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Abstract 
 

A total of 30 fungal fruiting bodies were collected from decaying plant materials (barks and 

litter) from the wild based on morphological variations. Nine of these fungi purified to 

monoaxenic cultures were included in the present study and also a type strain Ganoderma 

lucidum ATCC- 32471. These fungi were screened for lignocellulolytic activities, five of these 

organisms produced ligninolytic enzymes when exposed to two different concentrations of 

guaiacol (0.02% and 0.2%) on two different media (MEA and PDA). All ten fungal isolates 

screened for cellulolytic activity were positive for the production of the cellulase enzyme. The 

fungal isolates were characterised using morphological and molecular methods. Molecular 

characterization using ITS1 and ITS4 primers was able to identify these fungal isolates to 

degrees of accuracy ranging from 98% to 100%. The phylogenetic and lineage analysis showed 

that the species varied amongst phylum Basidiomycota, Ascomycota and early diverging 

fungal lineages Mucormycotina. Both monocultures and dual cultures of these 10 fungal 

species were cultivated for the purpose of spectrophotometrically quantifying and evaluating 

enzyme production on  agricultural waste residues; corn cob, sugar cane bagasse and wheat 

straw. A pattern of antagonistic invasion interaction was identified to demonstrate increased 

enzyme production on dual cultures. Four of these fungal species, Trichoderma sp. KN10, 

Rhizopus microsporus KN2, Fomitopsis sp. KN1 and Coriolopsis sp. KN6 demonstrated 

tendencies of invasion and replacement in co-cultures.  The fungi and their dual cultures 

showed varying levels of enzyme production. Analysis of mean showed dual culture 

interactions involving KN10 with values for MnP production approximately at 1.46U/ml 

compared to monoculture of 0.06U/ml.  Further, dual laccase values approximately at 0.09U/ml 

compared to monocultures of 0.05U/ml. Overall the highest enzyme activity was observed 

using wheat straw.  This study demonstrated and proved that agricultural waste residues can be 

used for lignocellulytic enzyme production and that antagonistic invasion by some fungi  (in 

particular Trichoderma sp. KN10) in co-cultures can increase production of one or more of the 

three enzyme laccase, lignin peroxidase and manganese peroxidase. 

 

Keywords: fungi, dual cultures, competition, antagonism, ligninolytic enzymes, agricultural 

residues 
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Chapter 1 

 Overview 

Lignocellulose are regarded as the most abundant renewable organic matter on earth 

(Giovannozzi-Sermanni et al., 2001) and are potentially a great feedstock reserve for the 

production of biofuels and chemicals. However, the presence of lignin as its primary 

constituents makes it under-utilized at present and in most cases commercially non-viable; this 

is because of the presence of covalent lignin-carbohydrate linkages connecting sugar hydroxyl 

of hemicellulose and phenylpropane subunits in lignin making the sugars less biologically 

available.   The primary role of lignocellulose is that it protects the plant against degradation 

that could happen due to the presence of autochthonous enzymes and microorganisms. The 

ability to break down the lignin would effectively make the carbohydrate more accessible for 

efficient bioconversion. 

 

Several pre-treatments currently exist that seek to render lignocellulosic materials more 

accessible to enzymes. However these pre-treatments primarily increase process cost, and some 

are considered extremely harsh and produce inhibitory compounds that are not environmentally 

friendly and in most cases prove harmful to the degrading microorganisms (Palmqvist & Hahn-

Hagerdal, 2000; Howard et al., 2003). Current research attempts to address these problems by 

refining the integration of pre-treatment technologies and downstream enzyme applications, as 

well as minimizing the production of compounds that inhibit fermentation processes (Kabel et 

al., 2006; Zhao et al., 2009; Kumar et al., 2011; Zheng et al., 2014); however these processes 

do not necessarily prove inexpensive. 

 

A shift towards environmentally friendly fuel production is paramount; thus it is necessary to 

make concerted efforts to develop economically viable alternatives that include the application 

of microorganisms in modification of lignocellulose. Other alternatives include genetic 

modification of microorganism to increase their lignocellulolytic abilities; and the use of 

purified enzymes, such as cellulases and hemicellulases. The latter have already found notable 

application in textile and pulp and paper making industries. However, some authors have noted 

the economic effects in terms of increased market prices and capital costs of production 

associated with greater quantities demand of purified enzymes which will serve as a deterrent 

to the commercial application of this processes (Yang & Wyman, 2007; Sainz, 2011; Kuhad et 

al., 2011). 
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One major microbial resource available for the degradation of lignocellulose is the white-rot 

basidiomycetes. They are able to degrade lignin efficiently, although, this is greatly dependent 

on the environmental conditions and the fungal species involved (Hatakka & Hammel, 2010; 

Isroi et al., 2011). Studies aimed at the elucidation of lignin degradation mechanisms by fungal 

species revealed the complexity of the enzymatic systems; this is attributed to the diverse 

pathways to lignin degradation and the enzymatic machinery of the various microorganisms 

(Hatakka, 1994). The use of these white-rot fungi is a potential strategy that considers both 

economics and natural environmental remediation. 

 

The co-cultivation of lignocellulose degrading fungi with the associated high activity of lignin 

modifying enzymes (Laccase [Lac], Manganese-dependent peroxidases [MnP], Lignin 

peroxidase [LiP] and versatile peroxidase [VP]) (Solarska, 2009; Mahajan, 2011) due to their 

synergistic and antagonistic actions is necessary to increase performance, efficiency and end-

product yield (Mata et al., 2005; Flores et al., 2009; Bader et al., 2010; Dwivedi et al., 2011). 

 

The use of fungal co-cultures can significantly improve lignocellulose hydrolysis as it 

minimizes the need for purified enzymes and its associated cost implications. It would also 

mean that there is better product optimization as most of the component sugars (cellulose and 

hemicellulose) are utilized in this way (Dashtban et al., 2009). This is further supported by the 

fact that in nature, lignocellulose degradation is achieved by a complex mix of co-existing 

lignocellulolytic microorganisms (Bennet et al., 2002; Cheng & Zhu, 2012). This principle has 

found wide application in several industrial processes including antibiotics, enzyme and 

fermented food productions (Gutierrez-Correa & Tengerdy, 1998). The use of fungal co-

cultures has several advantages when compared with single strain use in lignocellulose 

degradation, including improved productivity, adaptability and substrate utilization (Dashtban 

et al., 2009). Although the effects of co-culturing fungi for lignocellulose biodegradation is 

poorly understood (Chi et al., 2007; Qi-He et al., 2011; Hays et al., 2015), the understanding 

of these interactions between associated strains is important. Currently, very little research has 

been done making it a credible research area (Cheng & Zhu, 2012).  

 

Furthermore, the usefulness of interspecific interactions as a strategy to improve hydrolysis 

and maximize the use of substrates thereby increasing product yields (Cheng & Zhu, 2012) 

should not be ignored in lignocellulose bioconversion. Moreover, the economic viability of this 

strategy and the significant reduction in the problem of inhibition between product and enzyme 
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is considered an incentive for its application. The use of co-cultures for improving fungal 

cellulolytic activities has been studied by several authors; Juhász et al. (2003) investigated the 

use of co-cultures of Aspergillus niger and Trichoderma reesei as a way to increase β-

glucosidase production with significant results. Hamelinck et al. (2005) and Shrestha et al. 

(2008) demonstrated that after 1 to 3 days pre-treatment of the maize straw using the co-culture 

system of Saccharomyces cerevisiae and white-rot fungi, more ethanol can be gained than 

using mono-culture, where the ethanol yield can reach 0.03 g/g. Similarly, Hu et al. (2011) 

demonstrated that co-cultivation of A. niger and A. oryzae as well as co-cultivation with 

Magnaporthe grisea or Phanerochaete chrysosporium can improve the production of 

extracellular ligninolytic enzymes. Mostafa et al. (2014) screened several marine-derived 

fungal isolates and demonstrated the co-cultivation of three isolates (A. flavus, Cladosporium 

sphaerospermum and Epicoccum purpurascens) remarkably improved xylanase production 

when cultivated on a mixture of wheat bran and saw dust. 

 

Similarly, this study screened at least 30  different  fungal species obtained from the Kloofendal 

Nature Reserve, Roodeport, Johannesburg and included a type strain Ganoderma lucidum 

ATCC- 32471 that was obtained from the Agricultural Research Council (ARC), Pretoria, 

South Africa for their potential to produce ligninolytic enzymes in monocultures. The main 

aim of the study was to ascertain whether co-cultivation would improve enzyme production 

and on commonly available lignocellulosic agricultural waste biomass. In particular the 

research hypothesis tested was that: competition and antagonism will promote or induce the 

expression of ligninolytic enzymes in interspecific interactions of fungi on different 

lignocellulosic substrates. 

 

It is hoped that the results of this study will address the challenge of substrate preferences in 

lignocellulose degrading organisms. The elucidation of physical and chemical properties of 

commonly found lignocellulose wastes in South Africa is essential for the design of subsequent 

process operations and application. Furthermore it is necessary to consider more than a single 

substrate to accommodate the regional differences in substrate availability. Whilst one type of 

lignocellulosic waste materials may be available in one region, some other region may have 

waste derived from other agricultural produce due to climatic changes and soil differences that 

accommodate certain types of crops and not the other. The biodiversity of ligninolytic fungi in 

all regions presents an opportunity to find a consortium that can be suitably adapted to 
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biodegrade these different agricultural residues for the purposes of biofuel production and the 

generation of enzymes for other applications. 
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Chapter 2 

 Literature review 

2.1 Lignocellulose: Nature’s tightly wrapped gift 

Lignocellulose are renewable energy resources that are abundant and found naturally (Perez et 

al., 2002). They are a natural part of all plants and are generated as waste products of forestry, 

agriculture and agro-industry. Their accumulation tends to create a problem of waste disposal. 

Therefore it can be utilised as an inexpensive feedstock in the production of chemicals and 

biofuels without placing undue stress on scarce food resources that could lead to food prices 

increase particularly as they are considered to be inedible materials (Balan, 2014; Searchinger 

& Heimlich, 2015). Moreover, the utilization of lignocellulosic agricultural residues has the 

potential to provide intermediate building blocks chemicals and second generation biofuels 

without negative competition for land (Walford, 2008; Searchinger & Heimlich, 2015). 

 

Lignocellulosic materials do not contain readily accessible monosaccharides. Considerable 

efforts in researches are focused on the bioconversion of lignocellulosic materials into platform 

sugars that can be readily fermented to fuels and chemicals (Mahajan, 2011). One major 

limitation to its use in the production of bioethanol is its recalcitrant nature to degradation; this 

means that unlike starch and sugar, lignocellulose require pre-treatment before fermentation. 

In addition, the structural compositions of lignocellulose are complex and variable and the 

likelihood of formation of inhibitors to fermenting microorganisms further increases technical 

challenges (Mosier et al., 2005a; Petersson, et al., 2007; Jönsson & Martín, 2016) and 

production cost involved in fermentation processes towards the production of bioethanol and 

biogas alike.  Therefore, working with lignocellulosic biomass makes it necessary to factor in 

the digestibility of the main constituent because it is only with pre-requisite treatment can the 

cellulose in the plant fibres become exposed for degradation (Kumar et al., 2009). 

 

2.2 Composition of Lignocellulose 

Plant cell are composed mainly of lignocellulose which comprise of three major groups of 

polymers – cellulose, hemicellulose and lignin (Mussatto & Teixeira, 2010). The cellulose 

framework is surrounded by hemicellulose and lignin.  
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Figure 2.1: Representation of lignocellulose structure showing cellulose, hemicellulose and 

lignin fractions (Mussatto & Teixeira, 2010) 

 

The composition of these constituents can vary from one plant species to another (Table 1) 

(Kumar et al., 2009; Sorek et al., 2014). Furthermore, the ratios between constituents within a 

single plant vary with age, stage of growth and other environmental conditions (Perez et al., 

2002). Except for cellulose, the other polymers are synthesized within the cell and extruded to 

cell membrane where they are organized in a matrix-like arrangement; with the primary cell 

deposited first. This is characterized by relatively amorphous cellulose structure, followed by 

the synthesis of the secondary cell wall after cell differentiation characterized by cellulose 

microfibrils with higher crystallinity and altered hemicellulose content (Ding & Himmel, 

2006). 

 

2.2.1 Cellulose 

The plant cell wall is primarily composed of cellulose which is synthesized by a cellulose 

synthase complex that is found within the cytoplasmic membrane of plant cells (Taylor et al., 

2000; Li et al., 2014). It is a linear homopolysaccharide with repeated units of cellobiose (two 

anhydrous glucose rings joined via a β-1, 4 glycosidic linkages) (Beguin & Aubert, 1994; 

Klemm et al., 1998; Li et al., 2014). 

 

 

Figure 2.2: Diagram of cellulose chain (Kumar et al., 2009) 
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These cellobiose units are linked by hydrogen and van der Waals bonds which cause the 

cellulose to be packed into microfibrils that is made up of highly organized crystalline regions 

and unorganized amorphous regions (Ha et al., 1998; Khazraji & Robert, 2013) intertwined 

with both hemicellulose and lignin. Crystalline cellulose is less soluble and less degradable and 

makes up the larger ratio as compared to amorphous cellulose. The arrangement of crystalline 

and amorphous cellulose gives plant the unique properties of dual rigidity and flexibility; the 

hydrogen bond promotes insolubility in most solvents and is partly responsible for the 

resistance of cellulose to microbial degradation (Jørgensen et al., 2007). 

 

Crystalline cellulose can be degraded to fermentable D-glucose using acids or enzymes that 

break the glycosidic bonds; however the amorphous form of cellulose is more susceptible to 

enzymatic degradation (Beguin & Aubert, 1994; Yang et al., 2011). The enzymes for cellulose 

degradation belong predominantly to hydrolases; cellulose is hydrolyzed by cellulase 

(endoglucanase), 1,4-β-cellobiosidase and β-glucosidase (Schmidt, 2006). 

 

2.2.2 Hemicellulose 

Hemicellulose is a general term used to represent a group of complex heterogenous 

polysaccharides characteristically made up of different sugars, such as D-glucose, D-mannose, 

D-galactose, D-xylose, L-arabinose, as well as other components such as acetic, glucoronic 

and ferulic acids. 

 

Figure 2.3: Diagram of hemicellulose structure (Chaikumpollert et al., 2004) 
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Hemicellulose is similar to cellulose in that – their basic structural compositon is primarily β-

1, 4-linked sugars, although, the particular sugar composition of hemicellulose is dependent on 

the source of polysaccharide.  This also means that the main sugar residue in its basic structural 

composition determines the classification of hemicellulose, for example,  xylans, mannans, 

glucans, glucuronoxylans, arabinoxylans, glucomannans, galactomannans, 

galactoglucomannans, β-glucans, and xyloglucans (Fengel & Wegener, 1989). Hayashi and 

Kaida (2011) describes this aptly using xyloglucan which is the main hemicellulose of primary 

cell walls and thus consists of a β-1, 4-linked glucose backbone that is surrounded by xylose, 

galactose and in some instances fructose branching sugars. By contrast the main hemicellulose 

in secondary cell walls of hardwoods and softwoods is xylan and galactoglucomannan 

respectively. Xylan is composed of β-1, 4-linked xylose that can be substituted by arabinose 

and glucuronic acid; xylan can also be acetylated. Xylan can be degraded by endo-1, 4-β-

xylanase and 1, 4-β-xylosidase to xylose (Jørgensen et al., 2003). Furthermore, wood-derived 

mannans are composed of β-1, 4-linked mannose and glucose that can be substituted by 

galactose (Stenius & Vuorinen, 1999; Liepman et al., 2007). 

  

Fengel & Wegener (1989) summarize the difference between hemicellulose and cellulose in 

terms of sugar-units composition by stating that – hemicelluloses possess shorter chains 

consisting of different sugars that branch off the main chain molecules; this makes them 

amorphous and thus makes the structure easier to hydrolyze than cellulose. These 

monosaccharide chains include pentoses (xylose, rhamnose and arabinose), hexoses (glucose, 

mannose and galactose) and uronic acids (4-omethylglucuronic, D-glucuronic, and D-

galactouronic acids) linked by -1, 4-glycosidic bonds and sometimes by -1, 3-glycosidic bonds 

(Kuhad et al., 1997).  

 

Hemicelluloses have a lower degree of polymerization (DP 100 – 200) and a lower crystallinity 

than cellulose (Rowell, 2005). While cellulose is synthesized by cellulose synthases located 

within the cytoplasmic membrane, hemicelluloses are synthesized in the Golgi complex, and 

then secreted to the plant cell wall (Keegstra, 2010). The heterogenous nature of hemicellulose 

compared to cellulose, implies that a complex mixture of enzymes is required for its 

degradation, such as endoxylanases, β-xylosidases, endomannanases, β-mannosidases, α-L-

arabinofuranosidases and α-galactosidases (Jørgensen et al., 2005). 
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The hydrolysis of hemicellulose portions of the lignocellulosic biomass produces not only 

hexose sugars but pentose sugars as well as potential microbial inhibitors such as uronic, ferulic 

and acetic acids which exerts undue stress on the fermenting microorganisms, leading to poor 

cell growth and low ethanol yields. Although progress has been made to ameliorate the effects 

of these inhibitors and increase the sugar level and enhance overall fermentability of 

lignocellulosic hydrolysate, it still remains a challenge in exploring lignocellulosic biomass as 

fermentation substrates (Blaschek & Ezeji, 2010; Parawira & Tekere, 2011). 

 

2.2.3 Lignin 

Lignin is a complex macromolecule that is structurally composed of three phenyl propane units 

[p-coumaryl alcohol (p-hydroxyphenyl propanol), coniferyl alcohol (guaiacyl propanol) and 

sinapyl alcohol (syringyl alcohol)] linked together by carbon-to-carbon (C–C) and ether (C–

O–C) linkages (Humphreys & Chapple, 2002; Mussatto & Teixeira, 2010). Its structure is 

believed to be the result of radical polymerization (Blanchette et al., 1997; Ralph et al., 2004). 

 

Figure 2.4a: Monomers of lignin; (A) p-coumaryl alcohol, (B) coniferyl alcohol, (C) sinapyl 

alcohol (Schmidt, 2006) 

 

The structure of lignin varies widely within species. There is a general consensus that plants 

such as grasses have the lowest contents of lignin, whereas soft woods have the highest lignin 

contents. In grasses p-coumaryl alcohol is found predominantly causing the formation of H-

lignin, while in soft wood coniferyl alcohol is the main monolignol forming G-lignin, and in 

hardwood G/S-lignin contains both sinapyl and coniferylmonolignols (Perez et al., 2002; 

Humphreys & Chapple, 2002). 

 

Lignin is present in the cell wall and is tightly bound to cellulose and hemicellulose; it confers 

rigidity and structural cohesion to the cell wall, it also acts as a reinforcing component to 

connect cells and harden xylem vessels, thus, conferring water impermeability but also 

improves transportation of water from roots to leaves. It forms an amorphous complex with 
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hemicellulose enclosing cellulose and thus prevents the microbial degradation of accessible 

carbohydrates within wood cell wall (Perez et al., 2002; Barcelo et al., 2004; Schmidt, 2006; 

Ruiz‐Dueñas & Martínez, 2009). 

 

Figure 2.4b: Structure of lignin (Chhabra, 2014) 

 

In contrast to cellulose and hemicellulose; the three-dimensional configuration of lignins makes 

it highly hydrophobic causing extreme resistance to chemical and enzymatic degradation 

(Palmqvist & Hahn-Hägerdal, 2000).The degradation of cellulose and hemicellulose portions 

of lignocellulosic materials produces a significant percentage of fermentable sugars for ethanol 

production, but the contrary is the case with lignin degradation which is recognized as a 

potential source of microbial inhibitors (Ezeji et al., 2007); but it can be used as an ash free 

solid fuel for production of heat and electricity (Galbe & Zacchi, 2002). 

 

Table 2.1: Main constituents of some lignocellulosic wastes of agriculture (Nigam et al., 2009) 

Lignocellulosic waste Cellulose (wt %) Hemicellulose (wt %) Lignin (wt %) 

Barley straw 33.8 21.9 13.8 

Corn cobs 33.7 31.9 6.1 

Corn stalks 35.0 16.8 7.0 

Cotton stalks 58.5 14.4 21.5 

Oat straw 39.4 27.1 17.5 

Rice straw 36.2 19.0 9.9 

Rye straw 37.6 30.5 19.0 

Soya stalks 34.5 24.8 19.8 

Sugarcane bagasse 40.0 27.0 10.0 

Sunflower stalks 42.1 29.7 13.4 

Wheat straw 32.9 24.0 8.9 
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2.3 Lignocellulosic Agricultural residues used in this study 

The understanding that lignocellulosic agricultural waste potentially contain significant 

concentrations of soluble carbohydrates and inducers that promote the growth of fungi and the 

efficient production of ligninolytic enzymes has made these waste residues an attractive option 

as platform ingredients in fermentation technology (Sun et al., 2004; Rosales et al., 2005; 

Kachlishvili et al., 2006; Winquist et al., 2008; Elisashvili et al., 2009). The implication of 

exploiting agricultural residues could potentially reduce production cost and serve as an 

effective method of agro-industrial waste recycle. Furthermore, most ligninolytic fungi have 

been observed to demonstrate increased enzyme activity when growing on these agricultural 

residues as compared to the low enzyme activity on defined medium (Bollag & Leonowicz, 

1984; Elisashvili et al., 2006; Songulashvili et al., 2007; Magan et al., 2010). 

 

Three of these agricultural residues were the focus of this study because of their preponderance 

in South Africa. Furthermore it is necessary to consider more than one substrate to 

accommodate the regional differences in substrate availability. This is necessary because each 

region cultivates a particular crop based on its climatic conditions and soil differences. The 

elucidation of physical and chemical properties of commonly found lignocellulose wastes in 

South Africa is essential for the future design of subsequent processing operations schemes. 

 

2.3.1 Corn Cob 

The largest agricultural biomass in South Africa comes from corn production, with the total 

area planted per year varying between 3.8 and 4.8 million hectares which represents 

approximately 25% of the country’s total arable land (National Department of Agriculture, 

n.d). The direct implication of corn production is the generation of waste biomass (corn plant 

residue), which in South Africa alone, accounts for 8, 900 thousand metric tonnes of waste 

annually (Nation Master, 2005). These waste products are potential source of feedstock for bio-

fuels.  

 

Approximately 50% of the weight of the total corn plant is residue with the above ground corn 

plant, stover, consisting of stalk, leaf, cob and husk that are potentially useful as biomass 

feedstock (Graham et al., 2007). Approximately 66% of fermentable sugars can be obtained 

from corn stover, of which approximately 38% and 28% come from cellulose and 

hemicellulose portions, respectively. Producing ethanol from corn stover hydrolysates will 

increase the possibility of ethanol production on a larger scale (Blaschek & Ezeji, 2010). Table 
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2.2 indicates the dry matter (D.M) distribution in corn residue at or immediately following corn 

harvest.  

 

The removal of corn stover after harvest should be done with consideration as this crop residue 

contributes to organic matter and nutrient depletion (Follet, 2001; Wilhelm et al., 2004).  Corn 

stover provide top cover on agricultural land and acts as buffers to falling rain and wind force 

that dislodge soil particles subsequently causing erosion (Wilhelm et al., 2004).  As such the 

removal of crop residue should be balance against the overall environmental impact (soil 

erosion); maintenance of nutrient and soil organic matter levels and preservation of 

productivity levels (Wilhelm et al., 2004).  One strategy to quell concerns regarding corn stover 

removal will be to rather implement partial stover collection (Zych, 2008). Such partial stover 

collection will involve the collection of only corn cobs leaving other corn residues. Moreover, 

the low nutrient content of corn cobs implies that a much lower cost of macro-nutrient 

replacement is incurred when it is removed compared to grain and stover. This reduced cost of 

nutrient replacement for cob collection promotes greater profit potential in feedstock collection 

(Zych, 2008). 

 

Table 2.2: Dry matter (DM) distribution in corn residue (Myers & Underwood, 1992) 

Corn Residue % Moisture % of Residue DM Basis 

Stalk 70-75 50 

Leaf 20-25 20 

Cob 50-55 20 

Husk 45-50 10 

 

2.3.2 Sugar cane bagasse  

Sugar cane is used worldwide as a feedstock for sugar and ethanol production. The sugarcane 

plant consists of stem and straw. The sugarcane straw has three components – fresh leaves, dry 

leaves, and tops. The sugarcane stems are extracted for cane juice leaving fibrous residues of 

cane stalks after crushing and extraction. These residues are referred to as sugarcane bagasse.  

 

Sugarcane bagasse is about 25% of the total weight of the sugar cane plant and contains 60% 

to 80% of carbohydrates (Betancur & Pereira, 2010). It is an abundant and cheap source of 

lignocellulosic biomass with high cellulose content. The sugar cane bagasse contains between 
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34 – 45 % cellulose, 24 – 25 % hemicellulose, and 20 – 25 % lignin (Fox et al., 1987; Kim & 

Day, 2011). 

 

Countries such as Brazil and the United States produce significant quantities of ethanol fuel 

from sugar cane juice. This transformation of sugarcane into ethanol generates two main by-

products, thermal energy and bagasse (Smeets et al., 2008). Approximately 1 ton of sugarcane 

stem generates 280 kg of bagasse after juice extraction (Sun et al., 2004). The Brazilian 

government establishment Conab (2012) estimates that more than 602 million tons of 

sugarcane will be harvested in the 2012/13 season, from which about 39 million tons of sugar 

and 24 million litres of ethanol will be produced. However this leaves an estimated 169 million 

tons of sugarcane bagasse and 84 million tons of straw. South Africa produces an estimated 

average 2.2 thousand million tons of sugar per season (SASA, 2012) and with this also comes 

the concomitant residue waste as well. The importance of increasing biofuel yield cannot be 

over emphasized particularly with the increasing demand of this form of energy.  Therefore the 

utilization of sugarcane bagasse for the production of second-generation biofuels is an 

attractive option.The fermentation of carbohydrates obtained from the bagasse could 

significantly improve bioethanol productivity and sustainability (Zhang & Lynd, 2004; 

Himmel et al., 2007; Pauly & Keegstra, 2008; Betancur et al., 2010). 

 

One major advantage to using bagasse in ethanol production is that unlike corn stover, bagasse 

collection is incorporated into the sugar production process, therefore a separate harvest 

process is unnecessary. In addition it is also physically ground as part of the extraction process 

(Fox et al., 1987); thereby reducing process costs which makes a significant difference in the 

economic viability of its use. The processing of sugarcane bagasse for ethanol production can 

be annexed to the sugar production process (Canilha et al., 2012). 

 

Although, traditionally bagasse is often used to supply fuels for the sugar mills for boilers and 

as such it effectively balances the economics of the sugar production (Pandey et al., 2000). 

Nevertheless, in countries with high sugar cane yields and with the improvement of better 

energy-saving and efficient boilers in the industries, there tends to be surplus sugar bagasse.  

In Brazil, these surplus sugarcane bagasse and straw are routinely burnt in the open agricultural 

field and less frequently utilized for ethanol production (Ensinas et al., 2009; Canilha et al., 

2012). Additionally, quantities required for the production of enzymes and other products (e.g. 

drugs) that utilize bagasse as solid substrate/support require relatively small fractions of total 
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bagasse which will not necessarily affect its use in energy generation in the sugar mills (Pandey 

et al., 2000). 

 

Hydrolytic biodegradation of bagasse is a pre-requisite for their conversion into fermentable 

sugars, thereby ensuring this renewable feedstock to be used for biofuel production (Mosier et 

al., 2005a; Himmel et al., 2007). Successful saccharification of bagasse has been achieved 

using a variety of micro-organisms including bacteria, yeasts and fungi. However filamentous 

fungi, especially basidiomycetes are considered the preferred choice for enzyme production 

and protein enrichment and they have been most widely employed (Pandey et al., 2000). 

 

2.3.3 Wheat straw 

Wheat is regarded as the second most important grain crop in the world. The world annual 

wheat production has increased by 85%, within 2004 to 2009 from 585 to 682 million tons, 

with average postharvest production of straw recorded as 1kg per 1.3kg of grain threshed. 

South Africa produces at least 3 million tons per hectare annually although it is dependent on 

whether it is farmed on dry or irrigated land, the latter tends to increase production quantities 

(DAFF, 2010). The by-product of threshing wheat is a dry stalk left over after the grain and 

chaff have been collected, referred to as wheat straw (Gubitz et al., 1998; Singh et al., 2009). 

 

The overall estimate of wheat straw produced was 524 million tons in 2009; an amount that 

justifies its consideration as a complimentary source of raw material for the production of 

bioethanol (Petersen, 1987; FAOSTAT, 2009). The low cost and wide availability of wheat 

straw are reasons it is considered to have the greatest potential as a source of platform sugars 

for fermentation (Kim& Dale, 2004; Sarkar et al., 2012). 

 

Wheat straw is the residual waste generated from the harvesting of wheat and is one of the most 

abundant agricultural by-products of low commercial value as its major use is for cattle feed 

and bedding; even at that a significantly large proportion of wheat straw is left on the fields or 

disposed of as waste (Sarkar et al., 2012). Wheat straw is rich in carbohydrates and contains 

about 35-40% cellulose, 20-30% hemicellulose, and 8-15% lignin (Saha et al., 2005). Wheat 

straw is also rich in bioactive compounds and vitamins (Slavin, 2003). However, there are 

variations in macro and micronutrients composition resulting from various factors including 

stages in plant growth, the characteristic of soil and fertilizer, climatic conditions and type of 

cultivar (Safdar et al., 2009; Yasin et al., 2010). Wheat straw is an efficient substrate because 
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of its better air circulation, its structure allows for sturdy binding ability and effective fungal 

mycelial penetration, therefore making it a cost effective substrate in fermentation industry 

(Khan & Mubeen, 2012). 

 

2.4 Pre-treatment of Lignocellulosic Biomass 

The structural compositions of lignocellulosic biomass increase the recalcitrant nature of 

lignocellulosic biomass and deter the hydrolysis of the cellulose component. The overall 

objective of hydrolysis is to cleave the polymers of cellulose and hemicellulose to fermentable 

monomeric sugars (Taherzadeh & Karimi, 2007; Himmel et al., 2007; Kumar et al., 2009).  

Pre-treatments seek to expose the cellulose fibres and make them accessible to enzymes (Sun 

& Cheng, 2002) thereby increasing the yields of sugar for subsequent fermentation to ethanol 

(Mosier et al., 2005a). This is achieved by disrupting the lignocellulosic matrix causing a 

reduction in the amount of lignin and hemicellulose and modifying the crystalline structure of 

cellulose making it more susceptible to enzymatic attack (Silverstein et al., 2007). The absence 

of pre-treatments leads to a low yield of glucose from lignocellulosic material conversion; 

therefore it is vital for this step to occur before enzymatic hydrolysis. Furthermore, the ability 

to utilize all the sugars including hexose and pentose sugars present in the lignocellulosic 

feedstock is necessary for the efficient production of ethanol (Luo et al., 2010).  

 
Figure 2.5: A schematic representation of the role of pre-treatment in the conversion of 

lignocellulosic biomass to platform sugars (Hsu et al., 1980)  

 

Selecting an effective pre-treatment is crucial because it determines the performance of 

microorganism during the subsequent step of fermentation; if high levels of inhibiting by-

products are present, it would mean prerequisite steps must be taken to reduce or eliminate 

such inhibitors and this in turn increases the overall processing cost. Another reason the type 

of pre-treatment selected may also affect fermentation yield is that – some pre-treatment 
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methods may lead to the loss of valuable fractions as a result of partial hydrolysis of these 

fractions in the biomass (Mussatto & Teixeira, 2010). 

 

Alvira et al. (2010) summarizes that an effective pre-treatment strategy should meet the 

following requirements: 

i. overcome lignocellulosic biomass recalcitrance, deconstructing the three-dimensional 

structure of lignocellulose, and breaking down the semi-crystalline cellulose and 

hemicellulose; 

ii. afford high yields to sugars or chemicals and/or give highly digestible pre-treated 

solid; 

iii. avoid carbohydrates degradation and in particular preserve the utility of 

pentosan(hemicellulose) fraction; 

iv. avoid the formation of inhibitory toxic by-products; 

v. allow lignin recovery and exploitation to give valuable co–products; 

vi. be cost–effective, involving reasonable size reactors, low wastes amount and low 

energetic requirements. 

 

Ligninocellulosic materials pre-treatment techniques for bioethanol production are broadly 

classified into four distinct categories: physical, physicochemical, chemical and biological pre-

treatments. 

 

2.4.1 Physical Pre-treatment methods 

Physical pre-treatment methods primarily function to increase the accessible surface area and 

decrease the crystallinity and polymerization degree of cellulose. Several types of physical 

processes including milling, grinding, extrusion, and irradiation have been developed. 

2.4.1.1 Mechanical Comminution 

Mechanical comminution achieves size-reduction through a combination of chipping, grinding, 

and/or milling with the overall objective of reducing cellulose crystallinity and in this way 

increase reaction surface area, thus reducing reaction time. The process makes cellulose readily 

accessible to cellulases. Furthermore, it is presumed that disrupting the lignin-carbohydrate 

complexes will aid enzymatic hydrolysis (Mais et al., 2002).  The size of the materials is 

usually 10 – 30mm after chipping and 0.2 – 2mm after milling or grinding (Sun & Cheng, 

2002). Although this form of pre-treatment is usually necessary, its primary limiting factor is 

the high energy consumption required (Miao et al., 2011); the smaller the particle size the more 
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the energy requirements making certain particle size, economically unfeasible (Hendriks & 

Zeeman, 2009). In addition further reduction of biomass particle size does not necessarily have 

significant effect on the rates and yields upon hydrolysis (Chang et al., 1997; Draude, 

Kurniawan & Duff, 2001). For optimized economic consideration it is necessary to balance 

comminution against microbial and chemical reactions surface area requirements. 

 

2.4.1.2 Pyrolysis and Torrefaction 

Pyrolysis and torrefaction are forms of thermal treatment used on lignocellulosic biomass. 

When cellulose is treated at temperatures greater than 300oC, it decomposes rapidly to gaseous 

products and char; although decomposition is much slower at lower temperatures and products 

formed are less volatile (Kilzer & Broido, 1965; Shafizadeh & Bradbury, 1979).  The pyrolysis 

of cellulose produces levoglucosan-containing tar which when condensed the products can be 

readily hydrolyzed to glucose with sometime yields as high as 85% depending on the substrate. 

Although the use of acid-treated cellulose samples is preferred for best yields; with wood 

inorganic acids are best (Shafizadeh, 1983).  

 

Recently it is re-emerging as a promising method to convert biomass into a number of products 

(such as syn-gas, liquid fuel and charcoal) (Nhuchhen et al., 2014). Lignocellulosic wastes 

such aswood and forest residues, bagasse as well as straw and agricultural residues have been 

treated with pyrolysis. Some authors have shown through several studies that certain 

parameters affect the quality of the final product including feedstock composition, type of 

reactor, final temperature, heating rate, sweeping gas flow rate, vapours residence time and 

particle sizes (Rengel, 2007; Shen et al., 2011). 

 

Torrefaction involves heating to moderate temperatures within the range of 200 and 300oC, 

working under inert or nitrogen atmosphere (Prins et al., 2006a; 2006b; Englisch, 2010) which 

would lead to an initial reduction and subsequent elimination of moisture content with 

simultaneous depolymerisation of the long polysaccharides. This renders the once hygroscopic 

raw biomass, hydrophobic and reduces inhibition in successive enzymatic hydrolysis. Pre-

treatment by torrefaction is considered more attractive than pyrolysis (Kumar et al., 2009), 

especially using light and mild temperatures between 220 and 250oC. 
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2.4.1.3 Microwave irradiation 

The use of microwave is considered an alternative pre-treatment to conventional heating. It 

incorporates direct interaction between the material that needs heating and applied 

electromagnetic field to generate heat unlike the conventional heating that uses superficial heat 

transfer.In this way the microwave generates higher heating efficiency and therefore process 

operations are made easier (Binod et al., 2012). Furthermore, the electromagnetic field used in 

the microwave is believed to cause non-thermal effects that also accelerate destruction of 

crystalline structure (De la Hoz et al., 2005). 

 

Its advantages include short reaction times consequently it minimizes operation time and 

energy and less inhibitory compounds are likely to be generated.  Ooshima et al. (1984) 

reported a significantly higher lignin and hemicellulose removal from rice straw in shorter pre-

treatment time when a combination of microwave and alkali pre-treatment as compared to 

using alkali-only pre-treatment. Similarly Diaz et al. (2015) reported more significant 

modification when microwave irradiation was applied to enhance enzyme hydrolysis of corn 

straw and rice immersed in medium such as water, aqueous glycerol or alkaline glycerol.  

 

Physical pre-treatments most often are inadequate when used alone and usually are used in 

combination with chemical pre-treatments to improve the process efficiency (Keshwani, 2009). 

Microwave can be combined with chemicals such as dilute acids to further improve sugar yield 

from lignocellulosic substrates (Balcu et al., 2011). Keshwani and Cheng (2010) investigated 

microwave-based alkali pre-treatment; this amalgamated technique involved immersing the 

biomass in dilute alkali reagents and exposing the slurry to microwave radiation at 250 watt 

for residence times ranging from 5 minutes to 20 minutes. Sodium hydroxide showed the most 

effect in improving the production of fermentable sugars for the microwave pre-treatment of 

switch grass and coastal Bermuda grass. 

 

2.4.2 Physico-chemical Pre-treatment methods 

2.4.2.1 Steam explosion 

 

Steam explosion is a widely accepted method of pre-treatment for lignocellulosic materials 

(Jacquet et al., 2015). Initially the biomass is treated with high-pressure saturated steam (0.69 

– 4.83 MPa, 160 – 260oC) for a short period of time (several seconds to no longer than 10 

minutes) which wets the material; this is followed by a sudden reduction in pressure that causes 

the material to experience an explosive decompression (Kumar et al., 2009). Even though this 
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method can be used alone, incorporating acetic acid during de-pressurization promotes the 

hemicellulose hydrolysis and solubilisation and decreases the production of compounds (Clark 

& Mackie, 1987; Sun & Cheng, 2002).  Steam pre-treatment can also incorporate sulphur 

dioxide (SO2) with the aim of improving the recovery of both hemicellulose and cellulose 

fractions. Eklund et al. (1995) obtained a 95% maximum glucose yield when SO2 and H2SO4 

were incorporated into steam pre-treatment of willow; the process employed 1% SO2 at 200oC. 

However, the yield of xylose recovery by SO2 was not as high as pre-treatment with dilute 

sulphuric acid. More recently Tutt et al. (2014) employed a combination of steam explosion at 

200oC in combination with enzymatic hydrolysis to pretreat floodplain meadow hay with 

ethanol yield of 115g kg-1. Observation of the plant cell wall using scanning electron 

microscope showed a disintegration that exposed cellulose fibres. 

 

The major disadvantages to the use of steam explosion is that the lignin-carbohydrate matrix 

is only partially disrupted and in addition the reaction generates compounds such as furan 

derivatives – furaldehyde and 5-hyroxymethyl-2-furaldehyde and phenolic compounds that 

may be inhibitory to microorganisms (Sun & Cheng, 2002). However, Martín and coworkers 

(2008) observed that in comparison to pretreatment by oxidation, steam explosion generated 

less inhibitory by products. It becomes necessary to wash pre-treated biomass with water which 

reduces the saccharification as soluble sugars derived from hemicellulose hydrolysis are lost 

in this way (Ballesteros et al., 2011). 

 

2.4.2.2 Liquid Hot Water Pre-treatment 

 Liquid hot water pre-treatment is similar to steam explosion, although the explosion does not 

occur but rather it involves immersing the biomass in liquid hot water. The method uses 

compressed liquid hot water (180 – 230oC; pressure > saturation point; solids concentration < 

20wt %) which results in the formation of acids from the hydrolysis of acetyl and uronic groups, 

originally present in the hemicellulose that subsequently catalyzes hydrolysis of links between 

hemicellulose and lignin as well as between the carbohydrates resulting in release of glucose 

and xylose monomers in a phenomenon referred to as autohydrolysis (Weil et al., 1997; Mosier 

et al., 2005b). Residence time is usually 10 – 15 minutes. The process is able to hydrolyze 

hemicellulose, in minutes with high yields, low by-products formation and no significant lignin 

solubilisation (Carvalheiro, Duarte & Girio, 2008). Some techniques utilize small quantities of 

H2SO4, CO2 or SO2 as catalyst to enhance recovery of hemicellulose sugars and improve the 

enzymatic hydrolysis on the solid residue as well as decrease the production of inhibitors (Sun 
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& Cheng, 2002; Mosier et al., 2005b). Its major advantage is the absence or limited use of 

chemicals consequently there is no requirement for corrosion-resistant equipment; it does not 

require an initial step of comminution, thus reducing energy costs (Taherzadeh & Karimi, 

2008). Hendriks et al. (2009) reported the dissolution of 50% total biomass, an almost complete 

removal of hemicellulose, increase cellulose digestibility (5 – 20% removal of cellulose) and 

the removal of 30 – 60% removal of lignin. The primary reason for the lower concentrations 

of inhibitory derivatives is due to the higher volumes of water input. It is regarded as a simple 

and environmentally friendly approach (Raspolli-Galletti & Antonetti, 2009). Its drawback 

stems from the high volumes of water needed; this increases the energy demand (Agbhor et al., 

2011). 

 

2.4.2.3 Ammonia fibre explosion  

Ammonia fibre explosion (AFEX) is similar to steam explosion; lignocellulosic biomass are 

exposed to liquid ammonia at high temperature and pressure, subsequently the pressure is 

rapidly reduced.  Process parameters include a dosage of 1 – 2 kg of ammonia/kg of dry 

biomass, temperature at 90oC and the residence time is between 10 – 30minutes (Alizadeh et 

al., 2005; Bals et al., 2010). It is remarkable that the hemicellulose and lignin portion remain 

intact during this treatment, it has been suggested that deacetylation and degradation of 

hemicellulose is the probable reason for the hemicellulose remaining insoluble (Gollapalli, 

Dale & Rivers, 2002). However, this form of treatment changes the material structure that 

results in increased water retention capacity and higher digestibility (Galbe & Zacchi, 2007). 

AFEX pre-treatment simultaneously reduces lignin content and removes some hemicellulose 

while decrystallizing cellulose. AFEX technology has been used for the pre-treatment of 

alfalfa, wheat straw, wheat (Mes-Hartree, Dale & Craig, 1988; Bensah & Mensah, 2013) 

barley straw, corn stover, rice straw (Vlasenko et al., 1997; Harun et al., 2013), municipal solid 

waste, softwood newspaper, kenaf newspaper (Holtzapple, Lundeen, & Sturgis, 1992a), coastal 

Bermuda grass, switchgrass (Reshamwala, Shawky & Dale, 1995), aspen chips (Tengerdy & 

Nagy, 1988), and sugarcane bagasse (Holtzapple et al., 1991). AFEX reduces the use of water 

in the down stream biological processes because it does not produce inhibitors therefore a water 

wash is unnecessary (Mes-Hartree et al., 1988).  

 

However, AFEX pretreatment must factor in the cost of ammonia and ammonia recovery, the 

latter being absolutely necessary due to environmental reasons.This additional costs make the 

process economically unfeasible for large scale production (Eggeman & Elander, 2005; Mosier 
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et al., 2005a). Teymouro et al. (2004) reported that the quantity of ammonia vapourized during 

AFEX would usually depend on temperature. When the temperature is elevated, a great 

quantity of ammonia vapour would flash leading to a significant loss of ammonia and therefore 

increasing production cost as well as a greater disruption of the biomass fibre structure. 

Temperature was also reported to affect the system pressure, therefore making it a crucial 

component of this process. 

 

2.4.2.4 Carbon dioxide explosion 

Carbon dioxide explosion was developed to offset the limitation due to high temperatures and 

the high costs associated with Steam explosion and AFEX respectively. The mechanism is 

facilitated by high pressure. CO2 explosion uses CO2 as a supercritical fluid; such fluids, even 

though gaseous, possess liquid-like density under compression at temperatures above its 

critical point. 

CO2 + H2O ⇔ H2CO3⇔H+ + HCO3-⇔2H+ + CO3
2- 

The presumption with CO2 explosion was that there will be an increased rate of hydrolysis as 

a result of the formation of carbonic acid when CO2 is dissolved in water; because the molecular 

size of CO2 is comparable to water and ammonia; they should be able to penetrate small pores 

accessible to water and ammonia molecules (Zheng et al., 1995). Zheng et al. (1998) did a 

comparative analysis on CO2 explosion with steam and ammonia explosion for the pre-

treatment of recycled paper mix, sugar bagasse and re-pulping waste of recycled paper and 

established that CO2 was more cost-effective than ammonia explosion and did not cause 

formation of inhibitory compounds that could occur in steam explosion. In addition, CO2 

explosion is considered advantageous because it is non-toxic, non-flammable, it is easily 

recovered after extraction and overall it is environmentally friendly (Huang et al., 2008; 

Schacht et al., 2008; Luterbacher et al., 2010; Srinivasan & Ju, 2010). Its high capital costs for 

the high pressure equipment is a limiting factor to the commercialization of this technique 

(Agbhor et al., 2011). 

 

2.4.3 Chemical Pre-treatment 

2.4.3.1 Acid Pre-treatment 

Pre-treatments using acids may be performed using dilute or concentrated acids; however the 

latter is hazardous with high cost implications on the long run from the corrosion of equipment 

and recovery processes (Sivers & Zacchi, 1995). This form of pre-treatment favours the 

formation of degradation and inhibitory compounds (Alvira et al., 2010). The use of dilute 
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acids has been extensively studied for the hydrolysis of hemicellulose (Mussatto & Teixeira, 

2010; Hu & Ragauskas, 2012); wherein diluted acids (< 4wt %), under high temperatures 

ranging from 140 to 215oC is usually adequate for hemicellulose with little decomposition of 

sugar (McMillian, 1994; Carvalheiro, Duarte & Girio, 2008). Although, sulphuric acid 

(H2SO4)is most commonly preferred, other acids such as hydrochloric acid (HCl), nitric 

acid(HNO3) and phosphoric acid (H3PO4) as well as organic acids(maleic and oxalic acids) are 

also used. Acid hydrolysis using H2SO4 enhances digestibility of cellulose in the residual solids 

(Mosier et al., 2005a), with high xylan to xylose conversion yields that is necessary to increase 

productivity as xylan accounts for one-third of the total carbohydrate in most lignocellulosic 

materials (Hinman, Schell, Riley, Bergeron & Walter, 1992). Despite the low energy costs 

associated with dilute acid hydrolysis (Gírio, et al., 2010); it is usually necessary to neutralize 

hydrolysates before fermentation (Mosier et al., 2005a). However, its most significant 

limitation is the formation of inhibitory by-products (furans, furfural, carboxylic acids, formic, 

levulinic and acetic acids and phenolic compounds) that affects the microbial fermentation; 

this makes a detoxification step necessary (Palmqvist & Hahn-Hägerdal, 2000; Jonsson & 

Martin, 2016). 

 

2.4.3.2 Organosolv Pre-treatment 

The organosolv process employs organic liquid (such as methanol, ethanol, phenols, acetone, 

ethylene glycol and tetrahydrofurfuryl alcohol) and water, sometimes with the addition of 

catalysts (oxalic, salicylic and acetylsalicylic acids) (Sarkanen, 1980) to reduce the operating 

temperature; thus resulting in the dissolution of lignin with cellulose residual solid materials 

(Chum et al., 1988; Thring et al., 1990; Sun & Cheng, 2002). The removal of lignin increases 

the surface area and volume of the material for further degradation of enzymes; thus improving 

process efficiency and levels of fermentable sugars. The addition of catalysts is usually not 

necessary at temperatures higher than 185oC (Sarkanen, 1980; Aziz & Sarkanen, 1989; 

Taherzadeh & Karimi, 2008). 

 

Less quantities of chemicals are required to neutralize hydrolysates from the organosolv 

process with equally less amount of waste generated (Taherzadeh & Karimi, 2008). The 

drawback in this process is the need to drain from the reactor used solvents as well as the 

evaporation, condensation and recycling steps that must be done to reduce costs. In addition 

these steps are necessary as the solvents might be inhibitory to the growth of microorganisms 

in the downstream operation (Kumar et al., 2009). Sidiras and Salapa (2015) evaluated five 
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solvents (ethanol, methanol, diethylene glycol, acetone and butanol) using the organosolv 

pretreatment process for wheat straw, catalysis was achieved using H2SO4 at 160oC for 20 

minutes, the highest delignification was 59% w/w using acetone with a maximum cellulose 

concentration yield of 72% w/w and 95% w/w of xylan hydrolysed to xylose. 

 

2.4.3.3 Alkaline Pre-treatment 

Alkaline pre-treatment employs alkaline solutions such as sodium hydroxide (NaOH), calcium 

hydroxide or slake lime (Ca(OH)2) or ammonia for the treatment of lignocellulosic biomass. 

NaOH is considered a preferred choice and the most studied for the delignification of 

agricultural residues (Kim et al., 2016) with associated digestion of significant amounts of 

hemicellulose. Dilute NaOH causes swelling consequently increasing internal surface area and 

a simulataneous reduction in both the degree of polymerization and crystallinity. In addition it 

leads to a separation of structural linkages between lignin and carbohydrates as well as 

disruption of the lignin structure (Fan et al., 1987).  The end-product is dissolved in the form 

of a liquor rich in phenolic compounds that represents the process effluent (Fengel & Wegener, 

1989; Mussatto et al., 2007). Advantages of alkaline pre-treatment overother pre-treatment 

techniques include utilization of lower temperatures and pressures (Mosier et al., 2005a), 

although residence time are relatively longer; in comparison with acid processes, there is less 

sugar degradation and most of the caustic salts can be regenerated and/or recovered. In a study 

done by Iroba et al. (2013) where optimization involved temperature variations (70, 80 and 

90oC) against different concentration ratios of NaOH solution, it was observed that the ratio 

1:6 concentration at four different temperatures proved to be optimal at all of these 

temperatures. 

 

The degradation of portions of the hemicellulose is considered a major drawback (Mussatto & 

Teixeira, 2010) and the high cost implications associated with recycling the high concentrations 

of expensive salts that are employed in the process, waste water treatment and residual handling 

tends to make this technique commercially non-viable on the long-run (Hamelinck et al., 2005; 

Zheng et al., 2009). Although, the option of using calcium hydroxide (slake lime) is reported 

to be an effective pre-treatment agent and is the least expensive per kilogram of hydroxide; its 

recovery can also be achieved from an aqueous reaction system as insoluble calcium carbonate 

by neutralizing it with inexpensive carbon dioxide upon which it is regenerated using 

established lime kiln technology (Kumar et al., 2009).  
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Ammonia is a very promising pre-treatment reagent, in particular for biomasses with low lignin 

contents such as agricultural residues and herbaceous feedstock. It is suitable for simultaneous 

saccharification and co-fermentation because the treated biomass retains the cellulose and 

hemicellulose portions (Kim & Lee, 2005a).  Yoon et al. (1995) describe ammonia recycle 

percolation (ARP) process where ammonia is applied to biomass at temperatures between 160 

and 180oC. Kim and Lee (2005a; 2005b) in two separate studies using corn stover, reported 

approximately 50% of the xylan and >75% of the lignin was removed, which enhanced 

digestibility of the remaining solids. 

 

2.4.3.4 Oxidizing Pre-treatment – Hydrogen peroxide   

The decomposition of lignocellulosic materials can be hastened with H2O2 at temperatures 

higher than 100oC. The reaction is similar to alkaline pre-treatment because the lignin 

solubilisation by H2O2 causes the partial removal of hemicellulose from the biomass (Nigam, 

Gupta & Anthwal, 2009).Peroxidase enzyme under alkaline conditions is able to catalyse lignin 

biodegradation in the presence of H2O2 (Azzam, 1989; Sun & Cheng, 2002) whereby highly 

reactive radicals such as hydroxyl radicals (HO) and superoxide anions (O2
-) are produced and 

are responsible for the degradation of lignin. Oxidative delignification (as it is often known), 

not only de-lignifies the biomass but causes the chemical swelling of cellulose thereby 

improving enzymatic saccharification (Yamashita et al., 2010). This technique is used in the 

paper and pulp industries to bleach and de-lignify the biomass, thus, improve the brightness of 

pulp as it reacts with coloured carbonyl-containing structures in the lignin (Nigam et al., 2009). 

It has been applied to a large variety of biomass including corn stover, barley straw, wheat 

straw, bamboo, rice straw and sugar cane bagasse (Banerjee et al., 2011). Azzam (1989) 

achieved about 50% of the lignin and most of the hemicellulose was solubilized with 95% 

efficiency of glucose production from cellulose when sugarcane bagasse was pre-treated with 

2% H2O2 at 30oC within 8 hours. A continuous flow operation that incorporates high biomass 

loading (≈ 40% solids) and low H2O2 loading has been used successfully to achieve oxidative 

delignification; though it is still a relatively less explored method compared to other 

thermochemical pre-treatments (Banerjee et al., 2011). This pre-treatment is promising as it 

takes little or no toll on the environment, however, the operational cost for large scale 

production can be limiting (Nigam et al., 2009). 
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2.4.3.5 Wet Oxidation 

Wet oxidation was offered as an alternative to steam explosion in the early 1980s (McGinnis, 

1983). It is a process of treating lignocellulosic biomass with water and air or oxygen at 

temperature ranges of 140 – 200oC under pressure for about 30 minutes. Varga et al. (2003) 

used wet oxidation in the pre-treatment of corn stover with the following parameters: 195oC, 

2gl-1 Na2CO3, 12 bar O2, 15 minutes. Similar parameters have been found optimal for wet 

oxidation of wheat straw (Klinke et al., 2003). Oxygen participates in the degradation reaction, 

enhancing the generation of organic acids and allowing operations at comparatively low 

temperatures (Taherzadeh & Karimi, 2007). Martín and Thomsen (2007) identified that the 

fractionation of the lignocellulosic biomass, formation of sugars and by-products and cellulose 

enzymatic convertibility is greatly affected by oxygen pressure and the type of raw material 

used. Bjerre et al. (1996) combined wet oxidation and alkaline hydrolysis for the pre-treatment 

of wheat straw and achieved 85% conversion yield of glucose with no formation of inhibitory 

derivatives. Petersson et al. (2007) produced ethanol using Saccharomyces cerevisiae from 

winter rye, oilseed rape, faba bean straw after wet oxidation pre-treatment with theoretical 

yields of 66%, 70% and 52% respectively. Wet oxidation is amongst the simplest process in 

terms of equipment, energy and chemicals required for operations (Chum et al., 1985). 

However it is only suitable for substrates with low lignin content as yield decrease with 

increased lignin content; also the lignin produced from wet oxidation cannot be used for fuel 

consequently reducing income that can be generated from by-products in large-scale ethanol 

production from lignocellulose (Galbe & Zacchi, 2002). 

 

2.4.3.6 Ozonolysis 

Ozone, a known powerful oxidant that is soluble in water, can be used to effectively degrade 

lignin and part of hemicellulose. It is highly reactive toward conjugated double bonds and 

functional groups associated with high electron density; the large quantities of C=C bonds 

guarantees an immediate reaction with lignin moieties. Ozone attacks lignin with an associated 

reduction in solution pH from 6.5 to 2 thereby releasing soluble compounds of low molecular 

weight, such as organic acids, formic and acetic acids (Garcìa-Cubero, 2009). In the reaction 

because lignin functions as a scavenger, it consumes most of the ozone but the residual ozone 

may also attack the cellulose and hemicellulose components attached to the lignin. It is 

presumed that cellulose degradation may be as a result of a direct reaction of ozone with the 

glycosidic linkage and partly a free radical mediated oxidation of hydroxyl groups in glucose 

(Nigam et al., 2009; Johansson, Lind & Ljunggren, 2000). Ozonolysis can be carried out at 
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room temperature and normal pressure, with the added benefit that it does not produce any 

toxic residues for the enzymatic processes (Vidal & Molinier, 1988). Ozone is easily 

decomposed by using a catalytic bed or increasing with slight modification in process design 

consequently minimizing environmental pollution (Kumar et al., 2009). A major limitation to 

the use of this pre-treatment is the large quantities of ozone required that makes the process 

expensive (Kumar et al., 2009; Mussatto & Teixeira, 2010). 

 

2.4.4 Biological Pre-treatment 

The cost implication of physical and chemical pre-treatments necessitates seeking alternatives 

such as biological pre-treatments. There are present in nature organisms including bacteria, 

brown-, soft- and white-rot fungi (Galbe & Zacchi, 2007; Zheng et al., 2009; Hatakka & 

Hammel, 2010). These organisms are able to degrade the lignin, and hemicellulose, thus 

making the cellulose readily available for enzymatic hydrolysis (Sarkar et al., 2012). As a result 

of the low energy requirement and mild environmental conditions associated with biological 

treatment with its concomitant reduction in sugar loss (Sun & Cheng, 2002; Hamelinck et al., 

2005; Tian et al., 2012), its potential application cannot be ignored. Although there are 

challenges that need to be overcome such as the exceedingly long residence time and large 

space requirements which make its use in the industry less attractive. Moreover the inevitable 

consumption of carbohydrate fractions (Agbhor et al., 2011) by microorganisms means that 

the overall yield of product is affected. Never-the-less, these limitations can be overcome with 

the use of biological pre-treatment in combination with other treatments (Hamelinck et al.,  

2005) or on its own if the biomass has low lignin content (Magnusson et al., 2008). Itoh et al. 

(2003) in their analysis of the impact of biological pre-treatment using white-rot fungi in a 

combination pre-treatment of beech stated that biological pre-treatment saved 15% of the 

electricity needed for ethanolysis of beech wood undergoing bio-organosolv pre-treatment. 

Wang et al. (2012) also combined fungal pre-treatment with liquid hot water to enhance the 

enzymatic hydrolysis of Populus tomentosa. 

 

2.4.4.1 Bacteria 

There are few bacteria species available in nature that can degrade lignocellulose; in fact the 

degradation of hemicellulose is more common in wood fungi than in bacteria (Schmidt, 2006). 

Some aerobic and anaerobic bacteria have the competency to digest cellulose and 

hemicellulose although these organisms are regarded as secondary lignocellulose degraders 

(Walker & Wilson, 1991). The simultaneous activity of cell-associated and free extracellular 
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cellulases and hemicellulases is required to initiate aerobic degradation as observed with 

Thermobifida fusca and Cellulomonas composti (Walker & Wilson, 1991; Beguin & Aubert, 

1994). However, anaerobic degraders usually attach relevant hydrolase activities to the cell 

through a cellulosome complex. Cellulosomes are multi-enzyme complexes that bind to the 

bacterial cell wall and promote the uptake of solubilised sugar by the hydrolytic organisms 

(Bayer et al., 2008). Clostridium thermocellum and C. cellulolyticum are among the best-

studied anaerobic, cellulose degrading bacteria (Bayer et al., 2008).  Lynd et al. (2002) 

extensively evaluated these two anaerobic bacteria for their potential to promote simultaneous 

saccharification and fermentation (SSF) or consolidated bioprocessing (CBP). Streptomycete 

species have also been shown to degrade low levels of lignin (Watanabe et al., 2003; Zeng et 

al., 2013; Majumdar et al., 2014). 

 

2.4.4.2 Brown rot fungi 

Brown-rot fungi are basidiomycetes that are characterized by their ability to degrade wood, 

producing a brown, shriveled end-product that demonstrates a pattern of cubical crack that 

disintegrate easily upon handling (Hatakka & Hammel, 2010). Brown rot primarily attack 

cellulose while soft- and white-rot fungi attack both cellulose and lignin (Sun & Cheng, 2002). 

This involves the rapid degradation of hemicellulose, with removal of almost all the cellulose 

leaving behind a complex aromatic ring-containing polymer derived from the original lignin 

(Hatakka & Hammel, 2010).  The partial oxidation of lignin is presumably achieved through 

demethylation of the aromatic rings, this increase the phenolic hydroxyl content as well as the 

partial introduction of new carbonyl and carboxyl groups, although the lignin remains 

polymeric in situ (Kirk & Adler, 1970; Kirk, 1975).  Owing to the lignin remaining intact after 

so-called activity of brown rot fungi it is concluded that they are inefficient degraders of lignin 

and the prime candidates implicated in its degradation of lignocellulosic materials are low-

molecular-weight species which it employs in oxidation, these compounds possess oxygen-

centred free radicals such as the hydroxyl radical (OH) (Koenigs, 1974; Eriksson et al., 1990; 

Hammel et al., 2002; Kamada et al., 2002).  Examples of extensively studied brown rot fungi 

include Postia placenta (also known as Poria monticola), Tyromyces palustris, Gloeophyllum 

trabeum, Serpula lacrymans, Fomitopsis palustris, Laetiporus portentosus and Piptoporus 

betulinus (Jensen et al., 2001; Kamada et al., 2002; Högberg et al., 2006; Valášková & 

Baldrian, 2006; Yoon et al., 2007; Lindner & Banik, 2008; Martinez et al., 2009; Watkinson 

& Eastwood, 2012; Kojima et al., 2016). 
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2.4.4.3 Soft-rot fungi 

The soft-rot decay of wood is characterized by the wood becoming brown and soft where the 

residue is cracked when dry. This is caused by ascomycetes and mitosporic fungi (Nilsson et 

al., 1989; Blanchette, 1995). Soft-rot fungi form invaginations within secondary walls or 

erosion although the middle lamella are unaffected (Hatakka & Hammel, 2010). In comparison 

to basidiomycetous fungi, the knowledge about lignocellulose degradation by ascomycetes is 

sparse and very little is known about how they degrade lignin (Nilsson et al., 1989; Martinez 

et al., 2005). Trichoderma reesi is one of the best studied examples of mesophilic soft-rot 

fungus with its ability to degrade plant biomass and cellulose; it has been employed in the 

production of cellulases and hemicellulases in various industrial applications. It has also long 

been a model system for the degradation of plant cell wall polysaccharides; however it is unable 

to degrade lignin (Martinez et al., 2008; Hatakka & Hammel, 2010). 

 

2.4.4.4 White-rot fungi 

White-rot fungi are from the family basidiomycetes that are able to degrade lignin in wood 

(Hatakka, 2001; Dashtban et al., 2010); there are however, some white-rot fungi found amongst 

the ascomycetes (Schmidt, 2006). The decayed wood is characteristically bleached pale in 

colour, brittle, spongy, soft and fibrous in texture (Erikkson et al., 1990). White-rot fungi may 

be classified according to their degradation pattern as simultaneous or non-selective 

degradation and selective delignification (Erikkson et al., 1990; Blanchette, 1995). 

Simultaneous degradation involves the white-rot fungi colonizing cell lumina, causing cell wall 

erosion; where the eroded zones amalgamate as decay progresses and large cavities filled with 

mycelium are formed with a further accumulation of calcium oxalate and MnO2 (Blanchette, 

1995). Examples of fungi with such non-selective degradation include Fomes fomentarius, 

Phellinus robustus, and Trametes versicolor (Blanchette, 1984; Blanchette, 1994). Conversely, 

some white-rot degrade lignin in wood in relatively larger proportions than cellulose, in this 

case they are referred to as selective white-rot fungi which are typically observed as white-

mottled type of rot as seen with Phellinus nigrolimitatus (Blanchette, 1995; Stokland & 

Kauserud, 2004). This selective degradation is often seen in wood as small elongated craters 

within wood tissue such that decayed regions are surrounded by tissues that appear healthy 

(Blanchette, 1984; Stokland & Kauserud, 2004). A typical fibrous texture is observed with the 

progressive delignification of the middle lamella and primary cell wall (Schmidt, 2006). 

Ceriporiopsis subvermispora and Phlebia radiata are perhaps the best studied fungi to elicit 

selective white-rot decay (Hatakka et al., 2002; Uusi-Rauva & Hatakka, 2006; Fackler et al., 
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2007; Fernandez-Fueyo et al., 2012). The type of wood being decayed, the stage of wood 

degradation and the particular strain of fungi employed – are significant factors that determine 

the form of degradation that ensues (Blanchette, 1992; Messner & Srebonik, 1994). 

 

2.5 Ligninolytic Enzymes 

The production of ethanol from cellulosic materials requires the removal of lignin to 

significantly improve digestibility, in addition lower lignin content would considerably reduce 

enzyme loadings thus reducing costs (Milagres et al., 2011). A consequence of delignification 

is the swelling and disruption of the lignin structure thereby increasing the internal surface area 

and median pore volume (Zhu et al., 2008).  

 

White-rot fungi have unique mechanisms to degrade lignins. This is facilitated by enzymes that 

are collectively termed as “ligninases.” Ligninases are divided into two main groups: phenol 

oxidases (laccase) and heme peroxidase [lignin peroxidase (LiP), manganese peroxidase (MnP) 

and versatile peroxidase (VP)] (Martinez et al., 2005). They secrete one or more of the lignin 

modifying enzymes in varying proportions and in some cases more than one isoform of the 

ligninases are expressed by different taxa under different culture conditions (Wesenberg et al., 

2003). These enzymes have lower substrate specificity (making them useful in degrading other 

recalcitrant pollutants) than typical biological catalysts, in addition, other compounds are 

secreted to aid effective lignin degradation (Solarska, 2009; Dashtban et al., 2010). 

 

Recall that the compact structure of lignin makes it difficult for most substances including 

proteins to penetrate it; for this reason lignin modifying enzymes are secreted extracellularly 

as well as low molecular weight mediators that aid the penetration of wood, which otherwise 

would not be possible due to the large molecular size of the enzymes (Evas et al., 1994). These 

low molecular weight mediators are secreted during fungal metabolism and include veratryl 

alcohol (VA), oxalate, malate and fumarate (Cho et al., 2004). In addition to these, H2O2-

utilising enzymes such as glyoxal oxidase (a copper-radical protein) and aryl alcohol oxidase 

(a flavoprotein) are also excreted (Solarska, 2009). 

 

Ligninolytic enzymes are highly oxidative in nature and act synergistically to mineralise lignin 

by catalysing a one-electron oxidation with the formation of radicals that undergo further 

spontaneous reactions (Lonergan, 1992; Kluczek-Turpeinen, 2007). The production of 

ligninolytic enzymes are promoted under limited nutrient availability (C: N ratio) or secondary 
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metabolism as lignin oxidation provides no net energy to the fungus (Kirk & Farrell, 1987; 

Wesenberg et al., 2003; Kaštovská et al., 2012). The depolymerisation of lignin allows the 

fungi to access cellulose and hemicellulose which they can utilise as carbon and energy sources. 

Lignin degradation causes the formation of water-soluble compounds and where mineralisation 

occurs it leads to the formation of CO2.  Apart from the effects nitrogen limitation gas has on 

ligninolytic enzymes production, it is also the limiting nutrient for fungal growth in most wood 

and soils (Kirk & Farrell, 1987; Watkinson et al., 2006). 

 

2.5.1 Laccases  

Laccases (EC 1.10.3.2, benezenediol:oxygen oxidoreductase) are glycosylated  blue copper-

containing oxidase that effects the complete catalysis of one molecule of dioxygen to two 

molecules of water using four-electron reduction with a concomitant electron withdrawal from 

the reducing phenolic, aromatic amines as well as other electron-rich substrates such as 

arylamines, anilines, thiols and lignin, although the latter can only proceed with the inclusion 

of a mediator (Thurston, 1994; Call & Mücke, 1997; d'Souza et al., 1999; Madhavi & Lele, 

2009).  

 

Most monomeric laccase (Lacc) molecules contain four copper atoms in their catalytic centre 

that mediate redox process, the classification based on the copper’s co-ordination and 

spectroscopic properties whichare as follows: type-1 (T1) is responsible for the intense blue 

colour of the enzyme; type-2 (T2) is colourless and type-3 (T3 and T3’) is a pair of copper that 

are not easily detectible with spectroscopic signals (Palmieri et al., 1998; Van Der Merwe, 

2002; Dashtban et al., 2010). The T2 and T3 copper sites are in close proximity and form a tri-

nuclear centre (Leontievsky et al., 1997) that are involved in the catalytic mechanism of the 

enzyme (Jones & Solomon, 2015). 

 

Laccase catalyzes the cleavage of the Cα – Cβ bonds in phenolic subunits (β-1 and β-O-4 

dimers) leading to Cα oxidation (Figure 2.6); this is achieved by splitting the aryl-alkyl bonds 

(Picart et al., 2015). This oxidation results in an oxygen-centred free radical that can undergo 

numerous spontaneous reactions consequently resulting in various bond cleavages of aromatic 

rings and other bonds and later polymerisation reaction with the formation of quinone 

(Thurston, 1994; Leonowicz et al., 2001). 
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Laccase cannot directly oxidize non-phenolic lignin units for primarily two reasons – the large 

size which restrict penetration into the enzyme active site and the relatively high redox potential 

(> 1.2V) of these substrates (Tadesse et al., 2008). Therefore, it employs suitable chemical 

mediators such as 2, 2’ –azinobis-(3-ethylbenthiazoline-6-sulfonate) (ABTS) (Figure 3.1) that 

act as an intermediate substrate for laccase in this way boosting the otherwise low redox 

protential of laccase; the oxidized radicals formed are then able to react with the high redox 

potential substrates (Arora & Sharma, 2010). 

 

In fungi, the laccase-mediator system is usually involved in a range of physiological functions 

that are unrelated to lignolysis (Thurston, 1994; Divya & Sadasivan, 2016). They include 

morphogenesis and differentiation of sporulating and resting structures in basidiomycetes 

(Robene-Soustrade & Lung-Escarmant, 1997); pigmentation in mycelia and fruiting bodies, 

improves cell-to-cell adhesion, assists rhizomorph formation and it is also responsible for the 

formation of polyphenolic adhesion that binds hyphae together (Thurston, 1994). 

 

 
Figure 2.6: Oxidation of phenolic subunits of lignin by laccase (Archibald et al., 1997) 
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Figure 2.7: Oxidation of non-phenolic subunits of lignin by laccase and ABTS (Archibald et 

al., 1997) 

 

Laccases have also been implicated in plant pathogens; where extracellular laccases are 

produced that enable the fungus to overcome the immune response of the host (Thurston, 

1994). It is also able to facilitate the detoxification of the plant tissue via the oxidation of 

antifungal phenols or deactivation of phytoalexins (Assavanig et al., 1992; Robene-Soustrade 

& Lung-Escarmant, 1997). More recently it has been suggested that it is likely to be involved 

in defense against antagonistic organisms (Divya & Sadasivan, 2016). The production of low 

concentrations of laccase is constitutive in white-rot fungi, but the higher concentrations can 

be promoted using inducers in the cultivation media such as metals and aromatic compounds 

(Van der Merwe, 2002). 

