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Chapter 1

Introduction

1.1 Background

The physiology of the cardiovascular system has been elucidated only gradually, over
many centuries. Among the major actors in the lengthy process have been some of the
central characters in human history.
Aristote (384-322 B.C.), for example, identified the role of blood vessels in transferring
“ animal heat” from the heart to the periphery of the body (although he ignored blood
circulation).
In the third century B.C., Praxagoras realized that arteries and veins have different roles
(believing that arteries transported air while veins transported blood). Galen was the
first to observe the presence of blood in the arteries. Much later, in the 17th century, Sir
William Harvey inaugurated modern cardiovascular research with his De Motu Cardis
and Sanguinis Animalibus, in which he wrote, “ When I turned to vivisection I found the
task so hard I was about to think that only God could understand the heart motion”.
Harvey observed that the morphology of veins is such that they are effective only if blood
is flowing toward the heart. His conclusion: “ I began privately to consider if it (the
blood) had a movement, as it is, it would be in a circle”.

In the 18th century, the Reverend S. Hales introduced quantitative studies of blood pres-
sure (Hemostatics, 1773). Later, Euler and D. Bernoulli both made great contributions
to fluid dynamic research. Bernoulli in particular as a Professor of anatomy at the Uni-
versity of Basel in Switzerland, investigated the laws governing blood and formulated
his famous law relating pressure, density, and velocity: p + 1

2
ρ| u |2 = const (vis viva

equation, 1730).

In the 19th century, J.P. Poiseuille, medical doctor and physicist, was studying the flow
of blood in arteries when he derived the first simplified mathematical model of flow in a
cylindrical pipe, a model that still bears his name today.

T. Young later made fundamental contributions to research on elastic properties of ar-
terial tissues and on the propagation of pressure: “ The inquiry in what manner and at

1



CHAPTER 1. INTRODUCTION 2

what degree the circulation of the blood depends on the muscular and the elastic power
of the heart and the arteries, supposing the nature of these powers to be known, must
become simply a question belonging to the most renowned department of the theory of
hydraulics” (From a lesson given by Young at the Royal Society of London in 1809 ).

At the beginning of the 20th century, O. Franck introduced the idea that the circulatory
system is analogous to an electric network. In 1955, J. Womersley, studying vascular
flows, found the analytical counterpart of Poiseuille flow in pressure gradients that vary
periodically in time, a situation that more closely describes actual pressure variations
during the cardiac cycle.

In the second half of the 20th century, developments in mathematical modeling were lim-
ited to basic paradigms, such as flow in morphologically simple regions (e.g., Poiseuille or
Womersley solutions), or to models based on electric network analogies. Exact solutions
are very difficult to obtain in more general situations, because of the strong nonlinear
interactions among different parts of the system and the geometric complexities of indi-
vidual vascular morphologies.
The historical details in this section is extracted from Modeling the Cardiovascular
System-A Mathematical Adventure: Part I by Alfio Quarteroni [13].

1.2 Outline of the dissertation

The first requirement to study blood flow is to gain a general understanding of the
physiology involved. In this regard, a brief outline of the circulatory system and the
description of some cardiovascular equations are provided in chapter 2 to give the reader
a better understanding of how blood is circulated and regulated in the human body. The
similarities between the cardiovascular system and electrical circuits are also considered
at the end of this chapter.

Chapter 3 presents a theoretical model of blood flow in the large arteries. The hypothesis
of a Newtonian rheology is considered and blood flow is described by the Navier-Stokes
equations, with specific initial and boundary conditions. The well-posedness of the
Navier-Stokes problem is addressed, having provided boundary conditions which can
be considered as a generalization of the mean pressure drop problem investigated in [7].
The properties of the Stokes operator are introduced and the eigenfunctions of its inverse
operator are basis functions for the Galerkin approximations.

In chapter 4 the conclusion is presented, followed by the appendix, as well as the bibli-
ography.



Chapter 2

Cardiovascular Physiology and
Equations

Blood is a circulating tissue composed of fluid plasma and cells (red blood cells, white
blood cells, platelets). The main function of blood is to supply nutrients to the tissues
and to remove waste products. Blood also enables cells (leukocytes, abnormal tumor
cells) and different substances (lipids, hormones, amino acids) to be transported between
tissues and organs [8].

2.1 Anatomy of blood

Blood is composed of several kinds of corpuscles; these formed elements of the blood
constitute about 45% of whole blood. The other 55% is blood plasma, a yellowish
fluid that is the blood’s liquid medium. The normal pH of human arterial blood is
approximately 7.40 (normal range is 7.35-7.45). Blood that has a pH below 7.35 is
acidic, while blood pH above 7.45 is alkaline. Blood pH reading is helpful in determining
the acid-base balance of the body. Blood is about 7% of the human body weight, so the
average adult has a blood volume of about 5 liters, of which 2.7-3 liters is plasma. The
combined surface area of all the red blood cells in the human anatomy would be roughly
2,000 times as great as the body’s exterior surface. The corpuscles are:

1. Red blood cells or erythrocytes (96%). In mammals, mature red blood cells lack
a nucleus and organelles. They contain the blood’s hemoglobin and distribute
oxygen. The red blood cells (together with endothelial vessel cells and some other
cells) are also marked by proteins that define different blood types.

2. White blood cells or leukocytes (3.0%), are part of the immune system; they destroy
infectious agents.

3. Platelets or thrombocytes (1.0%) are responsible for blood clotting (coagulation).

3
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Blood plasma is essentially an aqueous solution containing 96 percent of water, 4% of
proteins, and trace amounts of other materials. Some components are albumin, blood
clotting factors, immunoglobulins (antibodies), hormones, various other proteins and
various electrolytes (mainly sodium and chlorine) [8, 15].

2.2 Cardiovascular physiology

The problem of mathematically modelling a human function is not easy. First, a good
foundation of the physiology to be modelled must be formed. In this regard, we introduce
the elementary physiology of the cardiovascular system and highlight some cardiovascular
equations. The cardiovascular system includes the heart and the blood vessels. The
heart pumps blood and the blood vessels channel and deliver it throughout the body.
Arteries carry blood filled with nutrients away from the heart to all parts of the body
and blood comes back to the heart through veins. Arteries are thick-walled tubes with
a circular covering of yellow, elastic fibers, which contain a filling of muscle that absorbs
the tremendous pressure wave of the heartbeat and slows the blood down. This pressure
can be felt in the arm and wrist: it is the pulse. Eventually, arteries divide into smaller
arterioles and then into even smaller capillaries, the smallest of all blood vessels. One
arteriole can serve hundred capillaries. Here, in every tissue of every organ, blood’s work
is done when it gives up what the cells need and take away the waste products that they
don’t need. Capillaries join to form venules, which flow into veins, and these deliver
deoxygenated blood back to the heart. Veins, unlike arteries, have thin, slack walls,
because the blood has lost the pressure which forced it out of the heart, so the dark,
reddish-blue blood which flows through the veins on its way to the lungs moves along
very slowly on its way to be reoxygenated . Back to the heart, the blood enters a special
vessel called the pulmonary arteries, from the right side. It flows along to the lungs to
collect oxygen, then to the pulmonary veins and back to the heart’s left side to begin its
journey around the body again.

The flow of blood through the cardiovascular system follows physical laws known from
fluid mechanics (e.g., the law of conservation of matter states that mass or energy can
neither be created nor destroyed). The total blood volume is approximately 5 liters in a
healthy adult. The right atrium receives venous blood from the caval veins, and the left
atrium receives oxygenated blood from the pulmonary veins. On average, atrial systole
contributes only about 15% of the total ventricular filling. The total blood volume (5
liters) is distributed with 60-75% in veins and venules, 20% in arteries and arterioles,
and only 5 percent in capillaries at rest. Of the total blood volume only 12 percent is
found in the pulmonary low-pressure system [10].
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2.3 Cardiovascular equations

2.3.1 A geometrical relation

The relationship between linear mean velocity v and the blood flow in one unit of time
(the flux Q), is determined by the cross sectional area A:

Q = vA. (2.1)

2.3.2 Poiseuille’s law

The volume rate or the flux ∆V is equal to the driving pressure ∆P divided by the
resistance:

∆V =
∆P

resistance
.

