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SPECIAL ISSUE - 7th SA COMPUTER SYMPOSIUM 

PREFACE 

When the first SA Computer Symposium was held at the 
CSIR in the early eighties, it was unique. There was no 
other forum at the time for the presentation of research in 
computer science. In the intervening decade, 
conferences, symposia and workshops have sprung up in 
response to demand, and now there are several successful 
ventures, some into their third or fourth iteration. Each 
of ~ these addresses a specific topic - for example, 
hypermedia, expert systems, parallel processing or formal 
aspects of computing - and attracts a specialised audience, 
well versed in the subject and eager to learn more. For 
the main part, the proceedings are informal, and certainly 
not archival. 

SACRS, though, is still unique, in that it deliberately 
covers a broad spectrum of research in computing, and in 
addition, seeks to provide a lasting record of the 
proceedings. To achieve the second aim, we negotiated 
with the SA Institute of Computer Scientists for the 
proceedings to form a special issue of the SA Computer 
Journal, and the copy you have in front of you is the 
result. The collaboration between the symposium 
committee and the journal's editorial board placed high 
standards on the refereeing and final presentation of the 
papers, to the symposium's benefit, while we were still 
able to maintain a fresh, audience-oriented approach to 
the selection of papers. 

This is SACJ's· first such special issue, and the 
largest issue (at 145 pages) to date. We hope that it is 
only the beginning of future such collaborations. 

In all 29 papers were received, all were refereed 
twice, and 19 were chosen for presentation by the 
programme committee. All the papers were thoroughly 
revised by the authors on the basis of the referee's 
comments, and the committee's suggestions aimed at 
making the material more accessible to a broadly-based 
audience. Papers had to be new, and not to have been 
presented elsewhere, a requirement that is still unusual 
within the SA conference round. 

A third goal of SACRS has been to invite keynote 
speakers, usually from overseas. This year, we are 
fortunate to present Dr Vinton Cerf, the father of the 
Internet and a world-renown expert on computer 
networks. Although his paper is not available for this 
special issue, it will appear later in SACJ. Through the 

good offices of Professor Chris Brink of UCT, we also 
have three other speakers from Germany, Canada and the 
US adding interest to the event, and two of their papers 
appear in this issue. 

The programme committee originally devised a theme 
for the symposium - "Computing in the New South 
Africa". We received several queries as to the meaning 
of this theme, but unfortunately few papers that addressed 
it directly. One prospective author went as far as to 
enquire whether computer research would survive in the 
new South Africa. Another felt that his work was 
definitely not in the theme, as it was genuine, old world, 
basic, theoretical science! Neverthless, there are two 
papers that consider one of South Africa's key issues, that 
of language. Others look at the success we have achieved 
in applying technology to mining, and the future of 
low-cost operating systems. In all, the mix of papers 
represents a balance between the theoretical and the 
practical, the past and the future, all firmly based in the 
computing of the present. 

Organising the symposium has involved the hard 
work of several people, and I would like to thank in 
particular 
• Derrick Kourie, my co-organiser, and the editor of 
SACJ for his invaluable advice and hard work throughout 
the planning and implementation stages; 
• Riel Smit, the production editor, for attaining such a 
high standard in such a short time for so many papers; 
• Gerrit Prinsloo and the staff at the CSSA for their 
efficeint and quite delightfully unfussy organisation; 
• Persetel for their very generous sponsorship of 
R25000, and Tim Schumann for taking a genuine interest 
in our events; 
• the Foundation for Research Development for 
sponsoring Vint Cerf's visit; 
• and finally the Department of Computer Science of 
the University of Pretoria for providing the ideal working 
conditions for undertaking ventures of this kind, and. 
especially Roelf van den Reever for his unfailing 
encouragement and support. 

