TOWARDS CONTEXTS WITH MATHEMATICAL MODELLING TASKS
Hanti Kotze
University of Johannesburg
hantik@uj.ac.za

ABSTRACT- This paper aims to determine the extent to which Biomedical Technology students
contextualise real world problems. First year students in the Health Sciences are challenged to transfer
their mathematical knowledge and skills to other contexts. Conversely, in many mathematics classrooms,
students have limited exposure to the vast variety of contexts and settings on offer from daily life. This
research seeks to address this gap. A mathematical modelling approach offers students opportunities to
understand the real world contexts of tasks, to work mathematically and interpret solutions in real world
terms. A mathematical modelling task was designed that required students to contextualise the universal
significance of an abstract model. The task contexts summoned practical considerations that helped
students to understand the real world utility of the mathematical model. Some students remained
somewhat detached from reality but could perform inner-mathematical work with prudence. Biomedical
Technology students need more opportunities to model real life problems since contexts provide scope
for deeper meaning to abstract concepts. In turn, contexts can elicit a subtle balance between knowledge
and skill, a triad that should be inseparable. The custom- designed task will supplement the body of
contextually-rich exemplars to advance Biomedical Technology students’ modelling skills.
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1. INTRODUCTION AND BACKGROUND

Mathematics is embedded in daily life phenomena but often remains isolated and unconnected with the
real world. Contextually-rich problems offer learning opportunities that allow students to connect the
world of mathematics with real life. Contexts not only suggest strategies to problem-solving but can be
an avenue to develop diversified skills. For Freudenthal (1991, p. 75), contexts are “domains of reality
disclosed to the learner in order to be mathematised”. Schoenfeld (2001) warns that when skills are
isolated from contexts, they are destined to be without meaning and purpose.

Biomedical Technology students register for a semester module in mathematics in their first year of study
at the University of Johannesburg (UJ). The module aims to endorse mathematical knowledge and skills
that can be applied to biomedical contexts. Although the teaching and learning style remains largely
traditional, Kotze, Jacobs and Spangenberg (2015) report that students in a pilot study at UJ are
enthusiastic to learn in a modelling environment that offers greater articulation of skills in biomedical
contexts. The current study aims to examine the extent to which students relate to real world contexts
when exposed to a mathematical modelling approach for the first time. The research question is: To
what extent can Biomedical Technology students contextualise real world problems?

2. THEORETICAL PERSPECTIVES

Mathematical modelling is the process whereby a real life phenomena is translated into a mathematical
problem with the aim to find a realistic solution for the real world situation (Blum & LeiR, 2007). Although
these protagonists of a mathematical modelling approach advocate its implementation at all levels of
mathematics education, it is still a novel undertaking for most students at UJ. Often, classroom activities
focus more on abstract mathematical concepts and principles with undue regard for their applicability,
usefulness and connections with real life. According to Blum and Leil} (2007:225), the modelling cycle
(Figure 1) originates in the physical world and relates to a real world problem. A non-mathematical
situation must be abstracted as a situation model; this helps to untangle the reality-based problem. Only
relevant information is retained such that the situation model develops into a simplified and idealised
real model. The real model is then translated into a mathematical model; Freudenthal (1991) labels this
process mathematising. In the next phase of the modelling process, the mathematical model must be
manipulated mathematically; activities encompass all relevant mathematical domains and applicable
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skills, algorithms, processes and calculations to produce a mathematical solution. Mathematical results
are then interpreted and validated in relation to the situation model. It may be necessary to repeat the
modelling cycle if mathematical results are in conflict with the real world situation. The modelling process
concludes with the presentation of results. As an indispensable component of the modelling process,
contexts allow for greater flexibility in the modelling cycle (Freudenthal, 1991).
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Figure 1: The mathematical modelling cycle according to Blum and LeiR3 (2007:225).

Mathematical tasks, situated in contexts that students can easily relate to, have the potential to enhance
students’ sense-making of problems (Wijaya, van den Heuvel-Panhuizen, Doorman & Robitzsch, 2014).
Context-rich tasks can even be relatively simple problems, as long as contextual settings contribute
to learning and deeper understanding of concepts. Students are likely to show more interest in tasks
with contexts that draw on their own daily-life experiences and curiosities (Wijaya et al., 2014). Contexts
can be created by way of stories, illustrations, pictures and maps. Contextually-rich settings can provide
information, serve as a problem-solving stimulus, elicit model building and support the validation of
processes and solutions.

