

Editor

The South African
Computer Journal

An official publication of rhe Sourh African
Compurer Sociery and the South African lnslirure of

Compurer Scienlisrs

Die Suid-Afrikaanse
Rekenaartydskrlf

'n Amprelilce publilcasie van die Suid-Afrilcaanse
Relcenaarvereniging en die Suid-Afrilcaanse Jnsli1uu1

vir Relcenaarwelenslcaplilces

Professor Derrick G Kourie
Department of Computer Science
University of Pretoria

Subeditor: Information Systems
Prof John Schochot
University of the Witwatersrand
Private Bag 3

Productio .. ~ Editor
Prof G de V Smit
Department of Computer Science
University of Cape Town
Rondebosch 7700 Hatfield 0083 WITS 2050

Email: dkourie@dos-lan.cs.up.ac.za Email: 035ebrs@witsvma.wits.ac.za Email: gds@cs.uct.ac.m

Editorial Board

Professor Gerhard Barth
Director: German AI Research Institute

Professor Pieter Kritzinger
University of Cape Town

Professor Judy Bishop
University of Pretoria

Professor Donald Cowan
University of Waterloo

Professor Jiirg Gutknecht
ETH, Ziirich

Southern Africa:

Elsewhere

Professor F H Lochovsky
University of Toronto

Professor Stephen R Schach
Vanderbilt University

Professor S H von Solms
Rand Afrikaanse Universiteit

Subscriptions

Annual

R45,00

$45,00

Single copy

R15,00

$15,00
to be sent to:

Computer Society of South Africa
Box 1714 Halfway House 1685

Comp,,ter Sdmce Depan,,,au, lJ,tiW!mty of Pretoria, Pretoria 0002
Phone: (lnt)+(012)+4~2504 F-.· (lnt)+(D12)+"1-6454 ffltt.lll: dkowuo,tw-rf,c.c.r.-,,.ac.z,,

PROCEEDINGS

Guest Editor: Judy M Bishop

PERSETEL
Organised by the SA Institute of Computer Scientists

in association with the Computer Society of SA

Sponsored by Persetel and the FRO

SPECIAL ISSUE - 7th SA COMPUTER SYMPOSIUM

PREFACE

When the first SA Computer Symposium was held at the
CSIR in the early eighties, it was unique. There was no
other forum at the time for the presentation of research in
computer science. In the intervening decade,
conferences, symposia and workshops have sprung up in
response to demand, and now there are several successful
ventures, some into their third or fourth iteration. Each
of ~ these addresses a specific topic - for example,
hypermedia, expert systems, parallel processing or formal
aspects of computing - and attracts a specialised audience,
well versed in the subject and eager to learn more. For
the main part, the proceedings are informal, and certainly
not archival.

SACRS, though, is still unique, in that it deliberately
covers a broad spectrum of research in computing, and in
addition, seeks to provide a lasting record of the
proceedings. To achieve the second aim, we negotiated
with the SA Institute of Computer Scientists for the
proceedings to form a special issue of the SA Computer
Journal, and the copy you have in front of you is the
result. The collaboration between the symposium
committee and the journal's editorial board placed high
standards on the refereeing and final presentation of the
papers, to the symposium's benefit, while we were still
able to maintain a fresh, audience-oriented approach to
the selection of papers.

This is SACJ's· first such special issue, and the
largest issue (at 145 pages) to date. We hope that it is
only the beginning of future such collaborations.

In all 29 papers were received, all were refereed
twice, and 19 were chosen for presentation by the
programme committee. All the papers were thoroughly
revised by the authors on the basis of the referee's
comments, and the committee's suggestions aimed at
making the material more accessible to a broadly-based
audience. Papers had to be new, and not to have been
presented elsewhere, a requirement that is still unusual
within the SA conference round.

A third goal of SACRS has been to invite keynote
speakers, usually from overseas. This year, we are
fortunate to present Dr Vinton Cerf, the father of the
Internet and a world-renown expert on computer
networks. Although his paper is not available for this
special issue, it will appear later in SACJ. Through the

good offices of Professor Chris Brink of UCT, we also
have three other speakers from Germany, Canada and the
US adding interest to the event, and two of their papers
appear in this issue.

The programme committee originally devised a theme
for the symposium - "Computing in the New South
Africa". We received several queries as to the meaning
of this theme, but unfortunately few papers that addressed
it directly. One prospective author went as far as to
enquire whether computer research would survive in the
new South Africa. Another felt that his work was
definitely not in the theme, as it was genuine, old world,
basic, theoretical science! Neverthless, there are two
papers that consider one of South Africa's key issues, that
of language. Others look at the success we have achieved
in applying technology to mining, and the future of
low-cost operating systems. In all, the mix of papers
represents a balance between the theoretical and the
practical, the past and the future, all firmly based in the
computing of the present.

