
. I 

QUAESTIONES ;·_ · . 

INFORMATICAE 

Vol. 1 No. 1 June, 1979 



Quaestiones I nformaticae 
An official publication of the Computer Society of South Africa 

'n Amptelike tydskrif van die Rekenaarvereeniging van Suid-Afrika 

Editors: Dr. D. S. Henderson, 
Vice Chancellor, Rhodes University, Grahamstown, 6140, South Africa. 
Prof. M. H. Williams, 
Department of Computer Science and Applied Maths, 
Rhodes University, Grahamstown, 6140, South Africa. 

Editorial Advisory Board 
PROFESSOR D. W. BARRON 
Department of Mathematics 
The University 
Southampton S09 5NH 
England 

PROFESSOR K. GREGGOR 
Computer Centre 
University of Port Elizabeth 
Port Elizabeth 6001 
South Africa 

. PROFESSOR K. MACGREGOR 
Department of Computer Science 
University of Cape Town 
Private Bag 
Rondebosch 7700 
South Africa 

PROFESSOR G. R JOUBERT 
Department of Computer Science 
University of Natal 
King George V A venue 
Durban 4001 
South Africa 

Subscriptions 
Annual subscriptions are as follows: 

Individuals 
Institutions 

SA 
R2 
R4 

us 
$3 
$6 

MR P. P. ROETS 
NRIMS 
CSIR 
P.O. Box 395 
PRETORIA 0001 
· outh Africa 

PROFESSOR B. VON SOLMS 
Department of Computer Science 
Rand Afrikaans University 
Auckland Park 
Johannesburg 2001 
South Africa 

PROFESSOR G. WIECHERS 
Department of Computer Science 
University of South Africa 
P.O. Box 392 
Pretoria 0001 
South Africa 

MR. P. C. PIROW 
Graduate · School of Business Administration, 
University of the Witwatersrand 
P.O. Box 31170 
Braamfontein 2017 
South Africa 

UK 
£1.50 
£3.00 

Quaestiones lnformaticae is prepared for publication by SYSTEMS PUBLISHERS (PTY) LTD for the Computer Society of South Africa. 



A Hardware-Based Real-Time Operating System 

M. G. Rodd 
Dept. of Electrical Engineering, University of the Witwatersrand, Johannesburg, 

South Africa 

Abstract 
The efficient use of multiprogrammed mdustnal control computers 1s largely a function of the relationship between hardware and software A shift 

in this relationship 1s desirable, smce multiprogrammed computers typically spend a large proportion of computing time in handling their own organiza­
tion This situation 1s compounded m many tune-cntlcal mdustnal process-control applications 

This paper proposes that a possible solution hes m the adoption of a hardware-based real-time operating system The system consists of a rrucro­
controller work.mg m close relationship with a conventional rrumcomputer To retam a high degree offlexibihty, the rrucrocontroller makes use of m1cro­
programmable, bipolar, b1t-shce rrucroprocessor elements In essense, the umt executes the pnncipal functions of a real-time operating system, acts as a 
pre-processor for all incorrung requests, and ensures a high rate of task switching 

The system has been applied m a senes of real-time expenmental configurations These were controlled successively by the conventional, soft­
ware-implemented approach, and by the proposed system The respective performances were evaluated The new strategy 1s shown to result ma better 
and more econorrucal mdustnal controller 

1. Introduction 
The introduction of the electromc computer has had an immense im­

pact on society In almost every aspectofhfe, this product of man's power 
of innovation 1s exerting an influence One particular area m which the 
computer's ab1hty to perform high-speed, repetitive tasks is used to an 
ever-mcreasmg extent, 1s the mdustnal sector In an era of inevitable ex­
pansion of mdustnal capacity, mdustnal1sts look to the computer to aid 
them m ach1evmg their goals of higher production and more constructive 
use of labour The demands made on the controlling computers have 
necessanly increased, from the execution of relatively simple sequential 
tasks, to an extent where total control of complex processes 1s invested m 
the computer 

As the demands increase, the capabilities of the computers must in­
crease likewise Wm.le dramatic technological advances have resulted m 
faster, more reliable, machines there 1s, seemingly, a limit to what a smgle 
computer 1s capable of performing The solutions offered have been many 
- multiply the complexity of the computer, add hardware, develop more 
sophisticated software, introduce additional, parallel processors 

