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Editorial Note

I am happy to present the current issue of Quaestiones Informaticae.
As indicated in the last issue, Vol.3 No.2, it was necessary to look for
a new method to produce the journal. Thanks to the efforts of Prof. Judy
Bishop we have found a way to continue at an acceptable cost, and the
result is in your hands. Wits University's Computer Centre will do the
'typesetting’ using a laser printer. Judy will use Computer Science
students to do the proof reading, and Wits will also do the printing. On
behalf of myself, the Computer Society of SA and the SA Institute of
Computer Scientists, | want to express my appreciation for all their
efforts.

Conrad Mueller, of Wits' Computer Science department has agreed to

become the circulation manager for Ql. He will handle the business side
of our publication. A hearty welcome to him!

G. WIECHERS
Editor.

STOP PRESS

Ql is now on the official supplementary list of journals considered by the
National Department of Education for subsidy purposes.
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ABSTRACT

Two approaches to high-level debugging systems for Pascal are
compared, namely the use of a debugging precompiler as against a de-
bugging interpreter. A description is given of a high-level Pascal de-
bugging interpreter which has the power of the precompiler approach,
but with none of the disadvantages.

INTRODUCTION

A high-level debugger is one whose output reflects the high-level
language in which the program being debugged was written. Three sys-
tems that support high-level debugging of Pascal programs are the
PASCAL-! program development environment!, HEAPTRACE, a portable
trace for the Pascal heap?, and the Pascal compiler of Watt and Findlay?
which provides forward and retrospective trace facilities and a
post-mortem dump. A very high-level debugger displays a user's data
structure in a format as close as possible to the way he conceptualizes
that data structure, be it a tree, or a doubly linked list; GRAPHTRACE,
a very high-level trace for the Pascal heap“, is an example of a very
high-level debugger for Pascal.

The systems of Cichelli, and of Watt and Findlay, have a drawback
in that neither supports dynamic variables. PASCAL-Il is an interactive
program development system for Pascal-S®, a subset of Pascal that ex-
cludes dynamic (heap) variables, while Watt and Findlay's high-level post
mortem dump includes only static variables. A further disadvantage of
PASCAL-I is that in order to to make use of of the wide variety of
powerful features provided, the user has to learn a fairly extensive
command language.

While GRAPHTRACE and HEAPTRACE specifically provide high-level
debugging of the heap, they suffer from major limitations as a conse-
quence of the fact they are written in standard Pascal (in order to
achieve true portability) and as a result of the implementation strategies
chosen. In both packages the user inserts debugging commands (in the
form of comments) within his source code, which is passed through a
precompiler. The Pascal output from the precompiler is then compiled
and linked in the usual way. Tracing of the heap is achieved as follows:
whenever the user creates (via the new command) a record to be traced,
the system creates a "hyper-record" which is two-way linked to the



corresponding record. The hyper-records themselves are two-way linked.
In this way the system can access any user defined record, even if the
user has mismanaged his pointers.

There are four major problems with HEAPTRACE and GRAPHTRACE.

1. No information can be gained from either system after a run-time
failure as, in order to achieve portability, both systems are de-
pendent on the Pascal run-time environment.

2. No interactive modification of the trace commands is possible. The
commands are inserted into the source code at places where the user
surmises that diagnostic information would prove helpful; if the user
now wishes to obtain information from elsewhere in the program, he
must go through the edit-precompile-compile-link cycle.

3. Both systems disable the (non-standard) garbage disposal procedure
release, because the portability constraint requires the hyper-records
to be stored on the heap itself, and hence no interference with the
structure of the heap can be permitted.

4. Finally, the problems of uninitialized variables in general (and
pointers in particular) require the user to initialize all fields of re-
cords to be traced.

In this note we describe a debugging system that solves problems
1) to 4) above, while still providing high-level debugging of all variables,
including heap variables. In addition, the user need not learn a complex
command language; debugging commands are almost all specified in the
form of Pascal statements. Finally, the system is fully portable, being
written in standard Pascal.

SYSTEM OVERVIEW

The debugging interpreter supports all the high-level heap debug-
ging features of HEAPTRACE?, as well as conventional high-level de-
bugging tools. These include a line-by-line execution trace in which each
source line is printed before it is executed, and a control flow trace (at
each branch in the program the source line is printed, and information
as to which branch was taken is given). There is also a variables trace;
for each |-value, the appropriate source line, the scope of the variable,
its name, old value and new value are printed.

The system consists of the portable P compiler®, minimally modified,
together with a debugging P-code interpreter. The compiler generates
P-code from the user's Pascal source code. The source code, P-code, and
compiler symbol table are all passed to the interpreter. Hyper-records
are maintained in a similar fashion to HEAPTRACE and GRAPHTRACE,
but on a separate heap. The user interacts with the system at run-time
to enter debugging statements expressed in Pascal.