 

Laccase was first discovered in the sap of the Japanese lacquer tree Rhusvernicifera and 

described in 1883 by Yoshida (as cited by Call & Mücke, 1997). It has since been found to be 

widespread in nature, for example in plants, insects, bacteria, and to very large extents in fungi 

(Claus, 2004; Durao et al., 2006; Ferraroni et al., 2007). Although found predominantly in 

white-rot fungi such as Lentinus tigrinus (Ferraroni et al., 2007), Pleurotus ostreatus 

(Pozdniakova et al., 2006), Cerrena unicolor strain 137 (Michniewicz, et al., 2006), Trametes 

versicolor (Necochea et al., 2005), Trametes sp. strain AH28-2 (Xiao et al., 2003), Trametes 

pubescens (Shleev et al., 2007) and Cyathus bulleri (Salony et al., 2006). It has also been 

reported in brown rot fungi including Coniophora puteana (Lee et al., 2004) and also in 

Ascomycetes such as Melanocarpus albomyces (Hakulinen et al., 2006), Chaetomium 

thermophile (Ishigami & Yamada, 1986), Magnaporthe grisea (Iyer & Chatto, 2003), 
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Myrothecium verrucaria 24G-4 (Sulistyaningdyah et al., 2004) and Neurospora crassa 

(Germann et al., 1988). 

 

Laccase has found application in construction of biosensors, textile decolourisation, pulp 

bleaching, effluent detoxification, removal of phenolic compounds in beverages, food 

processing and in bioremediation (Couto & Toca-Herrera, 2006; 2007; Osma et al., 2010). 

 

2.5.2 Peroxidases 

Lignolytic peroxidases include lignin peroxidase (LiPs), manganese-dependent peroxidases 

(MnPs) and the most recently discovered versatile peroxidases (VPs) (Martínez, 2002) which 

appears to be a hybrid of LiPs and MnPs (Hatakka & Hammel, 2010). These fungal peroxidases 

are all heme-containing glycoproteins that require hydrogen peroxide as an oxidizing agent. 

Peroxidases possess heme (protoporphyrin IX) as their prosthetic group coordinated by two 

highly conserved histidine residues (Martínez, 2002). The heme co-factor is located within an 

internal cavity connected by two access channels; with the main channel used by H2O2 and the 

second site is the reserved oxidation site for MnP and VP to oxidize Mn2+ and Mn3+ (Ruiz-

Dueñas et al., 2009).  A common strategy employed by both LiP and MnP to oxidize 

corresponding substrates is the two consecutive one-electron oxidation steps with intermediate 

cation radical formation (Sanchez, 2009). 

 

2.5.2.1 Lignin Peroxidase 

Lignin peroxidase (1, 2-bis (3,4 di-methoxyphenyl) propane-1,3-diol: hydrogen peroxide 

oxidoreductases, EC 1.11.1.14) degrades non-phenolic lignin units (such as di-arylpropane), β-

O-4 non-phenolic lignin model compounds) in an oxygen-dependent reaction by abstracting 

one electron and generating unstable aryl cation radicals that undergo spontaneous degradation 

(Kirk & Farrell, 1987; Sayadi & Odier, 1995; Ruiz-Dueñas & Martínez, 2009). However, with 

phenolic substrates, LiP oxidises them to products similar to those produced by peroxidases 

generally (Kluczek-Turpeinen, 2007).   

 

LiPs are able to catalyse these reactions because of their unusually high redox potential which 

is responsible for their ability to oxidize non-phenolic aromatic substrates without the 

participation of mediators (Wang et al., 2008; Wong, 2009). Unlike their counterpart MnP 

which generates Mn3+ whose action being as a diffusible oxidant allows it to degrade both 

phenolic and non-phenolic lignin unit (Hofrichter, 2002; Cullen & Kersten, 2004). 
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In studies involving the P. chrysosporium it was observed that characteristically for LiP 

activity, the amino acid tryptophan, Trp171, in the isozyme LiPA (LiP H8) is essential. This 

tryptophan found on the LiP protein surface is conserved in LiP sequences, this is similar to 

those on versatile peroxidases (VPs) (Martínez, 2002; Pérez-Boada et al., 2005). It is believed 

that it participates in long-range electron transfer (LRET) from a protein radical at the surface 

of the enzyme, which would act as the substrate oxidizer to the heme co-factor (Ruiz-Dueñas 

& Martínez, 2009); making it possible for the enzyme to oxidize large substrates such as 

polymeric lignin that cannot directly contact the oxidized heme in the active site of LiP or VP 

(Hatakka & Hammel, 2010). 

 

Several strains of P. chrysosporium (Renganathan et al., 1985; Howard et al., 2003; 

Wymelenberg et al., 2006) that have shown LiP activity. Moreover other white-rot fungi such 

as T. versicolor (Hossain & Anantharaman, 2006) and fungal species including Panus sp., 

Pycnoporus sanguineus and Perenniporia medulla-panis (Pointing et al., 2005) have 

demonstrated LiP activity.  Remarkably, bacteria such as Streptomyces viridosporus T7A 

(Gottschalk, Bon & Nobrega, 2008) and Acinetobacter calcoaceticus NCIM 2890 (Ghodake et 

al., 2009) have also shown LiP activity. 

 

LiPs oxidize the substrate in a cyclic multi-step electron transfers involving the oxidation of 

native Fe (III) enzyme by H2O2 to LiP compound I (Figure 2.8).  The primary of oxidation of 

LiPs is initiated by H2O2 with the initial production of a two-electron-deficient compound 

1involving a one-electron reduction of compounds such as veratryl alcohol (VA). The 

intermediate compound I removes one electron from the donor substrate VA resulting in the 

formation of reduced compound II and a cation radical intermediate. This compound II then 

undergoes oxidation using the second molecule of the donor substrate, also via a one-electron 

transfer producing a cation radical intermediate and the resting state of the peroxidase. These 

cation radical intermediates spontaneously break into smaller units. In the presence of excess 

H2O2, compound II can be further oxidized to compound III (Dosoretz et al., 2004). The 

presence of H2O2 and VA will cause compound III to return to the native state of LiP. However, 

excessive H2O2 inactivates compound III. VA is vital in protecting LiP from the likelihood of 

H2O2-dependent inactivation by providing intermediate VA+ that is capable of reducing 

compound III to its native state (Wan & Li, 2013). 
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Figure 2.8: Oxidative mechanism of lignin peroxidase (Wong, 2009) 

 

Schmidt (2006) illustrated the mechanism LiP utilises to initiate various non-enzymatic 

reactions such as the cleavage of Cα – Cβ bond and aryl Cα bonds in the side chain, cleavage of 

β-O-4 bond between side chain and next ring and cleavage of aromatic ring, demethylation and 

phenolic oxidation (Figure 2.9) 

 

Figure 2.9: Reactions initiated by lignin peroxidase, (1) cleavage of Cα– Cβ bond in the side 

chain, (2) β-O-4 bond between side chain and next ring and (3) cleavage of aromatic ring 

(Schmidt, 2006). 

 

2.5.2.2 Manganese Peroxidases  

 Some authors have implied that manganese peroxidases (Mn (II): hydrogen-peroxide 

oxidoreductases, EC 1.11.1.13) is more commonly expressed than LiPs (Hatakka, 1994; 

Hofrichter, 2002; Wesenberg et al., 2003) in many basidiomycetous fungi such as P. 

chrysosporium (Urek & Pazarlioglu, 2007), Bjerkandera sp. (Palma et al., 2000), Agaricus 

bisporus (Lankinen et al., 2001), Phanerochaete flavido-alba (de la Rubia et al., 2002), 

Lenzites betulinus (Hoshino et al., 2002), Panus tigrinus (Lisov et al., 2003) and Nematoloma 
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frowardii b19 (Hilden et al., 2008). However, there are seemingly no concrete evidences of 

manganese peroxidase (MnP) production in bacteria, yeasts and moulds, nor in mycorrhiza-

forming basidiomycetes (Hofrichter, 2002). In fact Hatakka and Hammel (2010 p.333) go so 

far as to assert that any such reports should be regarded with suspicion as there is a possibility 

that analysis are based on incorrectly identified fungi or there is a lack thereof of insufficient 

or incorrect enzyme assays. 

 

The expression of MnP in the fungal culture is dependent on Mn which regulates the mnp gene 

transcription (Ma et al., 2004). Similar to LiPs, MnPs are secreted extracellularly in multiple 

isoforms by most white-rot fungi and litter decomposing species (Wesenberg et al., 2003; 

Asgher et al., 2008). These isoforms contain one molecule of heme as iron protoporphyrin IX 

(Asgher et al., 2008). The catalytic cycle of MnP is also similar to LiP and other peroxidases 

but the presence of Mn2+ is necessary. MnP mediates initial steps in the degradation of high-

molecular-weight lignin (Schlosser & Höfer, 2002). 

 

 

Figure 2.10: Catalytic cycle of MnP (Adapted from Hofrichter et al., 2002) 

 

The cycle is peroxide-dependent and is initiated by the binding of H2O2 to the native ferric 

enzyme and the formation of an iron peroxide complex (Figure 2.10). Consequently, two-

electron is transferred from the heme to cleave the oxygen-oxygen bond in the peroxide and 

form MnP compound I (Fe4+-oxo-porphyrin-radical complex). Subsequent reduction of MnP 

compound I cause the simultaneous formation of Mn Compound II (Fe4+-oxo-porphyrin 
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complex) and another Mn3+ from Mn2+, this leads to the re-generation of native enzyme with 

the release of water molecule (Hofrichter et al., 2002). Wariish et al. (1988) observed that high 

concentrations of H2O2 cause reversible inactivation of MnP and the formation of compound 

III.  Mn3+ is subsequently released from the surface of the enzyme in complex with oxalate or 

with other chelators such as malate, lactate or malonate which helps to stabilise it as well as 

promote their release from the enzyme into the surrounding environment (Hofrichter et al., 

2002). The chelated Mn3+ is able to oxidize various compounds including lignin by single 

electron oxidation (Schmidt, 2006); it acts as a reactive low molecular weight, diffusible redox-

mediator of phenolic substrates not only for the depolymerisation of lignins, but also for 

compounds such as simple phenols, amines, dyes and dimmers (Wesenberg et al., 2003; Asgher 

et al., 2008; Wong, 2009); successively oxidising the phenolic rings of lignin to unstable 

phenoxy radicals with later spontaneous disintegration (Hofrichter, 2002). These highly 

reactive phenoxy radicals are also involved in the cleavage of Cα – Cβ bonds, and similarly 

alkyl-phenyl bonds, with a resultant formation of smaller intermediates including quinones and 

hydroxyquinones (Solarska, 2009). 

 

The presence of a secondary mediator such as oxalate and malonate is required for the oxidation 

of non-phenolic lignin units by Mn3+, this leads to the production of carbon-centred reactive 

radicals such as acetic acid, peroxyl, superoxide and formate radicals (Wariishi et al., 1989; 

Wesenberg et al., 2003; Asgher et al., 2008; Wong, 2009). These radicals can be used by MnP 

in fungi that lack H2O2 generating oxidases, as a source of peroxides and increase the lignin-

degrading efficiency (Hofrichter et al., 1998; Wesenberg et al., 2003; Asgher et al., 2008). 

 

MnP has found potential application in aspects including biomechanical pulping, pulp 

bleaching, dye decolorization, bioremediation and production of high-value chemicals from 

residual lignin from biorefineries and pulp and paper side-streams (Maijala, 2005) 

 

2.5.2.3 Versatile Peroxidases  

Versatile peroxidases (VPs) (EC 1.11.1.16) were discovered in the 1990s and are considered 

hybrids of LiPs and MnPs (Martinez, 2002). VPs have the capacity to oxidize characteristic 

substrates of other basidiomycetes peroxidases such as Mn2+ (typical MnP substrate), 2,6-

dimethoxyphenol (DMP) and veratyl alcohol (VA) (typical LiP substrates) (Wesenberg et al., 

2003; Asgher et al., 2008; Ruiz-Dueñas et al., 2009). The dual oxidative abilities of VPs are 
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most likely due to the co-existence of different catalytic sites on a single protein (Camarero et 

al., 2000). 

 

Ruiz-Dueñas and Martinéz (2009) allude to the point that VP has so far only been isolated from 

Pleurotus sp. and Bjerkandera sp. Busse et al. (2013) demonstrated that VP isolated from 

Bjerkandera adusta could facilitate a H2O2-dependent degradation of Alderol, a biopolymer of 

lignin; in reviewing the peroxidase reaction mechnanism they were able to recommend 

strategies to prevent premature enzyme losses associated with reactions. Several authors have 

established the additional ability to oxidise high redox-potential compounds such as dyes and 

a wide variety of phenols including hydroquinones (Heinfling et al., 1998; Gómez-Toribio et 

al., 2001; Veitch, 2004). Furthermore, Salvachúa et al. (2013) demonstrated that VP could 

become a vital tool for generating new biomolecules with higher molecular mass that could be 

exploited for biotechnological applications such as lignans and peptides; this they proved could 

be achieved by enzyme cross-linking as a result of VP’s high  redox-potential capable of 

oxidative activity on a wide variety of substrates. The VP used in their study was extracted 

from Pleurotus eryngii. 

 

2.5.2.4 Accessory Lignin degrading enzymes 

There are other fungal extracellular enzymes which act as accessory enzymes in lignin 

degradation. These enzymes include H2O2-generating enzymes such as aryl alcohol oxidase 

(AAO, EC 1.1.3.7) which provide the hydrogen peroxide required by peroxidases, they are 

found in variety of fungi including P. eryngii (Hernández-Ortega et al. 2012); glyoxal oxidase 

(GLOX), a copper radical protein found in P. chrysosporiumand pyranose-2 oxidase (EC 

1.1.3.10) (Hatakka, 2001; Kersten & Cullen, 2007; Wongnate & Chaiyen, 2013; Yin et al., 

2015). 

 

Aryl-alcohol dehydrogenases (AAD) is a flavoprotein and quinone reductase have been shown 

to be involved in lignin degradation by fungi (Ferreira et al. 2009). Similarly, cellobiose 

dehydrogenase (CDH) is also involved in lignin degradation but requires H2O2 and chelated Fe 

ions as observed in a variety of fungi under cellulolytic conditions. CDH is believed to 

indirectly generate hydroxyl radicals by reducing Fe3+ to Fe2+ and O2 to H2O2. Hydroxyl 

radicals are subsequently generated by a Fenton type reaction; it is possible for these hydroxyl 

radicals to then react with various wood compounds, including lignin (Henriksson et al., 2000).  
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2.6 Other enzymes involved in lignocellulose degradation – Cellulolytic 

enzymes  

The complexity of cellulose means that its complete saccharification requires synergistic 

interactions between groups of enzymes responsible for the cleaving of the different linkages 

found within their structures. These enzymes are collectively known as cellulolytic enzymes 

or cellulases (Strakowska et al., 2014). 

 

2.6.1 Cellulases 

There are at least 3 major classes of enzymes involved in cellulose degradation to glucose, they 

are predominantly hydrolases and are endo-glucanase, exo-glucanase and β-glucosidase 

(Wyman, 1996; Schmidt, 2006). 

 

Endo 1,4-β-glucanase(EC 3.2.1.4) hydrolyze glycosidic bonds internally by randomly cleaving 

the chains thereby creating free end chains (Taherzadeh & Karimi, 2007) preferably acting 

mainly on the amorphous regions of cellulose (Carere et al., 2008). Conversely exo-1,4-β-D-

glucanase (EC 3.2.1.91) or cellobiohydrolase typically act upon crystalline cellulose and can 

release cellobiose from either the reducing or non-reducing end of cellulose. However these 

released cellobiose act as a competitive inhibitor to cellobiohydrolases.  Both endo-cellulase 

and cellobiohydrolase are often associated with cellulose-binding modules to promote their 

activity on polymeric substrates (Kirk & Cullen, 1998).  Finally, 1,4-β-D-glucosidase (EC 

3.2.1.21) hydrolyze cellobiose to D-glucose  as described in Figure 2.11. 

 

 

Figure 2.11: Cellulose degradation to glucose  

(Source: http://www1.lsbu.ac.uk/water/enztech/cellulose.html Access date: 10-10-2016) 

 

 

 

http://www1.lsbu.ac.uk/water/enztech/cellulose.html
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2.6.2 Hemicellulases 

As a consequence of the heterogeneous nature of hemicellulose; its degradation requires 

several enzymes including glycoside hydrolases and carbohydrate esterases (Jørgensen et al., 

2005). Similar to cellulases, these enzymes synergistic activities are associated with 

carbohydrate binding molecules that usually promote enzyme activity on polymeric substrates 

(de Vries et al., 2000; Hervé et al., 2010). The degradation of hemicellulose is more widespread 

in wood fungi than in bacteria (Schmidt, 2006).   

 

 

Figure 2.12: Enzymes involved in hemicellulose degradation (Deboy et al., 2008) 

 

Recall that xylan, xyloglucan and galacto-glucomannan are the major constituents of 

hemicellulose with β-1,4 glycosidic back bone linkages; therefore the backbone is hydrolyzed 

by endo-1,4-β-xylanase (EC 3.2.1.8) to xylobiose, and 1,4- β-xylosidase (EC 3.2.1.37) 

hydrolyses it to xylose (Jørgensen et al., 2003; Scheller & Ulvskov, 2010). The side chains 

linked to the xylan backbone, with the acetyl group and 4-O-methylglucoronic acid are cleaved 

by acetylesterase (acetic ester acetylhydolase, EC 3.1.1.6) and xylan α-D-1,2-(4-O-methyl) 

glucoronohydrolase (EC3.2.1.131) respectively (Figure 2.3 and 2.12). Other enzymes involved 

in hemicellulose degradation include endomannanases, β-mannosidases, α-L-
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arabinofuranosidases, α-galactosidases, deacetylases, and feruloyl esterases (Jørgensen et al., 

2005).   

 

2.7 Factors that influence enzyme production by ligninolytic fungi 

2.7.1 Substrate concentration 

It is noteworthy to highlight some factors that affect enzymatic hydrolysis of cellulose and 

hemicellulose portions of lignocellulosic materials as specific parameters are necessary to 

guarantee efficient hydrolysis and increase sugar yields for subsequent fermentation. A 

significant factor is substrate concentration of the hydrolysates; although primarily increasing 

substrate concentration tends to increase the rate of reaction. This is because the increased 

number of substrate molecules will ensure more collision with enzyme molecules, thus 

guaranteeing the formation of more products.  However, several authors have reported that 

high concentrations of substrate can cause substrate inhibition (Sun & Cheng, 2002; Misra, 

2006; Sharma, 2012). This adversely affects the rate of hydrolysis; bearing in mind that 

substrate inhibition is dependent on the ratio of total substrate to total enzyme (Huang & 

Penner, 1991; Penner & Liaw, 1994).  Sun & Cheng (2002) further highlighted that although 

an increase in the dosage of cellulases to a certain level would improve the yield and rate of 

hydrolysis; this carries with it cost implications. Ideally in laboratory conditions the dosage is 

10FPU/g as this provides optimal glucose yields in a reasonable time frame (48 to 72 hours) 

and enzyme cost (Gregg & Saddler, 1996). It is hoped that with better enzyme recovery 

strategies during lignocellulose bioconversion to ethanol, cost can be reduced and make this 

approach much more feasible. Currently the addition of surfactants is employed during 

hydrolysis to modify the cellulose surface property and minimize the irreversible binding of 

cellulose to cellulose; this in turn lowers the enzyme loading. Some of these surfactants include 

non-ionic Tween® 20 and 80 and polyoxyethylene glycol, they are believed to be most effective 

in enhancing cellulose hydrolysis (Park et al., 1992; Wu & Ju 1998). Park et al. (1992) attested 

to increased enzyme desorption from the binding site on the substrate surface (used newspaper) 

after the completion of saccharification at the site when non-ionic surfactants were employed. 

The addition of polyoxyethylene glycol to lignocellulose substrates increased the enzymatic 

conversion from 48% to 72% in 16 hours (Börjesson et al., 2007). Other factors that affect 

enzymatic hydrolysis include pH of fermentation broth, fermentation temperature, applied pre-

treatment techniques and mixing as well as nutrient composition (Taherzadah & Karimi, 2007). 
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However the optimized production of particularly ligninolytic enzymes is highly regulated by 

nutrients such as nitrogen, copper and manganese. Furthermore, the nature of the nitrogen 

source and the presence of inducers, mediators and organic acids such as citric, oxalic and 

tartaric acids may also contribute to efficiency of enzymatic activity (Ryan et al., 2007; Wen 

et al., 2009; Iqbal et al., 2011). 

 

2.7.2 Nutrient composition 

A  significant number of studies on the production of ligninolytic enzymes carried out using 

defined media has clearly demonstrated that basidiomycetes display varying responses to 

carbon sources and their concentration in nutrient medium (Galhaup et al., 2002; Mikiashvili 

et al., 2005; Elisashvili et al., 2006; Wang et al., 2008). In some instances ligninolytic gene 

expression is activated only by the depletion of nutrient carbon as was observed with 

Phanerochaete chrysosporium (Wang et al., 2008). Similar observation was seen with 

Trametes pubescens when laccase secretion only commenced when glucose concentration in 

the media reached low, critical concentration (Galhaup et al., 2002). It is also noteworthy that 

Fomes fomentarius showed a capability to secrete high levels of laccase in the presence of 

polysaccharides (2481Ug-1biomass) in medium containing carboxymethyl cellulose 

(Elisashvili & Kachlishvili, 2009).   There is enough indication that some carbohydrates and 

the carbon source appear to regulate the laccase expression in white-rot basidiomycetes 

(Revankar & Lele, 2006; Bettin et al., 2008) and as such it is deemed important that fungus-

specific carbon source should be elucidated maximally to enhance enzyme synthesis 

(Elisashvili & Kachlishvili, 2009).   

 

The carbon/nitrogen ratio is considered an important factor to balance biomass and production 

of primary metabolites and idiolites (also known as secondary metabolites). The excess or lack 

of nitrogen content in the substrate may be a limiting factor to the growth of fungus particularly 

in large scale production of fungal enzymes (Mantovani et al., 2007; Rivera-Hoyos et al., 

2013). One of the best studied white-rot fungi P. chrysosporium was observed to produce LiP 

and MnP in synthetic medium only under nitrogen-limited conditions (Reddy et al., 1994). 

However, several authors have found that high nitrogen content in the presence of 

lignocellulosic substrate stimulates the production of ligninolytic enzymes (Saparrat et al., 

2002; Kapich et al., 2004; Songulashvili et al., 2007). Similarly, a high nitrogen content in 

synthetic media produced increased laccase activity in Lentinus edodes, Rigidoporus lignosus, 

and Trametes pubescens. Conversely, the nitrogen-limited conditions enhanced enzyme 
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production in Pycnoporus cinnabarinus, P. sanguineus, and Phlebia radiata (Mester & Field, 

1997; Gianfreda et al., 1999; Tekere et al., 2001; Galhaup et al., 2002). 

 

There are indications that fungi respond differently to diverse nitrogen sources in the culture 

medium (D’Agostini et al., 2011; Janusz et al., 2013). Furthermore, there are studies that 

establish a link between secondary metabolism and nitrogen catabolite repression system 

(Poussereau et al., 2001; Sotero-Martins et al., 2003; DeMoura et al., 2004; Jiang et al., 2009; 

Parente et al., 2010). Eggert et al. (1996) observed that the production of laccase in submerged 

cultures was enhanced by the presence of inorganic nitrogen from simple mineral source such 

as ammonium nitrate and ammonium sulphate. However it is noteworthy, that complex organic 

sources such as amino acids, peptone and yeast extract has the similar effect of increased 

laccase production in some fungi (Thongkred et al., 2011; Khanam et al., 2012; Sarnthima et 

al., 2013). Kalisz et al. (1986) reported high laccase yield when complex organic nitrogen was 

added to the medium in contrast with the use of simple mineral nitrogen; Mikiashvili et al. 

(2006) also observed a similar effect with Pleurotus ostreatus. Similar findings were observed 

with Trametes hirsuta and Trametes pubescens (Strong, 2011; Bakkiyaraj et al., 2013). 

 

2.7.3 Inducers and Mediators 

The use of synthetic inducers such as metals and aromatic compounds are known to increase 

enzyme activities in white-rot fungi as well as the secretion of isoenzymes. Bourbonnais and 

Paice (1990) first described that it is possible for laccases to assume the function of LiP 

provided there is the presence of a suitable redox mediator 2,2,9-azino-bis(3-ethylthiazoline-

6-sulfonate) (ABTS) as they observe from T. versicolor when it oxidized non-phenolic model 

compounds. Several authors have since reported an increase in laccase activities with the 

addition of the aromatic compound 2,5-xylidine (Min et al., 2001; Elisashvili et al., 2002; 

Revankar et al., 2007). Other aromatic compounds that have been used with success to increase 

laccase expression include ferulic acid, guaiacol, veratryl alcohol and 1-hydroxybenzotriazole 

(Collins & Dobson, 1997; Revankar & Lele 2006; Kocyigit et al., 2012). Kuhar et al. (2014) 

and Wang et al. (2014) utilized ferulic acid as inducer to enhance laccase activity in G. lucidum 

and T. versicolor respectively. Elisashvili and Kachlishvili (2009) reported using a variety of 

inducers including 2,4,6-trinitrotoluene (TNT), vanillic acid pyrogallol in medium containg 

ethanol production residues for the cultivation of Cerrena unicolor with varying results in 

laccase activity. The same authors used dimethoxyphenol (2,6-DMP) that yielded a 2-fold 

increase in MnP activity. In addition, vanillic acid, ferulic acid, pyrogallol and veratric acid 
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increased MnP activity by more than 50% (Elisashvili & Kachlishvili, 2009). An increase in 

MnP activity was observed in ligninolytic fungi when Tween 80 with the highest activity 

demonstrated by P. chrysosporium (Novotný et al., 2004). Tween 80 is among a group of 

surfactants that increases the bioavailability of less soluble substrate for fungus, in this way it 

enhances the production by allowing the MnP permeate from the cell into the medium, thus 

stimulate the growth of spores (Zheng & Obbard, 2001; 2002). There was an increase in the 

expression of ligninolytic enzymes in the mushroom Sterum ostrea (Usha et al., 2014) when 

Tween 80 was used. Munoz et al. (1997) had previously identified two isoenzymes when they 

studied laccase activity of P. eryngii in glucose medium that contained ammonium tartrate. 

 

Although often dimethyl sulfoxide and ethanol are used as solvents to dissolve water-insoluble 

compounds for the determination of enzyme activities; it has also been found to actively induce 

enzyme activity (Shah et al., 2006). An increase in laccase activity was observed in T. 

versicolor when ethanol was added to medium containing glucose as the carbon source (Lee et 

al., 1999). The same authors observed mediator effect of ethanol on laccase production by 

Grifola frondosa and Coriolus hirsutus. Although little is known about the mechanism of 

induction by ethanol, it has however been identified as a cheap and less toxic inducer for 

laccase production (Valeriano et al., 2009). There are speculations that ethanol is able to induce 

enzyme expression by causing oxidative stress, usually by disrupting the cell membrane or by 

segregating intracellular Ca2+ which acts a secondary messenger and induces laccase gene 

expression (Lomascolo et al., 2003). However there are mixed reactions to the use of ethanol 

as an inducer as some authors have reported negative effects for the use of ethanol (Barreto et 

al., 2007; Eugenio et al., 2010). It is presumable that the effectiveness of ethanol as an inducer 

is related to the unique culture conditions (Hernández et al., 2015). 

 

Some heavy metals especially manganese and copper are necessary for fungi. However an 

excess of these metals are toxic. Notably, the threshold of toxicity is rather small (Hughes et 

al., 1991; Baldrian, 2003). Copper plays a key role as a metal activator by inducing both laccase 

transcription and expression as was observed in P. ostreatus (Palmieri et al., 2000; Tinoco et 

al., 2011). Copper is also a co-factor in the catalytic centre of laccase. It has been reported that 

the combination of 2,5-xylidine and CuSO4 had a synergic and positive effect on laccase 

production in the presence of organic nitrogen sources (Strong, 2011; Bakkiyarajet al., 2013). 

This effect can be explained with the understanding that there is the presence of metal 

responsive elements present in several laccase genes (Baldrian, 2003). The addition of CuSO4 
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to broth culture resulted in a substantial increase in the total laccase activity and the production 

of isozymes (Giardina et al., 1999). More recently, Khammuang et al. (2013) observed 

increased laccase activity in Lentinus polychrous when copper was added to a liquid 

fermentation medium. Manganese plays a regulatory role in the expression of LiP, MnP and 

Lac and in the degradation of lignin (Gadd, 1993; Shimada, 1997). Gill and Arora (2003) 

observed an improved MnP production and stimulation of enzymatic activity by white-rot fungi 

following the addition of the inducer MnSO4. Jarvinen et al. (2012) reported that although the 

production of MnPs varied in different species of fungi, it is clearly a function of inducers such 

as Mn2+, veratryl alcohol and malonate. Qin et al. (2014) found that oxalic acid, veratryl alcohol 

and 2,6-Dimethoxyphenol can stimulate the producton of MnP in the white-rot fungus Irpex 

lacteus CD2. The novel enzyme (CD2-MnP) discovered in their study was demonstrated to be 

capable of decolourising several dyes. 

 

2.7.4 Organic Acids 

Organic acids perform the role of chelators and include oxalate, lactate, malonate and citrate. 

Oxalate and malonate are secreted by the fungus P. crysosporium (Wariishi et al., 1992). MnP 

enzyme competes with chelators for free Mn2+. Optimal chelators, such as malonate facilitate 

Mn3+ dissociation from the enzyme thereby stabilizing Mn3+ in aqueous solution. Furthermore 

malonate have relatively low Mn2+ binding constant (Wariishi et al., 1992; Wong, 2009). 

Moreira et al. (1998) reported with Bjerkandera sp.that the addition of simple physiological 

organic acids (e.g., glycolate, glyoxylate, oxalate and others) may extend  simply beyond 

providing pH-buffering but could stimulate the production of MnP and LiP as well as increase 

physiological concentrations of veratryl alcohol and oxalate which ultimately increased the 

biobleaching effects and pulp delignification. Several authors have shown that chelators such 

as oxalate and malonate are vital for the oxidation of non-phenolic compounds involving Mn3+; 

these organic acids function as secondary mediators in the production of reactive radicals like 

carbon-centred radicals such as acetic acid radicals (COOHC.H2), peroxyl radicals (COOH-

CH2OO.), superoxide (O2.) and formate radicals (CO2.) (Wesenberg et al., 2003; Asgher et al., 

2008; Wong, 2009). It is presumed that in the absence of H2O2 particularly with fungi that lack 

theH2O2-generating oxidases, these radicals can be employed by MnP as a source of peroxides 

thereby increasing the lignin-degrading efficiency (Hofrichter et al., 1998; Wesenberg et al., 

2003; Wong, 2009). Hofrichter et al. (1999) in their study of the basidiomycetous fungus 

Nematoloma frowardii observed the predominant production of MnP and low levels of laccase 

and lignin peroxidase in the biodegradation of straw residue; however the production of 
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enzymes were associated with the detection of high levels of organic acids in the fermented 

straws such as malate, fumarate and oxalate, which they presumed rendered the MnP effective 

in the mineralization of the straw. Kurek and Gaudard (2000) as well as Makela et al. (2009) 

reported the involvement of oxalate decarboxylase and the regulation of oxalate concentration 

in CDH catalyzed reaction involving Dichomitus squalens. 

 

2.8 Fungal Interspecific Interactions in Mixed Cultures 

A vast amount of the knowledge about lignin biodegradation comes from studies done on pure 

cultures of white-rot basidiomycete fungi. However in nature, most fungi will exist in mixed 

communities with other fungi and even bacteria. This inevitably will lead to competition for 

nutrient and space. Fungi engaged in such competition frequently produce idiolites, 

extracellular phenol-oxidizing enzymes and differentiated structures in the zone of conflict 

(Cooke & Rayner, 1984; Dyer et al., 1992; Griffith et al., 1994). Competition in natural 

environments plays a key role in determining the distribution and abundance of fungal species 

(Widden, 1997). These responses are not only critical in determining the outcome of a 

biocontrol treatment but can be exploited in the induction of enzyme production. It is suggested 

that the competition for space and nutrient leads to increased degradation of lignin and elevated 

production of ligninolytic enzymes such as laccase and MnP (Sundman & Näse, 1972; Asiegbu 

et al., 1996; Baldrian, 2004). It is common in nature that biotransformations tend to utilize a 

combination of metabolic pathways from different microorganisms. Numerous examples of the 

co-existence of different microorganisms have been observed, such as forest soils, compost 

piles, insect gut and mammalian intestines (Mai & Morris, 2004; Belenguer et al., 2006). 

 

In recent times, most of the fungal enzymes used in industrial biotechnology are produced by 

processes involving single microbial strains (Bader et al., 2010). However one major drawback 

to utilizing ligninolytic fungi in industrial scale fermentation is the low productivity and high 

cost implication for the production of the constitutive extracellular enzymes produced by these 

organisms (Flores et al., 2009; Rivera-Hoyos et al., 2013). Chemical induction of laccase and 

MnP by the addition of compounds related to lignin or lignin derivatives such as phenolic and 

aromatic compounds, copper and ethanol have been studied extensively (Baldrian, 2003; Gill 

& Arora, 2003; Lomascolo et al., 2003; Shah et al., 2006; Revankar et al., 2007; Kocyigit et 

al., 2012; Kuhar et al., 2014; Wang et al., 2014). Moreover, the use of chemical inducers makes 

the industrial process economically non-feasible and in some cases these chemical inducers are 

toxic.   
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Therefore any industrial process that would in future exploit the use of ligninolytic enzymes 

must produce economical and safe laccase and MnPs. For this reason, this objective has been 

the focus of most enzyme research work in the past few decades (Flores et al., 2009). Using 

co-cultures appears to be gaining considerable attention where in the past the focus had been 

single microorganism cultures. The reason can be linked to the potential to utilize synergism 

and even surprisingly antagonism between the metabolic pathways of the strains involved in 

the co-culture (Baldrian, 2004; Bader et al., 2010; Dwivedi et al., 2011; Pandya & Albert, 

2014). However an elucidation of the type of interactions and mechanism of interaction 

demonstrated during fungi-fungi interaction is pertinent towards any future exploitation. 

 

2.8.1 Competition 

Extremely intense interactions occur when individual organisms occupy a common habitat with 

other organisms owing to the desperate need to use available resources. The relative success of 

each organism in meeting its needs will determine its survival or death. This process tends to 

lead to natural selection and its outcome affects the population and ultimately the composition 

of the community. Interactions tend to influence metabolic activities of individual organisms. 

Wood decay fungi demonstrate a broad spectrum of interaction types with varying impact 

including neutralistic, mutualistic, and combative/antagonistic (Moore-Landecker, 2002). 

 

However, a vast majority of these interactions are competitive. Keddy (1989) defines 

competition as ‘the negative effects which one organism has upon another by consuming, or 

controlling access to a resource that is limited in availability.’ Two major types of competition 

are recognized – these are exploitation and interference competition (Lockwood, 1992; 

Wicklow, 1992). Exploitation competition occurs when one organism depletes the resources 

without preventing access of other organisms to the same resources; however the former 

organism reduces availability to the latter organism. Usually the presence of certain 

characteristics that are favourable for exploitative competition contributes to success, this 

include rapid germination of spores, a rapid growth rate, and an ability to quickly consume the 

available nutrients. Due to the large quantities of cellulose and lignin nutrients present in plant 

residues, it is pertinent that a fungus has good enzymatic machinery to be at a competitive 

advantage when utilizing plant residue (Moore-Landecker, 2002). On the other hand, 

interference refers to the situation where one organism inhibits another. For example a fungus 

may be directly attacked by parasitic or predatory organisms. Such interference could induce 

antibiosis or cause hyphal interference (Wicklow, 1992; Moore-Landecker, 2002). 



50 
 

2.8.1.1 Outcomes of competitive interspecific interactions 

In any given fungal community combative antagonistic interactions will ultimately result in 

either deadlock or replacement. Although there are slight variations to these two outcomes, the 

results tend to follow either of these two patterns. Deadlock occurs when neither species gains 

headway. It is possible for both species to progress on the substratum until they meet and 

mycelia from one population touches the other, when this occur it is regarded as deadlock at 

touching point. There may not be any significant physiological difference between the fungi, 

so that such interaction does not produce any ‘winners’ or ‘losers’ (Moore-Landecker, 2002). 

Deadlock at touch point could also result in the formation of barrages at the point of interaction, 

to prevent further invasion into their respective territories (Rayner et al., 1995). However 

another variation to deadlock is when a clear zone of inhibition is established between the two 

combating organisms, this is referred to as deadlock at a distance (Stahl & Christensen, 1992; 

Woodward & Boddy, 2008).  

 

There are two conditions under which replacement can occur in the natural environment that 

is when an existing fungal population may decline in a substratum as a result of nutrient 

depletion to the extent that the substratum environment is unfavourable for growth, this may 

lead to the disappearance of the species. Replacement will occur if the arriving fungus is 

capable of utilizing the remaining organic compound, or because it can tolerate the prevailing 

conditions (Moore-Landecker, 1996). 

 

Alternatively in an environment where the two fungal populations are present; one fungal 

population may prove to be a better competitor and replace the other as a consequence. The 

extent of replacement may vary, when one species captures some but not all of the antagonist’s 

territory, this is referred to as partial replacement, and this tends to lead to a stalemate (Boddy, 

2000; Ujor, 2010). Mutual replacement occurs when one species takes some of the territory 

formerly occupied by the other or vice versa (Boddy, 2000). It is equally possible in later stages 

of replacement that the entire substratum is occupied by one fungal population leading to the 

death of the other population (Stahl & Christensen, 1992).   

 

The ability of one organism to successfully replace the other is very much dependent on the 

combative machinery available to one or both of the interacting species. The populations can 

engage in exploitative competitions, with factors such as differential growth rates or 

interference competition, in which the one of the combatants successfully utilize antibiosis, 



51 
 

mycoparasitism, or hyphal interference to capture the food substratum (Moore-Landecker, 

1996). It is possible that with replacement one individual will completely overwhelm the other 

as a preamble to complete replacement. Replacement may induce autophagy, a mechanism that 

cells employ to degrade and recycle aged proteins and organelles in eukaryotic cells (Yorimitsu 

& Klionsky, 2005). Pinan-Lucarre et al. (2005) validate the presence of key genes involved in 

autophagy in filamentous fungi.  For successful complete replacement, the membrane of the 

weaker colonies of fungi will lyse (cellular necrosis), thereby releasing the hyphal content that 

can subsequently be used by the antagonist (Falconer et al., 2008). 

 

  

A1. Mutual Intermingling A2. Partial mutual Intermingling 

  

B1. Early stage invasion/replacement B2. Later stage invasion/replacement 

  

C1.Inhibition/Deadlock (at touching point) C2. Inhibition/Deadlock (at distance) 

Figure 2.13: Alternative types of interaction between two fungal populations competing for 

the substratum after one week incubation period on MEA (based on observation of Porter 

(1924) as cited by Skidmore and Dickinson (1976) and Stahl and Christensen (1992).  
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It was observed that the pairing of Peniophora lycii with Coriolus versicolor in twenty 

replicates resulted in overgrowth of P. lycii by C. versicolor in two cases, while P. lycii replaced 

C.versicolor in the other pairings (Rayner et al., 1995). However, under laboratory conditions 

it has been observed that repeated pairings between the same fungi do not always produce the 

same outcome (Boddy, 2000).   

 

Although not a commonly observed phenomenon, it is noteworthy to mention a form of 

interaction when two populations of fungi intermingle. It is often confused with partial and 

mutual replacement and occurs when fungi species are closely related; such interactions may 

be neutral with no gain by the two fungi co-existing or result in synergism (Stahl & Christensen, 

1992; Moore-Landecker, 1996; Boddy, 2000). 

 

2.8.2 Mechanisms employed in antagonistic interspecific interactions 

Interspecific interactions lead to complex and morphological, physiological and biochemical 

changes that are dependent on species present and environmental conditions (Rayner & Boddy, 

1988; Griffith et al., 1994; Boddy, 2000; Baldrian, 2004; Iakovlev et al., 2004; Woodward & 

Boddy, 2008). A broad classification can be summarised into two main strategies – these are 

development of attack or defence mechanisms and improvements in nutrient uptake (Hiscox et 

al., 2010). However numerous examples of interaction-specific responses include rapid cell 

division, branching, hyphal aggregation, aerial growth, autolysis, pigment production, pigment 

loss, release of volatile signal chemicals, diffusible enzymes, toxins and antifungal metabolites 

(Griffith et al., 1994; Boddy, 2000; Baldrian, 2004; Hynes et al., 2007; Evans et al., 2008; 

Woodward & Boddy, 2008). These physiological and biochemical changes determine the 

outcome of the interaction (Hiscox et al., 2015). 

 

Although studies on molecular level changes are sparse, there are varied explanations for the 

changes demonstrated during antagonistic interspecific interaction. Studies done by Iakovlev 

et al. (2004) using mRNA differential display to probe gene expression patterns to non-self-

mycelia showed that the interaction of mycelia induced secondary metabolism and oxidative 

stress.  On the other hand, Adomas et al. (2006) used macroarray technology to show that 

nutrient acquisition mechanism is significantly employed by the antagonistic species. More 

recently Arfi et al. (2013) used PCR analysis and transcriptome sequencing to suggest that 

broad array of functions is used by the antagonistic fungi, Pycnoporus coccineus in replacing 

competing fungi with the major role being that of secondary metabolites detoxification. 
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The utilization of antagonistic interspecific interaction holds great promise not only as a 

screening tool for the efficacy of biocontrol fungi against plant pathogenic and wood rot fungi 

but they can also be used as bio-control agents (Holdenrieder & Grieg, 1998; Savoie & Mata, 

1999; Fravel, 2005; Costa et al., 2013). They have also been exploited to enhance wood-

pulping (Baldrian, 2004; Chi et al, 2007) and for optimizing enzyme production as well as 

screening for novel industrially useful enzymes (Score et al., 1997; Parke et al., 2001; Zhang 

et al., 2006; Gregorio et al., 2006).  

 

2.8.2.1 Morphological response to antagonistic interspecific interactions 

2.8.2.1.1 Gross mycelial contact 

Gross mycelial contact is often demonstrated among wood decay fungi (Webber & Heger, 

1986; Boddy, 2000), causing a rather obvious morphological and associated physiological 

changes. The most obvious change being the formation of defensive mycelial barrages on agar 

plates, at the contact points in resistance to invasion. With some other fungi such invasion could 

cause the formation of mycelial fans and cords, and rhizomorphic structures (Boddy, 2000). 

Such a shift in mycelial distribution could cause a release of hydrophobic metabolites and a 

consequential increase in the secretion of phenol-oxidizing activity (laccases and peroxidases) 

(De Vries et al., 1986; White et al., 1992; Griffith et al., 1994a; 1994b; Score et al., 1997; 

Gkarmiri et al., 2015). In some other cases changes may occur in inter- and intracellular 

pigmentation as well as a barricade of the mycelial front at contact-points (Griffith et al., 

1994b; Boddy, 2000; Gregorio et al., 2006; Peiris, 2009). These reactions are considered to be 

the after-effects of resistance to axial deformation by confronting mycelia (Rayner et al., 1995). It 

is presumed that a reciprocal relationship between tyrosinase and laccase enzyme activity is 

responsible, often an indication is seen with the formation and suppression of aerial mycelium 

respectively. Notably there are marked differences in the release of hydrophobic metabolites 

in extracts from interacting cultures at different stages of development (Griffith et al., 1994b; 

1994c; Rayner et al., 1994). Tyrosinase production in fungi is associated with melanin 

production which is part of the defense mechanism employed under stress in abiotic stress (UV 

radiation, free radicals, gamma rays, dehydration and extreme temperature changes) and it also 

contributes to to the fungal cell wall resistance against hydrolytic enzymes thereby preventing 

cellular lysis (Beel & Wheeler, 1986; Duarte et al., 2012). 
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2.8.2.1.2 Hyphal Interference 

Contact and fusion of the two combating fungal hyphae is required for hyphal interference. It 

is commonly observed in closely related species of the Basidiomycota. It follows a 

programmed sequence of cytoplasmic destruction that begins with a change in membrane 

permeability, and this is followed by the appearance of lipid globules and vesicles. Organelles 

such as mitochondria and nuclei become swollen. The swollen mitochondria disintegrate, 

forming vacuoles, and eventually the entire cell becomes vacuolated as well. The zone of 

hyphal interference is distinguished by having various types of vesicles radiating outside the 

plasmalemma. Lysis and death of the hyphae is the final outcome that could affect either one 

or both of the contacting hyphae (Ikediugwu et al., 1970; Ikediugwu, 1976; Rayner & Webber, 

1984; Boddy, 2000; Behrendt & Blanchette, 2001; Ujor, 2010). The phenomenon of hyphal 

interference has been observed in several species; however, the exact mechanism is presently 

unknown. Furthermore, the exact mechanism with which fungi differentiates self from non-

self that stimulates the productionoftoxic substances leading to hyphal death remains 

inexplicable. However, there are hypothetical explanations offered with two major differing 

opininons: that it could be an ancient phenomenon conserved in fungi and others propose that 

it could possibly be the result of convergent evolution (Silar, 2012). 

 

A rather similar occurrence to hyphal interference is ‘mycelial interference’, however the latter 

involves cord systems which when they make contact with other antagonising cord systems the 

area of contact is often observed to have a marked yellow or brown discoloration with 

associated lytic responses in one or both cord segments involved (Boddy, 2000). It has been 

suggested that hyphal interference is facilitated by non-enzymic diffusible metabolites, which 

are secreted when non-self mycelia are detected at close range (Boddy, 2000). Moreover, the 

process may also involve secretion of both active and passive non-enzymic toxins in the 

presence and absence of confronting fungal mycelia as reported in Hypomyces aurantius and 

Phanerochaete magnolia respectively (Rayner & Boddy, 1988; Ainsworth et al., 1991; 

Jeffries, 1997; Boddy, 2000).   

 

Hyphal interference is prevalent amongst wood-decaying basidiomycetes, the most extensively 

studied being Heterobasidion annosum hyphae in contact with Phlebiopsis gigantea because 

of its application to biocontrol (Rayner & Boddy, 1988; Jeffries, 1997; Boddy, 2000).  
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Although laboratory media have been used extensively to study fungal interactions, Boddy 

(2000) warns that one must treat such results and its interpretation with caution. Several authors 

support this argument by indicating that a wider range of factors influence interactions in 

natural substrata, therefore, outcomes of such interactions would likely vary from those on agar 

(Dowson et al., 1988; Pearce, 1990; Griffith & Boddy, 1991; Hiscox et al., 2010). Dowson et 

al. (1988) showed that whereas Hypholoma fasciculare replaced Steccherinum fimbriatum 

under ambient conditions on agar, it deadlocked with it in soil and was replaced by the latter 

in wood. Water activity, gaseous regimes, and to a lesser extent temperature, have been shown 

to have a sizeable effect on the outcomes of interactions in agar cultures (Boddy et al., 1985; 

Boddy et al., 1987; Griffith & Boddy, 1991). Such premise is the basis for studies involving 

dual culture interactions on specific substrate such as a variety of agricultural residues.  

 
 

Figure 2.14: Agar plate images showing macroscopic morphological changes associated with 

interspecific mycelial interactions in fungi (adapted from Boddy, 2000). A: development of 

invasive mycelial front by Phanerochaete velutina replacing Stereum hirsutum at 25 °C; B: 

formation of mycelial fans by P. velutina replacing S. hirsutum at 10 °C; C: reduction of 

mycelial density by Hypholoma fasciculare replacing Coriolus versicolor; D: Complete 

replacement of Armillaria gallica by the ascomycete, Xylaria hypoxylon; E: mycelial 

interference of P velutina by Resinicium bicolor on soil; F: replacement of S. hirsutum by 

Psathyrella hydrophillum. 
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2.8.2.2 Physiological response to interspecific interactions 

2.8.2.2.1 Accelerated secondary metabolism 

Several authors have reported that a major consequence of non-self fungus-fungus interaction 

is a switch to secondary metabolism (Rayner et al., 1994; Griffith et al., 1994; Rayner 1997; 

Baldrian, 2004; Maijala, 2005). The abiotic stress conditions associated with nutrient 

limitation, inability to absorb or metabolise nutrients tends to trigger the initiation of secondary 

metabolism (Rayner et al., 1995). It is presumed that disruptions in nutrient uptake may result 

in a decrease in energy levels, with a corresponding rise in the levels of secondary messenger, 

cAMP (Rayner et al., 1995). Such changes in physiology and metabolism within the cell is 

demonstrated in increased production of secondary metabolites including phenolics as well as 

inhibition of ATP synthesis which maybe a consequence of uncoupling oxidative 

phosphorylation and electron transport with associated rise in the levels of free radicals (Rayner 

et al., 1995). Earlier reports showed a relationship between oxidative phosphorylation and the 

activity of phenoloxidases (Lyr, 1958; 1963). Inferences can be made that such reasoning could 

explain why the exposure of single species to the uncoupling agent 2,4-dinitrophenol resulted 

in a similar reaction as non-self fungus-fungus confrontation (Griffith et al., 1994; Rayner et 

al., 1994). Further inferences can be made that non-self mycelial interaction have a significant 

impact on nutrient metabolism, thereby stimulating a switch of mycelial growth to secondary 

metabolism with a direct effect on the mitochondrion and its ability to generate energy (Rayner 

et al., 1995). Iakovlev et al. (2004) provided evidence to support this earlier assumptions, they 

demonstrated the repression of a gene encoding a fimbrin protein and a gene that codes for a 

mitochondrial import component in the mycelia of Physisporinus sanguinolentus, and up-

regulation of a gene homologous to the Coprinus cinereus (Coprinopsis cinerues) recA in 

Heterobasidion annosum during antagonistic interactions between both species. Because 

fimbrin protein is involved in the polarization of the actin cytoskeleton, it repression in P. 

sanguinolentus was an indication of arrest of cell growth (Iakovlev et al., 2004). Furthermore, 

Iakovlev et al. (2004) proposed that the fluctuations in mitochondrial energy production may 

be attributed to the repression of a gene (recA) that codes for a protein (RAD51) involved in 

mitochondrial import which is often associated with secondary metabolism. It was observed 

that RAD51 is strongly induced by irradiation with a consequential induction of hydroxyl 

radicals. Presumably the up-regulation of the gene, recA, could be the reason for the possible 

increase in the production of free radicals during interspecific mycelial interactions. There are 

studies that however implicate reactive oxygen species (ROS) as a major compound produced 

during non-self fungus-fungus interactions (Baker & Orlandi, 1995; Li et al., 1995; Ruiz-
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Dueñas et al., 1999; Hammel et al., 2002). During abiotic stress, it is suggested that the 

production of ROS may be a component of the stress exerted on interacting fungal mycelia. 

However it is unclear if it is produced as an aftermath of interspecific mycelial contact or as a 

result of the induction of secondary metabolism (Ujor, 2010; Breitenbach et al., 2015). 

 

2.8.2.3 Biochemical response to interspecific interactions 

2.8.2.3.1 Antibiosis 

Fungi can modify their environment (antibiosis) by secreting volatile or diffusible metabolic 

wastes or by-products. This form of interference competition may include the production of 

carbon dioxide, alcohols, acids, and other simple compounds that have a nonspecific effect. It 

is also possible that by-products such as high molecular weight antibiotic compounds with 

specific toxic effects on susceptible micro-organisms are produced to ward-off attack or 

invasion of territory. Because these compounds are diffusible or volatile in nature, the effect of 

such antagonism can be felt at a distance (Sonnenbichler et al., 1994). More often than not, the 

antibiotic producer is not immune to its effects but may have a high tolerance (Moore-

Landecker, 1996) which is why it is commonly observed as mutual inhibition on agar plates 

with clear zones of inhibition that neither organism can grow upon. Reactions and responses 

vary depending on species combinations suggesting a reciprocal exchange of chemical signals 

and recognition at a distance (Rayner & Webber, 1984). On agar plates it is clear to distinguish 

mutual inhibition for 15mm or more, but the distances over which such mechanisms operate in 

the natural environment are unknown, though they are likely to be shorter  in organic substrata 

than those observed on plates (Boddy, 2000).  

 

2.8.2.3.2 Mycoparasitism 

Majority of knowledge on the biology of mycoparasitism are based on laboratory observations 

rather than actual field studies (Moore-Landecker, 1996).  However pioneer work on this 

phenomenon done by Barnett and Binder (1973) showed that mycoparasites vary significantly 

in their method of obtaining nutrient and in some other biological attributes. But a clear 

demarcation in describing will be that there are two kinds of mycoparasite-types: one that are 

highly specialized and cause no harm to their hosts known as ‘biotrophs’ and  the other, are 

mycoparasites that kill their host either before penetration or shortly after. Either way, there 

are distinct phases in parasitism by a fungus over another or it involves host-directed mycelial 

growth, host recognition and attachment, pronounced synthesis and secretion of cell wall lytic 

enzymes and antibiotics, penetration and lysis of the host fungus (Markovich & Kononova, 
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2003). Some studies have demonstrated that host recognition is mediated by cell wall lectins 

(Barak & Chet, 1986; Inbar & Chet, 1994; Jeffries, 1997; Chet et al., 1997; Omann & Zeilinger, 

2010; Cooper- Driver et al., 2013).  

 

Rayner et al. (1987) reported that parasitism in order to obtain nutrition was a temporary 

measure for Lenzites betulina (parasite) that facilitated the possession of the large mycelial 

domain occupied initially by the host Coriolus species. Once the parasite had established itself 

in the host environment it began obtaining its own nutrition by decomposing the wood and 

even interacted aggressively with other fungi by gross mycelial contact. A similar observation 

was made with Pseudotrametes gibbossa which is parasitic on Bjerkandera species (Rayner et 

al., 1987; Boddy 2000). 

 

 

Figure 2.15: Mycoparasitic interaction of fungal isolates of Phytophthora cinnamon (Pc). (A) 

Coiling by Gliocladium penicillioides (g); (B) Penetration by Trichoderma sp. (t) with 

appresorium (arrow);  (C) coiling observed with SEM; (D) Hyphal penetration by Trichoderma 

sp. observed with SEM ( adapted from Aryantha & Guest,  2006) 

 

By far the most extensively studied mycoparasitic fungi are the members of the genus 

Trichoderma. Their ubiquity in nature makes isolation relatively non-tedious, they have been 

isolated from soil, decaying wood and other forms of plant-related organic materials (Zeilinger 

& Omann, 2007). Various mechanisms seem to be exploited by Trichoderma species in 
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mycoparasitism and they include: cell wall hydrolytic enzymes - chitinases, proteases, 

glucanases and laminarases (Kubicek et al., 2001; Brunner et al., 2003; Howell, 2003; 

dos Reis Almeida et al., 2007;  Gruber et al., 2011; Reithner et al., 2011); the use of advanced 

growth and nutrient acquisition mechanisms to gain competitive edge and foothold (Chet, 

1987; Harman, 2006), and secretion of antifungal metabolites/peptides – 

peptaibols/mycotoxins (Schirmbröck et al., 1994; Lorito et al., 1996; Jaworski et al., 1999; 

Mukherjee et al. 2012). Trichoderma species have also been known to use morphological 

adaptive mechanisms such as coiling around the host and the development of antagonistic 

appressoria-like structures (Elad et al., 1983; Lu et al., 2004). Often these mechanisms are 

employed in a synergistic manner to damage the host or in the utilization of host components 

(Zeilinger & Omann, 2007). The initial presumption that only chitinases were involved in 

mycoparasitism (Patil et al., 2000) was refuted by Kubicek et al. (2001); they demonstrated 

that the median lethal concentration (LC50) values of Trichoderma chitinases are too high to 

explain mycoparasitism exclusively on the basis of their action. Their claim was further 

supported by the identification of antifungal peptides (peptaibols) a mycotoxin produced by 

Trichoderma species during interactions with host fungi (Kubicek et al., 2001).  

 

Figure 2.16: Hypothetical model of synergism between Trichoderma cell wall hydrolases and 

membrane disturbing compounds such as peptaibols employed in mycoparasitism (adapted 

from Kubicek et al., 2001 and cited by Ujor, 2010) 

 

These peptaibols are linear oligopeptides which form voltage-gated ion channels in lipid 

membranes thereby modifying membrane permeability and inhibiting the activities of 
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membrane-bound synthases of the cell wall (El Hajj et al., 1989; Kubicek et al., 2001). 

Although chitinases reduce cell wall rigidity (Reyes et al., 1990; Patil et al., 2000; Lindahl & 

Finlay, 2006), without peptaibol antibiotics to impair the ability of the hyphae to repair cell 

wall damage to the host, mycoparasitic penetration of the host cell will not be achieved. It is 

presumable that other mechanisms may be included in the synergistic lysis of host cell wall 

(Ujor, 2010).  

 

Several authors have shown a correlation between the production of chitinases by Trichoderma 

species and abiotic stress conditions such as prolonged carbon and nitrogen starvation, acidic 

pH, cold temperature (4°C), high temperature (40°C), high osmotic pressure and the presence 

of ethanol (Carsolio et al., 1994; Garcia et al., 1994; Margolles-Clark et al., 1996; Bhushan, 

1998; Mach et al., 1999; Hamid et al., 2013). This allows for the inference that host fungi may 

be recognised by Trichoderma species as a source of physiological stress therefore the 

expression of chitinases is a direct response. Moreover Inbar and Chet (1995) showed that 

Trichoderma harzianum produced different combinations of chitinase isozymes in response to 

different host/confronting species. This lends credence to the antagonistic adaptability of 

Trichoderma species and could be attributed to variations that often exist in host cell wall 

composition and varying antagonistic pressures that may be presented by different hosts (Ujor, 

2010). 

 

2.8.2.3.3 Pigmentation 

A majority of the pigments found in higher fungi are quinones or similar conjugated structures 

classified based on the perceived biosynthetic pathways, reflecting their structure, therefore to 

pigments derived from (i) the shikimate (chorismate) pathway, (ii) the acetatemalonate 

(polyketide) pathway, (iii) the mevalonate (terpenoid) pathway, and (iv) pigments containing 

nitrogen (Gill & Steglich, 1987; Gill, 1994;1996;1999; 2003;Hanson 2008a; 2008b; Räisänen, 

2009; Zhou & Liu 2010;Velíšek & Cejpek, 2011). 

 

However a wide range of compounds including arylpyruvic, cinnamic and benzoic acids which 

serve as building blocks for many pigments of higher fungi requires phenylalanine and tyrosine 

as precursors, therefore the shikimate pathway is often used for these pigmentations. The 

shikimate pathway provides a route to these essential amino acids, phenylalanine, tyrosine and 

tryptophan via the central intermediates shikimic and chorismic acids (Velíšek & Cejpek, 

2011). In the case of melanin, it is generally accepted that ascomycetes fungi produce melanin 
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from 1,8 dihydroxynaphthalene (DHN), while basidiomycetes fungi usually produce catechol 

melanin from γ-glutaminyl-3,4 – dihydroxybenzene precursor, also known as GDHB melanin, 

and more rarely from L-dihydroxyphenylalanine (L-Dopa) (Turner, 1971, Wheeler & Bell, 

1985).  

 

The fungal metabolism is affected by the nutrient availability and chemical composition of the 

wood substrate (Schmidt, 2006). Pigmentation tends to vary with age, and in some cases 

distinctive colour changes are associated with bruising. Pigmentation may offer protection 

against UV damage and unfavourable environmental conditions. The production of pigments 

is often a response to antagonistic interactions during fungus-fungus contact. Pigmented 

substances are produced during secondary metabolism that functions as physical and chemical 

barriers in the wood substrate (Tudor et al., 2013). Development of pigments in cultures of 

interspecifically paired fungi has been strongly attributed to increased synthesis and secretion 

of secondary metabolites (Rayner & Boddy, 1988; White & Boddy, 1992; Griffith et al., 1994a; 

1994b; 1994c; Rayner et al., 1994; Score et al., 1997; Peiris et al., 2008; Hynes et al., 2007; 

Peiris, 2009). Li (1981) observed black lines of demarcation or pigmented zones which were 

formed on agar plates by two isolates of Phellinus weirii and P. weirii in response to the 

presence of an antagonist. Furthermore the activity of enzymes from the zone lines when 

compared with that of activity of enzymes from the mycelial tissue adjacent to the zone lines 

showed that zone lines produced stronger phenoloxidase and peroxidase reactions than those 

of the adjacent tissues. Pigmentation during combative interactions is thought to be mainly an 

after effect of the interplay between phenolics and phenol-oxidase activities (Rayner et al., 

1994; Griffith et al., 1994a; 1994b; 1994c; Boddy, 2000; Gregorio et al., 2006; Peiris et al., 

2008; Peiris, 2009). This assumption was supported by studies done by Peiris et al. (2008), 

who reported predominance of metabolic peaks with mass spectra which strongly implied the 

possession of aromatic structures such as 1-methyl-3,5-dihydroxybenzene and 1,2-

dihydroxyanthraquinone, potent inducers of laccase/manganese peroxidase, during combative 

interactions between Stereum hirsutum and its two competitors Coprinus micaceus and 

Coprinus disseminatus. 

 

The synchronized detection of volatile organic compounds (VOCs) particularly sesquiterpenes 

and quinolinium-type compound and induction of pigment accumulation in paired cultures of 

H. fasciculare and Resinicium bicolor by Hynes et al. (2007) further lends credence  to the 

supposition that pigmentation is anactive component of antagonistic interactions and that 
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phenolics and phenol-oxidases are involved. Tsujiyama and Minami (2005) concluded that 

phenol-oxidizing enzymes play a central role in the detoxification of harmful compounds 

during fungus-fungus interactions, as species with superior phenol-oxidase-secretory abilities 

in their study were more predominant during mycelial conflicts. As most of these enzymes tend 

to be secreted during oxidative and abiotic stresses, it has been suggested that they are part of 

the defensive machinery used in the detoxification of reactive oxygen species (ROS) (De Vries 

et al., 2007; Hynes et al., 2007; Evans et al., 2008). 

  

2.8.2.3.4 Enzymatic activities 

Most of the studies on enzymes involved in interspecific antagonistic interactions have focused 

on the Trichoderma species. Examples include T. harzianum, T. viride and T. reesei which are 

all known producers of a variety of hydrolytic enzymes including cellulases chitinases, 

glucanases, lipases and proteases used in mycoparasitism (Haran et al., 1996). During intra- 

and interspecific interactions in fungi, enzymes are known to play critical roles in 

detoxification, attack/defence and nutrient acquisition that overall influence the outcome of 

competition (Score et al., 1997; Cortes et al., 1998; Zeilinger et al., 1999 ; Boddy, 2000; 

Iakovlev & Stenlid, 2000; Kubicek et al., 2001; Brunner et al., 2003; Tsujiyama & Minami, 

2005; Adomas, et al., 2006; Gregorio et al., 2006; Chi et al., 2007; Zhang et al., 2006; Peiris, 

2009; Kushwaha & Verma, 2014).  

 

Chitinases are employed by fungi in degrading chitin which is an unbranched homopolymer of 

1,4-β-linked N-acetyl-D-glucosamine (GlcNAc). Chitin is the second most abundant polymer 

in nature after cellulose.  It is the prevalent structural polymer found in most fungi and insects 

(Havukkala, 1991; Howell, 2003). Therefore, for successful antagonistic activity it is vital that 

chitinase be secreted to hydrolyze the chitinous cell wall of the fungi under attack causing the 

lysis of the hyphae (Lorito et al., 1994; Carsolio et al., 1999; Sangle & Bambawale, 2004; 

Lindahl & Finlay, 2006).Sahai and Manocha (1993) divided chitinolytic enzymes into three 

principal types: (a) 1,4-β-N-acetyl-D-glucosamindases (EC3.2.1.30) which split the chitin 

polymer into GlcNAc monomers in an exo-type fashion; (b) endochitinases (EC3.2.1.14), 

which randomly cleaves at internal sites over the entire length of the microfibril and (c) 

exochitinases (EC3.2.1.14), which catalyse the successive release of diacetylchitobiose in a 

step-wise fashion such that no monosaccharides or oligosaccharides are formed.  Harman et al. 

(1993) referred to enzyme exhibiting this activity as ‘chitobiosidase’. 
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It is well known that a number of Trichoderma isolates secrete 1,3-β- and 1,6-β-glucanases 

(Del Rey et al., 1979; de la Cruz et al., 1995; Howell, 2003; Glese et al., 2011). Glucanases 

prompt chitinases and proteases to bring about lysis of several phytopathogenic during 

mycoparasitic process (Elad et al., 1982). The structural composition of fungi cell wall 

determines the extent of degradation; therefore the cell wall structural matrix of chitin and β-

glucan implies that more than one is require for its successful degradation. Moreover, chitin 

seems to be protected by β-glucan and is not readily accessible to chitinases (Cherif & 

Benhamou, 1990). Therefore, it most likely that chitinase activity is preceded by, or coincides 

with the hydrolytic activity of other enzymes in particular 1,3-β- and 1,6-β-glucanases. Lorito 

et al. (1994) provided evidence of the involvement of glucanases in the mycoparasitic process 

when they introduced purified 1,3-β-glucanases obtained from T. harzianum strain P1 on to 

Botrytis cinerea. This purified enzymes inhibited spore germination and germ-tube elongation 

of B. cinerea with at least 50%-effective dose values. De La Cruz et al. (1995) used purified 

1,6-β-glucanases in combination with other cell-wall-degrading enzymes such as  1,3-β-

glucanases, chitinases, all obtained from T. harzianum strain CECT 2413, to hydrolyse 

filamentous fungal cell walls and also inhibit the growth of several fungi tested including B. 

cinerea, Gibberella fujikuroi, Phytophthora syringae and Saccharomyces cerevisiae. 

 

Filamentous fungal cell also contains lipid and protein (Hunsley & Burnett, 1970).  As such 

proteolytic enzymes are required by antagonistic fungi for complete lysis of host cell wall 

(Howell, 2003).  This is because the key components of fungal cell wall and/or fibrils of β-

glucans are embedded into a protein matrix (Wessels 1986; Peberdy, 1990); therefore 

extracellular proteases play a vital role in the degradation of host cell wall (Nygren et al., 2007). 

Elad et al. (1999) suggested that proteases secreted by Trichoderma species may be involved 

in the inactivation of vital extracellular enzymes of their host cells, especially those involved 

in nutrient hydrolysis and absortption. 

 

Although phenol-oxidases have been studied extensively in monocultures and the early parts 

of this literature review has highlighted their structure and application; it is noteworthy that it 

be highlighted in literature involving interspecific antagonistic interactions. Their exceptional 

ability to detoxify a wide range of xenobiotics in vitro, particularly those with 

phenolic/aromatic structures with subsequent production of pigments/discolouration 

(Thurston, 1994; Reinhammer & Malstrom, 1981; Guillen, et al., 1994; Eggert et al., 1996) 

has strengthened the assumption that their major role during fungal interactions is to oxidise 
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toxic compounds produced by the same or confronting species during mycelial conflict (Rayner 

et al., 1994; Griffith et al., 1994a; 1994b;1994c;White & Boddy, 1992; Tsujiyama & Minami, 

2005; Gregorio et al., 2006). Several authors have reported an increase in laccase activity 

(Freitag & Morrell, 1992; Baldrian, 2004; Tsujiyam & Minami, 2005; Gregorio et al., 2006; 

Elisashvili & Kachlishvili, 2009). Tsujiyama and Minami (2005) detected the predominant 

presence of phenol-oxidase activity in the zones of confrontation and underneath mycelia 

overgrowing another fungus during inter-specific combat involving Pleurotus ostreatus, 

Trametes versicolor, Pynoporus coccineus, Ganoderma applantum and Schizophyllum 

commune on agar. The study demonstrated that species that were more efficient at phenol-

oxidase expression were more successful in replacing the less efficient ones. 

 

In recent times, most of the fungal enzymes used in industrial biotechnology are produced by 

processes involving single microbial strains (Bader et al., 2010). However one major drawback 

to utilizing ligninolytic fungi in industrial scale fermentation is the low productivity and high 

cost implication for the production of the constitutive extracellular enzymes produced by these 

organisms (Flores et al., 2009; Rivera-Hoyos et al., 2013). Chemical induction of laccase and 

MnP by the addition of compounds related to lignin or lignin derivatives such as phenolic and 

aromatic compounds, copper and ethanol have been studied extensively (Baldrian, 2003; Gill 

& Arora, 2003; Lomascolo et al., 2003; Shah et al., 2006; Revankar et al., 2007; Kocyigit et 

al., 2012; Kuhar et al., 2014; Wang et al., 2014). However, the use of chemical inducers makes 

the industrial process economically non-feasible and in some cases these chemical inducers are 

toxic.   

 

Therefore any industrial process that would in future exploit the use of ligninolytic enzymes 

must produce economical and safe laccase and MnPs. For this reason this has been the objective 

of most enzyme researches in the past few decades (Flores et al., 2009). Using co-cultures 

appears to be more successful than using single microorganism cultures, because of the 

potential to utilize synergisms and even surprisingly antagonism between the metabolic 

pathways of the strains involved in the co-culture (Baldrian, 2004; Bader et al., 2010; Dwivedi 

et al., 2011; Pandya & Albert, 2014). 

 

 

 

 



65 
 

2.9 Application of antagonistic interspecific interactions 

2.9.1 Biological Control 

In the past, farmers have often relied on the application of chemical pesticides to reduce or 

eliminate incidences of plant diseases (Baker, 1987; Agrios, 1988). However, recent changes 

in public opininons – a consequence of environmental pollution caused by the excessive use of 

agrochemicals have prompted a shift to more safe agricultural practices. Furthermore, the 

implementation of stricter regulations on chemical pesticides application has caused an 

increase in the efforts to develop alternative methods of plant pests and disease control. 

Biological control exploits antagonistic interactons that exist in nature to reduce the damage 

caused mainly to plants, by pathogen and pests (Perotto et al., 2013). Several authors have 

described examples of fungal antagonism used for the biocontrol of fungal plant pathogens, 

nematodes, weeds and insects (Marco et al., 2003; Barron, 2004; Vega et al., 2009; Güerri-

Agulló et al., 2011).  

 

A strain of Trichoderma viride has shown significant success in the biological control of 

Crinipellis perniciosa the causal agent of the “witches’ broom” disease of cocoa in South 

America (Bastos, 1991; Marco et al., 2003). Similarly in India, Trichoderma sp. has proved 

effective as biological control against the stem rot disease of groundnut caused by Sclerotium 

rolfsii (Parmar et al., 2015). In the Scandinavia, Korhonen (1993) isolated a strain of 

Phlebiopsis gigantea this is commercially used in Finland (Rostop®, product of Verdera Oy), 

Poland (PG IBL® from Biofood s.c.) and Great Britain ((PG® suspension made by Forest 

Research Surrey, UK) for the control of Heterobasidion species in spruce and pine stumps 

(Adomas et al., 2006). 