The maJonty of such complex systems have been produced by means 
of ad-hoc design procedures, based on expenence and mtu1t1on This 
paper shows how a simplistic analysis of the performance of a smgle 
processor can reveal the vital cntena to be considered when defining a 
computer structure for a specific mdustnal application Based on this 
analysis, a system 1s proposed which provtdes for a highly efficient mdus­
tnal controller l 2] The heart of the structure 1s a rrucrocontroller, 
executmg control over a m1mcomputer and actmg both as a partial pre­
processor and as a hardwtred operating system 

2.1 Organizational Problems of Process-Control 
Computers 

In broad terms, a computer applied m a real-time process-control 
situation must be capable of performmg the followmg functions 

internal penpherals ( e g an event-timer or a real-time 
clock) 

( 111) The temporary suspension of a task currently m execution, follow­
ing a request for a task wtth a higher pnonty m the predetermined, 
pre-emptive pnonty hierarchy 

Rev1ewtng the above demands on such a system, one 1s struck by the 
fact that the problem which confronts the computer systems designer 1s by 
no means uruque The situation 1s typical of many systems, havmg limited 
resources while bemg subJected to demands for service at varying 
intervals 

Typical of such a system 1s a telephone exchange An Exchange might 
have thousands of subscnbers, but can lmk only relatively few of them at 
any one time The requests for connections occur at some statistically 
evaluatable rate, and the lengths of calls (or holding tunes) may also be 
statistically predicted Such systems have been studied for many decades, 
and the results obtained can be of great value to the systems analyst m 
many other fields In the case under d1scuss10n in this paper, 1t 1s a smgle­
server model which 1s appropnate, 1 e , only one request can be honoured 
at any one tune, with all other requests occumng dunng that time bemg 
placed in a waiting queue [3] 

The assumptions made are as follows 
( 1) That the mcommg requests are charactensed by a Pmsson d1stnbu­

tion, wtth an average request rate of K (per time-span) 
(11) That the dtstnbution of task lengths may be charactensed by a 

negative exponential function of the form 

1 -t/h 
f(t) =he 

where h 1s the mean execution time of the tasks, and t 1s the time 
vanable 

It may be shown ( 4), that the resulting mean queue length, L, 1s given 
Kh 

L=--
1-Kh (1) 

(1) The schedulmg of a vanety of tasks m such a way as to effect over- and the mean delay, D, of tasks m the queue 1s given by 
all control of the process ("Task" 1s taken to imply a sequence of 
computer mstructions which perform a predetermmed system 
function [ 1] Each task will hav~ a certam time which 1t takes to 
complete and will, normally, reqmre execution at certam prescnb-

h 
D=--

1-Kh (2) 

ed mtervals Fig 1 plots expression (2) In the most basic terms, this gives the key to 
( 11) The 1rutiatlon of a specific task, mdtcated ( or "requested") by any the performance of an mdustnal control computer The model 1s obv1ous-

of the followmg occurrences I ly highly simplified, as problems such as pnonty are not considered (Ref 
(a) A signal denved from the plant [4] shows how these can be mcluded) The analysis does, however, 
(b) A request from another task currently m execution provide a firm basis for v1ewmg the reqmrements of a computer system 
( c) A signal from one of the computer system's own external or , perf ormmg such functions 

Th.ts paper was presented at the SACAC symposmm on Real-t1tne Software for Industnal Applications m Pretona on 29-30 
November, 1978 



I I 
09 

J 

I 
I 

g1:r, 8 0 8 0 

I LO LO 
0 LO "<:t "<:t (') (") C\J 
0 

II II II II II II C\J 

~~ ¥- ~ :x:: ~ II @ - - ,_ --~ 
Ii v ~ 

I 

I j ) ~ 

~ 

I J I I v / / 
v 

t 
U) 
0 
z 07 0 
u 
UJ 
Cf) 

z 
-=-
8 
UJ 
:::i 
UJ 05 
:::i 
a 
~ 
>-
~ 
UJ 
0 
z 
<( 

03 UJ 
~ 

h '/ V/ / ~ v ~ 
-~ 

~ ~ ~ L-::::::: L.----i--
01 

001 003 005 007 009 

MEAN TASK LENGTH (h) (IN SECONDS) --

K 1s the average Task request rate (per second) 