In the left ventricle, the blood flow is described by the cardiac output Q (i.e. flux, blood
flow per unit of time), so that the equation reads:

Q =
∆P

R
, (2.2)

where R is the total peripheral vascular resistance. R is directly related to the blood
viscosity µ and to the length L of the vascular system, and inversely related to its radius
to the 4th power:

R =
8µL

πr4
[9]. (2.3)

Doubling the length of the system only doubles the resistance, where halving the radius
increases the resistance sixteen-fold.

2.3.3 Vascular resistance in parallel organs

In the systemic or peripheral circulation the resistance of the organs are mainly placed
in parallel, and the resistance of all organs R1 to Rn are related to the total resistance
R by the following relation:

1

R
=

1

R1

+
1

R2

+ ... +
1

Rn

[15]. (2.4)
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2.3.4 Vascular resistance in portal circulations

There are only a few serially connected elements (portal circulation): Spleen/liver,
gut/liver, pancreas/liver and hypothalamus/pituitary. For serial arranged organs, the
total resistance is given by the formula:

Rtotal = R1 + R2 + ... + Rn [15]. (2.5)

2.4 Electrical analogy

The cardiovascular system presents many similarities with electric circuits. In fact, for
every closed fluid system, there is an electrical circuit whose behavior is identical (up
to conversion factors). The heart develops a pressure difference which moves the blood
through the system. Similarly, a battery (or other power supply) develops a potential
difference which moves electrons around the circuit (to a position of least energy). Thus
a fluid pressure drop (energy per unit volume) corresponds to a potential difference, or
“voltage drop” (energy per unit charge). Likewise, the flow rate of a fluid is analogous
to the current in a circuit, which is the rate of movement of charge.

Poiseuille’s law corresponds to Ohm’s law for electric circuits. If we solve Poiseuille’s
law for the pressure drop, and replace pressure drop by voltage and flow rate by current,
we have that

V = I (
8µl

πr4
).

where V is the voltage, I is the current, µ the viscosity, l is the length of the blood vessel
and r its radius. The quantity in parentheses has the characteristics of a resistance: for a
given voltage drop, a larger value of l results in less flow, while a larger value of r results
in greater flow. In fact, the electrical analog of this fluid quantity is the resistance

R =
ρL

A
,

where ρ is the resistivity, L is the length of the conductor, and A is its radius. The fluid
analog of the resistivity is essentially the ratio of viscosity to cross sectional area.

Ohm’s law is in a sense more useful than Poiseuille’s law, for it is not restricted to long
straight wires with constant current. This is essentially due to the order of magnitude
of the size of the charge carriers. The speed of the charge carriers is much less than the
speed of energy movement, just as the flow rate was much smaller than the speed with
which pressure changes are propagated in a fluid. In the cardiovascular system, pressure
changes propagated with the speed of sound (about 1500 m/s) while the blood move at
less than 1 m/s.

Fluid conservation principles are also applicable to electric circuits. In the cardiovascular
case, the pressure drop from the ventricle to the atrium is equal to the pressure at the
ventricle; in the electric case, the voltage drop around any closed loop is equal to the
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voltage of the source (battery or power supply) in that loop (or zero if there is no source
in that loop). This is essentially the conservation of energy. In the cardiovascular case,
the flow into a branch is equal to the sum of the flows out; in the electrical case, the same
is true for currents at a junction of conductors: conservation of charge. In the electrical
parlance, these principles are known as Kirchoff’s laws. These laws lead to the following
rules for treating voltages and currents in series and parallel configurations:

1. The voltage drop across two components in series is equal to the sum of the voltage
drops across each component. We think of the pressure drops in the arteries and
in the arterioles.

2. The currents flowing through two components in series are equal. If an arteriole
and a venule were joined by a single capillary, the fluid flow through them all would
be the same.

3. The voltage drops across two components in parallel are equal. This corresponds
to a branching of an artery into different arterioles.

4. The current flowing through two components in parallel is equal to the sum of
the currents flowing through each component. This implies that the resistances
through alternate paths determine how much current flows through each of them:
electricity tends to the path of least resistance ([9]).



Chapter 3

Blood Flow in Large Arteries

3.1 Introduction

This chapter provides a model for blood flow in the large arteries and addresses the
analysis of the Navier-Stokes problem, having provided boundary conditions which can
be considered as a generalization of the mean pressure drop problem investigated in
[7], as they arise in bioengineering applications. Our purpose is to consider both the
stationary case and the nonstationary case. In this regard, we will prove the existence
of a weak solution for the stationary case based on Brouwer’s fixed point theorem and
afterward, we will establish a well-posedness analysis for the nonstationary case based on
a suitable energy estimate that we are going to derive as well as a well-known compactness
argument.

3.1.1 Mechanical properties of blood

Blood is a very complex fluid in its nature. It consists of plasma with red blood cells
(erythrocytes), white blood cells (leucocytes), and platelets (thrombocytes) in suspen-
sion. Blood plasma is essentially an aqueous solution containing 96 percent of water,
4% of proteins, and trace amounts of other materials. Erythrocytes make up more than
99% of all blood cells and approximately 40 to 45% of the blood (cells plus plasma); this
percentage is called the hematocrit. Blood cells are deformable, with the erythrocytes
being the most deformable. Significant deformations occur when the cells are passing
through capillaries. However, the cell membranes do not rupture because each cell has
a cytoskeleton that supports its shape.
Therefore, the mechanical properties of blood should be studied by analyzing a liquid
containing a suspension of flexible particles. A liquid is said to be Newtonian if the
coefficient of viscosity is constant at all rates of shear. This condition exists in most
homogeneous liquids, including blood plasma (which, since it consists mostly of water,
is Newtonian). But the mechanical behavior of a liquid containing a suspension of par-
ticles can vary such that the liquid becomes non-Newtonian. These deviations become

8
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particularly significant when the particle size becomes appreciably large in comparison
to the dimension of the channel in which the fluid is flowing. This situation happens in
the microcirculation (small arterioles and capillaries).
Consider a suspension in which the suspending fluid has a Newtonian behavior. If the
suspended particles are spherical and have the same density as the suspending fluid,
then for any motion the shear stress will be proportional to the rate of shear and the
suspension will behave as a Newtonian fluid. This rule applies as long as the concen-
tration of spheres is low, less than 30%. This rule was arrived at through experiments
performed under steady state conditions with suspensions of rigid spheres. These exper-
iments showed that the viscosity of the suspensions, was independent of the shear rate
for volume concentrations of suspended spheres up to 30%. However, if the suspended
particles are not spherical or are deformable in any way, then the shear stress is not
proportional to the shear rate unless the concentration is much less than 30%.
The cells suspended in blood are not rigid spheres, and the volume fraction of erythro-
cytes is about 40 to 45%. Therefore, one should expect that the behavior of blood is
non-Newtonian. But it has been shown that human blood is Newtonian at all rates of
shear for hematocrits up to about 12% [11]. In general blood has a higher viscosity
than plasma, and as the hematocrit rises, the viscosity of the suspension increases and
non-Newtonian behavior is observed, being detectable first at very low rates of shear.
Studies with human blood show that viscosity is independent of shear rate when the
shear rate is high. With a reduction of shear rate the viscosity increases slowly until a
shear rate less than 1s−1, where it rises extremely steeply [2]. The shear stresses can be
divided into two groups according to the effect of the shear rate:

1. At low shear rates, the viscosity increases markedly. The reason for this increase is
that at low shear rates a tangled network of aggregated cell structures (Rouleaux)
can be formed [11]. If blood is subjected to shear stress less than a critical value,
these aggregated structures form. As a result, they exhibit a yield stress. This
behavior is, however, only present if the hematocrit is high. If the hematocrit
falls below a critical value, there are not enough cells to produce the aggregated
structures and no yield stresses will be found.

2. At high shear rates, the viscosity in small vessels is lower than it is in larger vessels.
The progressive diminution with the size of the vessels is detectable in vessels with
an internal diameter less than 1 mm. It is even more pronounced in vessels with a
diameter of 0.1 mm to 0.2 mm. The decreased viscosity with vessel size is known
as the Fȧhraeus and Lindqvist effect. Experiments were performed at high enough
shear rates for the erythrocytes not to aggregate. It was found that the viscosity
was approximately constant in vessels larger than 1 mm, but when the radius
dropped below that, there was a substantial decrease in viscosity.

