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NOTE FROM THE EDITOR

After an absence of two years we are happy to announce that we are now in a posi-
tion to continue the publication of Quaestiones Informaticae. The first Volume of
QI consists of three numbers, and appeared during the period June 1979 till March
1980 under the editorship of Prof Howard Williams. Because Prof Williams took
up a post at the Herriot-Watt University in Edinburgh, he had to relinquish his posi-
tion as editor. The Computer Society of South Africa, which sponsors the publica-
tion of QI, appointed me as editor, whereas Mr Peter Pirow took over the administra-
tion of the Journal. The editorial board functions under the auspices of the Publica-
tions Committee of the CSSA.

The current issue is Number 1 of Volume 2. It is planhed to publish altogether three
issues in the Volume, with most of the papers coming from the Second South African
Computer Symposium on Research in Theory, Software and Hardware. This Sym-
posium was held on 28th and 29th October, 1981. At present it appears that most
of the material published in this Journal comes from papers read at conferences. We
invite possible contributors to submit their work to QI, since only the vigorous sup-
port of researchers in the field of Computer Science and Information Systems will
keep this publication alive.

G WIECHERS

November, 1983



An Efficient Implementation of an Algorithm for Min-Max
Tree Partitioning

Ronald |. Becker

Department of Mathematics, University of Cape Town

Yehoshua Perl?

Department of Mathematics & Computer Science, Bar-llan University

Stephen R. Schach?

Department of Computer Science, University of Cape Town

Abstract

An implementation of an algorithm for finding a min-max partition of a weighted tree T with n vertices into g subtrees
by means of k =q—1 cuts is presented. The implementation is shown to have asymptotic complexity O(k3rd(T) + kn),

where rd(T) is the number of edges in the radius of T.

1. Introduction

We consider the problem of partitioning a weighted tree in-
to connected components in such a way that the heaviest com-
ponent is as light as possible.

More formally, let T = (V,E) be an (unrooted) tree with n
edges. We associated a non-negative weight w(v) with every
vertex v £V. A g-partition of T into q connected components
Ty, T,..., T, is obtained by deleting k = gq-1 edges of T, | <
k =< n. The weight W(T;) of a component T; is then the sum
of the weights of its vertices.

The min-max g-partition problem is then: Find a g-partition
of T minimizing max W(T,).

i<i=q

Applications of this problem arise in paging and overlaying
techniques.

In [1] we presented an algorithm for the above problem, and
proved its correctness. Here we describe an efficient implemen-
tation of our algorithm, and derive its complexity.

Whereas the algorithm itself is straightforward to state, in
order to achieve an implementation of low complexity, a careful
choice of data structures is necessary. In our implementation
we initialize and update five different data structures.

The algorithm involves shifts of two types, down-shifts which
improve the partition, and side-shifts which make corrections.
The complexity analysis consists of finding bounds on the
number of operations required to down-shift a cut, the number
of operations to side-shift a cut, and the total numbers of shifts
of each kind. Special care must be taken in bounding the number
of operations required for down-shifting, in order to obtain low
asymptotic complexity.

For the reader’s convenience the definitions of [1] are
reproduced in Section 2. In addition, a figure is given which
illustrates these definitions. The algorithm itself is stated in Sec-
tion 3; an ¢xample showing its operation is also given. The im-
plementation of the algorithm and the complexity analysis are
presented in Section 4.

For NP-completness results for the min-max g-partition pro-
blem for a general graph (as well as for three related partition-
ing problems), the reader is referred to [5].