Newman (1977) identifies five categories of errors to analyse students’ difficulties when solving word
problems; they are reading, comprehension, transformation, mathematical processes and encoding.
Wijaya et al. (2014) point to remarkable similarities between the Newman error categories — associated
with word problems —and errors made in the modelling processes as described by Blum and Leif3 (2007).
According to Wijaya et al. (2014), difficulties in context-rich modelling tasks involve four phases namely
understanding, translating the real world situation into a mathematical problem, working
mathematically and interpreting the mathematical solution in real world terms. Arguably, reading is part
of understanding and therefore, Newman’s reading and comprehension categories can be merged
(Wijaya et al., 2014). The studies of Newman (1977), involving 11-13 year old Australian students and
that of Wijaya et al. (2014), involving 14-18 year old Indonesian students, reveal similar results: low
performing students experience difficulties with understanding and translation of word problems and
modelling tasks. Consequently, students in these two studies struggle to progress to the phase where
mathematical work must be performed. Taking heed of these outcomes, this study investigates errors
made by Biomedical Technology students in a context-rich modelling task.

3. RESEARCH DESIGN AND METHODOLOGY

Supported by a contextualist world view (Schraw, 2013), this study values knowledge that is not only
applicable to real world contexts, but is acquired from settings where new facts can collectively be
debated. Within this paradigm, lecturers act as facilitators to promote learning experiences wherein
students can negotiate a “consensual reality within a specific context” (Schraw, 2013, p. 3).
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The participants were a 50-strong cohort of first year Biomedical Technology students at UJ. Students
were divided into ten groups of four to six students per group. Using recent semester test scores, each
group included low, middle and high performers. With this group structure, it was hoped that low
performers would be more inspired and high performers would demonstrate their ‘better’ abilities. This
was students’ first exposure to a mathematical modelling approach.

Over the course of a semester, students were exposed to four mathematical modelling tasks; the third
task (Appendix A) is reported on in this paper. The custom-designed task was completed within a
scheduled 90-minute tutorial period and related to the area of the Bermuda Triangle (Figure 2). A
narrative described the enigmatic disappearance of aircraft and ships over the triangle. Although the
model for the area of the triangle was given, it still had to be interpreted in terms of the real world
contexts. Students had to use technology to source the global positioning system (GPS) coordinates of
the triangle. In effect, each different set of GPS coordinates would result in a different area.

Bermuda

Florida

- ! Bermuda
Gulf of Mexico i Triangle

Tl Cancer

Puerto Rico

Caribbean Sea

Figure 2: The Bermuda triangle map.

All students had the opportunity to participate in the modelling task. To encourage students’
attendance and participation, the task contributed to the semester mark. Each group submitted a
completed worksheet which was assessed by the researcher and moderated by another subject

expert. The inter-rater reliability of the task was measured with Cohen’s kappa (k = 0.81). A pilot
study was conducted the previous year which confirmed the content validity of the task.

4. DATA ANALYSIS

Group documents were analysed with content analysis. Following Wijaya et al. (2014), Table 1 aligns the
Newman (1977) error categories in column one with the mathematical modelling phases as described
by Blum and Lei (2007) in column two. However, mathematising and interpreting were further sub-
divided to allow for more nuanced analyses of these two important but difficult phases in the modelling
cycle (Blum & Leil3, 2007). This brings the amount of modelling phases in column two to six. In scoring
the task, all six modelling phases were considered equally important. In each phase, a zero score was
awarded for an inappropriate response or a score of one for a relevant response; therefore the maximum
score that could be awarded was six. Since there were ten groups, the total amount of possible errors
was 60. Overall, 21 errors were recorded in the task. The task was analysed according to the modelling
phases of Blum and LeiR (2007) where errors were not allowed to accumulate. For example, a wrong
conversion of the GPS coordinates in phase one was not again penalised in follow-up phases. The most
common errors appear in the third column of Table 1.
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Tablel. Newman’s error categories, modelling phases and typical errors made in the task.