 

2.9.2 Biopulping in Paper Production 

The paper and pulp industry carry out two major process steps – pulping and bleaching that 

essentially generate environmental pollutants (Thompson et al., 2001; Sumathi & Hung, 2006; 

Bahar et al., 2011). Traditionally, the kraft process uses sodium hydroxide (NaOH) and sodium 

sulphide (Na2S) to pulp wood creating black liquor as a by-product. Although efforts are made 

at the recovery of these chemicals it comes with concomitant pollution problems of air and 

water. Moreover, the bleaching process needed to remove the remaining fractions of lignin and 

whiten the pulp also uses chlorinated bleaching agents that also generate unwholesome 

effluents.  Since the 1970s efforts have been made to improve technologies using biopulping 

and biobleaching as alternative to reduce chemical pollutions. Several authors have described 
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the benefits of pre-treatments involving white-rot fungi (Eriksson et al., 1990; Kashino et al., 

1993; Messner & Srebotnik, 1994; Akhtar et al.,1998; Yu et al., 2010). However the incubation 

time of between 2–4 weeks required todegrade the wood lignin limits the feasible industrial 

application of this alternative. Co-fungal cultures have been suggested as a cheaper alternative 

for biopulping process (Hatakka et al., 2001; Chi et al., 2007) based on abundant evidences 

that has demonstrated that fungal competition can improve lignin degradation (Sundman & 

Näse, 1972; Asiegbu et al., 1996) and increased secretion of phenol-oxidising enzymes 

(Baldrian, 2004; Iakovlev & Stenlid, 2000; White & Boddy, 1992; Score et al., 1997).  Chi et 

al. (2007) demonstrated that co-culturing involving Ceriporiopsis submervispora, 

Physisporinus rivulosus, Phanerochaete chrysosporium and Pleurotus ostreatus in different 

combinations resulted in varied patterns of lignin degradation thereby suggesting that there is 

potential practical application in terms of shorter incubation times in exploring fungal 

interactions for the biopulping process. 

 

2.9.3 Improved Enzyme Production 

Exhaustive literature have shown that interspecific antagonistic interactions in fungi enhances 

the production of extracellular enzymes including chitinase, glucanases, xylanase, cellulase, 

laccase and phenol-oxidases (Zeilinger et al., 1999; Boddy, 2000; Kubicek et al., 2001; 

Baldrian, 2004; Tsujiyama & Minami, 2005; Gregorio et al., 2006; Zhang et al., 2006; Peiris, 

2009; Flores et al., 2010; Bader et al., 2010;  Dwivedi et al., 2011;  Albert et al., 2011; Mucha, 

2011; Cupul et al., 2014). The implication of these studies is that co-cultivations of fungi can 

offer a cheap alternative to increasing enzyme production for several industries that employ 

enzymatic processes such as food, textile, paper and detergent making industries as well as in 

effluent treatment strategies (Savoie et al., 1998; Hatvani et al., 2002; Chi et al., 2007). The cost 

of enzymes has always been a crucial limiting factor in the implementation of industrial bio-

processes and has often driven industries towards practices that tend to generate often 

hazardous effluents in the bid to cut costs. Therefore studies that move us closer to finding 

ways to increase enzyme production must be continuous. The hope of this present study was 

that work done will improve our understanding of interspecific interactions amongst 

ligninolytic fungi and findings would assist with the development of a cost-effective, 

economically viable alternative for the hydrolysis of a variety of agricultural residues. 
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2.10 Aims and Objectives of Study 

 
The literature reviewed for the purpose of this study has revealed that there are several aspects 

of both agricultural and industrial application that requires the increased production of 

enzymes. Furthermore, several studies have been done on interspecific interactions amongst 

fungal species, the biodiversity of the fungi community implies that there are several 

interactions that have not yet been studied. Moreover there is strong evidence that interspecific 

interactions can cause an acceleration into secondary metabolite production.  The primary 

objective of this study is to investigate interspecific interactions amongst different fungi 

obtained from nature and to determine if such interactions increased enzyme activity. This 

study also investigated if such interactions are duplicated on different agricultural waste 

residues commonly generated in the South African region and whether substrate type will affect 

enzymatic activities with the potential for application in improving enzyme production. 

 

Specific objectives included the following: 

 To isolate,  and screen different ligninolytic fungi obtained from the Kloofendal Nature 

Reserve for their ligninolytic activities 

 To characterize and identify the different ligninolytic fungi using biochemical and 

molecular methods. 

 To analyse the composition of the different agricultural residues (corn cob, sugarcane 

bagasse and wheat straw) and use them as substrates for the production lignin 

peroxidase, manganese peroxidase and laccase enzymes production  

 To investigate patterns of growth in both monocultures and interspecific interactions 

on dual culture on the different agricultural residue media. 

 To quantify and compare the enzymatic activities and production of three of the 

enzymes produced by the different ligninolytic fungi on different substrates. 

 

  



68 
 

References 

Adomas A, Eklund M, Johansson M & Asiegbu FO 2006: Identification and analysis of 

differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis 

gigantea and Heterobasidion parviporum. FEMS Microbiology Ecology, 57(1): 26-39. 

Agbhor VB, Cicek N, Sparling R, Berlin A & Levin DB 2011: Biomass pre-treatment: 

Fundamentals toward application. Biotechnology Advances, 29: 675–685. 

Agrios NA 1988: Plant Pathology. 3rd Ed., Academic Press, USA. pp. 220-222. 

Ainsworth AM & Rayner ADM 1991: Ontogenetic stages from coenocytes to basidiome and their 

relation to phenoloxidase activity and colonization processes in Phanerochaete magnolia. 

Mycological Research, 12:1414-1422 

Akhtar M, Blanchette RA, Myers GC & Kirk TK 1998: Overview of biochemical pulping research. 

In: R. Young and M Akhtar (Eds.). Environmentally friendly technologies for the pulp and 

paper industry, John Wiley, New York. 

Albert S, Chauhan D, Pandya B & Padhiar A 2011: A screening of Trichoderma spp. as potential 

fungal partner in co-culturing with white-rot fungi for efficient bio-pulping. Global Journal of 

Biotechnology and Biochemistry, 6: 95-101 

Alizadeh H, Teymouri F, Gilbert TI & Dale BE 2005: Pretreatment of switchgrass by ammonia 

fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121-124: 1133-1141. 

Alvira P, Tomaás-Pejó E, Ballesteros M & Negro MJ 2010:  Pre-treatment technologies for an 

efficient bioethanol production process based on enzymatic hydrolysis: a review. BioResource 

Technology, 101(13): 4851-4861. 

Archibald FS, Bourbonnais R, Jurasek L, Paice MG & Reid ID 1997: Kraft pulp bleaching and 

delignification by Trametes versicolor. Journal of Biotechnology, 53: 215-236. 

Arfi Y, Levasseur A & Record E 2013: Diferential gene exression in pycnoporus coccineus during 

interspecific mycelial interactions with different competitors. Applied and Environmental 

Microbiology, 79(21):6626-6636. 

Arora DS & Sharma RK 2010: Ligninolytic fungal laccases and their biotechnological applications. 

Applied Biochemistry and Biotechnology, 160:1760–1788. 

Aryantha NP & Guest DI 2006: Mycoparasitic and antagonistic inhibition on Phytophthora 

cinnamomi rands by microbial agents isolated from manure composts. Plant Pathology 

Journal, 5(3): 291-298 

Asgher M, Bhatti HN, Ashraf M & Legge RL 2008: Recent developments in biodegradation of 

industrial pollutants by white-rot fungi and their enzyme system. Biodegradation, 19(6):771-

83. 



69 
 

Asiegbu FO, Paterson A & Smith JE 1996: The effects of co-fungal cultures and supplementation 

with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World Journal 

of Microbiology and Biotechnology, 12(3): 273-9. 

Assavanig A, Amornkitticharoen B, Ekpaisal N, Meevootisom V & Flegel TW 1992: Isolation, 

characterization and function of laccase from Trichoderma. Applied Microbiology and 

Biotechnology, 38: 198-202. 

Aziz S & Sarkanen K 1989: Organosolv pulping: A review. Tappi Journal, 72: 169-175. 

Azzam AM 1989: Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic 

hydrolysis of cellulose and ethanol fermentation. Journal of Environmental Science and 

Health Part B, 24(4): 421-33. 

Bader J, Mast-Gerlach E, Popović MK, Bajpai R & Stahl U 2010: Relevance of microbial coculture 

fermentations in biotechnology. Journal of Applied Microbiology, 109: 371-387. 

Bahar KI, Cetecioglu Z & Orhan I 2011: pollution prevention in the pulp and paper industries, In:  

Broniewicz, E (Ed.), Environmental Management in Practice ISBN: 978-953-307-358-3, 

InTech, Available from:http://www.intechopen.com/books/environmental-management-in-

practice/pollutionprevention- in-the-pulp-and-paper-industries 

Baker C J & Orlandi EW 1995: Active oxygen in plant pathogenesis. Annual Review of 

Phytopathology, 33: 299-321. 

Baker KF 1987: Evolving concepts of biological control of plant pathogens. Annual Review of 

Phytopathology, 25: 67-85. 

Bakkiyaraj S, Aravindan R, Arrivukkarasan S & Viruthagiri T 2013: Enhance laccase production 

by Trametes hirsuta using wheat bran under submerged fermentation. International Journal 

of Chemical Technological Research, 5: 1224-1238. 

Balan V 2014: Current challenges in commercially producing biofuels from lignocellulosic 

biomass.  ISRN Biotechnology, 63074: 1-31. doi: 10.1155/2014/463074 

Balcu I, Macarie CA, Segneanu AE & Oana Pop P 2011. Combined microwave-acid pretreatment 

of the biomass. In Shaukat SS (Ed). Progress in biomass and bioenergy production. InTech. 

Chapter 11 

Baldrian P 2003: Interactions of heavy metals with white-rot fungi. Enzyme and Microbial 

Technology, 32: 78-91. 

Baldrian P 2004: Increase of laccase activity during interspecific interactions of white-rot fungi. 

FEMS Microbiology Ecology, 50: 245-253. 

Ballesteros I, Ballesteros M, Cara C, Sáez F, Castro E, Manzanares P, Negro MJ & Oliva JM 2011: 

Effect of water extraction on sugars recovery from steam exploded olive tree 

pruning. BioResource Technology, 102(11):6611-6616. 



70 
 

Bals B, Rogers C, Jin M, Balan V & Dale B 2010: Evaluation of ammonia fiber expansion (AFEX) 

pretreatment for enzymatic hydrolysis of switgrass harvested in different seasons and 

locations. Biotechnology for Biofuels, 3(1):1 doi: 10.1186/1754-6834-3-1. 

Banerjee G, Car S, Scott-Craig JS, Hodge DB & Walton JD 2011: Alkaline peroxide pre-treatment 

of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of 

glucose and xylose. Biotechnology for Biofuels, 4:1-16. 

Barak R & Chet I 1986: Determination by fluorscein diacetate staining, of fungal viability during 

mycoparasitism. Soil Biology and Biochemistry, 18: 315-319. 

Barceló AR, Ros LG, Gabaldón C, López-Serrano M, Pomar F, Carrión JS & Pedreño MA 2004: 

Basic peroxidases: the gateway for lignin evolution? Phytochemistry Reviews, 3(1-2): 61-78. 

Barnett HL & Binder FL 1973: The fungal host-parasite relationship. Annual Review of 

Phytopathology, 11: 273-292. 

Barreto AMR, Mora AP, Ferreira R & Amado F 2007: Trametes versicolor growth and laccase 

induction with by-products of pulp and paper industry. Electronic Journal of Biotechnology, 

10(3): 444-451.  

Barron G 2004: Fungal parasites and predators of rotifers, nematodes, and other invertebrates. In: 

Mueller GM, Bills GF, Foster MS (Eds.). Biodiversity of fungi: Inventory and monitoring 

methods. New York: Elsevier Academic Press. pp. 435-450. 

Bastos CN 1991: Estudos desenvolvidos e perspectivas de controle biologic de vassoura-de-bruxa 

do cacaueiro. Communicado Tecnico, CEPLAC, Belem, PA, no. 24. 1991. 4p. 

Bayer EA, Lamed R, White BA & Flint HJ 2008: From cellulosomes to cellulosomics. The 

Chemical Record, 6: 364-77. 

Beel AA & Wheeler MH 1986: Biosynthesis and functions of fungal melanins. Annual Review of 

Phytopathology, 24: 411-451. 

Beguin P & Aubert, JP 1994: The biological degradation of cellulose. FEMS Microbiology Review, 

13: 25-58.  

Behrendt CJ & Blanchette RA 2001: Biological control of blue stain in pulpwood: mechanisms of 

control used by Phlebiopsis gigantea. Holzforschung, 55: 238–245. 

Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE & Flint HJ 2006: Two routes 

of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing 

anaerobes from the human gut. Applied and Environmental Microbiology, 72(5): 3593–3599.  

Bensah EC & Mensah M 2013: Chemical pretreatment methods for the production of cellulosic 

ethanol: technologies and renovations. International Journal of Chemical Engineering, 

719607: 1-21 doi:10.1155/2013/719607 



71 
 

Betancur GJV & Pereira N 2010: Sugar cane bagasse as feedstock for second generation ethanol 

production. Part I: diluted acid pretreatment optimization. Electronic Journal of 

Biotechnology, 13: 1-9. 

Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM & Dillon AJP 2008: Production of 

laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and 

organic nitrogen sources, antifoams and Tween 80. Journal of Industrial Microbiology and 

Biotechnology, 36: 1-9 

Bhushan B 1998: Isolation, purification, characterization and scale up production of a thermostable 

chitinase from an alkalophilic microorganism. PhD thesis, Department of 

Microbiology. Chandigarh: Punjab University. 

Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK & Pandey A 2012: Short 

duration microwave assisted pre-treatment enhances the enzymatic saccharification and 

fermentable sugar yield from sugarcane bagasse. Renewable Energy, 37(1): 109–116. 

Bjerre AB, Olesen AB, Fernqvist T, Plöger A & Schmidt AS 1996: Pretreatment of wheat straw 

using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and 

hemicellulose. Biotechnology and Bioengineering, 49(5): 568-77. 

Blanchette AR, Crueler WE, Height DE, Akhtar M & Akin DE 1997: Cell wall alterations in 

loblolly pine wood decayed by the white-rot fungus Ceriporiopsis subvermispora. Journal of 

Biotechnology, 53:203–213. 

Blanchette RA 1984: Screening wood decayed by white-rot fungi for preferential lignin 

degradation. Applied and Environmental Microbiology, 48(3): 647-653  

Blanchette RA 1991: Delignification by wood-decay fungi. Annual Reviews of Phytopathology, 

29: 381-398  

Blanchette RA, Burnes TA, Eerdmans MM & Akhtar M 1992: Evaluating isolates of 

Phanerochaete chrysosporium and Cerzporiopsis subvermispora for use in biological pulping 

processes. Holzforschung, 46: 109-115, 645-662.  

Blanchette RA, Obst JR & Timell TE 1994: Biodegradation of compression wood and tension 

wood by white and brown-rot fungi. Holzforschung, 48: 34-42. 

Blanchette RA, Otjen L, Effland MJ & Eslyn WE 1985: Changes in structural and chemical 

components of wood delignified by fungi. Wood Science and Technology, 19: 35-46  

Blaschek HP & Ezeji TC 2010: Science of alternative feedstocks. In Vertes A, Blaschek H, Yukawa 

H, & Qureshi N (eds.): Biomass to Biofuels: Strategies for global industries. Wiley: United 

States, pp. 112-128. 

Boddy L 2000: Interspecific combative interactions between wood-decaying basidiomycetes. 

FEMS Microbiology Ecology, 31: 185-194. 



72 
 

Boddy L, Bardsley DW & Gibbon OM 1987: Fungal communities in attached ash branches. New 

Phytolologist, 107: 143-154.  

Boddy L, Gibbon OM & Grundy MA 1985: Ecology of Daldinia concentrica: effect of abiotic 

variables on mycelial extension and interspecific interactions. Transactions of British 

Mycological Society, 85: 201-211. 

Bollag JM & Leonowicz A 1984: Comparative studies of extracellular fungal laccases. Applied 

and Environmental Microbiology, 48(4): 849-854. 

Börjesson J, Peterson R & Tjerneld F 2007: Enhanced enzymatic conversion of soft wood 

lignocellulose by poly (ethylene glycol) addition. Enzyme and Microbial Technology, 40: 754-

762. 

Bourbonnais R & Paice MG 1990: Oxidation of non-phenolic substrates. An expanded role for 

laccase in lignin biodegradation. FEBS Letters, 167: 99-102. 

Breitenbach M, Weber M, Rinnerthaler M, Karl T & Breitenbach-Koller L 2015: Oxidative Stress 

in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose 

Degradation. Biomolecules, 5(2): 318-342.  

Brunner K, Peterbauer C, Mach RL, Lorito M, Zeilinger S & Kubicek CP 2003: The Nag1 N-

acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin 

and of major relevance to biocontrol. Current Genetics, 43(4): 289-295. 

Busse N, Wagner D, Kraume M & Czermak P 2013: Reaction kinetics of versatile peroxidase for 

the degradation of lignin compounds. American Journal of Biochemistry and Biotechnology 

9(4): 365-394. 

Call HP & Mücke I 1997: Minireview. History, overview and applications of mediated lignolytic 

systems, especially laccase-mediator-systems (Lignozym®-process). Journal of 

Biotechnology, 53: 163-202. 

Camarero S, Ruiz-Duenas FJ, Sarkar S, Martinez MJ & Martinez AT 2000: The cloning of a new 

peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with 

other fungal peroxidases. FEMS Microbiology Letters, 191: 37-43. 

Canilha L, Chandel AK, dos Santos Milessi TS, Antunes FAF, da Costa Freitas WL, Felipe M, & 

da Silva S 2012: Bioconversion of sugarcane biomass into ethanol: an overview about 

composition, pre-treatment methods, detoxification of hydrolysates, enzymatic 

saccharification, and ethanol Fermentation. Journal of Biomedicine and Biotechnology, 

989572. doi: 10.1155/2012/989572 

Carere CR, Sparling R, Cicek N & Levin DB 2008: Third generation biofuels via direct cellulose 

fermentation. International Journal of Molecular Sciences, 9(7): 1342-1360. 



73 
 

Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I & Herrera-Estrella A 1999: Role 

of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied 

Environmental Microbiology, 65:929-935 

Carsolio C, Gutierrez A, Jiménez B, Van Montagu M & Herrera- Estrella A 1994: Characterization 

of ech42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. 

Proceedings of National Academy of Sciences USA, 91: 10903–10907. 

Carvalheiro F, Duarte LC & Gírio FM 2008: Hemicellulose biorefineries: a review on biomass pre-

treatments. Journal of Scientific and Industrial Research, 67(11): 849–864. 

Chaikumpollert O, Methacanon P & Suchiva K 2004: Structural elucidation of hemicelluloses from 

Vetiver grass. Carbohydrate Polymers, 57(2):191–196. 

Chang VS, Burr B & Holtzapple MT 1997: Lime pretreatment of switchgrass. Applied 

Biochemistry and Biotechnology, 63-65: 3-19.  

Cherif SS & Benhamou CS 1990: Cytochemical aspects of chitin breakdown during the parasitic 

action of a Trichoderma spp. on Fusarium oxysporum f. sp. radicans-

lycopersici. Phytopathology, 80: 1406-1414.  

Chet I 1987: Trichoderma-Application, mode of action and potential as a biocontrol agent of 

soilborne pathogenic fungi. In: Chet I. (Eds.). Innovative approaches to plant disease control. 

John Wiley & Sons, New York, pp. 137-160.  

Chet I, Inbar J & Hader Y 1997: Fungal antagonists and mycoparasites. In: Wicklow, DT & 

Söderström, B. (Eds.). The Mycota IV. Environmental and microbial relationships. Springer, 

Berlin. pp. 165-184. 

Chhabra, N. 2014: Role of Dietary Fibre. Available at: 

http://usmle.biochemistryformedics.com/role-of-dietary-fibre/ [Accessed 18/03/2016]  

Chi Y, Hatakka A & Maijala P 2007: Can co-culturing of two white-rot fungi increase lignin 

degradation and the production of lignin- degrading enzymes? International Journal of 

Biodeterioration and Biodegradation, 59(1): 32-39.  

Cho N, Shin W, Jeong S & Leonowicz A 2004: Degradation of Lignosulfonate by Fungal Laccase 

with Low Molecular Mediators. Bulletin Korean of Chemistry Society, 25(10): 1551-1555. 

Chum HL, Douglas LJ, Feinberg DA & Schroeder HA 1985: Evaluation of pretreatments of 

biomass for enzymatic hydrolysis of cellulose. [Organosolv process, wet oxidation, and steam 

explosion of wood chips]. Solar Energy Research Inst., Golden, CO (USA); Colorado State 

Univ., Fort Collins (USA) 

Chum HL, Johnson DK & Black S 1988: Organosolv pretreatment for enzymatic hydrolysis of 

poplars: enzyme hydrolysis of cellulosic residues. Biotechnology and Bioengineering, 31: 643-

649. 



74 
 

Clark TA & Mackie KL 1987: Steam explosion of the soft-wood Pinus radiata with sulphur dioxide 

addition. I. Process optimization. Journal of Wood Chemistry and Technology, 7: 373-403. 

Claus H 2004: Laccases: structure, reactions, distribution. Micron, 35(1): 93-96. 

Collins JP & Dobson ADW 1997: Regulation of laccase gene transcription in Trametes versicolor. 

Applied and Environmental Microbiology, 63: 3444–3450. 

Conab (Companhia Nacional de Abastecimento-National Supply Company) 2012: 

Acompanhamento da Safra Brasileirade Cana-de-ac¸´ucar. Primeiro Levantamento da 

Safra2012/2013, viewed translation 14 April 2013 from http://www.conab.gov.br/.  

Cooke RC & Rayner ADM 1984: Ecology of saprophytic fungi. New York: Longman; London 

Cooper-Driver GA, Swain T & Conn EE 2013: Chemically Mediated Interactions between Plants 

and Other Organisms. Springer Science & Business Media. 

Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I & Herrera-Estrella A 1998: The expression of 

genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. 

Molecular and General Genetics, 260: 218-225. 

Costa FG, Zucchi TD & de Melo IS 2013: Biological Control of Phytopathogenic Fungi by 

Endophytic Actinomycetes Isolated from Maize (Zea mays L.). Brazilian Archives of Biology 

and Technology an International Journal, 56(6): 948-955. 

Couto SR & Toca-Herrera JL 2007: Laccase production at reactor scale by filamentous fungi. 

Biotechnology Advances, 25: 558-569 

Cullen D & Kersten P 2004: In: The mycota III. Biochemistry and molecular biology. In: Brambl 

R, Marzulf GA, (Eds.). Enzymology and Molecular Biology of Lignin Degradation, Springer, 

Berlin. pp. 249-273. 

Cupul WC, Abarca GH, Carrera DM & Vázquez RR 2014: Enhancement of ligninolytic enzyme 

activities in a Trametes maxima–Paecilomyces carneus co-culture: Key factors revealed after 

screening using Plackett-Burman experimental design. Electronic Journal of Biotechnology, 

17: 114-121.  

D'Agostini EC, D'Agostini TR, Silveira do Valle J, Paccola-Meirelles LD, Colauto NB & Linde 

GA 2011: Low carbon/nitrogen ratio increases laccase production from basidiomycetes in 

solid substrate cultivation. Journal of Agricultural and Food Science, 68: 295-300. 

Dashtban M, Schraft H, Syed TA & Qin W 2010: Fungal biodegradation and enzymatic 

modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1): 

36-50. 

De Boer W, Folman LB, Summerbell RC & Boddy L 2005: Living in a fungal world: impact of 

fungi on soil bacterial niche development.  FEMS Microbiology Reviews, 29: 795-811. 



75 
 

De la Cruz J, Pintor-Toro JA, Benitez T & Llobell A 1995 : Purification and characterisation of an 

endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. 

Journal of Bacteriology, 1864-1871. 

De la Hoz A, Diaz-Ortiz A & Moreno A 2005: Microwaves in organic synthesis. Thermal and non-

thermal microwave effects. Chemical Society Reviews, 34(2):164-178. 

De la Rubia T, Linares A, Pérez J, Muñoz-Dorado J, Romera J &  Martı́nez J 2002: Characterization 

of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete 

flavido-alba. Research in Microbiology, 153(8): 547-554. 

De Vries FT, Bloem J, Van Eekeren N, Brusaard L & Hoffland E 2007: Fungal biomass in pastures 

increases with age and reduced N input. Soil Biology and Biochemistry, 39: 1620-1630. 

De Vries OMH, Kooistra WHCF & Wessels JGH 1986: Formation of an extracellular laccase by a 

Schizophyllum commune dikaryon. Microbiology, 132: 2817-2826. 

De Vries RP, Kester HCM, Poulsen CH, Benen JAE & Visser J 2000: Synergy between enzymes 

from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydrate 

Research, 327: 401-410. 

DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins 

K, Henrissat B, Gilbert HJ & Nelson KE 2008: Insights into plant cell wall degradation from 

the genome sequence of the soil bacterium Cellvibrio japonicus. Journal of Bacteriology, 

190(15): 5455-5463. 

Del Rey F, García-Acha I & Nombela C 1979: The regulation of β-glucanase synthesis in fungi 

and yeast. Microbiology, 110(1): 83-89. 

Department of Agriculture, Forestry and Fisheries (DAFF) 2010: Wheat: Production guideline. 

http://www.daff.gov.za/docs/brochures/prodguidewheat.pdf 

DeMoura MI, Oliveira EMM, Santos AS & Lara da Costa G 2004: Production of L-asparaginase 

by filamentous fungi. Memorias do Instuto Oswaldo Cruz, 99: 489–92. 

Diaz AB, de Souza Moretti MM, Bezerra-Bussoli C, Nunes CD, Blandino A, da Silva R & Gomez 

A 2015 : Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed 

in alkaline glycerol for fermentable sugars production. BioResource Technology, 185: 316-

323 

Ding SY & Himmel ME 2006: The maize primary cell wall microfibril: A new model derived from 

direct visualization. Journal of Agricultural and Food Chemistry, 54(3): 597-606. 

Divya L & Sadasivan C 2016: Trichoderma viride Laccase Plays a Crucial Role in Defense 

Mechanism against Antagonistic Organisms. Frontiers in Microbiology, 7:741. 

http://doi.org/10.3389/fmicb.2016.00741 



76 
 

Dos Reis Almeida FB, Cerqueira FM, do Nascimento Silva R, Ulhoa CJ & Lima AP 2007: 

Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: 

evaluation of coiling and hydrolytic enzyme production. Biotechnology Letters, 29(8): 1189-

1193 

Dosoretz CG & Šašek V 2000: Screening of white-rot fungi for bioremediation of contaminated 

soil. Office of the Science Advisor U.S. Agency of International Development. 

Dowson CG, Rayner AD & Boddy L 1998: The form and outcome of mycelial interactions 

involving cord‐forming decomposer basidiomycetes in homogeneous and heterogeneous 

environments. New Phytologist, 109(4):423-432. 

Draude KM, Kurniawan CB & Duff JB 2001: Effect of oxygen delignification on the rate and 

extent of enzymatic hydrolysis of lignocellulosic material. BioResource Technology, 79(2): 

113-120.  

D'Souza TM, Merritt CS & Reddy AC 1999: Lignin modifying enzymes of the white-rot 

basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology, 65(12):5307-

5313. 

Duarte LT, Tiba JB, Santiago MF, Garcia TA & Freitas BMT 2012: Production and 

characterization of tyrosinase activity in Pycnoporus sanguineus CCT-4518 Crude 

extract. Brazilian Journal of Microbiology, 43(1):21-29.  

Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF & Martins LO 2006: Perturbations of the 

T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic 

and stability studies. Journal of Biological Inorganic Chemistry, 11(4):514-526. 

Dwivedi P, Vivekanand V, Pareek N, Sharma A & Singh RP 2011: Co-cultivation of mutant 

Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of 

xylanase and laccase under solid-state fermentation. New Biotechnology, 28: 616-626.  

Dyer HC, Boddy L & Preston-Meek C M 1992: Effect of nematode Panagrellus redivivus on 

growth and enzyme production by Phanerochaete velutina and Stereum hirsutum. 

Mycological Research, 96: 1019-1028. 

Eggeman T & Elander RT 2005: Process and economic analysis of pretreatment technologies. 

Biosources Technology, 96(18): 2015-2019. 

Eggert C, Temp U & Eriksson K 1996: The ligninolytic system of the white-rot fungus Pycnoporus 

cinnabarinus: purification and characterisation of the laccase. Applied and Environmental 

Microbiology, 62(4): 1151-1158. 

Eklund R, Galbe M & Zacchi G 1995: The influence of SO2 and H2SO4 impregnation of willow 

prior to steam pre-treatment. BioResource Technology, 52(3): 225-229.  



77 
 

El Hajj M, Rebuffat S, Le Doan T, Klein G, Satre M & Bodo B 1989: Interaction of tricorzianines 

A and B with model membranes and with Amoeba dictyostelium. Biochimica et Biophysica 

Acta, 978: 97-104. 

Elad Y & Kapat A 1999: The role of Trichoderma harzianum protease in the biocontrol of Botrytis 

cinerea. European Journal of Plant Pathology, 105: 177-189.  

Elad Y, Chet I & Henis Y 1982: Degradation of plant pathogenic fungi by Trichoderma harzianum. 

Canadian Journal of Microbiology, 28: 719-725. 

Elad Y, Chet I, Boyle P & Henis Y 1983: Parasitism of Trichoderma spp. on Rhizoctonia solani 

and Sclerotium rolfsii – SEM studies and fluorescence microscopy. Phytopathology, 73: 85-

88.  

Elisashvili V & Kachlishvili E 2009: Physiological regulation of laccase and manganese peroxidase 

production by white-rot Basidiomycetes. Journal of Biotechnology, 144: 37-42. 

Elisashvili V, Kachlishvili E, Khardziani T, Tsiklauri N & Bakrade M 2002: Physiological 

regulation of edible and medicinal higher basidiomycetes lignocellulotic enzymes activity. 

International Journal of Medicinal Mushroom, 4:159-166. 

Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T & Agathos SN 2009: 

Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the 

forests of Georgia. World Journal of Microbiology and Biotechnology, 25: 331-339. 

Elisashvili V, Penninckx M, Kachlishvili E, Asatiani M & Kvesitadze G 2006: Use of Pleurotus 

dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels 

and tree leaves. Enzyme Microbial Technology, 38:998-1004. 

Englisch M 2010: Torrefaction: fundamental and basic principles of torrefaction. Presentation at 

IEA Bioenergy Task, 32. 

Ensinas AV, Modesto M, Nebra SA & Serra L 2009:  Reduction of irreversibility generation in 

sugar and ethanol production from sugarcane. Energy, 34(5): 680-688.  

Eriksson KEL, Blanchette RA & Ander P 1990: Microbial and Enzymatic Degradation of Wood 

and Wood Components. Springer-Verlag. Berlin, Germany. 

Eugenio ME, Carbajo JM, Martín JA, Martín-Sampedro R, González AE & Villar JC 2010: 

Synergic effect of inductors on laccase production by Pycnoporus sanguineus. Afinidad, 

546:129-135. 

Evans JA, Eyre CA, Rogers HJ, Boddy L & Müller CT 2008: Changes in volatile production during 

interspecific interactions between four wood rotting fungi growing inartificial media. Fungal 

Ecology, 1: 57-68. 

Evas CS, Dutton MV, Guillen F & Veness RG 1994: Enzymes and small molecular agents involved 

with lignocellulose degradation. FEMS Microbiology Review, 13: 235-240. 



78 
 

Ezeji TC, Qureshi N & Blaschek HP 2007: Bioproduction of butanol from biomass: from genes to 

bioreactors. Current Opinion in Biotechnology, 18: 220-227. 

Fackler K, Gradinger C, Schmutzer C, Tavzes C, Burgert I, Schwanninger M, Hinterstoisser B, 

Watanabe T & Messner K 2007: Biotechnological wood modification with selective white-rot 

fungi and its molecular mechanisms. Food Technology and Biotechnology, 45 (3): 269-276 

Falconer RE, Bown JL, White NA & Crawford JW 2008: Modelling interactions in fungi. Journal 

of the Royal Society, 23 (5): 603-615. 

Fan LT, Gharpuray MM & Lee YH 1987: Cellulose hydrolysis. Biotechnology monographs. 

Volume 3. 

Food and Agriculture Organisation Statistics (FAOSTAT) 2009: FAO Statistical Year Book. Food 

and agriculture organization of the United Nations. Available at: http://faostat.fao.org/ 

[Accessed 17 April 2013] 

Fengel D & Wegener G 1989: Wood: Chemistry, ultrastructure, reactions. New York: Walter de 

Gruyter 

Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo 

LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe 

T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden 

Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni 

H, Subramanian V, Lavín JL, Oguiza JA, Perez G, Pisabarro AG, Ramirez L, Santoyo 

F, Master E, Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kües U, Hori C, Igarashi 

K, Samejima M, Held BW, Barry KW, LaButti KM, Lapidus A, Lindquist EA, Lucas 

SM,Riley R, Salamov AA, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries 

RP, Wiebenga A, Stenlid J, Eastwood D, Grigoriev IV, Berka RM, Blanchette RA, Kersten 

P, Martinez AT, Vicuna R & Cullen D 2012: Comparative genomics of Ceriporiopsis 

subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. 

Proceedings of National Academy of Sciences USA, 109(14):5458-5463.  

Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky A, Golovleva L, Scozzafava A & 

Briganti F 2007: Crystal structure of a blue laccase from Lentinus tigrinus: evidences for 

intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BioMed 

Central Structural Biology, 7(1):60. doi: 10.1186/1472-6807-7-60 

 Ferreira P, Hernandez-Ortega A, Herguedas B, Martínez ÁT & Medina M 2009: Aryl-alcohol 

oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady 

state kinetics and primary and solvent isotope effects with two alcohol substrates. The Journal 

of Biological Chemistry, 284(37): 24840-24847.  

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Floudas%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Larrondo%20LF%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Larrondo%20LF%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lobos%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tello%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yadav%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Perez%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pisabarro%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Santoyo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Santoyo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Henrissat%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=LaButti%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lapidus%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lindquist%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lucas%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lucas%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Riley%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Salamov%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hoffmeister%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22434909
https://www.ncbi.nlm.nih.gov/pubmed/?term=Grigoriev%20IV%5BAuthor%5D&cauthor=true&cauthor_uid=22434909


79 
 

Flores C, Casasanero R, Trejo-Hernández MR, Galindo E & Serrano-Carreón L 2010: Production 

of lacasses by Pleurotus ostreatus in submerged fermentation in co-culture with Trichoderma 

viride. Journal of Applied Microbiology, 108(3):810-817 

Flores C, Vidal C, Trejo HMR, Galindo E & Serrano CL 2009: Selection of Trichoderma strains 

capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual 

cultures. Journal of Applied Microbiology, 106: 249–257. 

Follett RF 2001: Soil management concepts and carbon sequestration in cropland soils. Soil and 

Tillage Research, 61(1): 77-92. 

Fox DJ, Gray PP, Dunn NW & Marsden WL 1987: Factors affecting the enzymic susceptibility of 

alkali and acid pretreated sugar‐cane bagasse. Journal of Chemical Technology and 

Biotechnology, 40(2): 117-132. 

Fravel DR 2005: Commercialization and implementation of biocontrol. Annual Review of 

Phytopathology, 43: 337-359.  

Freitag M & Morrell JJ 1992: Changes in selected enzyme activities during growth of pure and 

mixed cultures of the white-rot decay fungus Trametes versicolor and the potential biocontrol 

fungus Trichoderma harzianum. Canadian Journal of Microbiology, 38: 317-323. 

Gadd GM 1993: Interactions of fungi with toxic metals. New Phytologist, 124: 25-60. 

Galbe M & Zacchi G 2002: .A review of the production of ethanol from softwood. Applied 

Microbiology and Biotechnology, 59(6): 618-628. 

Galbe M & Zacchi G 2007: Pre-treatment of lignocellulosic materials for efficient bioethanol 

production. Biofuels, 108: 41-65. 

Galhaup C, Wagner H, Hinterstoisser B & Haltrich D 2002: Increased production of laccase by the 

wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology, 

30(4): 529-536. 

García I, Lora JM, De La Cruz J, Benítez T, Llobell A & Pintor-Toro JA 1994 : Cloning and 

characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma 

harzianum. Current Genetics, 27(1): 83-89. 

García-Cubero MT, González-Benito G, Indacoechea I, Coca, M & Bolado S 2009: Effect of 

ozonolysis pre-treatment on enzymatic digestibility of wheat and rye straw. BioResource 

Technology,  100 (4): 1608-1613. 

Germann UA, Muller G, Hunziker PE & Lerch K 1988: Characterization of two allelic forms of 

Neurospora crassa laccase. Amino- and carboxyl terminal processing of a precursor. Journal 

of the Biological Chemistry, 263: 885–896. 

Ghodake GS, Kalme SD, Jadhav JP & Govindwar SP 2009: Purification and partial 

characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its 



80 
 

application in decolorization of textile dyes. Applied Biochemistry and Biotechnology, 

152(1):6 -14. 

Gianfreda L, Xu F & Bollag J 1999: Laccases: A useful group of oxidoreductive enzymes. 

Bioremediation Journal, 3: 1-25. 

Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G & Sannia G, 1999: Protein 

and gene structure of a blue laccase from Pleurotus ostreatus. Biochemical Journal, 34: 655-

663. 

Gill M & Steglich W 1987: Pigments of fungi (Macromycetes). Vienna: Springer 

Gill PK & Arora DS 2003: Effect of culture conditions on manganese peroxidase production and 

activity by some white-rot fungi. Journal of Industrial Microbiology and Biotechnology, 30: 

28-33 

Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S& Bogel-Łukasik R 2010: 

Hemicelluloses for fuel ethanol: a review. BioResource Technology, 101(43): 4775-4800. 

Gkarmiri K, Finlay RD, Alström S, Thomas E, Cubeta MA & Högberg N 2015: Transcriptomic 

changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the 

antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BioMed Central 

Genomics, 16(1): 630. doi: 10.1186/s12864-015-1758-z. 

Glese EC, Dekker RFH, Barbosa AM, Da Silva CLM & Da Silva R 2011: Production of β-(1,3)-

glucanases by Trichoderma harzianum Rifai: optimisation and application to produce Gluco-

oligosaccharides from paramylon and pustulan. Fermentation Technology, 1:102. doi: 

10.4172/2167-7972.1000102 

Gollapalli LE, Bruce ED & Rivers MD 2002: Predicting digestibility of ammonia fiber explosion 

(AFEX)-treated rice straw. Applied Biochemistry and Biotechnology, 98(1):23-35. 

Gómez-Toribio V, Martinez AT, Martinez MJ & Guillén F 2001: Oxidation of hydroquinones by 

the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence 

of Mn2+. European Journal of Biochemistry, 268: 4787-4793. 

Gottschalk LM, Bon EP & Nobrega R 2008: Lignin peroxidise from Streptomyces viridosporus 

T7A: enzyme concentration using ultrafltration. Applied Biochemistry and Biotechnology, 

147(1-3):23-32. 

Graham RL, Nelson R, Sheehan J, Perlack RD & Wright LL 2007: Current and potential US corn 

stover supplies. Agronomy Journal, 99(1):1-1. doi:10.2134/agronj2005.0222 

Gregg DJ & Saddler JN 1996:  Factors affecting cellulose hydrolysis and the potential of enzyme 

recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and 

Bioengineering, 51: 375-383. 

mailto:bdale@egr.msu.edu


81 
 

Gregorio APF, Da Silva IR, Sedarati MR & Hedger J 2006: Changes in lignin degrading enzymes 

during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus 

troyanus and Marasmius pallescens. Mycological Research, 110: 161-168. 

Griffith GS & Boddy L 1991: Fungal decomposition of attached angiosperm twigs. IV. Effect of 

water potential on interactions between fungi on agar and in wood. New Phytologist, 117: 633-

641.  

Griffith GS, Rayner ADM & Wildman HG 1994c: Interspecific interactions, mycelia 

morphogenesis and extracellular metabolite production in Phlebia radiata (Aphyllophorales). 

Nova Hedwigia, 59: 311-334 

Griffith GS, Rayner ADMR & Wildman HG 1994a: Interspecific interactions and mycelial 

morphogenesis of Hypholoma fasciculare (Agaricaceae). Nova Hedwig, 59:47–75. 

Griffith GS, Rayner, ADM & Wildman HG 1994b: Interspecific interactions, mycelial 

morphogenesis and extracellular metabolite production in Phlebia radiata (Aphylophorales) 

Nova Hedwigia, 59: 311-329. 

Gruber S, Kubicek CP & Seidl-Seiboth V 2011: Differential Regulation of Orthologous Chitinase 

Genes in Mycoparasitic Trichoderma Species.  Applied and Environmental 

Microbiology, 77(20): 7217-7226.  

Gubitz GM, Mansfield SD, Bohm D & Saddler JN 1998: Effect of endoglucanases and 

hemicelluloses in magnetic and floatation deinking of xerographic and laser printed studys. 

Journal of Biotechnology, 65: 209-215. 

Güerri-Agulló B, López-Follana R, Asensio L, Barranco P & Lopez-Llorca LV 2011: Use of a 

Solid Formulation of Beauveria bassiana for Biocontrol of the Red Palm Weevil 

(Rhynchophorus ferrugineus)(Coleoptera: Dryophthoridae) Under Field Conditions in SE 

Spain. Florida Entomologist, 94(4): 737-747. 

Guillen F, Martínez AP & Evans CS 1994: Hydrogen peroxide producing system of Pleurotus 

eryngii involving the extracellular enzyme aryl-alcohol oxidase. Applied Microbiology and 

Biotechnology, 41(4): 465-470.  

Ha MA, Apperley DC, Evans BW, Huxham M, Jardine WG, Vietor RJ, Reis D, Vian B & Jarvis 

MC 1998: Fine structure in cellulose microfibrils: NMR evidence from onion and quince. 

Plant Journal, 16: 183-190. 

Hakulinen N, Kruus K, Koivula A & Rouvinen J 2006: A crystallographic and spectroscopic study 

on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. 

Biochemical and Biophysical Research Communications, 350: 929-934 



82 
 

Hamelinck CN, van Hooijdonk G & Faaij APC 2005: Ethanol from lignocellulosic biomass: 

techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 

28(4): 384-410. 

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J & Javed S 2013: Chitinases: 

An update. Journal of Pharmacy and Bioallied Sciences, 5(1): 21-29.  

Hammel KE, Kapich AN, Jensen K.A & Ryan ZC 2002: Reactive oxygen species as agents of 

wood decay by fungi. Enzyme and Microbial Technology, 30:445-453. 

Hanson JR 2008a: Fungal metabolites derived from amino acids. In: Hanson JR. (Ed.): The 

Chemistry of Fungi. The Royal Society of Chemistry. Cambridge: Thomas Graham House, 

pp. 32-46.  

Hanson JR 2008b: Pigments and odours of fungi. In: Hanson J.R. (Ed.). The Chemistry of Fungi. 

The Royal Society of Chemistry. Cambridge: Thomas Graham House, pp. 127-142. 

Haran S, Schickler H & Chet I 1996: Molecular mechanisms of lytic enzymes involved in the 

biocontrol activity of Trichoderma harzianum. Microbiology-UK, 142: 2321–2331 

Harman GE 2006: Overview of Mechanisms and Uses of Trichoderma spp. In Symposium:   

Trichoderma spp. Phytopathology, 96(2):190-194  

Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer C & Tronsmo A 1993: 

Chitinolytic enzymes of Trichoderma harzianum : purificarion of chitobiosidase and 

endochitinast. Phytopathatology, 83: 313-318. 

Harun S, Balan V, Takriff MS, Hassan O, Jahim J & Dale BE 2013: Performance of AFEXTM 

pretreated rice straw as source of fermentable sugars: the influence of particle size. 

Biotechnology for Biofuels, 6(1):1 doi: 10.1186/1754-6834-6-40 

Hatakka A & Hammel KE 2010:  Fungal biodegradation of lignocellulose. In Hofrichter M (ed.): 

Industrial Application (2nd Ed.) The Mycota Vol. X. Springer: Berlin, pp. 319-340.  

Hatakka A 1994: Lignin-modifying enzymes from selected white-rot fungi: production and role in 

lignin degradation. FEMS Microbiology Reviews, 13(2-3): 125-135. 

Hatakka A 2001: Biodegradation of lignin. In Hofrichter M & Steinbüchel A (eds.) Biopolymers, 

Vol. 1: Lignin, humic substances and coal. Wiley-VCH: Weinheim, pp.129-180. 

Hatakka A, Lundell T, Hofrichter M & Maijala P 2002: Manganese peroxidase and its role in the 

degradation of wood lignin. In: Mansfield SD & Saddler JN (Eds.). Applications of Enzymes 

to Lignocellulosics, New York: American Chemical Society Symposium Series, pp. 7-15.  

Hatvani N, Kredics L, Antal Z & Mécs I 2002: Changes in the activity of extracellular enzymes in 

dual cultures of Lentinula edodes and mycoparasitic Trichoderma strains. Journal of Applied 

Microbiology, 92: 415–423. 



83 
 

Havukkala I, 1991: Chitinolytic enzymes and plant pests. In: Ilag LL & Raymundo AK (Eds.). 

Biotechnology in the Philippines towards the Year 2000. Proceedings of the Second Annual 

Pacific Biotechnology Congress, Las Banns: SEARCA, University of the Philippines, pp. 127-

140. 

Hayashi T & Kaida R 2011: Functions of xyloglucan in plant cells. Molecular Plant, 4(1):17-24. 

Heinfling A, Martinez MJ, Martinez AT, Bergbauer M & Szewzyk U 1998: Transformation of 

industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in 

a manganese-independent reaction. Applied and Environmental Microbiology, 64: 2788-2793. 

Hendriks AT & Zeeman G 2009: Pretreatments to enhance the digestibility of lignocellulosic 

biomass. BioResource Technology, 100(1): 10-18. 

Henriksson G, Zhang L, Li J, Ljungquist P, Reitberger T, Pettersson G & Johansson G 2000: Is 

cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? 

Biochimica et Biophysica Acta, 1480(1-2): 83-91. 

Hernández A, Sandoval N, Mallerman J, García-Pérez J, Farnet A, Perraud-Gaime I & Alarcón E 

2015: Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus. 

Electronic Journal of Biotechnology, 18: 327-332. 

Hernández-Ortega A, Ferreira P& Martínez AT 2012: Fungal aryl-alcohol oxidase: a peroxide-

producing flavoenzyme involved in lignin degradation. Applied Microbiology and 

Biotechnology, 93(4):1395-410.  

Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ & Knox JP 2010: Carbohydrate-binding 

modules promote the enzymatic deconstruction of intact plant cell walls by targeting and 

proximity effects. Proceedings of the National Academy of Science USA, 107: 15293-15298. 

Hilden KS, Bortfeldt R, Hofrichter M, Hatakka A & Lundell TK 2008: Molecular characterization 

of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places 

the fungus in the Corticioid genus Phlebia. Microbiology, 154(8):2371-2379. 

Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW & Foust TD 2007: 

Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315: 

804-807. 

Hinman ND, Schell DJ, Riley CJ, Bergeron PW & Walter PJ 1992: Preliminary estimate of the 

cost of ethanol production for SSF technology. Applied Biochemistry and Biotechnology, 

34/35: 639-649. 

Hinman ND, Schell DJ, Riley J, Bergeron PW & Walter PJ 1992: Preliminary estimate of the cost 

of ethanol production for SSF technology. Applied Biochemistry and Biotechnology, 34(1): 

639-649 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11004557
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hern%C3%A1ndez-Ortega%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22249717
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferreira%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22249717
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mart%C3%ADnez%20AT%5BAuthor%5D&cauthor=true&cauthor_uid=22249717


84 
 

Hiscox J, Baldrian P, Rogers HJ & Boddy L 2010: Changes in oxidative enzyme activity during 

interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal 

Genetic Biology, 47: 562-571. 

Hiscox J, Savoury M, Vaughan IP, Müller CT & Boddy L 2015: Antagonistic fungal interactions 

influence carbon dioxide evolution from decomposing wood. Fungal Ecology, 14: 24-32. 

Hofrichter M 2002: Review: Lignin conversion by manganese peroxidase (MnP). Enzyme 

Microbial Technology, 30(4): 454-466. 

Hofrichter M, Scheibner K, Schneegaß I & Fritsche W 1998:  Enzymatic combustion of aromatic 

and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Applied and 

Environmental Microbiology, 64 (2): 399-404. 

Hofrichter M, Vares T, Kalsi K, Galkin S, Scheibner K, Fritsche W & Hatakka A 1999: Production 

of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-

DHP) during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma 

frowardii. Applied Environmental Microbiology, 65(5): 1864-1870 

Högberg N, Svegården IB & Kauserud H 2006: Isolation and characterization of 15 polymorphic 

microsatellite markers for the devastating dry rot fungus, Serpula lacrymans. Molecular 

Ecology Notes, 6(4): 1022-1024 

Holdenrieder O & Greig BJW 1998: Biological methods of control. In: Woodward S, Stenlid J, 

Karjalainen R & Huttermann A (Eds.) Heterobasidion annosum. Biology, ecology, impact and 

control. CAB International, Wallingford. pp 235-258. 

Holtzapple MT, Jun JH, Ashok G, Patibandla SL & Dale BE 1991: The ammonia freeze explosion 

(AFEX) process- A practical lignocellulose pretreatment. Applied Microbiology and 

Biotechnology, 28-29: 59-74. 

Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE & Dale BE 1992: Pretreatment of lignocellulosic 

municipal solid waste by ammonia fiber explosion (AFEX). Applied Biochemistry and 

Biotechnology, 34(1): 5-21 

Hoshino F, Kajino T, Sugiyama H, Asami O & Takahashi H 2002: Thermally stable and hydrogen 

peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Letters, 530: 

249-252. 

Hossain SM & Anantharaman N 2006: Activity enhancement of ligninolytic enzymes of Trametes 

versicolor with bagasse powder.  African Journal of Biotechnology, 5(1):189-194 

Howell CR 2003: Mechanisms employed by is Trichoderma species in the biological control of 

plant diseases: the history and evolution of current concepts. Plant Diseases, 87: 4-10. 

Hsu TA, Ladisch MR & Tsao GT 1980: Alcohol from cellulose. Chemical Technology, 10(5): 315-

319. 



85 
 

Huang XL & Penner MH 1991: Apparent substrate inhibition of the Trichoderma reesei cellulase 

system. Journal of Agricultural Food Chemistry, 39: 2096-2100. 

Huang W, Zhao H, Ni J, Zuo H, Qiu L, Li L & Li H 2008: The best utilization of D. zingiberensis 

C.H. Wright by aneco-friendly process. BioResource Technology, 99(15):7407-7411.  

Hughes MN & Poole RK 1991: Metal speciation and microbial growth the hard (and soft) facts. 

Journal of General Microbiology, 137: 725-734. 

Hulme MA & Shields JK 1970: Biological control of decay in wood by competition for non-

structural carbohydrates. Nature, 227: 300-301. 

Humphreys JM & Chapple C 2002: Rewriting the lignin roadmap. Current Opinion in Plant 

Biology, 5: 224-229. 

Hunsley D & Burnett JH 1970: The ultrastructural architecture of the walls of some hyphal fungi. 

Journal of Genetics and Microbiology, 62:203-218. 

Hynes J, Müller CT, Jones TH & Boddy L 2007: Changes in volatile production during the course 

of fungal mycelia interactions between Hypholoma fasciculare and Resinicium bicolor. 

Journal of Chemical Ecology, 33: 43-57. 

Iakovlev A & Stenlid J 2000: Spatiotemporal patterns of laccase activity in interacting mycelia of 

wood-decaying basidiomycete fungi. Microbial Ecology, 39: 236-245.  

Iakovlev A, Olson Å, Elfstrand M & Stenlid J 2004: Differential gene expression during 

interactions between Heterobasidion annosum and Physisporinus sanguinolentus. FEMS 

Microbiology Letters, 241:79-85. 

Ikediugwu FE & Webster J 1970: Hyphal interference in a range of coprophilous fungi. 

Transactions of the British Mycological Society, 54(2): 205-206. 

Ikediugwu FE 1976: The interface in hyphal interference by Peniophora gigantea against 

Heterobasidion annosum. Transactions of the British Mycological Society, 66(2): 291-296. 

Inbar J & Chet I 1994: A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: 

purification, characterization and role in mycoparasitism. Microbiology, 140 (3): 651-657.   

Inbar J & Chet I 1995: The role of recognition in the induction of specific chitinases during 

mycoparasitism by Trichoderma harzianum. Microbiology, 141: 2823-2829. 

Iqbal HMN, Asgher M & Bhatti HN 2011: Optimization of physical and nutrional factors for 

synthesis of lignin degrading enzymes by novel strain of Trametes versicolor. BioResources, 

6(2):1273-1287. 

Irobaa KL, Tabila LG, Dumonceaux T & Baika O-D 2013: Effect of alkaline pretreatment on 

chemical composition of lignocellulosic biomass using radio frequency heating. Biosystems 

Engineering, 116(4): 385-398 

http://www.sciencedirect.com/science/article/pii/S1537511013001530#aff1
http://www.sciencedirect.com/science/article/pii/S1537511013001530
http://www.sciencedirect.com/science/article/pii/S1537511013001530#aff1
http://www.sciencedirect.com/science/journal/15375110/116/4


86 
 

Ishigami T & Yamada Y 1986: Purification and properties of polyphenol oxidase from 

Chaetomium thermophilum, a thermophilic fungus. Journal of General and Applied 

Microbiology, 32: 293-301. 

Itoh H, Wada M, Honda Y, Kuwahara M & Watanabe T 2003: Bioorganosolv pretreatments of 

simultaneous saccharisation and fermentation of cellulases and hemicellulases by capillary 

electrophoresis. Analytical Biochemistry, 317(1): 85-93 

Iyer G & Chattoo BB 2003: Purification and characterization of laccase from the rice blast fungus, 

Magnaporthe grisea. FEMS Microbiology Letter, 227: 121-126. 

Jacquet N, Maniet G, Vanderghem C, Delvigne F & Richel A 2015: Application of steam explosion 

as pretreatment on lignocellulosic material: a review. Industrial and Engineering Chemistry 

Research, 54(10): 2593-2598 

Janusz G, Kucharzyk KH, Pawlik A, Staszczak C& Paszczynski AJ 2013: Fungal laccase, 

manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzyme and 

Microbial Technology, 52: 1-12.  

Järvinen J, Taskila S, Isomäki R & Ojamo H 2012: Screening of white-rot fungi manganese 

peroxidases: a comparison between the specific activities of the enzyme from different native 

producers. AMB Express, 2: 62-71. 

Jaworski A, Kirschbaum J & Brückner H 1999: Structures of trichovirin II, peptaibol antibiotics 

from the mold Trichoderma viride NRRL 5243. Journal of Peptide Science, 5: 341-351.  

Jeffries P 1997: Mycoparasitism. In: Wicklow DT & Soderstrom B (Eds.). The Mycota IV. 

Environmental and Microbial Relationships. Berlin: Springer, pp. 149-164 

Jensen Jr. KA, Houtman CJ, Ryan ZC & Hammel KE 2001: Pathways for extracellular Fenton 

chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Applied and Environmental 

Microbiology, 67 (6): 2705-2711. 

Jiang N, Xiao D, Zhang D, Sun N, Yan B & Zhu X 2009: Negative roles of a novel nitrogen 

metabolite repression-related gene, TAR 1, in laccase production and nitrate utilization by the 

basidiomycete Criptococcus neoformans. Applied and Environmental Microbiology, 75: 

6777-6782.  

Johansson EE, Lind J & Ljunggren S 2000: Aspects of the chemistry of cellulose degradation and 

the effect of ethylene glycol during ozone delignification of kraft pulps. Journal of Pulp and 

Paper Science, 26(7): 239-244. 

Jones SM & Solomon EI 2015: Electron Transfer and Reaction Mechanism of Laccases. Cellular 

and Molecular Life Sciences : Cellular and Molecular Life Sciences, 72(5): 869-883.  

Jönsson JL & Martín C 2016: Pretreatment of lignocellulose: Formation of inhibitory by-products 

and strategies for minimizing their effects. BioResource Technology, 199:103-112. 

http://www.sciencedirect.com/science/journal/09608524/199/supp/C


87 
 

Jørgensen H, Eriksson T, Börjesson J, Tjerneld F & Olsson L 2003. Purification and 

characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 

20888. Enzyme and Microbial Technology, 32(7): 851-861. 

Jørgensen H, Mørkeberg A, Korgh KBR & Olsson L 2005:  Production of cellulases and 

hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase 

adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36: 42-48. 

Jørgensen H, Kristensen JB& Felby C 2007: Enzymatic conversion of lignocellulose into 

fermentable sugars: challenges and opportunities.Biofuels, Bioproducts and Biorefining, 1(2): 

119-134. 

Kachlishvili E, Penninckx MJ, Tsiklauri N & Elisashvili V 2006: Effect of nitrogen source on 

lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. 

World Journal of Microbiology and Biotechnology, 22:391-397. 

Kalisz HM, Wood D & Moore D 1986: Regulation of extracellular laccase production of Agaricus 

bisporius by nitrogen sources in the medium. FEMS Microbiology Letters, 34:65-68.  

Kamada F, Abe S, Hiratsuka N, Wariishi H & Tanaka H 2002: Mineralization of aromatic 

compounds by brown-rot basidiomycetes – mechanisms involved in initial attack on the 

aromatic ring. Microbiology, 148:1939-1946 

Kapich AN, Prior BA, Botha A, Gatkin S, Lundell T & Hatakka A 2004: Effect of lignocellulose 

containing substrate on production of ligninolytic peroxidases in submerged cultures of 

Phanerochaete chrysosporium ME-446. Enzyme and Microbial Technology, 34(2):187-195. 

Kashino X, Nishida T, Takahara Y, Fujita K, Kondo R & Sakai K 1993: Biomechanical pulping 

using white-rot fungus IZU-154. Tappi Journal, 76:167-171. 

Kaštovská E, Picek T, Bárta J, Mach J, Cajthaml T & Edwards K 2012: Nutrient addition retards 

decomposition and C immobilization in two wet grasslands. Hydrobiologia, 692 (1):67-81. 

Keddy PA 1989: Competition. New York: Chapman and Hall. 

Keegstra K 2010: Plant cell walls. Plant Physiology, 154(2):483-486. 

Kersten P & Cullen D 2007: Extracellular oxidative systems of the lignin-degrading Basidiomycete 

Phanerochaete chrysosporium. Fungal Genetics and Biology, 44(2):77-87. 

Keshwani DR & Cheng JJ 2010: Microwave‐based alkali pretreatment of switchgrass and coastal 

Bermuda grass for bioethanol production. Biotechnology Progress, 26(3):644-652. 

Keshwani, DR 2009: Microwave pre-treatment of switch grass for bioethanol production. PhD 

thesis. North Carolina University Raleigh: Philosophy Biological and Agricultural 

Engineering, United States America. 



88 
 

Khammuang S, Yuwa-Amornpitak T, Svasti J & Sarnthima R 2013: Copper induction of laccases 

by Lentinus polychrous under liquid-state fermentation. Biocatalysis and Agricultural 

Biotechnology, 2(4): 357-362. 

Khan TS & Mubeen U 2012: Wheat straw: A pragmatic overview. Current Research Journal of 

Biological Sciences, 4(6): 673-675. 

 Khanam R, Prasuna G & Akbar S 2012: Laccases production by improved strain of Pycnoporus 

cinnabarinus in media with improvident. International Journal of PharmTech, 4:4867-4877. 

Khazraji AC & Robert S 2013: Self assembly and intermolecular forces when cellulose and water 

interact using molecular modeling. Journal of Nanomaterials, 745979: 1 – 12 

doi:10.1155/2013/745979 

Kilzer FJ & Broido A 1965: Speculations on nature of cellulose pyrolysis. Pyrodynamics, 2:151-

163. 

Kim JS, Lee YY & Kim TH 2016: A review on alkaline pretreatment technology for bioconversion 

of lignocellulosic biomass. BioResource Technology, 199: 42-48 

Kim MS & Day DF 2011: Composition of sugar cane, energy cane, and sweet sorghum suitable 

for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and 

Biotechnology, 38(7): 803-807 

Kim S & Dale BE 2004: Global potential bioethanol production from wasted crops and crop 

residues. Biomass Bioenergy, 4: 361−375. 

Kim TH & Lee YY 2005a: Pretreatment of corn stover by soaking in aqueous ammonia. In: Twenty-

Sixth Symposium on Biotechnology for fuels and chemicals. Humana Press. pp. 1119–1131. 

Kim TH & Lee YY 2005b: Pretreatment and fractionation of corn stover by ammonia recycle 

percolation process. BioResource Technology. 96(18): 2007-2013. 

Kirk TK & Adler ER 1970: Methoxyl-deficient structural elements in lignin of sweetgum decayed 

by a brown-rot fungus. Acta Chemica Scandinavica, 24: 3379-3390. 

Kirk TK & Cullen D 1998: Enzymology and molecular genetics of wood degradation by white-rot 

fungi. In: Young RA, Akhtar M (Eds.). Environmentally Friendly Technologies for the Pulp 

and Paper lndustry. John Wiley & Sons, Inc, pp. 273-306. 

Kirk TK & Farrell RL 1987: Enzymatic "combustion": the microbial degradation of lignin. Annual 

Review of Microbiology, 41: 465-505. 

Kirk TK 1975: Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. 

Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of 

Wood, 29(3): 99-107. 

Kiziewicz B 2005: aquatic fungi growing on seeds of plants in various types of water bodies of 

Podlaise province –Polosh. Journal of Environmental Studies, 14(1): 49-55 

https://www.researchgate.net/researcher/81279957_Ali_Chami_Khazraji


89 
 

Klemm D, Philipp B, Heinze T, Heinze U & Wagenknecht W 1998: Comprehensive Cellulose 

Chemistry, Vol. 2, Functionalization of Cellulose, Wiley-VCH: Weinheim, pp. 221–235. 

Klinke HB, Olsson L, Thomsen AB & Ahring BK 2003: Potential inhibitors from wet oxidation of 

wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation 

and fermentation by yeast. Biotechnology and Bioengineering, 81(6): 738-747. 

Kluczek-Turpeinen B 2007: Lignocellulose degradation and humus modification by the fungus 

Paecilomyces inflatus. PhD Thesis. University of Helsinki: Division of Microbiology, 

Department of Applied Chemistry and Microbiology, Finland. 

Kocyigit A, Pazarbasi MB, Yasa I, Ozdemir G & Karaboz I   2012: Production of laccase from 

Trametes trogii TEM H2: a newly isolated white-rot fungus by air sampling. Journal of Basic 

Microbiology, 52: 1-9. 

Koenigs JW 1974: Production of hydrogen peroxide by wood-rotting fungi in wood and its 

correlation with weight loss, depolymerization, and pH changes. Archives of Microbiology, 

99(1): 129-145. 

Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, Goodell 

B, Alfredsen G, Westereng B, Eijsink VG& Yoshida M 2016: Characterization of an LPMO 

from the brown-rot fungus Gloeophyllum trabeum with broad xyloglucan specificity, and its 

action on cellulose-xyloglucan complexes.  Applied and Environmental Microbiology, 1768-

1716.  

Korhonen K, Lipponen K, Bendz M, Johansson M, Ryen I, Venn K, Seiskari P & Niemi M 1993: 

Control of Heterobasidion annosum by stump treatment with ‘rotstop,’ a new commercial 

formulation of Phlebiopsis gigantea.In: Johansson M & Stenlid J (Eds.).8th International 

Conference on Root and Butt Rot. University of Agriculture, Uppsala, pp. 675-685. 

Kubicek C P, Mach RL, Peterbauer CK & Lorito M 2001: Trichoderma: From genes to biocontrol. 

Journal of Plant Pathology, 83(2): 11-23. 

Kuhad RC, Singh A & Eriksson KE 1997: Microorganisms and enzymes involved in degradation 

of plant fibre cell walls. Advances in Biochemical Engineering/ Biotechnology, 57: 45-125. 

Kuhar F & Papinutti L 2014: Optimization of laccase production by two strains of Ganoderma 

lucidum using phenolic and metallic inducers. Revista Argentina de Microbiologia, 46:144-

149. 

Kumar P, Barrett DM, Delwiche MJ & Stroeve P 2009: Methods for pre-treatment of 

lignocellulosic biomass for efficient hydrolysis and bio-fuel production.  Industrial and 

Engineering Chemistry Research, 48: 3713-3729. 

Kurek B & Gaudard F 2000: Oxidation of spruce wood sawdust by MnO2 plus oxalate: a 

biochemical investigation. Journal of Agricultural and Food Chemistry, 48: 3058-3062. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Goodell%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27590806
https://www.ncbi.nlm.nih.gov/pubmed/?term=Goodell%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27590806
https://www.ncbi.nlm.nih.gov/pubmed/?term=Alfredsen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=27590806
https://www.ncbi.nlm.nih.gov/pubmed/?term=Westereng%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27590806
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eijsink%20VG%5BAuthor%5D&cauthor=true&cauthor_uid=27590806
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yoshida%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27590806


90 
 

Kushwaha M & Verma AK 2014: Antagonistic activity of Trichoderma spp, (a bio-control agent) 

against isolated and identified plant pathogens. International Journal of Clinical and 

Biological Sciences, 1: 1-6. 

Lankinen PV, Bonnen AM, Anton LH, Wood DA, Kalkkinen N, Hatakka A & Thurston CF 2001: 

Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid 

substrate cultures of Agaricus bisporus. Applied Microbiology and Biotechnology, 55(2): 170-

176. 

Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ & Yun JW 2004: Submerged culture 

conditions for the production of mycelial biomass and exopolysaccharides by the edible 

Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35(5): 369-376. 

Lee, IY, Jung KH, Lee CH & Park YH 1999: Enhanced production of laccase in Trametes 

versicolor by the addiction of ethanol. Biotechnology Letters, 21(11): 965-968. 

Leonowicz A, Cho N S, Luterek J, Wilkolazka A, Wojtas M, Matuszewska A, Hofrichter M, 

Wesenber D & Rogalski J 2001: Fungal laccase: properties and activity on lignin. Journal of 

Basic Microbiology, 41(3-4): 185-227. 

Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, 

Kalkkinen N, Golovleva LA, Cammack R, Thurston CF & Hatakka A 1997: Blue and yellow 

laccases of ligninolytic fungi. FEMS Microbiology Letters, 156: 9-14. 

Li CY 1981: Phenoloxidase and peroxidase activities in zone lines of Phellinus 

weirii. Mycologia, 73: 811-821. 

Li D, Alic M, Brown JA & Gold MH 1995: Regulation of manganese peroxidase gene transcription 

by hydrogen peroxide, chemical stress, and molecular oxygen. Applied and Environmental 

Microbiology, 61: 341-345. 

Li H, Pu Y, Kumar R, Ragauskas AJ & Wyman CE 2014 : Investigation of lignin deposition on 

cellulose during hydrothermal pretreatment, its effect o cellulose hydrolysis, and underlying 

mechanisms. Biotechnology and Bioengineering, 111(3):485-492 

Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW &Keegstra K 2007: Functional 

genomic analysis supports conservation of function among cellulose synthase-like a gene 

family members and suggests diverse roles of mannans in plants. Plant Physiology, 143: 1881-

1893 

Lindahl B & Finlay R 2006: Activities of chitinolytic enzymes during primary and secondary 

colonization of wood by basidiomycetous fungi. New Phytologist, 169:389-397.  

Lindner DL & Banik MT 2008: Molecular phylogeny of Laetiporus and other bown rot polypore 

genera in North America. Mycologia, 100(3): 417-430.  



91 
 

Lisov AV, Leontievsky AA & Golovleva IA 2003: hybrid Mn-peroxidase from the lignolytic 

fungus Pantus tigrinus 8/18. Isolation, substrate specificity and catalytic cycle. Biochemistry, 

68(9):1027-1035. 

Lockwood JL 1992: Exploitation competition. In: Caroll, GC & Wicklow DT (Eds.). The fungal 

community – its organization and role in the ecosystem, 2nd ed. Marcel Dekker, Inc., New 

York. pp. 243-263. 

Lomascolo A, Record E, Herpoël-Gimbert I, Delattre M, Robert JL, Georis J, Dauvrin T, Sigoillot 

JC & Asther M 2003: Overproduction of laccase by a monokaryotic strain of Pycnoporus 

cinnabarinus using ethanol as inducer. Journal of Applied Microbiology, 94(4): 618-624. 

Lonergan GT 1992: White-rot fungi – An environmental panacea? Australasian Biotechnology, 

2(4): 214-217. 

Lorito M, Hayes CK, Di Pietro A, Woo SL & Harman GE 1994: Purification, characterization and 

synergistic activity of a glucan 1,3-β-glucosidase and an N-acetylglucosaminidase 

from Trichoderma harzianum. Phytopathology, 84: 398-405. 

Lorito M, Woo SL, D’Ambrosio M, Harman GE, Kubicek CP & Scala F 1996: Synergistic 

interaction between cell wall degrading enzymes and membrane affecting compounds. 

Molecular Plant-Microbe Interactions, 9: 206-213.  

Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M. & Jansson J K 2004: In vivo study of 

Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent 

protein reporter system. Applied and Environmental Microbiology, 70(5): 3073-3081. 

Luo X, Gleisner R, Tian S, Negron J, Zhu W, Horn E, Pan XJ & Zhu JY 2010: Evaluation of 

mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite 

pretreatment to overcome recalcitrance of lignocellulose. Industrial and Engineering 

Chemistry Research, 49(17): 8258-8266. 

Luterbacher JS, Tester JW & Walker LP 2010: High-solids biphasic CO2–H2O pre-treatment of 

lignocellulosic biomass. Biotechnology and Bioengineering, 107: 451-460. 

Lynd LR, Weimer PJ, van Zyl WH & Pretorius IS 2002:  Microbial cellulose utilization: 

fundamentals and biotechnology. Microbiology and Molecular Biology Review, 66(3): 506-

577. 

Lyr H 1958: Die Inuktion der laccase-bildung bei Collybia velutipes Curt. Archiv Für 

Microbiologie, 28: 310-324.  

Lyr H 1963: Enzymatiscjes detoxifikation chlorierter phenole. Phytopathologie Zeitscchrift, 38: 

342-354. 

Ma B, Mayfield MB, Godfrey BJ & Gold MH 2004: Novel promoter sequence required for 

manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete 

chrysosporium. Eukaryotic Cells, 3: 579-588. 



92 
 

Mach RL, Peterbauer C K, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M & 

Kubicek CP 1999: Expression of two major chitinase genes of Trichoderma atroviride (T. 

harzianum P1) is triggered by different regulatory signals. Applied and Environmental 

Microbiology, 65: 1858–1863. 

Madhavi V & Lele SS 2009: Laccase: properties and applications. BioResources, 4(4):1694-1717 

Magnusson L, Islam R, Sparling R, Levin D & Cicek N 2008: Direct hydrogen production from 

cellulosic waste materials with a single-step dark fermentation process. International Journal 

of Hydrogen Energy, 33: 5398-403. 

Mahajan, S. 2011: Characterization of the white-rot fungus, Phanerochaete carnosa, through 

proteomic methods and compositional analysis of decayed wood fibre. PhD thesis. University 

of Toronto: Department of Chemical Engineering and Applied Chemistry. 

http://tspace.library.utoronto.ca 

Mai V & Morris JG 2004: Colonic bacterial flora: changing understandings in the molecular age. 

The Journal of Nutrition, 134: 459-464. 

Maijala P 2005: Co-culturing of white-rot fungi on wood – potential in biopulping?  In: Seminar 

on Forest Pathology, Finnish Forest Research Institute, Vantaa Research Centre.  