Judy M Bishop 
Organising Chairman, SACRS 1992 
Guest Editor, SACJ Special Issue 
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ESML-A Validation Language for Concurrent Systems 

P J A de Villiers and W C Visser 
Institute/or Applied Computer Science, University of Stellenbosch, Stellenbosch 7600 

Abstract 

Designing a concurrent reactive system which can be proven correct is a challenging task. A promising technique involves 
building a validation model which can be shown to have important correctness properties. This paper describes a language 
to specify such models. A model consists of one or more interconnected state machines. The global state of a model is the 
combined state of all state machines. Channels which enable state machines to communicate form part of the global state. 
Temporal logic is used to specify correctness requirements of a model and a validation system (based on model checking) 
can be used to check these requirements. Design errors such as deadlock can thus be detected. 
Keywords: Verification, Specification, Temporal logic, Concurrency 
Computing Review Categories: D2.1, D2.4, F3.l 
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1 Introduction 

Fonnal methods supported by efficient software tools are 
now available to simplify the design and validation of com­
plex protocols [11, 12]. Although these tools may not be 
useful to many people--protocols are standardised nowa­
days and few people design their own protocols-we are 
discovering that similar techniques can be applied to de-

. velop other reactive systems for which no "standard" de­
signs exist. The correctness of even small reactive systems 
can be important when used in life-critical control appli­
cations. Examples are: process control systems, flexible 
manufacturing systems and systems used in aviation. It 
is therefore a challenge to develop effective tools for the 
design and validation of these systems. 

Most software systems are still designed and speci­
fied by using only diagrams and descriptions in natural 
language. To make this process less error prone we need 

• fonnal specification languages to describe the beha­
viour of a system and state requirements to be met by 
a design. 

• effective validation tools which can be used to check 
that a design meets its requirements. 

There are two approaches to specification: single language 
and dual language [17]. In the single language approach 
the specification of the behaviour of a system is assumed 
to capture the real intentions of the designer. Most spec­
ifications are complex, however, and may contain errors. 
It is so that the very fonnality of the notation forces one 
to think hard about the problem which helps to eliminate 
errors. But effective tools are not yet available to prove that 
such designs are "correct". The reason may be that cur­
rently available specification languages such as VDM [14] 
or Z [ 19] were not designed with mechanical verification 
in mind. 

Manna and Pnueli introduced the dual language ap­
proach to specification based on/air transition systems and 
temporal logic [18, 15, 16]. A set of requirements are spec-
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ified in addition to specifying the behaviour of a system. 
Temporal logic is used to specify typical requirements for 
reactive systems such as responsiveness and deadlock free­
dom. The advantage of the dual language approach is that 
a validation tool can be used to check the behavioural spec­
ification against a set of requirements. Such a tool can be 
based on model checking [3, 4, 2]-an efficient technique 
to search for error conditions. A system designer is thus 
provided with a secure method to check a specification for 
correctness. 

We are developing a validation system for reactive 
systems which is based on the dual language approach. To 
specify requirements we use the temporal logic CIL as 
first defined in [3]. We have developed a model checker 
to verify a model against its requirements specification [SJ. 
Unfortunately existing specification languages include un­
bounded constructs which make model checking impos­
sible. We therefore decided to design an experimental 
validation language which is tailored to the efficient model 
checking of reactive systems. CSP [9] was accepted as a 
framework for the design. The language is described in 
this paper and is called ESML (Extended State Machine 
Language). 

2 Model Checking System 

Extended state machines (ESMs) were chosen to model re­
active systems. The state machine formalism is one of the 
oldest and most widely accepted models of computation 
and provides a natural medium to describe the dynamic 
behaviour of complex reactive systems. An ESM is a state 
machine enhanced with data variables, guarded actions, 
concurrency and communication. CSP was adopted as 
a basis for concurrency and communication: unbuffered, 
blocking communication primitives are used to transmit 
messages over channels (which are accessed through ports). 
A location variable is associated with each ESM to in-
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dicate which guarded action it should execute next. A 
brief overview of the most important features of our model 
checker is presented here to motivate the design of ESML. 
For details the reader is referred to [5]. 

The contents of all data variables, location variables 
and ports are collectively called the global system state. 
It is encoded as compactly as possible in a data structure 
called the state vector. Although early model checkers 
generated a graph of the entire reachable state space to be 
analysed during subsequent verification phases,.we use an 
"on-the-fly" technique which is more efficient [12]: instead 
of generating the entire state space (which may be imprac­
tically large) only the subspace necessary to verify each 
requirement is generated. 