Newman’s error [Modelling phases Errors
categories (% errors)
Comprehension |Understanding (0%) No errors were made as all groups could fully understand
the task and source omitted data (GPS coordinates)
Transformation  |[Mathematising_1 Incorrect conversion of GPS coordinates from degrees
(GPS coordinates)minutes and seconds (DMS), to decimal degrees (DD)
(23.8%) Incorrect positioning of GPS coordinates on vertices of]
triangle
Unable to associate North and East with positive
A H 4 | lal el al \AL & ikl i
Mathematising_2 (set up|No errors were made in representing relevant vertices of
determinant) (0%) the triangle in order to set up the appropriate
Process skills Working mathematically [Using wrong co-factor expansion in the evaluation of the
(9.5%) determinant
Calculation mistakes in evaluatine determinant
Encoding Interpreting Mistaking = signs in given determinant model for + signs|
(23.8%) associated with longitude or latitude

Confusing = sign in given model with + (as in taking the
square root)

Validating and Converting the area of the triangle from degrees to km’
presenting (42.9%) using 1 =111, 701km

Presenting area as a negative value

2

Unrealistic answer given in km instead of km
Unable to judge correctness of Bermuda triangle area
Presenting area in degrees (without converting to km’)

In the understanding phase, students had to understand what to do in terms of the contextual setting of
the task. The given Bermuda triangle map (Figure 2) probed students to visualise the task and aimed to
stimulate a sense of familiarity with the real world contexts of the task. The sub-tasks (Appendix A) were
designed to stimulate understanding and help students to structure, simplify and delineate processes
(Blum & Leil3, 2007). Since all groups could successfully source the omitted data (GPS coordinates) with
technology and acquired a full understanding of the task, no errors were recorded in the understanding
phase. In the first mathematising phase, students had to apply their prior knowledge of longitudes,
latitudes and GPS coordinates to convert from degrees, minutes and seconds (DMS) to decimal degrees
(DD). Analogous to Cartesian coordinates, a point on the longitude-latitude grid is positive if it lies North
of the Equator (representing an East-West axis or 0 latitude); alternatively, a point is negative if it lies
South of the Equator. Similarly, a point is positive when it lies East of the Prime Meridian (representing
a North-South axis or 0 longitude) and negative if it lies West of the Prime Meridian. For example, the
DMS coordinates (32 18'28.08" N;64 45'1.8" W) of St George in Bermuda, had to be converted to DD
coordinates (32, 3078 ; — 64, 7505 ). Altogether, 23.8% of all errors were made in the first
mathematising phase. On the contrary, no errors were recorded in the second mathematising phase.
This means that all groups could accurately present their assumed GPS coordinates in terms of the given
determinant —which represented the model for the area of the triangle. Working mathematically seemed
to be the easiest part of the task. Procedural errors in this phase amounted to 9.5% of all errors made in
the task; these included calculation mistakes and incorrect co-factor expansions to evaluate the
determinant. Errors in interpreting the solution also amounted to 23.8% of all errors made, thus the
second highest alongside the first mathematising phase. The plus-minus sign in the determinant was
incorrectly interpreted by five groups. Group 8 spontaneously associated the plus-minus sign with the
quadratic formula — this perhaps being the only instance where students have encountered this dual
sigh before — and trustingly computed the square root of the area. Three other groups confused this
plus-minus sign with signs associated with North, East, South and West. Unexpectedly, the validating
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and presenting phase amassed most errors (42.9%). Since the Equator is divided into 360 degrees on the
longitudinal axis, each decimal degree on the equator represents approximately 111.701 km. A
conversion was therefore required to present the area of the Bermuda triangle in square kilometers.
Most groups erred by multiplying the area by 111,701km instead of (111, 70 lkm)z. Ina former study unit,
students were fluent with comparable conversions such as m s~ to km k™. If the interpreting phase is
combined with the validating and presenting phase, this collective phase (labelled Encoding, according
to Newman) will account for 66.7% of all errors made in the task. Figure 3 shows the correct responses
in each modelling phase for each group. Only Group 2 obtained the maximum score (six) while five
groups succeeded in only three of the modelling phases.
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Figure 3: Percentage correct responses of ten groups.