Mais U, Esteghlalian A, Saddler J & Mansfield S 2002: Enhancing the Enzymatic Hydrolysis of 

Cellulosic Materials Using Simultaneous Ball Milling. Applied Biochemistry and 

Biotechnology, 98: 815-839. 

Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE & Gerlt JA 2014: Roles of Small 

Laccases from Streptomyces in Lignin Degradation. Biochemistry, 53(24): 4047-4058 

Makela MR, Hilden K, Hatakka A & Lundell TK 2009: Oxalate decarboxylase of the white-rot 

fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced 

expression on wood and in liquid cultures. Microbiology, 155(8): 2726-2748 

Mantovani TRD, Linde GA & Colauto NB 2007: Effect of the addition of nitrogen sources to 

cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth. Canadian Journal 

of Microbiology, 53: 139-143. 

Marco JL, Valadares-Inglis MC & Felix CR 2003: Production of hydrolytic enzymes by 

Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent 

of witches' broom of cocoa. Brazilian Journal of Microbiology, 34(1): 33-38. 

Margolles-Clark E, Harman GE & Penttilä M 1996: Enhanced expression of endochitinase in 

Trichoderma harzianum with cbh1 promoter of Trichoderma reesei. Applied and 

Environmental Microbiology, 62: 2152-2155. 

Markovich NA & Kononova G L 2003: Lytic enzymes of Trichoderma and their role in plant 

defense from fungal disease: A Review. Applied Microbiology and Microbiology, 39(4): 341-

351. 



93 
 

Martín C & Thomsen, AB 2007: Wet oxidation pretreatment of lignocellulosic residues of 

sugarcane, rice, cassava and peanuts for ethanol production. Journal of Chemical Technology 

and Biotechnology, 82: 174-181.  

Martin C, Marcet M & Thomsen AB 2008: A Comparison between wet oxidation and steam 

explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. 

BioResouces, 13(3): 670-683 

Martı́nez AT 2002: Molecular biology and structure-function of lignin-degrading heme 

peroxidases. Enzyme and Microbial Technology, 30(4): 425-444. 

Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, 

Gutierrez A & del Rio JC 2005: Biodegradation of lignocellulosics: microbial, chemical, and 

enzymatic aspects of the fungal attack of lignin. International Microbiology, 8: 195-204. 

Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, 

Coutinho PM, Cullen D & Danchin EG 2008: Genome sequencing and analysis of the 

biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature 

Biotechnology, 26(5): 553-560. 

Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-

Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, 

Lindquist E, Sabat G, Splinter BonDurant S, Larrondo LF, Canessa P, Vicuna R, Yadav J, 

Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, 

Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, 

Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver 

D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R & Cullen 

D 2009: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta 

supports unique mechanisms of lignocellulose conversion. Proceedings of the National 

Academy of Sciences, 106(6): 1954-1959 

McGinnis GD, Wilson WW & Mullen CE 1983: Biomass pretreatment with water and high-

pressure oxygen. The wet-oxidation process. Industrial and Engineering Chemistry Product 

Research and Development, 22(2): 352-357. 

McMillian JD 1994: Pretreatment of lignocellulosic biomass. In: ACS Symosium series (USA) 

Mes-Hartree M, Dale BE & Craig WK 1988: Comparison of steam and ammonia pre-treatment for 

enzymatic hydrolysis of cellulose. Applied Microbiology and Biotechnology, 29: 462-468. 

Messner K & Srebotnik E 1994: Biopulping: An overview of developments in an environmentally 

safe paper-making technology. FEMS Microbiology Reviews, 13: 351-364. 

Mester TA & Field AJ 1997: Optimization of manganese peroxidase production by the white-rot 

fungus Bjerkandera sp. strain BOS55. FEMS Microbiology Letters, 155: 161-168. 



94 
 

Miao Z, Grift TE, Hansen AC & Ting KC 2011: Energy requirement for communition of biomass 

in relation to particle physical properties. Industrial Crop Production, 33(2): 504-513. 

Michniewicz A, Ullrich R, Ledakowicz S & Hofrichter M 2006: The white-rot fungus Cerrena 

unicolor strain 137 produces two laccase isoforms with different physico-chemical and 

catalytic properties. Applied Microbiology and Biotechnology, 69(6): 682-688. 

Mikiashvili N, Elisashvili V, Wasser S & Nevo E 2005: Carbon and nitrogen sources influence the 

ligninolytic enzyme activity of Trametes versicolor. Biotechnology Letters, 27(13): 955-959. 

Mikiashvili N, Solomon P, Wasser S, Nevo E & Elisashvili V 2006: Effects of carbon and nitrogen 

sources on Pleurotus ostreatus ligninolytic enzyme activity. World Journal of Microbiology 

and Biotechnology, 22: 999-1002.  

Milagres AMF, Carvalho W & Ferraz AL 2011: Topochemistry, porosity and chemical 

composition affecting enzymatic hydrolysis of lignocellulosic materials. In: Buckeridge MS 

& Goldman GH (Eds.). Routes to Cellulosic Ethanol, Springer: Berlin. p. 53. 

Min KL, Kim YH, Kim YW, Jung HS & Hah YC 2001: Characterization of a Novel Laccase 

Produced by the Wood-Rotting Fungus Phellinus ribis. Archives of Biochemistry and 

Biophysics, 392: 279-286. 

Misra PC 2006: Enzymology: Enzyme kinetics. Department of Biochemistry Lucknow 

University Lucknow. Available at: 

http://nsdl.niscair.res.in/jspui/bitstream/123456789/717/1/EnzymeKinetics.pdf [Accessed 

20/06/2013] 

Moore-Landecker E 2002: Fundamentals of the Fungi. 4th ed. New Jersey: Prentice Hall. 

Moore-Landecker E 1996: Fundamentals of the Fungi. London: Prentice-Hall. 

Moreira MS, Feijoo G, Mester T, Mayorga P, Sierra-Alvarez R & Field JA 1998: Role of Organic 

Acids in the Manganese-Independent Biobleaching System of Bjerkandera sp. Strain BOS55. 

Applied and Environmental Microbiology, 64(7): 2409-2417. 

Mosier N, Wyman C, Dale B, Elander R, Lee Y & Holtzapple M 2005b: Features of promising 

technologies for pre-treatment of lignocellulosic biomass. BioResource Technology, 96: 673-

686. 

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M & Ladisch M 2005a: Features of 

promising technologies for pretreatment of lignocellulosic biomass. BioResource Technology, 

96: 673-686. 

Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G & Zeilinger S 2012: Trichoderma–

Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of 

Microbiology, 52(4): 522-529.  



95 
 

Munoz C 1997: Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and 

participation in activation of molecular oxygen and Mn2+ oxidation. Applied and 

Environmental Microbiology, 63: 2166-2174. 

Mussatto SI & Teixeira JA 2010: Lignocellulose as raw material in fermentation processes. In 

Méndez-Vilaz A (Ed.). Current Research, Technology and Education Topics in 

AppliedMicrobiology and Microbial Biotechnology, Formatex, pp. 897-907.  

Mussatto SI, Fernandes M & Roberto IC 2007: Lignin recovery from brewer’s spent grain black 

liquor. Carbohydrate Polymers, 70: 218-223. 

Myers DK & Underwood, JF 1992: Report number: AGF-003-92. The Ohio State University 

Extension. Available at:http://www.ag.ohiostate.edu/˜ohioline/agf-fact/0003.html [Accessed 

20/06/2013] 

National Department of Agriculture, n.d. Maize profile. Available 

at: http://www.nda.agric.za/docs/Factsheet/maize.html [Accessed 20/06/2013] 

NationMaster 2005: agriculture grains corn production. Available at: 

http://www.nationmaster.com/red/pie/agr_gra_cor_pro_agriculture-grains-corn-production. 

[Accessed 20/06/2015] 

Necochea R, Valderrama B, Díaz-Sandoval S, Folch-Mallol JL, Vázquez-Duhalt R & Iturriaga G 

2005: Phylogenetic and biochemical characterisation of a recombinant laccase from 

Trametes versicolor. FEMS Microbiology Letters, 244(2): 235-241. 

Nhuchhen DR, Basu P & Acharya B 2014: A Comprehensive review on biomass torrefaction. 

International Journal of Renewable Energy and Biofuels, 4:1-56 

Nigam PS, Gupta N & Anthwal A 2009: Pre-treatment of agro-industrial residues. In Nigam PS & 

Pandey A (eds.):  Biotechnology for agro-industrial residues utilization. 1st Ed. Netherlands: 

Springer, pp. 13-33.  

Nilsson T, Daniel G, Kirk TK & Obst JR 1989: Chemistry and microscopy of wood decay by some 

higher ascomycetes. Holzforschung, 43: 11-18. 

Novotný Č, Svobodova K, Erbanova P, Cajthami T, Kasinath A, Lang E & Sasek V 2004: 

Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. 

Soil Biology and Biochemistry, 36: 1545-1551. 

Nygren CMR, Edqvist J, Elfstrand M, Heller G & Taylor AFS 2007: Detection of extracellular 

protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza, 17(3): 

241-248. 

Omann M & Zeilinger S 2010: How a Mycoparasite Employs G-Protein Signaling: Using the 

Example of Trichoderma. Journal of Signal Transduction, 123-126.  



96 
 

Ooshima H, Aso K, Harano Y & Yamamoto T 1984: Microwave treatment of cellulosic materials 

for their enzymatic hydrolysis. Biotechnology Letters, 6(5): 289-294. 

Palma C, Martınez AT, Lema JM & Martınez MJ 2000: Different fungal manganese-oxidizing 

peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. 

Journal of Biotechnology, 77(2): 235-45. 

Palmieri G, Giardina P, Bianco C & Sannia G 1998: A novel ‘white’laccase from Pleurotus 

ostreatus. Proceedings of the 7th International Conference on Biotechnology in the Pulp and 

Paper Industry, Vancouver, Canada, June 16-19, 1998, Oral presentations (A), 93-96. 

Palmieri G, Giardina P, Bianco C, Fontanella B & Sannia G 2000: Copper induction of laccase 

isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental 

Microbiology, 66(3):920-924. 

Palmqvist E & Hahn-Hägerdal B 2000:  Fermentation of lignocellulosic hydrolysates II: inhibitors 

and mechanisms of inhibition. BioResource Technology, 74: 25-33. 

Pandey A, Soccol CR, Nigam P & Soccol VT 2000: Biotechnological potential of agro-industrial 

residues. I: sugarcane bagasse. BioResource Technology, 74(1): 69-80. 

Pandya B & Albert S 2014: Evaluation of Trichoderma reesei as a compatible partner with some 

white-rot fungi for potential bio-bleaching in paper industry. Annals of Biological Research, 

5(4):43-51. 

Parawira W & Tekere M 2011: Biotechnological strategies to overcome inhibitors in lignocellulose 

hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1): 20-31. 

Parente JA, Salem-Izacc SM, Santana JM, Pereira M, Borges CL, Bailao AM & Soares CM 2010: 

A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal 

proteins. BioMed Central Microbiology 10:292. doi:  10.1186/1471-2180-10-292 

Park JW, Takahata Y, Kajiuchi T & Akehata T 1992: Effects of non-ionic surfactant on enzymatic 

hydrolysis of used newspaper. Biotechnology Bioengineering, 39: 117-120. 

Parke J & Gurian-Sherman D 2001: Diversity of Burkholderia cepacia complex and implications 

for risk assessment of biological control strains. Annual Review of Phytopathology, 39: 225-

258.  

Parmar HJ, Bodar NP, Lakhani HN, Patel SV, Umrania VV & Hassan MM 2015: Production of 

lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the 

causal agent of stem rot of groundnut. African Journal of Microbiology Research, 9(6): 365-

372. 

Patil R, Ghormade V & Deshpande M2000: Chitinolytic enzymes: an exploration. Enzyme and 

Microbial Technology, 26: 473-483. 



97 
 

Pauly M & Keegstra K 2008: Cell-wall carbohydrates and their modification as a resource for 

biofuels. Plant Journal, 54:559-568. 

Pearce MH 1990: In vitro interactions between Armillaria luteobubalina and other wood decay 

fungi. Mycological Research, 94: 753-761. 

Peberdy JF 1990: Fungal cell walls-a review. In: Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, 

MW & Copping, LG (Eds.). Biochemistry of cell walls and membranes in fungi. Berlin: 

Springer-Verlag, pp. 5–30. 

Peiris D, Dunn WB, Brown M, Kell DB, Roy I & Hedger JN 2008: Metabolite profiles of 

interacting mycelial fronts differ for pairings of wood decay basidiomycete fungus, Stereum 

hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus. Metabolomics, 

4: 52-62. 

Peiris DG 2009: Interspecific interactions between decomposer fungi. PhD Thesis. University of 

Westminster UK. 

Penner MH & Liaw ET 1994:  Kinetic consequences of high ratios of substrate to enzyme 

saccharification systems based on Trichoderma cellulose. In Himmel ME, Baker JO & 

Overends RP (Eds.). Enzymatic conversion of Biomass for fuels production. Washington, DC: 

American Chemical Society, pp. 363-371. 

Perez J, Dorado JM, Rubia TD & Martinez J 2002: Biodegradation and biological treatment of 

cellulose, hemicellulose and lignin: An overview. International Microbiology, 5: 53-63. 

Pérez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martínez, MJ, Piontek K & 

Martínez AT 2005: Versatile peroxidase oxidation of high redox potential aromatic 

compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of 

three long-range electron transfer pathways. Journal of Molecular Biology, 354(2): 385-402. 

Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini 

C, Persiani AM, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G & Selosse MA 

2013: Interactions of fungi with other organisms. Plant Biosystems, 208-218.  

Petersen PB 1987: Separation and characterization of botanical components of straw. Agriculture 

Progress, 63: 8-23. 

Petersson A, Thomsen MH, Hauggaard-Nielsen H & Thomsen A 2007: Potential bioethanol and 

biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. 

Biomass and Bioenergy, 31: 812-819. 

Picart P, de María PD & Schallmey A 2015: From gene to biorefinery: microbial β-etherases as 

promising biocatalysts for lignin valorization. Frontiers in Microbiology, 6:916. 

doi:  10.3389/fmicb.2015.00916 



98 
 

Pinan-Lucarré B, Balguerie A & Clavé C 2005: Accelerated cell death in Podospora autophagy 

mutants. Eukaryotic Cell, 4: 1765-1774. 

Pointing SB, Pelling AL, Smith GJD, Hyde KD & Reddy CA 2005: Sreening of basidiomycetes 

and xylariaceous fungi for lignin peroxidise and laccase gene-specific sequences. Mycological 

Research, 109(1): 115-124 

Porter CL 1924: Concerning the characters of certain fungi as exhibited by their growth in the 

presence of other fungi. American Journal of Botany, 11:168-188. 

Poussereau N, Creton S, Billon-Grand G, Rascle C & Fevre M 2001: Regulation of acp1, encoding 

a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. 

Microbiology, 147:717-726. 

Pozdniakova NN, Turkovskaia OV, Iudina EN & Rodakiewicz-Nowak Y 2006: Yellow laccase 

from the fungus Pleurotus ostreatus D1: purification and characterization. Prikladnaia 

biokhimiia i mikrobiologiia, 42(1): 63-69. 

Prins MJ, Ptasinki KJ & Janssen FJ 2006a: Torrefaction of wood: part 1. Weight loss kinetics. 

Journal of Analytical and Applied Pyrolysis, 77(1): 28-34 

Prins MJ, Ptasinki KJ & Janssen FJ 2006b: Torrefaction of wood: part 2. Analysis of products. 

Journal of Analytical and Applied Pyrolysis, 77(1): 35-40 

Qin X, Zhang J, Zhang X & Yang Y 2014: Induction, purification and characterization of a novel 

manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of 

different types of dye. PLoS ONE, 9(11): e113282. doi:10.1371/journal.pone.0113282 

Räisänen R 2009: Dyes from lichens and mushrooms: In: Bechtold T & Mussak R (Eds.). 

Handbook of Natural Colorants. New York: John Wiley & Sons, pp. 183-200. 

Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, 

Christensen JH& Boerjan W2004: Lignins: natural polymers from oxidative coupling of 4-

hydroxyphenylpropanoids. Phytochemistry Review, 3: 29-60 

Raspolli-Galletti AM & Antonetti C 2012: 5 Biomass pretreatment: separation of cellulose, 

hemicellulose, and lignin–existing technologies and perspectives. Biorefinery: From Biomass 

to Chemicals and Fuels. The concept of biorefinery comes into operation.  Castro Marina, 

2011. 

Rayner AD & Boddy L 1988: Decomposition of wood: its biology and ecology. Chichester, United 

Kingdom: John Wiley. 

Rayner ADM & Webber J 1984: Interspecific mycelial interactions—an overview. In: Jennings 

DH&. Rayner ADM (Eds.).The ecology and physiology of the fungal mycelium. Cambridge, 

UK: Cambridge University Press, pp. 383–417.  

Rayner ADM 1997: Degrees of freedom. Living in dynamic boundaries. London: Imperial College 

Press. 



99 
 

Rayner ADM, Boddy L & Dowson CG 1987: Temporary parasitism of Coriolus spp. by Lenziles 

betulina a strategy for domain capture in wood decay fungi. FEMS Microbiology Ecology, 45: 

53-58. 

Rayner ADM, Griffith GS & Ainsworth AM 1995: Mycelial interconnectedness. In: Gow, NAR & 

Gadd, GM (Eds.). The growing fungus. London: Chapman and Hall, pp. 20-40. 

Rayner ADM, Griffith GS & Wildman HG 1994: Induction of metabolic and morphogenetic 

changes during mycelial interactions among species of higher fungi. Transactions of the 

Biochemistry Society, 22: 389-394. 

Reddy CA & D’Souza TM 1994: Physiology and molecular biology of the lignin peroxidases of 

Phanerochaete chrysosporium. FEMS Microbiology Reviews, 13:137-152. 

Reinhammar B, Malstrom BG 1981: "Blue" copper-containing oxidases. In: Spiro TG. (Ed.). 

Copper proteins, Metal ions in Biology. Vol. 3. New York: Wiley, pp. 109-149. 

Reithner B, Ibarra-Laclette E, Mach RL & Herrera-Estrella A 2011: Identification of 

Mycoparasitism-Related Genes in Trichoderma atroviride. Applied and Environmental 

Microbiology, 77(13): 4361-4370.  

Renganathan V, Miki K & Gold MH 1985: Multiple molecular forms of diarylpropane oxygenase, 

an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Archives 

of Biochemistry and Biophysics, 241(1):304-314. 

Rengel A 2007: Study of lignocellulosic biomass pyrolysis: state of art modelling. MSc thesis. 

Stockholm 

Reshamwala S, Shawky BT & Dale BE 1995: Ethanol production from enzymatic hydrolysates of 

AFEX-treated coastal Bermuda grass and switchgrass. Applied Biochemistry and 

Biotechnology, 51/52: 43-55. 

Revankar M.S & Lele SS 2006: Enhanced production of laccase using a new isolate of white-rot 

fungus WR-1.Process Biochemistry, 41: 581-588. 

Revankar MS, Desai KM & Lele SS 2007: Solid-state fermentation for enhanced production of 

laccase using indigenously isolated Ganoderma sp. Applied Biochemistry and Biotechnology, 

143: 16-26. 

Reyes F, Villanueva P & Alfonso C 1990: Comparative study of acid and alkaline phosphatase 

during the autolysis of filamentous fungi. Letters of Applied Microbiology, 10: 175-177. 

Rivera-Hoyos CM, Morales-Álvarez AED, Poutou-Piñales PRA, Pedroza-Rodríguez RAM, 

Rodríguez-Vázquez R & Delgado-Boada JM 2013: Fungal laccases. Fungal Biology Reviews, 

27:67-82.  



100 
 

Robene-Soustrade I & Lung-Escarmant B 1997: Laccase isoenzyme patterns of European 

Armillaria species from culture filtrates and infected woody plant tissues. European Journal 

of Forest Pathology, 27: 105-114. 

Rosales E, Couto RS & Sanromán A 2005: Reutilisation of food processing wastes for production 

of relevant metabolites: application to laccase production by Trametes hirsuta. Journal of 

Food Engineering, 66: 419-423. 

Rowell RM 2005: Chemical Modification of Wood. Handbook of wood chemistry and wood 

composites. Boca Raton, CRC Press. pp. 381-420. 

Ruiz‐Dueñas FJ & Martínez ÁT 2009: Microbial degradation of lignin: how a bulky recalcitrant 

polymer is efficiently recycled in nature and how we can take advantage of this. Microbial 

Biotechnology, 2(2): 164-177. 

Ruiz-Dueñas FJ, Guillén F, Camarero S, Pérez-Boada M, Martínez MJ & Martínez AT 1999: 

Regulation of peroxidation transcript levels in liquid cultures of the lignolytic fungus, 

Pleurotus eryngii. Applied and Environmental Microbiology, 65: 4458-4463. 

Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ & Martínez AT 2009: Substrate 

oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of 

Experimental Botany, 60(2): 441-452. 

Ryan D, Leukes W & Burton S 2007: Improving the bioremediation of phenolic wastewater by 

Trametes versicolor. BioResource Technology, 98(3): 579-587. 

Safdar MN, Naseem K, Amjad M, Mumtaz A & Raza S 2009: Physiochemical quality assessment 

of wheat grown in different regions of Punjab. Pakistan Journal of Agriculture Research, 22(1-

2): 18-23. 

Saha BC, Iten LB, Cotta MA & Wu YV 2005: Dilute acid pre-treatment, enzymatic 

saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress, 21(3): 816-

822. 

Sahai AS & Manocha MS 1993: Chitinases of fungi and plants: their involvement in morphogenesis 

and host-parasite interaction. FEMS Microbiology Review, 11: 317-338. 

Salony MS & Bisaria VS 2006: Production and characterization of laccase from Cyathus blleri and 

its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology, 

71(5): 646-653. 

Salvachúa D, Prieto A, Mattinen M, Tamminen T, Liitiä T, Lille M, Willför S, Martínez AT, 

Martínez MJ & Faulds CB 2013: Versatile peroxidase as a valuable tool for generating new 

biomolecules by homogeneous and heterogeneous cross-linking.  Enzyme and Microbial 

Technology, 52:303-311  



101 
 

Sanchez C 2009: Lignocellulosic Residues - Biodegradation and bioconversion by fungi. 

Biotechnology Advances, 27:185-194. 

Sangle UR & Bambawale OM 2004: New strains of Trichoderma spp. strongly antagonistic against 

Fusarium oxysporum f. sp sesami. Journal of Mycology and Plant Pathology, 34:181-184 

Saparrat MCN, Guillen F, Arambarri AM, Martinez AT & Martinez AJ 2002: Induction, Isolation, 

and Characterization of Two Laccases from the White-rot Basidiomycete Coriolopsis rigida. 

Applied and Environmental Microbiology, 68(4):1534-1540. 

Sarkanen KV 1980: Acid-catalyzed delignification of lignocellulosics in organic solvents. Progress 

in Biomass Conversion, 2: 127-144. 

Sarkar N, Ghosh SK, Bannerjee S & Aikat K 2012: Bioethanol production from agricultural wastes: 

An overview. Renewable Energy, 37: 19-27. 

Sarnthima R & Khammuang S 2013: Laccase production by Pycnoporus sanguineus grown under 

liquid state culture and its potential in Remazol Brilliant Blue R decolorization. International 

Journal of Agricultural Biology, 15: 215-222. 

South African Sugar Association (SASA) 2012: South African Sugar Industry directory 2012/2013. 

Available at: http://www.sasa.org.za 

Savoie JM & Mata G 1999: The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes 

hyphae changes in lignocellulytic activities during cultivation in wheat straw. World Journal 

of Microbiology and Biotechnology, 15: 369-373. 

Savoie JM, Mata G & Billete C 1998: Extracellular laccase production during fungal interactions 

between Trichoderma sp. and Shitake, Lentinula edodes. Applied Microbiology and 

Biotechnology, 49: 589-593.  

Sayadi S & Odier E 1995: Degradation of synthetic lignin by the protoplasts of Phanerochaete 

chrysosporium in the presence of lignin peroxidase or manganese peroxidase. Acta 

Biotechnologica, 15(1):57-66. 

Schacht C, Zetzl C & Brunner G 2008: From plant materials to ethanol by means of supercritical 

fluid technology. The Journal of Supercritical Fluids, 46(3):2 99-321. 

Scheller HV & Ulvskov P 2010: Hemicelluloses. Annual Review of Plant Biology, 61: 263-289. 

Schirmböck M, Lorito M, Wang Y, Hayes C K, Arisan-Atac I, Scala F, Harman GE & Kubicek CP 

1994: Parallel formation of and synergism of hydrolytic enzymes and peptaibol antibiotics, 

molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against 

phytopathogenic fungi. Applied and Environmental Microbiology, 60(12): 4364-4370. 

Schlosser D & Höfer C 2002: Laccase-Catalyzed Oxidation of Mn2+ in the Presence of Natural 

Mn3+ Chelators as a Novel Source of Extracellular H2O2 Production and Its Impact on 

Manganese Peroxidase. Applied and Environmental Microbiology, 68(7): 3514–3521  

http://www.sasa.org.za/


102 
 

Schmidt O 2006: Wood and Tree Fungi: Biology, Damage, Protection, and Use, Chapter 3: 

Physiology and Chapter 4. In: Wood cell wall degradation. Berlin: Springer. 

Score AJ, Palfreyman JW & White NA 1997: Extracellular phenoloxidase and peroxidase enzyme 

production during interspecific fungal interaction. International Biodeterioration and 

Biodegration Journal, 3: 115-128. 

Searchinger T & Heimlich R 2015: Avoiding bioenergy competition for food crops and land. 

Working paper, Installment 9 of creating a sustainable food future. Washington, DC: World 

Resources Institute. Available at:http://www.worldresourcesreport.org.[Accessed 

10/03/2014] 

Shafizadeh F & Bradbury AGW 1979: Thermal degradation of cellulose in air and nitrogen at low 

temperatures. Journal of Applied Polymer Science, 23(5): 1431-1442. 

Shafizadeh F 1983:  Saccharification of lignocellulosic materials. Pure and Applied Chemistry, 

55(4):705-720. 

Shah V, Baldrian P, Eichlerova I, Dave R, Madamwar D, Nerud F & Gross R 2006: Influence of 

dimethyl sulfoxide on extracellular enzyme production by Pleurotus ostreatus. Biotechnology 

Letters, 651-655. 

Sharma R 2012: Enzyme Inhibition: Mechanisms and Scope, Enzyme Inhibition and 

Bioapplications, Sharma R. (Ed.) InTech, Available at: 

http://www.intechopen.com/books/enzyme-inhibition-and-bioapplications/enzyme-

inhibition-mechanisms-andscope [Accessed 20/05/2014] 

Shen D, Xiao R, Gu S & Luo K 2011: The pyrolytic behaviour of cellulose in lignocellulosic 

biomass: a review. Royal Society of Chemistry Advances, 1: 1641-1660.  

Shimada M, Akamtsu Y, Tokimatsu T, Mii K & Hattori T 1997: Possible biochemical roles of 

oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood 

decays. Journal of Biotechnology, 53: 101-113. 

Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T & Gorton L 2007: 

Characterization of two new multiforms of Trametes pubescens laccase.  Bioorganic 

Chemistry, 35(1): 35-49. 

Sidiras DK & Salapa IS 2015: Organosolv pretreatment as a major step of lignocellulosic biomass 

refining. In: biorefinery I: Chemical and materials from thermo-chemical biomass conversion 

and related processes, In: Abatzoglou N (Eds), ECI Symposium series. Available at: 

http://dc.engconfintl.org/biorefinery_1/18 [Accessed 25/04/2016]  

Silar P 2012: Hyphal Interference: Self Versus Non-self Fungal Recognition and Hyphal Death. In: 

Witzany G. (Ed.) Biocommunication of Fungi. Austria: Springer, pp. 155-170. 

http://dc.engconfintl.org/biorefinery_1/18


103 
 

Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD & Osborne JA 2007: Comparison of 

chemical pretreatment methods for improving saccharification of cotton stalks. BioResource 

Technology, 98(16): 3000-3011. 

Singh A, Singh N & Bishnoi NR 2009: Production of cellulases by Aspergillus heteromorphus 

from wheat straw under submerged fermentation. International Journal of Environmental and 

Science Engineering, 1(1): 23-26. 

Sivers MV & Zacchi G 1995: A techno-economical comparison of three processes for the 

production of ethanol from pine. BioResource Technology, 51:43-52. 

Skidmore AM & Dickinson CH 1976: Secondary spore production among phylloplane fungi. 

Transactions of the British Mycological Society, 66(1): 161-163. 

Slavin J 2003: Why whole grains are protective: Biological mechanisms. Proceedings of the 

Nutrition Society, 62(1): 129-134. 

Smeets E, Junginger M, Faaij A, Walter A, Dolzan P & Turkenburg W 2008: The sustainability of 

Brazillian ethanol- An assessment of the possibilities of certified production. Biomass & 

Bioenergy, 32(8):781-813 

Solarska S 2009: Application of white-rot fungi for the biodegradation of natural organic matter 

from potable water. PhD thesis. RMIT University, Melbourne: School of Civil, 

Environmental and Chemical Engineering, Australia. 

http://www.researchbank.rmit.edu.au/eserv/rmit:6115/Solarska.pdf 

Songulashvili G, Elisashvili V, Wasser SP, Nevo E & Hadar Y 2007: Basidiomycetes laccase and 

manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme 

and Microbial Technology, 41: 57-61. 

Sonnenbichler J, Jurgen D & Peipp H 1994: Secondary fungal metabolites and their biological 

activities, V. Investigations concerning the induction of the biosynthesis of toxic secondary 

metabolites in basidiomycetes. Biological Chemistry Hoppe-Seyler, 375:71-79. 

Sorek N, Yeats H, Szemenyei H, Youngs H & Somerville CR 2014: The Implications of 

Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels. 

BioScience, 64(3): 192-201. 

Sotero-Martins A, Da Silva Bon EP & Carvajal E 2003: Asparaginase II-GFP fusion as a tool for 

studying the secretion of the enzyme under nitrogen starvation. Brazillian Journal of 

Microbiology, 34:373-377.  

Srinivasan N & Ju LK 2010: Pretreatment of guayule biomass using supercritical carbon dioxide-

based method. BioResource Technology, 101(24):9785-9791. 

Stahl PD & Christensen M 1992: In vitro mycelia interactions among members of a soil 

microfungal community. Soil Biology and Biochemistry, 24:309-316. 



104 
 

Stenius P & Vuorinen T 1999: Direct characterization of chemical properties of fibres. In: Sjostrom 

E, Alen R (Eds.). Analytical Methods in Wood Chemistry, Pulping, and Papermaking, Vol 2. 

Springer –Verlag. 

Stoklanda J &Kauserudb H 2004: Phellinus nigrolimitatus—a wood-decomposing fungus highly 

influenced by forestry. Forest Ecology and Management, 187(2-3): 333-343 

Strakowska J, Błaszczyk L & Chełkowski J 2014: The significance of cellulolytic enzymes 

produced by Trichoderma in opportunistic lifestyle of this fungus. Journal of Basic 

Microbiology, 54: S1-S13. 

Strong PJ 2011: Improved laccase production by Trametes pubescens MB89 in distillery 

wastewaters. Enzyme Research, 379176: 1-8. doi: 10.4061/2011/379176. 

Sulistyaningdyah WT, Ogawa J, Tanaka H, Maeda C & Shimizu S 2004: Characterization of 

alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in 

comparison with bilirubin oxidase. FEMS Microbiology Letters, 230: 209-214. 

Sumathi S & Hung YT 2006: Treatment of pulp and paper mill wastes, In: Wang LK, Hung, YT, 

Lo HH & Yapijakis C (Eds). Waste treatment in the process industries. USA: Taylor & 

Francis, pp. 453-497. 

Sun JX, Sun XF, Sun RC & Su YQ 2004: Fractional extraction and structural characterization of 

sugarcane bagasse hemicelluloses. Carbohydrate Polymers, 56: 195-204. 

Sun Y & Cheng J 2002: Hydrolysis of lignocellulosic materials for ethanol production: a review. 

BioResource Technology, 83: 1-11. 

Sundman V & Näse L 1972: Synergistic ability of some wood-degrading fungi to transform lignins 

and lignosulfonates on various media. Archives of Microbiology, 4: 339-348. 

Tadesse MA, D’Annibale A, Galli C, Gentilia P & Sergi F 2008: An assessment of the relative 

contributions of redox and steric issues to laccase specificity towards putative substrates. 

Organic and Biomolecular Chemistry, 6: 868-878. 

Taherzadeh MJ & Karimi K 2007: Enzyme-based hydrolysis processes for ethanol from 

lignocellulosic materials: a review. BioResources, 2(4): 707-738. 

Taherzadeh MJ & Karimi K 2008: Pretreatment of lignocellulosic wastes to improve ethanol and 

biogas production: a review.  International Journal of Molecular Sciences, 9(9): 1621-1651. 

Taylor NG, Laurie S & Turner SR 2000:  Multiple cellulose synthase catalytic subunits are required 

for cellulose synthesis in Arabidopsis. Plant Cell, 12: 2529-2539. 

Tengerdy RP & Nagy JG 1988: Increasing the feed value of forestry waste by ammonia freeze 

explosion treatment. Biological Wastes, 25:149-153. 

Tekere M, Zvauya R, Read JS 2001: Ligninolytic enzyme production in selected sub-tropical white 

rot fungi under different culture conditions. Journal of Basic Microbiology, 41: 115-129. 

http://www.sciencedirect.com/science/article/pii/S0378112703003803
http://www.sciencedirect.com/science/article/pii/S0378112703003803
http://www.sciencedirect.com/science/article/pii/S0378112703003803
http://www.sciencedirect.com/science/article/pii/S0378112703003803
http://onlinelibrary.wiley.com/doi/10.1002/jobm.v54.S1/issuetoc


105 
 

Thompson G, Swain J, Kay M & Forster C 2001: The treatment of pulp and paper mill effluent: a 

review. BioResource Technology, 77: 275-286. 

Thongkred P, Lotrakul P, Prasongsuk S, Imai T & Punnapayak H 2011: Oxidation of polycyclic 

aromatic hydrocarbons by a tropical isolate of Pycnoporus coccineus and its laccase. Science 

Asia, 37: 225-233.  

Thring RW, Chorent E & Overend R 1990: Recovery of a solvolytic lignin: effects of spent 

liquor/acid volume ration, acid concentration and temperature. Biomass, 23:289-305. 

Thurston CF 1994: The structure and function of fungal laccases. Microbiology, 140:19-26. 

Tian X, Fang Z & Guo F 2012: Impact and prospective of fungal pretreatment of lignocellulosic 

biomass for enzymatic hydrolysis: a review. Biofuels, Bioproduction and biorefinery 6 

(3):335-350. doi:10.1002/bbb.346 

Tinoco R, Acevedo A, Galindo E & Serrano-Carreón L 2011: Increasing Pleurotus ostreatus 

laccase production by culture medium optimization and copper/lignin synergistic induction. 

Journal of Industrial Microbiology and Biotechnology, 38:531–540. 

Tsujiyama SI & Minami M 2005: Production of phenol-oxidizing enzymes in the interaction 

between white-rot fungi. Mycoscience, 46: 268-271. 

Tudor D, Robinson CS & Cooper AP 2013: The influence of pH on pigment formation by 

lignicolous fungi. International Biodeterioration and Biodegradation, 80:22–28. 

Turner WB 1971: Fungal Metabolites. Academic Press, London 

Tutt M, Kikas T, Kahr H, Pointner M, Kuttner P & Olt J 2014: Using steam explosion pretreatment 

method for bioethanol production from floodplain meadow hay. Agronomy Research, 12(2): 

417-424 

Ujor VC 2010: The physiological response of the white-rot fungus, Schizophyllum commune to 

Trichoderma viride, during interspecific mycelial combat. PhD thesis, University of 

Westminster, United Kingdom. 

Urek OR & Pazarlioglu NK 2007: Enhanced production of manganese peroxidase by 

Phanerochaete chrysosporium. Brazilian Archives of Biology and Technology, 50(6), 913-

920.   

Usha KY, Praveen K & Reddy BR 2014: Enhanced Production of Ligninolytic Enzymes by a 

Mushroom Stereum ostrea. Biotechnology Research International, 815495: 1-9. doi: 

10.1155/2014/815495 

Uusi-Rauva AK & Hatakka A 2006: Wood stimulates the demethoxylation of [O14CH3]-labeled 

lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia 

radiata. Archives of Microbiology, 185: 307-315. 



106 
 

Valášková V & Baldrian P 2006: Estimation of bound and free fractions of lignocellulose-

degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes 

versicolor and Piptoporus betulinus. Research in Microbiology, 157(2): 119-124.  

Valeriano VS & Silva AMF, Santiago MF, Bara MTF, García TA 2009: Production of laccase by 

Pycnoporus sanguineus using 2,5 xylidine and ethanol. Brazillian Journal of Microbiology, 

40:790-794. 

Van der Merwe JJ 2002: Production of laccase by the white-rot fungus Pycnoporus sanguineus. 

MSc thesis. Faculty of Natural and Agricultural Sciences, Department of Microbiology and 

Biochemistry, University of the Free State, Bloemfontein, South Africa. 

Varga E, Schmidt AS, Reczey K & Thomsen AB 2003: Pre-treatment of corn stover using wet 

oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 

104:37-50. 

Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, 

Monzón A, Ownley BH, Pell JK, Rangel DEN & Roy HE 2009: Fungal entomopathogens: 

New insights on their ecology. Fungal Ecology, 2: 149-159. 

Veitch NC 2004: Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65: 

249-259. 

Velisek J & Cejpek K 2011: Pigments of higher fungi: a review. Czech Journal of Food Science, 

29(2):87-102. 

Vidal PF & Molinier J 1988:  Ozonolysis of lignin – improvement of in vitrodigestibility of poplar 

sawdust. Biomass, 16(1): 1-17. 

Vlasenko EY, Ding H, Labavitch JM & Schoemake SP 1997: Enzymatic hydrolysis of pretreated 

rice straw. BioResources Technology, 59(2): 109-119. 

Walford SN 2008: Sugarcane bagasses: how easy is it to measure its constituents? Proceedings 

South Africa Sugar Technology Assessment, 81: 266-281 

Walker LP & Wilson DB 1991: Enzymatic hydrolysis of cellulose: An overview. BioResource 

Technology, 36(1): 3-14.   

Wan C & Li Y 2013: Solid-state biological pretreatment of lignocellulosic biomass. In: Tingyue 

Gu (Ed.). Green Biomass Pretreatment for Biofuels Production, SpringerBriefs. pp. 67-86.  

Wang P, Hu X, Cook S, Begonia M, Lee KS & Hwang HM 2008: Effect of cultureconditions on 

the production of ligninolytic enzymes by white-rot fungi Phanerochaete chrysosporium 

(ATCC 20696) and separation of its lignin peroxidase. World Journal of Microbiology and 

Biotechnology, 24: 2205-2212. 



107 
 

Wang W, Yuan T & Cui B 2014: Biological pretreatment with white-rot fungi and their co-culture 

to overcome lignocellulosic recalcitrance for improved enzymatic digestion. BioResources, 

9(3): 3968-3976. 

Wang W, Yuan T, Wang K,  Cui B & Dai Y 2012: Combination of biological pre-treatment with 

liquid hot water pre-treatment to enhance enzymatic hydrolysis of Populus tomentosa. 

BioResource Technology, 107: 282-286. 

Wariishi H, Akileswaran L & Gold MH 1988: Manganese peroxidase from the basidiomycete 

Phanerochaete chrysosporium: spectral characterization of the oxidized states and the 

catalytic cycle. Biochemistry, 27: 5365-5370. 

Wariishi H, Dunford HB, MacDonald D & Gold MH 1989: Manganese peroxidase from the lignin-

degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction 

mechanism. Journal of Biological Chemistry, 264: 3335-3340.  

Wariishi H, Vallis K & Gold H 1992: Manganese (II) Oxidation by Manganese Peroxidase from 

the Basidiomycete Phanerochaete chrysosporium. The Journal of Biological Chemistry, 

267(33): 23689-23695. 

Watanabe Y, Shinzato N & Fukatsu T 2003: Isolation of actinomycetes from termites' guts. 

Bioscience Biotechnology and Biochemistry, 67(8):1797-1801. 

Watkinson S, Bebber B, Darrah P, Fricker M, Tlalka M & Boddy L 2006: The role of wood decay 

fungi in the carbon and nitrogen dynamics of the forest floor. In Gadd GM (Ed.). Fungi in 

Biogeochemical Cycles, Cambridge: Cambridge University Press, pp.151-181 

Watkinson SC, Eastwood DC 2012: Serpula lacrymans, Wood and Buildings. Advanced and 

Applied Microbiology, 78: 121-49.  

Webber JF & Hedger JN 1986: Comparisons of interactions between Ceratocystis ulmi and elm 

bark saprobes in vitro and in vivo. Transactions of British Mycological Society, 86: 93-101. 

Weil J, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M, Hendrickson R & Ladisch MR 1997: 

Pretreatment of yellow poplar sawdust by pressure cooking in water. Applied Biochemistry 

and Biotechnology, 68(1-2): 21-40 

Wen X, Jia Y & Li J 2009: Degradation of tetracycline and oxytetracycline by crude lignin 

peroxidase prepared from Phanerochaete chrysosporium white-rot fungus. Chemosphere, 

75(8): 1003-1007. 

Wesenberg D, Kyriakides I & Agathos SN 2003: White-rot fungi and their enzymes for the 

treatment of industrial dye effluents.  Biotechnology Advances, 22: 161-187. 

Wessels JGH 1986: Cell Wall synthesis in apical hyphal growth. International Review of Cytology, 

104: 37-39. 

Wheeler MH & Bell AA 1985: Melanins and their importance in pathogenic fungi. Current Topics 

in Medical Mycology, 2: 338-387. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Watkinson%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=22305095
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eastwood%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=22305095


108 
 

White NA & Body L 1992: Extracellulr localisation during interpecific fungal interactions. FEMS 

Microbial Letters, 98:75-80. 

Wicklow DT 1992: Interference competition. In: Caroll, GC & Wicklow DT (Eds.). The fungal 

community – its organization and role in the ecosystem, 2nd ed. Marcel Dekker, Inc., New 

York, pp. 265-274. 

Widden P 1997: Competition and the fungal community. In: Wicklow DT & Söderström B (Eds.). 

Environmental and Microbial Relationships. The Mycota IV Berlin Heidelbergh, Germany: 

Springer- Verlag, pp. 135-147.  

Wilhelm WW, Johnson JM, Hatfield JL, Voorhees WB & Linden DR 2004: Crop and soil 

productivity response to corn residue removal. Agronomy Journal, 1:1-7. 

Winquist  E, Moilanen U, Mettälä A, Leisola M & Hatakka A 2008 : Production of lignin 

modifying enzymes on industrial waste material by solid-state cultivation of fungi. 

Biochemical Engineering Journal, 42: 128-132. 

Wong DW 2009: Structural and action mechanism of ligninolytic enzymes. Applied Microbiology 

and Biotechnology, 157(2): 174-209. 

Wongnate T & Chaiyen P 2013: The substrate oxidation mechanism of pyranose 2-oxidase and 

other related enzymes in the glucose-methanol-choline superfamily. FEBS Journal, 280(13): 

3009-3027.  

Woodward S & Boddy L 2008: Ecology of Saprotrophic Basidiomycetes. In: Boddy L, Frankland 

JC & van West P (Eds.). Ecology of Saprotrophic Basidiomycetes. Oxford: Elsevier, pp. 125-

142. 

Wu J & Ju LK 1998: Enhancing enzymatic saccharification of waste newsprint by surfactant 

addition. Biotechnology Progress, 14: 649-652. 

Wyman C 1996: Handbook on bioethanol: production and utilization. UK: CRC press 

Wymelenberg AV, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, 

Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P & Cullen D 2006: Computational 

analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry 

identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. 

Fungal Genetics and Biology, 43:343-356 

Xiao Y, Tu X, Wang J, Zhang M, Cheng Q, Zeng W & Shi Y 2003: Purification, molecular 

characterization and reactivity with aromatic compounds of a laccase from basidiomycete 

Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology, 60(6):700-707. 

Yamashita Y, Shono M, Sasaki C & Nakamura Y 2010: Alkaline peroxide pretreatment for 

efficient enzymatic saccharification of Bamboo. Carbohydrate Polymers, 79(4):914-920. 



109 
 

Yasin M, Bhutto AW, Bazmi A.A & Karim S 2010: Efficient utilization of rice-wheat straw to 

produce value added composite products. International Journal of and Chemical 

Environmental Engineering, 1(2): 136-143. 

Yin D, Urresti S, Lafond M, Johnston EM,  Derikvand F, Ciano L, Berrin J, Henrissat B, Walton 

PH, Davies GJ & Brumer L 2015: Structure–function characterization reveals new catalytic 

diversity in the galactose oxidase and glyoxal oxidase family. Nature Communications, 18(6): 

10197. doi:10.1038/ncomms10197. 

Yoon HH, Wu ZW & Lee YY 1995: Ammonia-recycled percolation process for pre-treatment of 

biomass feedstock. Applied Biochemistry and Biotechnology, 51/52: 5-19. 

Yoon JJ, Cha CJ, Kim YS, Son DW & Kim YK 2007: The brown-rot basidiomycete Fomitopsis 

palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of 

Microbiology and Biotechnology, 17(5): 800-805. 

Yorimitsu Y & Klionsky DJ 2005: Autophagy: molecular machinery for self eating. Cell Death 

and Differentiation, 12: 1542-1552. 

Yu H, Du W, Zhang J, Ma F, Zhang X & Zhong W 2010: Fungal treatment of cornstalks enhances 

the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility 

of glucan. BioResource Technology, 101: 6728-6734. 

Zeilinger S & Omann M 2007: Trichoderma Biocontrol: Signal transduction pathways involved in 

host sensing and mycoparasitism. Gene Regulation and Systems Biology, 1: 227-234. 

Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M & Kubicek CP 1999: 

Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with 

its host. Fungal Genetics and Biology, 26:131-140. 

Zeng J, Singh D, Laskar DD & Chen S 2013: Degradation of native wheat straw lignin by 

Streptomyces viridosporus T7A. International Journal of Environmental Science and 

Technology, 10 (1): 165-174 

Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM & Zhang XQ 2006: Efficient production of laccaseby 

Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Applied Microbiology and 

Biotechnology, 73: 89-94.  

Zhang Y-HP & Lynd LR 2004: Toward an aggregated understanding of enzymatic hydrolysis of 

cellulose: Non-complexed cellulase systems. Biotechnology and Bioengineering, 88: 797-824. 

Zheng Y, Lin HM, Wen J, Cao N, Yu X & Tsao GT 1995: Supercritical carbon dioxide explosion 

as a pretreatment for cellulose hydrolysis. Biotechnology Letters, 17(8): 845-50. 

Zheng Y, Pan Z & Zhang R 2009: Overview of biomass pretreatment for cellulosic ethanol 

production. International Journal of Agricultural and Biological Engineering, 2(3): 51-68. 

Zheng YZ, Lin HM & Tsao GT 1998: Supercritical carbon-dioxide explosion as a pre-treatment 

for cellulose hydrolysis. Biotechnology Letters, 17: 845-850. 



110 
 

Zheng Z & Obbard JP 2001: Effect of non-ionic surfactants on elimination of polycyclic aromatic 

hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. Journal of Chemical 

Technology and Biotechnology, 76(4): 423-429. 

Zheng Z & Obbard JP 2002: Polycyclic aromatic hydrocarbon removal from soil by surfactant 

solubilization and Phanerochaete chrysosporium oxidation. Journal of Environment Quality, 

31: 1842-1847 

Zhou ZY, Liu JK 2010: Pigments of fungi (Macromycetes). Natural Products Reports, 27: 1531-

1570. 

Zhu L, O’Dwyer JP, Chang VS, Granda CB & Holtzapple MT 2008: Structural features affecting 

biomass enzymatic digestibility. Biosource Technology, 99: 3817-3828. 

Zych D 2008: The viability of corn cobs as a bioenergy feedstock. A report of the West Central 

Research and Outreach Center, University of Minnesota. 

 

 

 

 

 

 

  



111 
 

Chapter 3 

 Isolation, screening and molecular characterization of 

ligninolytic fungi 

 

3.0 Abstract 

A total of 30 fungal fruiting bodies were collected from decaying plant materials (barks and 

litter) from the Kloofendal Nature Reserve based on morphological variations. Nine of these 

fungi were included in the present study and a type strain Ganoderma lucidum ATCC- 32471. 

Preliminary screening showed that five of these organisms produced ligninolytic enzymes 

when exposed to two different concentrations of guaiacol (0.02% and 0.2%) on two different 

media (MEA and PDA). All ten fungal isolates screened for cellulolytic activity were positive 

for the production of the cellulase enzyme. Molecular characterization using ITS1 and ITS4 

primers was able to identify these fungal isolates to degrees of accuracy ranging from 98% to 

100%. The phylogenetic and lineage analysis showed that the species varied amongst phylum 

Basidiomycota, Ascomycota and early diverging fungal lineages Mucormycotina. This study 

demonstrated that the production of ligninolytic enzymes is not limited to Basidiomycetes as 

members of the Mucorales and Ascomycetes also demonstrated ligninolytic activity. 

 

3.1 Introduction  

The natural environment is comprised of microbial population that is very diverse, such that it 

is near impossible to identify all species found in it (Kirk et al., 2004; Anastasi et al., 2013). 

On almost routine-like basis, new microorganisms are discovered. Such discovery of novel 

microorganism or new strains of previously identified microorganisms enhance our knowledge 

of a particular region’s biodiversity thereby making it possible to obtain novel biological 

compounds that prove useful in industrial applications. To ease this task there is need to not 

only develop new isolation and characterization techniques (Stanbury et al., 1995; Wietse et 

al., 2005; Hays & Van Leeuwen, 2012)  but  to also modify existing techniques to enable us to 

coax otherwise fastidious microorganisms to grow under laboratory conditions. Several 

techniques have been used to detect incipient decay in wood, which include isolation and 

culturing fungi (Nicolotti et al., 2009), chemical staining (Jasalavich et al., 2000), nuclear 

magnetic resonance (Fackler & Schwanninger, 2012) and electrical resistance as well as 

serological methods, such as immunoblotting and enzyme-linked immunosorbent assay 

(ELISA) (Kim et al., 1991).  The development of the DNA-based PCR and taxonomic specific 
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primers has made the detection and study of fungi in their natural habitat (substrate) and even 

on isolate media easier (Jasalavich et al., 2000; Nicolotti et al., 2009; Horisawa et al., 2009; 

Kirker, 2014). 

 

In the forest ecosystem, wood decay fungi are crucial because of their pertinent role in the 

carbon nitrogen cycling to convert organic debris into the humus layer of soil. Some of these 

fungi are pathogenic to living trees; others are saprophytes that attack dead wood and forest 

floor leaf litter. Wood decaying basidiomycetes colonize and degrade wood using enzymatic 

and non-enzymatic processes (Osono & Takeda 2002; Berg & McClaugherty, 2003; Lindahl 

et al. 2007). Therefore, the identification of new fungal species or known fungi from different 

habitats that have capabilities of producing enzymes that could be employed in the degradation 

of xenobiotic compounds and recalcitrant lignocellulose towards the production of second 

generation biofuels needs is important particularly with the growing awareness for 

environmental rehabilitation (Magan et al., 2010; Bansal et al., 2011; Marco-Urrea & Reddy, 

2012; Philbrook et al., 2013; Matínez et al., 2015) 

 

It is typical that fungal collections from natural environments would initially yield mixed 

microbial cultures. This is because in their natural environment fungi tend to be in close 

association with both bacterial and other fungal species (Scherlach et al., 2013).  It is often 

necessary to execute several sub-culturing processes until mono-axenic cultures are derived on 

agar plates (Burdass et al., 2006; Lee et al., 2015). The isolation procedure can be designed in 

such a way that the characteristics of the desired organism are the basis of the selection (Kaur 

et al., 2012; Nigam, 2013). Isolation method depending on the use of desired characteristics as 

selective factor comprise of enrichment cultures, use of selective and differential media 

(Stanbury et al., 1995; Copetti et al., 2009; Singer et al., 2011). 

 

Definitive taxonomic identification of microorganisms is essential for further applications of 

fungal species. In recent times, the most commonly used method of identification involves 

characterizing the microorganism using DNA, with currently available techniques and 

burgeoning databases. Identification can be achieved at genus- and species-levels (Iotti et al., 

2005; Sharma & Pandey, 2010; Gontia-Mishra et al., 2013; Upentra et al., 2013; Majid et al., 

2015). Therefore the present study isolated and characterized a variety of fungi from the 

Kloofendal Nature Reserve in the Rooderpoort suburbs of Johannesburg, South Africa. 
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Figure 3.1: Schematic map of the research route used for this present study to isolate 

ligninolytic fungi (adapted from Sun & Guo, 2012) 

 

3.2 Literature Review 

3.2.1 Isolation of Ligninolytic Fungi 

Fungi can be cultured on a variety of media types, although culture media type for fungal 

evaluation must be highly selective to suppress fast growing bacterial contamination and limit 

the growth rate and spread of fungal mycelia (Sharma & Pandey, 2010; Ravimannan et al., 

2014). Moreover the type of media could affect colony morphology and determine whether 

particular structures are formed, in some cases some fungi may not grow because they lack the 

necessary enzymes to utilize different carbon sources (Tsudome et al., 2009; Jun et al., 2011). 

These media can be either solid or liquid depending on the experiment or desired biomass or 

product required (Ryan, 2008). The pre-requisite conditions are extremely varied and include 
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a medium containing a high carbohydrate source, nitrogen and vitamin sources, a pH range of 

5–6 as well as the ability to remain stable at temperature range of 15 – 37oC (Weitz et al., 2001; 

Patel et al., 2009; Hubballi et al., 2010; Prasher & Chauhan, 2015). Other conditions that may 

be necessary for the more fastidious fungal species may include the maintenance of light/dark 

cycles, humidity and aeration (Hubballi et al., 2010). 

 

Since no one medium sustains the growth and detection of every fungal species; it is often 

necessary to bait endophytic and epiphytic fungi with selective nutrient media (Kiziewicz, 

2005; Copetti et al., 2009; Sharma & Pandey, 2010, Lahli et al., 2013). These baits are specific 

natural substrates such as broth made up of plant leaves or stems as well as other lignocellulosic 

agricultural residues (Sidana & Farooq, 2014; Ballhausen et al., 2015). An example of such a 

media is the V-8 juice agar medium which is composed of a mixture of eight different 

vegetables and calcium carbonate immobilized on agar (Quintana-Obregon et al., 2013). The 

V-8 juice agar belongs to a group of natural media which is characterized by the variation and 

the difficulty in duplicating the exact compositions of their ingredients. Other examples include 

corn meal agar, potato dextrose agar, malt extract agar and dung agar (Basu et al., 2015). 

Traditionally, Potato Dextrose Agar (PDA) is preferred for general quantification of fungi, 

although it does not always present an adequate nutritive source for the selective growth of 

some fungi with certain characteristics (Griffith et al., 2007; Ravimannan et al., 2014), nor 

does it provide the specific elemental requirements for growth and reproduction amongst 

fastidious fungal species. It should be noted that generally the requirements for growth are less 

stringent than for sporulation. Although fungi tend to thrive on PDA, it is considered too rich 

for many fungi, thus excessive mycelial growth is achieved at the expense of sporulation (Islam 

& Ohga, 2013, Basu et al., 2015).  

 

The second classification of media, known as synthetic (defined) media contain ingredients of 

known composition and duplication is achieved with ease and exactness every time they are 

made (Basu et al., 2015; Koley & Mahapatra, 2015). They contain defined amounts of 

carbohydrates, nitrogen and vitamin sources. Examples include Czapek-Dox medium, 

Saborauds medium, glucose-asparagine, Fusarium medium and Neurospora crassa minimal 

medium. Salts of elements such as Fe, Zn and Mn are often added to defined media but are 

usually excluded from common media used for routine culture (Mello et al., 2004). 
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Fungi have natural deficiencies for vitamins; although the addition of vitamins is easily 

satisfied by the addition of minute quantities of the deficient vitamins in ranges of μM to nM 

(Griffith, 1996). The most common naturally occurring vitamin deficiency is thiamin and biotin 

(Beguin, 2010). Deficiency in these vitamins is quite common among the Ascomycota (Walker 

& White, 2011). It is usually not necessary to add these vitamins to organic nutrients such as 

glucose as they tend to be contaminated with vitamins sufficient to supply the growth 

requirements of fungi (Crinnion, 2010). It may also be necessary to use supplements such as 

dyes and antibiotics to inhibit undesirable microorganisms (Ryan, 2008; Copetti et al., 2009; 

Kaur et al., 2015) although some authors argue that fungi will grow in spite of microbial 

contamination and it is even possible that these antibiotics may inhibit the growth of fungi 

(Choi et al., 1999; Ryan, 2008). However it is common to include antibiotics such as penicillin, 

streptomycin, crystomycin and chloramphenicol to prevent bacterial contamination (Jafaril et 

al., 2006; Scognamiglio et al., 2010; Msogoya et al., 2012). When antibiotics are included in 

growth media, they are usually added after sterilization when media is cooled to 50–55oC (Lahli 

et al., 2013; Jung et al., 2013; Hussain et al., 2014).  An alternative to the use of antibiotic 

media is to create an unfavorable environment in the isolation such as low pH in which fungus 

will grow but the bacteria will be inhibited. An example is the use of acidified cornmeal agar 

(ACMA) which works well for the isolation of fungi from various types of plant material. 

However it is important to use surface-sterilisation of materials intended for inoculation in 

conjunction with ACMA (Hauser, 2006). 

 

Various other amendments may be used that favour the isolation of certain groups of fungi, for 

example, benlates as well as dichloran rose of Bengal inhibits the growth of ascomycetes and 

deuteromycetes thus enhancing the isolation of basidiomycetes (Tello et al., 2009). With more 

fastidious xerophilic fungal growth that were limited by water activity, the use of dichloran 

glycerol agar 18% (Aw 0.95) is preferred because the traditional media tend to have Aw 0.99 

that will otherwise limit their growth due to the rapid growth and development of other species 

that are better adapted to the later water activity (Williams & Hallsworth, 2009). 

 

3.2.2 Molecular Characterisation of Fungi 

Once an axenic fungal culture is obtained through isolation; it used to be that the traditional 

method of identification relied on morphological characteristics; this included both the macro- 

and micro-physiological characteristics (Allen, 1991; Dix & Webster, 1995; Kendrick, 2000; 

Amicucci et al., 2001). However morphological characterisation tends to be a tedious and time 
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consuming process that might only yield ambiguous results because although there are many 

diverse fungal species, many of them have similar characteristics (Stevens, 2002). Often at 

least 8 weeks is required under ideal culture conditions to observe the different life cycle of 

particular fungi and the appearance of fruiting bodies to enable easy identification. Furthermore 

the estimated 8 weeks is not guaranteed as growth optimisation may be required before actual 

observation of life cycle can be achieved. In other cases fungal fruiting bodies are 

inconspicuous and easily overlooked and some may not even produce fruiting bodies (Keller 

et al., 2008).  Moreover, morphological identification requires significant levels of experience 

and expertise to even deduce the phylum, let alone genus or species of the organism (Balajee 

et al., 2007).  

 

In recent time, the most common and definitive method for identifying fungi employs 

molecular characterisation (Glaeser & Lindner, 2010). It relies on the understanding of genetic 

sequences including ribosomal RNA (rRNA) operon, the second largest ribosomal subunit of 

RNA polymerase II, and domains D1/D of nuclear-encoded large subunit ribosomal RNA 

genes (nLSU-rDNA) (Xie et al., 2007). The four rRNA genes: the 26 to 28S, 18S, 5.8S and 5S 

genes are arranged as head-to-tail tandem repeats separated by the space regions which include 

the internal transcribed spacer regions (ITS). The ITS region is defined as the unit containing 

ITS1 spacer, 5.8S rRNA gene and ITS2 spacer. In fungi, the ITS region is typically 650–900 

base pairs (bp) in size, including the 5.8 gene and is usually amplified by the universal primer 

pair ITS1 and ITS4 designed by White et al. (1990). This understanding allows for the use of 

ribosomal intergenic spacer analysis (RISA) to identify fungal species (Xie et al., 2007) which 

targets the length and sequence variations of the non-coding ITS regions between the 18S small 

subunits (SSU) and the 28S large subunits (LSU) rRNA genes thus making it possible to 

distinguish closely related fungal species (Jensen et al., 1993; Fisher & Triplett, 1999; 

Kendrick, 2000; Schmidt et al., 2012). This method of molecular identification of fungi to the 

species level is primarily based on the variable nature of ITS regions and compares sequences 

from one fungi species with another (Baura et al., 1992; Chen et al., 1992; Lee & Taylor 1992; 

Peterson, 1995; Horton & Bruns 2001; Romanelli et al., 2010; Delgado-Serrano et al., 2016).  

The high degree of variation even between closely related fungal species is a consequence of 

low evolutionary pressure acting on non-functional sequences (Gardes et al., 1991; Anderson 

& Stasovski 1992; Baura et al., 1992; Chen et al., 1992; Lee & Taylor 1992; Liu et al., 2010). 
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Ribosomal intergenic spacer analysis has great potential for the rapid detection and 

identification of fungi for medical, scientific and commercial purposes (Iwen et al., 2002; 

Oechsler et al., 2009) because the highly variable nature of the ITS1 and ITS2 can be exploited 

to generate restriction fragment length polymorphism (RFLP) patterns that makes for easy 

identification of fungi. Furthermore, this RFLP patterns makes it easier to design taxon-specific 

primers for PCR amplification (Jasalavich et al., 2000). It is noteworthy that the D1/D2 regions 

of the nLSU are known to be variable regions within the nLSU-rDNA also contain useful 

phylogenic information (Fell et al., 2000; Moncalvo et al., 2000).  

 

Figure 3.2 rDNA sequence. The fungal genome is unique in that it contains 50 to 100 identical 

copies of this gene in its genome. (Source: https://courses.cns.utexas.edu/BIOP411/wp-

content/uploads/2012/09/BPLM-Chapter-9-Fungi-Isolation-Molecular-Characterization-

Preservation-2013.pdf; accessed 12 June 2016) 

 

Despite the biases that are introduced by traditional isolation and cultivation techniques, it must 

be emphasized that pure-culture experiments are indispensable for detailed analysis and 

molecular characterisation (Xie et al., 2007). Therefore the DNA extraction and amplification 

of targeted region using Polymerase chain reaction (PCR) as well as universal primers in 

protocols are vital to molecular characterisation (Horton & Bruns, 2001; Melo et al., 2006). 

DNA is extracted from pure fungal cultures using molecular biology methods; once the DNA 

is purified it can be amplified by PCR. Either DNA fragment or PCR amplicons can be 

submitted for sequencing. A variety of bioinformatics techniques can be employed to determine 

the fungus species based on the sequence result which is compared to that of known species. 

These DNA sequences are usually disseminated to the National Centre for Biotechnology 

Information (NCBI) to increase the body of data that enhances faster identification for future 

researchers. The NCBI has readily available local alignment search tool nucleotide (BLASTn) 

program for alignment with highly similar sequences (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Although there are quite a number of DNA based identification methods that are available, the 

https://courses.cns.utexas.edu/BIOP411/wp-content/uploads/2012/09/BPLM-Chapter-9-Fungi-Isolation-Molecular-Characterization-Preservation-2013.pdf
https://courses.cns.utexas.edu/BIOP411/wp-content/uploads/2012/09/BPLM-Chapter-9-Fungi-Isolation-Molecular-Characterization-Preservation-2013.pdf
https://courses.cns.utexas.edu/BIOP411/wp-content/uploads/2012/09/BPLM-Chapter-9-Fungi-Isolation-Molecular-Characterization-Preservation-2013.pdf
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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ITS sequencing of fungi has one major advantage; the increasing quantity of information 

associated with ITS sequencing means that it is easier to correlate sequences with available 

data (Schmidt et al., 2012). 

 

3.2.3 Screening of Ligninolytic Fungi 

The screening of microorganisms for the production of desired metabolites is by far the most 

important aspect of biotechnology (Steele & Stowers, 1991). Although dependent on the type 

of microorganisms, the standard procedure for screening is typically similar for bacteria and 

fungi. Screening employs the use of highly selective procedures to allow for the detection and 

isolation of only those microorganisms which are of interest from among a large microbial 

population (Stanbury et al., 1995); thereby discarding the myriads of valueless microorganisms 

that are routinely isolated from nature. This is achieved by isolating microorganism from 

nature, in some instances from special ecological niches (Kubicek & Druzhinina, 2007; Abo-

Shadi et al., 2010). Screening is executed to select a fungus with desired characteristics 

intended for various application e.g. fermentation, bioremediation and enzyme production 

(Nam et al., 2011). Screening programs are more often based on classical microbiological 

techniques of enrichment and mutagenesis (Steele & Stowers, 1991; Schaechter, 2009). 

However there are no universal screening methods and success of any screening program is 

dependent on the organisms and the methods for detection of activity (Waites et al., 2001). 

Moreover screening can never be considered a routine activity as it is vital that methods must 

continuously be adapted to newest techniques, available instrumentation and knowledge. 

Ultimately, the objective is to detect and identify new substances or variations in existing 

products and to isolate them from those that are not useful. 

 

Screening could utilize either the shotgun or objective strategies. With the shotgun approach, 

samples of free living microorganisms, biofilms or other microbial communities are collected 

from sources including animal, plant material, soil, sewage, water and effluents particularly 

from unusual and natural habitat. These isolates are then screened for desirable traits using 

metagenomics analysis (mass genome sequencing) (Neelakanta & Sultana, 2013). However, 

the objective approach takes sample from specifically targeted sites where organisms with the 

desired characteristics are most likely to be resident with the natural microflora (Waites et al., 

2001). Screening holds limitless potential as it is very likely that only a small fraction of the 

world’s estimated 5.1 million fungi have been identified ( O’Brien et al., 2005; Taylor et al., 

2010). Moreover, even with the approximately 100,000 known fungi that have demonstrated 
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production of products; there are still yet to be discovered natural products from these identified 

fungi (Kirk et al., 2008; Blackwell, 2010). 

 

Screening involves preliminary and secondary processes, where the preliminary screening does 

not necessarily target product activity or concentration but rather the presence of the desired 

product. Ideally, the primary screening should be rapid, inexpensive, predictive, specific but 

effective for a broad range of compounds (Singh et al., 2015). However, primary screening is 

by nature time consuming and tedious since a large number of isolates have to be screened to 

identify a few potential microorganisms (Sukesh, 2010; Tilay & Annapure, 2012). Once the 

product is determined to be present, a more comprehensive screening process follows which 

will also include screening for important features, such as stability and where necessary non-

toxicity (Waites et al., 2001). 

 

Recently, the focus of screening researches has been to find new and alternative fungal strains 

that produce value-added and efficient ligninolytic enzymes (Erden et al., 2009) because of the 

vast potential of these enzymes in areas of biofuel production and bioremediation of xenobiotic 

compounds. Several screening programs have focused mainly on white-rot basidiomycetes 

(Saparrat et al., 2002; Dhouib et al., 2005) as well as other groups of fungi capable of producing 

laccase which include the ascomycetes and deuteromycetes (Shraddha et al., 2011). Generally, 

most of the screening methods are based on colorimetric method whereby the colour changes 

of synthetic chemicals introduced into the media are associated with specific fungal ligninolytic 

enzyme activities (Nam et al., 2011). Thus, fungi that possess ligninolytic ability are capable 

of degrading screening reagents with similar structure to lignin (Glenn & Gold, 1983; Esposito 

et al., 1991; Wunch et al., 1997; Gowthaman et al., 2001). Previously these screening reagents 

used to be tannic and gallic acid (Nishida et al., 1988; De Jong et al., 1992; Pointing, 1999) but 

they have been replaced with synthetic phenolic reagents such as guaiacol (Coll et al., 1993; 

Kiiskinen et al., 2004;Viswanath et al., 2008; Mabrouk et al., 2010; Sasidhar & 

Thirunalasundari, 2014; Devasia & Nair, 2016),  2,2’-azino-bis (3-ethylbenzthiazoline-6-

sulphonic acid) (ABTS) (Floch et al., 2007; Hao et al., 2007; Sivakumar et al. 2010; Yadav et 

al., 2014), syringaldazine (Floch et al., 2007; Kumar et al., 2011; El-Batal et al., 2015),  and 

polymeric dyes such as Remazol Brilliant Blue-R (RBB-R) (D’Souza et al., 1999; Machado & 

Matheus, 2006; Narkhede et al., 2013). 
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Typically in the presence of phenol oxidases, the colourless guaiacol and ABTS are oxidized 

to form reddish brown (Kiiskinen et al., 2004) and blue-green coloured compounds, 

respectively (De Jong et al., 1992; Doerge et al., 1997; Solis-Oba et al., 2005; Yadav et al., 

2014). The pale yellow colour of syringaldazine is oxidized to purple coloured compound in 

the presence of laccase (Harkin et al., 1974; El-Batal et al., 2015). The blue RBB-R is 

decolourised through the combined actions of peroxidases and hydrogen peroxide-producing 

oxidases (Glen & Gold, 1983; Mtui & Masalu, 2008; Narkhede et al., 2013).  

 

Figure 3.3: Phenolic structures of commonly used reagents in screening for ligninolytic 

enzymes. A: Guaiacol; B: Remazol Brilliant Blue-R (RBB-R); C: Syringaldazine; D: 2, 2’-

azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) (Source: Nam et al., 2011) 

 

In the present study, an integrated experimental approach that combined traditional culture-

based techniques and ribosomal intergenic spacer analysis was used to identify different fungi 

that were isolated from their natural environment. The specific objective was to screen these 

fungal species once identified for the presence of ligninolytic enzymes to enable subsequent 

investigation involving quantification of enzymes in dual cultures to be executed. 

 

3.3 Materials and Method 

3.3.1 Sample Area 

The sampling area for the present study was the Kloofendal Nature Reserve, Roodepoort, 

Johannesburg (26.1275S 27.8806E). It is situated in the West Rand and covers an area of 150 

hectares. It consists of pristine Savanna-type vegetation with rocky quartzite outcrops. The 

common wildlife in this area is birds and a variety of small mammals including mountain 
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reedbuck, mongoose and hedgehog. There are many tree species within the reserve and it’s the 

geological site of an old gold mine known as the Conference Reef and it is bordered by a dam. 

 

Figure 3.4: Map showing the Kloofendal Nature Reserve (Source: 

http://www.footprint.co.za/images/Kloofendaldirectionslg.jpg; accessed 15 June 2016) 

 

3.3.2 Isolation of Fungal Species and Cultivation Conditions 

A total of 30 fungal fruiting bodies were collected from decaying plant materials (barks and 

litter) based on morphological variations and a type strain Ganoderma lucidum ATCC- 32471 

was obtained from the Agricultural Research Council (ARC), Pretoria, South Africa. Fruiting 

bodies were spray-rinsed with 70% ethanol to remove debris and soil. To propagate the mycelia 

of the collected species, tissues were sliced from the fruiting bodies and transferred to Potato 

Dextrose agar (PDA) and Malt Extract agar (MEA) solid media and incubated at 25°C for 6 

days under humidified conditions.  All the isolated cultures, including the type strain were 

purified by repeated transfer onto agar plates. All culture plates were stored at 4°C for a 

maximum of 10 days before use. 

