

Quaestiones lnformaticae
An official publication of the Computer Society of South Africa
'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Afrika

Editor: Prof G. Wiechers
Department of Computer Science and Information Systems
University of South Africa
P.O. Box 392, Pretoria 0001

Editorial Advisory Board
PROFESSOR D. W. BARRON
Department of Mathematics
The University
Southampton S09 5NH
England

PROFESSOR K. GREGOOR
Computer Centre
University of Port Elizabeth
Port Elizabeth 6001
South Africa

PROFESSOR K. MACGREGOR
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch 7700
South Africa

PROFESSOR M. H. WILLIAMS
Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Subscriptions

Annual subscriptions are as follows:

Individuals
Institutions

SA
R6
Rl2

us
$7
$14

UK
£3,0
£6,0

MR P. P. ROETS
NRIMS
CSIR
P.O. Box 395
Pretoria 0001
South Africa

PROFESSOR S. H. VON SOLMS
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg 2001
South Africa

DR H. MESSERSCHMIDT
IBM South Africa
P .0. Box 1419
Johannesburg 2000

MR P. C. PI ROW
Graduate School of Business
Administration
University of the Witwatersrand
P.O. Box 31170
Braamfontein 2017
South Africa

Circulation manager
Mr E Anderssen
Department of Computer Science
Rand Afrikaanse Universiteit
PO Box 524
Johannesburg 2000
Tel.: (011) 726-5000

Quaestiones lnformaticae is prepared for publication by Thomson Publications South Africa (Pty) Ltd for the Computer

Society of South Africa.

NOTE FROM THE EDITOR

Three points must be made by way of introduction to the second issue of Volume
2 of Quaestiones Informaticae.

Firstly, an apology is in order for the mistake in the date (November 1983 instead
of 1982) at the foot of my note introducing the preceding issue. Lacking the services
of a professional proof reader, printing errors are bound to show up from time to
time, but it is hoped that their number will be kept to a minimum!

Secondly, it is a pleasure to announce that this journal will not only serve to publish
papers of a scientific or technical nature on computing matters under the auspices
of the Computer Society of South Africa. An agreement has been reached to share
the facilities of Quaestiones lnformaticae between the CSSA and SAICS, the South
African Institute of Computer Scientists. Henceforth this journal will also be used
to publish the Transactions of this Institute. This implies certain changes to the cover
pages which will be implemented in future issues. I shall continue to serve as editor,
but on behalf of SAICS Prof R. J. van den Heever will share some of my duties
and act as co-editor.

Finally Mr Edwin Anderssen, of Rand Afrikaanse Universiteit, has agreed to serve
as circulation manager for Quaestiones Informaticae. I am grateful indeed that he
is willing to serve the journal in this capacity, and look forward to a long period
of fruitful cooperation.

G WIECHERS

May, 1983

Detecting Errors in Computer Programs
Bill Hetzel

Blue Cross and Blue Shield of Florida

Peter Calingaert
University of North Carolina at Chapel Hill

Abstract
A controlled experiment was designed and conducted to compare three methods for detecting errors in computer
programs: disciplined, structured reading; specification or black-box testing; and a refined form of typical selective
testing. Reading was found to be significantly inferior in effectiveness to the other two methods. Specification and
selective testing did not differ significantly from each other. On the average, subjects found little more than half the
errors present, even on a severity-weighted basis.

Good performance in detecting errors was found to be closely associated with the experimental subjects' com­
puting education, computing background, and self-confidence in performing the experimental tasks. Little associa­
tion was found with the amount of time spent in detection. The distribution of time to detect the next error was observed
to be approximately uniform.

ACM Reviews Categories 4.6; 2.49

Introduction
A major part of the development of any computer program

or system is aimed at assuring that the program actually works
correctly. The definition of how a program is supposed to work
is provided by its specification. If the program does not behave
as specified, it is said to contain an error. Current techniques
for detecting errors are far from perfect. A strong incentive is
present to develop better methods and improve the effectiveness
of our ability to detect errors when they exist. This paper reports
on a study [1] and experiment> that were conducted to aid in
that process.

The basic aim was to learn more about the error-detection
activity. Except for some recent work [21 on the classification
and tabulation of error data, surprisingly little empirical research
has been done in this area. Debugging has been studied by a
number of researchers, but the focus has been on the diagnosis
and correction of errors once they are found [3,4]. This study
was concerned only with the initial detection of errors and not
their removal.