Organising the symposium has involved the hard
work of several people, and I would like to thank in
particular
• Derrick Kourie, my co-organiser, and the editor of
SACJ for his invaluable advice and hard work throughout
the planning and implementation stages;
• Riel Smit, the production editor, for attaining such a
high standard in such a short time for so many papers;
• Gerrit Prinsloo and the staff at the CSSA for their
efficeint and quite delightfully unfussy organisation;
• Persetel for their very generous sponsorship of
R25000, and Tim Schumann for taking a genuine interest
in our events;
• the Foundation for Research Development for
sponsoring Vint Cerf's visit;
• and finally the Department of Computer Science of
the University of Pretoria for providing the ideal working
conditions for undertaking ventures of this kind, and.
especially Roelf van den Reever for his unfailing
encouragement and support.

Judy M Bishop
Organising Chairman, SACRS 1992
Guest Editor, SACJ Special Issue

Referees

The journal draws on a wide range of referees. The following were involved in the refereeing of the papers
selected for this special issue. Their role in certifying the papers and their contribution to enhancing the quality of papers
is sincerely appreciated.

John Barrow
Ronnie Becker
Danie Behr
Sonia Berman
Liesbeth Botha
Theo Bothma
Chris Brink
Peter Clayton
Ian Cloete
Antony Cooper
Elise Ehlers
Quintin Gee
Andy Gravell
Wendy Hall
David Harel
Scott Haz.elhurst
Derrick Kourie
Willem Labuschagne
Doug Laing
Dave Levy
Graham. McLeod
Hans Messerschmidt
Deon Oosthuizen
Ben Oosthuysen
Neil Pendock
D Petkov
Martin Rennhackkamp
Cees Roon
Jan Roos
John Shochot
Morris Sloman
Riel Smit
Pat Terry
Walter van den Heever
Lynn van der Vegte
Herman Venter
Hema Viktor

UNI SA
University of Cape Town
University of Pretoria
University of Cape Town
University of Pretoria
University of Pretoria
University of Cape Town
Rhodes University
Stellenbosch University
CSIR
Rand Afrikaanse University
DALSIG
University of Southampton
University. of Southampton
The Weizmann Institute of Science
University of the Witwatersrand
University of Pretoria
UNI SA
ISM
University of Natal
University of Cape Town
University of the Orange Free State
University of Pretoria
University of Pretoria
University of the Witwatersrand
University of Natal
Stellenbosch University
University of Pretoria
University of Pretoria
University of the Witwatersrand
Imperial College, London
University of Cape Town
Rhodes University
University of Pretoria
University of Pretoria
University of Fort Hare
Stellenbosch University

ii

ESML-A Validation Language for Concurrent Systems

P J A de Villiers and W C Visser
Institute/or Applied Computer Science, University of Stellenbosch, Stellenbosch 7600

Abstract

Designing a concurrent reactive system which can be proven correct is a challenging task. A promising technique involves
building a validation model which can be shown to have important correctness properties. This paper describes a language
to specify such models. A model consists of one or more interconnected state machines. The global state of a model is the
combined state of all state machines. Channels which enable state machines to communicate form part of the global state.
Temporal logic is used to specify correctness requirements of a model and a validation system (based on model checking)
can be used to check these requirements. Design errors such as deadlock can thus be detected.
Keywords: Verification, Specification, Temporal logic, Concurrency
Computing Review Categories: D2.1, D2.4, F3.l

Received March 1992, Accepted April 1992

1 Introduction

Fonnal methods supported by efficient software tools are
now available to simplify the design and validation of com­
plex protocols [11, 12]. Although these tools may not be
useful to many people--protocols are standardised nowa­
days and few people design their own protocols-we are
discovering that similar techniques can be applied to de-

. velop other reactive systems for which no "standard" de­
signs exist. The correctness of even small reactive systems
can be important when used in life-critical control appli­
cations. Examples are: process control systems, flexible
manufacturing systems and systems used in aviation. It
is therefore a challenge to develop effective tools for the
design and validation of these systems.

Most software systems are still designed and speci­
fied by using only diagrams and descriptions in natural
language. To make this process less error prone we need

• fonnal specification languages to describe the beha­
viour of a system and state requirements to be met by
a design.

• effective validation tools which can be used to check
that a design meets its requirements.

There are two approaches to specification: single language
and dual language [17]. In the single language approach
the specification of the behaviour of a system is assumed
to capture the real intentions of the designer. Most spec­
ifications are complex, however, and may contain errors.
It is so that the very fonnality of the notation forces one
to think hard about the problem which helps to eliminate
errors. But effective tools are not yet available to prove that
such designs are "correct". The reason may be that cur­
rently available specification languages such as VDM [14]
or Z [19] were not designed with mechanical verification
in mind.