2.2 Organizational Strategies 
The cntenon of acceptab1hty of any control system 1s that 1t must be 

capable ofperformmg the reqmred function' In terms ofF1g 1, tlus may 
be interpreted as requinng that the execut10n of every task, when 
requested, should occur w1thm a perm1ss1ble hm1t ( any delay would, of 
course, anse from the queue wluch may develop) 

If the charactenstics of a process under review are such that non­
perm1ss1ble delays will occur 1f a conventional smgle computer 1s used, 
how can the system be structured to produce an acceptable situation') Fig 
1 md1cates the way Tlus shows that to reduce the average delay time 
expenenced for a specified number of tasks, only two parameters can be 
vaned These are 
( 1) The average task request rate, and 
( 11) The average task execution time 

To aclueve a reduction m either or both of these parameters, a vanety 
of techniques may be employed Some of the more obvious are outlmed 
below · 
(a) Reduction of the Average Request Rate 
· Two solutions are immediately apparent here Firstly, pre­

processing may be employed to sift through demands from the 
system ( 1 e , requests for attention, alarms, etc ), and to select those 
which are absolutely vital for sendmg on to the mam computer 
Secondly, processmg power may be d1stnbuted among a hierarchy 
of processors Thus, the request rate ( anp therefore the load) to any 
one machme will be reduced .-

(b) Reduction of the Average Execution Time 
The obvious md1cation 1s that actual run times of tasks should be 
kept to an absolute mm1mum Tlus 1mphes, firstly, that the 
processor should be made as fast as possible, and secondly, that 
programs should be optimally coded for m1mmum run-time There 
are, however, two important factors wluch should also be con­
sidered here Firstly, 1t 1s common knowledge that any multi­
programmed computer spends much of its available computing 
time m executing mternal operatmg system functions and virtually 
"trymg to decide what to do next" Such operating system func-

2 

tions can be considered as tasks and should therefore be kept to a 
mmunum Also, the question of swop-time ( the time taken to 
switch execution from one task to another) must be taken mto 
account Smee the bnngmg mto execution of any task will reqmre a 
task-swop, this time-length may be included m the average task 
execution time Thus, reduction of the task-swop-time will effec­
tively reduce average execution tune 

3.1 A Possible Solution 
The factors discussed above can be considered collectively, and a 

multi-faceted approach adopted It 1s not mtended to attempt a totally new 
architectural approach to computer design The area of 1mmed1ate in­

terest hes m the modification of ex1stmg m1mcomputer systems to pr<r­
duce more capable and efficient systems 

It 1s proposed that the solution hes m the superv1s1on of the functions of 
a m1mcomputer by means of a separate, but closely-linked, hardware umt 
The functions of the umt are . 
( 1) To execute the pnmary executive functions of a real-time operatmg 

system. 
( 11) To pre-process all mcommg requests from the process and from the 

penpherals, as well as those generated by tasks currently m execu­
ti<;m m the computer 

(m) To supervise task-swoppmg w1tlun the m1mcompufer 
As well as meetmg these reqmrements, 1t 1s essential that 
(a) The umt may be mterfaced to the m1rucomputer without modifi­

cations to the existing hardware 
(b) It should be economically effective 
( c) Although a hardware umt, the structure must retain a high degree of 

flex1b1hty 
The block diagram of a smtable structure 1s shown m Fig 2 The 

hardware umt compnses a hardwired operating system together with a 
local memory, an mterrupt controller, and mterfacmg to the computer 
The mterfacmg to the m1rucomputer utilizes the computer's mput/output 
bus, and reqmres no change m the m1mcomputer's existing hardware 



\ lnterru ts~ Mlmcompulet" _., 

lnterruplsfromProcess 

coo,m1 ~ ~ 

' - ~_____,____.__ReaJTj1meClock_s , 
~rupts fromPet" 1pherals 

Input I Output 

1/0Bus 

CoovenhooalMin1computer Minicomputer's 
interrupt cont roller 

FIGURE 2 SYSTEM BLOCK DIAGRAM 

PARAMETER 

Time to recognise the presence of an interrupt 

_, 

Interrupt Controller 

Time to accept an interrupt and initiate the task requested. (I) 

Time to effect a task-swop. Note (i) 

Time to initiate a task called by another task. Note (i) 

Time to react to an interrupt generated by a peripheral. Note (i) 

Time to initiate an input/output operation. (i) 

Time to terminate an input/output operation. 

