
ISSN 0254-2757

Volume 4 Number 3 October 1986

J.Mende

S. Bennan and
L. Walker

K.G. van der Poel and
I.R. Bryson

P.J.S. Bruwer and
J.M. Hattingh

P. Machanick

S.P. Byron-Moore

R.F. Ridler

C.W. Carey,
C. Hattingh,
D.G. Kourie,
R.J. van den Heever and
R.F. V erkroost

D.G. Kourie

Laws and Techniques of Information Systems

· A High-Level Interface to a
Relational Database System

Protection of Computerised Private Information:
A Comparative Analysis

Models to Evaluate the State of Computer Facilities
at South African Universities

Low-Cost Artificial Intelligence Research Tools

What's Wrong with CP/M?

In Praise of Solid State Discs

The Development of an RJE/X.25 Pad:
A Case Study

A Partial RJE Pad Specification to Illustrate LOTOS

1

7

13

21

27

33

39

45

59

BOOK REVIEWS 6, 20

An official publication of the Computer Society of South Africa and of
the South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van
die Suid-Afrikaanse Instituut van Rekenaarwetenskapl.kes

Annual subscriptions are as follow~:

Individuals
Institutions

SA US UK ·
RlO $ 7 £ 5
-Rl5 $14 £10 .

Mr P.P. R.oets
NR4M$
CSIR
P ~O. Sox- 39·5
Pertoria, 00·01

Professor S·.H. v,on Solms
Dep.art.ment of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

P.rofessor M.H .. WUUams
Departme;nt of Comput.er Science
Herriot-Watt Univers.ity, Edinburgh
Scotland

Circulation and Production

. Mr C.S~M. Mueller .
Department of Computer Science
Univeirsity of the Witwatersrand ·
1 Jan Smuts Avenue ·

· Johannesburg, 2001 ·

. Quzstfones lnformat.ice is prepared by the Computer Science Dep.a-rtment of the University
of the Witwatersrand and printed by Printed Matter, far the Computer . Society of South

Africa and the South Afri~n Institute of Computer Scientists.

A HIGH-LEVEL INTERFACE TO A RELATIONAL DATABASE
SYSTEM

S. Berman and L. Walker
Universfty of Cape Town

Rondebosch 7700

A high-level language for accessing a relational database is being developed at UCT. The system, known as HAL
(High-level Access Language), provides complete data independence as users view the database in terms of objects
and their properties. Constraints on data usage can be incorporated in the data definition and enforced by HAL. In
this way a simpler, more controlled interface to a relational database is obtained.

KEY WORDS: relational database, access language, metadata, data independence, subschema

1. INTRODUCTION

Relational databases are easier to use than others primarily because their non-procedurality
reduces the navigation problems of the earlier systems. However they still require a thorough
knowledge of the relational structure of the data and the correct use of non-trivial operations such
as join, which is a form of navigation in that it enables one to pass from one relation to another.
The HAL project was initiated to present the programmer with a natural view of data as objects
and their properties, where no knowledge of the underlying relations is required. Additional
advantages of HAL are enforcing more integrity constraints on data and enabling the metadata
(data definition) to be accessed as well as data.

This paper describes the HAL subschema and data manipulation language. Implementation
considerations are then outlined and the system evaluated by comparison with conventional
relational languages.

2. THE HAL SUBSCHEMA

An example of a simple subschema can be seen in the appendix. A HAL subschema
comprises a list of objects optionally followed by a list of tasks. An object is described by several
properties each associated with an attribute or relation in the database. The tasks are database
manipulating routines which can be called from within programs. Every property is designated as
mapping to 1 or M (many) values and has a vahietype which is STRING, INTEGER, REAL, or
an object name. The latter case implies that the property references other objects in the database.
The application programmer sees only a list of object and property names, and a list of task
names.