Manna and Pnueli introduced the dual language ap­
proach to specification based on/air transition systems and
temporal logic [18, 15, 16]. A set of requirements are spec-

SACJ/SART, No 7, 1992

ified in addition to specifying the behaviour of a system.
Temporal logic is used to specify typical requirements for
reactive systems such as responsiveness and deadlock free­
dom. The advantage of the dual language approach is that
a validation tool can be used to check the behavioural spec­
ification against a set of requirements. Such a tool can be
based on model checking [3, 4, 2]-an efficient technique
to search for error conditions. A system designer is thus
provided with a secure method to check a specification for
correctness.

We are developing a validation system for reactive
systems which is based on the dual language approach. To
specify requirements we use the temporal logic CIL as
first defined in [3]. We have developed a model checker
to verify a model against its requirements specification [SJ.
Unfortunately existing specification languages include un­
bounded constructs which make model checking impos­
sible. We therefore decided to design an experimental
validation language which is tailored to the efficient model
checking of reactive systems. CSP [9] was accepted as a
framework for the design. The language is described in
this paper and is called ESML (Extended State Machine
Language).

2 Model Checking System

Extended state machines (ESMs) were chosen to model re­
active systems. The state machine formalism is one of the
oldest and most widely accepted models of computation
and provides a natural medium to describe the dynamic
behaviour of complex reactive systems. An ESM is a state
machine enhanced with data variables, guarded actions,
concurrency and communication. CSP was adopted as
a basis for concurrency and communication: unbuffered,
blocking communication primitives are used to transmit
messages over channels (which are accessed through ports).
A location variable is associated with each ESM to in-

59

dicate which guarded action it should execute next. A
brief overview of the most important features of our model
checker is presented here to motivate the design of ESML.
For details the reader is referred to [5].

The contents of all data variables, location variables
and ports are collectively called the global system state.
It is encoded as compactly as possible in a data structure
called the state vector. Although early model checkers
generated a graph of the entire reachable state space to be
analysed during subsequent verification phases,.we use an
"on-the-fly" technique which is more efficient [12]: instead
of generating the entire state space (which may be imprac­
tically large) only the subspace necessary to verify each
requirement is generated.

Model checking is considered to be one of the most
promising validation techniques available and is far more
than a mere "brute force" state exploration technique. Re­
searchers are currently launching an attack on the so-called
state explosion problem by attempting to find methods to
prevent unnecessary states from being generated at all [13,
20, 8]. Holzmann developed an efficient technique to deter­
mine whether each newly generated state has been visited
before [10]. This allows a substantial amount of unneces­
sary work to be avoided. In a nutshell, the state vector is
used as an index into a bit vector. Thus each possible global
state corresponds to a unique bit in the bit vector. All bits
are set to zero initially. For each newly generated state its
corresponding bit in the bit vector is tested. If the bit is
zero, it is set to one to indicate that the state has been vis­
ited; otherwise the state can often be ignored. Our model
checker incorporates this technique and also uses a special
memory allocation technique to save space by exploiting
the sparseness of the bit vector.

To produce an executable validator the ESML model is
translated into functionally equivalent code that is linked to
the model checker. The code corresponding to the ESML
model can be seen as a state generator which is (indirectly)
controlled by the model checker. The model ctiecker au­
tomatically determines which states are to be evaluated in
order to verify a given requirement specification. When
designing ESML we set ourselves the following goals:

• The language should support modular design and com­
plex data structures.

• The state vector should be kept as small as possible to
keep the corresponding bit vector down to a manage­
able size.

3 ESML Validation Language Overview

A reactive system consists of a controller (typically a hier­
archy of cooperating components) reacting to signals from
some external environment. A validation model must spec­
ify the behaviour of a system (the specification proper) and
corresponding correctness criteria (the requirement speci­
fication).

We decided to use a small kernel [7] which supports
processes and message passing as a representative exam­
ple of the kind of reactive systems to be validated. CSP [9]

60

was selected as a design framework for our validation lan­
guage because it provided an effective guideline during the
design of the kernel and seems to be generally applica­
ble. The design of ESML was inspired by two existing
languages: the systems programming language Joyce [1]
and the validation language PROMELA [11]. Joyce is a
strongly typed programming language based on CSP. It
provided a design framework for ESML. PROMELA was
designed to model and validate protocols. It shows which
constructs can be implemented efficiently.

After studying PROMELA and also gaining some ex­
perience by modelling several fragments of the kernel we
made the following observations:

• Dijkstra guarded commands [6] as used in PROMELA
provide a powerful and convenient control structure.

• PROMELA supports rather sophisticated interprocess
communication: synchronous as well as asynchronous
message passing which can be buffered or unbuffered.
With CSP as a design framework, communication is
simpler: only unbuffered synchronous message pass­
ing is needed.