5. DISCUSSION

According to Schoenfeld (2001), mathematics in contexts relate to the use of ordinary tools and skills in
new contexts. The Bermuda triangle contexts encouraged students to source missing data, mathematise
global coordinates of real world places and transfer data to an unfamiliar model (area of the triangle).
Students had to exhibit ownership of prerequisite knowledge and technological skills to make sense of
the task. The task commanded various mathematical concepts to be integrated into new contexts: areas,
determinants, coordinates, conversions between DMS and DD and the dual meaning of the plus-minus
sign in the given model. Results indicate that students could fully understand the intention of the task
which eased the way for five groups to mathematise the real world data without errors. The given
mathematical model for the area of a triangle was a novelty, yet all groups could correctly transfer their
mathematised data to the model. Inner mathematical work was performed with prudence and errors
were only observed in Group 3. Up to this point in the task, a mere 33% of the total amount of errors
were noted. Most likely, this acclaimed success can be ascribed to the design of subtasks that had a
scaffolding impact on students’ modelling processes; in particular the modelling phases of
understanding, mathematising and working mathematically. This outcome is contrary to the findings of
Wijaya et al. (2014) who report that most errors were made in understanding and mathematising.
However, the study of Wijaya et al. also indicates that fewer errors were made in working mathematically
and interpreting the solution. A major concern was students’ inability to take the contexts of the
Bermuda triangle problem into account in the final phases of the task. Most students seemed to be
reluctant — or perhaps unused — to reflect on contexts in order to ‘find truth’ in their answers. This
reluctance may even suggest that interpreting, validating and reporting on the task, which accumulated
66.7% of errors, are not part of students’ standard classroom repertoire. Classroom practices which rarely
stimulate these modelling phases where errors predominated, may induce a lack of skills to reason
about solutions; as Schoenfeld (2001, p. 53) pointedly says, all that is often required of students is “to
draw a box around the correct answer”.
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When the Bermuda triangle task was analysed with the Newman (1977) error categories, errors were
considered to be hierarchical and were allowed to accumulate from step to step (Wijaya et al., 2014).
Even so, relatively few errors (39%) were made in the Newman error categories comprehension,
transformation and process skills. Per illustration, students in Group 3 used incorrect signs when they
converted the GPS coordinates from DMS to DD; consequently, they obtained a negative area for the
Bermuda triangle. This error was however ‘fixed’ in their next subtask when they correctly interpreted the
plus-minus sign as a means to eliminate the negative value obtained for the area. This is evidence that
contexts were employed even though errors were made in previous steps. In this sense, subtasks served
as a diagnostic tool to identify weaknesses in the modelling phases. The modelling phases of Blum and
Lei (2007) are considered to be more suitable to analyse a modelling task, which ultimately, is more
concerned with a meaningful solution than with adequate procedural processes.

6. CONCLUSION

The contextual setting of the Bermuda triangle task demonstrated that when students understand the
meaning of real world contexts, they are more likely to be successful to operate, transfer and model
with real world data. Yet, the interpretation and validation of solutions remained largely unconnected to
contexts. Evidently, the ability to solve a problem mathematically is no guarantee that solutions will be
correctly interpreted. Although mathematics can be used to unlock understandings and interests in the
public domain (Schoenfeld, 2001), students were unaccustomed to contextually-rich tasks and need
more opportunities to connect their own world with the world of mathematics. How students will
respond to a task with a more local context may be an area for further investigation.
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Appendix A: Task 2 — The Bermuda triangle

a) Search for the GPS coordinates of St George in Bermuda, San Juan in Puerto Rico and Miami in
Florida. b) Convert these GPS coordinates to decimal degrees.
c) The area of a triangle with vertices (x ,y );(x ,y ) and (x ,y ) is given as
xr ¥ |1
|
{=%=—Ix, ¥ 1].
N
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Use this formula to calculate the area of the Bermuda triangle.
d) What do you think is the meaning of the plus/minus sign in the formula given in Question c?
e) Convert the area of the Bermuda triangle to square kilometers; assume 1 degree = 111,701km.
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