In the larger vessels it is reasonable to assume blood has a constant viscosity, because
the vessel diameters are large compared with the individual cell diameters and because
shear rates are high enough for viscosity to be independent of them. Hence in these
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vessels the non-Newtonian behavior becomes insignificant and blood can be considered
to be a Newtonian fluid.
In the microcirculation, it is no longer possible to think of the blood as a homogeneous
fluid; it is essential to treat it as a suspension of red cells in plasma. The reason for this
is that even the largest vessels of the microcirculation are only approximately 15 red cell
widths in diameter.
In summary, we can conclude that blood is generally a non-Newtonian fluid, but it is
reasonable to regard it as a Newtonian fluid when modelling arteries with diameters
larger than 1 mm. For very small vessels it is not easy to reach conclusions as to the
Newtonian nature of blood because some effects tend to decrease the viscosity and others
to increase it. The latter influence on viscosity is due to a small flow, which increases the
viscosity significantly, as well as to the fact that cells often become stuck at constrictions
in small vessels (see [2, 11, 12]).

3.1.2 Basic notations

In this subsection, we summarize some notations that will occur throughout the disser-
tation. Vectors and tensors are denoted by bold-face letters.
x = (x1, x2, x3) : location of fluid particle.
u: velocity field of the flow.
p : pressure.
∇p : the pressure gradient
I: identity tensor.
T: symmetric Cauchy stress tensor.
µ: dynamic viscosity.
ρ: fluid mass density.
R : the set of real numbers.
| · | : the absolute value of R and correspondingly, the norm of R3.
Ω denotes a bounded domain in R3.
Γ : denotes the boundary of Ω.
∇u: the gradient of u.
∇·u: the divergence of u.
∆u: the Laplacian of u.

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3).

∇ · u =
3∑

i=1

∂ui

∂xi

.

(u · ∇)v ·w =
3∑

i,j=1

ui
∂vj

∂xi

wj.

u · v =
3∑

i=1

uivi.
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∇u : ∇v =
3∑

i,j=1

(
∂ui

∂xj

)(
∂vi

∂xj

).

∇p = (
∂p

∂x1

,
∂p

∂x2

,
∂p

∂x3

).

∆u = (
3∑

j=1

∂2u1

∂x2
j

,

3∑
j=1

∂2u2

∂x2
j

,

3∑
j=1

∂2u3

∂x2
j

).

(∇v)u = (u · ∇)v = (
3∑

j=1

uj
∂v1

∂xj

,

3∑
j=1

uj
∂v2

∂xj

,

3∑
j=1

uj
∂v3

∂xj

).

The spaces C(Ω), Ck(Ω), Ck
0 (Ω), C∞

0 (Ω) and their vector-valued analogues C(Ω), Ck(Ω),
Ck

0(Ω), C∞
0 (Ω) are defined as usual, the superscript indicating continuous derivatives to

a certain order and the subscript zero indicating functions with compact support.

C(Ω) = {u : Ω → R | u is continuous}.
C(Ω) = {u∈C(Ω) | u is uniformly continuous on bounded subsets of Ω}.

Ck(Ω) = {u : Ω → R | u is k-times continuously differentiable}.

Ck(Ω) = {u∈Ck(Ω) | Dαu is uniformly continuous on bounded

subsets of Ω, for all multiindex |α| ≤ k}.
C∞(Ω) = {u : Ω → R | u is infinitely differentiable}.

C0(Ω), Ck
0 (Ω) and C∞

0 (Ω) denote these functions in C(Ω), Ck(Ω) and C∞(Ω) respectively
with compact support.

The Hölder space Ck,γ(Ω) consists of those functions u that are k-times continuously
differentiable and whose kth-partial derivatives are bounded and Hölder continuous with
exponent γ. The corresponding vector space (Ck,γ(Ω))3 will be denoted by Ck,γ(Ω).

We denote by LP (Ω) (1 ≤ p < ∞) the space of real functions which are Lebesgue
measurable, with ∫

Ω

|u|p dx < ∞.

It is endowed with the norm denoted by ‖u‖LP (Ω);

‖u‖LP (Ω) = (

∫

Ω

|u|p dx)
1
p .

L2(Ω) is a Hilbert space. We denote by (·, ·) and ‖ · ‖ the associated inner product and
norm in L2(Ω) respectively,

(u, v) =

∫

Ω

uv dx and ‖u‖2 =

∫

Ω

u2 dx .
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The corresponding vector space (Lp(Ω))3 will be denoted by Lp(Ω). We still denote by
(·, ·) and ‖ · ‖ the inner product and norm in L2(Ω) respectively.

Sobolev spaces W k
p (Ω) (1 ≤ p < ∞) consists of all locally summable functions u : Ω →

R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak sense and belong
to Lp(Ω). It is endowed with the norm denoted by ‖ · ‖W k

p (Ω);

‖u‖W k
p (Ω) = (

∑

|α|≤k

∫

Ω

|Dαu|pdx)
1
p ,

where D0u = u. The corresponding vector space (W k
p (Ω))3 will be denoted by Wk

p(Ω).
If p = 2, we write

Hk(Ω) = W k
2 (Ω), and ‖ · ‖k = ‖ · ‖W k

2 (Ω)(k = 0, 1, ...).

Hk(Ω) is a Hilbert space. the associated inner product (·, ·)k is defined by

(u, v)k =
∑

|α|≤k

∫

Ω

Dαu : Dαv dx.

Correspondingly, we set Hk(Ω)=(Hk(Ω))
3

and we still denote its norm by ‖ · ‖k and its
inner product by (·, ·)k.

We denote by Hk
0(Ω) the completion of C∞

0 (Ω) in Hk(Ω).

For functions depending on space and time, for a given space V of space dependent
functions, we define (for some T > 0)

L2(0, T ;V) = {v : (0, T ) → V | v is measurable and

∫ T

0

‖v(t)‖2
V dt < ∞}

with norm ‖v‖L2(0,T ;V )=(
∫ T

0
‖v(t)‖2

V dt)1/2 and

L∞(0, T ;V) = {v : (0, T ) → V | ess sup
t∈(0,T )

‖v(t)‖V < ∞}

with norm ‖v‖L∞(0,T ;V ) = ess supt∈(0,T ) ‖v(t)‖V .

Let Γ0 be an open nonempty subset of Γ. We denote by H1/2(Γ0) the space of functions
defined on Γ0 which are traces of functions in H1(Ω).
We recall that the trace operator Tr : H1(Ω) → H1/2(Γ) is surjective and continuous.

When considering functions which depend only on time, we define the space

L∞(0, T ) = {z : (0, T ) → R3 | ess sup
t∈(0,T )

|z(t)| < ∞}

endowed with the norm ‖z‖L∞(0,T ) = ess supt∈(0,T ) |z(t)|.
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Let Y be a real Banach space, with norm ‖ · ‖Y. The space

Lp(0, T ; Y)

consists of all strongly measurable functions u : [0, T ] → Y with

‖u‖Lp(0,T ;Y) :=

(∫ T

0

‖u(t)‖p
Ydt

) 1
p

< ∞

for 1 ≤ p < ∞.

We recall that a function u : [0, T ] → Y is strongly measurable if there exist simple
functions sk : [0, T ] → Y such that

sk(t) → u(t) for a.e. 0 ≤ t ≤ T, see [1].

The space
C(0, T ; Y)

comprises all continuous functions u : [0, T ] → Y with

‖u‖C(0,T ;Y) := max
0≤t≤T

‖u(t)‖Y < ∞.

The Sobolev space
W1

p(0, T ; Y)

consists of all functions u ∈ Lp(0, T ; Y) such that u′ exists in the weak sense and belongs
to Lp(0, T ; Y). We write H1(0, T ; Y) := W1

2(0, T ; Y).
Furtermore,

‖u‖W1
p(0,T ;Y) :=

(∫ T

0

‖u(t)‖p
Y + ‖u′(t)‖p

Ydt

) 1
p

.

3.1.3 Preliminaries

In this subsection, we recall some assumptions used in [7, 14], and we are going to make
use of them throughout our analysis. In what follows, Ω is a bounded domain of R3 with
a boundary Γ sufficiently smooth. Γ consists of the artery wall denoted by Γwall and
some artificial sections (see Fig 3.1). The velocity is required to be zero on the artery
wall. To account for homogeneous Dirichlet boundary conditions on the artery wall, we
define

X ≡ {ϕ∈H1(Ω) : ϕ|Γwall
= 0}.