It was desired to compare different error-detection techni­
ques, analyze individual differences in using the techniques,
develop hypotheses and in general gain as much insight as possi­
ble into the error-detection activity. Data were collected ex­
perimentally. The basic design of the experiment centered
around error-detection sessions in which subjects were given a
program and asked to detect the errors in it by using a specified
error-detection method. The next section of the paper describes
the experiment in detail. A third section presents the results of
the experiment and the final section reviews the major conclu­
sions and significance of the study.

EXPERIMENT
Methods

Three methods were selected for comparison - one based
on an examination or reading of the program, a second on
specification or black-box testing, and a third on a mixture of
both reading and testing. The methods were intended to be
broadly representative of the spectrum of possible approaches.

In specification testing, the program source code was not
available and subjects were given only the specifications. The
subjects selected and executed test cases based on the specifica­
tions, and then examined the resulting output for discrepan­
cies. This method is sometimes called black-box testing, for the
subject has no way to determine the internal construction of
the program being tested.

In the mixed method, subjects constructed test cases based
upon examination of both specifications and source code. A
software tool was provided that indicated execution counts and

7

permitted the subject to ensure systematically that each state­
ment was executed at least once. Every subject but one did in
fact execute each statement. Except for this additional criterion,
the mixed method is the testing method typically used by most
programmers.

The reading method selected was a disciplined and structured
desk check. It relied on the fact that the programs were struc­
tured to consist of a simple sequence of paragraphs. Each
paragraph had the property that flow of control entered at the
top and left from the bottom, with the provision that any
paragraph could invoke another. The reading procedure con­
sisted of a bottom-up reading and characterization of each
paragraph, followed by a top-down reading of the complete pro­
gram. As each paragraph was read, its external effects were
characterized on a special Effects Summary form. Basically,
the subject tried to characterize and record the effects of each
paragraph as though it were a high-level statement. After all
paragraphs were characterized, the program was read top-down
with the aid of the Effects Summary form. The resulting pro­
gram effects were compared with the specifications and any dif­
ferences recorded.

Programs
The programs selected were actual applications developed at

the University of North Carolina (Chapel Hill) Computation
Center. One (ANSI) was a program that reads in an arbitrary
Fortran program and converts several statements to conform
to the ANSI Fortran standard. A second (LIBRARY) was a
program to maintain a file of bibliographic references and print
a table of contents and a keyword cross-reference index. The
third (TEST) was a program to score and evaluate multiple­
choice examinations and provide a cumulative examination­
grading report.

Each program was written in a typical production­
programming environment as a carefully structured PL/I pro­
gram. The reason for restricting attention to highly structured
programs is the expectation that such code is rapidly becoming
the norm. The actual errors that were found during the develop­
ment and production use of the programs were recorded and
retained. Each was then reinserted into its program, provided
that proper execution of at least one simple test case was possi­
ble. The programs were therefore free of syntactic and seman­
tic errors; only logical errors were present.

The descriptions for each program were carefully revised and
their clarity was tested in a pilot experiment. The resulting
specifications were considerably clearer and more precise than
is usually the case. Although all three programs were relatively
simple, the modules do represent a spectrum of both applica-

tion and coding complexity. The smallest program (ANSI) con­
tained 75 statements and 5 paragraphs, and the largest (TEST)
had 240 statements and 11 paragraphs.

In this manner three program modules were prepared that
reflected a production environment and contained naturally oc­
curring errors. Each module executed at least one simple test
case correctly and was a realistic approximation to a module
that a programmer might have at the start of testing.

Subjects
The aim of this experiment was to find out not so much what

programmers actually do, but rather what they can do. The at­
tempt was to design an experimental setting to yield results as
good as or better than could be expected in actual practice. This
meant obtaining subjects as highly qualified and experienced
as possible and ensuring that they were strongly motivated. This
was achieved by actively recruiting and selecting subjects to par­
ticipate in the experiment and offering monetary incentive for
high performance. Each subject was paid a minimum of $75.
An additional payment of as much as $200 was based on relative
performance during the experiment. Thirty-nine subjects were
selected, most of whom were highly educated and experienced.
Six were female and thirty-three were male. Just under half held
a master's or Ph.D. degree. Their average work experience in
computing was over three years. All had either work experience
or academic course experience with PL/I. Their backgrounds
are summarized in Table 1.