• Process creation in Joyce is simpler than in PRO­
MELA. Shared variables are forbidden in Joyce and
communication provides the only method of exchang­
ing information between processes. This simplified
framework for concurrency makes it possible to iden­
tify independent concurrent transitions. Only one of
many possible interleavings of events need be analysed
when concurrent transitions are independent [8, 13].

• To model the kind of reactive systems we have in
mind, two constructs are needed for data structur­
ing: records-to group related data together-and se­
quences. At the level we wish to specify systems,
the actual implementation of sequences is not impor­
tant. We thus decided to avoid indexed arrays as used
in PROMELA. It is sometimes necessary to combine
these structures to form more complex structures. For
example, a typical data structure is a queue of process
records associated with the process scheduler in the
kernel we wish to model. Each process record groups
together related data about a specific process (process
number, process state) while the queue is a sequence
of such process records. Model checking requires the
state vector to be of finite length. Since all data struc­
tures form part of the state vector, sequences must be
restricted to be finite (we call them lists). Records are
finite by definition.

A model of a reactive system consists of a hierarchy of
ESMs (similar to Joyce agents). An ESM can contain
typed variables as well as other ESMs. Standard operators
are provided to manipulate booleans and integers. ESMs
execute concurrently once created and may communicate
over channels. ES Ms take the place of modules in a design.

Extended BNF notation is used to define the ESML
grammar: [a] denotes the sentence a or the empty sentence
and {a} denotes a finite sequence of sentences a or the
empty sentence.

SACJ/SART, No 7, 1992

Type and Variable Definitions
Variables form part of the state vector and therefore com­
pact representation is important. Variable ranges are fixed
by type definitions. Type BOOLEAN is predefined and is
represented by a single bit. Instead of predefining a number
of standard types (say, 16 bits for an integer), subranges are
declared in order to allocate just the right number of bits.
For example, if numbers can range from Oto 10 in a specific
application, a type Number could be defined as a subrange
0 .. 10 to fit into 4 bits. This idea would probably be awk­
ward in a programming language. For example, it raises
several questions about type equivalence. We settle these
issues in a simple way by using name equivalence for type
checking. Two different subranges of the integers are thus
not of the same type. Although it is possible, the intention
is not to define several different subranges of the integers
in the same validation model. A user should define a single
type (a subrange of integers) which is suitable for all num­
bers in a validation model. Although somewhat restrictive,
we feel that this scheme can be tolerated here because only
a limited number of variables can be afforded in any vali­
dation model. The keywords "TYPE" and "VAR" indicate
type and variable definitions respectively.

TypeDef =
TypeName "=" NewType ";".

lewType =
lewListType lewRecordType
lewPortType lewSubrange.

lewSubrange =
Numeral" .. " Numeral.

Examples:
TYPE lumber= 0 .. 10;
VAR counter!, counter2: lumber;

Port Types
Brinch Hansen found that the most common errors in
Joyce programs were type errors in communication com­
mands. He concluded that "any CSP language must in­
clude message declarations which permit complete type
checking during compilation". For this we found it con­
venient to adopt the idea of a port type as defined in
Joyce. A port type T defines an alphabet which is a set
{ so (To), s 1 (T1), ... , sn(Tn)} of symbol classes. The values
in each symbol class si(11) are formed by prefixing each
value of type 11 with the name Si. Each value 11 repre­
sents a message. Symbol classes make it possible to group
related messages together conveniently. A special symbol
class can be defined with no associated messages. This is
called a signal. "EndStream" in the example below is an
example of a signal.

NewPortType ="{"Alphabet"}".
Alphabet=

SymbolClass { "," SymbolClass }.
SymbolClass =

Symbollame ["(" MessageType ")"].
KessageType = Typelame.

Examples:
TYPE lumber= 0 .. 10;

SACJ/SART, No 7, 1992

TYPE Stream=
{value(lumber), EndStream};

An ESM sends a message to be received by anotherESM by
using two simple communication commands. A message
m which belongs to symbol class S of alphabet T is sent
via a port p by the command p ! s (m). Similarly a message
m which belongs to symbol class S is received via a port p
and assigned to a variable x of type T by writing p?S(x).
When a message is sent, the sending ESM waits until a
matching receive command is executed by another ESM.
Similarly an ESM wanting to receive a message waits until
a message of the specified type is sent.

Structured Data
Lists (sequences of finite length) and records are used to
model commonly used data structures. The maximum
length of a list is specified by a constant between square
brackets as shown in the example below. Combinations of
these structures such as a list of records, a record of lists or
a list of lists are also allowed.

tlewListType =
"LIST" "[" Constant "]" "OF" Typelame.

lewRecordType = "(" FieldList ")".
FieldList =

RecordSection { ";" RecordSection }.
RecordSection =

Fieldlame RecordTail.
RecordTail =

"," RecordSection I ":" Typelame.