Poincaré’s inequality
‖ϕ‖ ≤ CΩ‖∇ϕ‖ (3.1)

holds for ϕ∈X ([4, 7, 14]). The artificial sections consist of the upstream section on
the side of the heart and the downstream sections on the side of the peripheral vessels.
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Rather than giving serious thought to the artificial sections boundary conditions, in
seeking a variational formulation, the test space is left free on these portions of the
boundary. In this regard, we introduce

V ≡ {ϕ∈H1(Ω) : ϕ|Γwall
= 0,∇ ·ϕ = 0} (3.2)

as the test space. To prove an existence theorem for a Navier-Stokes problem, either
steady or non-steady, it is convenient to construct the solution as a limit of Galerkin ap-
proximations in terms of the eigenfunctions of the corresponding steady Stokes problem.
This use of the Stokes eigenfunctions originated with Prodi and was further developed
by Heywood [6]. To define the corresponding Stokes operator, we introduce V? as the
completion of V with respect to the norm of L2(Ω). Then for every f ∈ V?, there exists
exactly one v ∈ V satisfying

(∇v,∇ϕ) = (f,ϕ) ∀ϕ ∈ V. (3.3)

Moreover, for each v ∈ V, there exist at most one f ∈ V?, such that (3.3) holds. In this
way, a one-to-one correspondence can be defined between elements f of V? and functions
v belonging to a suitable subspace of V that we denote by D(∆̃). The Stokes operator

∆̃ : D(∆̃) → V? (3.4)

is defined setting
− ∆̃v = f (3.5)

so that (3.3) is satisfied.

The inverse operator ∆̃−1 is completely continuous and self-adjoint. Therefore it pos-
sesses a sequence of eigenfunctions {ak}∞k=1, which are complete and orthogonal in both
V and V?.

In what follows, ci(i = 1, 2, ..) will denote generic constants, not necessarily the same at
different places. The inequalities

sup
Ω
|v| ≤ c1‖∇v‖ 1

2‖∆̃v‖ 1
2 (3.6)

‖∇v‖ ≤ c2‖∆̃v‖ (3.7)

are satisfied for every v ∈ D(∆̃), provided that Ω is a bounded domain (see [14] page
178).

3.2 Problem formulation

PROBLEM 3.1
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Γ1

Γ3

Γ2

Γwall

Ω

Figure 3.1: Artery portion.

Let Ω ⊂ R3 be the artery portion where we aim at providing a detailed flow analy-
sis. For each x ∈ Ω, and any time t > 0, we denote by u(x, t) and p(x, t) the blood
velocity and pressure respectively. The blood density ρ and the blood viscosity µ are all
assumed to be constant. Under these previous assumptions, blood flow can be described
by the Navier-Stokes equations

{
ρ
∂u

∂t
+ ρ(u · ∇)u +∇ ·T = 0

∇ · u = 0
x ∈ Ω, t > 0 (3.8)

where T is the Cauchy stress tensor, which in the case of a Newtonian fluid reads

T = pI− µ(∇u + (∇u)T )

where I denotes the identity tensor. The equations are expressions of balance of lin-
ear momentum and incompressibility. We are neglecting the presence of any external
forces. Then (3.9) is obtained by substitution of the divergence-free constraint into the
expression for the stress in (3.8)1.

{
ρ
∂u

∂t
+ ρ(u · ∇)u− µ∆u +∇p = 0

∇ · u = 0
x ∈ Ω, t > 0 (3.9)
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In fact

∇ ·T = ∇ · (pI− µ(∇u + (∇u)T ))

= ∇ · (pI)− µ∇ · (∇u + (∇u)T )

= ∇p− µ∇ · (∇u + (∇u)T )

= ∇p− µ(∆u +∇(∇ · u))

= ∇p− µ∆u provided that ∇ · u = 0

For the sake of simplicity, we normalize ρ to 1.

3.2.1 Initial and Boundary conditions

The initial condition requires the specification of the flow velocity at the initial time,
e.g., t0 = 0

u(x, 0) = u0(x) x ∈ Ω, (3.10)

where the given initial velocity field u0 is divergence free. The system (3.9) has to be
provided with boundary conditions. In this respect, we split Γ into different parts (Figure
3.1). In the present work, we are assuming that the wall is rigid so that no-slip boundary
condition

u(x, t) = 0, x ∈ Γwall, t > 0, (3.11)

holds. The other parts of Γ are the artificial boundaries which bound the computational
domain. For the sake of clarity, we distinguish the upstream section on the side of
the heart denoted by Γ1 and the downstream sections on the side of the peripheral
vessels denoted by Γ2 and Γ3. The boundary conditions associated with the variational
formulation of the mean pressure drop problem investigated in [7] reads as

pn− µ(∇u)n = Pin for t > 0, x∈Γi (i = 1, 2, 3), (3.12)

where Pi = Pi(t) = 1
|Γi|

∫
Γi

p ds is the prescribed mean pressure on each artificial section

Γi (i = 1, 2, 3) with |Γi| =
∫
Γi

ds, and n represents the outward normal unit vector
on every part of the vessel boundary. As it has been introduced in [14], the following
boundary conditions are provided:

pn− µ(∇u)n−Ki(u · n)n = Pin for t > 0, x∈Γi (i = 1, 2, 3), (3.13)

where Ki is a suitable nonnegative constant, Pi = Pi(t) is the prescribed mean pressure on
each artificial section Γi and n represents the outward normal unit vector on every part of
the vessel boundary. These conditions can be considered as a generalization of the mean
pressure drop problem investigated in [7] in the sense that when Ki = 0 (i = 1, 2, 3),
we recover the usual Neumann or natural conditions associated with (3.9). The physical
justification for the case in which Ki 6= 0 is provided in [14], (see e.g., [14] Fig 4.1).
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We define the following bilinear and trilinear forms:

a : H1(Ω)×H1(Ω) → R such that

a(v(1),v(2)) = µ(∇v(1),∇v(2)) +
3∑

i=1

Ki

∫

Γi

(v(1) · n)n · v(2) ds, (3.14)

b : H1(Ω)×H1(Ω)×H1(Ω) → R such that

b(v(1),v(2),v(3)) = ((v(1) · ∇)v(2),v(3)), (3.15)

we set

c(t,v) = −
3∑

i=1

Pi(t)

∫

Γi

n · v ds for each v ∈ H1(Ω). (3.16)

Furthermore, if we define

P̃ = sup
t≥0

3∑
i=1

|Pi|, K = max
1≤i≤3

Ki, (3.17)

and consider the sequence {ak}∞k=1 of eigenfunctions of ∆̃−1, the following estimates hold
for every v ∈ span{ak, k = 1, 2, ...}

∣∣∣∣∣
3∑

i=1

Pi

∫

Γi

∆̃v · nds

∣∣∣∣∣ ≤ c3P̃‖∆̃v‖ (3.18)

where c3 depends on the trace inequality (A.13) and

∣∣∣∣∣
3∑

i=1

Ki

∫

Γi

(v · n)n · ∆̃vds

∣∣∣∣∣ ≤ c4K‖∇v‖‖∆̃v‖. (3.19)

where c4 depends on the trace inequality (A.13) and the Poincaré’s inequality (3.1).
The former is a consequence of the trace inequality for solenoidal functions (A.13) and
the proof of (3.19) is given in [14].

3.3 The stationary problem

3.3.1 Summary of the boundary value problem

Our purpose is to establish the existence of a weak solution of the following problem:

{
(u · ∇)u− µ∆u +∇p = 0
∇ · u = 0

x ∈ Ω. (3.20)
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On the artery wall Γwall, the no-slip boundary condition

u(x) = 0, x ∈ Γwall (3.21)

holds. On each artificial boundary Γi (i = 1, 2, 3), the boundary condition

pn− µ(∇u)n−Ki(u · n)n = Pin for x∈Γi (3.22)

is prescribed, where Pi, Ki are suitable nonnegative constants and n represents the
outward normal unit vector on every part of the vessel boundary.

3.3.2 Weak formulation

Assume that u is a solution of the boundary value problem described above and ϕ
is a smooth solenoidal vector-valued function defined on Ω. u satisfies the following
identities:

{
((u · ∇)u− µ∆u +∇p, ϕ) = 0, x∈Ω
(pn− µ(∇u)n−Ki(u · n)n, ϕ) = (Pin, ϕ), x∈Γi i = 1, 2, 3.