TABLE I
Subject Backgrounds

Minimum
Age 20
Grades (A= 3, B = 2, C = 1) 1
Degree (Ph.D.= 4, M.S. = 3,
H.S. = 1)
Computing Work
Experience (months) 6
Programming Work
Experience (months) 3
PL/I Work Experience
(months) 0
Computer Science Courses 0
Programming Courses 0

Administration

Mean Maximum
27 38
2,3 3

2,4 4

38 124

36 84

18 61
8 17
3 9

The experiment consisted of each subject trying to detect er­
rors in each of the three programs by using a different method
for each program. Each subject was randomly assigned to one
of three groups A, B, and C. Table 2 shows for each group
the correspondence of testing method to program. For exam­
ple, each subject in group A used the reading method on AN­
SI, the specification method on LIBRARY and the mixed
method on TEST. The order of the three sessions for each sub­
ject was also randomized.

TABLE 2
Assignment of experimental conditions

Method Program
ANSI LIBRARY TEST

Reading A C B
Specification B A C
Mixed C B A

The basic design of the experiment permitted for the three
error-detection methods a comparison that was controlled for
differences in subject, differences in program, and differences
in order of experimental tasks. The primary performance
measure was the percentage of errors found. An alternative
measure was a percentage score weighted according to error
severity.

8

All subjects participated in a five-hour instruction session
prior to the start of the experiment. The objectives of the ex­
periment and the error-detection methods were explained. The
subjects then participated in three error-detection sessions each
lasting between three and five hours. Each subject was given
a time limit that depended only on the program being verified.
The instruction and error-detection sessions were held during
the course of one week in a large classroom reserved for the
purpose. An experiment staff of four persons coordinated and
monitored each session. Generally, two staff members remain­
ed in the classroom to supervise and answer questions while the
other two submitted and returned test runs. These test runs were
prepared on coding sheets given to the experiment staff to be
keypunched and run. After execution the output was returned
to the subject. Special computer center procedures established
for the experiment made it possible to achieve an average tur­
naround time under fifteen minutes. Each subject was thus pro­
vided with excellent response time and freed to concentrate on
the error-detection task.

Subjects did not leave the room without being signed out.
They were permitted to sign out of the experiment for a break
period to avoid losing experiment time waiting for a run to be
returned or to assist the staff in keypunching test data. Any
time spent on breaks was not included in the subject's time limit,
nor counted in his elapsed time. Subjects were instructed to take
a break whenever they became fatigued or had to wait for
output.

Data
At the start of the experiment, each subject was given a

background survey and an attitude survey. The background
survey provided data about each subject's education, experience,
self-estimates of ability, and other background variables. The
attitude survey requested the subject's opinion towards the
various methods and the experiment. It was given again after
the final error-detection session to permit an analysis of attitude
shifts.

The basic data from each session were recorded on error­
detection logs. Each subject logged the submission and return
of test cases, breaks taken, and suspected errors. At the end
of each session, the subject also completed a survey form con­
taining general information about the session. After the experi­
ment, each log was carefully reviewed and encoded. Descrip­
tions of possible errors entered in the logs were matched against
the list of actual errors, and the appropriate error number was
coded. The coded data were read into a program that reproduc­
ed the logs and provided data for further analysis.

RESULTS
Comparison of Methods

The three error-detection methods were compared with
respect to the percentage of the total errors detected with each
method. The results are summarized in Table 3. Averaged across
the three programs, the mixed and specification testing methods
detected just slightly fewer than half of the errors present in
the programs. For the reading method, only 37 % of the er­
rors were found. Similar relative results are seen for each of
the programs individually. The percentages for mixed and
specification testing were very close and the percentages for
reading were considerably poorer.

TABLE 3
Mean percentage of errors detected by all programmers in each

experimental condition

Reading
Specification
Mixed

ANSI LIBRARY
48 33
55 52
57 48

TEST
31
36
35

Mean of 3
Methods

37
48
47

An analysis of variance showed the variances accounted for
by the programs and by the methods to be highly significant.