Examples:
TYPE Sequence= LIST [5] OF lumber;
TYPE ProcessRecord =

(Processlumber, Priority: lumber);
The standard operations"::", "HEAD", ''TAIL'', "FIRST'',
"LAST'' and "LENGTH" are available to manipulate lists.
The operation "::" is used to catenate a single new value
to either end of a list. "HEAD" returns the first element
of a list. ''TAIL'' returns the list without its first element.
"FIRST'' returns the list without its last element. "LAST''
returns the last element in a list and "LENGTH" returns the
number of elements in a list.

Fundamental Instructions
Arithmetic expressions based on the four basic operators
as well as logical expressions with and("/\"), or("\/"),
not("-") and the usual relational operators are supported.
After evaluating an expression the result can be assigned
to a type compatible variable. Range checks are always
done before assignments. A control structure is provided
by Dijkstra guarded commands:

IfStatement =
"IF" GuardedCommandList "FI".

DoStatement =
"DO" GuardedCommandList "OD".

GuardedCommandList =
GuardedCommand { "[]" GuardedCommand }.

GuardedCommand =
Expression"->" StatementSeq.

61

StatementSeq =
Statement {";"Statement}.

Statement= AssignmentStatement
IfStatement I DoStatement I
ESMStatement I InputOutputStatement.

Examples:
IF x >= 0 -> z:= x
[] x <= O -> z:= -x
FI;
DO c > 0 -> c:= c - 1 OD;

Concurrency and Communication
A new ESM is activated (created and started) by executing
an ESM statement. Every ESM may activate additional
ESMs. An ESM cannot terminate until all ESMs created
by it have terminated.

ESMStatement =
ESMRame [" (" ActualParamList ")"] .

During the activation of an ESM new copies of all its
variables are created by allocating space in the state vector.
Recursive creation ofESMs (like in Joyce) is not supported
because the small number of ESMs which can be created
(due to the limited size of the state vector) renders such
a feature hardly usable. ESMs are therefore similar, but
not identical to Joyce agents. 1\vo kinds of parameters are
supported: value parameters and ports. Ports are marked by
one of the keywords "IN" or "OUT' to indicate the direction
of transfer. An ESM statement must provide an actual
parameter (of matching type) for every formal parameter
defined by the ESM definition. Space is allocated in the
state vector for every formal parameter. In the case of value
parameters the value of the corresponding actual parameter
is assigned to each formal parameter. When an ESM is
activated its ports are mapped onto the corresponding ports
of the creator to form channels. An ESM definition consists
of an ESMname, formal parameters and body.

ESM =
"ESM" ESMRame Block ESMRame

Block=
["(" FormalParamList ")"]

FormalParamList =
ParamDef { ";" ParamDef }.

ParamDef =
"IR" VariableGroup
"OUT" VariableGroup
VariableGroup.

ESMBody =

"·" , ESMBody.

[ConstantDefPart] [TypeDefPart]
[VariableDefPart] {ESH";"}
"BEGIN" StatementSeq "EID".

Scope of Named Entities
ESMs can be nested and may declare variables, types and
constants as named entities. The scope of a variable x
declared in an ESMA extends from directly after its dec­
laration to the end of A. However, x is unknown in any
ESMs contained in A. There are no global variables. The
scope rules for constants and types are slightly different.

62

Constants and types are known from directly after their dec­
laration to the end of the ESM containing the declaration
unless they are redefined by some nested ESM.

Specifying Requirements
Temporal logic provides a powerful tool to specify correct­
ness requirements of reactive systems. A classification of
such requirements is given in [16]. We adopted the branch­
ing time temporal logic en. as first defined in [3]. Most
requirements are expressed in one of two general forms:

• For all execution sequences a property a holds globally
(in every state). This is written as AG(a).

• For all execution sequences a state can be found where
a property a holds. This is written as AF(a).

These basic forms can be used to specify meaningful
requirements concisely. For example, let the fact that two
processes are not both inside their critical regions Ct and
C2 be expressed by a = -,(Ct /\ C2). Mutual exclusion
requires that property a must hold for all states along all
execution sequences. This is specified by AG(-,(Ct /\
C2)). For a more detailed discussion of the specification
of requirements the reader is referred to [5].

A validation model consists of an ESM (which may
contain other ESMs) followed by a requirement specifica­
tion (a en. formula).

ValidationModel =
"MODEL" ESM ";" Requirement "EID".

Requirement= "ASSERT" CTLFormula.

The validation system will determine whether the require­
ment following the keyword "ASSERT' is satisfied by the
given ESM. If the requirement specification is violated, the
validation system will produce a trace which enables a user
to locate the error.