(3.23)

This system reads as:

{
((u · ∇)u, ϕ)− µ(∆u,ϕ) + (∇p, ϕ) = 0, x∈Ω
(pn− µ(∇u)n−Ki(u · n)n, ϕ) = (Pin, ϕ), x∈Γi i = 1, 2, 3.

(3.24)

We notice that ϕ|Γwall
= 0 since ϕ∈V.

Now

(∇p, ϕ) =

∫

Ω

∑3

i=1
ϕi

∂p

∂xi

dx

= −
∫

Ω

p
∑3

i=1

∂ϕi

∂xi

dx +

∫

Γ

p
∑3

i=1
ϕinids

= −
∫

Ω

p(∇ ·ϕ)dx +

∫

Γ

p(ϕ · n)ds

=

∫

Γ

(pn) ·ϕds since ∇·ϕ = 0

=
∑3

i=1

∫

Γi

(Pin + µ(∇u)n + Ki(u · n)n) ·ϕds from (3.22)

=
∑3

i=1

∫

Γi

(Pin) ·ϕds + µ
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds

+
∑3

i=1

∫

Γi

Ki((u · n)n) ·ϕds,
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and

(∆u,ϕ) =

∫

Ω

3∑
i=1

ϕi

3∑
j=1

∂2ui

∂x2
j

dx

= −
∫

Ω

3∑
i,j=1

∂ϕi

∂xj

∂ui

∂xj

dx +

∫

Γ

3∑
i=1

ϕi

3∑
j=1

∂ui

∂xj

njds

= −
∫

Ω

(∇ϕ) · (∇u)dx +

∫

Γ

3∑
i=1

ϕi(n · ∇ui)ds

= −
∫

Ω

(∇ϕ) · (∇u)dx +

∫

Γ

(n · ∇)u ·ϕ ds

= −(∇ϕ,∇u) +
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds.

Then we have
((u · ∇)u, ϕ)− (µ∆u,ϕ) + (∇p,ϕ)

= ((u · ∇)u,ϕ)− µ(−(∇ϕ,∇u) +
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds) +
∑3

i=1

∫

Γi

(Pin) ·ϕds

+µ
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds +
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds

= ((u · ∇)u,ϕ) + µ(∇ϕ,∇u) +
∑3

i=1

∫

Γi

(Pin) ·ϕds +
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds

= ((u · ∇)u,ϕ) + µ(∇ϕ,∇u) +
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds +
∑3

i=1
Pi

∫

Γi

n ·ϕds.

It follows that

((u ·∇)u,ϕ)+µ(∇u,∇ϕ) = −
∑3

i=1

∫

Γi

Ki(u ·n)n ·ϕds−
∑3

i=1
Pi

∫

Γi

n ·ϕds, (3.25)

since
((u · ∇)u,ϕ)− µ(∆u,ϕ) + (∇p, ϕ) = 0

from (3.24)1.
We notice that (3.25) does not depend on the pressure p. Therefore the weak formulation
of the problem reads as follow:

Given a divergence free velocity field u0 ∈V, nonnegative constants Pi, Ki, (i = 1, 2, 3),
find u ∈ V such that

((u · ∇)u,ϕ) + µ(∇u,∇ϕ) = −
∑3

i=1

∫

Γi

Ki(u ·n)n ·ϕds−
∑3

i=1
Pi

∫

Γi

n ·ϕds (3.26)

holds for all ϕ ∈ V, where

V = {ϕ∈H1(Ω) : ϕ|Γwall
= 0,∇ ·ϕ = 0}

is the space of test functions.
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3.3.3 Galerkin approximations

The inverse operator ∆̃−1 of the Stokes operator ∆̃ is self-adjoint and possesses a sequence
of eigenfunctions {ak} which are orthogonal in V. Fix a positive integer n. Galerkin
approximations

un =
n∑

k=1

dk
nak (3.27)

are defined as solutions of the finite system of equations (k=1,...,n):

((un · ∇)un, ak) + µ(∇un,∇ak) = −
∑3

i=1

∫

Γi

Ki(un · n)n · akds−
∑3

i=1
Pi

∫

Γi

n · akds.

(3.28)
This is a system of linear equations for constant unknowns dk

n(k = 1, ..., n). The identity
(3.29) for un is obtained by multiplying (3.28) through by dk

n and summing over k =
1...., n:

((un · ∇)un,un) + µ(∇un,∇un) = −
∑3

i=1

∫

Γi

Ki(un ·n)n ·unds−
∑3

i=1
Pi

∫

Γi

n ·unds.

(3.29)
This implies that

µ‖∇un‖2 =

∣∣∣∣−((un · ∇)un,un)−
∑3

i=1

∫

Γi

Ki(un · n)n · unds−
∑3

i=1
Pi

∫

Γi

n · unds

∣∣∣∣

≤ |((un · ∇)un,un)|+
∣∣∣∣
∑3

i=1

∫

Γi

Ki(un · n)n · unds

∣∣∣∣

+

∣∣∣∣
∑3

i=1
Pi

∫

Γi

n · unds

∣∣∣∣ .

Thus

µ‖∇un‖2≤ |((un · ∇)un,un)|+
∣∣∣∣
∑3

i=1

∫

Γi

Ki(un · n)n · unds

∣∣∣∣ +

∣∣∣∣
∑3

i=1
Pi

∫

Γi

n · unds

∣∣∣∣ .

(3.30)
Together with (3.1), we make use of (3.18) to obtain that∣∣∣∣∣

3∑
i=1

Pi(t)

∫

Γi

n · (un)ds

∣∣∣∣∣ ≤ c3P̃‖un‖

≤ c3CΩP̃‖∇un‖
≤ c5P̃‖∇un‖.

Likewise, from (3.19), we have that∣∣∣∣∣
3∑

i=1

Ki

∫

Γi

(un · n)n · unds

∣∣∣∣∣ ≤ c4K‖∇un‖‖un‖

≤ c4CΩK‖∇un‖‖∇un‖
≤ c6K‖∇un‖2.
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Furthermore, making use of Hölder’s inequality (A.8), one obtains that

((un · ∇)un,un) ≤ ‖un‖L6 ‖∇un‖ ‖un‖L3

≤ c7 ‖∇un‖3,

where c7 depends on Rellich-Kondrachov compactness inequality (A.3), Sobolev’s in-
equality (A.15) and Poincaré’s inequality (3.1) (see [7] page 348). We make use of these
inequalities in (3.30) and we obtain that

µ‖∇un‖2≤ c7 ‖∇un‖3 + c5P̃‖∇un‖+ c6K‖∇un‖2.

Set ξ := µ− c6K. It follows that

ξ‖∇un‖≤ c7 ‖∇un‖2 + c5P̃ , (3.31)

where P̃ =
∑3

i=1 |Pi|, K = max1≤i≤3 Ki.

Theorem 3.1 (Construction of Approximate Solutions.)
Assume

K ≤ µ

c6

, and P̃ ≤ ξ2

4c5c7

.

For each integer n = 1, 2, ..., there exists a function un of the form (3.27) satisfying
(3.28) and such that

‖∇un‖≤ ξ

2c7


1−

√
(1− 4c5c7P̃

ξ2
)


 . (3.32)

Proof.
Owing to Poincaré’s inequality (3.1), ‖∇ϕ‖ is a norm equivalent to ‖ϕ‖1 for all ϕ∈V,
therefore (3.32) defines a closed ball in span {a1, ..., an}. To prove the solvability of the
finite-dimensional problem (3.28), we follow Fujita [3] in using Brouwer’s fixed point
theorem (see Appendix, theorem A.1), applying it to the continuous mapping v → w
defined by the linear problem (k=1,...,n):

((v·∇)w, ak)+µ(∇w,∇ak) = −
∑3

i=1

∫

Γi

Ki(w·n)n·akds−
∑3

i=1
Pi

∫

Γi

n·akds. (3.33)

(3.33) is a system of n linear equations. These linear equations are uniquely solvable
if v lies in the ball defined by (3.32), because then w = 0 is the only solution of the
corresponding homogeneous equation (Ki = Pi = 0, 1 ≤ i ≤ 3). In fact, if v satisfies
(3.32) and w satisfies (3.33) with Ki = Pi = 0, we have that

ξ‖∇w‖2 ≤ c7‖∇v‖‖∇w‖2

≤ c7
ξ

2c7


1−

√
(1− 4c5c7P̃

ξ2
)


 ‖∇w‖2

≤ ξ

2
‖∇w‖2.
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Together with Poincaré’s inequality (3.1), this imply that w = 0. To see that the
mapping v → w takes the ball defined by (3.32) into itself, suppose that v satisfies
(3.32). Then, similarly to (3.31), we obtain that

ξ‖∇w‖≤ c7 ‖∇v‖‖∇w‖+ c5P̃ ,

and therefore

‖∇w‖ ≤ c5P̃

ξ − c7‖∇v‖

≤ c5P̃

ξ − ξ
2

[
1−

√
(1− 4c5c7 eP

ξ2 )

]

≤ c5P̃

ξ
2

+ ξ
2

√
(1− 4c5c7 eP

ξ2 )

=
c5P̃

ξ
2

+ ξ
2

√
(1− 4c5c7 eP

ξ2 )

ξ
2
− ξ

2

√
(1− 4c5c7 eP

ξ2 )

ξ
2
− ξ

2

√
(1− 4c5c7 eP

ξ2 )

=
ξ

2c7


1−

√
(1− 4c5c7P̃

ξ2
)


 .