Model checking is considered to be one of the most 
promising validation techniques available and is far more 
than a mere "brute force" state exploration technique. Re­
searchers are currently launching an attack on the so-called 
state explosion problem by attempting to find methods to 
prevent unnecessary states from being generated at all [13, 
20, 8]. Holzmann developed an efficient technique to deter­
mine whether each newly generated state has been visited 
before [10]. This allows a substantial amount of unneces­
sary work to be avoided. In a nutshell, the state vector is 
used as an index into a bit vector. Thus each possible global 
state corresponds to a unique bit in the bit vector. All bits 
are set to zero initially. For each newly generated state its 
corresponding bit in the bit vector is tested. If the bit is 
zero, it is set to one to indicate that the state has been vis­
ited; otherwise the state can often be ignored. Our model 
checker incorporates this technique and also uses a special 
memory allocation technique to save space by exploiting 
the sparseness of the bit vector. 

To produce an executable validator the ESML model is 
translated into functionally equivalent code that is linked to 
the model checker. The code corresponding to the ESML 
model can be seen as a state generator which is (indirectly) 
controlled by the model checker. The model ctiecker au­
tomatically determines which states are to be evaluated in 
order to verify a given requirement specification. When 
designing ESML we set ourselves the following goals: 

• The language should support modular design and com­
plex data structures. 

• The state vector should be kept as small as possible to 
keep the corresponding bit vector down to a manage­
able size. 

3 ESML Validation Language Overview 

A reactive system consists of a controller (typically a hier­
archy of cooperating components) reacting to signals from 
some external environment. A validation model must spec­
ify the behaviour of a system (the specification proper) and 
corresponding correctness criteria (the requirement speci­
fication). 

We decided to use a small kernel [7] which supports 
processes and message passing as a representative exam­
ple of the kind of reactive systems to be validated. CSP [9] 
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was selected as a design framework for our validation lan­
guage because it provided an effective guideline during the 
design of the kernel and seems to be generally applica­
ble. The design of ESML was inspired by two existing 
languages: the systems programming language Joyce [1] 
and the validation language PROMELA [11]. Joyce is a 
strongly typed programming language based on CSP. It 
provided a design framework for ESML. PROMELA was 
designed to model and validate protocols. It shows which 
constructs can be implemented efficiently. 

After studying PROMELA and also gaining some ex­
perience by modelling several fragments of the kernel we 
made the following observations: 

• Dijkstra guarded commands [6] as used in PROMELA 
provide a powerful and convenient control structure. 

• PROMELA supports rather sophisticated interprocess 
communication: synchronous as well as asynchronous 
message passing which can be buffered or unbuffered. 
With CSP as a design framework, communication is 
simpler: only unbuffered synchronous message pass­
ing is needed. 

• Process creation in Joyce is simpler than in PRO­
MELA. Shared variables are forbidden in Joyce and 
communication provides the only method of exchang­
ing information between processes. This simplified 
framework for concurrency makes it possible to iden­
tify independent concurrent transitions. Only one of 
many possible interleavings of events need be analysed 
when concurrent transitions are independent [8, 13]. 

• To model the kind of reactive systems we have in 
mind, two constructs are needed for data structur­
ing: records-to group related data together-and se­
quences. At the level we wish to specify systems, 
the actual implementation of sequences is not impor­
tant. We thus decided to avoid indexed arrays as used 
in PROMELA. It is sometimes necessary to combine 
these structures to form more complex structures. For 
example, a typical data structure is a queue of process 
records associated with the process scheduler in the 
kernel we wish to model. Each process record groups 
together related data about a specific process (process 
number, process state) while the queue is a sequence 
of such process records. Model checking requires the 
state vector to be of finite length. Since all data struc­
tures form part of the state vector, sequences must be 
restricted to be finite (we call them lists). Records are 
finite by definition. 

A model of a reactive system consists of a hierarchy of 
ESMs (similar to Joyce agents). An ESM can contain 
typed variables as well as other ESMs. Standard operators 
are provided to manipulate booleans and integers. ESMs 
execute concurrently once created and may communicate 
over channels. ES Ms take the place of modules in a design. 