' 
Longest non-interruptable time. Note ( ii) 

Core re.quired to implement a basic operating system ( in actual 
locations.) 

s §-· 
·- 1-------;f-----+----- t l' ~ 

~ ~ 

L 
! 8 ' 'i ! ~~~ 

B illi 
°'' output 

.----+-+--- : H ~ 
I 

i --~ j CENTRALPROCESSORAARA'r 

. £ 

r~ 

FIGURE 3 MICROCONTROLLER BLOCK DIAGRAM 

COMPUTER I COMPUTER I COMPUTER II COMPUTER Ill 
WITH WITH KERNEL WITH IN-CORE, WITH REAL-

MICRO- IN-CORE REAL- REAL-TIME TIME OPERA TING 
CONTROLLER TIME OPERA TING OPERATING SYSTEM 

SYSTEM SYSTEM (16 Bit) (32 Bit) 

1,8 7,2 10,6 6 

171 408,6 261 ,5 2106 

165,6 408,6 200 2100 

171 471 ,6 200 2300 

1,8 7,2 10,6 6 

171 408,6 ±300 1800 
Note (iii) 

171 408,6 ±300 1700 
Note (iii) 

7.7 495 Not available 97 

76 508 2805 ± lOK 

3 



3.2 A Practical Implementation 
From the required system funct.J.ons, 1t 1s clear that the hardware urut 

(referred to below as a "m1crocontroller''), 1s in essence, a lugh-speed 
computer with somewhat limited and specialized funct.J.ons The high 
speed 1s essential, since 1t must be capable of rapid react.J.ons to incoming 
requests, and must be able to control the minicomputer as effect.J.vely as 
possible It was est.J.mated [2], that the microcontroller should be one 
order of magnitude faster than the minicomputer in processing speed Tlus 
indicated a desired cycle-ti.me of the order of 150-200 nano-seconds, 
which unmediately ruled out convent.J.onal mircroprocessors The need 
for flex1b1lity pointed to a microprogrammable unit To meet both these 
requirements, bipolar bit-slice microprocessor elements were used (see 
Fig 3 ) The central processor array 1s a l 6-b1t wide system, for 
convenient data exchange with the host computer The m1cro-instruct.J.on 
word 1s essent.J.ally vertical in structure, with a 24-bit width Two pages of 
micro-instruct.J.on memory, each with 512 words, are included Informa­
t.J.on relevant to each task ( somet.J.mes referred to as a Process Control 
Block) 1s held in a local, lugh-speed bipolar memory, cons1st.J.ng of 1 K x 
16 bits RAM The interrupt control urut presently compnses 64 levels of 
interrupt, fully vectored, with programmable masking The m1rucompu­
ter interface controls data flow, and routes signals to the minicomputer's 
interrupt system All commurucat.J.ons with the minicomputer are effected 
via tlus interface, which also controls the necessary synchronization 
dunng data transfer To effect data transfer, approximately 70 locat.J.ons 
are required witlun the m1rucomputer's memory, to act as a buffer store 
and interrupt catcher 

3.3 Operation 
The real-tune operat.J.ng system 1s effected by m1croprogrammes At 

the present ti.me, its funct.J.ons are limited to those of the execut.J.ve of a 
convent.J.onal, in-core, real-ti.me operat.J.ng system As such 1t may be 
regarded as a Kernel operat.J.ng system Only limited file-handling has 
been implemented The pnmary funct.J.ons of the operat.J.ng system are 

(1) Scheduling of multiple tasks The tasks may be either real-ti.me 
dependent and pnonty-based, or non-t1me-cnt.J.cal background 
tasks A limited degree of dynamic rescheduling 1s permitted 

(11) Control of mult.J.ple, vectored interrupts 
(111) Control of inter-task commurucat.J.on and synchronizat.J.on, includ­

ing buffer-passing, as well as communicat.J.on between tasks and the 
execut.J.ve 

