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NOTE FROM THE EDITOR 

After an absence of two years we are happy to announce that we are now in a posi­
tion to continue the publication of Quaestiones lnformaticae. The first Volume of 
QI consists of three numbers, and appeared during the period June 1979 till March 
1980 under the editorship of Prof Howard Williams. Because Prof Williams took 
up a post at the Herriot-Watt University in Edinburgh, he had to relinquish his posi­
tion as editor. The Computer Society of South Africa, which sponsors the publica­
tion of QI, appointed me as editor, whereas Mr Peter Pirow took over the administra­
tion of the Journal. The editorial board functions under the auspices of the Publica­
tions Committee of the CSSA. 

The current issue is Number 1 of Volume 2. It is planned to publish altogether three 
issues in the Volume, with most of the papers coming from the Second South African 
Computer Symposium on Research in Theory, Software and Hardware. This Sym­
posium was held on 28th and 29th October, 1981. At present it appears that most 
of the material published in this Journal comes from papers read at conferences. We 
invite possible contributors to submit their work to QI, since only the vigorous sup­
port of researchers in the field of Computer Science and Information Systems will 
keep this publication alive. 

G WIECHERS 

November, 1983 



An Efficient Implementation of an Algorithm for Min-Max 
Tree Partitioning 

Ronald I. Becker 
Department of Mathematics, University of Cape Town 

Yehoshua Perl 1 

Department of Mathematics & Computer Science, Bar-llan University 
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Abstract 
An implementation of an algorithm for finding a min-max partition of a weighted tree T with n vertices into q subtrees 
by means of k = q-1 cuts is presented. The implementation is shown to have asymptotic complexity O(k3rd(T) + kn), 
where rd(T) is the number of edges in the radius of T. 

1. Introduction 
We consider the problem of partitioning a weighted tree in­

to connected components in such a way that the heaviest com­
ponent is as light as possible. 

More formally, let T = (V ,E) be an (unrooted) tree with n 
edges. We associated a non-negative weight w(v) with every 
vertex v £ V. A q-partition of T into q connected components 
T1, T2, ••• ,Tq is obtained by deleting k = q-1 edges of T, 1 :s; 
k :s; n. The weight W(Ti) of a component Ti is then the sum 
of the weights of its vertices. 

The min-max q-partition problem is then: Find a q-partition 
of T minimizing max W(T). 

isisq 
Applications of this problem arise in paging and overlaying 

techniques. 
In [1] we presented an algorithm for the above problem, and 

proved its correctness. Here we describe an efficient implemen­
tation of our algorithm, and derive its complexity. 

Whereas the algorithm itself is straightforward to state, in 
order to achieve an implementation of low complexity, a careful 
choice of data structures is necessary. In our implementation 
we initialize and update five different data structures. 

The algorithm involves shifts of two types, down-shifts which 
improve the partition, and side-shifts which make corrections. 
The complexity analysis consists of finding bounds on the 
number of operations required to down-shift a cut, the number 
of operations to side-shift a cut, and the total numbers of shifts 
of each kind. Special care must be taken in bounding the number 
of operations required for down-shifting, in order to obtain low 
asymptotic complexity. 

For the· reader's convenience the definitions of [1] are 
reproduced in Section 2. In addition, a figure is given which 
illustrates these definitions. The algorithm itself is stated in Sec­
tion 3; an example showing its operation is also given. Theim­
plementation of the algorithm and the complexity analysis are 
presented in Sectioq 4. 

For NP-completness results for the min-max q-partition pro­
blem for a general graph (as well as for three related partition­
ing problems), the reader is referred to [51. 