4 Examples

Objects
Figure 1 shows a queue which stores integer values in the
range 0 .. 5. The operations put, get, isEmpty and isFull can
be performed on the queue. It is implemented by defining
an ESM for the queue object, a receive (/N) channel for the
operations and a send (OU/) channel for the results to be
returned. The ESM lntQueue has two channels: input for
operations and output for results. The example shows how
the queue object is defined by means of an ESM. Requests
are sent via the intQ channel and the results are received on
the Result channel. For example the instruction sequence
intQ!get; Result?item(x) would return the first item from
the queue and assign it to x.

Resource Allocation
1\vo ESMs A and B share a resource. A and Buse theReq
channel to request the resource and receive it via the Res
channel. The formula AG ((Req = Get) => AF (Res =
OK)) following the keyword ASSERT states the require­
ment that "when a Get signal is put on the Req channel
an OK signal must eventually appear on the Res channel".

SACJ/SART, No 7, 1992

ESM QueueSystem;
TYPE

IITEGER = 0 .. 6;
Queueinp =

{put(UTEGER),
get,
isEmpty,
isFull};

QueueOut =
{item(IITEGER),
empty(BOOLEAI),
full(BOOLEAI)};

VAR
intQ: Queueinp;
result: QueueOut;

ESM IntQueue(
II in: Queueinp;
OUT out: QueueOut);
COIST Qmax = 3;
TYPE

QueueType =
LIST[Qmax] OF INTEGER;

VAR
queue: QueueType;
x: IITEGER;

BEGII
DO TRUE->

OD

IF in?put(x) ->
queue:= queue::x

[] in?get ->
x:= HEAD(queue);
out!item(x)

[] in?isEmpty ->
out!empty(LEIGTH(queue) = O)

[] in?isFull ->
out!full(LEIGTH(queue) = Qmax)

FI

EID IntQueue;

BEGII
IntQueue(intQ,result)

EID QueueSystem
Figure 1. A queue of integers

SACJ/SART, No 7, 1992

MODEL
ESM ResourceAlloc;

TYPE
Request= {Get,Release};
Result= {OK};

VAR
Req: Request;
Res: Result;

ESH A(
OUT Req: Request;
II Res: Result);

BEGII
DO TRUE->

Req!Get;
Res?OK;
Req!Release

OD
EID A;

ESH B(
OUT Req: Request;
II Res: Result);

BEGII
DO TRUE->

Req!Get;
Res?OK;
Req!Release

OD
EID B;

ESH Resource(
OUT Res : Result ;
II Req: Request);
VAR InUse: BOOLEAI;

BEGII
InUse:= FALSE;
DO TRUE->

OD

DO -InUse /\ Req?Get ->
InUse:= TRUE; Res!OK

[] InUse /\ Req?Release ->
InUse:= FALSE

OD

EID Resource;

BEGII
A(Req,Res);
B(Req,Res);
Resource(Res,Req)

EID ResourceAlloc;

ASSERT
AG((Req =Get)=> AF(Res = OK))

EID
Figure 2. Resource allocation

This deceivingly simple model contains an error. Assume
that the resource has been allocated to B (an OK signal
is present on channel Res). A now requests the resource
(Get signal on channel Req). B tries to reiease the resource
(Release signal on channel Req). However, A is already
waiting (blocked) on the Req channel with a Get signal.
Thus B is also blocked on the Req channel; Resource also
cannot proceed (lnUse is TRUE and no Release signal is
available on channel Req). The requirement is thus vio­
lated.

The problem is that the Resource server as shown in
Figure 2 ignores a get request until the resource is not in
use. One way to eliminate this problem would be to change
ESM Resource to return a signal NotOK to any Get request
while the resource is in use.

5 Final Remarks

An efficient model checker capable of analysing models of
non-trivial size has been developed. Models acceptable to
the model checker are state transition systems. To make
the system easy to use we designed a validation language,
called ESML, to model reactive systems. Validation mod­
els written in ESML can be translated to equivalent state
transition systems which can be accepted by the model
checker. ESML is based on extended state machines which
incorporate complex data structures and communication
over channels.

We are currently developing a translator for ESML.
The validation system is written in Modula-2. The system
has been designed to be portable-it was developed on a
personal computer running MSDOS and moved to a Unix
workstation simply by recompiling it. A personal computer
is adequate for small applications but the model checker
needs a more powerful machine (more memory) to handle
models of realistic size.

As a representative example of the kind of system we
wish to validate we chose a small kernel which supports
a variable number of processes and interprocess commu­
nication. The design of ESML has been influenced by
modelling various fragments of this kernel. The size of the
state vector places a limit on the size of problem which can
be handled on currently available hardware and more work
remains to be done to evaluate the suitability of ESML as
a validation language for reactive systems.

References

1. P. Brinch Hansen, 'Joyce-A Programming Language
for Distributed Systems', Software-Practice and Ex­
perience, vol. 17, no. 1, pp. 29-50,January 1987.

2. E. M. Clarke and 0. Grumberg, 'Research on Au­
tomatic Verification of Finite-State Concurrent Sys­
tems', Tech. Rep. CMU-CS-87-105, Carnegie-Mellon
University, January 1987.