Thus, (3.33) defines a continuous mapping v → w of the closed ball


ϕ∈ span {a1, ..., an} : ‖∇ϕ‖≤ ξ

2c7


1−

√
(1− 4c5c7P̃

ξ2
)






 .

into itself. The map has at least one fixed point, and any such fixed point is a solution
of (3.28). un is chosen to be any one of these fixed points. Hence Brouwer’s fixed point
has been applied and has given the existence of Galerkin approximations

un =
n∑

k=1

dk
nak

satisfying

‖∇un‖≤ ξ

2c7


1−

√
(1− 4c5c7P̃

ξ2
)


 .

3.3.4 Existence of a weak solution

Lemma 3.1 (Weak compactness.)
Let X be a reflexive Banach space and suppose that the sequence {uk}∞k=1⊂X is bounded.
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Then there exists a subsequence {ukj}∞j=1⊂{uk}∞k=0 and u∈X such that

ukj ⇀ u.

In other words, bounded sequences in a reflexive Banach space are weakly precompact.
In particular, a bounded sequence in a Hilbert space contains a weakly convergent sub-
sequence.

Proof. see [1]. ♦

Together with Poincaré’s inequality (3.1), the fact that the sequence {‖∇un‖}∞n=1 is
bounded imply that the sequence {un}∞n=1 is bounded in V. Therefore we make use of
lemma 3.1 to find that there exists a subsequence {unq}∞q=1 ⊂ {un}∞n=1, such that

unq ⇀ u weakly in V. (3.34)

Then we show that the weak limit u is in fact a weak solution. In this respect, we are
going to show that

((u · ∇)u,ϕ) + µ(∇u,∇ϕ) = −
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds−
∑3

i=1
Pi

∫

Γi

n ·ϕds

for each ϕ ∈ V.

Fix an integer k, (k = 1, 2, ...). From (3.28), we have the identity

((un · ∇)un, ak) + µ(∇un,∇ak) = −
∑3

i=1

∫

Γi

Ki(un · n)n · akds−
∑3

i=1
Pi

∫

Γi

n · akds.

(3.35)
We recall (3.34), to find upon passing to weak limits that

((u·∇)u, ak)+µ(∇u,∇ak) = −
∑3

i=1

∫

Γi

Ki(u·n)n·akds−
∑3

i=1
Pi

∫

Γi

n·akds. (3.36)

Since {ak}∞k=1 is a basis of V, it follows that

((u · ∇)u,ϕ) + µ(∇u,∇ϕ) = −
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds−
∑3

i=1
Pi

∫

Γi

n ·ϕds

for each ϕ ∈ V.

Remark 3.1 (Weak limit.)
In taking this limit, there is no difficulty with the nonlinear term; In fact, we have that

(unq ·∇)unq − (u·∇)u = (unq ·∇)unq + (unq ·∇)u− (unq ·∇)u− (u·∇)u

= (unq ·∇)(unq − u) + ((unq − u)·∇)u.
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Also ak ∈H2(Ω), as an eigenfunction of the inverse of the stokes operator ∆̃ and H2(Ω)⊂C(Ω)
(A.16). This implies that ak ∈C(Ω). It follows that

(
(unq ·∇)unq − (u·∇)u , ak

)

=
(
(unq ·∇)(unq − u) , ak

)
+

(
((unq − u)·∇)u , ak

) → 0 (see [6], page 651).

The uniqueness and stability of the stationary problem are considered in [7].

3.4 The nonstationary problem

3.4.1 Summary of the initial boundary value problem

Our purpose is to study the well posed-ness of the following initial boundary value
problem:
We consider the system of partial differential equations (3.9):

{
∂u

∂t
+ (u · ∇)u− µ∆u +∇p = 0

∇ · u = 0
x ∈ Ω, t > 0.

The initial condition is described by (3.10) :

u(x, 0) = u0(x) x ∈ Ω,

where the given initial velocity field u0 is divergence free. On the artery wall Γwall, no-slip
boundary condition (3.11):

u(x, t) = 0, x ∈ Γwall, t > 0

holds. On each artificial boundary Γi (i = 1, 2, 3), the boundary condition (3.13):

pn− µ(∇u)n−Ki(u · n)n = Pin for t > 0, x∈Γi

is prescribed, where Ki is a suitable nonnegative constant, Pi ∈L∞(0, T ) is assumed to
be a given function and n represents the outward normal unit vector on every part of
the vessel boundary.

Both the mathematical analysis and the numerical treatment of the Navier-Stokes prob-
lem are based on its weak formulation.

3.4.2 Weak formulation

Assume that u is a solution of problem 3.1 and ϕ is a smooth solenoidal vector-valued
function defined on Ω. u satisfies the following identities:





(
∂u

∂t
+ (u · ∇)u− µ∆u +∇p, ϕ) = 0 x ∈ Ω, t > 0,

(u(0), ϕ) = (u0, ϕ) x ∈ Ω,
(pn− µ(∇u)n−Ki(u · n)n, ϕ) = (Pin, ϕ) x∈Γi i = 1, 2, 3.

(3.37)
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This system reads as:




(
∂u

∂t
,ϕ) + ((u · ∇)u,ϕ)− µ(∆u,ϕ) + (∇p,ϕ) = 0 x ∈ Ω, t > 0,

(u(0), ϕ) = (u0,ϕ) x ∈ Ω,
(pn− µ(∇u)n−Ki(u · n)n,ϕ) = (Pin, ϕ) x∈Γi i = 1, 2, 3.

(3.38)

We have

(∇p, ϕ) =
∑3

i=1

∫

Γi

(Pin) ·ϕds + µ
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds

+
∑3

i=1

∫

Γi

Ki(u · n)n ·ϕds,

and

(∆u, ϕ) = −(∇ϕ,∇u) +
∑3

i=1

∫

Γi

(n · ∇)u ·ϕds.

Thus

(
∂u

∂t
,ϕ) + ((u · ∇)u,ϕ)− µ(∆u,ϕ) + (∇p,ϕ)

= (
∂u

∂t
, ϕ)+((u ·∇)u, ϕ)+µ(∇ϕ,∇u)+

∑3

i=1

∫

Γi

Ki(u ·n)n ·ϕds+
∑3

i=1
Pi

∫

Γi

n ·ϕds

= (
∂u

∂t
,ϕ) + b(u,u,ϕ) + a(u,ϕ)− c(t, ϕ).