2. Definitions 
Transform the given tree into a rooted directed tree by choos­

ing an arbitrary terminal vertex as root, and imposing a top­
down direction on the edges. In this paper we use the usual ter­
minology of Graph Theory. If e is a directed edge incident from 

v1 and incident to v2, denoted by (v1-v2), then we will refer 
to v1 and tail(e) and to v2 as head(e). Edge e is said to be the 
father of edge e1 if head(e) = tail(e1), and in this case, e1 is 
said to be the son of edge e. Edges e1 abd e2 are said to be 
brothers if tail(e1) = tail(e2). For convenience, if a cut c is 
assigned to an edge e = (v1-v2) then we shall use head(c), 
tail(c) for head(e), tail(e) respectively. We shall also refer toe 
as a son-edge of v 1 and to the cut c as incident from v 1• 

A cut is said to be down-shifted if it is moved from its pre­
sent edge to a vacant son-edge. It is said to be side-shifted at 
vertex v if it is moved from its present edge e1 to a vacant 
brother edge e2, and v = tail(e1)( = tail(e2)). 

We further require the notions of partial and complete rooted 
subtrees: a subtree T' of T is a partial (complete) subtree of 
T rooted at a vertex v if v is the root of T' , and T' contains 
one (every) son of v together with all the latter's descendents. 

Let A be an arbitrary assignment of the k cuts to the edges 
of T. We define a cut tree C = C(T ,A) to be a rooted tree with 
k + 1 vertices representing r, the root of T, and the k cuts of 
A. A cut c1 is the son of r (of a cut c2) if there exists a (uni­
que) path from r (from head(c2)) to tail(c1) containing no cuts. 

The down-component of a vertex vis obtained from the com­
plete subtree of T rooted at v by deleting the complete subtrees 
rooted at the heads of all cuts of T immediately below v, if any. 
The down-component of a cut c is the down-component of 
head(c), and c is called the top cut of that component. The 
down-component of an edge e is the down-component of 
head(e). The root-component of Tis the component obtained 
by deleting the complete subtrees rooted at the heads of the sons 
of r in C. The up-component of a cut is the down-component 
of its father in the cut tree if its father is not the root, else it 
is the root component. A bottom cut of a component is a son 
of the top cut of the component in the cut tree, if the compo­
nent has a top cut, else it is a son of the root of the cut tree. 
The root of a component is head(c) for the top cut c, if the com­
ponent has a top cut, else it is the root of the tree. A compo­
nent Ti is lighter than another component Ti (or Ti is heavier 
than TJ if W(TJ < W(Ti). 

We illustrate these definitions in Figure 1. Ref erring to the 
tree T shown in Figure l(a), edge(v2 - v3) is the father of (v3 

- v5), and the brother of edge(v2 -- v8). Cut c1 can be do"'.n­
shifted to edge(v3 -- v5), and side-shifted to (v2 -- v8). It is in­
cident from vertex v2 • The subtree comprising vertices {v3 , v4 , 

v5, v6, v7} is a partial subtree of vertex v2• The cut tree C is 
shown in Figure l(b). Turning now to Figure l(c), the compo­
nent B = {v3, v5} may be described as 

1. Supported in part by the National Council for Research and Development of Israel 
2. Supported in part by the Council for Scientific and Industrial Research of South Africa. 
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(a) Tree T(k=4, n =9), (b) Cut tree C, 
(c) Component B = {v3, v5} 

(i) the down-component of cut c1, or 
(ii) the down-component of vertex v3, or 

(iii) the down-component of edge(v2 - v3), or 
(iv) the up-component of cut c2 (or of cut c3). 

Further, c1 is the top cut of component B, while c2 and c3 
are its bottom cuts. The root of B is vertex v3. The root­
component contains v1, v2 and v8 • 
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3. Statement of the Algorithm 
The Shifting Algorithm: Min-max q-partition of a tree 

1. Place all k cuts on the edge incident with the root. Set 
BEST _MINMAX_SO_F AR - oo, and set BEST_ 
PARTITION_SO_FAR equal to the starting 
configuration. 

2. 

3. 

4. 

While the root component is not a heaviest component, per­
form steps 3, 4 and 5. 
Find a cut with a heaviest down-component, and down-shift 
it from its current edge e to a vacant son-edge having heaviest 
down-component. If no such vacant edge exists then halt. 
Traverse the path from tail(e) to the root in the bottom-up 
direction until a vertex v, which is the head of a cut, is en­
countered. For each vertex won that path having a cut inci­
dent from w, perform the following: 

If the down-component of a cut incident from w is lighter 
than the down-component of the vacant son-edge e5 of w 
on the path, then side-shift that cut to edge e5 • If more than 
one cut incident from w can be side-shifted, choose a cut 
with a lightest down-component. 