Constraints can stipulate that certain properties are "compulsory" and cannot be null, or are
"id-properties" and cannot have duplicate values. Further, where ever a property of one object
references another object (called a "foreign key"), the update and deletion of the foreign object
can be specified as nullifying or cascading through to the property, or as being restricted by the
property.

"Tasks" [8] are useful for standard operations:, it is preferable to store the handling of data
once with the data definition, than many times over in programs that use it, possibly
inconsistently. A task can have parameters and local variables and can return a result. Tests can
be interspersed with executable statements to verify conditions at that particular point. An
exception-handling task specified with a test will be invoked whenever the test fails.

3. THE DATA MANIPULATION LANGUAGE

The HAL commands are GET, CREATE, DELETE, UPDATE and NULLIFY. The latter is

7

a special form of UPDATE which allows individual values of a multivalued property to be
nullified, leaving other values of that property intact. The user requires no knowledge whatsoever
of how the data is stored; he need only know what properties of objects exist. Commands
reference data by property names and deal with sets of objects rather than working on an
object-by-object basis. So that programmers need not know the ordering of properties within an
object, the property, not the object, is the unit of access. Any combination of properties in any
order, can be referred to in one statement, and GET can retrieve properties of different kinds of
object at the same time. Particular object occurrences to be affected by a command are selected by
a predicate expressed in terms of any properties of the object, not only its "key" properties.

The option of file output is provided for extracting large numbers of objects from the
database. Arithmetic operations and aggregate functions (average, minimum, maximum, sum,
and count) can be applied to database values, and any desired sequencing of objects in a result
can be obtained. The concise notation enables multivalued and compound properties, and
properties of properties to be referenced easily. Consider the following statement for the HAL
subschema in the appendix:

CREATE project(name="IBM"; jobhistory.worker.name, jobhistory.hours="Doe",
36, "Tod", 45, "Fig", 27)

Jobhistory is a compound , multivalued property of project which is here being given three
values. Each of these comprises a pair of worker-name and hours values, respectively. A
"mapping" [6] permits properties of properties to be designated simply: example
"jobhistory.worker.name". Special forms of GET are provided to enable metadata to be
retrieved. Examples:

GET(obj = OBJECT, del = DELETES, edit= UPDATES) ;

retrieves all object names with their deletion and update constraints;

GET(prop=PROPERTY, of=OBJECTOF, t=TYPE, c=COMPULSORY, u=UNIQUE,
m=MULTIPLICITY) ;

obtains all property names and descriptions.
The commands are designed to be embedded within a C [7] host language program so their

syntax is compatible with that of C. The major difference lies in the fact that C is record-oriented
while HAL is set-oriented. This problem is overcome by treating a retrieval statement as a loop
control. The (compound) statement following a GET is iterated once for every object retrieved.
HAL commands could not be implemented as library routines because of problems with
parameter passing for complex predicates. Instead, a preprocessor replaces HAL statements
within a C program by appropriate commands manipulating the underlying database. It should be
noted that the overhead of such a preprocessor pass through a program exists in most relational
database systems.

4. IMPLEMENTATION

The metadata in the HAL subschema is stored in the following relations in the database:

RELATIONS - this stores the relation and attributes in the underlying database as well as their
data type

OBJECTS - here there are tuples for each object type and every relation in which that
object is referenced. If the object is a foreign key the restrict/cascade/nullify
information is recorded along with the name of the foreign key attribute

PROPERTIES - this gives the attribute or rel.ation representing each property. If a relation, the
property is termed "complex" (eg. jobhistory and workdone in the appendix.)
The objecttype and id columns in PROPERTIES indicate foreign keys. In the
appendix "worker" and "operation" are two such properties mapped to
work.eno (specifying workers via their employee number) and work.jno

8

(designating a project number), respectively.
JOINS - this gives the attributes to match when joining one relation to another for a

complex property.