It follows that

(
∂u

∂t
, ϕ) + b(u,u,ϕ) + a(u, ϕ) = c(t, ϕ), (3.39)

where the a, b and c are defined by (3.14), (3.15) and (3.16) respectively, since

(
∂u

∂t
,ϕ) + ((u · ∇)u, ϕ)− µ(∆u,ϕ) + (∇p, ϕ) = 0

from (3.38)1.
We notice that (3.39) does not depend on the pressure p. Therefore the weak formulation
of the problem reads as follow:

Given a divergence free velocity field u0 ∈ V, Pi ∈L∞(0, T ) and a nonnegative con-
stant Ki for (i = 1, 2, 3), find u ∈ L2(0, T ;V) such that for all t ≥ 0

{
(
∂u

∂t
,ϕ) + b(u,u,ϕ) + a(u,ϕ) = c(t, ϕ)

(u(0), ϕ) = (u0,ϕ)
for all ϕ ∈ V, (3.40)

where
V = {ϕ∈H1(Ω) : ϕ|Γwall

= 0,∇ ·ϕ = 0}
is the space of test functions.
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3.4.3 Galerkin approximations

We are going to follow the same approach as in [1]. We will construct the weak solution of
the initial boundary value problem by first solving a finite dimensional approximation.
We recall that the inverse operator ∆̃−1 of the Stokes operator ∆̃ is self-adjoint and
possesses a sequence of eigenfunctions {ak} which are orthogonal in V and orthonormal
in L2(Ω). Fix a positive integer n and write

un(t) :=
n∑

k=1

dk
n(t)ak, (3.41)

where we intend to select the coefficients dk
n(t) (0 ≤ t ≤ T, k = 1, ..., n) to satisfy

dk
n(0) = (u0, ak), (3.42)

and

(
∂un

∂t
, ak) + a(un, ak) + b(un,un, ak) = c(t, ak). (3.43)

Theorem 3.2 (Construction of Approximate Solutions.)
For each integer n = 1, 2, ..., there exists a unique function un of the form (3.41) satis-
fying (3.42)-(3.43).

Proof.
Assume that un is given by (3.41), we observe using the fact that {ak}∞k=1 is an ortho-
normal basis of L2(Ω) that

(
∂un

∂t
, ak) = (dk

n)′(t), (3.44)

where (dk
n)′(t) is the derivative of dk

n(t) with respect of t.
Furthermore, from (3.14) and the fact that a is a bilinear form, we have

a(un, ak) = a(
n∑

i=1

di
n(t)ai, ak)

=
n∑

i=1

di
n(t)a(ai, ak)

=
n∑

i=1

Ak
i d

i
n(t),
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where Ak
i = a(ai, ak).

From (3.15) and recalling that b is a trilinear form, we have that

b(un,un, ak) = b(
n∑

i=1

di
n(t)ai,

n∑
j=1

dj
n(t)aj, ak)

=
n∑

i,j=1

di
n(t)dj

n(t)b(ai, aj, ak)

=
n∑

i,j=1

Bk
i,jd

i
n(t)dj

n(t),

where Bk
i,j = b(ai, aj, ak).

Moreover, we set
fk(t) := c(t, ak).

It follows that (3.43) becomes the system of ODE’s

dk
n

′
(t) +

n∑
i=1

Ak
i d

i
n(t) +

n∑
i,j=1

Bk
i,jd

i
n(t)dj

n(t) = fk(t) (k = 1, ..., n) (3.45)

subject to the initial condition (3.42). According to standard existence theory for or-
dinary differential equations, there exists a unique function dn(t) = (d1

n(t), ..., dn
n(t))

satisfying (3.42) and (3.45) for a.e. 0≤ t≤T . And then un defined by (3.41) solves
(3.43) for a.e. 0≤ t≤T . ¨

3.4.4 Energy estimate

Our plan is hereafter to let n → ∞. Before that, we will need some estimates, uniform
in n.

Theorem 3.3 (Energy estimate.)
For each approximate solution un, the following energy estimates hold:

d

dt
‖∇un‖2 + (µ− 2Kc2c4)‖∆̃un‖2≤16c4

1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
. (3.46)

Proof.
We denote by λk the eigenvalue associated to the eigenfunction ak. Multiplying (3.39)
through by −λkd

k
n and summing over k = 1, ..., n, one obtains that

(
∂un

∂t
,−∆̃un) + b(un,un,−∆̃un) + a(un,−∆̃un) = c(t,−∆̃un).
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Now

(
∂un

∂t
,−∆̃un) =

(
∇(

∂un

∂t
),∇un

)

=

(
∂

∂t
(∇un),∇un

)

=
1

2

d

dt
‖∇un‖2,

also

a(un,−∆̃un) = µ(∇un,∇(−∆̃un)) +
3∑

i=1

Ki

∫

Γi

(un · n)n · (−∆̃un)ds

= µ‖∆̃un‖
2 −

3∑
i=1

Ki

∫

Γi

(un · n)n · (∆̃un)ds,

and

b(un,un,−∆̃un) = −((un · ∇)un, ∆̃un),

furthermore

c(t,−∆̃un) = −
3∑

i=1

Pi(t)

∫

Γi

n · (−∆̃un)ds

=
3∑

i=1

Pi(t)

∫

Γi

n · ∆̃unds.

It follows that

1

2

d

dt
‖∇un‖2 + µ‖∆̃un‖2 = ((un · ∇)un, ∆̃un) +

3∑
i=1

Pi(t)

∫

Γi

n · (∆̃un)ds (3.47)

+
3∑

i=1

Ki

∫

Γi

(un · n)n · ∆̃unds.

We now make use of (3.18) to obtain that

∣∣∣∣∣
3∑

i=1

Pi(t)

∫

Γi

n · (∆̃un)ds

∣∣∣∣∣≤c3P̃‖∆̃un‖.

Likewise, from (3.19), we have

∣∣∣∣∣
3∑

i=1

Ki

∫

Γi

(un · n)n · ∆̃unds

∣∣∣∣∣ ≤c4K‖∇un‖‖∆̃un‖.
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Furthermore,
((un · ∇)un, ∆̃un)≤ sup

Ω
|un|‖∇un‖‖∆̃un‖.

We make use of these inequalities in (3.47) to find that

1

2

d

dt
‖∇un‖2+µ‖∆̃un‖2≤ sup

Ω
|un|‖∇un‖‖∆̃un‖+c3P̃‖∆̃un‖+c4K‖∇un‖‖∆̃un‖. (3.48)

Now from (3.6)

sup
Ω
|un|≤c1‖∇un‖

1
2‖∆̃un‖ 1

2 ,

which implies that

sup
Ω
|un|‖∇un‖‖∆̃un‖≤c1‖∇un‖

3
2‖∆̃un‖ 3

2 ,

and so, inequality (3.48) now reads as:

1

2

d

dt
‖∇un‖2 + µ‖∆̃un‖2≤c1‖∇un‖

3
2‖∆̃un‖ 3

2 + c3P̃‖∆̃un‖+ c4K‖∇un‖‖∆̃un‖. (3.49)

We next make use of Cauchy’s inequality with epsilon (A.4) to estimate the right-hand
side of (3.49). We have

c1‖∇un‖
3
2‖∆̃un‖ 3

2 = (c1‖∇un‖
3
2‖∆̃un‖ 1

2 )‖∆̃un‖
≤ 1

4ε1

c2
1‖∇un‖3‖∆̃un‖+ ε1‖∆̃un‖2

≤ (
1

4ε1

c2
1‖∇un‖3)(‖∆̃un‖) + ε1‖∆̃un‖2

≤ 1

4ε2

(
1

16ε1
2
c4
1‖∇un‖6) + ε2‖∆̃un‖2 + ε1‖∆̃un‖2

≤ 1

64ε2ε1
2
c4
1‖∇un‖6 + ε2‖∆̃un‖2 + ε1‖∆̃un‖2 (set ε1 = ε2 =

µ

8
)

≤ 8c4
1

µ3
‖∇un‖6 +

µ

4
‖∆̃un‖2,

and

c3P̃‖∆̃un‖ ≤ c2
3P̃

2

µ
+

µ

4
‖∆̃un‖2 (set ε =

1

µ
).

Also inequality (3.7) implies that

‖∇un‖ ≤ c2‖∆̃un‖,

so that
c4K‖∇un‖‖∆̃un‖≤Kc2c4‖∆̃un‖2.
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Making use of this inequalities on (3.49), it follows that

1

2

d

dt
‖∇un‖2 + µ‖∆̃un‖2≤8c4

1

µ3
‖∇un‖6 +

µ

4
‖∆̃un‖2 +

c2
3P̃

2

µ
+

µ

4
‖∆̃un‖2 + Kc2c4‖∆̃un‖2.

That is
1

2

d

dt
‖∇un‖2 +

µ

2
‖∆̃un‖2≤8c4

1

µ3
‖∇un‖6 +

c2
3P̃

2

µ
+ Kc2c4‖∆̃un‖2,

which leads us to the required energy estimates:

d

dt
‖∇un‖2 + (µ− 2Kc2c4)‖∆̃un‖2≤16c4

1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
.