2. Definitions

Transform the given tree into a rooted directed tree by choos-
ing an arbitrary terminal vertex as root, and imposing a top-
down direction on the edges. In this paper we use the usual ter-
minology of Graph Theory. If e is a directed edge incident from

v, and incident to v,, denoted by (v,—v,), then we will refer
to v, and tail(e) and to v, as head(e). Edge e is said to be the
Jather of edge e, if head(e) = tail(e,), and in this case, e, is
said to be the son of edge e. Edges e, abd e, are said to be
brothers if tail(e;) = tail(e,). For convenience, if a cut c is
assigned to an edge e = (v,—v,) then we shall use head(c),
tail(c) for head(e), tail(e) respectively. We shall also refer to e
as a son-edge of v, and to the cut c as incident from v,.

A cut is said to be down-shifted if it is moved from its pre-
sent edge to a vacant son-edge. It is said to be side-shifted at
vertex v if it is moved from its present edge e; to a vacant
brother edge e,, and v = tail(e,)( =tail(e,)).

We further require the notions of partial and complete rooted
subtrees: a subtree T’ of T is a partial (complete) subtree of
T rooted at a vertex v if v is the root of T', and T’ contains
one (every) son of v together with all the latter’s descendents.

Let A be an arbitrary assignment of the k cuts to the edges
of T. We define a cut tree C = C(T,A) to be a rooted tree with
k+ 1 vertices representing r, the root of T, and the k cuts of
A. A cut ¢ is the son of r (of a cut c,) if there exists a (uni-
que) path from r (from head(c,)) to tail(c,) containing no cuts.

The down-component of a vertex v is obtained from the com-
plete subtree of T rooted at v by deleting the complete subtrees
rooted at the heads of all cuts of T immediately below v, if any.
The down-component of a cut c is the down-component of
head(c), and ¢ is called the top cut of that component. The
down-component of an edge e is the down-component of
head(e). The root-component of T is the component obtained
by deleting the complete subtrees rooted at the heads of the sons
of r in C. The up-component of a cut is the down-component
of its father in the cut tree if its father is not the root, else it
is the root component. A bottom cut of a component is a son
of the top cut of the component in the cut tree, if the compo-
nent has a top cut, else it is a son of the root of the cut tree.
The root of a component is head(c) for the top cut c, if the com-
ponent has a top cut, else it is the root of the tree. A compo-
nent T; is lighter than another component T; (or T; is heavier
than T)) if W(T) < W(T)).

We illustrate these definitions in Figure 1. Referring to the
tree T shown in Figure 1(a), edge(v, — v;) is the father of (v,
— Vs), and the brother of edge(v, — vg). Cut ¢, can be down-
shifted to edge(v, = vs), and side-shifted to (v, - vg). It is in-
cident from vertex v,. The subtree comprising vertices {vs, vy,
Vs, Vg, V7} is a partial subtree of vertex v,. The cut tree C is
shown in Figure 1(b). Turning now to Figure 1(c), the compo-
nent B = {v,, vs} may be described as

1. Supported in part by the National Council for Research and Development of Israel
2. Supported in part by the Council for Scientific and Industrial Research of South Africa.
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(c)

FIGURE 1: .
(a) Tree T(k=4, n=9), (b) Cut tree C,
(c) Component B = {v;, vs}

(i) the down-component of cut c,, or
(ii) the down-component of vertex v;, or
(iii) the down-component of edge(v, — v,), or
(iv) the up-component of cut ¢, (or of cut c;).
Further, ¢, is the top cut of component B, while c, and ¢,
are its bottom cuts. The root of B is vertex v;. The root-
component contains v,, v, and vg.
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3. Statement of the Algorithm
The Shifting Algorithm: Min-max g-partition of a tree

1. Place all k cuts on the edge incident with the root. Set
BEST_MINMAX__SO__FAR - o, and set BEST__
PARTITION_SO_FAR equal to the starting
configuration.

2. While the root component is not a heaviest component, per-
form steps 3, 4 and 5.

3. Find a cut with a heaviest down-component, and down-shift
it from its current edge e to a vacant son-edge having heaviest
down-component. If no such vacant edge exists then halt.