3. E. Clarke and E. Emerson, 'Design. and Synthesis
of Synchronization Skeletons using Branching Time

64

Temporal Logic', in Proceedings of IBM Workshop
on Logic of Programs, (D. Kozen, ed.), pp. 52-71,
Lecture Notes in Computer Science, 131, 1981.

4. E. Clarke, E. Emerson, and A. Sistla, 'Automatic
Verification of Finite State Concurrent Systems Us­
ing Temporal Logic Specifications: A Practical Ap­
proach', Proceedings 10th ACM Symposium on Prin­
ciples of Programming Languages, pp. 117-126,
1983.

5. P. de Villiers, 'A Model Checker for Transition Sys­
tems', in 6-th Southern African Computer Symposium,
(M. Linck, ed.), pp. 262-275,July 1991.

6. E. Dijkstra, A Discipline of Programming. Englewood
Cliffs, New Jersey: Prentice-Hall, 1976.

7. W. FoucM and P. de Villiers, 'A Reusable Kernel
for the Development of Control Software', in 6-th
Southern African Computer Symposium, (M. Linck,
ed.), pp. 83-94, July 1991.

8. P. Godefroid and P. Wolper, 'A Partial Approach to
Model Checking', in 6-th IEEE Symposium on Logic
in Computer Science, (Amsterdam), pp. 406-414, 15-
18 July 1991.

9. C. Hoare, Communicating Sequential Processes. En­
glewood Cliffs, New Jersey: Prentice-Hall, 1985.

10. G. Holzmann, 'An Improved Reachability Analy­
sis Technique', Software Practice and Experience,
vol. 18, no. 2, pp. 137-161, February 1988.

11. G. Holzmann, Design and Validation of Computer
Protocols. Englewood Cliffs, New Jersey: Prentice­
Hall, 1991.

12. G. Holzmann, 'Protocol Design: Redefining the State
of the Art', IEEE Software, vol. 9, no. 1, pp. 17-22,
January 1992.

13. G. Holzmann, P. Godefroid, and D. Pirottin, 'Cover­
age Preserving Reduction Strategies for Reachability
Analysis', Unpublished Draft.

14. C. B. Jones, Systematic Software Development Using
VDM. Prentice-Hall, 2 ed., 1990.

15. Z. Manna and A. Pnueli, 'Verification of concurrent
programs, part I: the temporal framework.', Tech.
Rep. STAN-CS-81-836, Dept of Computer Science,
Stanford University, July 1981.

16. Z. Manna and A. Pnueli, 'Completing the Temporal
Picture', Research Report STAN-CS-89-1296, De­
partment of Computer Science, Stanford, California
94305, December 1989.

17. J. Ostroff, Temporal Logic for Real-Time Systems.
New York: John Wiley and Sons Inc., 1989.

18. A. Pnueli, 'The temporal semantics of concurrent
programs.', Theoretical Computer Science, vol. 13,
pp. 45-60, 1981.

19. J. M. Spivey, The Z Notation: A Reference Manual.
International Series in Computer Science, Prentice­
Hall, 1989.

20. A. Valmari and M. Tienari, 'An Improved Failures
Equivalence for Finite-State Systems with a Reduc­
tion Algorithm', in 11-th International Symposium
on Protocol Specification, Testing, and Verification,
(Stockholm),pp.1-16,IFIPWG6.l,June 17-201991.

SACJ/SART, No 7, 1992

Notes for Contributors

The prime purpose of the journal is to publish original
research papers in the fields of Computer Scien~e and In­
formation Systems, as well as shorter technical research
papers. However, non-refereed review and exploratory ar­
ticles of interest to the journal's readers will be considered
for publication under sections marked as Communications
or Viewpoints. While English is the preferred language
of the journal, papers in Afrikaans will also be accepted.
Typed manuscripts for review should be submitted in trip­
licate to the editor.

form of Manuscript
. Manuscripts for review should be prepared according to the
following guidelines.

• Use wide margins and 1 ! or double spacing.
• The first page should include:

- title (as brief as possible);

- author's initials and surname;
- author's affiliation and address;

- an abstract of less than 200 words;

- an appropriate keyword list;

- a list of relevant Computing Review Categories.

• Tables and figures should be numbered and titled.
Figures should be submitted as original line draw­
ings/printouts, and not photocopies.

• References should be listed at the end of the text in
alphabetic order of the (first) author's surname, and
should be cited in the text in square brackets (1, 2, 3].
References should take the form shown at. the end of
these notes.