Extended BNF notation is used to define the ESML 
grammar: [a] denotes the sentence a or the empty sentence 
and {a} denotes a finite sequence of sentences a or the 
empty sentence. 
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Type and Variable Definitions 
Variables form part of the state vector and therefore com­
pact representation is important. Variable ranges are fixed 
by type definitions. Type BOOLEAN is predefined and is 
represented by a single bit. Instead of predefining a number 
of standard types (say, 16 bits for an integer), subranges are 
declared in order to allocate just the right number of bits. 
For example, if numbers can range from Oto 10 in a specific 
application, a type Number could be defined as a subrange 
0 .. 10 to fit into 4 bits. This idea would probably be awk­
ward in a programming language. For example, it raises 
several questions about type equivalence. We settle these 
issues in a simple way by using name equivalence for type 
checking. Two different subranges of the integers are thus 
not of the same type. Although it is possible, the intention 
is not to define several different subranges of the integers 
in the same validation model. A user should define a single 
type (a subrange of integers) which is suitable for all num­
bers in a validation model. Although somewhat restrictive, 
we feel that this scheme can be tolerated here because only 
a limited number of variables can be afforded in any vali­
dation model. The keywords "TYPE" and "VAR" indicate 
type and variable definitions respectively. 

TypeDef = 
TypeName "=" NewType ";". 

lewType = 
lewListType lewRecordType 
lewPortType lewSubrange. 

lewSubrange = 
Numeral" .. " Numeral. 

Examples: 
TYPE lumber= 0 .. 10; 
VAR counter!, counter2: lumber; 

Port Types 
Brinch Hansen found that the most common errors in 
Joyce programs were type errors in communication com­
mands. He concluded that "any CSP language must in­
clude message declarations which permit complete type 
checking during compilation". For this we found it con­
venient to adopt the idea of a port type as defined in 
Joyce. A port type T defines an alphabet which is a set 
{ so (To), s 1 (T1), ... , sn(Tn)} of symbol classes. The values 
in each symbol class si(11) are formed by prefixing each 
value of type 11 with the name Si. Each value 11 repre­
sents a message. Symbol classes make it possible to group 
related messages together conveniently. A special symbol 
class can be defined with no associated messages. This is 
called a signal. "EndStream" in the example below is an 
example of a signal. 

NewPortType ="{"Alphabet"}". 
Alphabet= 

SymbolClass { "," SymbolClass }. 
SymbolClass = 

Symbollame [ "(" MessageType ")" ]. 
KessageType = Typelame. 

Examples: 
TYPE lumber= 0 .. 10; 
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TYPE Stream= 
{value(lumber), EndStream}; 

An ESM sends a message to be received by anotherESM by 
using two simple communication commands. A message 
m which belongs to symbol class S of alphabet T is sent 
via a port p by the command p ! s (m). Similarly a message 
m which belongs to symbol class S is received via a port p 
and assigned to a variable x of type T by writing p?S(x). 
When a message is sent, the sending ESM waits until a 
matching receive command is executed by another ESM. 
Similarly an ESM wanting to receive a message waits until 
a message of the specified type is sent. 

Structured Data 
Lists (sequences of finite length) and records are used to 
model commonly used data structures. The maximum 
length of a list is specified by a constant between square 
brackets as shown in the example below. Combinations of 
these structures such as a list of records, a record of lists or 
a list of lists are also allowed. 

tlewListType = 
"LIST" "[" Constant "]" "OF" Typelame. 

lewRecordType = "(" FieldList ")". 
FieldList = 

RecordSection { ";" RecordSection }. 
RecordSection = 

Fieldlame RecordTail. 
RecordTail = 

"," RecordSection I ":" Typelame. 

Examples: 
TYPE Sequence= LIST [5] OF lumber; 
TYPE ProcessRecord = 

(Processlumber, Priority: lumber); 
The standard operations"::", "HEAD", ''TAIL'', "FIRST'', 
"LAST'' and "LENGTH" are available to manipulate lists. 
The operation "::" is used to catenate a single new value 
to either end of a list. "HEAD" returns the first element 
of a list. ''TAIL'' returns the list without its first element. 
"FIRST'' returns the list without its last element. "LAST'' 
returns the last element in a list and "LENGTH" returns the 
number of elements in a list. 

Fundamental Instructions 
Arithmetic expressions based on the four basic operators 
as well as logical expressions with and("/\"), or("\/"), 
not("-") and the usual relational operators are supported. 
After evaluating an expression the result can be assigned 
to a type compatible variable. Range checks are always 
done before assignments. A control structure is provided 
by Dijkstra guarded commands: 

IfStatement = 
"IF" GuardedCommandList "FI". 