4. Traverse the path from tail(e) to the root in the bottom-up
direction until a vertex v, which is the head of a cut, is en-
countered. For each vertex w on that path having a cut inci-
dent from w, perform the following:

If the down-component of a cut incident from w is lighter
than the down-component of the vacant son-edge e, of w
on the path, then side-shift that cut to edge e,. If more than
one cut incident from w can be side-shifted, choose a cut
with a lightest down-component.

5. Set LARGESTWT equal to the weight of the largest com-
ponent in the current partition A. If LARGESTWT <
BEST__MINMAX__SO__FAR then set BEST__MINMAX
_SO_FAR <« LARGESTWT, and set BEST__
PARTITION__SO__FAR - A.

We define a ferminating position to be a partition at which
the algorithm terminates. A final value of BEST__PARTITION
_ SO__FAR is called a resulting partition of the algorithm. (The
terminating partition is different from the resulting partition
if some previous partition had lighter heaviest component than
the termination partition.) Figure 2 illustrates the operation of
the algorithm.

4. Complexity Analysis of the Algorithm

We start with a general description of the complexity analysis.
In addition to the initialization, the algorithm uses two basic
operations: down-shifts and side-shifts. We show in {1] Lem-
ma 1 that the total number of down-shifts and side-shifts dur-
ing the operation of the algorithm is bounded by kh’(T) and
k2h'(T), respectively.

For each down-shift we look for a cut of heaviest down-
component, then decide to which edge to shift and finally up-
date the data structures.

Between any two down-shifts at most k-1 side-shifts are con-
sidered. For each possible side-shift the down-component of
the cut and of a brother edge are compared. Updating the data
structures is required whenever a cut is side-shifted.

The complexity of the algorithm will be shown to be
O(k3rd(T) + kn) where rd(T) is the number of edges in the
radius of the tree.

Throughout this section the index i, 1 <i<n, labels an edge
e; in the tree T. With regard to the cut tree C, for simplicity
we denote the root r by c,; index t, 0<t<k then refers either
to a cut c; or to the root c,. The index j refers specifically to
a cut and not the root; thus 1<j<k.

Let d(v) denote the out-degree of vertex v in the tree T.

For each vertex v in tree T we compute the weight Z(v) of
the complete subtree of T rooted at v, that is to say, the sum
of the weights of v and of all its descendents. Z(v) may be com-
puted once and for all by scanning the tree in endorder {3]. As
before, if a cut ¢; is assigned to an edge ¢;, for convenience we
shall use Z(c;) for Z(head(e)).

During the execution of the algorithm we update the follow-
ing data structures:

1. For each vertex (cut) ¢, in the cut tree C we maintain a list
L(c,) of the sons of ¢, in C.

2. We also require a pointer F from each ¢; to its father in C.

3. During the execution of the algorithm, for each cut (root)
¢, we require the weight D(c,) of the down-component (root-
component) of c,.



(a) (b)

FIGURE 2:

Illustration of the Shifting Algorithm (arrows indicate the next
shift to be performed). All figures correspond to a configura-
tion at the end of Step 4 of the algorithm.

(a) Starting configuration. (b) 2nd configuration. (c) 3rd con-
figuration. (d) 9th configuration showing side-shift following
next down-shift. (e) 10th configuration. Again a side-shift will
occur. (f) 11th configuration, the terminating position (as well
as the resulting partition).

4. In order to determine the heaviest component, we maintain
the {D(c)}in a priority queue PQ implemented as a heap (4].

5. For each cut ¢; we maintain the path in T from the root r
to head(c;). For this we keep a table P of order k x n, such
that if v, lies on the path to cut c;, then P(j,f) contains the
vertex following v, on this path.