5. Set LARGESTWT equal to the weight of the largest com­
ponent in the current partition A. If LARGESTWT < 
BEST _MINMAX_SO_F AR then set BEST _MINMAX 
_SO_FAR - LARGESTWT, and set BEST_ 
PARTITION_SO_FAR - A. 

We define a terminating position to be a partition at which 
the algorithm terminates. A final value of BEST_PARTITION 
_SO_F AR is called a resulting partition of the algorithm. (The 
te~minating partition is different from the resulting partition 
if some previous partition had lighter heaviest component than 
the termination partition.) Figure 2 illustrates the operation of 
the algorithm. 

4. Complexity Analysis of the Algorithm 
We start with a general description of the complexity analysis . 

In addition to the initialization, the algorithm uses two basic 
operations: down-shifts and side-shifts. We show in [11 Lem­
ma 1 that the total number of down-shifts and side-shifts dur­
ing the operation of the algorithm is bounded by kh' (T) and 
k2h' (T), respectively. 

For each down-shift we look for a cut of heaviest down­
component, then decide to which edge to shift and finally up­
date the data structures. 

Between any two down-shifts at most k-1 side-shifts are con­
sidered. For each possible side-shift the down-component of 
the cut and of a brother edge are compared. Updating the data 
structures is required whenever a cut is side-shifted. 

The complexity of the algorithm will be shown to be 
O(k3rd(T) + kn) where rd(T) is the number of edges in the 
radius of the tree . 

Throughout this section the index i, 1 ~ i ~ n, labels an edge 
ei in the tree T. With regard to the cut tree C, for simplicity 
we denote the root r by c0; index t, 0 ~ t ~ k then refers either 
to a cut ci or to the root c0 • The index j refers specifically to 
a cut and not the root; thus 1 ~j ~ k. 

Let d(v) denote the out-degree of vertex v in the tree T. 
For each vertex v in tree T we compute the weight Z(v) of 

the complete subtree of T rooted at v, that is to say, the sum 
of the weights of v and of all its descendents. Z(v) may be com­
puted once and for all by scanning the tree in endorder [31. As 
before, if a cut ci is assigned to an edge ei, for convenience we 
shall use Z( ci) for Z(head( e)). 

During the execution of the algorithm we update the follow­
ing data structures: 

1. For each vertex (cut) ct in the cut tree C we maintain a list 
L(ct) of the sons of ct in C. 

2. We also require a pointer F from each ci to its father in C. 
3. During the execution of the algorithm, for each cut (root) 

ct we require the weight D(ct) of the down-component (root­
component) of ct. 



(a) (b) 

FIGURE 2: 
Illustration of the Shifting Algorithm (arrows indicate the next 
shift to be performed). All figures correspond to a configura­
tion at the end of Step 4 of the algorithm. 
(a) Starting configuration. (b) 2nd configuration. (c) 3rd con­
figuration. (d) 9th configuration showing side-shift following 
next down-shift. (e) 10th configuration. Again a side-shift will 
occur. (f) 11th configuration, the terminating position (as well 
as the resulting partition). 

4. In order to determine the heaviest component, we maintain 
the (D(ct)lin a priority queue PQ implemented as a heap [41. 

5. For each cut ci we maintain the path in T from the root r 
to head(ci). For this we keep a table P of order k x n, such 
that if vf lies on the path to cut cj, then PU ,f) contains the 
vertex following Ve on this path. 

The values of L, F and D for the tree illustrated in Figure 
l(a) are given in Table 1, and table P is displayed in Table 2. 