Manuscripts accepted for publication should comply with
the above guidelines (except for the spacing requirements),
and may be provided in one of the following formats (listed
in order of preference):

1. As (a) ~TE'{ file(s), either on a diskette, or via e­
maiVftp - a It.TEX style file is available from the pro­
duction editor;

2. In camera-ready format - a detailed page specification
is available from the production editor;

3. As an ASCII file accompanied by a hard-copy showing
formatting intentions:

• Tables and figures should be on separate sheets of
paper, clearly numbered on the back and ready for
cutting and pasting. Figure titles should appear
in the text where the figures are to be placed.

• Mathematical and other symbols may be either
handwritten or typed. Greek letters and unusual
symbols should be identified in the margin, if
they are not clear in the text.

Further instructions on how to reduce page charges can
be obtained from the production editor.

4. In a typed form, suitable for scanning.

Charges
Charges per final page will be levied on papers accepted
for publication. They will be scaled to reflect scanning,
typesetting, reproduction and other costs. Currently, the
minimum rate is R20-00 per final page for It.TEX or camera­
ready contributions and the maximum is Rl00-00 per page
for contributions in typed format.

These charges may be waived upon request of the au­
thor and at the discretion of the editor.

Proofs
Proofs of accepted papers in categories 3 and 4 above will
be sent to the a .. ,.thor to ensure that typesetting is correct,
and not for addition of new material or major amendments
to the text. Corrected proofs should be returned to the
production editor within three days.

Note that, in the case of camera-ready submissions, it
is the author's responsibility to ensure that such submis­
sions are error-free. However, the editor may recommend
minor typesetting changes to be made before publication.

Letters and Communications
, Letters to the editor are welcomed. They should be signed,

and should be limited to less than about 500 words.
Announcements and communications of interest to the

readership will be considered for publication in a separate
section of the journal. Communications may also reflect
minor research contributions. However, such communi­
cations will not be refereed and will not be deemed as
fully-fledged publications for state subsidy purposes.

Book reviews
Contributions in this regard will be welcomed. Views and
opinions expressed in such reviews should, however, be
regarded as those of the reviewer alone.

Advertisement
Placement of advertisements at R 1000-00 per full page per
issue and R500-00 per half page per issue will be consid­
ered. These charges exclude specialized production costs
which will be borne by the advertiser. Enquiries should be
directed to the editor.

References

1. E Ashcroft and Z Manna. 'The translation of 'goto'
programs to 'while' programs'. In Proceedings of 1FIP
Congress 71, pp. 250-255, Amsterdam, (1972). North­
Holland.

2. C Boh!Jl and G Jacopini. 'Flow diagrams, turing ma­
chines and languages with only two formation rules'.
Communications of the ACM, 9:366-371, (1966).

3. S Ginsburg. Mathematical theory of context free lan­
guages. McGraw Hill, New York, 1966.

South African
Computer
Journal

Nwnber 7, July 1992
ISSN 10 l S-7999

Contents

Suid-Afrikaanse
Rekenaar­

tydskrif

Nommer 7, Julie 1992
ISSN 1015-7999

Forward
Referees ,•. II

Machine Translation from African Languages to English
DG Kourie, W J vd Heever and GD Oosthui7-en . 1

Automatically Linking Words and Concepts in an Afrikaans Dictionary
PZ Theron and I Cloete . 9

A Lattice-Theoretic Model for Relational Database Security
A Melton and S Shenoi . lS

Network Partitions in Distributed Databases
HL Viktor and MH Rennhackkamp . 22

A Model for Object-Oriented Databases _
MM Brand and Pf Wood . 27

Quantifier Elimination in Second Order Predicate Logic
D Gabbay and IU Ohlbach ·. 35

Animating Neural Network Training
E van der Poel and I Cloete . 44

HiLOG - a Higher Order Logic Programming Language
RA Paterson-Jones and Pf Wood 53

ESML - A Validation Language for Concurrent Systems
PJA de Villiers and WC Visser ... 59

Semantic Constructs for a Persistent Programming Language
SB Sparg and S Berman . 65

The Multiserver Station with Dynamic Concurrency Constraints
CF Kriel and AE Knesinski . 75

Mechanizing Execution Sequence Semantics in HOL
G Tredoux 81

Statenets - an Alternative Modelling Mechanism for Performance Analysis
L Lewis .. 87

From Batch to Distributed Image Processing: Remote Sensing for Mineral Exploration 1972-1992
N Pen dock . 95

Galileo: Experimenting with Graphical User Interfaces
R Apteker and JM Bishop .. 99

Placing Processes in a Transputer-based Linda Programming Environment
PG Clayton, FK de-Heer-Menlah, EP Wentworth 109

Accessing Subroutine Libraries on a Network
PH Greenwood and PH Nash ... 117

A Multi-Tasking Operating System Above MS-DOS
R Foss, GM Rehmet and RC Watkins- 122

Using Information Systems Methodology to Design an Instructional System
BC O'Donovan . 126

Managing Methods Creatively
G McLeod ... 131

A General Building Block for Distributed System Management
P Putter and JD Roos . 141