The values of L, F and D for the tree illustrated in Figure
1(a) are given in Table 1, and table P is displayed in Table 2.

| Co ¢ ) o C4
L fers ¢4 {2 ¢4 — — —
F — Co c (o Co
D 12 11 10 21 20
TABLE I:
Values of data structures L, F and D for the tree in Figure I(a).
| Vi V3 V3 V4 Vs Vg V5 Vg Vg Vi
G|l v —
G} V2 V3 —

C3 | V2 V3 Vs -
Cy vy Vg j—

TABLE 2:
Entries of data structure P for the tree in Figure 1(a).
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(c) (d)

(e) (£)

Initialization

The k cuts [c;] are initially assigned to the edge incident with
the root c,; the corresponding cut tree C is therefore a directed
chain. The initialization of data structures {L} and {F] is thus
straightforward. With regard to (D}, initially we set D(cy) =
w(r), D(c) ~— W(T) — w(r), and D(c,) = 0, 1 <u=< k-1. The
number of operations required for this initialization is clearly
0(kn) since all entries of Table P are initially set equal to
““undefined”’.

Down-Shifting

Step 3 of the algorithm requires finding a largest component.
A cut ¢ for which D(c ) is maximum can be found in O(lg k)
operations by using the priority queue PQ. If ¢, =c,, then the




current partition is the terminating partition. Otherwise, we have
to consider every possible shift of ¢, to each of the vacant
edges e_ incident with head (c_), and then perform that down-
shift resulting in a maximum down-component for c,,.

For each such vacant edge e, we calculate the weight
R(head(e,)) of the resulting down component for shifting c, to
e, by subtracting from Z(head(e,)) the sum EZ(head(c,)) over
all sons c, of ¢, in the cut tree C’' obtained from C by shif-
ting c,, to e,. In fact, we can simultaneously compute all the
weights R(head(e,)), 1 =s=<d(tail(e,)) as follows. Initially assign
R(head(e,)) «—— Z(head(e,)), requiring 0(d(tail(e,))) operations.
Now scan the list L(c,,) of the sons of ¢, in C, and for each
cut ¢, in this list identify the first edge e, on the path from
head(c,) to c, using the table P, and subtract from R accor-
dingly. Thus for each cut ¢, € L(c,), set R(P(c,,head(c,))) ~—
R(P(c ,head(c ))) — Z(head(c ).

This requires O(k) operations. O(d(tail(e,)))operations are re-
quired for selecting the edge e, to which cut c, should be
shifted. Hence the total number of operations required for one
down-shift is 0(k + d(tail(e,))).

Updating after a down-shift
Consider now what updates are required to our data struc-
tures following a down-shift of ¢, from an edge e to an edge
e,.
For each cut ¢, € L(c,,) which is no longer a son of c,, in the
cut tree C', i.e. satisfying P(c,,tail(e;)) # head(e,), delete c,
from L(c,,) and add it to L(F(c)); set F(c,) «— F(c,). The new
weight D(c,) is in fact computed while determining the
resulting down-components of ¢,. The weight D(F(c)) is in-
creased by the difference between the old and new values of
D(cyp)-
Updating the priority queue PQ with the changes in the values
of D(c,,) and D(F(c,,)) requires at most O(ig k) operations.
Set P(c,,tail(e;)) =— head (e,).
Hence, at most 0(k) operations are required for updating after
a down-shift.

Complexity of down-shifting operations

We have shown above that at most 0(k) + O(d(tail(ey)))
operations are required to perform a down-shift of a cut to an
edge e, followed by the necessary updates to our data
structure.

Now let f, fz,...,fy denote the edges through which a cut ¢
was down-shifted during the execution of the algorithm. While
performing these shifts of ¢, at most O(X(d(tail(f )) + k))
operations were required. But ¥ d(tail(f q)) is boundeé’l by h(T).
Further, the number of edges y in the path is bounded by h(T)
— 1 = h’'(T) (where h(T) deonotes the height of the tree T).
Thus at most O(n + kh’(T)) operations are required for the
down-shifts of a given cut ¢, and hence the number of opera-
tions required for the down-shifts of all k cuts is at most
0(k*h'(T) + kn).