The variances due to each group, each replicate, and the dif­
ferent task orders were very small and not significant. The mixed
and specification testing methods were not significantly dif­
ferent, but each was very significantly (at the ,001 level) better
than reading.

One question was whether these results might be sensitive to
the severity of the errors detected. Some errors were very minor
and for a few it was even questionable as to whether they were
really errors. A number of weighting schemes were used to assign
to each error a score based on its severity. The data were then
analyzed using the percentage of the total score as criterion.
The conclusions were unchanged. The authors could not even
think of any plausible weighting scheme that led to a different
conclusion. The method differences are present quite uniform­
ly across the different types of errors and are large enough that
the choice of weighting scheme has no effect.

The clear conclusion is that the specification and mixed
methods are essentially equivalent and that reading is significant­
ly inferior.

Individual Differences
One object of the study was to try to explain the observed

individual differences in performance. The ranges of observed
differences are shown in Table 4. In general, the best performer
was two to three times as capable as the worst in mixed and
specification testing, with the spread somewhat greater for
reading. To investigate these differences, an analysis was made
of the association between each subject's performance and his
background, attitudes and approach. Rank order correlation
coefficients and x2 contingency tables were used as measures
of the association between the various variables and a subject's
score.

TABLE 4
Extreme percentages of errors detected by all programmers in

each experimental condition

Lowest Highest
ANSI 20 80

Reading LIBRARY 7 60
TEST 0 67

ANSI 40 67
Specification LIBRARY 20 73

TEST 24 72

ANSI 27 73
Mixed LIBRARY 27 67

TEST 24 48

The analyses showed a number of variables to be significantly
related to good performance in detecting errors. Regardless of
the program being verified or the method used, close associa­
tion was present between performance and the subject's com­
puting education, computing experience, and self-confidence
in performing the experimental tasks.

Little association was found with basic variables such as age,
sex, degree level, other self-estimates and attitudes, and the
amount of time used by the subject.

One interesting variable that showed moderate association
was the number of test cases run by the subject. Particularly
in specification testing, there was evidence that some subjects
adopted a ''try anything'' attitude and just created large
numbers of test cases in hope that some error might show up.
Discounting subjects who submitted over twenty test cases in
a single session, the association between good testing perfor­
mance and the number of test runs was highly significant.

A factor-analysis model of the data was also developed in
an effort to explain the underlying relationships in the data.
In each of some tens of runs with different variables, about
70 % of the variance in the data was accounted for by variables
that could be grouped into four derived factors. The multiple
runs tested the model's sensitivity and showed it to be quite
stable. The four factors were interpreted as experience, self-

9

esteem, computing education, and attitude toward the experi­
ment. A regression prediction model was also produced. The
best-fitting model contained the variables of academic major,
education (measured by number of courses taken), self-esteem,
attitude, and work experience; it gave an average prediction er­
ror of 18 % . The only highly significant variable was academic
major. For the group of subjects in the experiment, this variable
was closely correlated with computing education and computing
experience. Over-all, the regression and factor models support
and strengthen the conclusions obtained from looking at the
association measures. Subjects with substantial computing
education and experience backgrounds who felt confident about
their abilities were the ones most likely to do the best jobs of
detecting errors.

Other Analyses
A number of other analyses were made in an attempt to

develop hypotheses about the error-detection activity and gain
additional insight. Two of the more interesting are reported here.

The first was an analysis of the distribution of the time to
detect the next error. A program was written to count the detec­
tions that occurred in successive time intervals during error
detection. Several theoretical distributions were then fit to the
counts. The results were surprising. The best fit was simply a
uniform distribution, regardless of the method used or the pro­
gram being verified. Subjects steadily increased their knowledge
about the program and tended to try more complex test cases
as the session progressed. A plausible explanation for the
uniform distribution may be that the increasing knowledge and
test case sophistication just about offset the reduced error
population. This is a very different situation from the usual pro­
gram development case. Both Tucker [5] and Schneidewind [6]
have reported an exponential increase in error-detection times
in that situation.