L 
F 
D 12 

TABLE 1: 

Co 
20 

Values of data structures L, F and D for the tree in Figure 1(a). 

v, V2 V3 V4 V5 v6 V7 Vg V9 v,o 

C1 V2 
C2 V2 V3 
C3 V2 V3 V5 
C4 V2 Vg 

TABLE 2: 
Entries of data structure P for the tree in Figure 1 (a). 
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0 

(c) (d) 

(e) ( f) 

Initialization 
The k cuts (ci) are initially assigned to the edge incident with 

the root c0; the corresponding cut tree C is therefore a directed 
chain. The initialization of data structures (Ll and (F) is thus 
straightforward. With regard to (Dl, initially we set D(c0) -

w(r), D(ck)- W(T) - w(r), and D(cu)- 0, 1 :SU:5 k-1. The 
number of operations required for this initialization is clearly 
O(kn) since all entries of Table P are initially set equal to 
"undefined". 

Down-Shifting 
Step 3 of the algorithm requires finding a largest component. 

A cut c for which D(c ) is maximum can be found in O(lg k) 
operatiomns by using the ;riority queue PQ. If Cm= c0 , then the 



current partition is the terminating partition. Otherwise, we have 
to consider every possible shift of cm to each of the vacant 
edges es incident with head (cm), and then perform that down­
shift resulting in a maximum down-component for cm. 

For each such vacant edge es we calculate the weight 
R(head(es)) of the resulting down component for shifting cm to 
es by subtracting from Z(head(es)) the sum EZ(head(cu)) over 
all sons cu of cm in the cut tree C' obtained from C by shif­
ting cm to es. In fact, we can simultaneously compute all the 
weights R(head(es)), 1 $ s $ d(tail(es)) as follows. Initially assign 
R(head(es)) - Z(head(es)), requiring O(d(tail(es))) operations. 
Now scan the list L(cm) of the sons of cm in C, and for each 
cut Cu in this list identify the first edge e5 on the path from 
head(cm) to cu using the table P, and subtract from R accor­
dingly. Thus for each cut Cu£ L(cm), set R(P(cu,head(cm))) -
R(P(cu,head(cm))) - Z(head(c)). 

This requires O(k) operations. O(d(tail(e )))operations are re­
quired for selecting the edge es to which cut cm should be 
shifted. Hence the total number of operations required for one 
down-shift is O(k + d(tail(es))). 

Updating after a down-shift 
Consider now what updates are required to our data struc­

tures following a down-shift of cm from an edge e to an edge 
es. 

For each cut Cu£ L(cm) which is no longer a son of cm in the 
cut tree C', i.e. satisfying P(cu,tail(e5)) * head(es), delete Cu 
from L(cm) and add it to L(F(cm)); set F(cu)- F(cm). The new 
weight D(cm) is in fact computed while determining the 
resulting down-components of Cm. The weight D(F(cm)) is in­
creased by the difference between the old and new values of 
D(cm). 

Updating the priority queue PQ with the changes in the values 
of D(cm) and D(F(cm)) requires at most O(lg k) operations. 

Set P(cm,tail(es)) - head (es). 
Hence, at most O(k) operations are required for updating after 

a down-shift. 

Complexity of down-shifting operations 
We have shown above that at most O(k) + O(d(tail(es))) 

operations are required to perform a down-shift of a cut to an 
edge es followed by the necessary updates to our data 
structure. 

Now let f 1 f2, ... ,fy denote the edges through which a cut c 
was down-shifted during the execution of the algorithm. While 
performing these shifts of c, at most O(E(d(tail(f )) + k)) 
operations were required. But E d(tail(f q)) is bounded by h(T). 
Further, the number of edges y in the path is bounded by h(T) 
- 1 = h' (T) (where h(T) deonotes the height of the tree T). 
Thus at most O(n + kh' (T)) operations are required for the 
down-shifts of a given cut c, and hence the number of opera­
tions required for the down-shifts of all k cuts is at most 
O(k2h' (T) + kn). 

Side-shifting 
After performing a down-shift of a cut cm we have to con­

sider possible side-shifts along the path R from cm to the root 
r (but only up to the first cut, if any, on this path). First we 
identify which cuts are candidates for side-shifting, then we sort 
them into bottom-up order, from which the side-shift with 
smallest down-component at each level can be determined. 
Travelling up the path R from tail(cm), we check at each vertex 
whether the chosen side-shift does, in fact, satisfy step 4 of the 
shifting algorithm, and if so, perform the side-shift. 