(1v) Superv1s1on of all input/output operat.J.ons 
In simple terms, the microcontroller determines wluch task should be 

executed at any one ti.me It examines all incoming interrupts, and uses a 
smgle-queue, pnonty-based, pre-empt.J.ve scheduling algonthm to deter­
mine wluch tasks should be swopped-in or-out Input/output require­
ments in the mm1computer are dealt with by regarding their dnver rout.J.nes 
as tasks, on the same basis as user tasks 

3.4 System Evaluation 
The system outlined above has been implemented in conJunct.J.on with 

NOTES A 
B 

All ti.mes are in microseconds 
( 1) Assumes the requested task 1s in memory, and has 

a higher pnonty than the current task 
( 11) Only considers tasks which form part of the 

operat.J.ng system, and excludes any user tasks 
(111) Dependent on the penpherals used 

A detailed comparat.J.ve study was also made of the Utilization Factor 
(UF), a factor which indicates what proportion of the total available com­
put.J.ng ti.me 1s actually used for valuable work (1 e the processing ofuser 
tasks) In a typical, fast on-line control application, 1twas found that a UF 
of< 0,08 could be expected, 1 e less than 8% of total available comput.J.ng 
ti.me was actually devoted to the execut.J.on of user tasks The rest of the 
ti.me was taken up by scheduling, task-swopping, interrupt handling, etc 
Under the superv1s1on of the m1crocontroller, a UF ofup to 0, 7 ( 1 e 70%) 
could be aclueved in the 1dent.J.cal s1tuat.J.on 

4. Conclusion 
It has been descnbed how a simple statlst.J.cal analysis of a process­

control computer system can indicate ways of ensunng efficient organ1za­
t.J.on It 1s clear from the analysis that the prov1S1on of bigger and better 
fac1ht1es will not necessanly result in unproved systems In order to un­
prove the system and to provide for a high degree of ut.J.hzatlon of the 
fac1hties available, there are certain clear-cut factors which must be con­
sidered These factors indicate that an unconvent.J.onal, integral hard­
ware/ software approach to the management of industnal control com­
puters would ensure highly efficient operat.J.on Such poss1b1ht.J.es become 
feasible in view of current technological developments, specifically with 
the introduct.J.on of ultra lugh-speed microcomputer components 

Indeed, the work descnbed in tlus paper points to an unportant 
avenue, in which much research effort should be concentrated, that of the 
supervision of large, powerful mainframe computers by simple, low-cost 
controllers It 1s clear that any efficient system 1mphes efficient use of re­
sources Thus simple, logical tasks such as scheduling and interrupt 
handling are ~ot necessanly the forte of powerful, 'number-crunclung' 
computers, and the delegation of such tasks to these maclunes 1s a misuse 
of potent.J.al power The solut.J.on hes in surrounding the mainframe 
machines with small, lim1ted-capab1lity computers ( 1 e microprocessors), 
which will supervise and assist the central machines in using their poten­
tial to the utmost To quote Maunce Wilkes, "A computer operat.J.ng 
system may be regarded as - and indeed 1s - a control system There 
would thus appear to be scope for 1mplement.J.ng an operating system by 
means of a number of interconnected micro-processors dedicated to the 
purpose " [ 5] 

Acknowledgement 
The author wishes to express lus appreciation to the University of 

Cape Town for assistance m the production of this paper 

References 
a minicomputer, applied in a vanety of real-ti.me control situat.J.ons [2] 
The results obtained have been compared with results measured using 
convent.J.onal techniques The same minicomputer system was used, 
under the control of an in-core, real-time operat.J.ng system In addition, 2 
compansons were made with other mirucomputer systems operating 
under their current real-time operating systems Some of the results 3 
obtained are shown m Table 1 

BARRON, D W (1971) Computer Ope,atzng Systems, Chapman 
and Hall, London 

RODD, MG ( 1976) Orgamzatwn of Industnal Control Com­
puters, PhD Thesis, University of Cape Town 

RUBIN, M and HALLER, C E ( 1966) Commumcatwn Switch­
ing Svstems, Rhemhold Pubhshmg Corp, New York, 246-271 

TAKE IN TABLE 1 

TABLE 1 Companson of Some Key Real-Time Operatmg System 
Parameters 

4 

4 

5 

SYSKI, R ( 1960) Congestwn Theory zn Telephone Systems, 
Oliver and Boyd, London 298-340 

WILKES, M V (1977) The Application of Microprocessors to 
Mam Frame Design, m Proc JERI Conference on "Computer 
Systems & Technology·: Bnghton, U K 



Notes for Contributors 

The purpose of this Journal will be to publish original p_apers in ~ny 
field of computing. Papers submitted may be research artJcles, review 
articles, exploratory articles or articles of general inter.est to readers of the 
Journal. The preferred languages of the Journal will be the congress 
languages of IFIP although papers in other languages will not be 
precluded. . . 