This method solves all four of the above problems. Firstly since the
interpreter flags all run-time errors when they occur, the user may enter
any debugging statements after his program has crashed, including the
equivalent of requesting a selective post-mortem dump. The debugging
statements can be entered either in the source code, or interactively at
run-time, or both, thus solving problem two. The separate heap for the
hyper-records solves the third problem; if a record is deleted from the
program heap via a release command, the heap of hyper-records is ap-
propriately modified. Finally, the interpreter is able to distinguish un-
initialized scalar variables thus enabling the user to trace or to dump
uninitialized variables.

The system has no explicit debugging language. It is assumed that

a programmer debugging a Pascal program is already familiar with Pascal,
and thus it is the obvious command language. Typical commands are:
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writeln (employeeptrisocialsecuritynumber);
or (to change the values of two variables)

begin
y2:=1;
y3:=2

end;

However, it was found that Pascal is inadequate for certain debugging
functions, especially examining the heap. The decision was therefore
taken to augment Pascal by ten additional standard procedures, such as
breakpoint (to effect a suspension of execution at a desired point), and
heapdump.

IMPLEMENTATION NOTES

The system effectively consists of three components, the compiler,
the interpreter, and the debugger. The compiler generates P-code (for
a hypothetical stack computer) from the user's source program when
called by the interpreter, and from the debugging commands when called
by the debugger. The interpreter simulates the hypothetical stack com-
puter. The debugger is invoked by the interpreter whenever a run-time
exception occurs.

The P compiler was extended to accept the ten additional standard
procedures, and to generate two additional stack computer instructions,
namely LNO (line number), generated at the start of each statement and
after each condition, but before the conditional jump, and CDP (call de-
bugging procedure), generated by each of the additional standard pro-
cedures. CDP is analogous to CSP (call standard procedure). Finally
changes were made so that the system runs in compile-and-go fashion.

The interpreter is based on the hypothetical stack computer model.
Extensions were made to this mode! to allow for a simple tagged archi-
tecture, to monitor the heap, and to interpret the added instructions.

The architecture of the stack computer has three main stores, namely
the data store, the code store, and the hyper-heap (where the
hyper-records are stored), as well as six registers. The registers are
Stack Pointer (SP), Program Counter (PC), Markstack Pointer (MP),
Extremestack Pointer, New Pointer and Line Number. The SP, PC and
MP registers are implemented as value parameters of the interpreter, so
that recursive calls on the interpreter implicitly permit the enviroment
to be saved.

The data store is implemented as an array of variant records, with
the type of that word of store (integer, character, etc.) as tag field.
Two Boolean flags are provided, one to denote if the variable is unde-
fined, the other to indicate whether the word in question is being traced.
The data store contains the stack growing up from 0, and the heap
growing down. The code store is maintained separately from the data
store.

The hyper-heap is implemented as an array of hyper-records. The
fields of a hyper-record include a pointer to the start of the corre-
sponding structure on the heap (i.e. in the data store), and a pointer
to the record in the symbol table containing the type information for that
structure.

The task of the debugger is exception handling. It reports the ex-
ception to the user, then reconstructs the display from the static link,
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and calls the compiler to solicit a Pascal statement from the user. Finally,
it calls the interpreter recursively to execute this statement. If possible,
execution of the user's program is then resumed.

RESULTS AND CONCLUSIONS

The system has demonstrated that it is possible to avoid the major
drawbacks of Pascal high-level debugging systems based on precompilers
by using an interpreter. The system is portable, and uses Pascal as
command language, thereby obviating the need for the user to learn a
separate command language.

It must be pointed out that, despite this success, the
debugger-interpreter has some dnsadvantages of its own. As a conse-
quence of the decision to make only minimal changes to the P compiler,
certain limitations have been forced on the system. Firstly since the P
compiler treats enumeration types as integer constants, no type infor-
mation is on hand when certain errors occur. Insufficient information is
available to supply high-level debugging information for handling a ‘value
out of range error (generated by instruction CHK) or a 'no case provided
for value” error (generated by UJC); the relevant enumeration value
cannot be displayed without the introduction of a third additional P-code.

More serious is the fact that the compiler does not support any tagged
features, forcing items to be traced or debugged by address. When
tracing an array, the address of the array compiles to the same address
as its first element, causing only the first element to be traced. Similarly,
when dumping structures, the largest possible structure starting at the
given address is printed. A request for a dump of the first element of
an array will thus result in the printing of the whole array. Analogous
action is taken in the case of records.

However, these problems can be solved by writing a Pascal inter-
preter (or an interpreter for an abstract syntax tree representation of
a Pascal program), rather than.modifying an existing compiler. All data
type and lexical information can then immediately be made available.

On the grounds of our experiences with precompiler-based Pascal
debuggers as well as the debugging interpreter described above, it ap-
pears that a Pascal debugging interpreter can provide all the facilities
of a precompiler-based debugger, but with none of the disadvantages.
It remains to be seen whether this result is equally applicable to other
programming languages.
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