A second analysis examined the individual errors to see
whether different types tended to be found to different extents
by the different methods. If at least one-third more of the sub­
jects detected an error with one method than detected it with
another, then the error was considered to be found to a
significantly different extent by the two methods. Such errors
were then categorized in an effort to establish classes of errors
that tended to be more difficult to detect by one method than
by another. The results confirmed what might be suspected in­
tuitively. Reading did not work well for errors of omission of
code statements. Errors involving interrelationships between
code segments in different paragraphs were also difficult.
Specification testing was more effective for detecting errors that
showed up on test cases suggested by the specifications and less
effective for hard-to-generate test cass. Mixed testing, which
includes some aspects of both reading and specification testing,
tended to fall in the middle. Only one error was detected
significantly more times as a result of. the requirement to ex­
ecute each of the statements at least once. In general, the path
testing requirement seemed to be of very little value.

CONCLUSIONS
How Significant are the Results?

Comparing the three methods gave a very consistent message.
Regardless of the performance measure used, specification
testing and mixed testing were essentially equal and reading was
a poor third. The programs differed significantly, but the
relative performance of the methods was the same for each pro­
gram. In general, this result was unmistakable and convincing.

What about the Generally Poor Performance?
No subject found all the errors in any of the error-detection

sessions and, on the average, only about half the errors were
detected. Why was this performance so poor? Every effort was
made to obtain maximum performance from the subjects. The
programs were clearly structured, computer turnaround was ex­
cellent, subjects were highly educated and motivated, and they
worked without distractions. It is reasonable to conclude that
the results are likely to be better than what can be expected in

actual practice and that the detection of errors is a very dif­
ficult process. The experiment shows that an intensive period
of independent error detection does not provide any assurance
of correctness. One might speculate whether financial incen­
tives to program writers and program testers would lead to the
generation of fewer errors and the detection of more.

Why wasn't the Mixed Method Better?
The mixed method was designed to have the advantages of

both reading and specification testing without the disadvantages
of either. That it did not turn out better shows that the time
and mental effort required to comprehend the source can be
a detriment. Careful concentration on the specifications seems
to lead to better test cases and to increase the likelihood of er­
ror detection.

How Well can Individual Differences be Explained?
Three groups of variables were found to be significantly

associated with error-detection performance - computing
education, computing experience, and self-confidence in error
detection. Use of test runs was also associated to a point. These
associations were found to be present fairly uniformly for all
of the programs and methods. The results suggest that many
of the skills needed for good error-detection performance can
be taught and acquired.

What Else was Learned?
The distribution of the time to find the next error was shown

to be approximately uniform. This was attributed to the increas­
ing subject knowledge and submission of more complex test
cases offsetting the reduced error population. The experiment
also confirmed the logical deductions that reading was not ef­
fective for detecting errors of omission and that specification
testing was not effective for detecting errors that were hard to
generate. Finally, the experiment showed that very little help
in detecting errors was provided by the path testing requirements
to execute each statement.

Other Contributions
Other benefits of this investigation include the data resource

acquired, the experimental methodology, and some suggestions

10

for future research. Worthy of further study are the effect of
different numbers of errors in the program being verified, the
relationship of program complexity to error detection, and a
closer examination of the usefulness of path testing, especially
for larger programs. The raw data have been carefully preserv­
ed in the first author's dissertation [1].

Acknowledgements
The authors gratefully acknowledge the influence of studies

by Gold [7] and Sackman [8] upon the development of the ex­
perimental methodology. This work was partially supported by
the national Science Foundation under Grant GJ-30410.

References
[1] W.C. Hetzel, An Experimental Analysis of Program Verification

Methods. Doctoral Dissertation, University of North Carolina at
Chapel Hill, Chapel Hill, NC, 1976. (Available from Xerox Univer­
sity Microfilms, 300 North Zeeb Road, Ann Arbor, MI 48106).

[2] B.W. Boehm, R.K. McLean and D.B. Urfrig. Some Experience with
Automated Aids to the Design of Large Scale Reliable Software.
In: Proceedings 1975 International Conference on Reliable Soft­
ware, IEEE Catalog no. 75CH0940-7CSR, New York, 1975, pp.
105-113.

[3] J. Gould and P. Drongowski. A Controlled Psychological Study
of Program Debugging. IBM Research Report RC 4083, Yorktown
Heights, NY, 1972.

[4] W.C. Hetzel, A Definitional Framework. In: Program Test
Methods, Englewood Cliffs, NJ, Prentice-Hall, 1973, pp. 7-11

[5] A.E. Tucker, The Correlation of Computer Programming Quality
with Testing Effort. System Development Corporation Report TM
2219, Santa Monica, CA, Jan. 1965.