DoStatement = 
"DO" GuardedCommandList "OD". 

GuardedCommandList = 
GuardedCommand { "[]" GuardedCommand }. 

GuardedCommand = 
Expression"->" StatementSeq. 
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StatementSeq = 
Statement {";"Statement}. 

Statement= AssignmentStatement 
IfStatement I DoStatement I 
ESMStatement I InputOutputStatement. 

Examples: 
IF x >= 0 -> z:= x 
[] x <= O -> z:= -x 
FI; 
DO c > 0 -> c:= c - 1 OD; 

Concurrency and Communication 
A new ESM is activated (created and started) by executing 
an ESM statement. Every ESM may activate additional 
ESMs. An ESM cannot terminate until all ESMs created 
by it have terminated. 

ESMStatement = 
ESMRame [ " (" ActualParamList ")" ] . 

During the activation of an ESM new copies of all its 
variables are created by allocating space in the state vector. 
Recursive creation ofESMs (like in Joyce) is not supported 
because the small number of ESMs which can be created 
( due to the limited size of the state vector) renders such 
a feature hardly usable. ESMs are therefore similar, but 
not identical to Joyce agents. 1\vo kinds of parameters are 
supported: value parameters and ports. Ports are marked by 
one of the keywords "IN" or "OUT' to indicate the direction 
of transfer. An ESM statement must provide an actual 
parameter ( of matching type) for every formal parameter 
defined by the ESM definition. Space is allocated in the 
state vector for every formal parameter. In the case of value 
parameters the value of the corresponding actual parameter 
is assigned to each formal parameter. When an ESM is 
activated its ports are mapped onto the corresponding ports 
of the creator to form channels. An ESM definition consists 
of an ESMname, formal parameters and body. 

ESM = 
"ESM" ESMRame Block ESMRame 

Block= 
[ "(" FormalParamList ")"] 

FormalParamList = 
ParamDef { ";" ParamDef }. 

ParamDef = 
"IR" VariableGroup 
"OUT" VariableGroup 
VariableGroup. 

ESMBody = 

"·" , ESMBody. 

[ ConstantDefPart] [ TypeDefPart] 
[ VariableDefPart] {ESH";"} 
"BEGIN" StatementSeq "EID". 

Scope of Named Entities 
ESMs can be nested and may declare variables, types and 
constants as named entities. The scope of a variable x 
declared in an ESMA extends from directly after its dec­
laration to the end of A. However, x is unknown in any 
ESMs contained in A. There are no global variables. The 
scope rules for constants and types are slightly different. 
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Constants and types are known from directly after their dec­
laration to the end of the ESM containing the declaration 
unless they are redefined by some nested ESM. 

Specifying Requirements 
Temporal logic provides a powerful tool to specify correct­
ness requirements of reactive systems. A classification of 
such requirements is given in [16]. We adopted the branch­
ing time temporal logic en. as first defined in [3]. Most 
requirements are expressed in one of two general forms: 

• For all execution sequences a property a holds globally 
(in every state). This is written as AG( a). 

• For all execution sequences a state can be found where 
a property a holds. This is written as AF(a). 

These basic forms can be used to specify meaningful 
requirements concisely. For example, let the fact that two 
processes are not both inside their critical regions Ct and 
C2 be expressed by a = -,(Ct /\ C2). Mutual exclusion 
requires that property a must hold for all states along all 
execution sequences. This is specified by AG(-,( Ct /\ 
C2)). For a more detailed discussion of the specification 
of requirements the reader is referred to [5]. 

A validation model consists of an ESM (which may 
contain other ESMs) followed by a requirement specifica­
tion (a en. formula). 

ValidationModel = 
"MODEL" ESM ";" Requirement "EID". 

Requirement= "ASSERT" CTLFormula. 

The validation system will determine whether the require­
ment following the keyword "ASSERT' is satisfied by the 
given ESM. If the requirement specification is violated, the 
validation system will produce a trace which enables a user 
to locate the error. 