 

http://www.footprint.co.za/images/Kloofendaldirectionslg.jpg
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3.3.3 Screening 

3.3.3.1 Cellulolytic Activity 

To test for cellulolytic activity, the fungal isolates were grown on PDA medium amended with 

0.5% Na-carboxymethyl cellulose and the plates were incubated for 3 days at 25°C. The plate 

with young mycelial growth was flood with 0.1% Congo red and destained with 1M NaCl. 

Plates were left at room temperature for 15 minutes and observed for clear halo around the 

colony; an indication of cellulose activity. 

 

3.3.3.2 Ligninolytic Activity 

To test for ligninolytic activity, the fungal isolates were grown on MEA and PDA amended 

with 0.02% and 0.2% guaiacol, respectively. Both concentrations were chosen based on several 

literatures citing them as the ideal concentrations for ligninolytic activity screening. The plates 

were incubated for 5 – 7 days (Coll et al., 1993; Eggert et al., 1996). After incubation the fungal 

colonies were observed for coloured zone around and below surface of the colony. 

 

3.3.3.3 Morphological Characterisation – Microscopy 

Fungal mycelial were exercised using a scapel. A drop of 0.1 % Congo-red stain (Slifkin & 

Cumbie, 1988) was added. Samples were washed with distilled water after 2 minutes, blotted 

dry before covering with cover slip. Microscopic observations were done at X4 and X10 

objective magnifications on an Olympus CX41TM Light Microscope. 

 

3.3.3.4 Molecular Characterisation 

3.3.3.4.1 Genomic DNA Extraction 

The DNA extraction was carried out using mycelium grown on PDA plates.  Approximately 

100 mg wet weight of fungal cells samples was re-suspended in phosphate-buffered saline and 

was added directly to a 0.1-0.5 mm ZR BashingBeadTM Lysis Tube. Lysis was achieved by 

securing the bead beater with a 2 ml tube holder and the assembly was processed at maximum 

speed for 10 minutes on a standard benchtop vortex. Exactly 750 μl Lysis solution was added 

to the tube. The mixture in the ZR BashingBeadTM Lysis Tube was centrifuged at 10, 000 x g 

for 1 minute. Exactly 400 μl of the supernatant was transferred to a Zymo-SpinTMSpin Filter 

(Orange Top) in a collection tube and centrifuged at 7, 000 x g for 1 minute.  Exactly 1, 200 μl 

of manufacturer supplied Fungal/Bacterial DNA Binding Buffer was added to the filtrate now 

present in the Collection Tube. Exactly 800 μl of this mixture was transferred to a Zymo-

SpinTMIC Column in a Collection Tube and centrifuged at 10, 000 x g for 1 minute. The flow 
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through from the previous step was discarded and the mixture was again centrifuged 10, 000 x 

g for 1 minute. Exactly 200 μl of manufacturer supplied DNA Pre-Wash Buffer was added to 

the Zymo-SpinTMIC Column in a new Collection Tube and centrifuged 10, 000 x g for 1 minute. 

Exactly 500 μl of manufacturer supplied Fungal/Bacterial DNA Wash Buffer was added to the 

Zymo-SpinTMIC Column in a new Collection Tube and centrifuged 10, 000 x g for 1 minute. 

The Zymo-SpinTMIC Column was transferred to a clean 1.5 ml micro-centrifuge. Exactly 10 μl 

of manufacturer supplied DNA Elution Buffer was added directly to the column matrix. The 

mixture was left to stand for 3 minutes and then centrifuged at 10, 000 x g for 30 seconds to 

elute the DNA. 

 

3.3.3.4.2 DNA Amplification 

Eluted pure DNA was amplified using Ribosomal DNA known to be conserved among fungal 

taxa. This was achieved by amplifying the internal transcribed spacer (ITS) region. The Primers 

ITS1 and ITS4 were used (Sigma-Aldrich, USA). The sequences of the primers were as 

follows: ITS1 (forward primer): 5’-TCC GTA GGT GAA CCT GCG G-3’ and ITS4 (reverse 

primer): 5’-TCC TCC GCT TAT TGA TAT GC-3’ (White et al., 1990). Amplification was 

performed in 20 μl of reaction mixture containing 1μl of DNA template of fungi, 2 μl 10X PCR 

buffer, 1.5 mM MgCl2, 200 μM of each dNTP (dATP, dTTP, dGTP and dCTP), 0.4 μM of both 

primers, 1 unit Taq polymerase (Sigma-Aldrich, USA) and double-distilled water. The 

Polymerase Chain Reaction was run using Bio-Rad MJ Mini Thermal Cycler. The PCR Cycler 

initiated with denaturation for 5 minutes at 95oC. This was followed by 32 cycles of 30 secs-

denaturation at 94oC, annealing for 2 minutes at 55oC and extension for 1 minute at 72oC. 

Further extension was then carried out for 10 minutes at 72oC before it was maintained at 4oC. 

The PCR product was run on 1% agarose gel, stained with ethidium bromide (EtBr) and 

visualized under UV light. The images were photographed using gel documentation system 

(SynGene). The PCR products were sequenced by using forward and reverse directions on the 

ABI PRISMTM 3500xl Genetic Analyser. Sequences were analysed using Sequence editor 

software followed by a BLAST search provided by NCBI. The ITS sequences obtained in this 

study was deposited in the NCBI GenBank and were ascribed accession numbers (see Table 

3.2). 

 

3.3.3.4.3 Phylogenetic Analysis 

The programs utilised for the phylogenetic analyses of the complete ITS1-5.8S-ITS2 region 

are included in MEGA6 software package as described by Tamura et al. (2013). This allowed 
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the inference of evolutionary relationship of homologous sequences. Multiple sequence 

alignment was achieved using ClustalW algorithm, parsimony and maximum likelihood (ML) 

employing the PhyML programme as described by Tamura et al. (2013) in order to construct 

the phylogenetic trees. The robustness of the tree topologies was evaluated by bootstrap 

analysis based on 500 re-samplings of the sequence alignment.  

 

3.4 Results 

3.4.1 Isolation of Fungal Species and Screening for Cellulose and Ligninolytic Activities 

A total of 30 different specimens of fungi were collected from the Kloofendal Nature Reserve, 

based on visual morphological differences observed. Monoaxenic cultures that showed 

significant activities for the presence of these enzymes were selected. Ten of the isolated fungi 

(shown in Figure 3.4.2a and 3.4.2b) were selected for this study. 

Table 3.1:  Ligninolytic and cellulolytic activity screening in isolates 

Initial 

notations 

Ligninolytic 

Activity 

Screening 

MEA 

0.02% 

Guaiacol 

Ligninolytic 

Activity 

Screening 

PDA 

0.2% 

Guaiacol 

Cellulolytic 

Activity 

Screening 

MEA 

0.5%  

Na-CMC 
A2 -- -- ++ 

B2 -- -- ++ 

C2 ++ ++ ++ 

D2 ++ ++ ++ 

E2 ++ ++ ++ 

F2 ++ ++ ++ 

G2 -- -- ++ 

H2 -- -- ++ 

I2 -- -- ++ 

J2 ++ ++ ++ 
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Figure 3.4.1a: Cellulolytic activity screening using 0.1% Congo Red Stain, observable clear 

halo surrounding the fungi colony 

   

Figure 3.4.1b: Ligninolytic activity screening on MEA plates amended with 0.02% Guaiacol, 

red coloured colony growth after 3 – 5 days incubation 

 

Of the 10 organisms chosen for the study, five monoaxenic cultures (C2, D2, E2, F2 and J2) 

demonstrated visible colouration on amended MEA plates containing 0.02% guaiacol (as 

shown in Figure 3.4.1). However E2 did not demonstrate visible colouration or grow on PDA 

plates that were amended with 0.2% guaiacol. All plates amended with 0.5% Na-

carboxymethyl cellulose (Na-CMC) showed clear halo zones around the edges of colonies 

when stained with 0.1% Congo red and de-stained with 1M NaCl. 

 

3.4.2 Microscopic Examination of Fungal Isolates 

Microscopic examinations of monoaxenic plate cultures of fungal species showed profuse 

hyphal growths and in some species clearly visible septal junctions, protoplasmic components 

and healthy intertwining interactions between self-mycelial extensions. Fungal micrograph B2 

showed clear sporangial head as well as a profuse number of spores within the interstitial spaces 

between mycelia. 
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Figure 3.4.2a: Fruiting bodies and monoaxenic cultures of fungi isolates used in the study 
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Figure 3.4.2b: Fruiting bodies and monoaxenic cultures of fungi isolates used in the study
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Figure 3.4.3: Fungal micrographs of monoaxenic plate cultures using light microscopic at X10 

object lens magnification 
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3.4.3 Genomic DNA Extraction and PCR amplification 

PCR amplification of the fungal isolates with the ITS primers conceded effective amplification 

for all isolates with sizes of ~650 bp (Figure 3.4.4). All fungi species corresponded to 

similarities between the sequences queried and the biological sequences within the NCBI 

database. However, only 10 fungi species subjected to BLAST were used in the study (Table 

3.2). 

 

Figure 3.4.4: A photographic image of an agarose gel indicating the amplification of the ITS 

target 
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Table 3.2:  Taxonomic identification of screened fungal species based on ITS gene sequence analysis 

S. No. Initial 

notations 

Strain 

code 

Total 

base 

pairs 

Query Description Close relatives Similarity Accession 

Number 

1 A1, A2 KN1 606 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 

1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, 

complete sequence; and 28S ribosomal RNA gene, partial sequence? 

Fomitopsis meliae voucher SRM-209 98.84  KU253767 

2 B1, B2 KN2 636 Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA 

gene and internal transcribed spacer 2, complete sequence; and 28S 

ribosomal RNA gene, partial sequence? 

Rhizopus microsporus strain 

SHLSYD 

100  KU253769 

3 C1, C2 KN3 549 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 

1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete 

sequence; and 28S ribosomal RNA gene, partial sequence? 

Curvularia borreriae strain FMR 

11523 isolate 

100  KU253770 

4 D1, D2 KN4 583 Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA 

gene and internal transcribed spacer 2, complete sequence; and 28S 

ribosomal RNA gene, partial sequence; mitochondrial? 

Schizophyllum commune isolate GBJ8 99.66  KU253771 

5 E1, E2 KN5 408 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 

1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete 

sequence; and 28S ribosomal RNA gene, partial sequence? 

Umbelopsis isabellina strain CBS 

250.95 

99.66  KU253772 

6 F1, F2 KN6 573 Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA 

gene and internal transcribed spacer 2, complete sequence; and 28S 

ribosomal RNA gene, partial sequence? 

Coriolopsis polyzona strain Cof143 99.83  KU253773 

7 G1, G2 KN9 517 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 

1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete 

sequence; and 28S ribosomal RNA gene, partial sequence? 

Fusarium sp.VSMU-S001 100  KU253776 

8 H1, H2 KN10 557 Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA 

gene, complete sequence; and internal transcribed spacer 2, partial 

sequence  

Trichoderma harzianum strain BHU-

BOT-RYRL10 

99.83  KU253777 

9 I1, I2 KN12 511 Internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA 

gene, complete sequence; and internal transcribed spacer 2, partial 

sequence. 

Myrmaecium rubricosum strain VRJ 99.61  KU253779 

10 J1, J2 NA NA Identified previously Ganoderma lucidum ATCC- 32471 NA NA 

Note: Organism Number 10 was obtained from the Agriculture Research Council therefore it had previously been sequenced and identified 
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Figure 3.5: Phylogenic tree showing the relationships among the screened fungal species and 

the most similar sequences based on the ITS rRNA gene (ML analysis, 500 rounds of bootstrap 

resampling).   

 

The outcome of the submitted sequences affirmed that all isolated speciess belonged to 

Basidiomycota, Mucorales and Ascomycota species. The phylogenetic relationship of all 

isolated fungi was inferred using the maximum likelihood [ML] analyses. All positions 

containing gaps and missing data were eliminated. Evolutionary analyses were conducted using 

the MEGA6 software. Based on the analysis of ITS rDNA gene sequence, the isolates KN1, 

KN2, KN3, KN4, KN5, KN6, KN9, KN10 and KN12 were identified as Fomitopsis sp., 

Rhizopus microsporus., Curvularia borreriae, Schizophyllum sp., Umbelopsis sp., Coriolopsis 

sp., Fusarium sp., Trichoderma sp., and Myrmaecium sp., respectively. 
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Table 3.3:  Lineage analysis of screened fungal isolates  

Strain 

code 

Fungal Isolates Accession 

Number 

Lineage : Domain; Kingdom; Phylum; Sub-phylum; 

Class; Order; Family 

KN1 Fomitopsis meliae 

voucher SRM-209 

 KU253767 Eukaryota; Fungi; Dikarya; Basidiomycota; 

Agaricomycotina; Agaricomycetes; Polyporales; 

Fomitopsis  

KN2 Rhizopus microsporus 

strain SHLSYD 

 KU253769 Eukaryota; Fungi; Fungi incertae sedis; Early diverging 

fungal lineages; Mucoromycotina; Mucorales; 

Mucorineae; Rhizopodaceae; Rhizopus 
KN3 Curvularia borreriae 

strain FMR 11523 

isolate 

 KU253770 Eukaryota; Fungi; Dikarya; Ascomycota; 

Pezizomycotina; Dothideomycetes; 

Pleosporomycetidae; Pleosporales; Pleosporineae; 

Pleosporaceae; Curvularia. 

KN4 Schizophyllum 

commune isolate 

GBJ8 

 KU253771 Eukaryota; Fungi; Dikarya; Basidiomycota; 

Agaricomycotina; Agaricomycetes; Agaricomycetidae; 

Agaricales; Schizophyllaceae; Schizophyllum 

KN5 Umbelopsis isabellina 

strain CBS 250.95 

 KU253772 Eukaryota; Fungi; Zygomycota; Fungi incertae sedis;  

Early diverging fungal lineages;Trichomycetes; 

Mucoromycotina; Mucorales; Umbelopsidaceae; 

Umbelopsis 

KN6 Coriolopsis polyzona 

strain Cof143 

 KU253773 Eukaryota; Fungi; Dikarya; Basidiomycota; 

Agaricomycotina; Agaricomycetes; Polyporales; 

Trametes/Coriolopsis 

KN9 Fusarium sp.VSMU-

S001 

 KU253776 Eukaryota; Fungi; Dikarya; Ascomycota; 

Pezizomycotina; Sordariomycetes; 

Hypocreomycetidae; Nectriaceae; Fusarium 

KN10 Trichoderma 

harzianum strain 

BHU-BOT-RYRL10 

 KU253777 Eukaryota; Fungi; Dikarya; Ascomycota; 

Pezizomycotina; Sordariomycetes; Hypocreomycetidae; 

Hypocreales; Hypocreaceae; Trichoderma 

KN12 Myrmaecium 

rubricosum strain 

VRJ 

 KU253779 Eukaryota; Fungi; Dikarya; 

Ascomycota;Pezizomycotina;Dothideomycetes; 

Dothideomycetes incertae sedis; Valsariales; 

Valsariaceae; Myrmaecium 

GL Ganoderma lucidum 

ATCC- 32471 

NA Eukaryota; Fungi; Dikarya; Basidiomycota; 

Agaricomycotina; Agaricomycetes; Polyporales; 

Ganodermataceae; Ganoderma 
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Discussion  

Managed forests and grasslands similar to the Kloofendal nature reserve where nine of the ten 

fungi used in this study were isolated have a significant portion of litter present within their 

natural ecosystem (Geethanjali, 2012). This litter contains approximately 20 – 50% lignin that 

occurs in infinite association with cellulose and hemicellulose, thus providing structural 

strength and protecting the polysaccharides by its biodegradation-resistant barrier (Atlas & 

Bartha 1998).  This litter that makes up the surface layer of the forest floor consists of freshly 

fallen leaves, needles, twigs, stems, barks and fruits in various stages of decay (Brady & Well, 

2005).  The degradation of lignin is commonly associated with fungal species belonging to the 

Basidiomycetes (Rao, 2008), although lignin degrading ability have also been found in species 

other than Basidiomycetes. Moreover there is established data placing an approximate estimate 

of over 600 species of Basidiomycete as having been found to be ligninolytic and being able 

to mineralize lignin to CO2 by secreting extracellular lignin peroxidase, manganese-dependent 

peroxidase and laccase enzymes (Kumar & Gupta, 2006).   

 

 Of the 10 organisms chosen for the study, five of them (Curvularia borreriae, Schizophyllum 

commune, Umbelopsis isabellina, Coriolopsis polyzona and Ganoderma lucidum) 

demonstrated visible red colouration due to the oxidation of guaiacol indicating ligninolytic 

activity (Table 3.1). Three of these fungi belong to the Basidiomycete and with the other two 

belonging each to the Ascomycetes and Mucorales phyla. All 10 fungi cultures demonstrated 

cellulolytic activity. Results are similar to studies done by Naik et al. (2012).  The structural 

proximity of lignin and cellulose implies that more often, it is expedient that organisms produce 

both enzymes to be able to degrade the lignocellulosic structure of most plants. However it 

must be added that in previous studies, there are examples of ligninolytic fungi such as 

Trametes versicolor and Phellinus sp. that have demonstrated low cellulolytic activity but very 

high lignin degrading capabilities thereby suggesting that lignin degradation is of more interest 

to these fungal species (Liew et al., 2011). 

 

The ligninolytic activity as demonstrated by S. commune, C. polyzona and G. lucidum are not 

surprising, as these fungal isolates all belong to Basidiomycetes phylum. There are numerous 

studies that have shown these fungi producing lignin-degrading enzymes (Novotný et al., 2004; 

Irshad & Asgher, 2011; Pozdnyakova, 2012; Asgher et al., 2013;Vrsanska et al., 2015; Zhu et 

al., 2016). However there are sparingly few studies that show members of the phyla 

Ascomycetes and Mucorales as producers of ligninolytic enzymes.  Umbelopsis isabellina 
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(also known as Mortierella isabellina) belonging to the Micromucor/Umbelopsis clade, has 

gone through several taxonomic changes with the last known change being done by Meyer and 

Gams (2003) after RFLP analysis that exploited ITS1 and ITS2 primers. Furthermore, there is 

confusion as to its ability to produce lignin-degrading enzyme. In one study it was referred to 

as non-ligninolytic (Janicki et al., 2016) whereas previous studies espouse that Umbelopsis 

isabellina produced manganese-dependent peroxidase, a ligninolytic enzyme (Yang et al., 

2003) in the decolourisation of synthetic dyes and in addition there are studies that have 

implicated the previously known nomenclature Mortierella isabellina in the production of 

ligninolytic enzymes and bioremediation of the pesticide, diuron (Tixier et al., 2000; Tixier et 

al., 2001). The present study also observed ligninolytic activity with Umbelopsis isabellina as 

shown in Table 3.1. 

 

Although little is known about the decay mechanism employed by Ascomycetes in plant litter 

and soil, it is generally agreed that some of these soft-rot producing fungi are capable of 

degrading lignin; therefore an enzymatic system must be employed in the process (Nilsson et 

al., 1989; Dix & Webster, 1995; Worrall et al., 1997; Shary et al., 2007). To further compound 

the problem of the poor elucidation of ligninolytic activity amongst Ascomycetes is that there 

are few reports on these groups of fungi and fewer still on Curvularia sp. However enough 

evidence in literature exists of their ability to degrade dye effluents (Senthilkumar et al., 2012; 

de Miranda et al., 2013; Neoh et al., 2014; Neoh et al., 2015). In a series of studies done by 

Neoh et al. (2014; 2015); they observed the production of manganese-dependent peroxidase, 

lignin peroxidase and laccase enzymes with C. clavata in the decolourisation of recalcitrant 

dyes and palm oil effluents. Similarly de Miranda et al. (2013) showed that C. lunata produced 

ligninolytic enzymes as well during the decolourisation of textile effluent. This present study 

indicates that C. borreriae is capable of ligninolytic activity. 

 

Conclusion 

A bioprospecting study was done on Kloofendal Nature Reserve which yielded nine fungi 

isolates, a type strain G. lucidum ATCC- 32471 was obtained from the Agricultural Research 

Council, South Africa. This preliminary research and screening work done on 10 fungal isolates 

showed that three of the basidiomycetes isolated were capable of producing ligninolytic 

enzymes. One Ascomycetes and one Mucorales species also produced ligninolytic activity. 

Further investigation is necessary to ascertain the type of enzyme produced, quantification and 

optimisation of production of these enzymes. 



137 
 

References 

Abo-Shadi M, Sidkey NM & Al-Mutrafy AM 2010: Antimicrobial agent producing microbes from 

some soils' rhizosphere. Journal of American Science, 6(10): 915-925. 

Allen MF 1991: The Ecology of Mycorrhizae. Cambridge University Press, Cambridge, UK. 

Amicucci A, Zambonelli A, Guidi C & Stocchi V 2001: Morphological and molecular 

characterisation of Pulvinula constellatio ectomycorrhizae. FEMS Microbiology Letters, 194: 

121-125. 

Anastasi A, Tigini V & Varese C 2013: The bioremediation potential of different ecophysiological 

groups of fungi. In:  Fungi as bioremediators. Berlin Heidelberg: Springer, pp. 29-49. 

Anderson JB & Stasovski E 1992: Molecular phylogeny of Northern Hemisphere species of 

Armillaria. Mycologia, 84: 505-516. 

Asgher M, Yasmeen Q & Iqbal HMN 2013: Enhanced decolorization of Solar brilliant red 80 

textile dye by an indigenous white-rot fungus Schizophyllum commune IBL-06. Saudi Journal 

of Biological Sciences, 20(4): 347-352. 

Atlas RM & Bartha R 1998: Biogeochemical cycling. In: Microbial Ecology (4th Ed.). An imprint 

Addison Wesley Longman Inc., Sydney, pp 403-405.  

Balajee SA, Sigler L & Brandt ME 2007: DNA and the classical way: identification of medically 

important molds in the 21st century. Medical Mycology, 45(6): 475-90. 

Ballhausen MB, van Veen JA, Hundscheid MPJ & de Boer W 2015: Methods for baiting and 

enriching fungus-feeding (Mycophagous) Rhizosphere bacteria. Frontiers in Microbiology, 6: 

1-10.  

Bansal N, Tewari R, Gupta JK, Soni R & Soni SK 2011: A novel strain of Aspergillus niger 

producing cocktail of hydrolytic depolymerising enzymes for the production of second 

generation biofuels. BioResources, 6(1): 552-569. 

Basu S, Bose C, Ojha N, Das N, Das J, Pal M & Khurana S 2015: Evolution of bacterial and fungal 

growth media. Bioinformation, 11(4): 182-184. 

Baura G, Szaro TM & Bruns TD 1992: Gastrosuillus laricinus is a recent derivative of Suillus 

grevellei: molecular evidence. Mycologia, 84:592-597. 

Beguin H 2010: Tritirachium egenum, a thiamine- and siderophore-auxotrophic fungal species 

isolated from a Penicillium rugulosum. FEMS Microbiology Ecology, 74: 165-173 

Berg B & McClaugherty C 2003: Plant litter – decomposition, humus formation, carbon 

sequestration. Springer, Berlin, pp 352. 

Blackwell M 2011: The fungi: 1,2,3……5.1 million species? American Journal of Botany, 98(3): 

426-438.  



138 
 

Brady NC & Well RR 2005: Formation of soils from parent materials. In: The nature and properties 

of soil (13th Ed), Pearson Prentice Hall, New Delhi, p 85.  

Burdass D, Grainger J & Hurst J (Eds) 2006: Basic Practical Microbiology – A Manual Society for 

General Microbiology. Reading: UK 

Chen W, Hoy JW & Schneider RW 1992: Species-specific polymorphisms in transcribed ribosomal 

DNA of five Pythium species. Experimental Mycology, 16: 22-34. 

Choi YW, Hyde KD & Ho WH 1999: Single spore isolation of fungi. Fungal Diversity, 3:29-38. 

Coll PM, Fernández-Abalos JM, Villanueva JR, Santamaría R & Pérez P 1993: Purification and 

Characterization of a Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycetes 

PM1 (CECT 2971). Applied and Environmental Microbiology, 59(8): 2607-2613. 

Copetti MV, Santurio JM, Cavalheiro AS, Alves SH & Ferreiro L 2009: Comparison of different 

culture media for mycological evaluation of commercial pet food. Acta Scientiae Veterinariae, 

37(4):329-335. 

Crinnion WJ 2010: Organic foods contain higher levels of certain nutrients, lower levels of 

pesticides, and many provide health benefits for the consumer. Alternative Medicine Review, 

15(1):4-12. 

De Jong E, De Vries FP, Field JA, Van Der Zwan RP, De Bont JAM 1992 : Isolation and screening 

basidiomycetes with high peroxidative activity. Mycological Research, 1: 1098-1104. 

Delgado-Serrano L, Restrepo S, Bustos JR, Zambrano MM & Anzola JM 2016: Mycofier: a new 

machine learning-based classifier for fungal ITS sequences. BioMed Central Research 

Notes, 9: 402. doi:  10.1186/s13104-016-2203-3 

De Miranda RCM, Gomes EB, Pereira Jr. N,  Marin-Morales MA,  Machado KMG & de Gusmão 

NB 2013: Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 

and Phanerochaete chrysosporium URM 6181. BioResource Technology, 142: 361-367.  

Devasia S & Nair AJ 2016: Screening of potent laccase producing organisms based on the oxidation 

pattern of different phenolic substrates. International Journal of Current Microbiology and 

Applied Sciences, 5:127-137 

Dhouib A, Hamza M, Zouari, H, Mechichi T, Hmidi R, Labat M, Martinez JM & Sayadi S 2005: 

Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World Journal 

of Microbiology and Biotechnology, 21: 1415-1423. 

Dix NJ & Webster J 1995: Fungal ecology. Chapman and Hall, London: United Kingdom. 

Doerge DR, Divi RL & Churchwell MI 1997: Identification of the colored guaiacol oxidation 

product produced by peroxidases. Analytical Biochemistry, 250: 10-17. 

http://www.sciencedirect.com/science/article/pii/S0960852413008262
http://www.sciencedirect.com/science/journal/09608524/142/supp/C


139 
 

D'Souza TM, Merrit CS & Reddy CA 1999: Lignin-Modifying Enzymes of the White-rot 

Basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology, 65:5307-

5313.  

Eggert C, Temp U & Eriksson KEL 1996: The ligninolytic system of the white-rot fungi 

Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied 

Microbiology and Biotechnology, 62: 1151-1158. 

El-Batal AI, El-Kenawy NM, Yassin AS & Amin MA 2015: Laccase production by Pleurotus 

ostreatus and its application in synthesis of gold nanoparticles, Biotechnology Reports, 5: 31-

39 

Erden E, Ucar CM, Gezer T & Pazarlioglu NK 2009: Screening for ligninolytic enzymes from 

autochthonous fungi and applications for decolorization of remazole marine blue. Brazilian 

Journal of Microbiology, 40: 346-353. 

Esposito E, Canhos VP & Duran N 1991: Screening of lignin-degrading fungi for removal of colour 

from kraft mill wastewater with no additional extra carbon-source. Biotechnology Letters, 

13(8): 571-576.  

Fackler K & Schwanninger M 2012: How spectroscopy and microspectroscopy of degraded wood 

contribute to understand fungal wood decay. Applied Microbiology and Biotechnology, 96(3): 

587-599.  

Fell JW, Boekhout T, Fonseca A, Scorzetti G & Statzell-Tallman A 2000: Biodiversity and 

systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain 

sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50: 

1351-1371.  

Fisher MM & Triplett EW 1999: Automated approach for ribosomal intergenic spacer analysis of 

microbial diversity and ITS application to freshwater bacterial communities. Applied and 

Environmental Microbiology, 65:4630-4636. 

Floch C, Alarcon-Gutierrez E & Criquet S 2007: ABTS Assay of Phenol Oxidase Activity in Soil. 

Journal of Microbiological Methods, 71: 319-324.  

Gardes M, White TF, Fortin JA, Bruns TD & Taylor JW 1991: Identification of indigenous and 

introduced symbiotic in ectomycorrhizae by amplification of the nuclear and mitochondrial 

ribosomal DNA. Canadian Journal of Botany, 69:180–190. 

Geethanjali PA 2012:  A study on lignin degrading fungi isolated from the litter of evergreen forests 

of Kodagu (D), Karnataka. International Journal of Environmental Sciences, 2(4): 2034 –

2039. 



140 
 

Glaeser JA & Lindner DL 2010: Use of fungal biosystematics and molecular genetics in detection 

and identification of wood-decay fungi for improved forest management. Forest Pathology, 

41 (5): 341–348. 

Glenn JK & Gold MH 1983: Decolorization of several polymeric dyes by the lignin-degrading 

Basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 

45(6):1741–1747. 

Gontia-Mishra I, Deshmukh D, Tripathi N, Bardiya-Bhurat K, Tantwai K, & Tiwari S 2013: 

Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S 

rDNA sequence analysis. Brazilian Journal of Microbiology, 44(1): 317–323.  

Gowthaman MK, Krishna C & Moo-Young M 2001: Fungal Solid State Fermentation - An 

Overview. Applied Mycology and Biotechnology, 1: 305-352. 

Griffith DH, 1996. Fungal Physiology.2nd Ed. Wiley Liss: New York, pp 136. 

Griffith GW, Easton GL, Detheridge A, Roderick K, Edwards A, Worgan HJ, Nicholson J & 

Perkins WT 2007: Copper deficiency in potato dextrose agar causes reduced pigmentation in 

cultures of various fungi. FEMS Microbiology Letters, 276: 165–171. 

Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Y& Tian X 2007: Production of laccase by a 

newly isolated Deuteromycete fungus Pestalotiopsis sp and its decolorization of azo dye. 

Journal of Industrial Microbiology and Biotechnology, 34:233–240. 

Harkin, JM, Larsen MJ & Obst JR 1974: Use of Syringaldazine for Detection of Laccase in 

Sporophores of Wood Rotting Fungi. Mycologia, 66: 469–476. 

Hauser JT 2006: Techniques for studying bacteria and fungi. Microbiology Department. Carolina 

Biological Supply Company. USA 

Hays JP & Van Leeuwen WB 2012: The Role of New Technologies in Medical Microbiological 

Research and Diagnosis. Bentham Science Publishers, Netherlands 

Horisawa S, Sakuma Y & Doi S 2009: Qualitative and quantitative PCR methods using species-

specific primer for detection and identification of wood rot fungi. Journal of Wood Science, 

55(2):133–138. 

Horton TR & Burns TD 2001: The molecular revolution in ectomycorrhizal ecology: peeking into 

the black box. Molecular Ecology, 10:1855–1871. 

Hubballi M, Nakkeeran S, Raguchander T, Anand T & Samiyappan R 2010: Effect of 

environmental conditions on growth of Alternaria alternata causing leaf blight of Noni. World 

Journal of Agricultural Sciences, 6 (2): 171–177. 

Hussain T, Ishtiaq M, Azam S, Jawad W & ul Haq 2014: Comparative analysis of air, soil and 

water mycoflora of Samahni area, district Bhimberr Azad Kashmir, Pakistan. African Journal 

of Microbiology Research, 8(23): 2295–2306. 



141 
 

Iotti M, Barbieri E, Stocchi V & Zambonelli A 2005: Morphological and molecular characterisation 

of mycelia of ectomycorrhizal fungi in pure culture. Fungal Diversity, 19: 51–68. 

Irshad M & Asgher M 2011: Production and optimization of ligninolytic enzymes by white-rot 

fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African Journal 

of Biotechnology, 10(79):18234–18242 

Islam F & Ohga S 2013: Effects of media formulation on the growth and morphology of 

ectomycorrhizae and their association with host plant. Agronomy, 1–12. 

doi:10.1155/2013/317903 

Iwen PC, Hinrichs SH & Ruppy ME 2002: Utilization of the internal transcribed spacer regions as 

molecular targets to detect and identify human fungal pathogens. Medical Mycology, 40:87–

109. 

Jafaril AA, Kazemi AH & Zarrinfar 2006: Evaluation of routine microbiological and a selective 

funal medium for recovery of yeast from mixed clinical specimens. World Journal of Medical 

Sciences, 1(2):147–150. 

Janicki T , Krupiński M , Długoński J 2016: Degradation and toxicity reduction of the endocrine 

disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus 

Umbelopsis isabellina. BioResource Technology, 200: 223–229.  

Jasalavich CA, Ostrofsky A & Jellison J 2000: Detection and Identification of Decay Fungi in 

Spruce Wood by Restriction Fragment Length Polymorphism Analysis of Amplified Genes 

Encoding rRNA. Applied and Environmental Microbiology, 66(11): 4725–4734. 

Jensen MA, Webster JA & Straus N 1993: Rapid identification of bacteria on the basis of 

polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and 

Environmental Microbiology, 59: 945-952. 

Jun H, Kieselbach T & Jonsson JL 2011: Enzyme production by filamentous fungi: analysis of the 

secretone of Trichoderma reesei grown on unconventional carbon source. Microbial Cell 

Factories, 10:68. doi: 10.1186/1475-2859-10-68 

Jung B, Lee S, Ha J, Park JC, Han SS, Hwang I, Lee Y & Lee J 2013: development of a selective 

medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the 

bacterial pathogen Burkholderia glumae. The Plant Pathology Journal, 29(4), 446–450.  

Kaur A, Kaur M, Samyal ML & Ahmed Z 2012: Isolation, characterisation and identification of 

bacterial strain producing amylase. Journal of Microbiology and Biotechnology Research, 

2(4):573–579. 

Kaur B, Kumar B, Garg N & Kaur N 2015: Statistical Optimization of Conditions for 

Decolorization of Synthetic Dyes by Cordyceps militaris MTCC 3936 Using RSM.  BioMed 

Research International, 1–7.  doi:10.1155/2015/536745 



142 
 

Keller HW, Kilgore CM, Everhart SE, Carmack GJ, Crabtree CD & Scarborough AR 2008: 

Myxomycete Plasmodia and Fruiting Bodies: Unusual Occurrences and User-friendly Study 

Techniques. Fungi, 1(1): 24–37. 

Kendrick B 2000: The fifth kingdom, 3rd edition. Focus Publishing, R. Pullins Co. Newburyport, 

Massachusetts, USA. 

Kiiskinen LL, Rattö M, Kruus K 2004: Screening for novel laccase-producing microbes. Journal 

of Applied Microbiology, 97: 640-646. 

Kim YS, Jellison J, Goodell B, Tracy V & Chandhoke V 1991: The use of ELIISA for the detection 

of white- and brown-rot fungi. Holzforschung, 45(6):403–406 

Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H & Trevors JT 2004: Methods 

of studying soil microbial diversity. Journal of Microbiological Methods, 58: 169–188. 

Kirk PM, Cannon PF, Minter DW & Stalpers JA 2008: Dictionary of the Fungi, 10th ed. CABI, 

Wallingford: United Kingdom. 

Kirker GT 2014: Genetic identification of fungi involved in wood decay. Deterioration and 

Protection of Sustainability Biomaterials, 1158:81–91. doi:10.1021/bk-2014-1158.ch004 

Kiziewicz B 2005: Aquatic fungi growing on seeds of plants in various types of water bodies of 

Podlasie Province. Polish Journal of Environmental Studies, 14(1):49–55. 

Koley S & Mahapatra SS 2015: Evaluation of culture media for growth characteristics of Alternaria 

solani, causing early blight of tomato. Journal of Plant Pathology & Microbiology, S1: 005. 

doi:10.4172/2157-7471.S1-005 

Kubicek CP & Druzhinina IS 2007: Environmental and microbial relationships. In: Esser K (Ed) A 

comprehensive treatise on fungi as experimental systems for basic and applied research 

Springer Science & Business Media 

Kumar D & Guptha RK 2006: Biocontrol of wood rotting fungi. Indian Journal of Biotechnology, 

5:20–25.  

Kumar V, Kirupha SD, Periyaraman P & Sivanesan S 2011: Screening and induction of laccase 

activity in fungal species and its application in dye decolorization.  African Journal of 

Microbiology Research, 5(11):1261–1267 

Lahli R, Hamadi Y, El Guilli & Jijakli MH 2013: A new semi-selective agar medium for recovery 

and enumeration of antagonistic yeast, Pichia guilliermondii strain Z1 from orange fruit 

surface. African Journal of Microbiology Research, 7(25):3209–32216. 

Lee H, Shin S, Jin L, Yoo C, Srivastava A, La H, Ahn C,  Kim H & Oh H 2015: Establishment and 

maintenance of an axenic culture of  Ettlia sp. using a species-specific approach. 

Biotechnology and Bioprocess Engineering, 20(6): 1056–1063. 



143 
 

Lee SB & Taylor JW 1992: Phylogeny of five fungus-like protoctistan Phytophtora species, 

inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and 

Evolution, 9: 636–653. 

Liew CY, Husaini A, Hussain H, Muid S, Liew KC & Roslan HA 2011: Lignin biodegradation and 

ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical 

white-rot fungi. World Journal of Microbiology and Biotechnology, 27: 1457–1468. 

Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J & Finlay RD 2007: Spatial 

separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New 

Phytology, 173: 611–620. 

Liu A, Bao F, Li M, Shi M, Saising J & Shen P 2010: Biodiversity of cultivable fungi in hair 

samples from tree shrews. African Journal of Microbiology Research, 4(24): 2704-2707. 

Mabrouk AM, Kheiralla ZH, Hamed ER, Youssry AA & Abd El Aty AA 2010: Screening of some 

marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agriculture 

and Biology Journal of North America, 1(4): 591–599. 

Machado KMG & Matheus DR 2006: Biodegradation of remazol brilliant blue R by ligninolytic 

enzymatic complex produced by Pleurotus ostreatus. Brazilian Journal of Microbiology, 37: 

468–473. 

Magan N, Fragoeiro S & Bastos C 2010: Environmental factors and bioremediation of xenobiotics 

using white-rot fungi. Microbiology, 38:238-248  

Majid AH, Zahran ZZ, Rahim A, Ismail NA, Rahman WA, Zubairi KSM, Dieng H & Satho T 

2015: Morphological and molecular characterisation of fungus isolated from tropical bed bugs 

in Northern Peninsular Malaysia, Cimex hemipterus (Hemiptera: Cimicidae). Asian Pacific 

Journal of Tropical Biomedicine, 5(9):707–713. 

Marco-Urrea E & Reddy CA 2012: Degradation of chloro-organic pollutantsby white-rot fungi. In: 

Singh NS (Ed.) Microbial degradation of xenobiotics. Springer Berlin Heidelberg, pp 31-66. 

Martínez EJ, Raghavan V, González-Andrés, F & Gómez X 2015: New Biofuel Alternatives: 

Integrating Waste Management and Single Cell Oil Production. International Journal of 

Molecular Sciences, 16: 9385–9405. 

Mello AFS, Machado ACZ & Bedendo IP 2004: Development of Colletotrichum gloeosporioides 

isolated from green pepper indifferent culture media, temperatures, and light regimes. Scientia 

Agricola (Piracicaba, Braz), 61(5): 542–544. 

Melo SC, Pungartnik C, Cascardo JC & Brendel M 2006: Rapid and efficient protocol for DNA 

extraction and molecular identification of the basidiomycete Crinipellis perniciosa. 

Genetics and Molecular Research, 5(4):851–855.  



144 
 

Meyer W & Gram W 2003: Delimitation of Umbelopsis (Mucorales, Umbelopsidaceae fam. nov.) 

based on ITS sequence and RFLP data. Mycological Research, 107(03):339–350. 

Moncalvo JM, Lutzoni FM., Rehner SA, Johnson J & Vilgalys R 2000: Phylogenetic relationships 

of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Systematic Biology, 

49(2): 278–305.  

Msogoya T, Kanyagha H, Mutiguti J, Kulebelwa M & Mamiro D 2012: Identification and 

management of microbial contaminants of  banana in vitro cultures. Journal of Applied 

Biosciences, 55: 3987–3994. 

Mtui G & Masalu R 2008: Extracellular enzymes from brown-rot fungus Laetiporus sulphurous 

isolated from Mangroves forests of coastal Tanzania. Scientific Research and Essays, 

3(4):154–161. 

Naik VN, Sharma DD, Kumar PPM &Yadav RD 2012: Efficacy of ligno-cellulolytic fungi on 

recycling sericultural wastes. Acta Biologica Indica, 1(1):47–50. 

Nam T, Ngoh GC & Chua ASM 2011: A quantitative method for fungal ligninolytic enzyme 

Screening Studies. Asia-Pacific Journal of Chemical Engineering, 6:589–595. 

Narkhede M, Mahajan R & Narkhede K 2013: Ligninolytic enzyme production and remazol 

brilliant blue R (RBBR) decolorization by a newly isolated white-rot fungus: Basidiomycota 

spp. L-168. International Journal of Pharma Bio Sciences, 4(1): 220–228. 

Neelakanta G & Sultana H 2013: The use of metagenomic approaches to analyze changes in 

microbial communities. Microbiology Insights, 6: 37–48. 

Neoh CH,   Lam CY, Lim CK,  Yahya A, Bay HH, Ibrahim Z & Noor  ZZ 2015: Biodecolorization 

of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and 

decolorization ability of its crude enzymes. Environmental Science and Pollution Research, 

22(15): 11669–11678. 

Neoh CH,   Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z 2014: Decolorization of palm oil mill 

effluent using growing cultures of Curvularia clavata. Environmental Science and Pollution 

Research, 21(6): 4397–4408. 

Nicolotti G, Gonthier P, Guglielmo F & Garbelotto MM 2009: A biomolecular method for the 

detection of wood decay fungi: a focus on tree stability assessment. Arboriculture and Urban 

Forestry, 35(1):14–19. 

Nigam PS 2013: Microbial enzymes with special characteristics for biotechnological applications.  

Biomolecules, 3: 597–611. doi:10.3390/biom3030597  

Nilsson T, Daniel G, Kirk TK & Obst JR 1989: Chemistry and microscopy of wood decay by some 

higher ascomycetes. Holzforschung, 43:11–18. 

mailto:zainura@cheme.utm.my


145 
 

Nishida T, Yoshiri K, Mimura A & Takahara Y 1988: Lignin biodegradation by wood-rotting fungi 

I. Screening of lignin degrading fungi. Mokuzai Gakkaishi, 34:530-536. 

Novotný Č, Svobodova K, Erbanova P, Cajthami T, Kasinath A, Lang E & Sasek V 2004: 

Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. 

Soil Biology and Biochemistry, 36:1545–1551. 

O’Brien BL, Parrent JL, Jackson JA, Moncalvo JM & Vilgalys R 2005: Fungal community analysis 

by large-scale sequencing of enviromental samples. Applied and Environmental Microbiology, 

71: 5544–5550. 

Oechsler RA, Feilmeier MR, Ledee DR, Miller D, Diaz MR, Fini ME, Fell JW & Alfonso EC 

2009: Utility of Molecular Sequence Analysis of the ITS rRNA Region for Identification of 

Fusarium spp. from Ocular Sources. Investigative Ophthalmology and Visual Science, 50(5): 

2230–2236. 

Osono T & Takeda H 2002: Comparison of litter decomposing ability among diverse fungi in a 

cool temperate deciduous forest in Japan. Mycologia, 94:421–427. 

Patel H, Gupte A & Gupte S 2009: Effect of different culture conditions and inducers on production 

of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state 

fermentation. BioResources, 4(1):268–284. 

Peterson SW 1995: Phylogenetic analysis of Aspergillus sections Cremei and Wentii, based on 

ribosomal DNA-sequences. Mycological Research, 99: 1349–1355. 

Philbrook A, Alissandratos A & Easton CJ 2013: Biochemical processes for generating fuels and 

commodity chemicals from lignocellulosic biomass. In: Petre (Ed) Environmental 

Biotechnology - New Approaches and Prospective Applications, InTech, doi: 10.5772/55309.  

Pointing SB 1999: Qualitative methods for the determination of lignocellulolytic enzyme 

production by tropical fungi. Fungal Diversity, 2:17–33. 

Pozdnyakova NN 2012: Involvement of the Ligninolytic System of White-Rot and Litter-

Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons. Biotechnology 

Research International, 243217: 1–20. doi:10.1155/2012/243217 

Prasher IBS & Chauhan R 2015: Effect of carbon and nitrogen sources on the growth, reproduction 

and ligninolytic enzymes activity of Dictyoarthrinium synnematicum. Advances in Zoology 

and Botany, 3(2): 24–30.  

Quintana-Obregón EA, Plascencia-Jatomea M, Burgos-Hérnandez A, Figueroa-Lopez P & Cortez-

Rocha MO 2013. Isolation and identification of fungi from leaves infected with false mildew 

on safflower crops in the Yaqui Valley, Mexico. Revista Mexicana de Micología, 37:19–27. 

Rao NSS 2008: Organic matter decomposition. In. Soil Microbiology (4th Ed.). Oxford and IBH 

Publishing Co. Pvt. Ltd., New Delhi, pp 252–258.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pozdnyakova%20NN%5Bauth%5D


146 
 

Ravimannan N, Arulanantham R, Pathmanathan S & Niranjan K 2014: Alternative culture media 

for fungal growth using different formulation of protein sources. Annals of Biological 

Research, 5(1):36–39. 

Romanelli AM, Sutton DA, Thompson EH, Rinaldi MG & Wickes BL 2010: Sequence-based 

identification of filamentous Basidiomycetous Fungi from clinical specimens: a cautionary 

note. Journal of Clinical Microbiology, 48(3):741–752 

Ryan J 2008: Understanding and managing cell culture contamination.  Corning Incorporated, 

New York: USA 

Saparrat MCN, Martinez MJ, Cabello MN & Arambarri AM 2002: Screening for ligninolytic 

enzymes in autochthonus fungal strains from Argentina isolated from different substrata. 

Revista Iberoamericana de Micología, 19:181–185. 

Sasidhar R & Thirunalasundari T 2014: Lignocellulosic enzymes of Ganoderma lucidum in liquid 

medium. European Journal of Experimental Biology, 4(2):375–379. 

Schaechter M (Ed.) 2009: Techniques for selection of industrially important microorganisms. In: 

Encyclopedia of Microbiology. 3rd Edition. Elsevier: Oxford pp. 352 

Scherlach K, Graupner K& Hertweck C 2013: Molecular bacteria-fungi interactions: effects on 

environment, food, and medicine. Annual Review of Microbiology, 67:375–97. 

Schmidt O, Gaiser O & Dujesiefken D 2012: Molecular identification of decay fungi in the wood 

of urban trees. European Journal of Forest Research, 131:885–891. 

Scognamiglio T, Zinchuk R, Gumpeni P & Larone, DH 2010: Comparison of inhibitory mold agar 

to sabouraud dextrose agar as a primary medium for isolation of fungi. Journal of Clinical 

Microbiology, 48(5): 1924-1925.  

Senthilkumar S, Perumalsamy M, Basha CA, Selvakumar KV, Swaminathan G, Thajudeen N & 

Prabhu HJ 2012: Biodecolorization of a persistent organic dye from model wastewater using 

Curvularia spp. Desalination and Water Treatment, 46(1-3):272–277. 

Sharma G & Pandey RR 2010: Influence of culture media on growth, colony character and 

sporulation of fungi isolated from decaying vegetable wastes. Journal of Yeast and Fungal 

Research, 1(8):157-164. 

Shary S, Ralph SA & Hammel KE 2007: New insights into the ligninolytic capability of a wood 

decay ascomycete. Applied and Environmental Microbiology, 73(20): 6691–6694. 

Shraddha, Shekher R, Sehgal S, Kamthania M & Kumar A 2011: Laccase: Microbial sources, 

production, purification, and potential biotechnological Applications. Enzyme Research, 

217861: 1–11. doi: 10.4061/2011/217861 

Sidana A & Farooq U 2014: Sugarcane Bagasse: A Potential Medium for Fungal Cultures.  Chinese 

Journal of Biology, 840505: 1–5. doi:10.1155/2014/840505 

http://www.reviberoammicol.com/


147 
 

Singer SW, Reddy AP, Gladden JM, Guo H, Hazen TC, Simmons BA & Van der Gheynst JS 2011: 

Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazzolium 

acetate. Journal of Applied Microbiology, 110:1023–1031.  

Singh A, Kaur A, Dua A & Mahajan R 2015: An efficient and improved methodology for the 

screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Research, 

725281: 1–7. doi:10.1155/2015/725281 

Sivakumar R, Rajendran R, Balakumar C &, Tamilvendan M 2010: Isolation, screening and 

optimization of production medium for thermostable laccase production from Ganoderma sp. 

International Journal of Engineering Science and Technology, 2(12):7133–7141 

Slifkin M & Cumbie R 1988: Congo red fluorochrome for the rapid detection of fungi. Journal of 

Clinical Microbiology, 26(5): 827–830. 

Solis-Oba M, Almendáriz J & Viniegra–González G 2005: An electrochemical-

spectrophotometrical study of the oxidized forms of the mediator 2,2'-azino-bis-(3-

ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccase. Journal of 

Electroanalytical Chemistry, 579: 59–66. 

Stanbury PF, Whitaker A & Hall SJ 1995: Media for industrial fermentations. In: Stanbury PF, 

Whitaker A & Hall SJ (eds.),  Principles of Fermentation Technology, Oxford, Pergamon 

Press, pp. 93–121. 

Steele DB & Stowers MD 1991: Techniques for selection of industrially important 

microorganisms. Annual Review of Microbiology, 45:89–106.  

   Stevens DA 2002: Diagnosis of fungal infections: current status.  Journal of Antimicrobial 

Chemotherapy, 49(Suppl. 1):11–19. 

Sukesh K 2010: An Introduction to Industrial Microbiology. S. Chand Publishing: New Delhi, pp. 

22. 

Sun X & Guo L 2012: Endophytic fungal diversity: review of traditional and molecular techniques. 

Mycology, 3(1):65–76. 

Tamura K, Stecher G, Peterson D, Filipski, A & Kumar S 2013: MEGA6: Molecular Evolutionary 

Genetics Analysis version 6.0. Molecular Biology and Evolution, 30:2725–2729. 

Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG & Leigh MB 2010: Structure and 

resilience of fungal communities in Alaskan boreal forest soils. Canadian Journal ofForest 

Research, 40: 1288–1301. 

Tello M, Gaforia L & Pastor S 2009: Semi-selective media for the isolation of Phaeomoniella 

chlamydospora from soil and vine woood. Phytopathologia Mediterranea, 48:11–19. 

http://www.fupress.net/index.php/pm


148 
 

Tigini V, Prigione V, Di Toro S, Fava F & Varese GC 2009: Isolation and characterisation of 

polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. 

Microbial Cell Factories, 8(5):1–14. 

Teymouro F, Perez LL, Alizadeh H & Dale BE 2004: Ammonia fiber explosion treatment of corn 

stover. Applied Biochemistry and Biotechnology, 113-116: 951-963. 

Tilay A & Annapure U 2012: Novel Simplified and Rapid Method for Screening and Isolation of 

Polyunsaturated Fatty Acids Producing Marine Bacteria. Biotechnology Research 

International, 542721: 1–8. doi: 10.1155/2012/542721 

Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J & 

Veschambre H, 2000: Fungal biodegradation of a phenylurea herbicide, diuron: structure and 

toxicity of metabolites. Pest Management Science, 56, 455–462. 

Tixier C, Sancelme M, Bonnemoy F, Cuer A & Veschambre H 2001. Degradation products of a 

phenylurea herbicide, diuron: Synthesis, ecotoxicity, and biotransformation. Environmental 

Toxicology and Chemistry, 20: 1381–1389. 

Tsudome M,  Deguchi S, Tsujii K, Ito S & Horikoshi K 2009: Versatile Solidified Nanofibrous 

Cellulose-Containing Media for Growth of Extremophiles. Applied and Environmental 

Microbiology, 75(13):4616–4619. 

Upentra RS, Khandelwal P, Amiri ZR, Shwetha L & Ausim MS 2013: Screening and molecular 

characterisation of natural fungal isolates producing lovastatin. Microbial and Biochemical 

Technology, 5(2):25–30. 

Viswanath B, Chandra MS, Pallavi H & Reddy BR 2008: Screening and assessment of lacasse 

producing fungi isolated from different environment samples. African Journal of 

Biotechnology, 7(8):1129–1133. 

Vrsanska M, Buresova A, Damborsky P, Adam V 2015: Influence of Different Inducers on 

Ligninolytic Enzyme Activities. Journal of Metallomics and Nanotechnologies, 3:64–70. 

Waites MJ, Morgan NL, Rockey JS & Higton G. 2001. Industrial Microbiology: An Introduction. 

US: Blackwell Science Ltd. 

Walker GM & Whiter NA 2011: Introduction to fungal physiology. In Kavanagh K (Ed). Fungi: 

Biology and Application. 2nd Ed. John Wiley: United Kingdom 

Wietse B, Folman LB, Summerbell RC & Boddy L 2005: Living in a fungal world: impact of fungi 

on soil bacterial niche development. FEMS Microbiology Reviews, 29:795-811 

Weitz HJ, Ballard AL, Campbel CD & Killham K 2001: The effect of culture conditions on the 

mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiology 

Letters, 202: 165–170. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Tilay%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Annapure%20U%5Bauth%5D


149 
 

White TJ, Bruns TD, Lee SB & Taylor JW 1990: Amplification and direct sequencing of fungal 

ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ 

(Eds.) PCR Protocols: a Guide to Methods and Applications Academic Press, London: United 

Kingdom, pp. 315–322.  

Williams JP & Hallsworth JE 2009: Limits of life in hostile environments: no barriers to biosphere 

function? Environmental Microbiology, 11(12): 3292–3308.  

Worrall JJ, Anagnost SE & Zabel RA 1997: Comparison of wood decay among diverse lignicolous 

fungi. Mycologia, 89:199–219. 

Wunch KG, Feibelman T & Bennett JW 1997: Screening for fungi capable of removing 

benzo[a]pyrene in culture. Applied Microbiology and Biotechnology, 47: 620–624. 

Xie G, Li W, Lu J, Cao Y, Fang H, Zou H & Hu Z 2007: Isolation and identification of 

representative fungi from shaoxing rice wine wheat Qu using a polyphasic approach of culture-

based and molecular-based methods. Journal of the Institute of Brewing, 113 (3): 272–279. 

Yadav S, Gangwar N, Mittal P, Sharma S & Bhatnagar T 2014: Isolation, screening and 

biochemical characterisation of laccase producing bacteria for degradation of lignin. 

International Journal of Education and Science Research, 1(3): 17–21. 

Yang Q, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M & Kettrup A 2003: Decolorization of 

synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. 

Biotechnology Letters, 25(9):709–713. 

Yang B, Dai Z, Ding S-Y, & Wynman CE 2011: Enzymatic hydrolysis of cellulosic biomass. 

Biofuels, 2(4): 421–450  

Zhu N, Liu J, Yang J, Lin Y, Yang Y, Ji L, Li M & Yuan H 2016: Comparative analysis of the 

secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-

state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnology 

for Biofuels, 9:42:1–22.  

 

 

 

 

 

 

 

 

 

 



150 
 

Chapter 4 

 Macroscopic and microscopic changes during antagonistic 

interaction of fungi 

4.0 Abstract 

Interspecific interactions amongst fungi usually cause morphological changes that are a 

consequence of biochemical reactions involving protein expressions during these interactions. 

This study investigated dual cultures of 10 different fungal species with a focus on previously 

established antagonistic interactions observed on Potato Dextrose Agar (PDA). Approximately 

20 different fungal combinations were cultured and investigated on different substrates 

including PDA, Corn Cob Agar, Sugarcane Bagasse Agar and Wheat straw Agar. Trichoderma 

sp. KN10, Rhizopus microsporus KN2, Fomitopsis sp. KN1 and Coriolopsis sp. KN6 

consistently demonstrated tendencies of invasion and replacement in dual cultures. The plate 

interactions examined for macroscopic and microscopic morphological changes demonstrated 

varying morphological changes similar to those previously described in literature. This study 

demonstrated that interspecific interactions particaularly antagonism does cause morphological 

changes as well as a change in the biochemical responses from the interacting fungal species. 

 

4.1 Introduction 

When fungi are introduced to new territory, there is a tendency for individual fungi to occupy 

distinctive domains. However over a time period, either due to the exhaustion of nutrients 

within the immediate vicinity or the need for mycelial extension, these changes could cause an 

overlap between domains that leads to mycelial interactions (Boddy, 2000). It seems plausible 

that the interaction between hyphae is possibly significant in determining the pattern of 

colonization of substrate (Ikediugwu & Webster, 1970a; 1970b; Pečiulytė, 2002). Tlalka et al. 

(2008) explains that with filamentous fungi hyphae, such taxis is necessary to facilitate 

penetration of complex substrates and often it produces aggregated hyphae to allow it pass 

through unfavorable habitats to interconnect occupied nutrient sources. Such connections of 

several resource areas, allows fungi to translocate energy from nutrient-rich substrate to other 

parts of its mycelium, for example in its utilization of substrate such as wood. Therefore a 

circumstance that hinders these networks of hyphae is detrimental to the well-being of the 

fungi.  
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Interaction between two combatant fungi usually activates intense changes in mycelial 

morphology that are observable, particularly with antagonistic interactions, as the production 

of barrages and invasive cords as well as metabolic changes that include up-regulation and 

secretion of antifungal toxins, metabolites and oxidative enzymes (Boddy, 2000; Baldrian, 

2004;Heilmann-Clausen and Boddy, 2005; Hiscox et al., 2010; 2016).   

 

One of the most commonly observed morphological changes during fungus-fungus interaction 

is hyphal interference. It is characterised as observed in the interaction between Phlebiopsis 

gigantea and Heterobasidion annosum, by the rapid localised disruption of the cytoplasm and 

cell membrane of H. annosum upon its hyphae making contact with that of P. gigantean 

(Adomas et al., 2006).  

 

Interactions involving Trichoderma species invariably involves this fungus using a process 

referred to as mycoparasitism whereby it extends profuse quantities of hyphae towards host 

mycelia and the development of specialized parasitic structures such as appressoria and 

aggressive coiling, around host hyphae causing strangulation in nutrient uptake. As a result of 

the potential application of Trichoderma species in the biological of plant pathogen, this 

mechanism has been studied extensively (Boddy, 2000; Steyaert et al., 2003; White & 

Traquair, 2006). It should however be noted that mycoparasitism should not be regarded as 

primarily a mechanism by this organisms for nutrient acquisition but rather it is a temporary 

strategy exploited to gain territory from a host (Boddy, 2000). 

 

The production of barrages as stated previously is associated with another form of interspecific 

fungi interaction referred to as gross mycelial contact. It is observed on rich laboratory agar 

media as a development of dense aerial hyphae, which form a thickened tuft at the interaction 

interface (barrages) (Boddy, 2000; Adomas et al., 2006; Peiris et al., 2008; Peiris, 2009; Ujor, 

2010). This morphological modification by the fungi provides a physical barrier against 

invasion by the opposing fungal species (Boddy, 2000). Possibility exist that the barriers can 

be surmounted and such phenomenon has been observed in decaying wood (Boddy, 2000). 

Other morphological changes associated with gross mycelial contact include the formation of 

invasive mycelial fronts, mycelial fans, and linear structures – cords and rhizomorphic 

structures (Boddy, 2000). 
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Several authors have reported that mycelial contact in interspecific interactions is commonly 

associated with changes in pigmentation, sometimes yellowish/brownish to dark discolouration 

of mycelia that begins from the interface between the two combatant fungi and spreads inwards 

into the domain occupied by individual species (Peiris et al., 2008, Gregorio et al., 2006; Peiris, 

2009, Tudor et al., 2013). Furthermore, microscopic examination had shown other 

morphological changes observed during these interspecific mycelial struggles including 

vacuolation, swelling of hyphal filaments and protoplasmic degeneration, pronounced 

invagination of plasmalemma, loss of recognisable mitochondria, and appearance of dense 

intracellular streak-like aggregates within the cytoplasm (Ikediugwu, 1976; Iakovlev & Stenlid, 

2000; Gregorio et al., 2006; Li et al., 2010). 

 

In the present study, 10 fungi species previously identified and characterised were paired using 

statistically derived combinations on different substrates (PDA and agricultural residues). A 

comprehensive literature review of interspecific interactions has been executed in Chapter 2 of 

this thesis. The objective of this study was to investigate the macroscopically and 

microscopically changes that resulted from the competitive interactions. 

 

4.2 Materials and Method 

4.2.1 Preparation of Media 

Media plates for surface growth analysis of fungi and crude enzyme extraction was prepared 

using corncob, sugarcane bagasse and wheat straw powder with media composition calculation 

based on their standardized glycaemic index values that approximated PDA to achieve a similar 

consistency. The corn cob agar (CCA), sugarcane bagasse agar (SBA) and wheat straw agar 

(WSA) were prepared by adding 5.2 g of corncob powder, 5.88 g of sugarcane bagasse powder 

and 6.52 g of wheat straw powder respectively with 18 g of agar and made up to 1000 ml with 

distilled water. The CCA, SBA and WSA were autoclaved at 121oC for 15 mins and allowed 

to cool to 55oC. These sterile media was poured into petri-plates and allowed to solidify. 

 

4.2.2 Culture Combination and Dual Culture Interactions 

A total of 10 identified fungal species were cultivated on PDA plates at 25oC for 6 days as 

individual monocultures and in 45 statistically derived possible combinations for the dual 

cultures were derived by using statistical permutations adapted from the  Punnett  square as 

described by Punnett in 1905 (Bateson, 1902).  Approximately 10 mm wide plugs from 

monoaxenic plate cultures were cut and placed at the edge of the plates with a distance of 50mm 
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between the two plugs of interacting fungal mycelia to ensure that competing mycelia met at 

the centre. These interactions were repeated on all the different agriculture residue plate media. 

After 6 days of inoculation, the growth state of both self and interspecies pairing was observed, 

growth was allowed to extend for 14 days. 

 

4.2.3 Microscopic Examination of Dual Culture Interactions 

Fungal mycelial were exercised using a scapel from the interaction zones of whole cultures in 

Petri dishes as described by Ujor (2010) (refer to Figure 4.1). A drop of 0.1 % Congo-red stain 

(Slifkin & Cumbie, 1988) was added. Samples were washed with distilled water after 2 

minutes, blotted dry before covering with cover slip. Microscopic observations were done at 

X4 and X10 objective magnifications on an Olympus CX41TM Light Microscope. 

 

 

Figure 4.1: Schematic representation of and agar plate interaction assay between self and non-

self-fungal colony. Note: sample zones as indicated by Ujor (2012). 

 

4.3 Results 

4.3.1 Culture Combination and Dual Culture Interactions 

Table 4.1 describes the various dual combinations that were possible for the 10 fungal species 

in the present study. Observations were reported for day 14 of incubation.  Two types of 

interactions were observed on PDA in all 45 combinations – deadlock and replacement. 

Although deadlock interactions were not the focus of the study it is an important outcome of 

competition.  About 55% of the total number of dual culture fungi interactions demonstrated 

varied types of deadlock antagonism (Table 4.2). Figure 4.2 shows the different types of 

deadlock observed with the interspecific interactions done within the study. 
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Table 4.1: Factorial combinations of the isolated fungal treatments 

Fungi KN1 KN2 KN3 KN4 KN5 KN6 KN9 KN10 KN12 GL 

KN1 KN1-KN1 KN1-KN2 KN1-KN3 KN1-KN4 KN1-KN5 KN1-KN6 KN1-KN9 KN1-KN10 KN1-KN12 KN1-GL 

KN2 KN1-KN2 KN2-KN2 KN2-KN3 K2-KN4 KN2-KN5 KN2-KN6 KN2-KN9 KN2-KN10 KN2-KN12 KN2-GL 

KN3 KN1-KN3 KN2-KN3 KN3-KN3 KN3-KN4 KN3-KN5 KN3-KN6 KN3-KN9 KN3-KN10 KN3-KN12 KN3-GL 

KN4 KN1-KN4 KN2-KN4 KN3-KN4 KN4-KN4 KN4-KN5 KN4-KN6 KN4-KN9 KN4-KN10 KN4-KN12 KN4-GL 

KN5 KN1-KN5 KN2-KN5 KN3-KN5 KN4-KN5 KN5-KN5 KN5-KN6 KN5-KN9 KN5-KN10 KN5-KN12 KN5-GL 

KN6 KN1-KN6 KN2-KN6 KN3-KN6 KN4-KN6 KN5-KN6 KN6-KN6 KN6-KN9 KN6-KN10 KN6-KN12 KN6-GL 

KN9 KN1-KN9 KN2-KN9 KN3-KN9 KN4-KN9 KN5-KN9 KN6-KN9 KN9-KN9 KN9-KN10 KN9-KN12 KN9-GL 

KN10 KN1-KN10 KN2-KN10 KN3-KN10 KN4-KN10 KN5-KN10 KN6-KN10 KN9-KN10 KN10-KN10 KN10-KN12 KN10-GL 

KN12 KN1-KN12 KN2-KN12 KN3-KN12 KN4-KN12 KN5-KN12 KN6-KN12 KN9-KN12 KN10-KN12 KN12-KN12 KN12-GL 

GL KN1-GL KN2-GL KN3-GL KN4-GL KN5-GL KN6-GL KN9-GL KN10-GL KN12-GL GL-GL 

The combinations in grey fonts are repeats and therefore were not plated. 
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Table 4.2: Fungi dual cultures interactions showing deadlock 

Fungi dual cultures Observation 

KN1-KN12 Fomitopsis sp.  +Myrmaecium sp. deadlock at touching point 

KN1-KN4 Fomitopsis sp.+ Schizophyllum sp. deadlock at touching point 

KN1-KN6 Fomitopsis sp.+ Coriolopsis sp. deadlock at touching point 

KN1-KN9 Fomitopsis sp.+  Fusarium sp. deadlock at touching point 

KN2-KN10 R. microsporus + Trichoderma sp. deadlock at touching point 

KN3-KN4 C. borreriae +  Schizophyllum sp. deadlock at touching point 

KN3-KN5 C. borreriae+ Umbelopsis sp. deadlock at a distance with clear zone of inhibition,  

darkening of Umbelopsis sp. at the edge closest to 

zone 

KN3-KN6 C. borreriae + Coriolopsis sp. deadlock at touching point with Coriolopsis sp. 

covering 75% surface area 

KN3-KN9 C. borreriae + Fusarium sp. deadlock at a distance with clear zone of inhibition 

KN3-KN12 C. borreriae +  Myrmaecium sp. deadlock at a distance with marginal zone of inhibition 

KN3-GL C. borreriae + G. lucidum deadlock at a distance with clear zone of inhibition 

KN4-KN5 Schizophyllum sp. + Umbelopsis sp. deadlock at touching point 

KN4-KN6 Schizophyllum sp. + Coriolopsis sp. deadlock at touching point with Coriolopsis sp. 

covering 75% surface area 

KN4-KN9 Schizophyllum sp. +  Fusarium sp. deadlock at touching point 

KN4-KN12 Schizophyllum sp.  + Myrmaecium sp. deadlock at touching point 

KN4-GL Schizophyllum sp.  + G. lucidum deadlock at touching point 

KN5-KN9 Umbelopsis sp.+ Fusarium sp. deadlock at a distance with clear zone of inhibition; 

Fusarium sp darkened to black; Umbelopsis sp kills by 

darkening  

KN5-KN12 Umbelopsis sp.+ Myrmaecium sp. deadlock at a distance with clear zone of inhibition 

KN5-GL Umbelopsis sp.+ G. lucidum deadlock at touching point 

KN6-KN9 Coriolopsis sp.+  Fusarium sp. deadlock at touching point  

KN6-KN12 Coriolopsis sp.+ Myrmaecium sp. deadlock at touching point with Coriolopsis sp. 

covering 75% surface area 

KN6-GL Coriolopsis sp.+  G. lucidum deadlock at touching point 

KN9-KN12 Fusarium sp. + Myrmaecium sp. deadlock at a distance with clear zone of inhibition; 

Fusarium sp. darkened to black 

KN9-GL Fusarium sp. + G. lucidum deadlock at touching point 

KN12-GL Myrmaecium sp.+ G. lucidum deadlock at touching point 
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Figure 4.2: Various types of deadlock observed on different substrates. A – Fomitopsis sp. KN1 and red pigmented Myrmaecium sp. KN12 showing deadlock at touch point; 

B – Fomitopsis sp. KN1 and Trametes sp. KN6 showing deadlock at touch point and yellow discolouration in KN6; C – Ganodermalucidum encroaching on Umbelopsis sp. 

KN5 with deadlock at touch point and blackening of KN5; D – Clustered growth of Curvularia sp. KN3 around Myrmaecium sp. KN12 but with deadlock and varying degrees 

of zones of inhibition; E –Fomitopsis sp. KN1 and Trichoderma sp. KN10 in struggle observable clear zone of inhibition with obvious production of metabolites; F – Fusarium 

sp. KN9 and Myrmaecium sp. KN12 at deadlock with clear zone of inhibition; G – interaction on CCA involvingFomitopsis sp. KN1 and Trametes sp. KN6 showing deadlock 

and the formation of barrage; H – interaction on WSA involving Trametes sp. KN6 and Trichoderma sp. KN10 showing deadlock with the formation of barrage; I1 and I2 – 

interaction on WSA involving the encroachment of Rhizopus microsporus KN2 on Schizophyllum sp. KN4, the underside of the agar plate (I2) is showing the inception of 

green pigmentation around the point of contact. It should be noted that this pigment is not associated with monoaxenic cultures of either fungi. 

     

     

B A D C 

F 

E 
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Table 4.3: Fungi dual cultures showing invasion/replacement 

Fungi dual cultures Observation 

KN1-KN2 Fomitopsis sp.  + R. microsporus  R. microsporus  invaded 

KN1-KN3 Fomitopsis sp.  +  C. borreriae Fomitopsis sp.  invaded 

KN1-KN5 Fomitopsis sp.  +  Umbelopsis sp.  Fomitopsis sp.  invaded 

KN1-KN10 Fomitopsis sp.  + Trichoderma sp. Trichoderma sp. invaded 

KN1-GL Fomitopsis sp.  +  G. lucidum Fomitopsis sp.  invaded 

KN2-KN3 R. microsporus +  C. borreriae R. microsporus  invaded 

KN2-KN4 R. microsporus +  Schizophyllum sp. R. microsporus  invaded 

KN2-KN5 R. microsporus + Umbelopsis sp.  R. microsporus  invaded 

KN2-KN6 R. microsporus +Coriolopsis sp. R. microsporus  invaded 

KN2-KN9 R. microsporus + Fusarium sp. R. microsporus  invaded 

KN2-KN12 R. microsporus + Myrmaecium sp. R. microsporus  invaded 

KN2-GL R. microsporus +  G. lucidum R. microsporus  invaded 

KN3-KN10 C. borreriae+ Trichoderma sp. Trichoderma sp. invaded 

KN4-KN10 Schizophyllum sp.+ Trichoderma sp. Trichoderma sp. invaded 

KN5-KN6 Umbelopsis sp.+  Coriolopsis sp. Coriolopsis sp.invaded 

KN5-KN10 Umbelopsis sp.+  Trichoderma sp. Trichoderma sp. invaded 

KN6-KN10 Coriolopsis sp.+  Trichoderma sp. Trichoderma sp. invaded 

KN9-KN10 Fusarium sp. + Trichoderma sp. Trichoderma sp. invaded 

KN10-KN12 Trichoderma sp. + Myrmaecium sp. Trichoderma sp. invaded 

KN10-GL Trichoderma sp. + G. lucidum Trichoderma sp. invaded 

 

Approximately 45% of the dual cultures demonstrated replacement interactions (Table 4.3). 