Side-shifting

After performing a down-shift of a cut ¢, we have to con-
sider possible side-shifts along the path R from c,, to the root
r (but only up to the first cut, if any, on this path). First we
identify which cuts are candidates for side-shifting, then we sort
them into bottom-up order, from which the side-shift with
smallest down-component at each level can be determined.
Travelling up the path R from tail(c,), we check at each vertex
whether the chosen side-shift does, in fact, satisfy step 4 of the
shifting algorithm, and if so, perform the side-shift.

Let F,, denote the father of c,, before any side-shifts are per-
formed. Consider the cuts of L(F,). Every cut ¢ £ L(F) for
which P(c,tail(c)) is defined is a candidate for a side-shift on-
to the path from F,, to c¢,. Assuming that the vertices of T are
assigned indicies of the form ¢.p, where v, , is the p’th vertex
at level ¢ in T, we may sort the cuts {c,} into a bottom-up order
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according to the indices of the vertices {tail(c,)|. At most 0(k)
operations are required for identifying which cuts are candidates
for side-shifting, and at most O(k lg k) to sort them into a
bottom-up order and then select a cut with smallest down-
component at each level.

Now starting at tail(c,,), traverse the path R in the bottom-
up direction. At each vertex we check whether the side-shift of
cut ¢, say, selected above is in fact valid in terms of step 4 of
our algorithm. We must compare D(c,) with the weight of the
down-component resulting from side-shifting c, to the edge
(tail(c,),P(cy,tail(c,))). The latter weight is computed by sub-
tracting from Z(P(c,tail(c,))) the value of Z(head(c,)) for
every cut c,, £ L(F,) for which P(c,,,P(c,tail(c,))) is defined.
Thus at most 0(k) operations are required for checking the
validity of a side-shift at each level.

Updating after a side-shift

We consider now what updates to our data structures are
needed after side-shifting a cut c, (subsequent to a down-shift
of cut c,, and the attendent updating).

Each cut ¢, € L(C,) is transferred from L(c,) to L(F,,); set
F(c,) = F(c,) = F,,. Now move from L(F,,) to L(c,) each cut
¢, £L(F,) for which ¢, is now its father, i.e. for which
P(c,,tail(c,)) = head(c,), and assign F(c,) =— c,.

The new weight D(c,) was in fact computed while examin-
ing the validity of side-shifting c,. The weight D(F(c,)) is
decreased by the difference between the new and old values of
D(cy).

Updating the priority queue PQ according to the changes in
the values of D(c) and D(F(c)) requires at most O(lg k)
operations. :

Set P(c,,tail(c,)) = P(cy,tail(cy)).

Hence at most 0(k) operations are required to update the data
structures after a side-shift has been performed.

Complexity of side-shifting operations

There are at most (k-1) side-shifts possible following on a
down-shift. Thus identifying, sorting and selecting candidates
for side-shifting followed by the necessary updating requires
all told at most 0(k2) operations for all possible side-shifts
following any one given down-shift. Since, as shown in (1] Lem-
ma 1, the number of down-shifts is bounded by kh'(T), the side-
shifts of the algorithm as a whole require at most 0(k3h’(T))
operations.

Complexity of the Shifting Algorithm

Combining the above results for the complexities of down-
shifts and side-shifts yields the complexity 0(k3h'(T) + k2h'(T)
+ kn) = 0(k3h’(T) + kn) for the complete algorithm.

This complexity can be improved by a factor of at most 2
by adding to the undirected tree an additional vertex of weight
zero incident with the centre of the tree [2] (which can be found
in 0(n) operations) and using this vertex as the root. For the
rooted tree thus obtained the height h(T) of the tree is 1 + rd(T)
where rd(T) denotes the radius of T (see [4]) and h'(T) = rd (T).

The resulting algorithm is then of complexity 0(k*rd((T) +
kn).
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