4 Examples 

Objects 
Figure 1 shows a queue which stores integer values in the 
range 0 .. 5. The operations put, get, isEmpty and isFull can 
be performed on the queue. It is implemented by defining 
an ESM for the queue object, a receive (/N) channel for the 
operations and a send (OU/) channel for the results to be 
returned. The ESM lntQueue has two channels: input for 
operations and output for results. The example shows how 
the queue object is defined by means of an ESM. Requests 
are sent via the intQ channel and the results are received on 
the Result channel. For example the instruction sequence 
intQ!get; Result?item(x) would return the first item from 
the queue and assign it to x. 

Resource Allocation 
1\vo ESMs A and B share a resource. A and Buse theReq 
channel to request the resource and receive it via the Res 
channel. The formula AG ( (Req = Get) => AF (Res = 
OK) ) following the keyword ASSERT states the require­
ment that "when a Get signal is put on the Req channel 
an OK signal must eventually appear on the Res channel". 
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ESM QueueSystem; 
TYPE 

IITEGER = 0 .. 6; 
Queueinp = 

{put(UTEGER), 
get, 
isEmpty, 
isFull}; 

QueueOut = 
{item(IITEGER), 
empty(BOOLEAI), 
full(BOOLEAI)}; 

VAR 
intQ: Queueinp; 
result: QueueOut; 

ESM IntQueue( 
II in: Queueinp; 
OUT out: QueueOut); 
COIST Qmax = 3; 
TYPE 

QueueType = 
LIST[Qmax] OF INTEGER; 

VAR 
queue: QueueType; 
x: IITEGER; 

BEGII 
DO TRUE-> 

OD 

IF in?put(x) -> 
queue:= queue::x 

[] in?get -> 
x:= HEAD(queue); 
out!item(x) 

[] in?isEmpty -> 
out!empty(LEIGTH(queue) = O) 

[] in?isFull -> 
out!full(LEIGTH(queue) = Qmax) 

FI 

EID IntQueue; 

BEGII 
IntQueue(intQ,result) 

EID QueueSystem 
Figure 1. A queue of integers 
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MODEL 
ESM ResourceAlloc; 

TYPE 
Request= {Get,Release}; 
Result= {OK}; 

VAR 
Req: Request; 
Res: Result; 

ESH A( 
OUT Req: Request; 
II Res: Result); 

BEGII 
DO TRUE-> 

Req!Get; 
Res?OK; 
Req!Release 

OD 
EID A; 

ESH B( 
OUT Req: Request; 
II Res: Result); 

BEGII 
DO TRUE-> 

Req!Get; 
Res?OK; 
Req!Release 

OD 
EID B; 

ESH Resource( 
OUT Res : Result ; 
II Req: Request); 
VAR InUse: BOOLEAI; 

BEGII 
InUse:= FALSE; 
DO TRUE-> 

OD 

DO -InUse /\ Req?Get -> 
InUse:= TRUE; Res!OK 

[] InUse /\ Req?Release -> 
InUse:= FALSE 

OD 

EID Resource; 

BEGII 
A(Req,Res); 
B(Req,Res); 
Resource(Res,Req) 

EID ResourceAlloc; 

ASSERT 
AG((Req =Get)=> AF(Res = OK)) 

EID 
Figure 2. Resource allocation 



This deceivingly simple model contains an error. Assume 
that the resource has been allocated to B (an OK signal 
is present on channel Res). A now requests the resource 
(Get signal on channel Req). B tries to reiease the resource 
(Release signal on channel Req). However, A is already 
waiting (blocked) on the Req channel with a Get signal. 
Thus B is also blocked on the Req channel; Resource also 
cannot proceed (lnUse is TRUE and no Release signal is 
available on channel Req). The requirement is thus vio­
lated. 

The problem is that the Resource server as shown in 
Figure 2 ignores a get request until the resource is not in 
use. One way to eliminate this problem would be to change 
ESM Resource to return a signal NotOK to any Get request 
while the resource is in use. 

5 Final Remarks 

An efficient model checker capable of analysing models of 
non-trivial size has been developed. Models acceptable to 
the model checker are state transition systems. To make 
the system easy to use we designed a validation language, 
called ESML, to model reactive systems. Validation mod­
els written in ESML can be translated to equivalent state 
transition systems which can be accepted by the model 
checker. ESML is based on extended state machines which 
incorporate complex data structures and communication 
over channels. 