Let Fm denote the father of cm before any side-shifts are per­
formed. Consider the cuts of L(Fm). Every cut c £ L(F) for 
which P(cm,tail(c)) is defined is a candidate for a side-shift on­
to the path from Fm to cm. Assuming that the vertices of Tare 
assigned indicies of the form f .p, where ve is the p'th vertex 
at level f in T, we may sort the cuts 1cul into·~ bottom-up order 
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according to the indices of the vertices jtail(cu)l. At most O(k) 
operations are required for identifying which cuts are candidates 
for side-shifting, and at most O(k lg k) to sort them into a 
bottom-up order and then select a cut with smallest down­
component at each level. 

Now starting at tail(cm), traverse the path R in the bottom­
up direction. At each vertex we check whether the side-shift of 
cut cu, say, selected above is in fact valid in terms of step 4 of 
our algorithm. We must compare D(cu) with the weight of the 
down-component resulting from side-shifting cu to the edge 
(tail(cu),P(cm,tail(cu))). The latter weight is computed by sub­
tracting from Z(P(cm,tail(cu))) the value of Z(head(cw)) for 
every cut Cw £ L(Fm) for which P(cw,P(cm,tail(cu))) is defined. 
Thus at most O(k) operations are required for checking the 
validity of a side-shift at each level. 

Updating after a side-shift 
We consider now what updates to our data structures are 

needed after side-shifting a cut cu (subsequent to a down-shift 
of cut cm and the attendent updating). 

Each cut Cw £ L(Cu) is transferred from L(cu) to L(Fm); set 
F(cw) - F(cu) = Fm. Now move from L(Fm) to L(cu) each cut 
Cv £ L(Fm) for which cu is now its father, i.e. for which 
P(cv,tail(cu)) = head(cu), and assign F(cv) - Cu. 

The new weight D(cu) was in fact computed while examin­
ing the validity of side-shifting cU' The weight D(F(cu)) is 
decreased by the difference between the new and old values of 
D(cu). 

Updating the priority queue PQ according to the changes in 
the values of D(c) and D(F(c)) requires at most O(lg k) 
operations. 

Set P(cu,tail(cu)) - P(cm,tail(cu)). 
Hence at most O(k) operations are required to update the data 

structures after a side-shift has been performed. 

Complexity of side-shifting operations 
There are at most (k-1) side-shifts possible following on a 

down-shift. Thus identifying, sorting and selecting candidates 
for side-shifting followed by the necessary updating requires 
all told at most O(k2) operations for all possible side-shifts 
following any one given down-shift. Since, as shown in ll l Lem­
ma 1, the number of down-shifts is bounded by kh' (T), the side­
shifts of the algorithm as a whole require at most O(k3h' (T)) 
operations. 

Complexity of the Shifting Algorithm 
- Combining the above results for the complexities of down­
shifts and side-shifts yields the complexity O(k3h' (T) + k2h' (T) 
+ kn) = O(k3h' (T) + kn) for the complete algorithm. 

This complexity can be improved by a factor of at most 2 
by adding to the undirected tree an additional vertex of weight 
zero incident with the centre of the tree [21 (which can be found 
in O(n) operations) and using this vertex as the root. For the 
rooted tree thus obtained the height h(T) of the tree is 1 + rd(T) 
where rd(T) denotes the radius of T (see [ 41) and h' (T) = rd (T). 

The resulting algorithm is then of complexity O(k3rd((T) + 
kn). 

References 
[1] R.I. Becker, Y. Perl and S.R. Schach, A shifting algorithm for 

min-max tree partitioning. J. ACM., vol. 28 (1981), pp 5-15. 
[2] F. Harary, Graph Theory, (Addison-Wesley, Reading, Mass, 

1969). 
[3] D.M. Knuth, The Art of Computer Programming, Vol. 1: Fun­

damental Algorithms, (Addison-Wesley, Reading, Mass., 1969). 
[4] D.M. Knuth, The Art of Computer Programming, Vol. 3: Sor­

ting and Searching, (Addison-Wesley, Reading, Mass., 1969). 
[5] Y. Perl and S.R. Schach, Max-min tree partitioning. J. ACM., 

vol. 29 (1982), pp 58-67. 