Four of these fungal species, Trichoderma sp. KN10, Rhizopus microsporus KN2, Fomitopsis 

sp. KN1 and Coriolopsis sp. KN6 demonstrated tendencies of invasion and replacement in dual 

cultures.  However, monoculture of Myrmaecium sp. KN12 did not grow on CCA, SBA and 

WSA; monoculture of Umbelopsis sp. KN5 did not grow on SBA therefore it was impossible 

to test the dual culture combinations involving these organisms on these media. Figure 4.2 

show some examples of the antagonistic invasion outcomes that resulted from the interspecific 

interactions of the fungi used in this study. 
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Figure 4.3a: Various antagonistic invasion interactions involving Trichoderma sp. KN10. A, B and C – KN10 invading Curvularia sp. KN3 on different 

substrates, PDA, CCA and WSA respectively, with observable changes in morphology as a consequence. On PDA, KN10 show a loss of pigmentation but with 

a uniform distribution of mycelia around the plate, however on CCA and WSA although it retained its green pigmentation its mycelial distribution on plates are 

uneven. E, F and G – KN10 invading Fusarium sp. KN9 on PDA, CCA and WSA. Complete loss of pigmentation on PDA and a blackening of KN9. On CCA 

and WSA, mycelia are uneven but green pigmentation is retained. D and H are invasion on Ganoderma lucidum on PDA and CCA with the same pattern 

described previously. 

 

A B 

G 

D 

E F H 

C 



159 
 

 

    

    

Figure 4.3b: Various antagonistic invasion interactions involving Rhizopus microsporus KN2. A and B – KN2 invading Fusarium sp. KN9, Curvularia sp. 

KN3 respectively on PDA, observed luxuriant spread of rhizoid tufts of mycelial spread with some black pigments on media; C and D – invasion on SBA, 

however the invading fungi were Coriolopsis sp. KN6 and Fomitopsis sp. KN1; E and F – KN2 invaded Schizophyllum sp. KN4 and Curvularia sp. KN3 

respectively on CCA with observed difference in rhizoid mycelial distribution compared to PDA; G and H – KN2 invading Fusarium sp. KN9 and Schizophyllum 

sp. KN4 respectively on WSA with observed difference in rhizoid mycelial distribution compared to PDA. 
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Figure 4.3c: Various antagonistic invasion interactions involving Fomitopsis sp. KN1. A, B, C and D – KN1 invading Curvularia sp. KN3 on PDA, CCA, 

SBA and WSA respectively; E, F, G and H – KN1 invading Umbelopsis sp. KN5on PDA, CCA, SBA and WSA respectively; I, J, K and L – KN1 invading 

Ganodermalucidumon PDA, CCA, SBA and WSA respectively observable variation in morphology
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Figure 4.3d: Antagonistic invasion interaction involving Corioplosis sp. KN6. A, B and C – KN6 

invading Umbelopsis sp. KN5 on CCA, SBA and WSA respectively observable variation in 

morphology 

 

4.3.2 Microscopic Examination of Dual Culture Interactions 

Figure 4.4a – 4.4g are micrographs of the interaction zones of whole cultures demonstrating 

varying examples of antagonistic interspecific interactions. A common observation was 

situations of hyphal and protoplasmic degeneration. Further protoplasmic leakages was also 

identified with older cultures showing necrosis within the hypha. Remarkably, but specific to 

antagonistic invasion interaction involving Rhizopus microsporus KN2 invading Fusarium sp. 

KN9   coiling of KN2 around the hypha of KN9 was observed. 

 

Figure 4.4a: Microscopic examination of antagonistic invasion interaction involving Trichoderma sp. 

KN10 invading Curvularia sp. KN3 (Total Magnification = X100) 
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Figure 4.4b: Microscopic examination of antagonistic invasion interaction involving Fomitopsis sp. 

KN1 invading Ganoderma lucidum; showing hyphal protoplasmic degeneration and relative 

enlargement of hypha (Total Magnification = X100) 

 

Figure 4.4c: Microscopic examination of antagonistic invasion interaction involving Fomitopsis sp. 

KN1 invading Ganoderma lucidum; showing hyphal protoplasmic degeneration at points of hyphal 

contact with KN1 (Total Magnification = X100) 
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Figure 4.4d: Microscopic examination of antagonistic invasion interaction involving Fomitopsis sp. 

KN1 invading Ganoderma lucidum; showing hyphal disintegration and leakage of protoplasmic 

contents (left) and enlargement of hyphae (right) in Ganoderma lucidum (Total Magnification = X100) 

 

Figure 4.4e: Microscopic examination of antagonistic invasion interaction involving Rhizopus 

microsporus KN2 invading Fusarium sp. KN9; showing coiling of KN2 around the hypha of KN9 

(Total Magnification = X100) 
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Figure 4.4f: Microscopic examination of antagonistic invasion interaction involving Rhizopus 

microsporus KN2 invading Ganoderma lucidum; showing hyphal disintegration and clustered 

protoplasmic degeneration (Total Magnification = X100) 

 

Figure 4.4g: Microscopic examination of antagonistic invasion interaction involving Rhizopus 

microsporus KN2 invading Schizophyllum sp KN4; showing necrosis of KN4 (Total Magnification = 

X100) 
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Discussion 

All possible dual combinations for the 10 fungal species used in this study were derived by 

applying statistical permutations based on the Punnet Square (Bateson, 1902).  Although the 

use of the Punnet Square is considered a simple and effective method to achieve all possible 

statistical combinations of dual fungi interaction, it lends itself to redundancy as there are 

several repetitions as well as duplication of self-to-self interactions. However a generalized 

permutation formula can be used that eliminates repetition and redundancy is nPr= n!/(n-r)!; 

where n is number of fungal species and r is equal to 1 (McCaffey, 2006). Nevertheless, 90 

combinations were generated; only 45 of these possible interactions were used from the 

permutations of dual interactions of the 10 selected fungal species in this study.  

 

The primary focus of the present study was invasion-replacement interactions (Table 4.3). The 

conceptual hypothesis is that competition and antagonism will promote or induce the 

expression of ligninolytic enzymes in interspecific interactions of fungi on different 

lignocellulosic substrates. This is in agreement with work done by Hiscox et al. (2015) which 

reported that such antagonistic mechanisms in wood territory tend to affect the rate of resource 

use and therefore increase decay rate to provide the necessary carbon and energy for 

metabolism. On PDA plates, it was observed that almost all invading fungi covered the entire 

plate surface area within the 6 days of incubation; in most cases killing off the weaker fungi. 

However complete invasion was slower on agricultural waste residue than on PDA with most 

occurrences happening between the 9th and 18th day of incubation. It is most likely that this 

happened because the ligninolytic gene expression necessary for substrate enzyme production 

is only triggered by the depletion of nutrient carbon (Wang et al., 2008).  Furthermore, on some 

previously deadlocked interactions between day 18 and day 21 some of the barrages initially 

observed disappeared, most likely as a consequence of the invading fungi overwhelming the 

physical defences of the weaker fungi. This peculiar phenomenon observed in this study had 

been previously alluded to by Boddy (2000) however observations were on wood colonies. In 

the present studies this ability to overcome an initial deadlocked situation was observed on the 

different substrates by different fungal combinations. It is also most likely the reason Boddy 

(2000) asserted that it is difficult to replicate interactions. However this study demonstrated 

that often when investigations are concluded before the final outcomes of interspecfic 

interactions it is possible that conflicting results may be reported, thereby creating the 

assumption that interactions are not replicated. 



166 
 

More often, similar patterns of invasion that were observed on PDA (which was employed as 

a positive control in this study) were replicated on all three agricultural residues except in cases 

where monocultures of the fungi were unable to grow on the agricultural residues, most likely 

due to a lack of substrate affinity. It must be noted that the primary habitat of the fungi used in 

this study were forest litter and although these are lignocellulosic material they are likely to be 

of different biomass composition as compared to the agricultural residues used in this study  

(Kumar et al., 2009; Sorek et al., 2014). Nevertheless, three of the fungi Fomitopsis sp. KN1, 

R.microsporus KN2 and Trichoderma sp. KN10 tended to invade the others in co-cultures, but, 

in one co-culture combination, Coriolopsis sp. KN6 was the invader when in combination with 

Umbelopsis sp. KN5. 

 

Remarkably, macroscopic examinations of invasion-replacement interactions involving 

Trichoderma sp. KN10 showed several variations in pigmentation and morphological 

distribution of mycelia on the different substrates. On PDA, KN10 demonstrated a loss of 

pigmentation but had a uniform spread of mycelial on plates, however on agricultural substrates 

it tended to retain its pigmentation but its mycelial distribution became uneven to the extent 

that in some cases signs of invasions could only be concluded with speckled growth on top of 

the other fungal species mycelial spread, in the first few days. However usually by the 17th day 

its invasions were complete on the plate, often with associated death of the other fungi observed 

by the blackening of some of these other fungi. Several authors have associated the changes in 

pigmentation during fungus-fungus interactions to the activity and changes in the levels of 

phenoloxidases (Boddy, 2000; Crowe & Olsson 2001; Iakovlev et al. 2004; Rayner et al., 

1994). Griffith et al. (2007) even go so far as to suggest a link between pigment formation and 

copper quantities within substrates. A correlation can be made between the retaining of 

pigmentation by Trichoderma sp. KN10 on all agricultural residues during the interspecific 

invasion and the presence of copper in these substrates (details of these can be found in Chapter 

5 compositional analysis of these substrates). However it must be noted that there was a loss 

of pigmentation observed in the same interspecific invasion interaction (Figure 4.3a) on PDA 

which contains no copper. Most authors are in agreement that interspecific interactions often 

results in a change in the morphology of the fungi involved (Boddy, 2000; Baldrian, 2004; 

Heilmann-Clausen & Boddy, 2005; Hiscox et al., 2010; 2016). In the present study, one fungi 

that consistently demonstrated these variations in its morphology, particularly on the different 

substrates was Fomitopsis sp. KN1 (Figure 4.3c), thereby exemplifying this assertion.  
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Microscopic examination at the points of contact of fungi involved in these interspecific 

interactions showed similar characteristics as previously described by several authors (Howell, 

2003; Lu et al., 2004; Marra et al., 2006; Ujor, 2010). Trichoderma sp. KN10 demonstrated 

the typical mycoparasitic properties associated with its invasion during interspecific interaction 

in most of the interaction sample zones examined (Ujor, 2010) including as seen in Figure 4.4a. 

It is presumed that cell wall-degrading enzymes are responsible in this mycoparasitic strategy 

(Howell, 2003; Lu et al., 2004; Marra et al., 2006). A major recurrent morphological change 

that was observed in almost all interspecific interactions in the present study, was hyphal 

protoplasmic degeneration (Figures 4.4a and 4.4b) which was characterized by the formation 

of protoplasmic aggregates within the affected mycelial which often led to eventual necrosis. 

Ujor (2010) noted that a distinction exists between early onset of intracellular protoplasmic 

content-aggregation and hyphal interference as the former required other physiological reaction 

before hyphal disintegration can commence which is not the case with typical hyphal 

interference. Halliwell and Aruoma (1991) suggest the possibility that some protoplasmic 

degeneration could be attributed to oxidative damage such as lipid peroxidation of cell 

membranes, partially a consequence of the likely disruption of mitochondrial functioning that 

allows electron leakage (Iakovlev et al., 2004). This link is not far-fetched if one considers that 

the mitochondria functions in the electron transport chain; therefore an aggregation of 

intracellular components would inadvertently change the mitochondrial membrane potential 

(Ujor, 2010). It was possible to visualize hyphal disintegration and leakage of protoplasmic 

content in Figure 4.4d where Fomitopsis sp. KN1 was invading Ganoderma lucidum. It must 

also be noted that with most samples examined there usually was an enlargement of hyphae 

before mycelia lysis. It is presumed that the lysis of the cell wall may be associated with 

pigmentation as well as the up-regulation of phenol compounds. However, it is established that 

these phenol compounds are produced as a consequence of the expression of phenylalanine 

ammonia lyase (PAL), an enzyme that is commonly produced during the stationary phase in 

plants, fungi and actinomycetes. Its importance stems from PAL being the catalyzing enzyme 

of its specific compounds in the phenylpropanoid pathway which is the major source of phenol 

compounds (Kalghatgi & Rao, 1976; Kurosaki et al., 1986; Kim et al., 2001; Gomez-Vasquez 

et al., 2004). Moreover, it can be deduced that since wounding is one of the stress factors that 

can activate PAL synthesis, it is indeed plausible that, if one factors in substrate induction, that 

is possibly a consequence of the different agricultural residues that were used and the stress 

conditions associated with dual culture interactions, in all probability PAL maybe responsible 
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for the increased production of phenol compounds, which promote the synthesis and secretion 

of phenoloxidases during interspecific interactions that involve lysis (Crowe & Olsson, 2001). 

 

In Figure 4.4e, antagonistic invasion interaction involving Rhizopus microsporus KN2 

invading Fusarium sp. KN9 showed coiling of KN2 around the hyphae of KN9 in a mechanism 

similar to Trichoderma species when involved in mycoparasitic relationships (Lu et al., 2004; 

Aryantha & Guest, 2006). Although, Rhizopus sp. is a known pathogen and R. oryzae have in 

the past been investigated in interspecific interactions (Jeffries, 1995; Bonfante & Anca, 2009); 

the present study observed a range of antagonistic invasion interactions with Rhizopus sp. KN2 

invoking responses and increased enzyme activity as a consequence of this interspecific 

interaction, therefore this requires further study. With Trichoderma sp. such coiling and 

development of antagonistic structures known as ‘appressoria’ was determined to be associated 

with the accumulation of polyols proposed to be necessary to a certain extent in the production 

of inner hydrostatic turgor pressure  that is a pre-requisite in the development of the said 

structure around host mycelia (Ujor, 2010). 

 

Ultimately, most invasion replacement interactions tend to end with cellular necrosis as shown 

in Figure 4.4g. Yorimitsu and Klionsky (2005) suggest that replacement could induce 

autophaghy which is a normal degradation mechanism in eukaryotic cells that a cell employs 

in recycling aged proteins and other organelles. Pinan-Lucarre et al. (2005) identified the 

presence of key genes involved in autophagy during interspecific interactions. It is presumed 

that the objective of this attack (replacement) could be that the lysis of the weaker fungi will 

release hyphal contents that can subsequently be used by the antagonist (Falconer et al., 2008). 

 

There are copious evidence that apoptosis is a stress response in fungi, examples that can be 

easily associated with interspecific invasion interaction will include the production of 

antifungal agents (Leiter et al., 2005) and carbon starvation (Emri et al., 2005; Sharon et al., 

2009) particularly in confined spaces with limited nutrient supply as typified by plate 

cultivation in this present study. Thus far, one of the best studied case of fungal apoptosis still 

remains that Saccharomyces cerevisiae (Sharon et al., 2009). There are evidence to support 

that apoptosis in fungi is associates with an intrinsic-like pathway. This form of apoptotic 

response is mediated by the mitochondria in a series of complex reactions involving several 

mitochondrial proteins released when the mitochondrial permeability transition (MPT) pore is 

opened (Daugas et al., 2000; Li et al., 2001; Jiang and Wang, 2004). However, knowledge of 
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apoptosis in other interspecific interactions of fungi remains limited and the elucidation of 

molecular components and cellular mechanisms involved is needed. 

 

Conclusion 

The present study is a part of studies undertaken to understand the interspecific interactions 

identified within the dual combinations of fungal species chosen for this research. Macroscopic 

and microscopic examinations of the interspecific interactions demonstrated that there are 

significant changes that are a consequence of these interactions and would likely influence 

biochemical activities such as enzyme production in response to antagonism. The outcome of 

the interactions in substrate utilisation and enzyme production is discussed in Chapter 5. 
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Chapter 5 

 Comparative evaluation of enzyme production efficiency of 

monocultures and paired interactions of fungi on different 

agricultural substrates 

5.0 Abstract 

There is a renewed interest in finding sustainable energy sources with particular focus on 

agricultural waste residues. The justification for this perspective is that this eliminates the need 

to cultivate already scarce land mass and has the added advantage of utilising agricultural 

residues that otherwise would have presented problems of waste management. However the 

use of agricultural waste residue is significantly hindered by the difficulty in degradation of 

lignocellulose components of its structure. Ligninolytic fungi have the ability to degrade these 

agricultural waste residues but enzymes employed in the degradation process are produced in 

limited quantities and more often during the secondary metabolism by these organisms. The 

objective of this study was to investigate a strategy that could improve the production of these 

enzymes and likely accelerate the organisms into secondary phase enzyme production mode. 

Dual culture combinations of 10 fungi that had previously demonstrated the ability to produce 

ligninolytic enzymes were cultivated on PDA to ascertain their interspecific interaction and 

also on three agricultural residues, corn cob, sugarcane bagasse and wheat straw. 

Spectrophotometric analysis of the enzyme activities of laccase, manganese peroxidase and 

lignin peroxidase demonstrated that observed antagonistic invasions yielded an increased 

enzyme activity in dual cultures on all the substrates. However the highest ligninolytic enzyme 

production was observed in invasion/replacement interactions that involved Trichoderma sp. 

KN10 with average mean value of MnP production was approximately 1.46U/ml compared to 

all monocultures of 0.055U/ml. Similarly Lacc mean value was 0.10U/ml compared to 

monocultures value of 0.05U/ml.   This study demonstrated and proved that antagonistic 

invasion by some fungi in co-culture, although dependent on substrate affinity, can increase 

production of one or more of the three enzymes laccase, lignin peroxidase and manganese 

peroxidase.  

 

5.1 Introduction 

One of the most difficult problems in these contemporary times is managing the waste 

generated as a consequence of the various human activities. In our quest to improve the quality 
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of life, we have exploited and transformed natural resources to provide more food, better living 

conditions and promote longevity (Hall et al., 2009). However such endeavors have left a 

cornucopia of environmental problems in its wake. Agriculture is considered one of the greatest 

generator of waste. Globally, 140 billion metric tons of biomass is generated every year from 

agriculture (UNEP, 2009). The large volume of agroforestry waste presents a challenge as to 

finding ways for disposal that does not negatively impact the environment. The usual practice 

of burning or leaving the waste products of agriculture to rot is deemed unwholesome to 

humans and the environment alike.When waste management is not handled efficiently, it can 

lead to disastrous consequences that leave a lasting effect (Levis et al., 2010). Therefore it is 

necessary to find effective waste disposal methods that have the added advantage of being 

environmentally friendly as well as cost effective.  Thus, the current focus of environmental 

management is the conversion of these agricultural waste residues into useful products as this 

provides incentive for the continual practice of such a method of waste disposal. 

 

Moreover the utilization of agricultural waste residue is regarded as highly sustainable because 

it is routinely generated thus guaranteeing energy security and climate change mitigation. The 

enormous volume of biomass generated in agriculture offers readily available annual resource 

for raw materials and energy production. The United Nations Environmental Programme 

(2009) estimates that approximately 50 billion tons of oil can be produced annually from 

agricultural biomass waste which has the potential to substantially displace fossil fuel. The 

positive spin-off will be a reduction in greenhouse gases (GHG) emission, the provision of 

renewable energy to an estimated 1.6 billion people in developing countries as well as offering 

cheap raw materials to large-scale industries and community-level enterprises. 

 

Our dependence in the past century on fossil derived energy has taken its toll on the 

environment and has brought with it a realization that there is an urgent need to seek renewable 

sources to meet our burgeoning energy demands. Exacerbating this problem is the predicted 

decline of global crude oil production; Campbell and Laherrere (1998) attest to this pending 

reduction in fossil fuel generation, with an earlier prediction that oil production will decline 

from 25 billion to approximately 5 billion barrels in 2050. Such predictions are credible when 

one looks at the underpinning fact that crude oil is a limited non-renewable resource. 

 

The use of these fossil derived fuels such as coal and petroleum releases CO2 which is regarded 

as a major contributor to global warming (Yat et al., 2008). Most countries around the world 
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have joined in the global combat against climate change with a pledge to reduce their GHG 

emissions to help reduce the negative impact of global warming  One way to be able to fulfill 

such pledges is to seek alternative energy sources that reduce the carbon footprint and are 

environmentally friendly. 

 

The most popular renewable fuel alternative at present is ethanol-derived fuels, particularly 

with its on-going success in emerging economies such as Brazil (Watanabe 2009; Villarreal 

2013). Currently the most convenient source of ethanol-derived fuels is from maize and 

sugarcane (first-generation) (Figure 5.1). However there is a fierce debate regarding “food 

versus fuel” exploitations of these raw material base (UNEP, 2009). Credible concerns are 

raised that these ethanol-derived fuels currently competes negatively with the human use as 

food source and that it would on the long run impact food security and drive world market 

prices; creating similar problems associated with demand as is seen with petroleum currently. 

Furthermore, the dependence on petroleum has led to most countries’ economic crisis 

especially with the concomitant fluctuations in market prices. One solution that immediately 

presents itself is the use of agriculture-derived waste products (second-generation derived 

biofuels), which are readily available in all countries and more often the lack of use of these 

waste residues tend to pose both environmental and health problems due to uncontrolled 

decomposition process. 

Moreover, the use of second-generation derived biofuels not only promotes independence from 

outside suppliers but it also promotes rural development and reduction in GHGs (Demirbas, 

2005). Countries like the United States through its Department of Energy in 2007 invested over 

US$1 billion for lignocellulosic bioethanol projects, with a goal of making the fuel cost 

competitive at US$1.33 per gallon by the year 2012 (Slade et al.,  2009). Presently the United 

States Department of Energy partners with developing countries such as India with large 

agricultural base towards developing efficient second generation biofuels (DOE, 2015). Owing 

to the abundance and sustainability of lignocellulosic materials; they present an attractive, low-

cost feed stock for energy production (Ren et al., 2009). This is justifiable in the light of an 

estimated worldwide annual yields of 140 billion metric tons of biomass generated from 

agriculture (UNEP, 2009).  

 

The shift towards the use of lignocellulosic agricultural residues will only be possible if 

economically viable pretreatment methods are readily available. At present few 
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microorganisms have the innate capability to degrade lignocellulose. Some ligninolytic fungi 

are able to produce a group of enzymes that degrades the recalcitrant constituent lignin thereby 

exposing the cellulose and hemicellulose fractions that are more readily useful as platform 

sugars in fermentation.  The use of these ligninolytic fungi is a potential strategy that considers 

both economics and environmental remediation (Mahajan, 2011). The use of these biological 

pretreatment strategies is limited by several factors which include the poor production of these 

enzymes particularly since most studies have focused on mono-culture production. Studies on 

microbial consortia and their mixed enzyme systems could provide an important foundation 

for the understanding of the complex interactions of lignocellulosic degradation in composting, 

anaerobic digestion and enzymatic biomass saccharification (Wongwilaiwalin et al., 2010). 

 

Furthermore, the use of microbial co-cultures or complex communities has in more recent times 

been proposed as a highly efficient approach because it avoids the problems of biotechnological 

applications, feedback regulations as well as metabolite repression posed by isolated single 

strains (Haruta et al., 2002). Moreover most fungi during their natural life cycle exist in mixed 

communities that expose them to complex interactions such as symbiosis and competition (Hu 

et al., 2011). Although considered a tedious exercise; the understanding of the interactions 

between associated strains in a co-culture is quite important. Currently, very little research has 

been done, thus, this offers new avenues for future research work (Cheng & Zhu, 2012). 

 

 

Figure 5.1 Schematic representation of steps involved in the conversion of first and second 

generation to bioethanol (adapted from Sun & Guo, 2012). 
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5.2 Literature Review 

5.2.1 First generation versus second generation biofuels 

Currently the vast majority of biofuels used in vehicles and petrol engines are made using first 

generation bioethanol produced from resources such as wheat, sugar cane, sugar beet and 

maize. Second generation biofuels are a response to ‘food vs fuel’ debate and necessary to 

avoid land use conflict with the food and feed sectors which also use first generation resources 

in their production. The distinction between first and second-generation biofuels is somewhat 

blurred wherein the only clear classification is based on the feedstock used in production 

(Larson, 2008). Generally apart from the feedstock source of first generation biofuels, which 

is mainly sugars, grains or seeds; it tends to require relatively simple processing to produce 

fuel. In comparison, second generation biofuels would generally be produced from non-edible 

lignocellulosic biomass, including residues of agricultural crops or forestry production 

including corn cobs, rice husks, sugarcane bagasse, wheat straw, forest thinning, saw dust e.t.c 

and whole plant biomass such as energy crops including switchgrass, jatropha poplar and other 

fast growing trees and grasses. Such energy crops do no directly compete with crops for high 

quality land as such they are regarded as second-generation biofuels (Carriquiry et al., 2010). 

 

The issues of sustainability raised regarding the possibility of undue competition for land and 

water used in the production of first generation biofuels has made it clear that they cannot be 

considered a substitute for oil-products neither can it be viewed as a strategy for climate change 

mitigation. Furthermore it is regarded as likely to have detrimental effect on economic growth 

as gains observed in environmental management is eroded with the likely effect it will have on 

food prices of these cash crops. Moreover, some authors criticize the so-called environmental 

management counter-measures as potentially likely to cause the production of monocultures 

and deforestation to accommodate the demand for these crops (Searchinger et al., 2008; 

Fargione et al., 2008; Mitchell, 2008; Sims et al., 2008). 

 

With these increasing criticisms of the sustainability of many of the first-generation biofuels 

there has been a necessary paradigm shift toward second generation biofuels. Depending on 

the feedstock chosen, and the cultivation technique, second generation biofuels offer 

considerable benefits, the most important being the added benefit of efficient waste 

management and the use of non-arable land. Furthermore, because biomass is a renewable 

resource particularly those biomass that are generated as by-products of agricultural activity; 
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its use is considered to be carbon-neutral, thus it can credibly displace fossil fuels and reduce 

GHG emissions and at the same time close the carbon cycle loop (Sims et al., 2008; UNEP 

2009). 

 

However, in recent times cost estimates for the production of second generation biofuels have 

shown that they are two or three times more expensive than petroleum fuels on an energy 

equivalent (Carriquiry et al., 2011); although this is attributed to the process technological 

development still being at the early stages (Balan, 2014). There are several challenges 

highlighted by Balan (2014) in his review that will be necessary to address in attempting to 

reduce production cost of lignocellulosic biomass conversion to biofuels. These challenges 

include the following aspects in processing: (i) feedstock production; (ii) feedstock logistics; 

(iii) development of energy efficient technologies (pretreatment, enzyme hydrolysis, and 

microbial fermentation); (iv) co-products development; (v) establishment of biofuel and 

biochemical standards; (vi) biofuel distribution; (vii) societal acceptance; and (viii) 

environmental impact minimization (Hoekman, 2009; Menon & Rao, 2012; Luo et al., 2010; 

Balan, 2014). 

 

The present study focuses on only one aspect of these challenges which is the identification of 

a possible strategy to increase enzyme production necessary for the biological pretreatment of 

lignocellulosic biomass towards exposing platform sugars that can be utilized in microbial 

fermentation and the production of liquid biofuels. It is advantageous to use biological 

pretreatment because it can be operated under mild conditions and it requires low capital costs 

when compared to expensive reactor systems required for physical / chemical pretreatment 

processes (Balan et al., 2008). 

 

Several kinds of fungi (soft, brown and white-rot fungi) have been used in the biological 

pretreatment of biomass. These microorganisms are very effective in degrading lignin as a 

result of the production of enzymes (peroxidases and laccases) (Sánchez & Cardona, 2008). 

Biological pre-treatments can be achieved with mild conditions and low capital costs when 

compared to usual expensive reactor systems that are necessary for physical/chemical pre-

treatment processes. Although, it must be noted that biological processes are relatively slow 

processes. Additionally, microbial bio-treatment causes lower sugar conversion compared to 

chemical pre-treatment. Often, an initial biological pretreatment followed by chemical pre-
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treatment is found to be effective and reduces the severity of pre-treatment conditions usually 

needed for effective chemical hydrolysis of biomass (Balan et al., 2008). 

 

The production of ligninolytic enzymes in industrially feasible quantities is a critical aspect 

that has limited the exploitation of the biological pre-treatment. In spite of its advantages over 

physical and chemical pre-treatment process, even when biological pre-treatments are applied 

it is often in combination with other methods. Sections of the literature review in this thesis 

have expanded on the factors that affect enzyme production.  

 

In the present study, previously isolated and characterised fungi that had demonstrated the 

ability to produce ligninolytic enzymes were cultivated in dual cultures. The study focused of 

antagonistic interactions. The premise was that such interaction would require an increased 

metabolic activity (enzyme activity) for the invading fungi to be able to achieve territorial 

superiority and an increased utilization of available nutrients. The specific objective was to 

quantify the enzyme produced to enable the determination to be made, whether these dual 

culture combinations caused an increase in enzyme activity and production. In addition the 

efficiency of enzyme production in dual cultures was determined on three different agricultural 

residues using culture-based methods. It is important to note that although methodology and 

overall objective of the study is the same for both mono- and dual cultures evaluation and 

quantification, however to establish coherence in data analysis and interpretation of the results 

in this chapter, results will be presented as follows: 

 Data analysis and interpretation of fungi monocultures 

 Data analysis and interpretation of fungi dual cultures 

o Invasion interactions involving Trichoderma sp. KN10 

o Invasion interactions involving Rhizopus microsporus KN2 

o Invasion interactions involving Fomitopsis sp. KN1 

o Invasion interactions involving Coriolopsis sp. KN6 

 

5.3 Methodology 

Preparation of Agricultural Waste Residues – Corncob and Sugarcane bagasse 

The corncobs, sugarcane bagasse and wheat straw were comminuted to approximately 2 mm 

mesh size using initially a garden shredder and then milled with a commercial coffee grinder 

(Sunbeam Coffee Grinder SCG-250). Samples were oven-dried at 55oC for 24 hours before 
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further use. 

5.3.1 Compositional Analysis of Agricultural Waste Residues  

Compositional analyses were carried out for all agricultural residue samples at Nutrilab, 

Pretoria (South Africa). 

 

Preliminary dry matter (DM) content of samples were determined by weighing the corncob, 

sugarcane bagasse and wheat straw samples and drying overnight at 105oC in an oven. Ash 

content was derived by weighing samples before and after ashing at 550oC for two hours in a 

Muffle Furnace. 

 

5.3.1.1 Starch and Protein Analysis 

Total starch analysis was carried out using Mega-zyme starch assay kit based on the use of 

thermostable α-amylase and amyloglucosidase (McCleary et al., 1997) according to a method 

that was adopted (with modifications) from AOAC Method 996.11 and AACC Method 76.13. 

The Protein content was quantified by measuring the nitrogen content using Dumas method 

correspondent to the ASBC-AOAC Method 997.09. The protein content in the corn cob, 

sugarcane bagasse and wheat straw samples were determined indirectly by thermal 

decomposition through combustion in a tube at high temperatures (between 900 – 1200oC) in 

the presence of oxygen.   

 

5.3.1.2 Fibre Content Analysis 

The composition of cellulose, hemicellulose and lignin were determined gravimetrically using 

methods described by Van Soest et al. (1991).  

 

5.3.1.3 Elemental Analysis 

The Elemental Analysis for all substrates was done using the Shimadzu Atomic Absorption 

and Flame Emission Spectrophotometer using methods adopted from AOAC 968.08 

 

5.3.2 Preparation of Media 

Media plates for surface growth analysis of fungi and crude enzyme extraction were prepared 

using corncob, sugarcane bagasse and wheat straw powder with media composition calculation 

based on their standardized glycaemic index values that approximated PDA to achieve a similar 

consistency. The CCA, SBA and WSA was prepared by adding 5.2 g of corncob powder, 5.88 

g of sugarcane bagasse powder and 6.52 g of wheat straw powder respectively with 18 g of 
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agar and made up to 1000 ml with distilled water. The CCA, SBA and WSA was autoclaved 

at 121oC for 15 mins and allowed to cool to 55oC. These sterile media was poured into petri-

plates and allowed to solidify. 

 

5.3.3 Culture Combination and Dual Culture Interactions 

A total of 10 identified fungal species were cultivated on PDA plates at 25oC for 6 days as 

individual monocultures and in 45 statistically derived possible combinations for the dual 

cultures were derived by using statistical permutations adapted from the  Punnett  square as 

described by Punnett in 1905 (Bateson, 1909).  Approximately 10 mm wide plugs from 

monoaxenic plate cultures were cut and placed at the edge of the plates with a distance of 50mm 

between the two plugs of interacting fungal mycelia to ensure that competing mycelia met at 

the centre. These interactions were repeated on all the different agriculture residue plate media. 

After 6 days of inoculation, the growth state of both self and interspecies pairing was observed, 

growth was allowed to extend for 14 days. 

 

5.3.4 Crude Enzyme Extraction for Enzyme Assays 

Only combinations that demonstrated antagonistic interactions were replicated and assayed for 

enzyme activity. The crude enzymes were harvested from both monoculture and co-culture 

plates by washing the mycelia growth on plates in double distilled water, the mycelia was 

scraped and filtered through glass-wool and diluted to MacFarland 0.5 and verified using a 

spectrophotometer at OD650.  Samples were stored at 4°C prior to enzyme analysis. 

 

5.3.5 Crude Enzyme Assays 

5.3.5.1 Lignin Peroxidase Activity 

Lignin peroxidase activity was determined in a reaction mixture containing 0.5 mL of 8 mM 

veratryl alcohol, 1 mL of 0.3 M citrate/phosphate buffer at pH 4.5, 100 µl of crude enzyme 

extract and 3.15 mL of double distilled water. These contents were shaken and the reaction was 

activated by the addition of 250 µl of 5 mM of hydrogen peroxide at room temperature of 26oC. 

Absorbance was immediately observed at room temperature and read after 1 min at 310 nm 

(Kirk et al., 1986). 

 

5.3.5.2 Manganese Peroxidase Activity 

Manganese peroxidase activity was determined in a reaction mixture containing 1 mL of 0.1 

M manganese sulphate, 1 mL of 50 mM sodium tartrate at pH 5, 0.5 mL of crude enzyme 
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extract and 1.5 mL of double distilled water. These contents were shaken and the reaction was 

activated by the addition of 1 mL of 50 mM of hydrogen peroxide at room temperature of 26oC. 

Absorbance was immediately observed at room temperature and read after 1 min at 350 nm 

(Leonowicz et al., 1999).  

 

5.3.5.3 Laccase Activity 

Laccase activity was determined in a reaction mixture containing 3 mL of 100 mM guaiacol 

dissolved in double distilled water, 1 mL of 100 mM of sodium acetate buffer at pH 5 and 1 

mL of crude enzyme extract. These contents were shaken and incubated at 30°C for 2 minutes. 

Absorbance was immediately observed and read at room temperature at 470 nm (Collins & 

Dobson, 1997).  

 

Enzyme activity for all samples was calculated as follows:  𝑬. 𝑨 = 𝑨 ∗ 𝑽/[𝒕 ∗ 𝒆 ∗ 𝒗] 

E.A = Enzyme activity 

A = Absorbance 

T = Total volume of mixture [ml] 

t = incubation time 

e = extinction coefficient 

v = volume of enzyme 

 

5.3.6 Statistical Analysis 

Data collected for enzyme assays in both monocultures and dual cultures of fungi were 

analysed using the StatistixTM 10.0 Analytical Soft Ware. Multiple comparisons amongst the 

different substrates and mono- and dual cultures enzyme production efficiency were executed 

using the Tukey’s HSD tests with its statistical significance establish at α = 0.05 and the 

Analysis of Variance (ANOVA) were analysed using a two-way test model. 

 

5.4 Results 

5.4.1 Compositional Analysis of Agricultural Waste Residues  

Preliminary (‘as is’) analysis of agricultural residues showed the lowest values for moisture, 

ash and crude protein contents were observed in sugarcane bagasse. The lignin and cellulose 

contents were highest in wheat straw. Although the hemicellulose content is highest in corn 

cob, starch content was lowest in wheat straw. Varied element composition for individual 
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elements, notably the highest quantities of copper and manganese quantities were observed 

sugarcane bagasse (4.68mg/Kg and 31.9mg/Kg respectively).  

 

Table 5.1:   Moisture and ash content of lignocellulosic biomass 

AS IS Basis Moisture Content 

g/100g 

Ash Content 

g/100g 

Crude Protein 

g/100g 

Corn cob 6.81 2.10 5.71 

Sugarcane bagasse 3.4 1.80 1.91 

Wheat Straw 7.79 5.59 3.25 

 

 

Table 5.2: Lignocellulosic biomass composition analysis 

 

100%  

DM basis 

Starch 

g/100g 

Hemicellulose 

g/100g 

Cellulose 

g/100g 

Lignin  

g/100g 

Corn cob 1.02 33.85 44.44 7.97 

Sugarcane bagasse 1.20 12.45 40.43 5.67 

Wheat straw  0.82 23.23 70.31 9.76 

 

Table 5.3: Lignocellulosic biomass element composition analysis 

 
100%  

DM basis 

N 

g/100g 

Ca 

g/100g 

P 

g/100g 

Mg 

g/100g 

K 

g/100g 

Na 

g/100g 

Cu 

mg/Kg 

Fe 

mg/Kg 

Mn 

mg/Kg 

Zn 

mg/Kg 

Corn cob 0.98 0.025 0.161 0.083 0.34 0.22 4.28 39.6 12.9 39.6 

Sugarcane 

bagasse 

0.31 0.042 0.042 0.095 0.25 0.031 4.68 73.8 31.9 23.4 

Wheat straw 0.56 0.027 0.052 0.106 1.16 0.17 3.79 74.2 13.3 10.8 

 

5.4.2 Culture Combination and Dual Culture Interactions 

The dual culture interaction types (Deadlock and Invasion/Replacement) have been discussed 

previously in Chapter 4.  The previous chapter also provided data of the different combinations 

(Table 4.3) used in the enzyme assays with the intent of determining the efficiency of enzyme 

production by comparing mono- and dual cultures. Enzyme quantities produced using the three 

substrates investigated in this study and PDA are outlined in tables in Appendix D. 

 

5.4.3 Data Analysis and Interpretation of Fungi Monocultures 

The ANOVA test used in this study implemented a factorial design that considered two factors 

notably, the fungal species and the substrate with the enzyme activity being the outcome of the 
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treatments. The results were reported using specific enzyme activities mean variance as the 

categories. Results showed a consistency in the P value (0.0000) indicating that overall 

significant differences existed amongst the actual quantities of enzyme.  Furthermore the 

Pearson’s analysis of correlation showed a 20.84% correlation between LiP and MnP and 

83.28% correlation between MnP and Lacc (within the Cronbach’s α = 0.3678) (Appendix E). 

 

Table 5.4: Statistical analysis of mean values for enzyme activities in monocultures using 

ANOVA  

 

ANOVA Lignin Peroxidase 

(LiP) 

Manganese Peroxidase 

(MnP) 

Laccase (Lacc) 

Grand Mean 2.1203 0.05537 0.0509 

Coefficient of Variance (CV) 0.70 1.95 3.86 

 

The Tukey HSD all-pairwise tests showed that there were no significant difference amongst 

the fungi with respect to the production of LiP however similarities in enzyme activities was 

more common to KN9, KN1, KN4, and KN3 respectively, and GL and KN2 respectively 

(Appendix E). The highest response in LiP activity when compared with the optimized 

commercial substrate PDA was observed with KN3 cultivated on WSA and the lowest enzyme 

activity was observed in KN9 and KN3 cultivated on WSA and SBA respectively as well as 

with KN2 cultivated on WSA. The exclusion of KN5 and KN12 must be noted, although they 

are reflected on the Tukey test, they did not grow on the agricultural residues.  With regards to, 

MnP production there was no significant difference across the fungi, however greater 

similarities were observed with KN4 and KN10. Nine of the 10 fungal species (except KN12) 

used in the study cultivated on WSA produced greater quantities of MnP compared to all other 

substrates including PDA. There were also no significant differences in Lacc production across 

the 10 fungi species. However KN9, GL and KN10 cultivated on WSA produced the greatest 

quantities of Lacc compared to PDA and the other two substrates.  
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Figure 5.2 Lignin Peroxidase (LiP) Activities (U/ml) in monoculture of fungi species on the 

different substrates.Values were measured in triplicates (n=3) and are reported as the mean 

+SD 

 

 
Figure 5.3 Manganese Peroxidase (MnP) Activities (U/ml) in monoculture of fungi species on 

the different substrates. Values were measured in triplicates (n=3) and are reported as the mean 

+SD 

 

 

Figure 5.4 Laccase (Lacc) Activities (U/ml) in monoculture of fungi species on the different 

substrates. Values were measured in triplicates (n=3) and are reported as the mean +SD 
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5.4.4 Data Analysis and Interpretation of Fungi Dual Cultures (Antagonistic 

invasion/replacement interactions) 

Four of the fungal species used in the study, Trichoderma sp. KN10, Rhizopus microsporus 

KN2, Fomitopsis sp. KN1 and Coriolopsis sp. KN6 demonstrated tendencies of invasion and 

replacement in dual cultures.  However, monoculture growths of Myrmaecium sp. KN12 did not 

grow on CCA, SBA and WSA; monoculture of Umbelopsis sp.  KN5 did not grow on SBA 

therefore it was impossible to test the dual culture combinations involving these organisms on these 

media.  The exclusion of statistical analysis of PDA results of enzyme activity should be noted. 

The primary objective of this study was to ascertain the feasibility of the three agricultural residues. 

Thus comparison was done to determine the most suitable agricultural substrate for increased 

enzyme production.  The ANOVA analysis are reflected in tables below; however summary 

analysis and discussion that ensues focused on the Tukey tests carried out for the different 

invasion/replacement interactions as it provides clarity with comparisons involving multiple means 

and factors presented in this study. The choice of Tukey HSD tests was because it is able to prevent 

the occurrence of inherent Type I error rates common to ANOVA analysis in multi-factorial 

analysis (Wilkinson, 1999). 

 

5.4.4.1 Invasion interactions involving Trichoderma sp. KN10 

The P value (0.0000) indicated that there was not an overall significant difference amongst the 

actual quantities of enzyme (Appendix E). Analysis using the Tukey HSD tests demonstrated 

that there was greater production of LiP in dual cultures of KN3-KN10 cultivated on CCA 

when compared to KN3 monocultures which had demonstrated the highest production of LiP 

on WSA, most of the high performing enzyme activities with respect to LiP were also observed 

on CCA in dual cultures and interactions involving GL, KN6, KN4, KN3 and KN9. 

Remarkably the lowest LiP performance was observed with dual cultivations on WSA 

involving GL, KN5 and KN4. 

 

Table 5.5: Statistical analysis of mean values for enzyme activities in dual cultures 

representing antagonistic invasions involving Trichoderma sp. KN10 using ANOVA 

 

ANOVA Lignin Peroxidase  

(LiP) 

Manganese Peroxidase 

(MnP) 

Laccase (Lacc) 

Grand Mean 1.9798 1.4580 0.0976 

Coefficient of Variance (CV) 0.85 1.30   8.37 
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With regard to MnP production several dual cultures on WSA produced greater quantities of 

MnP, this included interactions with KN3, KN5, KN9, KN1, KN6, GL and KN4 respectively 

as compared to the highest monoculture production observed in GL cultivated on WSA. 

Moreover the lowest production of MnP in dual cultures significantly surpasses most of the 

monocultures on the different substrates. The expression patterns of MnP with invasion 

interactions involving KN10 was at least a 2-fold increase compared to all other invasion 

interactions across all substrates. Overall laccase production was highest in invasion 

interactions involving Trichoderma sp. KN10 on all agricultural substrates compared to all 

other invasion interactions. It should be added that in general this increased laccase production 

in interactions was best on WSA particularly with GL, KN4, KN3 and KN5 respectively. 

 

Figure 5.5a Lignin Peroxidase (LiP) Activities (U/ml) involving antagonistic/replacement by 

Trichoderma sp. KN10 on the different substrates. Values were measured in triplicates (n=3) 

and are reported as the mean +SD 

 

Figure 5.5b Manganese Peroxidase (MnP) Activities (U/ml) involving 

antagonistic/replacement by Trichoderma sp. KN10 on the different substrates. Values were 

measured in triplicates (n=3) and are reported as the mean +SD 
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Figure 5.5c Laccase (Lacc) Activities (U/ml) involving antagonistic/replacement by 

Trichoderma sp. KN10 on the different substrates. Values were measured in triplicates (n=3) 

and are reported as the mean +SD 

5.4.4.2 Invasion interactions involving Rhizopus microsporus KN2 

The highest value of LiP production was observed in invasion/replacement interaction 

involving KN2-KN5 cultivated on CCA, although, this value did not surpass monocultures of 

KN3 and KN6 cultivated WSA nor KN6 cultivated on CCA. Similarly highest MnP production 

was observed with KN2-KN6 interactions cultivated on WSA but it also did not surpass 

monoculture of KN9 cultivated on WSA. However, with Lacc production there were several 

interactions with KN3, GL, KN6 and KN5 respectively, which were cultivated on WSA that 

produced an increase in enzyme activity greater than the highest monoculture production, KN9, 

which was observed previously on WSA. It should be noted that KN5 did not grow on SBA. 

 

Table 5.6: Statistical analysis of mean values for enzyme activities in dual cultures 

representing antagonistic invasions involving Rhizopus microsporus KN2 using ANOVA 

 

ANOVA Lignin Peroxidase 

(LiP) 

Manganese Peroxidase 

(MnP) 

Laccase (Lacc) 

Grand Mean 1.9380 0.6598 0.0767 

Coefficient of Variance (CV) 0.79 1.90 4.86 
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Figure 5.6a Lignin Peroxidase (LiP) Activities (U/ml) involving antagonistic/replacement by 

Rhizopus microsporus KN2 on the different substrates. Values were measured in triplicates 

(n=3) and are reported as the mean +SD  

 

 
Figure 5.6b Manganese Peroxidase (MnP) Activities (U/ml) involving 

antagonistic/replacement by Rhizopus microsporus KN2 on the different substrates. Values 

were measured in triplicates (n=3) and are reported as the mean +SD 

 

 
Figure 5.6c Laccase (Lacc) Activities (U/ml) involving antagonistic/replacement by Rhizopus 

microsporus KN2 on the different substrates. Values were measured in triplicates (n=3) and 

are reported as the mean +SD 
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5.4.4.3 Invasion interactions involving Fomitopsis sp. KN1 

The highest value of LiP production was observed in invasion/replacement interaction 

involving KN1-GL cultivated on CCA, although, this value did not surpass monocultures of 

KN3 cultivated on WSA. The Tukey tests did not provide clear comparative values for MnP 

production, although it is obvious that none of the dual cultures surpassed monocultures of 

KN1 and GL in their MnP activities on all substrates (Appendix E). Nevertheless, dual cultures 

of KN1-KN5 and KN1-GL cultivated on WSA had greater Lacc activities when compared to 

the highest Lacc activity which was observed in monoculture of GL cultivated on WSA. It 

must be noted that there were fewer invasion interactions observed with KN1 when compared 

to KN10 and KN2. 

 

Table 5.7: Statistical analysis of mean values for enzyme activities in dual cultures 

representing antagonistic invasions involving Fomitopsis sp. KN1 using ANOVA 

 

ANOVA Lignin Peroxidase 

(LiP) 

Manganese Peroxidase 

(MnP) 

Laccase (Lacc) 

Grand Mean 2.0959 0.7952 0.0919 

Coefficient of Variance (CV) 0.65 1.52 2.32 

Note: SS are marginal (type III) sums of squares 

 

 

 

 
Figure 5.7a Lignin Peroxidase (LiP) Activities (U/ml) involving antagonistic/replacement by 

Fomitopsis sp. KN1 on the different substrates. Values were measured in triplicates (n=3) and 

are reported as the mean +SD.  Correct LiP on axis 
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Figure 5.7b Manganese Peroxidase (MnP) Activities (U/ml) involving 

antagonistic/replacement by Fomitopsis sp. KN1 on the different substrates. Values were 

measured in triplicates (n=3) and are reported as the mean +SD 

 

Figure 5.7c Laccase (Lacc) Activities (U/ml) involving antagonistic/replacement by 

Fomitopsis sp. KN1 on the different substrates. Values were measured in triplicates (n=3) and 

are reported as the mean +SD 

 

5.4.4.4 Invasion interactions involving Coriolopsis sp. KN6 

Invasion/replacement interaction involving Coriolopsis sp. KN6 was only observed when it 

was in dual cultures with Umbelopsis sp. KN5 and this was consistent on all three substrates. 

However it did not cause an increase in LiP enzyme activity. Comparisons were difficult to 

ascertain because KN5 did not grow on SBA, furthermore the monocultures enzyme activities 

on CCA, were very insignificant. However the invasion/replacement interaction caused an 

increase in MnP and Lacc quantities on WSA.  
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Table 5.8: Statistical analysis of mean values for enzyme activities in dual cultures 

representing antagonistic invasions involving Coriolopsis sp. KN6 using ANOVA 

 

ANOVA Lignin Peroxidase 

(LiP) 

Manganese Peroxidase 

(MnP) 

Laccase (Lacc) 

Grand Mean 1.8144 0.7289 0.0489 

Coefficient of Variance (CV) 1.43 1.65 *** 

*** Mean square too insignificant, data possibly fits the model exactly 

 

 

Figure 5.8a Lignin Peroxidase (LiP) Activities (U/ml) involving antagonistic/replacement by 

Coriolopsis sp. KN6 on the different substrates. Values were measured in triplicates (n=3) and 

are reported as the mean +SD 

 

 
Figure 5.8b Manganese Peroxidase (MnP) Activities (U/ml) involving 

antagonistic/replacement by Coriolopsis sp. KN6 on the different substrates. Values were 

measured in triplicates (n=3) and are reported as the mean +SD 
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Figure 5.8c Laccase (Lacc) Activities (U/ml) involving antagonistic/replacement by 

Coriolopsis sp. KN6 on the different substrates. Values were measured in triplicates (n=3) and 

are reported as the mean +SD 

 

Discussion 

The ability to degrade wood requires that fungi possess all three classes of lignin-modifying 

enzymes (LiP, MnP and Lacc), however it is not always the case that all three are present, 

usually there are variations where one or two of these enzymes may be present (Hatakka, 1994; 

Dhouib et al., 2005). These variations in enzyme production or the presence or absence of these 

enzymes critically determines the degradation efficiency of ligninolytic fungi. The fungi 

selected for this study demonstrated these variations in the expression of the three enzymes, 

with some producing one or at least two in monocultures. Furthermore, statistical analysis of 

the surface response to various substrates used in the study demonstrated that a higher 

correlation (83.28%) seemingly exists between the production of MnP and Lacc production. 

This is in agreement with study done by Bonugli-Santos et al. (2010) on Brazilian marine-

derived fungi to determine the quantities of laccase, manganese peroxidase and lignin 

peroxidase. Their work like the present study demonstrated that changes in substrate 

concentrations affected the MnP and laccase activities. Moreover it was established by 

statistical analysis that a linear relationship can be deduced, thus, an increase in MnP 

expression corresponded to an increase in Lacc expression. 

 

This study was intended to give an indication of the type of potential interactions demonstrated 

by these fungi in dual cultures. This was achieved by carrying out confrontation studies of 

paired interaction on agar plates. Keller and Surrette (2006) suggested that interactions within 

co-cultures may cause one strain to be enhanced or inhibited by the activities of the other 
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microorganisms; similarly the formation of primary and secondary metabolites is also affected 

by such interactions. This can be regarded as a unique characteristic of the co-cultivation 

processes (Qi-He et al., 2011). Morover, paired interaction between fungi are more akin to the 

type of interaction that are often found in the natural habitat of these organism(Moore-

Landecker, 2002). 

 

To ascertain whether the fungi could express these ligninolytic enzymes, it was necessary to 

carry out preliminary investigations using an optimized commercial substrate (PDA) that has 

been established to support the growth of most fungal species. All ten fungi selected for the 

study were able to grow luxuriantly on PDA and titre values of the three enzyme expressions 

were measured spectrophotometrically. This served as basis of comparison for the agricultural 

residues (corn cob, sugar cane bagasse and wheat straw) that were used by fungi in this study 

for the production of ligninolytic enzymes. For all substrates used in the study both 

monocultures and dual cultures enzyme expressions were measured. Although, it was observed 

that titre values obtained from PDA were not always the optimal values possible for enzyme 

production, some of the fungi on agricultural residues, particularly WSA, produced quantities 

significantly greater than was obtained from PDA. This can be attributed to the compositional 

differences in substrates (Tables 5.2 and 5.3). Some of the elements such as calcium, copper, 

manganese, iron and zinc, present within the agricultural residues are established inducers 

(Levin et al., 2002; Gomaa & Momtaz, 2015; Vrsanska et al., 2015) as such their presence in 

optimum quantities required by individual fungi can be presumed to have promoted growth 

and enzyme expression. In contrast, the growth of Umbelopsis sp. KN5 was not supported on 

SBA and Myrmaecium sp. KN12 was not able to grow on all three agricultural residues. It is 

likely that the quantities of the elemental inducers may have reached toxic levels for the two 

fungi that did not grow (Sharma & Pandey, 2010). It should be noted that individual fungi 

strains have different nutrient requirements therefore a nutritional requirement that may 

promote and even enhance enzyme expression in one fungus may not necessarily do the same 

for another. As a caution, it should be added that variation in concentration is an established 

limitation in the use of non-defined media (Basu et al., 2015; Koley & Mahapatra, 2015) in 

which all three agricultural residues can be typically classified. Nevertheless, WSA, in the 

present study produced the best responses in terms of enzyme production in contrast to SBA 

which was the poorest performing media, it is very likely that the composition of the sugarcane 

bagasse (Table 5.2 and 5.3) played a role in its performance as observations showed that it had 

significantly higher quantities of most of the known enzyme inducer elements. 



196 
 

 

Results of the enzyme quantification obtained from monocultures were used to compare dual 

cultures enzyme assays. Significant numbers of the dual cultures interactions, particularly with 

antagonistic invasions involving Trichoderma sp. KN10 (Figures 5.4b and 5.4c) demonstrated 

an increased activity for at least two of the ligninolytic enzymes analysed, suggesting that co-

cultivation likely triggered the induction of these enzymes. Hu et al. (2011) proposed that this 

inductive effect is likely dependent on the carbon source. In general invasion interactions with 

Trichoderma sp. KN10 and Ganoderma lucidum, Curvularia sp. KN3 and Schizophyllum sp. 

KN4 produced profound results for all three enzymes in different substrates. 

 

To ascertain efficiency in enzyme production in dual cultures it was necessary to exclude dual 

culture interactions that did not produce titre values that are greater than monoculture enzyme 

expression values. Therefore most values that seemingly were significantly greater than the 

individual monocultures were excluded because their values did not surpass the highest 

monoculture values for the same enzyme expression on the same media or even on a different 

media. Nevertheless there were values that were remarkable with invasion involving Rhizopus 

sp. KN2, Fomitopsis sp. KN1 and Coriolopsis sp. KN6 (Figures 5.5a – c and 5.6 a – c). 

 

Conclusion 

Dual cultivation of fungi and the exploitation of interspecific interaction even antagonism, 

shows considerable promise as a strategy in enhancing enzyme production. Although 

Trichoderma sp. has been identified in past as a biocontrol agent, much work has not been done 

on aspects of its use as biological inducer in terms of enzyme production. This study 

demonstrated that with the appropriate substrate and other favourable conditions, it is possible 

for some ligninolytic fungi particularly Trichoderma sp. to be paired with a variety of other 

fungi with resulting increase in enzyme production. The extremely biodiverse nature of fungi 

implies that echo studies can be done using a variety of indigenous agricultural residues thereby 

guaranteeing that efficient enzyme producing consortia of fungi can be developed specifically 

for different substrates. However the elucidation of the highly complex enzymatic systems and 

mechanisms employed, particularly during interspecific interactions is crucial to any progress 

in developing the degradation potential of ligninolytic fungi.  
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Chapter 6 

 Synthesis and Conclusion 

This study addressed a single hypothesis: 

Competition and antagonism will promote or induce the expression of ligninolytic enzymes in 

interspecific interactions of fungi on different lignocellulosic substrates. 

 

Figure 6 describes schematically the synthesis of information flow derived from the three 

experiments applied to achieving the research objectives (see Segment 2.10 in Chapter 2). 

 

To characterize fungi isolates obtained from the Kloofendal Nature Reserve, a series of culture 

transfers were necessary to obtain monoaxenic cultures of the 10 fungi used for the study. It 

was established that optimal growth conditions for these fungi was 25oC, furthermore luxuriant 

growth was achieved under humidified conditions. Although incubators used for this study did 

not have humidifying features, they were adapted to be able to provide adequate moisture 

simulating the initial habitat from which these fungi were obtained.  

 

Preliminary screening in Chapter 3 was used to eliminate fungi that were unable to produce 

ligninolytic fungi. Molecular characterization involved the use of ITS1 and IT4 primers to 

identify the fungal isolates used in this study to degrees of accuracy ranging from 98% to 100%. 

Based on the analysis of ITS rDNA gene sequence, the isolates KN1, KN2, KN3, KN4, KN5, 

KN6, KN9, KN10 and KN12 were identified as Fomitopsis sp., Rhizopus microsporus., 

Curvularia borreriae, Schizophyllum sp., Umbelopsis sp., Coriolopsis sp., Fusarium sp., 

Trichoderma sp., and Myrmaecium sp., respectively. Furthermore, phylogenetic relationship 

were derived for these fungal species and a lineage analysis revealed that there were species 

varying amongst phylum Basidiomycota, Ascomycota and early diverging fungal lineages 

Mucormycotina. Studies in Chapter 3 profoundly demonstrated that ligninolytic enzymes 

production is not limited to Basidiomycetes as members of the Mucorales; Ascomycetes also 

demonstrated ligninolytic activity. 

 

The result of antagonistic interspecific interactions amongst the 10 identified fungal species 

was investigated in Chapter 4, these morphological changes are a consequence of biochemical 

reaction involving protein expressions during these interactions. All fungi isolates were 
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cultivated in monocultures and dual cultures of 45 varying combinations initially on Potato 

Dextrose Agar and the three different media preparations of the agricultural residues, Corn cob 

Agar, Sugar cane bagasse Agar and Wheat straw Agar. A trend of antagonistic 

invasion/replacement was established with 20 combinations as it was repeated across all 

substrates. Trichoderma sp. KN10, Rhizopus microsporus KN2, Fomitopsis sp. KN1 and 

Coriolopsis sp. KN6 consistently demonstrated tendencies of invasion and replacement in dual 

cultures and plate interactions. Macroscopic and microscopic observation of surface plate 

responses of stained samples showed that dual cultures interspecific interactions caused 

morphological changes and biochemical changes that inevitably led to necrosis in most cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Conclusion and synthesis of information flow description of the main highlights of 

thesis 

In Chapter 5, the 20 dual culture combinations that had demonstrated antagonistic 

invasion/replacement interactions were evaluated for their enzyme production efficiency on all 

substrates using spectrophotometric analysis. Although there were several 

Chapter 3: Isolation, Screening and 

Characterization of fungi isolates 

Optimal temperature: 25oC under >70% 

humidity. 

Cellulolytic activity detected in all fungi 

isolates. Ligninolytic activity observed in 

Curvularia borreriae, Schizophyllum sp., 

Umbelopsis sp., Coriolopsis sp. and 

Ganoderma lucidum 

 

Optimal 

growth 

conditions 

used 

Chapter 4: Observation of Macroscopic and 

Microscopic changes  

Deadlock antagonism excluded from study. 

Focus on antagonistic invasion replacement. 

Approximately 20 dual combinations done on 

all substrates PDA, CCA, SBA and WSA. 

Trichoderma sp. KN10, Rhizopus microsporus 

KN2, Fomitopsis sp. KN1 and Coriolopsis sp. 

KN6 consistently demonstrated tendencies of 

invasion and replacement in dual cultures 

Common microscopic morphological changes 

included: hyphal enlargement, protoplasmic 

degeneration, hyphal disintegration and 

leakage of protoplasmic contents, hyphal 

coiling and necrosis 

Chapter 5: Comparative evaluation of enzyme production 

efficiency in monocultures and dual cultures 

Dual cultures of antagonistic invasion/replacement that did not produce enzyme 

yield greater than monocultures with highest yield were excluded. 

Interactions involving Trichoderma sp. with most of the fungi species used in the 

study produced all three ligninolytic enzymes investigated. This suggests that it 

could potentially be used as a biological inducer. 
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invasion/replacement interactions observed, to obtain a true reflection of increased enzyme 

activity in dual cultures, it was necessary to make the determination of increased enzyme 

production only in dual cultures that demonstrated increased enzyme yield greater than values 

observed with the highest possible value obtained in monoculture. Therefore on this basis 

several dual cultures involving invasions by Trichoderma sp. showed great potential such as 

with Ganoderma lucidum, Curvularia sp. KN3 and Schizophyllum sp. KN4 produced on all 

three enzymes in different substrates. This suggested potential use of Trichoderma sp. as a 

biological inducer for the production of ligninolytic enzymes. This study demonstrated and 

proved that antagonistic invasion by some fungi in co-culture, although dependent on substrate 

affinity, can increase production of one or more of the three enzymes laccase, lignin peroxidase 

and manganese peroxidase. 
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APPENDIX A 

Media  

 

Preparation of Media  

A. Potato Dextrose Agar (PDA) (g/l) 

Dextrose 20 

Potato 4 

Agar 15 

To prepare agar plates: 39 g of PDA was suspended in 1000 ml distilled water. It was heated 

for 5 minutes to dissolve the media completely. Media solution was sterilized in the autoclave 

at 121oC for 15 minutes. After sterilization, media was left to cool to 55oC. Approximately 20 

ml of partially cooled media was dispensed into each plate and left to stand in the laminar 

airflow chamber to solidify before plugging with fungi mycelia. 

 

B. Malt Extract Agar (MEA) (g/l) 

Malt Extract 12.75 

Dextrin 2.75 

Glycerin 2.35 

Gelatin Peptone 0.78 

Agar 15 

To prepare agar plates: 33.6 g of MEA was suspended in 1000 ml distilled water. It was heated 

for 1 minute to dissolve the media completely. Media solution was sterilized in the autoclave 

at 121oC for 15 minutes. After sterilization, media was left to cool to 55oC. Approximately 20 

ml of partially cooled media was dispensed into each plate and left to stand in the laminar 

airflow chamber to solidify before plugging with fungi mycelia. 
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C. Carboxymethyl Cellulose Agar (CMC) (g/l) 

(NH4)2SO4 1.0 

MgSO4.7H2O 1.0 

CaCl2.2H2O 1.0 

FeCl3 0.2 

K2HPO4 (Filtered) 1.0 

Casitone 2.0 

Carboxymethyl cellulose 15 

Agar 15 

To prepare agar plates: 40 g of CMC was suspended in 1000 ml distilled water. It was heated 

for approximately 5 minute to dissolve the media completely. Media solution was sterilized in 

the autoclave at 121oC for 15 minutes. After sterilization, media was left to cool to 55oC. 

Approximately 20 ml of partially cooled media was dispensed into each plate and left to stand 

in the laminar airflow chamber to solidify before plugging with fungi mycelia. 
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APPENDIX B 

Reagents 

 

Preparation of Reagents and Stock Solutions  

 

A. 0.1% Congo Red Solution 

Exactly 0.1g of Congo red was dissolved in distilled water and further diluted to 100 ml. 

 

B. 1 M Sodium Chloride (NaCl) Solution 

Exactly 58.5 g of NaCl was dissolved in 1000 ml distilled water.  

 

C. 0.5 M Sodium Succinate buffer 

An equal quantity ratio-wise of 0.5 M succinic acid was added to 0.5 M NaOH. The pH of the 

solution was tested and depending on the pH either the succinic acid or NaOH was added until 

a pH of 4.5 was reached. 

 

D. 0.5 M Sodium Hydroxide (NaOH) Solution 

Exactly 20 g of NaOH was dissolved in 1000 ml distilled water. 

 

E. 0.5 M Succinic Acid Solution 

Exactly 5.91 g of succinic acid powder was dissolved in 100 ml double distilled water. 

 

F. 20 mM Guaiacol Solution 

Exactly 2.8 ml of Guaiacol was added in 1000 ml double distilled water. The mixture was 

warmed at 55oC in a warm bath for 10 minutes. Solution was stored in aluminum foil-wrapped 

brown bottle at 27oC for a maximum of 3 months. Serial-fold dilutions was used to obtain lower 

concentrations. 

 

G. 1 mM Manganese Sulphate Monohydrate (MnSO4.H2O) Solution 

Exactly 1.69 g of MnSO4.H2O was dissolved in 1000 ml distilled water. 
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H. 1 mM Hydrogen Peroxide (H2O2) Solution 

Exactly 11.3 μl of 30% concentrated H2O2 was diluted in 100 ml double distilled water. Fresh 

solutions were prepared daily. 

 

I. 5 mM Hydrogen Peroxide (H2O2) Solution 

Exactly 56.5 μl of 30% concentrated H2O2 was diluted in 100 ml double distilled water. Fresh 

solutions were prepared daily. 

 

J. 8 mM Veratryl Alcohol Solution 

Exactly 115 μl of Veratryl alcohol was added to 100 ml double distilled water. Mixture is 

vortexed for 30 seconds before pipetting. Fresh solutions were prepared daily. 

 

K. 0.3 M Citrate-Phosphate buffer 

An equal quantity ratio-wise of 0.3 M citric acid was added to 0.4 M dibasic sodium phosphate. 

The pH of the solution was tested and depending on the pH either the citric acid or dibasic 

sodium phosphate was added until a pH of 4.5 was reached. 

 

L. 0.3 M Citric Acid Solution 

Exactly 5.76 g of citric acid powder was dissolved in 1000 ml double-distilled water. 

 

M. 0.4 M Dibasic Sodium Phosphate Solution 

Exactly 5.68 g of succinic acid powder was dissolved in 100 ml double distilled water. 

 

N. 0.1 M Sodium Acetate Buffer Solution 

An equal quantity ratio-wise of 0.1 M acetic acid was added to 0.1 M sodium acetate. The pH 

of the solution was tested and depending on the pH either the acetic acid or sodium acetate was 

added until a pH of 5.0 was reached. 

 

O. 0.1 M Acetic Acid Solution 

Exactly 5.71ml of concentrated glacial acetic acid powder was diluted in 1000 ml double-

distilled water. 

 

 



210 
 

P. 0.1 M Sodium Acetate Solution 

Exactly 0.82 g of sodium acetate powder was dissolved in 1000 ml double distilled water. 

 

Q. 0.5 M Potassium-Sodium Tartrate Buffer Solution 

Dropwise concentrated hydrochloric acid (HCl) is added to a quantity of 0.5 M of potassium-

sodium tartrate. The pH of the solution was tested and depending on the pH either the HCl or 

potassium-sodium tartrate was added until a pH of 5.0 was reached. 