The appendix illustrates the metadata created for a simple subschema.
The HAL preprocessor parses commands, checks them against the stored metadata and

translates them into equivalent operations on the relational database. When a task is invoked the
preprocessor extracts any condition associated with the call in the program, translates it into an
equivalent predicate on the underlying database and appends it to all database manipulation
commands in the task. The system is being tested on an Ingres database and hence HAL
statements are translated to EQUEL [9]. A HAL command generally requires several EQUEL
operations, since what appears to the programmer as a single object is usually represented by
several relations. The preprocessor deduces that a join is required when it encounters a foreign or
complex property.

Consider firstly the handling of a foreign key such as worker. Its PROPERTIES entry
equates it with work.eno, and its "objecttype" and "id" indicate that it references employee
objects by number. Employee number is found in PROPERTIES to be represented by emp.eno.
Thus the join clause "WHERE work.eno = emp.eno" is used. For a complex property,
PROPERTIES shows that it is represented by an entire relation. The JOINS tuple for that
property is thus examined to obtain the join clause.

Handling CREATE, NULLIFY and UPDATE commands requires that properties be
re-ordered before equivalent EQUEL statements are devised. In this way properties in one
relation are treated, then those in the next relation, and so on. When the PROPERTIES entry
indicates that a complex property is being inserted, the metadata for the corresponding relation is
examined to determine its compulsory properties. Unfortunately, the foreign key value may be
given under some other property name, eg:

CREATE project(nurnber=102; name="NCR"; jobhistory.hours,
jobhistory.worker.name=12, "Doe", 24, "Fig", 9 "Poe");

The complex property jobhistory is represented by the work relation. Its attribute work.jno
represents "operation", a compulsory foreign key. The statement did indeed indicate a particular
operation giving the project number 102, but has understandably not repeated it in the form
jobhistory.operation.number. To deal with this, the missing property is determined from "id" in
PROPERTIES (here, project number). This property value is therefore sought in the statement if
the expected foreign key is not explicitly given.

Another difficulty arises from indirect identification of the foreign key, eg:

CREATE activity(worker.name, hours, operation.number="Doe", 12, 24, "fig",
27, 18, "Poe", 33, 3);

Activity is represented by the work relation. Its worker property is a foreign key represented
as employee numbers. However, the command above has identified employees by their name.
The system detects that name and not number has been supplied, and first retrieves the employee
number corresponding to the given name. The EQUEL statements to handle insertion of the first
activity are thus:

RANGE OF empx IS emp
RETRIEVE (nvar[OJ = empx.eno, flag ANY(empx.eno where empx.ename

WHERE empx.ename = "Doe"
If (flag== 1) APPEND TO work (eno nvar[OJ, hrs= 12, jno = 24)

"Doe"))

The HAL system has to impose all subschema constraints. To enforce restricted updates and
deletions, a RETRIEVE ANY is used to detect tuples preventing the desired operation. Additional
EQUEL statements are created to propagate changes and deletions through the database. Finally,
enforcing uniqueness of id-properties involves using ANY to detect duplicates.

9

5. EVALUATION

The major advantages of HAL over existing relational languages are that several underlying
relations can be referenced in one statement as if the infonnation were all stored together, and that
objects can be uniquely distinguished via any identifier. There is no need to distinguish
"attributes" from "associations" even though they may be implemented differently and the join
operation of their relational algebra is replaced by the simple concept of a mapping. In addition
HAL can restrict data removal and alteration where appropriate, detect duplicates or null values
where they are not allowed, and propagate deletions and updates through the database. The
metadata relations created by the system are accessible to programmers, enabling them to query
the data definition. Figure 1 illustrates the relative simplicity of HAL compared with the
conventional database languages: relational algebra[5], relational calculus[4], EQUEL[9] and
SQL[l]. Query: Give the names of all employees who have worked on the "ICL" project (for the
database in the appendix).
Phrasing the same query in HAL:

GET (result•jobhistory.worker.name) WHERE project.name== "ICL";

Phrasing the sample query in the relational algebra:

JOIN emp AND work OVER eno GIVING templ
JOIN templ AND job OVER jno GIVING temp2
SELECT temp2 WHERE jname = "ICL" GIVING temp3
PROJECT temp3 OVER ename GIVING result

Phrasing the sample query in the relational calculus:

RANGE wx work
RANGE jx job
GET result(emp.ename): 3wx 3jx(emp.eno - wx.eno & wx.jno • jx.jno &

Phrasing the sample query in EQUEL:

RANGE OF ex IS emp
RANGE OF jx IS job
RANGE OF wx IS work

jx.jname • "ICL")

RETRIEVE (result=ex.ename) WHERE ex.eno=wx.eno and wx.jno=jx.jno and

Phrasing the sample query in SQL:

SELECT ename
FROM emp
WHERE eno IN (SELECT eno

FROM work

jx.jname = "ICL"

WHERE jno IN (SELECT jno
FROM job
WHERE jname "ICL"))

figure 1
Comparison of Five Relational Languages

HAL has demonstrated that a high-level interface to a relational database can provide
complete data independence, thus enhancing ease of use and making programs immune to
changes in the schema. The major problem remaining is that the data manipulation commands are
embedded in a foreign host programming language. A persistent programming language based on
HAL is accordingly being developed [2].

10

REFERENCES

1. Astrahan MM. and Chamberlin D.D. [1975], Implementation of a Standard English Query Language,
Communications of the ACM, 18.

2. Berman S. [1986], PPL - A Preliminary Report, Qua!stiones lnforma.tica, 4, 25-32.
3. Codd E.F. [1970], A Relational System of Data for Large Shared Data Banks, Communications of the

ACM,13.
4. Codd E.F. [1971], A Data Base Sublanguage Founded on Relational Calculus, Proc. ACM SIGFIDET

Workshop on Data Description, Access and Control.
5. Codd E.F. [1972], Relational Completeness of Data Base Sublanguages, Data Base Systems, Courant

Computer Science Symposia Series (6), Prentice-Hall.
6. Hammer M. and McLeod D. [1981], Database Description with SDM: A Semantic Database Model, ACM

Transactions on Database Systems, 6, 351-386.
7. Kernighan B.W. and Ritchie D.M. [1978], The C Programming Language, Prentice-Hall.
8. Mylopoulos J., Bernstein P.A. and Wong H.K.T. [1980], A Language Facility for Designing

Database-Intensive Applications, ACM Transactions on Database Systems, 5, 185-207.
9. NCR Corp. [1983], TOWER Database Manager, Relational Technology Inc.

APPENDIX - SIMPLE EXAMPLE

Employee-Work Database Relations

EMP(ename,eno,wage)

JOB(jname,jno,charge)

WORK(jno,eno,hrs)

Subschema for Employee-Work Database (The TRANSLATION section is transparent to application programmers)

OBJECT Employee

ID-PROPERTY

Name

Number
PROPERTIES

Wage

Workdone
OBJECT Project

ID-PROPERTY

Name
Number

PROPERTIES

Charge

Jobhistory

OBJECT Activity

ID-PROPERTY
Operation

Worker

PROPERTIES
Hours

TRANSLATION
OBJECT Employee

Name

Number

Wage
Workdon·e

OBJECT Project

Name

Number
Charge

Jobhistory

1 STRING compulsory

1 INTEGER unique compulsory

1 REAL

M Activity update cascades

1 STRING unique compulsory
1 INTEGER unique

1 REAL

M Activity update cascades

1 Project compulsory delete restricted update cascades

1 Employee delete nullifies update cascades

1 REAL

EMP.ename

EMP.eno

EMP.wage

WORK

JOB. jname
JOB.jno

JOB.charge

WORK

11

OBJECT Activity
Operation
Worker
Hours

WORK.jno Project.Number
WORK.eno Employee.Number
WORK.hrs

Metadata for above subschema

RELATIONS

relation
EMP
EMP
EMP
JOB
JOB
JOB
WORK
WORK
WORK

OBJECTS

objectname
employee
employee
project
project
activity

column
eno
ename
wage
jno
jname
charge
eno
jno
hrs

relation
emp
work
job
work
work

PROPERTIES

propname object
name employee
number employee
wage employee
workdone employee
name project
number project
charge project
jobhistory project
worker activity
l. l. l. l. l. l. l. l. l. activity
hours activity

