the
author's contribution having to be held over to a
later issue.

Only original papers will be accepted, and
copyright in published papers will be vested in the
publisher.

Letters

A section of "Letters to the Editor" (each limited

to about 500 words) will provide a forum for
discussion of recent problems.

Hierdie notas is ook in Afrikaans verkrygbaar.