 

R. 0.5 M Potassium-Sodium Tartrate Solution 

Exactly 14.11 g of potassium-sodium tartrate powder was dissolved in 1000 ml double 

distilled water. 
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APPENDIX C 

Fasta Files 

Fungal Basiodocarps collected from the Kloofendal Nature Reserve 26.1275S 27.8806E, on 28 January 2015, Fasta Files submissions to NCBI 

and issued accession numbers 

Strain 

Code 

Total Base 

Pairs 

Fasta File Isolate name Similarity Accession 

Numbers 
KN1 606 GTTGTTGCTGGCCGTCAGCGGCATGTGCACGCCCTGATCACTATCCATCTCACACACCTG 

TGCACACACTGTAGGTCGGTTTGTGGCTGGAGTGGGCACTCTGTGTCTGCTTTGGTTGTA 

GGCCTTCCTATGTTTTATTACAAACTACTTCAGTTTAAAGAATGTCACTCTTGCGTCTAA 

CGCATTTAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

GCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGC 

ACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAATTCTCAAC 

TCTATTTGCTTTTGTGAATAGAGCTTGGACTTGGAGGTTTATTGCCGGTACATCTGTGAT 

CGGCTCCTCTTGAATGCATTAGCTCGAACCTTTGTGGATCAGCTATCGGTGTGATAATTG 

TCTACGCCGTTGCTGTGAAGCATGTTAATGGGATCGGCTTCTAATCGTCCTTTTACTCGA 

GGACAATGACTTTGACCTTTGACCTCAAATCAGGTAGGATTACCCGCTGAACTTAAGCAT 

ATCATA 

Fomitopsis meliae voucher 

SRM-209 

98.84  KU253767 

KN2 636 TTTACTGGGATTTACTTCTCAGTATTGTTTGCTTCTATACTGTGAACCTCTGGCGATGAA 

GGTCGTAACTGACCTTCGGGAGAGACTCAGGACATATAGGCTATAATGGGTAGGCCTGTT 

CTGGGGTTTGATCGATGCCAATCAGGATTACCTTTCTTCCTTTGGGAAGGAAGGCGCCTG 

GTACCCTTTACCATATACCATGAATTCAGAATTGAAAGTATAATATAATAACAACTTTTA 

ACAATGGATCTCTTGGTTCTCGCATCGATGAAGAACGTAGCAAAGTGCGATAACTAGTGT 

GAATTGCATATTCGTGAATCATCGAGTCTTTGAACGCAGCTTGCACTCTATGGATCTTCT 

ATAGAGTACGCTTGCTTCAGTATCATAACCAACCCACACATAAAATTTATTTTATGTGGT 

GATGGACAAATTCGGTTAGATTTAATTATTATACCGATTGTCTAAAATACAGCCTCTTTG 

TAATTTTCATTAAATTACGAACTACCTAGCCATCGTGCTTTTTTGGTCCAACCAAAAAAC 

ATTTAATCTAGGGGTTCTGCCAGCCAGCAGATATTTTAATGCTCTTTAACTATGATCTGA 

AGTCAAGTGGGACTACCCGCTGAACTTAAGCATATC 

Rhizopus microsporus strain 

SHLSYD 

100  KU253769 

KN3 549 GCTGTACGCGGCTGGGCTCTCGGGCGCAGTGCTGCTGAGGCTGGATTATTTATTCACCCT 

TGTCTTTTGCGCACTTGTTGTTTCCTGGGCGGGTTCGCCCGCCGCCAGGACCACACCATA 

AACCTTTTTTTATGCAGTTGCAATCAGCGTCAGTACAACAAATGTAAATCATTTACAACT 

TTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATACGTA 

GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTTTGGT 

ATTCCAAAGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGG 

Curvularia borreriae strain 

FMR 11523 isolate 

100  KU253770 
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GCGTCTTGTCTTTTGGCTCTTTGCCCAAAGACTCGCCTTAAAACGATTGGCAGCCGGCCT 

ACTGGTTTCGCAGCGCAGCACATTTTTGCGCTTGCAATCAGCAAAAGAGGACGGCACTCC 

ATCAAGACTCCTTCTCACGTTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGC 

ATATCAATA 
KN4 583 TTCATCTTGTTCTGATCCTGTGCACCTTATGTAGTCCCAAAGCCTTCACGGGCGGCGGTT 

GACTACGTCTACCTCACACCTTAAAAGTATGTTAACGAATGTAATCATGGTCTTGACAGA 

CCCTAAAAAGTTAATACAACTTTCGACAACGGATCTCTTGGCTCTCGCATCGATGAAGAA 

CGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGA 

ACGCACCTTGCGCCCTTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCATTAAATACC 

ATCAACCCTCTTTTGACTTCGGTCTCGAGAGTGGCTTGGAAGTGGAGGTCTGCTGGAGCC 

TAACGGAGCCAGCTCCTCTTAAATGTATTAGCGGATTTCCCTTGCGGGATCGCGTCTCCG 

ATGTGATAATTTCTACGTTGTTGACCATCTCGGGGCTGACCTAGTCAGTTTCAATAGGAG 

TCTGCTTCTAACCGTCTCTTGACTGAGACTAGCGACTTGTGCGCTAACTTTTGACTTGAC 

CTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATATCATA 

Schizophyllum commune isolate 

GBJ8 

99.66  KU253771 

KN5 408 ATCAAGTTTGAAATGAGTTTTCTGTATTATCAAGACTGATTTCCAGAAGCAAATGTAGCC 

AAAGATTTGACAAAAGTCAAAACTATTAGGCCAAACTGCTGTAGTAGGAAACAGCCAAGA 

GCTACATTTTAGGAGTGCCGACTAGTAAAAATCGGCGCATCCCAATTCCACATCATAACC 

ACAAAGGTTAGGAGTGAGAGTGCTCATGATACTGAAACAGGCATACTCCTCGGAATACCA 

AGGAGTGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACG 

TATCGCATTTCGCTGCGTTCTTCATCGATGCGAGAACCAAGAGATCCGTTGTTGAAAGTT 

GTTTTAAACAGATTATTAAAATCATTGTTTAGTTGTTCAGTAAGTTTT 

Umbelopsis isabellina strain 

CBS 250.95 

99.66  KU253772 

KN6 573 GGTTGTAGCTGGCCTTCCGAGGCATGTGCACACCCTGCTCATCCACTCTACACCTGTGCA 

CTTACTGTAGGTTGGCGTGGGCTTCGGACCTCCGGGTTCGAGGCATTCTGCCGGCCTATG 

TACACTACAAACTCCGAAGTAACAGAATGTAAACGCGTCTAACGCATCTTAATACAACTT 

TCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAA 

TGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA 

TTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAATTCTCAACCCATAGATCCTTGTGGTC 

TACGGGCTTGGATTTGGAGGCTTGCCGGCCCTTACACGGGGTCGGCTCCTCTTGAATGCA 

TTAGCTTGATTCCGTGCGRATCGGCTCTCAGTGTGATAATTGTCTACGCTGTGGCCGTGA 

AGCGTTTGGCGAGCTTCTAACCGTCCGTTAGGACAACTTCTTGACATCTGACCTCAAATC 

AGGTAGGACTACCCGCTGAACTTAAGCATATCA 

Coriolopsis polyzona strain 

Cof143 

99.83  KU253773 

KN9 517 TCATCAACCCTGTGAACATACCTATAACGTTGCCTCGGCGGGAACAGACGGCCCCGTAAC 

ACGGGCCGCCCCCGCCAGAGGACCCCCTAACTCTGTTTCTATAATGTTTCTTCTGAGTAA 

ACAAGCAAATAAATTAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAA 

CGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGA 

ACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTTCGAGCGTCATTACAACCC 

TCAGGCCCCCGGGCCTGGCGTTGGGGATCGGCGGAAGCCCCCTGCGGGCACAACGCCGTC 

CCCCAAATACAGTGGCGGTCCCGCCGCAGCTTCCATTGCGTAGTAGCTAACACCTCGCAA 

CTGGAGAGCGGCGCGGCCACGCCGTAAAACACCCAACTTCTGAATGTTGACCTCGAATCA 

GGTAGGAATACCCGCTGAACTTAAGCATATCAATAAG 

Fusarium sp.VSMU-S001 100  KU253776 
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KN10 557 TGTGAACGTTACCAAACTGTTGCCTCGGCGGGATCTCTGCCCCGGGTGCGTCGCAGCCCC 

GGACCAAGGCGCCCGCCGGAGGACCAACCAAAACTCTTTTTGTATACCCCCTCGCGGGTT 

TTTTTATAATCTGAGCCTTCTCGGCGCCTCTCGTAGGCGTTTCGAAAATGAATCAAAACT 

TTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA 

ATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGT 

ATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGGTCG 

GCGTTGGGGATCGGCCCTCCCTTAGCGGGGGCCGTCTCCGAAATACAGTGGCGGTCTCGC 

CGCAGCCTCTCCTGCGCAGTAGTTTGCACACTCGCATCGGGAGCGCGGCGCGTCCACAGC 

CGTTAAACACCCAACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACT 

TAAGCATATCAATAAGC 

Trichoderma harzianum strain 

BHU-BOT-RYRL10 

99.83  KU253777 

KN12 511 GGGCGCGCGCACCTTCCAACCCCTTGAATCGTCACACCCGACCCGGTCGCTCCCYYCGCT 

CGCGGGGGGCGCTCCAGTCCAACTCGCGTCTCGAAACGTTGCCGTCTGAGTCAACACGAC 

AAATCAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGC 

GAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCAC 

ATTGCGCCCCCTGGCAGTCCGGGGGGCACATCTGTTCGAGCGTCATTACAACCCTCAAGC 

TCTGCTTGGTCTTGGGCGTCCCGTCCCCGCCTCGCGCGGCGGACGCGCCTCAAACTCCTC 

GGCGGTCCGCACCGGCTTCGAGCGTAGCAATCGCACCTCGCTCACGGAGTCCGGCTCGGG 

TCCTGCCGCATGACGACACACCGTTTCATTTCGAAAGGTTGACCTCGGATCAGATGGGGA 

TACCCGCTGAACTTAAGCATATCAATAAGCG 

Myrmaecium rubricosum strain 

VRJ 

99.61  KU253779 
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APPENDIX D 

Enzyme Assays 

Monocultures Enzyme Assay Results on PDA 

LIGNIN PEROXIDASE ASSAY ON PDA (Potato Dextrose Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

KN10 0.27 0.471 2.355 0.002532258 0.025322581 2.532258065 2.53 

KN10 0.27 0.471 2.355 0.002532258 0.025322581 2.532258065 2.53 

KN10 0.27 0.47 2.35 0.002526882 0.025268817 2.52688172 2.53 

KN2 0.274 0.474 2.37 0.002548387 0.025483871 2.548387097 2.55 

KN2 0.274 0.471 2.355 0.002532258 0.025322581 2.532258065 2.53 

KN2 0.274 0.471 2.355 0.002532258 0.025322581 2.532258065 2.53 

KN1 0.265 0.462 2.31 0.002483871 0.02483871 2.483870968 2.48 

KN1 0.265 0.46 2.3 0.002473118 0.024731183 2.47311828 2.47 

KN1 0.265 0.46 2.3 0.002473118 0.024731183 2.47311828 2.47 

KN4 0.255 0.457 2.285 0.002456989 0.024569892 2.456989247 2.46 

KN4 0.255 0.457 2.285 0.002456989 0.024569892 2.456989247 2.46 

KN4 0.255 0.454 2.27 0.00244086 0.024408602 2.440860215 2.44 

KN12 0.276 0.457 2.285 0.002456989 0.024569892 2.456989247 2.46 

KN12 0.276 0.457 2.285 0.002456989 0.024569892 2.456989247 2.46 

KN12 0.276 0.452 2.26 0.002430108 0.024301075 2.430107527 2.43 

KN9 0.28 0.453 2.265 0.002435484 0.024354839 2.435483871 2.44 

KN9 0.28 0.453 2.265 0.002435484 0.024354839 2.435483871 2.44 

KN9 0.28 0.449 2.245 0.002413978 0.024139785 2.413978495 2.41 

GL 0.279 0.453 2.265 0.002435484 0.024354839 2.435483871 2.44 

GL 0.279 0.448 2.24 0.002408602 0.024086022 2.408602151 2.41 
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GL 0.279 0.448 2.24 0.002408602 0.024086022 2.408602151 2.41 

KN6 0.274 0.448 2.24 0.002408602 0.024086022 2.408602151 2.41 

KN6 0.274 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN6 0.274 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN5 0.269 0.442 2.21 0.002376344 0.023763441 2.376344086 2.38 

KN5 0.269 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN5 0.269 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN3 0.254 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 

KN3 0.254 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 

KN3 0.254 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 
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MANGANESE PEROXIDASE ASSAY ON PDA (Potato Dextrose Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

KN12 0.466 0.104 0.52 0.000301362 0.003013619 0.301361924 0.30 

KN12 0.466 0.104 0.52 0.000301362 0.003013619 0.301361924 0.30 

KN12 0.466 0.102 0.51 0.000295567 0.002955665 0.295566502 0.30 

KN5 0.184 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN5 0.184 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN5 0.184 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN3 0.238 0.084 0.42 0.000243408 0.002434077 0.243407708 0.24 

KN3 0.238 0.081 0.405 0.000234715 0.002347146 0.234714575 0.23 

KN3 0.238 0.081 0.405 0.000234715 0.002347146 0.234714575 0.23 

KN6 0.244 0.081 0.405 0.000234715 0.002347146 0.234714575 0.23 

KN6 0.244 0.08 0.4 0.000231817 0.002318169 0.231816865 0.23 

KN6 0.244 0.08 0.4 0.000231817 0.002318169 0.231816865 0.23 

GL 0.132 0.075 0.375 0.000217328 0.002173283 0.217328311 0.22 

GL 0.132 0.072 0.36 0.000208635 0.002086352 0.208635178 0.21 

GL 0.132 0.072 0.36 0.000208635 0.002086352 0.208635178 0.21 

KN9 0.141 0.071 0.355 0.000205737 0.002057375 0.205737467 0.21 

KN9 0.141 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN9 0.141 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN4 0.152 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN4 0.152 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN4 0.152 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN1 0.102 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN1 0.102 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN1 0.102 0.058 0.29 0.000168067 0.001680672 0.168067227 0.17 

KN2 0.126 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

KN2 0.126 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 
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KN2 0.126 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN10 0.158 0.326 0.098 5.67951E-05 0.000567951 0.056795132 0.06 

KN10 0.158 0.326 0.098 5.67951E-05 0.000567951 0.056795132 0.06 

KN10 0.158 0.326 0.096 5.5636E-05 0.00055636 0.055636048 0.06 
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LACCASE ASSAY ON PDA (Potato Dextrose Agar) 

 Fungi 

Enzyme Extract 

Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity  (X10) 

KN10 0.751 0.599 2.995 0.000222181 0.00222181 0.222181009 0.22 

KN10 0.751 0.591 2.955 0.000219214 0.002192136 0.21921365 0.22 

KN10 0.751 0.591 2.955 0.000219214 0.002192136 0.21921365 0.22 

KN12 0.014 0.126 0.63 4.67359E-05 0.000467359 0.046735905 0.05 

KN12 0.014 0.125 0.625 4.6365E-05 0.00046365 0.046364985 0.05 

KN12 0.014 0.125 0.625 4.6365E-05 0.00046365 0.046364985 0.05 

KN9 0.078 0.045 0.225 1.66914E-05 0.000166914 0.016691395 0.02 

KN9 0.078 0.045 0.225 1.66914E-05 0.000166914 0.016691395 0.02 

KN9 0.078 0.044 0.22 1.63205E-05 0.000163205 0.016320475 0.02 

KN3 0.09 0.043 0.215 1.59496E-05 0.000159496 0.015949555 0.02 

KN3 0.09 0.042 0.21 1.55786E-05 0.000155786 0.015578635 0.02 

KN3 0.09 0.042 0.21 1.55786E-05 0.000155786 0.015578635 0.02 

KN2 0.116 0.031 0.155 1.14985E-05 0.000114985 0.011498516 0.01 

KN2 0.116 0.031 0.155 1.14985E-05 0.000114985 0.011498516 0.01 

KN2 0.116 0.03 0.15 1.11276E-05 0.000111276 0.011127596 0.01 

KN5 0.02 0.027 0.135 1.00148E-05 0.000100148 0.010014837 0.01 

KN5 0.02 0.027 0.135 1.00148E-05 0.000100148 0.010014837 0.01 

KN5 0.02 0.025 0.125 9.273E-06 9.273E-05 0.009272997 0.01 

GL -0.006 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

GL -0.006 0.013 0.065 4.82196E-06 4.82196E-05 0.004821958 0.00 

GL -0.006 0.013 0.065 4.82196E-06 4.82196E-05 0.004821958 0.00 

KN4 -0.016 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN4 -0.016 0.012 0.06 4.45104E-06 4.45104E-05 0.004451039 0.00 

KN4 -0.016 0.012 0.06 4.45104E-06 4.45104E-05 0.004451039 0.00 

KN1 -0.013 0.009 0.045 3.33828E-06 3.33828E-05 0.003338279 0.00 

KN1 -0.013 0.009 0.045 3.33828E-06 3.33828E-05 0.003338279 0.00 
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KN1 -0.013 0.009 0.045 3.33828E-06 3.33828E-05 0.003338279 0.00 

KN6 -0.023 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

KN6 -0.023 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

KN6 -0.023 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 
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Dual Cultures Enzyme Assays on PDA with Antagonistic Invasion Interactions Results  

DUAL CULTURES LIGNIN PEROXIDASE ASSAY ON  PDA (Potato Dextrose Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Rhizopus microsporus  KN2 invaded 

KN2-KN9 0.879 0.459 2.295 0.002467742 0.024677419 2.467741935 2.47 

KN2-KN9 0.879 0.456 2.28 0.002451613 0.024516129 2.451612903 2.45 

KN2-KN9 0.879 0.456 2.28 0.002451613 0.024516129 2.451612903 2.45 

KN2-KN4 0.385 0.407 2.035 0.002188172 0.02188172 2.188172043 2.19 

KN2-KN4 0.385 0.407 2.035 0.002188172 0.02188172 2.188172043 2.19 

KN2-KN4 0.385 0.407 2.035 0.002188172 0.02188172 2.188172043 2.19 

KN2-KN5 0.401 0.406 2.03 0.002182796 0.021827957 2.182795699 2.18 

KN2-KN5 0.401 0.405 2.025 0.002177419 0.021774194 2.177419355 2.18 

KN2-KN5 0.401 0.405 2.025 0.002177419 0.021774194 2.177419355 2.18 

KN2-KN3 0.384 0.403 2.015 0.002166667 0.021666667 2.166666667 2.17 

KN2-KN3 0.384 0.401 2.005 0.002155914 0.02155914 2.155913978 2.16 

KN2-KN3 0.384 0.401 2.005 0.002155914 0.02155914 2.155913978 2.16 

KN2-KN12 0.413 0.39 1.95 0.002096774 0.020967742 2.096774194 2.10 

KN2-KN12 0.413 0.392 1.96 0.002107527 0.021075269 2.107526882 2.11 

KN2-KN12 0.413 0.392 1.96 0.002107527 0.021075269 2.107526882 2.11 

KN2-GL 0.354 0.388 1.94 0.002086022 0.020860215 2.086021505 2.09 

KN2-GL 0.354 0.388 1.94 0.002086022 0.020860215 2.086021505 2.09 

KN2-GL 0.354 0.386 1.93 0.002075269 0.020752688 2.075268817 2.08 

KN1-KN2 0.431 0.394 1.97 0.00211828 0.021182796 2.11827957 2.12 

KN1-KN2 0.431 0.394 1.97 0.00211828 0.021182796 2.11827957 2.12 

KN1-KN2 0.431 0.394 1.97 0.00211828 0.021182796 2.11827957 2.12 

KN2-KN6 0.329 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

KN2-KN6 0.329 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 
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KN2-KN6 0.329 0.42 2.125 0.002284946 0.022849462 2.284946237 2.28 

When Fomitopsis sp. KN1 invaded 

KN1-KN3 0.292 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN1-KN3 0.292 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN1-KN3 0.292 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1-KN5 0.306 0.41 2.05 0.002204301 0.022043011 2.204301075 2.20 

KN1-KN5 0.306 0.41 2.05 0.002204301 0.022043011 2.204301075 2.20 

KN1-KN5 0.306 0.408 2.04 0.002193548 0.021935484 2.193548387 2.19 

KN1-GL 0.319 0.404 2.02 0.002172043 0.02172043 2.172043011 2.17 

KN1-GL 0.319 0.404 2.02 0.002172043 0.02172043 2.172043011 2.17 

KN1-GL 0.319 0.402 2.01 0.00216129 0.021612903 2.161290323 2.16 

When Coriolopsis sp. KN6 invaded 

KN5-KN6 0.407 0.389 1.945 0.002091398 0.020913978 2.091397849 2.09 

KN5-KN6 0.407 0.386 1.93 0.002075269 0.020752688 2.075268817 2.08 

KN5-KN6 0.407 0.386 1.93 0.002075269 0.020752688 2.075268817 2.08 

When Trichoderma sp. KN10 invaded 

KN10-KN12 0.891 0.423 2.115 0.002274194 0.022741935 2.274193548 2.27 

KN10-KN12 0.891 0.423 2.115 0.002274194 0.022741935 2.274193548 2.27 

KN10-KN12 0.891 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN6-KN10 0.61 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN6-KN10 0.61 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN6-KN10 0.61 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN4-KN10 0.514 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 

KN4-KN10 0.514 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN4-KN10 0.514 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN1-KN10 0.497 0.409 2.045 0.002198925 0.021989247 2.198924731 2.20 

KN1-KN10 0.497 0.408 2.04 0.002193548 0.021935484 2.193548387 2.19 

KN1-KN10 0.497 0.408 2.04 0.002193548 0.021935484 2.193548387 2.19 
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KN10-KN9 0.597 0.4 2 0.002150538 0.021505376 2.150537634 2.15 

KN10-KN9 0.597 0.4 2 0.002150538 0.021505376 2.150537634 2.15 

KN10-KN9 0.597 0.398 1.99 0.002139785 0.021397849 2.139784946 2.14 

KN5-KN10 0.586 0.395 1.975 0.002123656 0.021236559 2.123655914 2.12 

KN5-KN10 0.586 0.395 1.975 0.002123656 0.021236559 2.123655914 2.12 

KN5-KN10 0.586 0.394 1.97 0.00211828 0.021182796 2.11827957 2.12 

KN3-KN10 0.52 0.387 1.935 0.002080645 0.020806452 2.080645161 2.08 

KN3-KN10 0.52 0.387 1.935 0.002080645 0.020806452 2.080645161 2.08 

KN3-KN10 0.52 0.387 1.935 0.002080645 0.020806452 2.080645161 2.08 

KN10-GL 0.608 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN10-GL 0.608 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN10-GL 0.608 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 
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DUAL CULTURES MANGANESE PEROXIDASE ASSAY ON PDA (Potato Dextrose Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Rhizopus microsporusKN2 invaded 

KN2-KN9 0.304 0.092 0.46 0.000266589 0.002665894 0.266589394 0.27 

KN2-KN9 0.304 0.092 0.46 0.000266589 0.002665894 0.266589394 0.27 

KN2-KN9 0.304 0.091 0.455 0.000263692 0.002636917 0.263691684 0.26 

KN2-KN12 0.291 0.087 0.435 0.000252101 0.002521008 0.25210084 0.25 

KN2-KN12 0.291 0.087 0.435 0.000252101 0.002521008 0.25210084 0.25 

KN2-KN12 0.291 0.087 0.435 0.000252101 0.002521008 0.25210084 0.25 

KN2-KN5 0.139 0.074 0.37 0.000214431 0.002144306 0.2144306 0.21 

KN2-KN5 0.139 0.074 0.37 0.000214431 0.002144306 0.2144306 0.21 

KN2-KN5 0.139 0.074 0.37 0.000214431 0.002144306 0.2144306 0.21 

KN2-KN4 0.19 0.073 0.365 0.000211533 0.002115329 0.211532889 0.21 

KN2-KN4 0.19 0.073 0.365 0.000211533 0.002115329 0.211532889 0.21 

KN2-KN4 0.19 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN2-GL 0.183 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN2-GL 0.183 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN2-GL 0.183 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN2-KN3 0.169 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN2-KN3 0.169 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN2-KN3 0.169 0.07 0.35 0.00020284 0.002028398 0.202839757 0.20 

KN1-KN2 0.214 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN1-KN2 0.214 0.076 0.38 0.000220226 0.00220226 0.220226021 0.20 

KN1-KN2 0.214 0.076 0.38 0.000220226 0.00220226 0.220226021 0.20 

KN2-KN6 0.151 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN2-KN6 0.151 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN2-KN6 0.151 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

When Fomitopsis sp. KN1 invaded 
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KN1-KN5 0.132 0.082 0.41 0.000237612 0.002376123 0.237612286 0.24 

KN1-KN5 0.132 0.082 0.41 0.000237612 0.002376123 0.237612286 0.24 

KN1-KN5 0.132 0.082 0.41 0.000237612 0.002376123 0.237612286 0.24 

KN1-KN3 0.063 0.069 0.345 0.000199942 0.00199942 0.199942046 0.20 

KN1-KN3 0.063 0.069 0.345 0.000199942 0.00199942 0.199942046 0.20 

KN1-KN3 0.063 0.069 0.345 0.000199942 0.00199942 0.199942046 0.20 

KN1-GL 0.174 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

KN1-GL 0.174 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

KN1-GL 0.174 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

When Coriolopsis sp. KN6  invaded 

KN5-KN6 0.129 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN5-KN6 0.129 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN5-KN6 0.129 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

When Trichoderma sp. KN10 invaded 

KN1-KN10 0.513 0.12 0.6 0.000347725 0.003477253 0.347725297 0.35 

KN1-KN10 0.513 0.118 0.59 0.00034193 0.003419299 0.341929875 0.34 

KN1-KN10 0.513 0.118 0.59 0.00034193 0.003419299 0.341929875 0.34 

KN6-KN10 0.213 0.091 0.455 0.000263692 0.002636917 0.263691684 0.26 

KN6-KN10 0.213 0.088 0.44 0.000254999 0.002549986 0.254998551 0.25 

KN6-KN10 0.213 0.088 0.44 0.000254999 0.002549986 0.254998551 0.25 

KN10-KN9 0.255 0.086 0.43 0.000249203 0.002492031 0.24920313 0.25 

KN10-KN9 0.255 0.083 0.415 0.00024051 0.0024051 0.240509997 0.24 

KN10-KN9 0.255 0.083 0.415 0.00024051 0.0024051 0.240509997 0.24 

KN5-KN10 0.212 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN5-KN10 0.212 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN5-KN10 0.212 0.085 0.425 0.000246305 0.002463054 0.246305419 0.25 

KN3-KN10 0.229 0.084 0.42 0.000243408 0.002434077 0.243407708 0.24 

KN3-KN10 0.229 0.083 0.415 0.00024051 0.0024051 0.240509997 0.24 
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KN3-KN10 0.229 0.083 0.415 0.00024051 0.0024051 0.240509997 0.24 

KN4-KN10 0.237 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN4-KN10 0.237 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN4-KN10 0.237 0.073 0.365 0.000211533 0.002115329 0.211532889 0.21 

KN10-KN12 0.519 0.109 0.545 0.00031585 0.003158505 0.315850478 0.32 

KN10-KN12 0.519 0.107 0.535 0.000310055 0.003100551 0.310055057 0.31 

KN10-KN12 0.519 0.109 0.545 0.00031585 0.003158505 0.315850478 0.32 

KN10-GL 0.423 0.109 0.545 0.00031585 0.003158505 0.315850478 0.32 

KN10-GL 0.423 0.109 0.545 0.00031585 0.003158505 0.315850478 0.32 

KN10-GL 0.423 0.106 0.53 0.000307157 0.003071573 0.307157346 0.31 
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DUAL CULTURES LACCASE ASSAY ON PDA (Potato Dextrose Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Rhizopus microsporus KN2 invaded 

KN2-KN9 0.018 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN9 0.018 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN9 0.018 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-GL -0.014 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN2-GL -0.014 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN2-GL -0.014 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN2-KN5 -0.009 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN5 -0.009 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN5 -0.009 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN3 -0.006 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN3 -0.006 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN3 -0.006 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN4 -0.012 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN4 -0.012 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN4 -0.012 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN2-KN12 -0.001 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN12 -0.001 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN12 -0.001 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN1-KN2 -0.018 0.015 0.075 1.11276E-05 0.000111276 0.011127596 0.01 

KN1-KN2 -0.018 0.015 0.075 1.11276E-05 0.000111276 0.011127596 0.01 

KN1-KN2 -0.018 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN6 -0.004 0.031 0.155 2.2997E-05 0.00022997 0.022997033 0.02 

KN2-KN6 -0.004 0.031 0.155 2.2997E-05 0.00022997 0.022997033 0.02 

KN2-KN6 -0.004 0.024 0.12 1.78042E-05 0.000178042 0.017804154 0.02 

When Fomitopsis sp. KN1 invaded 
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KN1-GL 0.014 0.008 0.04 5.93472E-06 5.93472E-05 0.005934718 0.01 

KN1-GL 0.014 0.008 0.04 5.93472E-06 5.93472E-05 0.005934718 0.01 

KN1-GL 0.014 0.006 0.03 4.45104E-06 4.45104E-05 0.004451039 0.00 

KN1-KN5 -0.02 0.022 0.11 1.63205E-05 0.000163205 0.016320475 0.02 

KN1-KN5 -0.02 0.022 0.11 1.63205E-05 0.000163205 0.016320475 0.02 

KN1-KN5 -0.02 0.02 0.1 1.48368E-05 0.000148368 0.014836795 0.01 

KN1-KN3 -0.015 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN1-KN3 -0.015 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN1-KN3 -0.015 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

When Coriolopsis sp.  KN6 invaded 

KN5-KN6 0.019 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN5-KN6 0.019 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN5-KN6 0.019 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

When Trichoderma sp.KN10invaded 

KN10-KN12 0.243 0.062 0.31 4.59941E-05 0.000459941 0.045994065 0.05 

KN10-KN12 0.243 0.062 0.31 4.59941E-05 0.000459941 0.045994065 0.05 

KN10-KN12 0.243 0.061 0.305 4.52522E-05 0.000452522 0.045252226 0.05 

KN1-KN10 0.066 0.032 0.16 2.37389E-05 0.000237389 0.023738872 0.02 

KN1-KN10 0.066 0.032 0.16 2.37389E-05 0.000237389 0.023738872 0.02 

KN1-KN10 0.066 0.032 0.16 2.37389E-05 0.000237389 0.023738872 0.02 

KN6-KN10 0.146 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN6-KN10 0.146 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN6-KN10 0.146 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN5-KN10 0.128 0.036 0.18 2.67062E-05 0.000267062 0.026706231 0.03 

KN5-KN10 0.128 0.036 0.18 2.67062E-05 0.000267062 0.026706231 0.03 

KN5-KN10 0.128 0.036 0.18 2.67062E-05 0.000267062 0.026706231 0.03 

KN4-KN10 0.114 0.033 0.165 2.44807E-05 0.000244807 0.024480712 0.02 

KN4-KN10 0.114 0.033 0.165 2.44807E-05 0.000244807 0.024480712 0.02 
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KN4-KN10 0.114 0.035 0.175 2.59644E-05 0.000259644 0.025964392 0.03 

KN3-KN10 0.113 0.049 0.245 3.63501E-05 0.000363501 0.036350148 0.04 

KN3-KN10 0.113 0.049 0.245 3.63501E-05 0.000363501 0.036350148 0.04 

KN3-KN10 0.113 0.05 0.25 3.7092E-05 0.00037092 0.037091988 0.04 

KN10-KN9 0.1 0.038 0.19 2.81899E-05 0.000281899 0.028189911 0.03 

KN10-KN9 0.1 0.038 0.19 2.81899E-05 0.000281899 0.028189911 0.03 

KN10-KN9 0.1 0.036 0.18 2.67062E-05 0.000267062 0.026706231 0.03 

KN10-GL 0.221 0.053 0.265 3.93175E-05 0.000393175 0.039317507 0.04 

KN10-GL 0.221 0.053 0.265 3.93175E-05 0.000393175 0.039317507 0.04 

KN10-GL 0.221 0.053 0.265 3.93175E-05 0.000393175 0.039317507 0.04 
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Monocultures Enzyme Assay Results on CCA 

LIGNIN PEROXIDASE ASSAY ON CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

KN6 0.338 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN6 0.338 0.446 2.23 0.002397849 0.023978495 2.397849462 2.40 

KN6 0.338 0.448 2.24 0.002408602 0.024086022 2.408602151 2.41 

KN9 0.331 0.441 2.205 0.002370968 0.023709677 2.370967742 2.37 

KN9 0.331 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN9 0.331 0.44 2.2 0.002365591 0.023655914 2.365591398 2.37 

KN3 0.355 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN3 0.355 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN3 0.355 0.443 2.215 0.00238172 0.023817204 2.38172043 2.38 

KN2 0.333 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN2 0.333 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN2 0.333 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN4 0.269 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN4 0.269 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN4 0.269 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN1 0.279 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1 0.279 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1 0.279 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN5 0.333 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

KN5 0.333 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN5 0.333 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

GL 0.342 0.432 2.16 0.002322581 0.023225806 2.322580645 2.32 

GL 0.342 0.428 2.14 0.002301075 0.023010753 2.301075269 2.30 

GL 0.342 0.428 2.14 0.002301075 0.023010753 2.301075269 2.30 

KN12 0 0 0 0 0 0 0.00 
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KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



231 
 

MANGANESE PEROXIDASE ASSAY ON CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

KN10 0.158 0.084 0.42 0.000243408 0.002434077 0.243407708 0.24 

KN10 0.158 0.084 0.42 0.000243408 0.002434077 0.243407708 0.24 

KN10 0.158 0.083 0.415 0.00024051 0.0024051 0.240509997 0.24 

KN6 0.114 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

KN6 0.114 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN6 0.114 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN4 0.053 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN4 0.053 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN4 0.053 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

GL 0.118 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

GL 0.118 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

GL 0.118 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN3 0.107 0.059 0.295 0.000170965 0.001709649 0.170964938 0.17 

KN3 0.107 0.058 0.29 0.000168067 0.001680672 0.168067227 0.17 

KN3 0.107 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN9 0.082 0.059 0.295 0.000170965 0.001709649 0.170964938 0.17 

KN9 0.082 0.055 0.275 0.000159374 0.001593741 0.159374094 0.16 

KN9 0.082 0.053 0.265 0.000153579 0.001535787 0.153578673 0.15 

KN5 0.059 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN5 0.059 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN5 0.059 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN1 0.053 0.049 0.245 0.000141988 0.001419878 0.14198783 0.14 

KN1 0.053 0.045 0.225 0.000130397 0.00130397 0.130396986 0.13 

KN1 0.053 0.045 0.225 0.000130397 0.00130397 0.130396986 0.13 

KN2 0.064 0.045 0.225 0.000130397 0.00130397 0.130396986 0.13 

KN2 0.064 0.044 0.22 0.000127499 0.001274993 0.127499276 0.13 
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KN2 0.064 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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LACCASE ASSAY ON CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity  (X10) 

KN10 0.034 0.024 0.12 8.90208E-06 8.90208E-05 0.008902077 0.01 

KN10 0.034 0.022 0.022 1.63205E-06 1.63205E-05 0.001632047 0.01 

KN10 0.034 0.02 0.02 1.48368E-06 1.48368E-05 0.00148368 0.01 

KN6 0.011 0.02 0.1 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN6 0.011 0.025 0.125 9.273E-06 9.273E-05 0.009272997 0.01 

KN6 0.011 0.02 0.1 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN4 0.015 0.008 0.04 2.96736E-06 2.96736E-05 0.002967359 0.00 

KN4 0.015 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

KN4 0.015 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

GL 0.009 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

GL 0.009 0.02 0.1 7.4184E-06 7.4184E-05 0.007418398 0.01 

GL 0.009 0.02 0.1 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN3 0.009 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN3 0.009 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN3 0.009 0.015 0.075 5.5638E-06 5.5638E-05 0.005563798 0.01 

KN9 0.009 0.01 0.05 3.7092E-06 3.7092E-05 0.003709199 0.00 

KN9 0.009 0.011 0.055 4.08012E-06 4.08012E-05 0.004080119 0.00 

KN9 0.009 0.01 0.05 3.7092E-06 3.7092E-05 0.003709199 0.00 

KN5 0.02 0.009 0.045 3.33828E-06 3.33828E-05 0.003338279 0.00 

KN5 0.02 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

KN5 0.02 0.01 0.05 3.7092E-06 3.7092E-05 0.003709199 0.00 

KN1 0.02 0.008 0.04 2.96736E-06 2.96736E-05 0.002967359 0.00 

KN1 0.02 0.008 0.04 2.96736E-06 2.96736E-05 0.002967359 0.00 

KN1 0.02 0.006 0.03 2.22552E-06 2.22552E-05 0.002225519 0.00 

KN2 0.01 0.007 0.035 2.59644E-06 2.59644E-05 0.002596439 0.00 

KN2 0.01 0.006 0.03 2.22552E-06 2.22552E-05 0.002225519 0.00 
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KN2 0.01 0.01 0.05 3.7092E-06 3.7092E-05 0.003709199 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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Dual Cultures Enzyme Assays on CCA with Antagonistic Invasion Interactions Results  

DUAL CULTURES LIGNIN PEROXIDASE ASSAY ON  CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp. KN10 invaded 

KN1-KN10 1.385 0.485 2.425 0.002607527 0.026075269 2.607526882 2.61 

KN1-KN10 1.385 0.484 2.42 0.002602151 0.026021505 2.602150538 2.60 

KN1-KN10 1.385 0.481 2.405 0.002586022 0.025860215 2.586021505 2.59 

KN6-KN10 0.763 0.467 2.335 0.002510753 0.025107527 2.510752688 2.51 

KN6-KN10 0.763 0.47 2.35 0.002526882 0.025268817 2.52688172 2.53 

KN6-KN10 0.763 0.464 2.32 0.002494624 0.024946237 2.494623656 2.49 

KN4-KN10 0.699 0.463 2.315 0.002489247 0.024892473 2.489247312 2.49 

KN4-KN10 0.699 0.465 2.325 0.0025 0.025 2.5 2.50 

KN4-KN10 0.699 0.462 2.31 0.002483871 0.02483871 2.483870968 2.48 

KN10-KN9 0.557 0.459 2.295 0.002467742 0.024677419 2.467741935 2.47 

KN10-KN9 0.557 0.456 2.28 0.002451613 0.024516129 2.451612903 2.45 

KN10-KN9 0.557 0.462 2.31 0.002483871 0.02483871 2.483870968 2.48 

KN3-KN10 0.592 0.458 2.29 0.002462366 0.024623656 2.462365591 2.46 

KN3-KN10 0.592 0.455 2.275 0.002446237 0.024462366 2.446236559 2.45 

KN3-KN10 0.592 0.466 2.33 0.002505376 0.025053763 2.505376344 2.51 

KN5-KN10 0.649 0.448 2.24 0.002408602 0.024086022 2.408602151 2.41 

KN5-KN10 0.649 0.446 2.23 0.002397849 0.023978495 2.397849462 2.40 

KN5-KN10 0.649 0.465 2.325 0.0025 0.025 2.5 2.50 

KN10-GL 0.755 0.465 2.325 0.0025 0.025 2.5 2.50 

KN10-GL 0.755 0.462 2.31 0.002483871 0.02483871 2.483870968 2.48 

KN10-GL 0.755 0.477 2.385 0.002564516 0.025645161 2.564516129 2.56 

When Coriolopsis sp. KN6  invaded 

KN5-KN6 0.306 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 
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KN5-KN6 0.306 0.432 2.16 0.002322581 0.023225806 2.322580645 2.32 

KN5-KN6 0.306 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

When Fomitopsis sp. KN1 invaded 

KN1-GL 0.323 0.443 2.215 0.00238172 0.023817204 2.38172043 2.38 

KN1-GL 0.323 0.445 2.225 0.002392473 0.023924731 2.392473118 2.39 

KN1-GL 0.323 0.446 2.23 0.002397849 0.023978495 2.397849462 2.40 

KN1-KN3 0.292 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN1-KN3 0.292 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN1-KN3 0.292 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1-KN5 0.313 0.43 2.15 0.002311828 0.02311828 2.311827957 2.31 

KN1-KN5 0.313 0.428 2.14 0.002301075 0.023010753 2.301075269 2.30 

KN1-KN5 0.313 0.427 2.135 0.002295699 0.022956989 2.295698925 2.30 

When Rhizopus microsporus KN2 invaded 

KN2-KN9 0.346 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN2-KN9 0.346 0.446 2.23 0.002397849 0.023978495 2.397849462 2.40 

KN2-KN9 0.346 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN2-KN5 0.378 0.443 2.215 0.00238172 0.023817204 2.38172043 2.38 

KN2-KN5 0.378 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN2-KN5 0.378 0.45 2.25 0.002419355 0.024193548 2.419354839 2.42 

KN2-KN4 0.349 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN2-KN4 0.349 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN2-KN4 0.349 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN2-KN3 0.35 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN2-KN3 0.35 0.431 2.155 0.002317204 0.023172043 2.317204301 2.32 

KN2-KN3 0.35 0.431 2.155 0.002317204 0.023172043 2.317204301 2.32 

KN2-GL 0.341 0.423 2.115 0.002274194 0.022741935 2.274193548 2.27 

KN2-GL 0.341 0.413 2.065 0.00222043 0.022204301 2.220430108 2.22 

KN2-GL 0.341 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 
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KN2-KN6 0.329 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

KN2-KN6 0.329 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN2-KN6 0.329 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN1-KN2 0.34 0.441 2.205 0.002370968 0.023709677 2.370967742 2.37 

KN1-KN2 0.34 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN1-KN2 0.34 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12 ON CCA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES MANGANESE PEROXIDASE ASSAY ON CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp. KN10 invaded 

KN1-KN10 0.883 0.163 0.815 0.000472327 0.004723269 0.472326862 0.47 

KN1-KN10 0.883 0.156 0.78 0.000452043 0.004520429 0.452042886 0.45 

KN1-KN10 0.883 0.17 0.85 0.000492611 0.004926108 0.492610837 0.49 

KN6-KN10 0.514 0.109 0.545 0.00031585 0.003158505 0.315850478 0.32 

KN6-KN10 0.514 0.108 0.54 0.000312953 0.003129528 0.312952767 0.31 

KN6-KN10 0.514 0.11 0.55 0.000318748 0.003187482 0.318748189 0.32 

KN5-KN10 0.375 0.105 0.525 0.00030426 0.003042596 0.304259635 0.30 

KN5-KN10 0.375 0.102 0.51 0.000295567 0.002955665 0.295566502 0.30 

KN5-KN10 0.375 0.108 0.54 0.000312953 0.003129528 0.312952767 0.31 

KN4-KN10 0.326 0.101 0.505 0.000292669 0.002926688 0.292668792 0.29 

KN4-KN10 0.326 0.107 0.535 0.000310055 0.003100551 0.310055057 0.31 

KN4-KN10 0.326 0.095 0.475 0.000275283 0.002752825 0.275282527 0.28 

KN10-KN9 0.295 0.1 0.5 0.000289771 0.002897711 0.289771081 0.29 

KN10-KN9 0.295 0.092 0.46 0.000266589 0.002665894 0.266589394 0.27 

KN10-KN9 0.295 0.097 0.485 0.000281078 0.002810779 0.281077948 0.28 

KN3-KN10 0.316 0.095 0.475 0.000275283 0.002752825 0.275282527 0.28 

KN3-KN10 0.316 0.094 0.47 0.000272385 0.002723848 0.272384816 0.27 

KN3-KN10 0.316 0.087 0.435 0.000252101 0.002521008 0.25210084 0.25 

KN10-GL 0.045 0.134 0.67 0.000388293 0.003882932 0.388293248 0.39 

KN10-GL 0.045 0.136 0.68 0.000394089 0.003940887 0.39408867 0.39 

KN10-GL 0.045 0.126 0.63 0.000365112 0.003651116 0.365111562 0.37 

When Coriolopsis sp. KN6 invaded 

KN5-KN6 0.076 0.057 0.285 0.00016517 0.001651695 0.165169516 0.17 

KN5-KN6 0.076 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN5-KN6 0.076 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 
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When Fomitopsis sp. KN1 invaded 

KN1-KN5 0.077 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

KN1-KN5 0.077 0.04 0.2 0.000115908 0.001159084 0.115908432 0.12 

KN1-KN5 0.077 0.045 0.225 0.000130397 0.00130397 0.130396986 0.13 

KN1-GL 0.072 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN1-GL 0.072 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN1-GL 0.072 0.046 0.23 0.000133295 0.001332947 0.133294697 0.13 

KN1-KN3 0.063 0.05 0.25 0.000144886 0.001448855 0.14488554 0.14 

KN1-KN3 0.063 0.051 0.255 0.000147783 0.001477833 0.147783251 0.15 

KN1-KN3 0.063 0.049 0.245 0.000141988 0.001419878 0.14198783 0.14 

When Rhizopus microsporus KN2 invaded 

KN2-KN9 0.119 0.096 0.48 0.00027818 0.002781802 0.278180238 0.28 

KN2-KN9 0.119 0.071 0.355 0.000205737 0.002057375 0.205737467 0.21 

KN2-KN9 0.119 0.069 0.345 0.000199942 0.00199942 0.199942046 0.20 

KN2-KN4 0.107 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN2-KN4 0.107 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

KN2-KN4 0.107 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN2-GL 0.103 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN2-GL 0.103 0.062 0.31 0.000179658 0.001796581 0.17965807 0.18 

KN2-GL 0.103 0.062 0.31 0.000179658 0.001796581 0.17965807 0.18 

KN2-KN3 0.085 0.062 0.31 0.000179658 0.001796581 0.17965807 0.18 

KN2-KN3 0.085 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN2-KN3 0.085 0.058 0.29 0.000168067 0.001680672 0.168067227 0.17 

KN2-KN5 0.086 0.051 0.255 0.000147783 0.001477833 0.147783251 0.15 

KN2-KN5 0.086 0.048 0.24 0.00013909 0.001390901 0.139090119 0.14 

KN2-KN5 0.086 0.049 0.245 0.000141988 0.001419878 0.14198783 0.14 

KN2-KN6 0.08 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN2-KN6 0.08 0.067 0.335 0.000194147 0.001941466 0.194146624 0.19 
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KN2-KN6 0.08 0.059 0.295 0.000170965 0.001709649 0.170964938 0.17 

KN1-KN2 0.125 0.04 0.2 0.000115908 0.001159084 0.115908432 0.12 

KN1-KN2 0.125 0.041 0.205 0.000118806 0.001188061 0.118806143 0.12 

KN1-KN2 0.125 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12 ON CCA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES LACCASE ASSAY ON CCA (Corn Cob Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

                

When Trichoderma sp.KN10 invaded 

KN1-KN10 0.538 0.167 0.835 0.000123887 0.001238872 0.12388724 0.12 

KN1-KN10 0.538 0.164 0.82 0.000121662 0.001216617 0.121661721 0.12 

KN1-KN10 0.538 0.16 0.8 0.000118694 0.001186944 0.118694362 0.12 

KN6-KN10 0.422 0.135 0.675 0.000100148 0.001001484 0.100148368 0.10 

KN6-KN10 0.422 0.133 0.665 9.86647E-05 0.000986647 0.098664688 0.10 

KN6-KN10 0.422 0.13 0.65 9.64392E-05 0.000964392 0.096439169 0.10 

KN5-KN10 0.037 0.123 0.615 9.12463E-05 0.000912463 0.091246291 0.09 

KN5-KN10 0.037 0.121 0.605 8.97626E-05 0.000897626 0.089762611 0.09 

KN5-KN10 0.037 0.121 0.605 8.97626E-05 0.000897626 0.089762611 0.09 

KN4-KN10 0.263 0.115 0.575 8.53116E-05 0.000853116 0.085311573 0.09 

KN4-KN10 0.263 0.105 0.525 7.78932E-05 0.000778932 0.077893175 0.08 

KN4-KN10 0.263 0.105 0.525 7.78932E-05 0.000778932 0.077893175 0.08 

KN3-KN10 0.221 0.095 0.475 7.04748E-05 0.000704748 0.070474777 0.07 

KN3-KN10 0.221 0.095 0.475 7.04748E-05 0.000704748 0.070474777 0.07 

KN3-KN10 0.221 0.095 0.475 7.04748E-05 0.000704748 0.070474777 0.07 

KN10-KN9 0.162 0.078 0.39 5.78635E-05 0.000578635 0.057863501 0.06 

KN10-KN9 0.162 0.076 0.38 5.63798E-05 0.000563798 0.056379822 0.06 

KN10-KN9 0.162 0.073 0.365 5.41543E-05 0.000541543 0.054154303 0.05 

KN10-GL 0.302 0.114 0.57 8.45697E-05 0.000845697 0.084569733 0.08 

KN10-GL 0.302 0.114 0.57 8.45697E-05 0.000845697 0.084569733 0.08 

KN10-GL 0.302 0.11 0.55 8.16024E-05 0.000816024 0.081602374 0.08 

When Coriolopsis sp.  KN6 invaded 

KN5-KN6 0.013 0.029 0.145 2.15134E-05 0.000215134 0.021513353 0.02 

KN5-KN6 0.013 0.027 0.135 2.00297E-05 0.000200297 0.020029674 0.02 
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KN5-KN6 0.013 0.028 0.14 2.07715E-05 0.000207715 0.020771513 0.02 

When Fomitopsis sp.KN1 invaded 

KN1-GL -0.013 0.036 0.18 2.67062E-05 0.000267062 0.026706231 0.03 

KN1-GL -0.013 0.035 0.175 2.59644E-05 0.000259644 0.025964392 0.03 

KN1-GL -0.013 0.033 0.165 2.44807E-05 0.000244807 0.024480712 0.02 

KN1-KN3 -0.019 0.03 0.15 2.22552E-05 0.000222552 0.022255193 0.02 

KN1-KN3 -0.019 0.024 0.12 1.78042E-05 0.000178042 0.017804154 0.02 

KN1-KN3 -0.019 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN1-KN5 -0.01 0.032 0.16 2.37389E-05 0.000237389 0.023738872 0.02 

KN1-KN5 -0.01 0.031 0.155 2.2997E-05 0.00022997 0.022997033 0.02 

KN1-KN5 -0.01 0.029 0.145 2.15134E-05 0.000215134 0.021513353 0.02 

When Rhizopus microsporus KN2 invaded 

KN2-KN9 0.014 0.05 0.25 3.7092E-05 0.00037092 0.037091988 0.04 

KN2-KN9 0.014 0.045 0.225 3.33828E-05 0.000333828 0.033382789 0.03 

KN2-KN9 0.014 0.04 0.2 2.96736E-05 0.000296736 0.029673591 0.03 

KN2-GL 0.004 0.027 0.135 2.00297E-05 0.000200297 0.020029674 0.02 

KN2-GL 0.004 0.026 0.13 1.92878E-05 0.000192878 0.019287834 0.02 

KN2-GL 0.004 0.026 0.13 1.92878E-05 0.000192878 0.019287834 0.02 

KN2-KN5 -0.014 0.027 0.135 2.00297E-05 0.000200297 0.020029674 0.02 

KN2-KN5 -0.014 0.028 0.14 2.07715E-05 0.000207715 0.020771513 0.02 

KN2-KN5 -0.014 0.025 0.125 1.8546E-05 0.00018546 0.018545994 0.02 

KN2-KN3 -0.012 0.026 0.13 1.92878E-05 0.000192878 0.019287834 0.02 

KN2-KN3 -0.012 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN2-KN3 -0.012 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN2-KN4 -0.019 0.015 0.075 1.11276E-05 0.000111276 0.011127596 0.01 

KN2-KN4 -0.019 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN2-KN4 -0.019 0.013 0.065 9.64392E-06 9.64392E-05 0.009643917 0.01 

KN2-KN6 -0.011 0.034 0.17 2.52226E-05 0.000252226 0.025222552 0.03 
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KN2-KN6 -0.011 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN2-KN6 -0.011 0.03 0.15 2.22552E-05 0.000222552 0.022255193 0.02 

KN1-KN2 -0.017 0.027 0.135 2.00297E-05 0.000200297 0.020029674 0.02 

KN1-KN2 -0.017 0.025 0.125 1.8546E-05 0.00018546 0.018545994 0.02 

KN1-KN2 -0.017 0.024 0.12 1.78042E-05 0.000178042 0.017804154 0.02 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12 ON CCA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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Monocultures Enzyme Assay Results on SBA 

LIGNIN PEROXIDASE ASSAY ON SBA (Sugar Cane Bagasse Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

KN10  0.496 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN10  0.496 0.446 2.23 0.002397849 0.023978495 2.397849462 2.40 

KN10  0.496 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN9 0.331 0.444 2.22 0.002387097 0.023870968 2.387096774 2.39 

KN9 0.331 0.442 2.21 0.002376344 0.023763441 2.376344086 2.38 

KN9 0.331 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN6 0.288 0.441 2.205 0.002370968 0.023709677 2.370967742 2.37 

KN6 0.288 0.441 2.205 0.002370968 0.023709677 2.370967742 2.37 

KN6 0.288 0.44 2.2 0.002365591 0.023655914 2.365591398 2.37 

KN2 0.347 0.431 2.155 0.002317204 0.023172043 2.317204301 2.32 

KN2 0.347 0.43 2.15 0.002311828 0.02311828 2.311827957 2.31 

KN2 0.347 0.442 2.21 0.002376344 0.023763441 2.376344086 2.38 

GL 0.285 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

GL 0.285 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

GL 0.285 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN1 0.278 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN1 0.278 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN1 0.278 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN3 0.297 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN3 0.297 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN3 0.297 0.409 2.045 0.002198925 0.021989247 2.198924731 2.20 

KN4 0.278 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN4 0.278 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN4 0.278 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN5 0 0 0 0 0 0 0.00 
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KN5 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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MANGANESE PEROXIDASE ASSAY ON SBA (Sugar Cane Bagasse Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

KN10 0.226 0.078 0.39 0.000226021 0.002260214 0.226021443 0.23 

KN10 0.226 0.078 0.39 0.000226021 0.002260214 0.226021443 0.23 

KN10 0.226 0.075 0.375 0.000217328 0.002173283 0.217328311 0.22 

KN6 0.12 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN6 0.12 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN6 0.12 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN2 0.088 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN2 0.088 0.061 0.305 0.00017676 0.001767604 0.176760359 0.18 

KN2 0.088 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN3 0.076 0.057 0.285 0.00016517 0.001651695 0.165169516 0.17 

KN3 0.076 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN3 0.076 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN9 0.1 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN9 0.1 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN9 0.1 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

GL 0.068 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

GL 0.068 0.053 0.265 0.000153579 0.001535787 0.153578673 0.15 

GL 0.068 0.053 0.265 0.000153579 0.001535787 0.153578673 0.15 

KN1 0.054 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

KN1 0.054 0.053 0.265 0.000153579 0.001535787 0.153578673 0.15 

KN1 0.054 0.053 0.265 0.000153579 0.001535787 0.153578673 0.15 

KN4 0.056 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

KN4 0.056 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

KN4 0.056 0.047 0.235 0.000136192 0.001361924 0.136192408 0.14 

KN5 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 
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KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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LACCASE ASSAY ON SBA (Sugar Cane Bagasse) 

Fungi Enzyme Extract Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity  (X10) 

KN10 0.16 0.063 0.315 2.3368E-05 0.00023368 0.023367953 0.02 

KN10 0.16 0.062 0.31 2.2997E-05 0.00022997 0.022997033 0.02 

KN10 0.16 0.062 0.31 2.2997E-05 0.00022997 0.022997033 0.02 

KN9 0.051 0.049 0.245 1.81751E-05 0.000181751 0.018175074 0.02 

KN9 0.051 0.049 0.245 1.81751E-05 0.000181751 0.018175074 0.02 

KN9 0.051 0.047 0.235 1.74332E-05 0.000174332 0.017433234 0.02 

KN6 0.011 0.03 0.15 1.11276E-05 0.000111276 0.011127596 0.01 

KN6 0.009 0.028 0.14 1.03858E-05 0.000103858 0.010385757 0.01 

KN6 0.011 0.028 0.14 1.03858E-05 0.000103858 0.010385757 0.01 

GL -0.003 0.015 0.075 5.5638E-06 5.5638E-05 0.005563798 0.01 

GL -0.003 0.015 0.075 5.5638E-06 5.5638E-05 0.005563798 0.01 

GL -0.003 0.015 0.075 5.5638E-06 5.5638E-05 0.005563798 0.01 

KN3 -0.013 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN3 -0.013 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN3 -0.013 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN1 -0.018 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN1 -0.018 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN1 -0.018 0.013 0.065 4.82196E-06 4.82196E-05 0.004821958 0.00 

KN2 -0.017 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN2 -0.017 0.014 0.07 5.19288E-06 5.19288E-05 0.005192878 0.01 

KN2 -0.017 0.011 0.055 4.08012E-06 4.08012E-05 0.004080119 0.00 

KN4 -0.018 0.009 0.045 3.33828E-06 3.33828E-05 0.003338279 0.00 

KN4 -0.018 0.008 0.04 2.96736E-06 2.96736E-05 0.002967359 0.00 

KN4 -0.018 0.008 0.04 2.96736E-06 2.96736E-05 0.002967359 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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KN12 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 

KN5 0 0 0 0 0 0 0.00 
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Dual Cultures Enzyme Assays on SBA with Antagonistic Invasion Interactions Results  

DUAL CULTURES LIGNIN PEROXIDASE ASSAY ON  SBA (Sugar Cane Bagasse Agar) 

Ligninolytic Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp. KN10 invaded 

KN10-KN9 0.521 0.455 2.275 0.002446237 0.024462366 2.446236559 2.45 

KN10-KN9 0.521 0.455 2.275 0.002446237 0.024462366 2.446236559 2.45 

KN10-KN9 0.521 0.45 2.25 0.002419355 0.024193548 2.419354839 2.42 

KN1-KN10 0.538 0.45 2.25 0.002419355 0.024193548 2.419354839 2.42 

KN1-KN10 0.538 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN1-KN10 0.538 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN6-KN10 0.565 0.447 2.235 0.002403226 0.024032258 2.403225806 2.40 

KN6-KN10 0.565 0.445 2.225 0.002392473 0.023924731 2.392473118 2.39 

KN6-KN10 0.565 0.445 2.225 0.002392473 0.023924731 2.392473118 2.39 

KN4-KN10 0.515 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN4-KN10 0.515 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN4-KN10 0.515 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN3-KN10 0.392 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN3-KN10 0.392 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN3-KN10 0.392 0.427 2.135 0.002295699 0.022956989 2.295698925 2.30 

KN10-GL 0.549 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN10-GL 0.549 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN10-GL 0.549 0.43 2.15 0.002311828 0.02311828 2.311827957 2.31 

          

When Fomitopsis sp. KN1 invaded 

KN1-GL 0.327 0.445 2.225 0.002392473 0.023924731 2.392473118 2.39 

KN1-GL 0.327 0.445 2.225 0.002392473 0.023924731 2.392473118 2.39 

KN1-GL 0.327 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 
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KN1-KN3 0.289 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1-KN3 0.289 0.432 2.16 0.002322581 0.023225806 2.322580645 2.32 

KN1-KN3 0.289 0.432 2.16 0.002322581 0.023225806 2.322580645 2.32 

When Rhizopus microsporus KN2 invaded 

KN2-KN4 0.359 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN2-KN4 0.359 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN2-KN4 0.359 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN2-KN9 0.369 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN2-KN9 0.369 0.436 2.18 0.002344086 0.02344086 2.344086022 2.34 

KN2-KN9 0.369 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN2-GL 0.365 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN2-GL 0.365 0.429 2.145 0.002306452 0.023064516 2.306451613 2.31 

KN2-GL 0.365 0.429 2.145 0.002306452 0.023064516 2.306451613 2.31 

KN2-KN3 0.318 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN2-KN3 0.318 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN2-KN3 0.318 0.421 2.105 0.002263441 0.022634409 2.26344086 2.26 

KN1-KN2 0.325 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN1-KN2 0.325 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN1-KN2 0.325 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN2-KN6 0.318 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN2-KN6 0.318 0.428 2.14 0.002301075 0.023010753 2.301075269 2.30 

KN2-KN6 0.318 0.428 2.14 0.002301075 0.023010753 2.301075269 2.30 

When Coriolopsis sp. KN6 invaded 

COMBINATION NOT DONE DUE TO  NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN6 0 0 0 0 0 0 0.00 

COMBINATION NOT DONE DUE TO KN10E NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN10 0 0 0 0 0 0 0.00 

KN2-KN5 0 0 0 0 0 0 0.00 
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KN1-KN5 0 0 0 0 0 0 0.00 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES MANGANESE PEROXIDASE ASSAY ON SBA (Sugar Cane Bagasse Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp. KN10 invaded 

KN1-KN10 0.157 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN1-KN10 0.157 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN1-KN10 0.157 0.072 0.36 0.000208635 0.002086352 0.208635178 0.21 

KN6-KN10 0.18 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN6-KN10 0.18 0.076 0.38 0.000220226 0.00220226 0.220226021 0.22 

KN6-KN10 0.18 0.075 0.375 0.000217328 0.002173283 0.217328311 0.22 

KN10-KN9 0.171 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

KN10-KN9 0.171 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

KN10-KN9 0.171 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN4-KN10 0.136 0.067 0.335 0.000194147 0.001941466 0.194146624 0.19 

KN4-KN10 0.136 0.067 0.335 0.000194147 0.001941466 0.194146624 0.19 

KN4-KN10 0.136 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN3-KN10 0.103 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN3-KN10 0.103 0.063 0.315 0.000182556 0.001825558 0.182555781 0.18 

KN3-KN10 0.103 0.062 0.31 0.000179658 0.001796581 0.17965807 0.18 

KN10-GL 0.049 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

KN10-GL 0.049 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

KN10-GL 0.049 0.068 0.34 0.000197044 0.001970443 0.197044335 0.20 

         

When Fomitopsis sp.KN1 invaded 

KN1-GL 0.068 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN1-GL 0.068 0.059 0.295 0.000170965 0.001709649 0.170964938 0.17 

KN1-GL 0.068 0.059 0.295 0.000170965 0.001709649 0.170964938 0.17 

KN1-KN3 0.049 0.052 0.26 0.000150681 0.00150681 0.150680962 0.15 

KN1-KN3 0.049 0.051 0.255 0.000147783 0.001477833 0.147783251 0.15 
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KN1-KN3 0.049 0.051 0.255 0.000147783 0.001477833 0.147783251 0.15 

When Rhizopus microsporusKN2 invaded 

KN2-KN9 0.123 0.066 0.33 0.000191249 0.001912489 0.191248913 0.19 

KN2-KN9 0.123 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN2-KN9 0.123 0.065 0.325 0.000188351 0.001883512 0.188351203 0.19 

KN2-GL 0.167 0.069 0.345 0.000199942 0.00199942 0.199942046 0.20 

KN2-GL 0.167 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN2-GL 0.167 0.064 0.32 0.000185453 0.001854535 0.185453492 0.19 

KN2-KN4 0.084 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN2-KN4 0.084 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN2-KN4 0.084 0.06 0.3 0.000173863 0.001738626 0.173862649 0.17 

KN2-KN3 0.058 0.048 0.24 0.00013909 0.001390901 0.139090119 0.14 

KN2-KN3 0.058 0.048 0.24 0.00013909 0.001390901 0.139090119 0.14 

KN2-KN3 0.058 0.048 0.24 0.00013909 0.001390901 0.139090119 0.14 

KN2-KN6 0.071 0.057 0.285 0.00016517 0.001651695 0.165169516 0.17 

KN2-KN6 0.071 0.057 0.285 0.00016517 0.001651695 0.165169516 0.17 

KN2-KN6 0.071 0.057 0.285 0.00016517 0.001651695 0.165169516 0.17 

KN1-KN2 0.081 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN1-KN2 0.081 0.056 0.28 0.000162272 0.001622718 0.162271805 0.16 

KN1-KN2 0.081 0.054 0.27 0.000156476 0.001564764 0.156476384 0.16 

When Coriolopsis sp.KN6  invaded 

COMBINATION NOT DONE DUE TO  NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN6 0 0 0 0 0 0 0.00 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN10 0 0 0 0 0 0 0.00 

KN2-KN5 0 0 0 0 0 0 0.00 

KN1-KN5 0 0 0 0 0 0 0.00 

KN1-KN12 0 0 0 0 0 0 0.00 
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KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES LACCASE ASSAY ON SBA (Sugar Cane Bagasse Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp. KN10 invaded 

KN6-KN10 0.184 0.066 0.33 4.89614E-05 0.000489614 0.048961424 0.05 

KN6-KN10 0.184 0.066 0.33 4.89614E-05 0.000489614 0.048961424 0.05 

KN6-KN10 0.184 0.064 0.32 4.74777E-05 0.000474777 0.047477745 0.05 

KN10-KN9 0.151 0.059 0.295 4.37685E-05 0.000437685 0.043768546 0.04 

KN10-KN9 0.151 0.059 0.295 4.37685E-05 0.000437685 0.043768546 0.04 

KN10-KN9 0.151 0.059 0.295 4.37685E-05 0.000437685 0.043768546 0.04 

KN1-KN10 0.104 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN1-KN10 0.104 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN1-KN10 0.104 0.035 0.175 2.59644E-05 0.000259644 0.025964392 0.03 

KN4-KN10 0.096 0.039 0.195 2.89318E-05 0.000289318 0.028931751 0.03 

KN4-KN10 0.096 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN4-KN10 0.096 0.037 0.185 2.74481E-05 0.000274481 0.027448071 0.03 

KN3-KN10 0.049 0.024 0.12 1.78042E-05 0.000178042 0.017804154 0.02 

KN3-KN10 0.049 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN3-KN10 0.049 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN10-GL 0.158 0.057 0.285 4.22849E-05 0.000422849 0.042284866 0.04 

KN10-GL 0.158 0.055 0.275 4.08012E-05 0.000408012 0.040801187 0.04 

KN10-GL 0.158 0.055 0.275 4.08012E-05 0.000408012 0.040801187 0.04 

          

When Fomitopsis sp.KN1 invaded 

KN1-KN3 -0.017 0.03 0.15 2.22552E-05 0.000222552 0.022255193 0.02 

KN1-KN3 -0.017 0.024 0.12 1.78042E-05 0.000178042 0.017804154 0.02 

KN1-KN3 -0.017 0.023 0.115 1.70623E-05 0.000170623 0.017062315 0.02 

KN1-GL -0.019 0.014 0.07 1.03858E-05 0.000103858 0.010385757 0.01 

KN1-GL -0.019 0.013 0.065 9.64392E-06 9.64392E-05 0.009643917 0.01 
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KN1-GL -0.019 0.013 0.065 9.64392E-06 9.64392E-05 0.009643917 0.01 

When Rhizopus microsporus KN1 invaded 

KN2-GL 0.011 0.02 0.1 1.48368E-05 0.000148368 0.014836795 0.01 

KN2-GL 0.011 0.02 0.1 1.48368E-05 0.000148368 0.014836795 0.01 

KN2-GL 0.011 0.02 0.1 1.48368E-05 0.000148368 0.014836795 0.01 

KN2-KN9 0.018 0.019 0.095 1.4095E-05 0.00014095 0.014094955 0.01 

KN2-KN9 0.018 0.019 0.095 1.4095E-05 0.00014095 0.014094955 0.01 

KN2-KN9 0.018 0.019 0.095 1.4095E-05 0.00014095 0.014094955 0.01 

KN2-KN4 -0.006 0.015 0.075 1.11276E-05 0.000111276 0.011127596 0.01 

KN2-KN4 -0.006 0.015 0.075 1.11276E-05 0.000111276 0.011127596 0.01 

KN2-KN4 -0.006 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN3 -0.018 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN3 -0.018 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN3 -0.018 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

KN2-KN6 -0.01 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN2-KN6 -0.01 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN2-KN6 -0.01 0.016 0.08 1.18694E-05 0.000118694 0.011869436 0.01 

KN1-KN2 -0.022 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN1-KN2 -0.022 0.01 0.05 7.4184E-06 7.4184E-05 0.007418398 0.01 

KN1-KN2 -0.022 0.009 0.045 6.67656E-06 6.67656E-05 0.006676558 0.01 

When Coriolopsis polyzonaKN6  invaded 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN6 0 0 0 0 0 0 0.00 

COMBINATION NOT DONE DUE TO NON-VIABILITY OF KN12  AND KN5 ON SBA 

KN5-KN10 0 0 0 0 0 0 0.00 

KN2-KN5 0 0 0 0 0 0 0.00 

KN1-KN5 0 0 0 0 0 0 0.00 

KN1-KN12 0 0 0 0 0 0 0.00 
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KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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Monocultures Enzyme Assay Results on WSA 

LIGNIN PEROXIDASE ASSAY ON WSA (Wheat Straw Agar) 

Ligninolytic Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

KN3 0.325 0.468 2.34 0.002516129 0.02516129 2.516129032 2.52 

KN3 0.325 0.468 2.34 0.002516129 0.02516129 2.516129032 2.52 

KN3 0.325 0.468 2.34 0.002516129 0.02516129 2.516129032 2.52 

KN6 0.378 0.451 2.255 0.002424731 0.024247312 2.424731183 2.42 

KN6 0.378 0.451 2.255 0.002424731 0.024247312 2.424731183 2.42 

KN6 0.378 0.451 2.255 0.002424731 0.024247312 2.424731183 2.42 

KN4 0.269 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN4 0.269 0.438 2.19 0.002354839 0.023548387 2.35483871 2.35 

KN4 0.269 0.435 2.175 0.00233871 0.023387097 2.338709677 2.34 

KN10  0.846 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN10  0.846 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN10  0.846 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN1 0.382 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN1 0.382 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN1 0.382 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN5 0.237 0.426 2.13 0.002290323 0.022903226 2.290322581 2.29 

KN5 0.237 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

KN5 0.237 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

GL 0.839 0.417 2.085 0.002241935 0.022419355 2.241935484 2.24 

GL 0.839 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

GL 0.839 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN9 0.555 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN9 0.555 0.414 2.07 0.002225806 0.022258065 2.225806452 2.23 

KN9 0.555 0.414 2.07 0.002225806 0.022258065 2.225806452 2.23 

KN2 0.311 0.386 1.93 0.002075269 0.020752688 2.075268817 2.08 
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KN2 0.311 0.381 1.905 0.002048387 0.020483871 2.048387097 2.05 

KN2 0.311 0.381 1.905 0.002048387 0.020483871 2.048387097 2.05 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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MANGANESE PEROXIDASE ASSAY ON WSA(Wheat Straw Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

KN9 0.284 0.889 4.445 0.002576065 0.025760649 2.576064909 2.58 

KN9 0.284 0.889 4.445 0.002576065 0.025760649 2.576064909 2.58 

KN9 0.284 0.889 4.445 0.002576065 0.025760649 2.576064909 2.58 

GL 0.11 0.829 4.145 0.002402202 0.024022023 2.40220226 2.40 

GL 0.11 0.828 4.14 0.002399305 0.023993045 2.399304549 2.40 

GL 0.11 0.817 4.085 0.00236743 0.023674297 2.367429731 2.37 

KN6 0.105 0.747 3.735 0.00216459 0.0216459 2.164589974 2.16 

KN6 0.105 0.723 3.615 0.002095045 0.020950449 2.095044915 2.10 

KN6 0.105 0.723 3.615 0.002095045 0.020950449 2.095044915 2.10 

KN3 0.155 0.648 3.24 0.001877717 0.018777166 1.877716604 1.88 

KN3 0.155 0.648 3.24 0.001877717 0.018777166 1.877716604 1.88 

KN3 0.155 0.645 3.225 0.001869023 0.018690235 1.869023471 1.87 

KN4 0.198 0.651 3.255 0.00188641 0.018864097 1.886409736 1.89 

KN4 0.198 0.629 3.145 0.00182266 0.018226601 1.822660099 1.82 

KN4 0.198 0.629 3.145 0.00182266 0.018226601 1.822660099 1.82 

KN10 0.408 0.625 3.125 0.001811069 0.018110693 1.811069255 1.81 

KN10 0.408 0.625 3.125 0.001811069 0.018110693 1.811069255 1.81 

KN10 0.408 0.625 3.125 0.001811069 0.018110693 1.811069255 1.81 

KN1 0.053 0.61 3.05 0.001767604 0.017676036 1.767603593 1.77 

KN1 0.053 0.588 2.94 0.001703854 0.01703854 1.703853955 1.70 

KN1 0.053 0.588 2.94 0.001703854 0.01703854 1.703853955 1.70 

KN2 0.143 0.557 2.785 0.001614025 0.016140249 1.61402492 1.61 

KN2 0.143 0.554 2.77 0.001605332 0.016053318 1.605331788 1.61 

KN2 0.143 0.554 2.77 0.001605332 0.016053318 1.605331788 1.61 

KN5 0.061 0.437 2.185 0.0012663 0.012662996 1.266299623 1.27 

KN5 0.061 0.437 2.185 0.0012663 0.012662996 1.266299623 1.27 
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KN5 0.061 0.434 2.17 0.001257606 0.012576065 1.257606491 1.26 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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LACCASE ASSAY ON WSA (Wheat Straw Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity  (X10) 

KN9 0.034 0.792 3.96 0.000293769 0.002937685 0.293768546 0.29 

KN9 0.034 0.785 3.925 0.000291172 0.002911721 0.291172107 0.29 

KN9 0.034 0.785 3.925 0.000291172 0.002911721 0.291172107 0.29 

GL -0.013 0.748 3.74 0.000277448 0.002774481 0.277448071 0.28 

GL -0.013 0.746 3.73 0.000276706 0.002767062 0.276706231 0.28 

GL -0.013 0.746 3.73 0.000276706 0.002767062 0.276706231 0.28 

KN10 0.225 0.704 3.52 0.000261128 0.002611276 0.261127596 0.26 

KN10 0.225 0.689 3.445 0.000255564 0.002555638 0.255563798 0.26 

KN10 0.225 0.689 3.445 0.000255564 0.002555638 0.255563798 0.26 

KN3 -0.004 0.518 2.59 0.000192136 0.001921365 0.192136499 0.19 

KN3 -0.004 0.518 2.59 0.000192136 0.001921365 0.192136499 0.19 

KN3 -0.004 0.5 2.5 0.00018546 0.001854599 0.185459941 0.19 

KN2 -0.009 0.367 1.835 0.000136128 0.001361276 0.136127596 0.14 

KN2 -0.009 0.367 1.835 0.000136128 0.001361276 0.136127596 0.14 

KN2 -0.009 0.362 1.81 0.000134273 0.00134273 0.134272997 0.13 

KN6 0.011 0.359 1.795 0.00013316 0.001331602 0.133160237 0.13 

KN6 0.011 0.359 1.795 0.00013316 0.001331602 0.133160237 0.13 

KN6 0.011 0.359 1.795 0.00013316 0.001331602 0.133160237 0.13 

KN4 0.015 0.357 1.785 0.000132418 0.001324184 0.132418398 0.13 

KN4 0.015 0.357 1.785 0.000132418 0.001324184 0.132418398 0.13 

KN4 0.015 0.351 1.755 0.000130193 0.001301929 0.130192878 0.13 

KN5 0.016 0.35 1.75 0.000129822 0.00129822 0.129821958 0.13 

KN5 0.016 0.35 1.75 0.000129822 0.00129822 0.129821958 0.13 

KN5 0.016 0.347 1.735 0.000128709 0.001287092 0.128709199 0.13 

KN1 -0.012 0.082 0.41 3.04154E-05 0.000304154 0.03041543 0.03 

KN1 -0.012 0.082 0.41 3.04154E-05 0.000304154 0.03041543 0.03 
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KN1 -0.012 0.082 0.41 3.04154E-05 0.000304154 0.03041543 0.03 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 