Manuscripts should be in double-spaced typmg on one side only of 
Henderson or Prof. M. H. Williams at 

Rhodes University 
Grahamstown 6140 
South Africa 

Form of manuscript 
Manuscripts should be in double-space typing on one side only of 

sheets of A4 size with wide margins. The original ribbon copy of the typed 
manuscript should be submitted. Authors should write concisely. 

The first page should include the article title ( which should be brief), 
the author's name. and the affiliation and address. Each paper must be 
accompanied by a summary of less than 200 words which will be printed 
immediately below the title at the beginning of the paper, together with an 
appropriate key word list and a list of relevant Computing Review 
categories. 

Tables and figures 
Illustrations and tables should not be included in the text, although the 

author should indicate the desired location of each in the printed text 
Tables should be typed on separate sheets and should be numbered 
consecutively and titled. 

Illustrations should also be supplied on separate sheets, and each 
should be clearly identified on the back in pencil with the Author's name 
and figure number. Original line drawings (not photoprints) should be 
submitted and should include all relevant details. Drawings, etc., should 
be about twice the final size required and lettering must be clear and 
"open'' and sufficiently large to permit the necessary reduction of size in 
block-making. 

Where photographs are submitted, glossy bromide prints are required. 
If words or numbers are to appear on a photograph, two prints should be 
sent, the lettering being clearly indicated on one print only. Computer 
programs or output should be given on clear original printouts and 
preferably not on lined paper so that they can be reproduced photographi­
cally. 

Figure legends should be typed on a separate sheet and placed at the 
end of the manuscript. 

Symbols 
Mathematical and other symbols may be either handwritten or 

typewritten. Greek letters and unusual symbols should be identified in the 
margin. Distinction should be made between capital and lower case letters 
between the Jetter O and zero; between the letter 1, the number one and 
prime; between K and kappa. 

References 
References should be listed at the end of the manuscript in alphabeti­

cal order of author's name, and cited in the text by number in square 
brackets. Journal references should be arranged thus: 

1. ASHCROFT, E. and MANNA, Z. ( 1972). The Translation of 
'GOTO' Programs to 'WHILE' Programs, in Proceedings of I FIP 
Congress 71, North-Holland, Amsterdam, 25(}.255 . 

2. BOHM, C. and JACOPINI, G. ( 1966). Flow Diagrams, Turing 
Machines and Languages with only Two Formation Rules, 
Comm. ACM. 9, 366-371. 

3. GINSBURG, S. (1966). Mathematical Theory of Context-free 
Languages, McGraw Hill, New York. 

Proofs and repr ts 
Galley proofs .will be sent to the author to ensure that the papers have 

been correctly set up in type and not for the addition of new material or 
amendment of texts. Excessive alterations may have to be disallowed or 
the cost charged against the author. Corrected galley proofs, together with 
the original typescript, must be returned to the editor within three days to 
minimize the risk of the author's contribution having to be held over to a 
later issue. 

Fifty reprints of each article will be supplied free of charge. Additional 
copies may be purchased on a reprint order form which will accompany 
the proofs. 

Only original papers will be accepted, and copyright in published 
papers will be vested in the publisher. 

Letters 
A section of'·Letters to the Editor" (each limited to about500words) 

will provide a forum for discussion of recent problems. 

Hierdie notas is ook in Afrikaans verkrygbaar. 



Quaestiones lnformaticae 

Contents/lnhoud 

A hardware-based real-time operating system 
M.G. Rodd 

.......................... 1 

Real-time interactive multiprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
A.O. Reher 

Distributed Computer Systems - a review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 
N.J. Peberdy 

The P-NP question and recent independence results ..................... 26 
N.C.K. Phillips 

Text compression techniques ......................................... 30 
J.E. Radue 

Spectrum Offset 