We are currently developing a translator for ESML. 
The validation system is written in Modula-2. The system 
has been designed to be portable-it was developed on a 
personal computer running MSDOS and moved to a Unix 
workstation simply by recompiling it. A personal computer 
is adequate for small applications but the model checker 
needs a more powerful machine (more memory) to handle 
models of realistic size. 

As a representative example of the kind of system we 
wish to validate we chose a small kernel which supports 
a variable number of processes and interprocess commu­
nication. The design of ESML has been influenced by 
modelling various fragments of this kernel. The size of the 
state vector places a limit on the size of problem which can 
be handled on currently available hardware and more work 
remains to be done to evaluate the suitability of ESML as 
a validation language for reactive systems. 
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Notes for Contributors 

The prime purpose of the journal is to publish original 
research papers in the fields of Computer Scien~e and In­
formation Systems, as well as shorter technical research 
papers. However, non-refereed review and exploratory ar­
ticles of interest to the journal's readers will be considered 
for publication under sections marked as Communications 
or Viewpoints. While English is the preferred language 
of the journal, papers in Afrikaans will also be accepted. 
Typed manuscripts for review should be submitted in trip­
licate to the editor. 

form of Manuscript 
. Manuscripts for review should be prepared according to the 
following guidelines. 

• Use wide margins and 1 ! or double spacing. 
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- title (as brief as possible); 

- author's initials and surname; 
- author's affiliation and address; 

- an abstract of less than 200 words; 

- an appropriate keyword list; 

- a list of relevant Computing Review Categories. 

• Tables and figures should be numbered and titled. 
Figures should be submitted as original line draw­
ings/printouts, and not photocopies. 

• References should be listed at the end of the text in 
alphabetic order of the (first) author's surname, and 
should be cited in the text in square brackets (1, 2, 3]. 
References should take the form shown at. the end of 
these notes. 

Manuscripts accepted for publication should comply with 
the above guidelines (except for the spacing requirements), 
and may be provided in one of the following formats (listed 
in order of preference): 

1. As (a) ~TE'{ file(s), either on a diskette, or via e­
maiVftp - a It.TEX style file is available from the pro­
duction editor; 

2. In camera-ready format - a detailed page specification 
is available from the production editor; 

3. As an ASCII file accompanied by a hard-copy showing 
formatting intentions: 

• Tables and figures should be on separate sheets of 
paper, clearly numbered on the back and ready for 
cutting and pasting. Figure titles should appear 
in the text where the figures are to be placed. 

• Mathematical and other symbols may be either 
handwritten or typed. Greek letters and unusual 
symbols should be identified in the margin, if 
they are not clear in the text. 

Further instructions on how to reduce page charges can 
be obtained from the production editor. 

4. In a typed form, suitable for scanning. 

Charges 
Charges per final page will be levied on papers accepted 
for publication. They will be scaled to reflect scanning, 
typesetting, reproduction and other costs. Currently, the 
minimum rate is R20-00 per final page for It.TEX or camera­
ready contributions and the maximum is Rl00-00 per page 
for contributions in typed format. 

These charges may be waived upon request of the au­
thor and at the discretion of the editor. 

Proofs 
Proofs of accepted papers in categories 3 and 4 above will 
be sent to the a .. ,.thor to ensure that typesetting is correct, 
and not for addition of new material or major amendments 
to the text. Corrected proofs should be returned to the 
production editor within three days. 

Note that, in the case of camera-ready submissions, it 
is the author's responsibility to ensure that such submis­
sions are error-free. However, the editor may recommend 
minor typesetting changes to be made before publication. 

Letters and Communications 
, Letters to the editor are welcomed. They should be signed, 

and should be limited to less than about 500 words. 
Announcements and communications of interest to the 

readership will be considered for publication in a separate 
section of the journal. Communications may also reflect 
minor research contributions. However, such communi­
cations will not be refereed and will not be deemed as 
fully-fledged publications for state subsidy purposes. 

Book reviews 
Contributions in this regard will be welcomed. Views and 
opinions expressed in such reviews should, however, be 
regarded as those of the reviewer alone. 

Advertisement 
Placement of advertisements at R 1000-00 per full page per 
issue and R500-00 per half page per issue will be consid­
ered. These charges exclude specialized production costs 
which will be borne by the advertiser. Enquiries should be 
directed to the editor. 
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