[6] N .F. Schneidewind, Analysis of Error Processes in Computer Soft­
ware. In: Proceedings 1975 International Conference on Reliable
Software, IEEE Catalog no. 75CH0940-7CSR, New York, 1975,
pp. 337-347.

[7] M.M. Gold, Methodology for Evaluating Time Shared Computer
Usage. Doctoral Dissertation, Alfred P. Sloan School of Manage­
ment, Massachusetts Institute of Technology, Cambridge, MA,
1967.

[8] H. Sackman, Man-Computer Problem Solving: Experimental
Evaluation of Time Sharing and Batch Processing, Princeton, NJ,
Auerbach, 1970.

Notes for Contributors
The purpose of this Journal will be to publish original papers. in

any field of computing. Papers submitted may be research articles,
review articles, exploratory articles of general interest to readers of
the Journal. The preferred languages of the Journal will be the con­
gress languages of IFIP although papers in other languages will not
be precluded .

Manuscripts should be submjtted in triplicate to: Prof. G. Wiechers
at:

Department of Computer Science
University of South Africa
P .O. Box 392
Pretorja 0001
South Africa

Form of manuscript
Manuscripts should be in double-space typing on one side only of

sheets of A4 size with wide margins . The original ribbon copy of the
typed manuscript should be submitted. Authors should write concisely.

The first page should include the article title (which should be brief),
the author's name, and the affiliation and address. Each paper must
be accompanied by a summary of less than 200 words which will be
printed immediately below the title at the beginning of the paper,
together with an appropriate key word list and a list of relevant Com­
puting Review categories.

Tables and figures
Illustrations and tables should not be included in the text, although

the author should indicate the desired location of each in the printed
text. Tables should be typed on separate sheets and should be
numbered consecutively and titled.

Illustrations should also be supplied on separate sheets, and each
should be clearly identified on the back in pencil with the Author's
name and figure number. Original line drawings (not photopriilts)
should be submitted and should include all relevant details . Draw­
ings, etc., should be submitted and should include all relevant details.
Drawings, etc., should be about twice the final size required and let­
tering must be clear and "open" and sufficiently large to permit the
necessary reduction of size in block-making .

Where photographs are submitted, glossy bromide prints are re­
quired. If words or numbers are to appear on a photograph, two prints
should be sent, the lettering tieing clearly indjcated on one print on­
ly. Computer programs or output should be given on clear original
printouts and preferably not on ljned paper so that they can be
reproduced photographically.

Figure legends should be typed on a separate sheet and placed at
the end of the manuscript.

Symbols
Mathematical and other symbols may be either handwritten or

typewritten . Greek letters and unusual symbols should be identified
in the margin. Distinction should be made between capital and lower
c;ase letters between the letter O and zero; between the letter 1, the
number one and prime; bet:"l'een K and kappa .

References
References should be listed at the end of the manuscript in

alphabetical order of author's name, and cited in the text by number
in square brackets. Journal references should be arranged thus:

I.

2.

3.

ASHCROFT, E. and MANNA, Z. (1972). The Translation of
'GOTO' Programs to 'WHILE ' Programs, in Proceedings of
!PIP Congress 71, North-Holland, Amsterdam, 250-255 .
BOHM, C . and JACOPINI, G. (1966) . Flow Diagrams, Tur­
ing Machines and Languages with only Two Formation Rules,
Comm. ACM, 9, 366-371.
GINS.BURG, S. (1966) . Mathematical Theory of context-free
Languages, McGraw Hill, New York .

Proofs and reprints
Galley proofs will be sent to the author to ensure that the papers

have been correctly set up in type and not for the addition of new
material or amendment of texts. Excessive alterations may have to
be disallowed or the cost charged against the author. Corrected galley
proofs, together with the original typescript, must be returned to the
editor within three days to minimize the risk of the author's contribu­
tion having to be held over to a later issue.

Fifty reprints of each article will be supplied free of charge. Addi­
tional copies may be purchased on a reprint order form which will
accompany the proofs.

Only original papers will be accepted, and copyright in published
papers will be vested in the publisher.

Letters
A section of "Letters to the Editor" (each limited to about 500

words) will provide a forum for discussion of recent problems.

Hierdie notas is ook in Afrikaans verkrygbaar.