format
int
char
int
int
char
int
int
int
int

column

eno

jno

relation
emp
emp
emp
work
job
job
job
work
work
work
work

deletes updates

nullify cascade

restrict cascade

column objecttype
ename
eno
wage

activity
jname
jno
charge

activity
eno employee
jno project
hrs

prop

number

number

id CU m
y N 1
y y 1
N N 1
N N M
y y 1
N y 1
N N 1
N N M

number N N 1
number y N 1

N N 1

(in the above relation the names "compulsory", "multiplicity" and "unique" have been
abbreviated to "c", "m" and "u" respectively).

JOINS

property relationl columnl relation2 column2
jobhistory job jno work jno
workdone emp eno work eno

12

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to
publish original papers in any field of
computing. Papers submitted may be
research articles, review artilces and
exploratory articles of gen~al interest to
readers of the journal. The preferred
languages of the journal will be the congress
languages of IFIP although papers in other
languages will not be precluded.

Manuscripts should be submitted in
triplicate to:

Prof~ G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0106
South Africa

Form of maJuscript
Manuscripts should be .in double-space

typing on one side only of sheets of A4 siu,
with wide margins. Manuscripts produced
using the Apple Macintosh will be
welcomed. Authors should write concisely.

The first page should include the article
title (which should be brief), the author's
name and affiliation and address. Each
paper must be accompanied by an abstract
less than 200 words which will be printed at
the beginning of the paper, together with an
appropriate key word list and a list of
relevant Computing Review categories.

Tables -and figures ·
Tables and figures should not be

included m the text, although tables and
figures sliould be referred. to in the printed
text Tables should be typed on separate
sheets . and _should b,e numbered
consecu.tively and titled.

Fi~es should ~lso be supplied on
~epar~c sheet&, and eac~ should be clearly
identified on the back m ~ncil and the
authors name and ftgu:re number .. -Original.
line drawings {nob photocopies) -should be
submitted arid shoold include all the relevant
details. Drawings etc., should be submitted
and should include all rielevant details.
Photogra1;1hs as illustrations should be
avoided · 1f possib-le. If this cannot be
avoided, glossy bromide prints are required.

Symbols
. Mathematic~ and other symbols may be

either handwntten or typewritten. Greek
letters and unusual symbols should be
identified in the margin. Distinction should

· be made bt!tween capital and lower case
letters; between the letter O and zero;
between the letter I, the number one and
prime; between K and kappa

References
References· should be listed at the end of

the manuscript in alphabetic order of the
author's name, ·and cited in the text in
square brackets. Journal references should
be.arranged thus:

1. Ashcroft E. and Manna Z The
Translation of 'GOTO' PropnlS to
'WHILE' programs., Proceedings
of IFJP Congress 71,
Nortb ... HolJand, Amsterdam,
250-255, 1972. .

2. Bohm C. and Jacopini G., Flow
Diagrams, Turing Machines and
Languages with only Two
Formation ~ules., Comm. ACM,
9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw
Hill, NewYork, 196'.

Proofs and reprints
Pro.ofs will be sent to the author to

ensure- that the papexs have· been co.ncetly
typeset and nm for. the ad4itian m new
materi~l or major amendment to tlie-tcx.-ts,
Exce$5~ alter.anons may be disallowed.
Cor.rected proofs mpst be returned to. th&
production manager witbin three days to
minimize the risk of the authors
~ontri.bution baring tO be he1d ovei:to-a..J.alcr.
issue.

DP.J.y orginal papers wilrbea~a
copyright in published J)8peJS will-be v6ifm:
in the publisher.