KN12 0 0 0 0 0 0 0.00 
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Dual Cultures Enzyme Assays on WSA with Antagonistic Invasion Interactions Results  

DUAL CULTURES LIGNIN PEROXIDASE ASSAY ON  WSA (Wheat Straw Agar) 

Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X9300 X0.1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp.KN10 invaded 

KN10-KN9 0.826 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN10-KN9 0.826 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN10-KN9 0.826 0.434 2.17 0.002333333 0.023333333 2.333333333 2.33 

KN3-KN10 0.678 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN3-KN10 0.678 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN3-KN10 0.678 0.437 2.185 0.002349462 0.023494624 2.349462366 2.35 

KN1-KN10 0.707 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN1-KN10 0.707 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN1-KN10 0.707 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN5-KN10 0.643 0.392 1.96 0.002107527 0.021075269 2.107526882 2.11 

KN5-KN10 0.643 0.39 1.95 0.002096774 0.020967742 2.096774194 2.10 

KN5-KN10 0.643 0.39 1.95 0.002096774 0.020967742 2.096774194 2.10 

KN4-KN10 0.66 0.377 1.885 0.002026882 0.020268817 2.02688172 2.03 

KN4-KN10 0.66 0.372 1.86 0.002 0.02 2 2.00 

KN4-KN10 0.66 0.372 1.86 0.002 0.02 2 2.00 

KN6-KN10 0.726 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN6-KN10 0.726 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 

KN6-KN10 0.726 0.423 2.115 0.002274194 0.022741935 2.274193548 2.27 

KN10-GL 0.659 0.392 1.96 0.002107527 0.021075269 2.107526882 2.11 

KN10-GL 0.659 0.39 1.95 0.002096774 0.020967742 2.096774194 2.10 

KN10-GL 0.659 0.39 1.95 0.002096774 0.020967742 2.096774194 2.10 

When Fomitopsis sp. KN1 invaded 

KN1-KN5 0.309 0.425 2.125 0.002284946 0.022849462 2.284946237 2.28 
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KN1-KN5 0.309 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

KN1-KN5 0.309 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

KN1-KN3 0.402 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN1-KN3 0.402 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN1-KN3 0.402 0.416 2.08 0.002236559 0.022365591 2.23655914 2.24 

KN1-GL 0.323 0.418 2.09 0.002247312 0.022473118 2.247311828 2.25 

KN1-GL 0.323 0.415 2.075 0.002231183 0.022311828 2.231182796 2.23 

KN1-GL 0.323 0.415 2.075 0.002231183 0.022311828 2.231182796 2.23 

When Coriolopsis sp. KN6 invaded 

KN5-KN6 0.36 0.41 2.05 0.002204301 0.022043011 2.204301075 2.20 

KN5-KN6 0.36 0.41 2.05 0.002204301 0.022043011 2.204301075 2.20 

KN5-KN6 0.36 0.41 2.05 0.002204301 0.022043011 2.204301075 2.20 

KN2-KN6 0.34 0.377 1.885 0.002026882 0.020268817 2.02688172 2.03 

KN2-KN6 0.34 0.377 1.885 0.002026882 0.020268817 2.02688172 2.03 

KN2-KN6 0.34 0.373 1.865 0.002005376 0.020053763 2.005376344 2.01 

When Rhizopus microsporus KN1 invaded 

KN2-KN5 0.513 0.439 2.195 0.002360215 0.023602151 2.360215054 2.36 

KN2-KN5 0.513 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN2-KN5 0.513 0.433 2.165 0.002327957 0.02327957 2.327956989 2.33 

KN2-KN9 0.533 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN2-KN9 0.533 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN2-KN9 0.533 0.42 2.1 0.002258065 0.022580645 2.258064516 2.26 

KN2-KN3 0.853 0.378 1.89 0.002032258 0.020322581 2.032258065 2.03 

KN2-KN3 0.853 0.378 1.89 0.002032258 0.020322581 2.032258065 2.03 

KN2-KN3 0.853 0.378 1.89 0.002032258 0.020322581 2.032258065 2.03 

KN2-GL 0.436 0.368 1.84 0.001978495 0.019784946 1.978494624 1.98 

KN2-GL 0.436 0.364 1.82 0.001956989 0.019569892 1.956989247 1.96 

KN2-GL 0.436 0.364 1.82 0.001956989 0.019569892 1.956989247 1.96 
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KN2-KN4 0.441 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

KN2-KN4 0.441 0.424 2.12 0.00227957 0.022795699 2.279569892 2.28 

KN2-KN4 0.441 0.421 2.105 0.002263441 0.022634409 2.26344086 2.26 

KN1-KN2 0.399 0.429 2.145 0.002306452 0.023064516 2.306451613 2.31 

KN1-KN2 0.399 0.429 2.145 0.002306452 0.023064516 2.306451613 2.31 

KN1-KN2 0.399 0.427 2.135 0.002295699 0.022956989 2.295698925 2.30 

COMBINATION NOT DONE DUE TO KN10E NON-VIABILITY OF KN12 ON WSA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES MANGANESE PEROXIDASE ASSAY ON WSA (Wheat Straw Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance E= Absorbance X5 E/1X3451 X0.5 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp.KN10 invaded 

KN3-KN10 0.292 2.706 13.53 0.007841205 0.078412054 7.841205448 7.84 

KN3-KN10 0.292 2.705 13.525 0.007838308 0.078383077 7.838307737 7.84 

KN3-KN10 0.292 2.652 13.26 0.007684729 0.076847291 7.684729064 7.68 

KN5-KN10 0.337 2.629 13.145 0.007618082 0.076180817 7.618081715 7.62 

KN5-KN10 0.337 2.628 13.14 0.007615184 0.07615184 7.615184005 7.62 

KN5-KN10 0.337 2.592 12.96 0.007510866 0.075108664 7.510866416 7.51 

KN1-KN10 0.406 2.594 12.97 0.007516662 0.075166618 7.516661837 7.52 

KN1-KN10 0.406 2.594 12.97 0.007516662 0.075166618 7.516661837 7.52 

KN1-KN10 0.406 2.594 12.97 0.007516662 0.075166618 7.516661837 7.52 

KN10-KN9 0.515 2.604 13.02 0.007545639 0.075456389 7.545638945 7.55 

KN10-KN9 0.515 2.594 12.97 0.007516662 0.075166618 7.516661837 7.52 

KN10-KN9 0.515 2.594 12.97 0.007516662 0.075166618 7.516661837 7.52 

KN4-KN10 0.326 2.498 12.49 0.007238482 0.072384816 7.2384816 7.24 

KN4-KN10 0.326 2.498 12.49 0.007238482 0.072384816 7.2384816 7.24 

KN4-KN10 0.326 2.494 12.47 0.007226891 0.072268908 7.226890756 7.23 

KN6-KN10 0.636 2.591 12.955 0.007507969 0.075079687 7.507968705 7.51 

KN6-KN10 0.636 2.586 12.93 0.00749348 0.074934802 7.493480151 7.49 

KN6-KN10 0.636 2.586 12.93 0.00749348 0.074934802 7.493480151 7.49 

KN10-GL 0.442 2.603 13.015 0.007542741 0.075427412 7.542741234 7.54 

KN10-GL 0.442 2.577 12.885 0.007467401 0.074674008 7.467400753 7.47 

KN10-GL 0.442 2.577 12.885 0.007467401 0.074674008 7.467400753 7.47 

When Fomitopsis sp. KN1 invaded 

KN1-GL 0.146 0.893 4.465 0.002587656 0.025876558 2.587655752 2.60 

KN1-GL 0.146 0.896 4.48 0.002596349 0.025963489 2.596348884 2.59 

KN1-GL 0.146 0.891 4.455 0.00258186 0.025818603 2.58186033 2.58 
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KN1-KN3 0.088 0.886 4.43 0.002567372 0.025673718 2.567371776 2.57 

KN1-KN3 0.088 0.877 4.385 0.002541292 0.025412924 2.541292379 2.54 

KN1-KN3 0.088 0.877 4.385 0.002541292 0.025412924 2.541292379 2.54 

KN1-KN5 0.134 0.853 4.265 0.002471747 0.024717473 2.47174732 2.47 

KN1-KN5 0.134 0.853 4.265 0.002471747 0.024717473 2.47174732 2.47 

KN1-KN5 0.134 0.839 4.195 0.002431179 0.024311794 2.431179368 2.43 

When Coriolopsis sp. KN6 invaded 

KN2-KN6 0.149 0.876 4.38 0.002538395 0.025383947 2.538394668 2.54 

KN2-KN6 0.149 0.876 4.38 0.002538395 0.025383947 2.538394668 2.54 

KN2-KN6 0.149 0.871 4.355 0.002523906 0.025239061 2.523906114 2.52 

KN5-KN6 0.145 0.856 4.28 0.00248044 0.024804405 2.480440452 2.48 

KN5-KN6 0.145 0.855 4.275 0.002477543 0.024775427 2.477542741 2.48 

KN5-KN6 0.145 0.853 4.265 0.002471747 0.024717473 2.47174732 2.47 

When Rhizopus microsporus KN2 invaded 

KN2-KN9 0.235 0.797 3.985 0.002309476 0.023094755 2.309475514 2.31 

KN2-KN9 0.235 0.797 3.985 0.002309476 0.023094755 2.309475514 2.31 

KN2-KN9 0.235 0.793 3.965 0.002297885 0.022978847 2.297884671 2.30 

KN2-KN5 0.192 0.769 3.845 0.00222834 0.022283396 2.228339612 2.23 

KN2-KN5 0.192 0.768 3.84 0.002225442 0.022254419 2.225441901 2.23 

KN2-KN5 0.192 0.751 3.755 0.002176181 0.021761808 2.176180817 2.18 

KN2-KN3 0.157 0.648 3.24 0.001877717 0.018777166 1.877716604 1.88 

KN2-KN3 0.157 0.648 3.24 0.001877717 0.018777166 1.877716604 1.88 

KN2-KN3 0.157 0.646 3.23 0.001871921 0.018719212 1.871921182 1.87 

KN2-GL 0.177 0.401 2.005 0.001161982 0.01161982 1.161982034 1.16 

KN2-GL 0.177 0.382 1.91 0.001106926 0.011069255 1.106925529 1.11 

KN2-GL 0.177 0.382 1.91 0.001106926 0.011069255 1.106925529 1.11 

KN2-KN4 0.151 0.424 2.12 0.001228629 0.012286294 1.228629383 1.23 

KN2-KN4 0.151 0.423 2.115 0.001225732 0.012257317 1.225731672 1.23 
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KN2-KN4 0.151 0.423 2.115 0.001225732 0.012257317 1.225731672 1.23 

KN1-KN2 0.196 0.789 3.945 0.002286294 0.022862938 2.286293828 2.29 

KN1-KN2 0.196 0.789 3.945 0.002286294 0.022862938 2.286293828 2.29 

KN1-KN2 0.196 0.788 3.94 0.002283396 0.022833961 2.283396117 2.28 

COMBINATION NOT DONE DUE TO KN10E NON-VIABILITY OF KN12 ON WSA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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DUAL CULTURES LACCASE ASSAY ON WSA (Wheat Straw Agar) 

 Fungi Enzyme Extract Absorbance Reaction Absorbance A X 5 E / 2 X 6740X1 FX10D.F GX100 Enzyme Activity 

When Trichoderma sp.KN10 invaded 

KN4-KN10 0.119 0.678 3.39 0.000502967 0.005029674 0.502967359 0.50 

KN4-KN10 0.119 0.678 3.39 0.000502967 0.005029674 0.502967359 0.50 

KN4-KN10 0.119 0.678 3.39 0.000502967 0.005029674 0.502967359 0.50 

KN3-KN10 0.118 0.633 3.165 0.000469585 0.004695846 0.46958457 0.47 

KN3-KN10 0.118 0.633 3.165 0.000469585 0.004695846 0.46958457 0.47 

KN3-KN10 0.118 0.631 3.155 0.000468101 0.004681009 0.46810089 0.47 

KN1-KN10 0.123 0.24 1.2 0.000178042 0.001780415 0.178041543 0.18 

KN1-KN10 0.123 0.239 1.195 0.0001773 0.001772997 0.177299703 0.18 

KN1-KN10 0.123 0.239 1.195 0.0001773 0.001772997 0.177299703 0.18 

KN5-KN10 0.088 0.626 3.13 0.000464392 0.004643917 0.464391691 0.46 

KN5-KN10 0.088 0.624 3.12 0.000462908 0.00462908 0.462908012 0.46 

KN5-KN10 0.088 0.62 3.1 0.000459941 0.004599407 0.459940653 0.46 

KN10-KN9 0.105 0.15 0.75 0.000111276 0.00111276 0.111275964 0.11 

KN10-KN9 0.105 0.147 0.735 0.00010905 0.001090504 0.109050445 0.11 

KN10-KN9 0.105 0.145 0.725 0.000107567 0.001075668 0.107566766 0.11 

KN6-KN10 0.275 0.287 1.435 0.000212908 0.00212908 0.212908012 0.21 

KN6-KN10 0.275 0.287 1.435 0.000212908 0.00212908 0.212908012 0.21 

KN6-KN10 0.275 0.287 1.435 0.000212908 0.00212908 0.212908012 0.21 

KN10-GL 0.151 1.011 5.055 0.00075 0.0075 0.75 0.75 

KN10-GL 0.151 0.877 4.385 0.000650593 0.006505935 0.650593472 0.65 

KN10-GL 0.151 0.875 4.375 0.00064911 0.006491098 0.649109792 0.65 

When Fomitopsis sp.KN1 invaded 

KN1-KN5 -0.016 0.696 3.48 0.00051632 0.005163205 0.516320475 0.52 

KN1-KN5 -0.016 0.696 3.48 0.00051632 0.005163205 0.516320475 0.52 

KN1-KN5 -0.016 0.694 3.47 0.000514837 0.005148368 0.514836795 0.51 
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KN1-GL -0.021 0.65 3.25 0.000482196 0.004821958 0.482195846 0.48 

KN1-GL -0.021 0.648 3.24 0.000480712 0.004807122 0.480712166 0.48 

KN1-GL -0.021 0.648 3.24 0.000480712 0.004807122 0.480712166 0.48 

KN1-KN3 -0.024 0.214 1.07 0.000158754 0.001587537 0.158753709 0.16 

KN1-KN3 -0.024 0.214 1.07 0.000158754 0.001587537 0.158753709 0.16 

KN1-KN3 -0.024 0.214 1.07 0.000158754 0.001587537 0.158753709 0.16 

When Coriolopsis sp.KN6 invaded 

KN5-KN6 0.007 0.193 0.965 0.000143175 0.001431751 0.143175074 0.14 

KN5-KN6 0.007 0.185 0.925 0.00013724 0.001372404 0.137240356 0.14 

KN5-KN6 0.007 0.185 0.925 0.00013724 0.001372404 0.137240356 0.14 

KN2-KN6 -0.021 0.577 2.885 0.000428042 0.004280415 0.428041543 0.43 

KN2-KN6 -0.021 0.575 2.875 0.000426558 0.004265579 0.426557864 0.43 

KN2-KN6 -0.021 0.569 2.845 0.000422107 0.004221068 0.422106825 0.42 

When Rhizopus microsporus KN1 invaded 

KN2-KN3 -0.002 0.73 3.65 0.000541543 0.00541543 0.541543027 0.54 

KN2-KN3 -0.002 0.73 3.65 0.000541543 0.00541543 0.541543027 0.54 

KN2-KN3 -0.002 0.67 3.35 0.000497033 0.004970326 0.497032641 0.50 

KN2-GL 0.016 0.628 3.14 0.000465875 0.004658754 0.465875371 0.47 

KN2-GL 0.016 0.628 3.14 0.000465875 0.004658754 0.465875371 0.47 

KN2-GL 0.016 0.624 3.12 0.000462908 0.00462908 0.462908012 0.46 

KN2-KN9 0.043 0.353 1.765 0.000261869 0.002618694 0.261869436 0.26 

KN2-KN9 0.043 0.353 1.765 0.000261869 0.002618694 0.261869436 0.26 

KN2-KN9 0.043 0.351 1.755 0.000260386 0.002603858 0.260385757 0.26 

KN2-KN5 -0.012 0.556 2.78 0.000412463 0.004124629 0.412462908 0.41 

KN2-KN5 -0.012 0.556 2.78 0.000412463 0.004124629 0.412462908 0.41 

KN2-KN5 -0.012 0.556 2.78 0.000412463 0.004124629 0.412462908 0.41 

KN2-KN4 -0.011 0.192 0.96 0.000142433 0.001424332 0.142433234 0.14 

KN2-KN4 -0.011 0.192 0.96 0.000142433 0.001424332 0.142433234 0.14 
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KN2-KN4 -0.011 0.192 0.96 0.000142433 0.001424332 0.142433234 0.14 

KN1-KN2 -0.018 0.083 0.415 6.15727E-05 0.000615727 0.0615727 0.06 

KN1-KN2 -0.018 0.083 0.415 6.15727E-05 0.000615727 0.0615727 0.06 

KN1-KN2 -0.018 0.083 0.415 6.15727E-05 0.000615727 0.0615727 0.06 

COMBINATION NOT DONE DUE TO KN10E NON-VIABILITY OF KN12 ON WSA 

KN1-KN12 0 0 0 0 0 0 0.00 

KN2-KN12 0 0 0 0 0 0 0.00 

KN10-KN12 0 0 0 0 0 0 0.00 
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APPENDIX E 

Statistical Analysis 

Monoculture Analysis of Variance of the Enzyme Activities 

Factorial AOV Table for LiP   

 

Source  DF      SS      MS        F      P 

Rep               2  0.0006 0.00031 

Fungi             9 34.4544 3.82827 17315.45 0.0000 

Substrate         3  5.0794 1.69315  7658.20 0.0000 

Fungi*Substrate  27 21.3971 0.79248  3584.44 0.0000 

Error            78  0.0172 0.00022 

Total 119 60.9488 

 

Grand Mean 2.1203 

CV   0.70 

 

Factorial AOV Table for MnP   

 

Source  DF      SS      MS         F      P 

Rep               2  0.0028  0.0014 

Fungi             9  4.2070  0.4674   4026.58 0.0000 

Substrate         3 54.6752 18.2251 156991.09 0.0000 

Fungi*Substrate  27  9.8714  0.3656   3149.34 0.0000 

Error            78  0.0091  0.0001 

Total 119 68.7654 

 

Grand Mean 0.5537 

CV   1.95 

 

Factorial AOV Table for Lacc   

 

Source  DF      SS        MS        F      P 

Rep               2 0.00003 1.583E-05 

Fungi             9 0.13976   0.01553  4015.13 0.0000 

Substrate         3 0.47123   0.15708 40614.23 0.0000 

Fungi*Substrate  27 0.24788 9.181E-03  2373.80 0.0000 

Error            78 0.00030 3.868E-06 

Total 119 0.85920 

 

Grand Mean 0.0509 

CV   3.86 
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Enzyme Activities on Substrates Correlations in Monocultures 

Correlations (Pearson) 

 

     LiP    MnP   Lacc 

LiP 1.0000 

  p-value 0.0000 

MnP 0.2084 1.0000 

 0.0224 0.0000 

Lacc 0.1822 0.8328 1.0000 

 0.0464 0.0000 0.0000 

 

Cronbach's alpha               0.3678 

Standardized Cronbach's alpha  0.6738 

 

Fleiss' Kappa  -0.297   

 

Cases Included 120    Missing Cases 0 
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Tukey HSD All-Pairwise Comparisons of Enzyme Activities and Substrates in 

Monocultures 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi 

 

Fungi   Mean Homogeneous Groups 

KN10  2.4225 A 

KN6   2.3992  B 

KN9   2.3525   C 

KN1   2.3475   C 

KN4   2.3458   C 

KN3   2.3442   C 

GL    2.3200    D 

KN2   2.3175    D 

KN5   1.7417     E 

KN12  0.6125      F 

 

Alpha  0.05 Standard Error for Comparison 6.070E-03 

Critical Q Value 4.604 Critical Value for Comparison    0.0198 

There are 6 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Substrate 

 

Substrate   Mean Homogeneous Groups 

PDA       2.4290 A 

CCA       2.1233  B 

WSA       2.0773   C 

SBA       1.8517    D 

 

Alpha  0.05 Standard Error for Comparison 3.839E-03 

Critical Q Value 3.713 Critical Value for Comparison    0.0101 

All 4 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi*Substrate 

 

Fungi Substrate   Mean Homogeneous Groups 

KN2   PDA       2.5367 A 

KN10  PDA       2.5300 A 

KN3   WSA       2.5200 AB 

KN1   PDA       2.4733  BC 

KN4   PDA       2.4533   CD 

KN12  PDA       2.4500   CDE 

KN9   PDA       2.4300   CDEF 

KN10  CCA       2.4233    DEFG 

GL    PDA       2.4200    DEFG 

KN6   WSA       2.4200    DEFG 

KN6   CCA       2.4033     EFGH 

KN6   PDA       2.4033     EFGH 

KN10  SBA       2.3967      FGHI 

KN3   CCA       2.3867      FGHIJ 

KN9   CCA       2.3767       GHIJK 

KN6   SBA       2.3700        HIJK 

KN9   SBA       2.3700        HIJK 

KN5   PDA       2.3533         IJKL 

KN4   WSA       2.3467          JKL 

KN10  WSA       2.3400          JKL 

KN4   CCA       2.3400          JKL 

KN2   CCA       2.3367           KL 

KN2   SBA       2.3367           KL 
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KN1   CCA       2.3300           KLM 

KN1   WSA       2.3300           KLM 

KN5   CCA       2.3300           KLM 

GL    SBA       2.3133            LM 

GL    CCA       2.3067            LM 

KN5   WSA       2.2833             MN 

KN1   SBA       2.2567              NO 

KN4   SBA       2.2433              NO 

GL    WSA       2.2400              NO 

KN3   PDA       2.2400              NO 

KN9   WSA       2.2333               O 

KN3   SBA       2.2300               O 

KN2   WSA       2.0600                P 

KN12  CCA       0.0000                 Q 

KN12  SBA       0.0000                 Q 

KN12  WSA       0.0000                 Q 

KN5   SBA       0.0000                 Q 

 

Alpha  0.05 Standard Error for Comparison 0.0121 

Critical Q Value 5.716 Critical Value for Comparison 0.0491 

There are 17 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi 

 

Fungi   Mean Homogeneous Groups 

KN9   0.7758 A 

GL    0.7325  B 

KN6   0.6800   C 

KN3   0.6100    D 

KN4   0.5875     E 

KN10  0.5842     E 

KN1   0.5467      F 

KN2   0.5258       G 

KN5   0.4192        H 

KN12  0.0750         I 

 

Alpha  0.05 Standard Error for Comparison 4.399E-03 

Critical Q Value 4.604 Critical Value for Comparison    0.0143 

There are 9 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       1.7220 A 

PDA       0.2037  B 

CCA       0.1537   C 

SBA       0.1353    D 

 

Alpha  0.05 Standard Error for Comparison 2.782E-03 

Critical Q Value 3.713 Critical Value for Comparison 7.304E-03 

All 4 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi*Substrate 

 

Fungi Substrate   Mean Homogeneous Groups 

KN9   WSA       2.5800 A 

GL    WSA       2.3900  B 

KN6   WSA       2.1200   C 

KN3   WSA       1.8767    D 
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KN4   WSA       1.8433    DE 

KN10  WSA       1.8100     E 

KN1   WSA       1.7233      F 

KN2   WSA       1.6100       G 

KN5   WSA       1.2667        H 

KN12  PDA       0.3000         I 

KN5   PDA       0.2500          J 

KN10  CCA       0.2400          JK 

KN3   PDA       0.2333          JKL 

KN6   PDA       0.2300          JKL 

KN10  SBA       0.2267          JKL 

GL    PDA       0.2133           KLM 

KN9   PDA       0.2033            LMN 

KN2   PDA       0.1867             MNO 

KN6   CCA       0.1867             MNO 

KN4   CCA       0.1833             MNO 

KN4   PDA       0.1833             MNO 

KN6   SBA       0.1833             MNO 

KN1   PDA       0.1767              NO 

GL    CCA       0.1733              NOP 

KN2   SBA       0.1733              NOP 

KN3   CCA       0.1667               OPQ 

KN3   SBA       0.1633               OPQ 

KN9   CCA       0.1600               OPQ 

KN5   CCA       0.1600               OPQ 

KN9   SBA       0.1600               OPQ 

GL    SBA       0.1533               OPQ 

KN1   SBA       0.1533               OPQ 

KN4   SBA       0.1400                PQ 

KN1   CCA       0.1333                 Q 

KN2   CCA       0.1333                 Q 

KN10  PDA       0.0600                  R 

KN12  CCA       0.0000                   S 

KN12  SBA       0.0000                   S 

KN12  WSA       0.0000                   S 

KN5   SBA       0.0000                   S 

 

Alpha  0.05 Standard Error for Comparison 8.797E-03 

Critical Q Value 5.716 Critical Value for Comparison    0.0356 

There are 19 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi 

 

Fungi   Mean Homogeneous Groups 

KN10  0.1275 A 

KN9   0.0825  B 

GL    0.0758   C 

KN3   0.0575    D 

KN2   0.0383     E 

KN6   0.0375     EF 

KN5   0.0350      FG 

KN4   0.0333       G 

KN12  0.0125        H 

KN1   0.0092         I 

 

Alpha  0.05 Standard Error for Comparison 8.029E-04 

Critical Q Value 4.604 Critical Value for Comparison 2.614E-03 

There are 9 groups (A, B, etc.) in which the means 

are not significantly different from one another. 
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Tukey HSD All-Pairwise Comparisons Test of Lacc for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       0.1577 A 

PDA       0.0337  B 

SBA       0.0083   C 

CCA       0.0040    D 

 

Alpha  0.05 Standard Error for Comparison 5.078E-04 

Critical Q Value 3.713 Critical Value for Comparison 1.333E-03 

All 4 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi*Substrate 

 

Fungi Substrate     Mean Homogeneous Groups 

KN9   WSA         0.2900 A 

GL    WSA         0.2800  B 

KN10  WSA         0.2600   C 

KN10  PDA         0.2200    D 

KN3   WSA         0.1900     E 

KN2   WSA         0.1367      F 

KN4   WSA         0.1300       G 

KN5   WSA         0.1300       G 

KN6   WSA         0.1300       G 

KN12  PDA         0.0500        H 

KN1   WSA         0.0300         I 

KN10  SBA         0.0200          J 

KN3   PDA         0.0200          J 

KN9   PDA         0.0200          J 

KN9   SBA         0.0200          J 

GL    CCA       1.00E-02           K 

GL    SBA       1.00E-02           K 

KN10  CCA       1.00E-02           K 

KN2   PDA       1.00E-02           K 

KN3   CCA       1.00E-02           K 

KN3   SBA       1.00E-02           K 

KN5   PDA       1.00E-02           K 

KN6   CCA       1.00E-02           K 

KN6   SBA       1.00E-02           K 

KN1   SBA       6.67E-03           KL 

KN2   SBA       6.67E-03           KL 

GL    PDA       3.33E-03            LM 

KN4   PDA       3.33E-03            LM 

KN1   CCA         0.0000             M 

KN1   PDA         0.0000             M 

KN12  CCA         0.0000             M 

KN12  SBA         0.0000             M 

KN12  WSA         0.0000             M 

KN2   CCA         0.0000             M 

KN4   CCA         0.0000             M 

KN4   SBA         0.0000             M 

KN5   CCA         0.0000             M 

KN5   SBA         0.0000             M 

KN6   PDA         0.0000             M 

KN9   CCA         0.0000             M 

 

Alpha  0.05 Standard Error for Comparison 1.606E-03 

Critical Q Value 5.716 Critical Value for Comparison 6.489E-03 

There are 13 groups (A, B, etc.) in which the means 

are not significantly different from one another. 
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Dual Cultures Analysis of Variance of the Enzyme Activities involving 

invasion/replacement by Trichoderma sp. KN10 

Factorial AOV Table for LiP   

 

Source  DF        SS      MS        F      P 

Rep               2 2.392E-04 0.00012 

Fungi            16   90.9522 5.68451 20281.95 0.0000 

Substrate         2   3.20483 1.60241  5717.30 0.0000 

Fungi*Substrate  32   19.0788 0.59621  2127.24 0.0000 

Error           100   0.02803 0.00028 

Total 152   113.264 

 

Grand Mean 1.9798 

CV   0.85 

 

Factorial AOV Table for MnP   

 

Source  DF      SS        MS         F      P 

Rep               2   0.007 3.459E-03 

Fungi            16 168.391   10.5245  29386.14 0.0000 

Substrate         2 500.381   250.191 698576.25 0.0000 

Fungi*Substrate  32 293.710   9.17845  25627.84 0.0000 

Error           100   0.036 3.581E-04 

Total 152 962.526 

 

Grand Mean 1.4580 

CV   1.30 

 

Factorial AOV Table for Lacc   

 

Source  DF      SS      MS        F      P 

Rep               2 0.00019 0.00010 

Fungi            16 0.83193 0.05200   779.02 0.0000 

Substrate         2 1.52726 0.76363 11441.01 0.0000 

Fungi*Substrate  32 1.03969 0.03249   486.78 0.0000 

Error           100 0.00667 0.00007 

Total 152 3.40575 

 

Grand Mean 0.0976 

CV   8.37 
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Tukey HSD All-Pairwise Comparisons of Enzyme Activities and Substrates involving 

invasion/replacement by Trichoderma sp. KN10 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi 

 

Fungi       Mean Homogeneous Groups 

KN9-KN10  2.4189 A 

KN1-KN10  2.4178 A 

KN6       2.3978 AB 

KN6-KN10  2.3933 AB 

KN10      2.3867  B 

KN3-KN10  2.3856  B 

KN3       2.3789  B 

KN9       2.3267   C 

KN10-GL   2.3156   C 

KN4       2.3100   CD 

KN1       2.3056   CD 

GL        2.2867    D 

KN4-KN10  2.2822    D 

KN5       1.5378     E 

KN5-KN10  1.5133     E 

KN10-KN12 0.0000      F 

KN12      0.0000      F 

 

Alpha  0.05 Standard Error for Comparison 7.892E-03 

Critical Q Value 5.015 Critical Value for Comparison    0.0280 

There are 6 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Substrate 

 

Substrate   Mean Homogeneous Groups 

CCA       2.1404 A 

WSA       2.0094  B 

SBA       1.7896   C 

 

Alpha  0.05 Standard Error for Comparison 3.315E-03 

Critical Q Value 3.365 Critical Value for Comparison 7.889E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi*Substrate 

 

Fungi     Substrate   Mean Homogeneous Groups 

KN1-KN10  CCA       2.6000 A 

KN3       WSA       2.5200  B 

KN10-GL   CCA       2.5133  B 

KN6-KN10  CCA       2.5100  B 

KN4-KN10  CCA       2.4900  BC 

KN3-KN10  CCA       2.4733  BCD 

KN9-KN10  CCA       2.4667  BCD 

KN9-KN10  SBA       2.4400   CDE 

KN5-KN10  CCA       2.4367   CDE 

KN10      CCA       2.4233    DEF 

KN6       WSA       2.4200    DEF 

KN1-KN10  SBA       2.4067     EFG 

KN6       CCA       2.4033     EFGH 

KN10      SBA       2.3967     EFGHI 

KN6-KN10  SBA       2.3933     EFGHIJ 

KN3       CCA       2.3867     EFGHIJ 

KN9       CCA       2.3767      FGHIJK 
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KN6       SBA       2.3700      FGHIJK 

KN9       SBA       2.3700      FGHIJK 

KN3-KN10  WSA       2.3567       GHIJKL 

KN9-KN10  WSA       2.3500        HIJKL 

KN4       WSA       2.3467         IJKL 

KN4-KN10  SBA       2.3467         IJKL 

KN10      WSA       2.3400          JKL 

KN4       CCA       2.3400          JKL 

KN1       CCA       2.3300           KLM 

KN1       WSA       2.3300           KLM 

KN10-GL   SBA       2.3300           KLM 

KN5       CCA       2.3300           KLM 

KN3-KN10  SBA       2.3267           KLM 

GL        SBA       2.3133            LM 

GL        CCA       2.3067            LMN 

KN5       WSA       2.2833             MNO 

KN6-KN10  WSA       2.2767             MNO 

KN1       SBA       2.2567              NO 

KN1-KN10  WSA       2.2467               O 

KN4       SBA       2.2433               O 

GL        WSA       2.2400               O 

KN9       WSA       2.2333               O 

KN3       SBA       2.2300               O 

KN10-GL   WSA       2.1033                P 

KN5-KN10  WSA       2.1033                P 

KN4-KN10  WSA       2.0100                 Q 

KN10-KN12 CCA       0.0000                  R 

KN10-KN12 SBA       0.0000                  R 

KN10-KN12 WSA       0.0000                  R 

KN12      CCA       0.0000                  R 

KN12      SBA       0.0000                  R 

KN12      WSA       0.0000                  R 

KN5       SBA       0.0000                  R 

KN5-KN10  SBA       0.0000                  R 

 

Alpha  0.05 Standard Error for Comparison 0.0137 

Critical Q Value 5.840 Critical Value for Comparison 0.0564 

There are 18 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi 

 

Fungi       Mean Homogeneous Groups 

KN3-KN10  2.7444 A 

KN1-KN10  2.7356 A 

KN10-GL   2.6922  B 

KN6-KN10  2.6778  B 

KN9-KN10  2.6689  B 

KN5-KN10  2.6289   C 

KN4-KN10  2.5733    D 

KN9       0.9667     E 

GL        0.9056      F 

KN6       0.8300       G 

KN10      0.7589        H 

KN3       0.7356        HI 

KN4       0.7222         I 

KN1       0.6700          J 

KN5       0.4756           K 

KN10-KN12 0.0000            L 

KN12      0.0000            L 
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Alpha  0.05 Standard Error for Comparison 8.921E-03 

Critical Q Value 5.015 Critical Value for Comparison    0.0316 

There are 12 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       4.0151 A 

CCA       0.2186  B 

SBA       0.1402   C 

 

Alpha  0.05 Standard Error for Comparison 3.748E-03 

Critical Q Value 3.365 Critical Value for Comparison 8.917E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi*Substrate 

 

Fungi     Substrate   Mean Homogeneous Groups 

KN3-KN10  WSA       7.7867 A 

KN5-KN10  WSA       7.5833  B 

KN9-KN10  WSA       7.5300  BC 

KN1-KN10  WSA       7.5200  BC 

KN6-KN10  WSA       7.4967   C 

KN10-GL   WSA       7.4933   C 

KN4-KN10  WSA       7.2367    D 

KN9       WSA       2.5800     E 

GL        WSA       2.3900      F 

KN6       WSA       2.1200       G 

KN3       WSA       1.8767        H 

KN4       WSA       1.8433        HI 

KN10      WSA       1.8100         I 

KN1       WSA       1.7233          J 

KN5       WSA       1.2667           K 

KN1-KN10  CCA       0.4700            L 

KN10-GL   CCA       0.3833             M 

KN6-KN10  CCA       0.3167              N 

KN5-KN10  CCA       0.3033              NO 

KN4-KN10  CCA       0.2933              NO 

KN9-KN10  CCA       0.2800              NOP 

KN3-KN10  CCA       0.2667              NOP 

KN10      CCA       0.2400               OPQ 

KN10      SBA       0.2267                PQR 

KN6-KN10  SBA       0.2200                PQRS 

KN1-KN10  SBA       0.2167                PQRST 

KN10-GL   SBA       0.2000                 QRSTU 

KN9-KN10  SBA       0.1967                 QRSTUV 

KN4-KN10  SBA       0.1900                 QRSTUV 

KN6       CCA       0.1867                 QRSTUV 

KN4       CCA       0.1833                 QRSTUV 

KN6       SBA       0.1833                 QRSTUV 

KN3-KN10  SBA       0.1800                 QRSTUV 

GL        CCA       0.1733                  RSTUV 

KN3       CCA       0.1667                  RSTUV 

KN3       SBA       0.1633                  RSTUV 

KN9       CCA       0.1600                   STUV 

KN5       CCA       0.1600                   STUV 

KN9       SBA       0.1600                   STUV 

GL        SBA       0.1533                    TUV 

KN1       SBA       0.1533                    TUV 

KN4       SBA       0.1400                     UV 
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KN1       CCA       0.1333                      V 

KN10-KN12 CCA       0.0000                       W 

KN10-KN12 SBA       0.0000                       W 

KN10-KN12 WSA       0.0000                       W 

KN12      CCA       0.0000                       W 

KN12      SBA       0.0000                       W 

KN12      WSA       0.0000                       W 

KN5       SBA       0.0000                       W 

KN5-KN10  SBA       0.0000                       W 

 

Alpha  0.05 Standard Error for Comparison 0.0155 

Critical Q Value 5.840 Critical Value for Comparison 0.0638 

There are 23 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi 

 

Fungi       Mean Homogeneous Groups 

KN10-GL   0.2678 A 

KN4-KN10  0.2044  B 

KN3-KN10  0.1867   C 

KN5-KN10  0.1833   C 

KN6-KN10  0.1200    D 

KN1-KN10  0.1100    DE 

KN9       0.1033     E 

GL        0.1000     E 

KN10      0.0967     E 

KN3       0.0700      F 

KN9-KN10  0.0689      F 

KN6       0.0500       G 

KN4       0.0433       G 

KN5       0.0433       G 

KN1       0.0122        H 

KN10-KN12 0.0000        H 

KN12      0.0000        H 

 

Alpha  0.05 Standard Error for Comparison 3.851E-03 

Critical Q Value 5.015 Critical Value for Comparison    0.0137 

There are 8 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       0.2384 A 

CCA       0.0376  B 

SBA       0.0169   C 

 

Alpha  0.05 Standard Error for Comparison 1.618E-03 

Critical Q Value 3.365 Critical Value for Comparison 3.850E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi*Substrate 

 

Fungi     Substrate     Mean Homogeneous Groups 

KN10-GL   WSA         0.6833 A 

KN4-KN10  WSA         0.5000  B 

KN3-KN10  WSA         0.4700   C 

KN5-KN10  WSA         0.4600   C 

KN9       WSA         0.2900    D 

GL        WSA         0.2800    DE 
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KN10      WSA         0.2600     E 

KN6-KN10  WSA         0.2100      F 

KN3       WSA         0.1900      FG 

KN1-KN10  WSA         0.1800       G 

KN4       WSA         0.1300        H 

KN5       WSA         0.1300        H 

KN6       WSA         0.1300        H 

KN1-KN10  CCA         0.1200        HI 

KN9-KN10  WSA         0.1100        HIJ 

KN6-KN10  CCA         0.1000         IJK 

KN5-KN10  CCA         0.0900          JKL 

KN4-KN10  CCA         0.0833          JKLM 

KN10-GL   CCA         0.0800           KLM 

KN3-KN10  CCA         0.0700            LMN 

KN9-KN10  CCA         0.0567             MNO 

KN6-KN10  SBA         0.0500              NO 

KN10-GL   SBA         0.0400               OP 

KN9-KN10  SBA         0.0400               OP 

KN1       WSA         0.0300               OPQ 

KN1-KN10  SBA         0.0300               OPQ 

KN4-KN10  SBA         0.0300               OPQ 

KN10      SBA         0.0200                PQR 

KN3-KN10  SBA         0.0200                PQR 

KN9       SBA         0.0200                PQR 

GL        CCA       1.00E-02                 QR 

GL        SBA       1.00E-02                 QR 

KN10      CCA       1.00E-02                 QR 

KN3       CCA       1.00E-02                 QR 

KN3       SBA       1.00E-02                 QR 

KN6       CCA       1.00E-02                 QR 

KN6       SBA       1.00E-02                 QR 

KN1       SBA       6.67E-03                 QR 

KN1       CCA         0.0000                  R 

KN10-KN12 CCA         0.0000                  R 

KN10-KN12 SBA         0.0000                  R 

KN10-KN12 WSA         0.0000                  R 

KN12      CCA         0.0000                  R 

KN12      SBA         0.0000                  R 

KN12      WSA         0.0000                  R 

KN4       CCA         0.0000                  R 

KN4       SBA         0.0000                  R 

KN5       CCA         0.0000                  R 

KN5       SBA         0.0000                  R 

KN5-KN10  SBA         0.0000                  R 

KN9       CCA         0.0000                  R 

 

Alpha  0.05 Standard Error for Comparison 6.671E-03 

Critical Q Value 5.840 Critical Value for Comparison    0.0275 

There are 18 groups (A, B, etc.) in which the means 

are not significantly different from one another. 
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Dual Cultures Analysis of Variance of the Enzyme Activities involving 

invasion/replacement by Rhizopus microsporus KN2 

Factorial AOV Table for LiP   

 

Source  DF      SS      MS        F      P 

Replicate         2   0.001 0.00050 

Fungi            16  85.577 5.34856 22668.41 0.0000 

Substrate         2   2.399 1.19963  5084.31 0.0000 

Fungi*Substrate  32  20.372 0.63664  2698.22 0.0000 

Error           100   0.024 0.00024 

Total 152 108.373 

 

Grand Mean 1.9380 

CV   0.79 

 

Factorial AOV Table for MnP   

 

Source  DF      SS      MS         F      P 

Replicate         2   0.004  0.0020 

Fungi            16  12.192  0.7620   4842.04 0.0000 

Substrate         2  83.567 41.7837 265508.35 0.0000 

Fungi*Substrate  32  17.365  0.5427   3448.22 0.0000 

Error           100   0.016  0.0002 

Total 152 113.144 

 

Grand Mean 0.6598 

CV   1.90 

 

Factorial AOV Table for Lacc   

 

Source  DF      SS      MS        F      P 

Replicate         2 0.00015 0.00007 

Fungi            16 0.49093 0.03068  2210.24 0.0000 

Substrate         2 1.40464 0.70232 50590.82 0.0000 

Fungi*Substrate  32 0.83569 0.02612  1881.20 0.0000 

Error           100 0.00139 0.00001 

Total 152 2.73280 

 

Grand Mean 0.0767 

CV   4.86 
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Tukey HSD All-Pairwise Comparisons of Enzyme Activities and Substrates involving 

invasion/replacement by Rhizopus microsporus KN2 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi 

 

Fungi      Mean Homogeneous Groups 

KN6      2.3978 A 

KN3      2.3789 A 

KN1-KN2  2.3411  B 

KN9      2.3267  BC 

KN2-KN9  2.3256  BC 

KN2-KN4  2.3233  BC 

KN4      2.3100   CD 

KN1      2.3056   CD 

GL       2.2867    D 

KN2      2.2444     E 

KN2-KN3  2.2089      F 

KN2-KN6  2.2033      F 

KN2-GL   2.1767       G 

KN2-KN5  1.5789        H 

KN5      1.5378         I 

KN12     0.0000          J 

KN2-KN12 0.0000          J 

 

Alpha  0.05 Standard Error for Comparison 7.241E-03 

Critical Q Value 5.015 Critical Value for Comparison    0.0257 

There are 10 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Substrate 

 

Substrate   Mean Homogeneous Groups 

CCA       2.0671 A 

WSA       1.9784  B 

SBA       1.7684   C 

 

Alpha  0.05 Standard Error for Comparison 3.042E-03 

Critical Q Value 3.365 Critical Value for Comparison 7.238E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi*Substrate 

 

Fungi    Substrate   Mean Homogeneous Groups 

KN3      WSA       2.5200 A 

KN6      WSA       2.4200  B 

KN6      CCA       2.4033  BC 

KN2-KN5  CCA       2.3967  BCD 

KN3      CCA       2.3867  BCDE 

KN2-KN9  CCA       2.3767  BCDEF 

KN9      CCA       2.3767  BCDEF 

KN6      SBA       2.3700  BCDEFG 

KN9      SBA       2.3700  BCDEFG 

KN1-KN2  CCA       2.3667   CDEFG 

KN1-KN2  SBA       2.3500    DEFGH 

KN2-KN4  SBA       2.3500    DEFGH 

KN4      WSA       2.3467    DEFGH 

KN2-KN4  CCA       2.3467    DEFGH 

KN2-KN5  WSA       2.3400     EFGH 

KN2-KN9  SBA       2.3400     EFGH 

KN4      CCA       2.3400     EFGH 
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KN2      CCA       2.3367     EFGH 

KN2      SBA       2.3367     EFGH 

KN1      CCA       2.3300      FGHI 

KN1      WSA       2.3300      FGHI 

KN5      CCA       2.3300      FGHI 

KN2-KN3  CCA       2.3233       GHIJ 

KN2-GL   SBA       2.3200       GHIJ 

GL       SBA       2.3133        HIJ 

KN2-KN6  SBA       2.3100        HIJK 

KN1-KN2  WSA       2.3067        HIJKL 

GL       CCA       2.3067        HIJKL 

KN5      WSA       2.2833         IJKLM 

KN2-KN6  CCA       2.2767          JKLMN 

KN2-KN3  SBA       2.2733          JKLMN 

KN2-KN4  WSA       2.2733          JKLMN 

KN2-KN9  WSA       2.2600           KLMN 

KN1      SBA       2.2567            LMN 

KN2-GL   CCA       2.2433             MN 

KN4      SBA       2.2433             MN 

GL       WSA       2.2400             MN 

KN9      WSA       2.2333             MN 

KN3      SBA       2.2300              N 

KN2      WSA       2.0600               O 

KN2-KN3  WSA       2.0300               O 

KN2-KN6  WSA       2.0233               O 

KN2-GL   WSA       1.9667                P 

KN12     CCA       0.0000                 Q 

KN12     SBA       0.0000                 Q 

KN12     WSA       0.0000                 Q 

KN2-KN12 CCA       0.0000                 Q 

KN2-KN12 SBA       0.0000                 Q 

KN2-KN12 WSA       0.0000                 Q 

KN2-KN5  SBA       0.0000                 Q 

KN5      SBA       0.0000                 Q 

 

Alpha  0.05 Standard Error for Comparison 0.0125 

Critical Q Value 5.840 Critical Value for Comparison 0.0518 

There are 17 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi 

 

Fungi      Mean Homogeneous Groups 

KN9      0.9667 A 

KN2-KN6  0.9611 A 

KN2-KN9  0.9089  B 

GL       0.9056  B 

KN1-KN2  0.8578   C 

KN6      0.8300    D 

KN2-KN5  0.7856     E 

KN3      0.7356      F 

KN2-KN3  0.7322      F 

KN4      0.7222      F 

KN1      0.6700       G 

KN2      0.6389        H 

KN2-KN4  0.5267         I 

KN2-GL   0.5000          J 

KN5      0.4756           K 

KN12     0.0000            L 

KN2-KN12 0.0000            L 
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Alpha  0.05 Standard Error for Comparison 5.914E-03 

Critical Q Value 5.015 Critical Value for Comparison    0.0210 

There are 12 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       1.7049 A 

CCA       0.1480  B 

SBA       0.1265   C 

 

Alpha  0.05 Standard Error for Comparison 2.484E-03 

Critical Q Value 3.365 Critical Value for Comparison 5.911E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi*Substrate 

 

Fungi    Substrate   Mean Homogeneous Groups 

KN9      WSA       2.5800 A 

KN2-KN6  WSA       2.5333  B 

GL       WSA       2.3900   C 

KN2-KN9  WSA       2.3067    D 

KN1-KN2  WSA       2.2867    D 

KN2-KN5  WSA       2.2133     E 

KN6      WSA       2.1200      F 

KN2-KN3  WSA       1.8767       G 

KN3      WSA       1.8767       G 

KN4      WSA       1.8433       G 

KN1      WSA       1.7233        H 

KN2      WSA       1.6100         I 

KN5      WSA       1.2667          J 

KN2-KN4  WSA       1.2300          J 

KN2-GL   WSA       1.1267           K 

KN2-KN9  CCA       0.2300            L 

KN2-GL   SBA       0.1933            LM 

KN2-KN9  SBA       0.1900            LM 

KN6      CCA       0.1867             M 

KN4      CCA       0.1833             MN 

KN6      SBA       0.1833             MN 

KN2-GL   CCA       0.1800             MNO 

KN2-KN3  CCA       0.1800             MNO 

KN2-KN4  CCA       0.1800             MNO 

KN2-KN6  CCA       0.1800             MNO 

GL       CCA       0.1733             MNOP 

KN2      SBA       0.1733             MNOP 

KN2-KN4  SBA       0.1700             MNOP 

KN2-KN6  SBA       0.1700             MNOP 

KN3      CCA       0.1667             MNOPQ 

KN3      SBA       0.1633             MNOPQ 

KN9      CCA       0.1600             MNOPQ 

KN1-KN2  SBA       0.1600             MNOPQ 

KN5      CCA       0.1600             MNOPQ 

KN9      SBA       0.1600             MNOPQ 

GL       SBA       0.1533             MNOPQ 

KN1      SBA       0.1533             MNOPQ 

KN2-KN5  CCA       0.1433              NOPQ 

KN2-KN3  SBA       0.1400               OPQ 

KN4      SBA       0.1400               OPQ 

KN1      CCA       0.1333                PQ 

KN2      CCA       0.1333                PQ 
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KN1-KN2  CCA       0.1267                 Q 

KN12     CCA       0.0000                  R 

KN12     SBA       0.0000                  R 

KN12     WSA       0.0000                  R 

KN2-KN12 CCA       0.0000                  R 

KN2-KN12 SBA       0.0000                  R 

KN2-KN12 WSA       0.0000                  R 

KN2-KN5  SBA       0.0000                  R 

KN5      SBA       0.0000                  R 

 

Alpha  0.05 Standard Error for Comparison 0.0102 

Critical Q Value 5.840 Critical Value for Comparison 0.0423 

There are 18 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi 

 

Fungi      Mean Homogeneous Groups 

KN2-KN3  0.1856 A 

KN2-GL   0.1656  B 

KN2-KN6  0.1544   C 

KN2-KN5  0.1433    D 

KN9      0.1033     E 

KN2-KN9  0.1011     E 

GL       0.1000     E 

KN3      0.0700      F 

KN2-KN4  0.0533       G 

KN6      0.0500       G 

KN2      0.0478       GH 

KN4      0.0433        H 

KN5      0.0433        H 

KN1-KN2  0.0300         I 

KN1      0.0122          J 

KN12     0.0000           K 

KN2-KN12 0.0000           K 

 

Alpha  0.05 Standard Error for Comparison 1.756E-03 

Critical Q Value 5.015 Critical Value for Comparison 6.228E-03 

There are 11 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       0.2122 A 

CCA       0.0106  B 

SBA       0.0073   C 

 

Alpha  0.05 Standard Error for Comparison 7.378E-04 

Critical Q Value 3.365 Critical Value for Comparison 1.756E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi*Substrate 

 

Fungi    Substrate     Mean Homogeneous Groups 

KN2-KN3  WSA         0.5267 A 

KN2-GL   WSA         0.4667  B 

KN2-KN6  WSA         0.4267   C 

KN2-KN5  WSA         0.4100    D 

KN9      WSA         0.2900     E 

GL       WSA         0.2800     E 
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KN2-KN9  WSA         0.2600      F 

KN3      WSA         0.1900       G 

KN2-KN4  WSA         0.1400        H 

KN2      WSA         0.1367        H 

KN4      WSA         0.1300        H 

KN5      WSA         0.1300        H 

KN6      WSA         0.1300        H 

KN1-KN2  WSA         0.0600         I 

KN2-KN9  CCA         0.0333          J 

KN1      WSA         0.0300          JK 

KN2-KN6  CCA         0.0267          JK 

KN1-KN2  CCA         0.0200           KL 

KN2-GL   CCA         0.0200           KL 

KN2-KN3  CCA         0.0200           KL 

KN2-KN5  CCA         0.0200           KL 

KN9      SBA         0.0200           KL 

GL       CCA       1.00E-02            LM 

GL       SBA       1.00E-02            LM 

KN1-KN2  SBA       1.00E-02            LM 

KN2-GL   SBA       1.00E-02            LM 

KN2-KN3  SBA       1.00E-02            LM 

KN2-KN4  CCA       1.00E-02            LM 

KN2-KN4  SBA       1.00E-02            LM 

KN2-KN6  SBA       1.00E-02            LM 

KN2-KN9  SBA       1.00E-02            LM 

KN3      CCA       1.00E-02            LM 

KN3      SBA       1.00E-02            LM 

KN6      CCA       1.00E-02            LM 

KN6      SBA       1.00E-02            LM 

KN1      SBA       6.67E-03             M 

KN2      SBA       6.67E-03             M 

KN1      CCA         0.0000             M 

KN12     CCA         0.0000             M 

KN12     SBA         0.0000             M 

KN12     WSA         0.0000             M 

KN2      CCA         0.0000             M 

KN2-KN12 CCA         0.0000             M 

KN2-KN12 SBA         0.0000             M 

KN2-KN12 WSA         0.0000             M 

KN2-KN5  SBA         0.0000             M 

KN4      CCA         0.0000             M 

KN4      SBA         0.0000             M 

KN5      CCA         0.0000             M 

KN5      SBA         0.0000             M 

KN9      CCA         0.0000             M 

 

Alpha  0.05 Standard Error for Comparison 3.042E-03 

Critical Q Value 5.840 Critical Value for Comparison    0.0126 

There are 13 groups (A, B, etc.) in which the means 

are not significantly different from one another. 
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Dual Cultures Analysis of Variance of the Enzyme Activities involving 

invasion/replacement by Fomitopsis sp. KN1 

Factorial AOV Table for LiP   

 

Source DF      SS      MS        F      P 

Replicate        2  0.0001 0.00003 

Fungi            6  8.3862 1.39771  7602.69 0.0000 

Substrate        2  6.9616 3.48080 18933.50 0.0000 

Fungi*Substrate 12 15.5348 1.29457  7041.68 0.0000 

Error           49  0.0090 0.00018 

Total 71 

 

Note: SS are marginal (type III) sums of squares 

 

Grand Mean 2.0959 

CV   0.65 

 

Factorial AOV Table for MnP   

 

Source DF      SS      MS         F      P 

Replicate        2  0.0036  0.0018 

Fungi            6  1.8507  0.3085   2106.50 0.0000 

Substrate        2 59.7225 29.8613 203930.60 0.0000 

Fungi*Substrate 12  3.2944  0.2745   1874.87 0.0000 

Error           49  0.0072  0.0001 

Total 71 

 

Note: SS are marginal (type III) sums of squares 

 

Grand Mean 0.7952 

CV   1.52 

 

Factorial AOV Table for Lacc   

 

Source DF      SS        MS        F      P 

Replicate        2 0.00004 2.222E-05 

Fungi            6 0.26517   0.04420  9745.08 0.0000 

Substrate        2 0.90520   0.45260 99798.30 0.0000 

Fungi*Substrate 12 0.46884   0.03907  8614.86 0.0000 

Error           49 0.00022 4.535E-06 

Total 71 

 

Note: SS are marginal (type III) sums of squares 

 

Grand Mean 0.0919 

CV   2.32 
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Tukey HSD All-Pairwise Comparisons of Enzyme Activities and Substrates involving 

invasion/replacement by Fomitopsis sp. KN1 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi 

 

Fungi     Mean Homogeneous Groups 

KN3     2.3789 A 

KN1-GL  2.3356  B 

KN1     2.3056   C 

KN1-KN3 2.2989   CD 

GL      2.2867    D 

KN5     1.5378     E 

KN1-KN5 1.5278     E 

 

Alpha  0.05 Standard Error for Comparison 5.535E-03 TO 

6.392E-03 

Critical Q Value 4.346 Critical Value for Comparison       0.0170 TO 

0.0196 

There are 5 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Substrate 

 

Substrate   Mean Homogeneous Groups 

CCA       2.3400 A 

WSA       2.3043  B 

SBA       1.6433   C 

 

Alpha  0.05 Standard Error for Comparison 4.032E-03 

Critical Q Value 3.419 Critical Value for Comparison 9.747E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi*Substrate 

 

Fungi   Substrate     Mean Homogeneous Groups 

KN3     WSA         2.5200 A 

KN1-GL  CCA         2.3900  B 

KN3     CCA         2.3867  B 

KN1-GL  SBA         2.3800  B 

KN1-KN3 CCA         2.3333   C 

KN1     WSA         2.3300   C 

KN5     CCA         2.3300   C 

KN1     CCA         2.3300   C 

KN1-KN3 SBA         2.3233   CD 

GL      SBA         2.3133   CDE 

GL      CCA         2.3067   CDE 

KN1-KN5 CCA         2.3033   CDE 

KN5     WSA         2.2833    DEF 

KN1-KN5 WSA         2.2800     EFG 

KN1     SBA         2.2567      FGH 

KN1-KN3 WSA         2.2400       GH 

GL      WSA         2.2400       GH 

KN1-GL  WSA         2.2367        H 

KN3     SBA         2.2300        H 

KN5     SBA       2.22E-15         I 

KN1-KN5 SBA       1.55E-15         I 

 

Alpha  0.05 Standard Error for Comparison 7.828E-03 TO 

0.0111 

Critical Q Value 5.330 Critical Value for Comparison    0.0295 TO 



294 
 

0.0417 

There are 9 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi 

 

Fungi     Mean Homogeneous Groups 

KN1-GL  0.9700 A 

KN1-KN3 0.9478  B 

GL      0.9056   C 

KN1-KN5 0.8622    D 

KN3     0.7356     E 

KN1     0.6700      F 

KN5     0.4756       G 

 

Alpha  0.05 Standard Error for Comparison 4.940E-03 TO 

5.704E-03 

Critical Q Value 4.346 Critical Value for Comparison       0.0152 TO 

0.0175 

All 7 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       2.1219 A 

CCA       0.1510  B 

SBA       0.1129   C 

 

Alpha  0.05 Standard Error for Comparison 3.599E-03 

Critical Q Value 3.419 Critical Value for Comparison 8.699E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi*Substrate 

 

Fungi   Substrate     Mean    GL,CCA     GL,SBA     GL,WSA    KN1,CCA  

GL      CCA         0.1733 

GL      SBA         0.1533    0.0200  

GL      WSA         2.3900    2.2167*    2.2367* 

KN1     CCA         0.1333    0.0400*    0.0200     2.2567* 

KN1     SBA         0.1533    0.0200   1.67E-16     2.2367*    0.0200  

KN1     WSA         1.7233    1.5500*    1.5700*    0.6667*    1.5900* 

KN1-GL  CCA         0.1500    0.0233   3.33E-03     2.2400*    0.0167  

KN1-GL  SBA         0.1700  3.33E-03     0.0167     2.2200*    0.0367* 

KN1-GL  WSA         2.5900    2.4167*    2.4367*    0.2000*    2.4567* 

KN1-KN3 CCA         0.1433    0.0300     0.0100     2.2467*  1.00E-02  

KN1-KN3 SBA         0.1500    0.0233   3.33E-03     2.2400*    0.0167  

KN1-KN3 WSA         2.5500    2.3767*    2.3967*    0.1600*    2.4167* 

KN1-KN5 CCA         0.1300    0.0433*    0.0233     2.2600*  3.33E-03  

KN1-KN5 SBA       8.33E-17    0.1733*    0.1533*    2.3900*    0.1333* 

KN1-KN5 WSA         2.4567    2.2833*    2.3033*    0.0667*    2.3233* 

KN3     CCA         0.1667  6.67E-03     0.0133     2.2233*    0.0333* 

KN3     SBA         0.1633  1.00E-02     0.0100     2.2267*    0.0300  

KN3     WSA         1.8767    1.7033*    1.7233*    0.5133*    1.7433* 

KN5     CCA         0.1600    0.0133   6.67E-03     2.2300*    0.0267  

KN5     SBA       2.64E-16    0.1733*    0.1533*    2.3900*    0.1333* 

KN5     WSA         1.2667    1.0933*    1.1133*    1.1233*    1.1333* 

 

Fungi   Substrate     Mean   KN1,SBA    KN1,WSA        CCA        SBA  

KN1     WSA         1.7233    1.5700* 

KN1-GL  CCA         0.1500  3.33E-03     1.5733* 

KN1-GL  SBA         0.1700    0.0167     1.5533*    0.0200  
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KN1-GL  WSA         2.5900    2.4367*    0.8667*    2.4400*    2.4200* 

KN1-KN3 CCA         0.1433  1.00E-02     1.5800*  6.67E-03     0.0267  

KN1-KN3 SBA         0.1500  3.33E-03     1.5733*  2.50E-16     0.0200  

KN1-KN3 WSA         2.5500    2.3967*    0.8267*    2.4000*    2.3800* 

KN1-KN5 CCA         0.1300    0.0233     1.5933*    0.0200     0.0400* 

KN1-KN5 SBA       8.33E-17    0.1533*    1.7233*    0.1500*    0.1700* 

KN1-KN5 WSA         2.4567    2.3033*    0.7333*    2.3067*    2.2867* 

KN3     CCA         0.1667    0.0133     1.5567*    0.0167   3.33E-03  

KN3     SBA         0.1633    0.0100     1.5600*    0.0133   6.67E-03  

KN3     WSA         1.8767    1.7233*    0.1533*    1.7267*    1.7067* 

KN5     CCA         0.1600  6.67E-03     1.5633*    0.0100   1.00E-02  

KN5     SBA       2.64E-16    0.1533*    1.7233*    0.1500*    0.1700* 

KN5     WSA         1.2667    1.1133*    0.4567*    1.1167*    1.0967* 

 

Fungi   Substrate     Mean       WSA        CCA        SBA        WSA  

KN1-KN3 CCA         0.1433    2.4467* 

KN1-KN3 SBA         0.1500    2.4400*  6.67E-03  

KN1-KN3 WSA         2.5500    0.0400*    2.4067*    2.4000* 

KN1-KN5 CCA         0.1300    2.4600*    0.0133     0.0200     2.4200* 

KN1-KN5 SBA       8.33E-17    2.5900*    0.1433*    0.1500*    2.5500* 

KN1-KN5 WSA         2.4567    0.1333*    2.3133*    2.3067*    0.0933* 

KN3     CCA         0.1667    2.4233*    0.0233     0.0167     2.3833* 

KN3     SBA         0.1633    2.4267*    0.0200     0.0133     2.3867* 

KN3     WSA         1.8767    0.7133*    1.7333*    1.7267*    0.6733* 

KN5     CCA         0.1600    2.4300*    0.0167     0.0100     2.3900* 

KN5     SBA       2.64E-16    2.5900*    0.1433*    0.1500*    2.5500* 

KN5     WSA         1.2667    1.3233*    1.1233*    1.1167*    1.2833* 

 

Fungi   Substrate     Mean       CCA        SBA        WSA    KN3,CCA  

KN1-KN5 SBA       8.33E-17    0.1300* 

KN1-KN5 WSA         2.4567    2.3267*    2.4567* 

KN3     CCA         0.1667    0.0367     0.1667*    2.2900* 

KN3     SBA         0.1633    0.0333     0.1633*    2.2933*  3.33E-03  

KN3     WSA         1.8767    1.7467*    1.8767*    0.5800*    1.7100* 

KN5     CCA         0.1600    0.0300     0.1600*    2.2967*  6.67E-03  

KN5     SBA       2.64E-16    0.1300*  1.80E-16     2.4567*    0.1667* 

KN5     WSA         1.2667    1.1367*    1.2667*    1.1900*    1.1000* 

 

Fungi   Substrate     Mean   KN3,SBA    KN3,WSA    KN5,CCA    KN5,SBA  

KN3     WSA         1.8767    1.7133* 

KN5     CCA         0.1600  3.33E-03     1.7167* 

KN5     SBA       2.64E-16    0.1633*    1.8767*    0.1600* 

KN5     WSA         1.2667    1.1033*    0.6100*    1.1067*    1.2667* 

 

Alpha  0.05 Standard Error for Comparison 6.986E-03 TO 

9.880E-03 

Critical Q Value 5.330 Critical Value for Comparison       0.0263 TO 

0.0372 

The homogeneous group format can't be used 

because of the pattern of significant differences. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi 

 

Fungi     Mean Homogeneous Groups 

KN1-KN5 0.1789 A 

KN1-GL  0.1722  B 

GL      0.1000   C 

KN3     0.0700    D 

KN1-KN3 0.0667     E 

KN5     0.0433      F 

KN1     0.0122       G 
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Alpha  0.05 Standard Error for Comparison 8.694E-04 TO 

1.004E-03 

Critical Q Value 4.346 Critical Value for Comparison 2.672E-03 TO 

3.085E-03 

All 7 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       0.2552 A 

CCA       0.0124  B 

SBA       0.0081   C 

 

Alpha  0.05 Standard Error for Comparison 6.333E-04 

Critical Q Value 3.419 Critical Value for Comparison 1.531E-03 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of Lacc for Fungi*Substrate 

 

Fungi   Substrate     Mean Homogeneous Groups 

KN1-KN5 WSA         0.5167 A 

KN1-GL  WSA         0.4800  B 

GL      WSA         0.2800   C 

KN3     WSA         0.1900    D 

KN1-KN3 WSA         0.1600     E 

KN5     WSA         0.1300      F 

KN1     WSA         0.0300       G 

KN1-GL  CCA         0.0267       G 

KN1-KN3 SBA         0.0200        H 

KN1-KN3 CCA         0.0200        H 

KN1-KN5 CCA         0.0200        H 

KN3     CCA         0.0100         I 

KN3     SBA         0.0100         I 

GL      CCA         0.0100         I 

GL      SBA         0.0100         I 

KN1-GL  SBA         0.0100         I 

KN1     SBA       6.67E-03         I 

KN1     CCA       2.50E-16          J 

KN5     CCA       1.67E-16          J 

KN5     SBA       8.67E-17          J 

KN1-KN5 SBA       1.39E-17          J 

 

Alpha  0.05 Standard Error for Comparison 1.230E-03 TO 

1.739E-03 

Critical Q Value 5.330 Critical Value for Comparison 4.634E-03 TO 

6.553E-03 

There are 10 groups (A, B, etc.) in which the means 

are not significantly different from one another. 
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Dual Cultures Analysis of Variance of the Enzyme Activities involving 

invasion/replacement by Coriolopsis sp. KN6 

Factorial AOV Table for LiP   

 

Source DF      SS      MS        F      P 

Replicate        2  0.0004 0.00021 

Fungi            2  4.5978 2.29890  3412.80 0.0000 

Substrate        2 14.1798 7.08991 10525.23 0.0000 

Fungi*Substrate  4  6.7218 1.68046  2494.71 0.0000 

Error           16  0.0108 0.00067 

Total 26 25.5107 

 

Grand Mean 1.8144 

CV   1.43 

 

Factorial AOV Table for MnP   

 

Source DF      SS      MS        F      P 

Replicate        2  0.0006  0.0003 

Fungi            2  0.8782  0.4391  3039.77 0.0000 

Substrate        2 20.3313 10.1656 70377.46 0.0000 

Fungi*Substrate  4  1.5097  0.3774  2612.96 0.0000 

Error           16  0.0023  0.0001 

Total 26 22.7221 

 

Grand Mean 0.7289 

CV   1.65 

 

Factorial AOV Table for Lacc   

 

Source DF        SS        MS                      F      

P 

Replicate        2 9.041E-34 4.521E-34 

Fungi            2 4.667E-04 2.333E-04  2.6197830043625744E30

 0.0000 

Substrate        2   0.09647   0.04823 5.41546572473235392E32

 0.0000 

Fungi*Substrate  4 5.333E-04 1.333E-04 1.49701885963575296E30

 0.0000 

Error           16 1.425E-33 8.907E-35 

Total 26   0.09747 

 

Grand Mean 0.0489 

 

WARNING: The model error mean square is too small to continue. 

The model may fit the data exactly. 

 

 

Tukey HSD All-Pairwise Comparisons of Enzyme Activities and Substrates involving 

invasion/replacement by Coriolopsis sp. KN6 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi 

 

Fungi     Mean Homogeneous Groups 

KN6     2.3978 A 

KN5     1.5378  B 

KN5-KN6 1.5078  B 

 

Alpha  0.05 Standard Error for Comparison 0.0122 
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Critical Q Value 3.651 Critical Value for Comparison 0.0316 

There are 2 groups (A and B) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Substrate 

 

Substrate   Mean Homogeneous Groups 

CCA       2.3522 A 

WSA       2.3011  B 

SBA       0.7900   C 

 

Alpha  0.05 Standard Error for Comparison 0.0122 

Critical Q Value 3.651 Critical Value for Comparison 0.0316 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of LiP for Fungi*Substrate 

 

Fungi   Substrate   Mean Homogeneous Groups 

KN6     WSA       2.4200 A 

KN6     CCA       2.4033 AB 

KN6     SBA       2.3700 ABC 

KN5     CCA       2.3300  BCD 

KN5-KN6 CCA       2.3233   CD 

KN5     WSA       2.2833    D 

KN5-KN6 WSA       2.2000     E 

KN5     SBA       0.0000      F 

KN5-KN6 SBA       0.0000      F 

 

Alpha  0.05 Standard Error for Comparison 0.0212 

Critical Q Value 5.035 Critical Value for Comparison 0.0754 

There are 6 groups (A, B, etc.) in which the means 

are not significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi 

 

Fungi     Mean Homogeneous Groups 

KN5-KN6 0.8811 A 

KN6     0.8300  B 

KN5     0.4756   C 

 

Alpha  0.05 Standard Error for Comparison 5.666E-03 

Critical Q Value 3.651 Critical Value for Comparison    0.0146 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Substrate 

 

Substrate   Mean Homogeneous Groups 

WSA       1.9544 A 

CCA       0.1711  B 

SBA       0.0611   C 

 

Alpha  0.05 Standard Error for Comparison 5.666E-03 

Critical Q Value 3.651 Critical Value for Comparison    0.0146 

All 3 means are significantly different from one another. 

 

Tukey HSD All-Pairwise Comparisons Test of MnP for Fungi*Substrate 

 

Fungi   Substrate   Mean Homogeneous Groups 

KN5-KN6 WSA       2.4767 A 

KN6     WSA       2.1200  B 

KN5     WSA       1.2667   C 
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KN6     CCA       0.1867    D 

KN6     SBA       0.1833    D 

KN5-KN6 CCA       0.1667    D 

KN5     CCA       0.1600    D 

KN5     SBA       0.0000     E 

KN5-KN6 SBA       0.0000     E 

 

Alpha  0.05 Standard Error for Comparison 9.813E-03 

Critical Q Value 5.035 Critical Value for Comparison    0.0349 

There are 5 groups (A, B, etc.) in which the means 

are not significantly different from one another
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