¨

3.4.5 Local existence of a weak solution

In this subsection, we use Galerkin method to build up a local weak solution of the
initial/boundary-value problem. We have already constructed the Galerkin approxi-
mantions sequence {un}∞n=1 in subsection 3.4.3. Our goal now is to extract from this
sequence a subsequence that converges to the weak solution. In this respect, we are
going to show that this sequence is bounded and thereafter, we will make use of a com-
pactness result.

Lemma 3.2
Let Y be a nonnegative function satisfying the inequality

Y ′ ≤ ηY 3 + ζ

and Y (0) = M0 be a strictly positive real number, then there exists a time interval (0, T ?)
where Y (t) is bounded by a positive constant M and M depends only on M0, η and ζ
([5]).

Proof.
We have

Y ′ ≤ ηY 3 + ζ

≤ η

(
Y + (

ζ

η
)

1
3

)3

= η(Y + τ)3 where τ = (
ζ

η
)

1
3 .

We set Z = Y + τ . It follows that
Z ′≤ηZ3,
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and so
Z ′

Z3
≤η.

We integrate over (0, t), with 0≤t≤T

∫ t

0

Z ′

Z3
dι≤

∫ t

0

ηdι,

and obtain that
Z−2(t)

−2
− Z−2(0)

−2
≤ ηt.

This gives that
Z(t)−2 − Z(0)−2≥−2ηt,

and
Z(t)−2 − Z(0)−2≥−2ηt≥−2ηT.

It follows that
Z(t)−2≥Z(0)−2−2ηT.

We choose T ? in (0, T ) such that Z(0)−2−2ηT ?>0, that is

T ?<
(Z(0))−2

2η
=

(M0 + ( ζ
η
)

1
3 )−2

2η
.

We have that
Z(t)−2 − Z(0)−2≥−2ηt≥−2ηT ? t∈(0, T ?),

and so
Z(t)−2≥Z(0)−2−2ηT ? t∈(0, T ?).

Therefore
Z(t)2≤(Z(0)−2−2ηT ?)−1,

so that
Z(t)≤(Z(0)−2−2ηT ?)−

1
2 t∈(0, T ?).

Considering the fact that Z = Y + τ and τ = ( ζ
η
)

1
3 , we finally obtain that

Y (t)≤
(

(M0 + (
ζ

η
)

1
3 )−2−2ηT ?

)− 1
2

− (
ζ

η
)

1
3 t∈(0, T ?). (3.50)

We must set an extra condition on T ? to have
(
(M0 + ( ζ

η
)

1
3 )−2−2ηT ?

)− 1
2 − ( ζ

η
)

1
3 >0, we

set

T ?>
(M0 + ( ζ

η
)

1
3 )−2 − ( ζ

η
)
−2
3

2η
.
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Hence we choose T ? such that

(M0 + ( ζ
η
)

1
3 )−2 − ( ζ

η
)
−2
3

2η
<T ?<

(M0 + ( ζ
η
)

1
3 )−2

2η
,

it follows that Y (t) is bounded by a positive constant

M =

(
(M0 + (

ζ

η
)

1
3 )−2−2ηT ?

)− 1
2

− (
ζ

η
)

1
3

for all t such that 0 ≤ t ≤ T ? and M depends only on M0, η and ζ. ♦

Theorem 3.4 (Local existence.)
Let K be such that

κ = µ− 2Kc2c4>0, (3.51)

there is a time interval (0, T ?) on which a weak solution of problem 3.1 exists.

Proof.
Considering (3.51), the energy estimates (3.46) now reads as:

d

dt
‖∇un‖2 + κ‖∆̃un‖2≤16c4

1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
. (3.52)

Since κ>0, (3.52) implies that

d

dt
‖∇un‖2≤16c4

1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
. (3.53)

Defining
Yn(t) = ‖∇un‖2,

we see that inequality (3.53) has the following form:

Yn
′≤ ηYn

3 + ζ, (3.54)

where η > 0 and ζ > 0 are some constants depending on the data.

Remark 3.2
For each integer n, the function Yn(t) = ‖∇un‖2 verifies the requirements of lemma
3.2 with Yn(0) = ‖∇u0‖2 because the initial condition is the same for all functions
un, n = 0, 1, 2, ... Consequently, the sequence {‖∇un‖2}∞n=1 is bounded by a real num-
ber M which depends only on the initial data. We make use of Poincaré’s inequality
(3.1) to find that for each integer n,

‖un‖2
1 = ‖un‖2 + ‖∇un‖2

≤ CΩ
2‖∇un‖2 + ‖∇un‖2

≤ (1 + C2
Ω)‖∇un‖2

≤ (1 + C2
Ω)M,



CHAPTER 3. BLOOD FLOW IN LARGE ARTERIES 33

and

‖un‖2
L2(0,T ?;V) =

∫ T ?

0

‖un‖2
1dt

≤ (1 + C2
Ω)MT ?, since ‖un‖2

1 ≤ (1 + C2
Ω)M.

Therefore the sequence {‖un‖L2(0,T ?;V)}∞n=1 is bounded .

Remark 3.3
The space L2(0, T ?;V) being a Hilbert space, lemma 3.1 can be applied to the sequence
{‖un‖L2(0,T ?;V)}∞n=1. In fact, the sequence {un}∞n=1 is bounded in L2(0, T ?;V). Conse-
quently, there exists a subsequence {unq}∞q=1 ⊂ {un}∞n=1, such that

unq ⇀ u weakly in L2(0, T ?;V). (3.55)

We next show that the weak limit u is in fact a weak solution. In this respect, we are
going to show at first that

(
∂u

∂t
,ϕ) + b(u,u,ϕ) + a(u,ϕ) = c(t, ϕ) for all ϕ ∈ V,

and thereafter
(u(0),ϕ) = (u0,ϕ) for all ϕ ∈ V.

1. Fix an integer N and choose a function w ∈ C(0, T ?; V) having the form

w(t) =
N∑

k=1

dk(t)ak, (3.56)

where {dk}N
k=1 are given functions and {ak} is the basis of V. We choose n ≥ N ,

multiply (3.43) by dk(t), sum k = 1, ..., N , and then integrate with respect to t to
find that

∫ T ?

0

[(
∂unq

∂t
,w) + a(unq ,w) + b(unq ,unq ,w)] dt =

∫ T ?

0

c(t,w)dt. (3.57)

We recall (3.55), to find upon passing to weak limits (see remark 3.1 and [6]) that

∫ T ?

0

[(
∂u

∂t
,w) + a(u,w) + b(u,u,w)] dt =

∫ T ?

0

c(t,w)dt. (3.58)

Equality (3.58) then holds for all functions w ∈ L2(0, T ;V) as functions of the
form (3.56) are dense in this space [6]. Hence in particular

(
∂u

∂t
,ϕ) + b(u,u,ϕ) + a(u,ϕ) = c(t, ϕ)

for each ϕ ∈ V and a.e. t ≥ 0 .
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2. In order to prove that (u(0),ϕ) = (u0,ϕ) for every ϕ∈V, we first note from (3.58)
that
∫ T ?

0

[−(u,
∂w

∂t
) + a(u,w) + b(u,u,w)] dt =

∫ T ?

0

c(t,w)dt + (u(0),w(0)). (3.59)

for each w ∈ H1(0, T ?; V) with w(T ?) = 0. Similarly, from (3.57) we deduce

∫ T ?

0

[−(unq ,
∂w

∂t
) + a(unq ,w) + b(unq ,unq ,w)] dt =

∫ T ?

0

c(t,w)dt + (unq(0),w(0)).

(3.60)
We once again employ (3.55) to find

∫ T ?

0

[−(u,
∂w

∂t
) + a(u,w) + b(u,u,w)] dt =

∫ T ?

0

c(t,w)dt + (u0,w(0)). (3.61)

since unq(0)→u0 . As w(0) is arbitrary, comparing (3.59) and (3.61), we conclude
that (u(0),ϕ) = (u0,ϕ) for each ϕ∈V.
Therefore u is a local weak solution of problem 3.1. ¨

3.4.6 Global existence of a weak solution for small data

In this section, we make use of Galerkin’s method to establish the global existence of a
weak solution. We are going to show that under certain circumstances, the weak solution
u is defined at any time t. In this regard, we are going to consider the energy estimate
and the following lemma.

Lemma 3.3
Let Y be a nonnegative, absolutely continuous function satisfying inequality

Y ′ + λY≤ηY 3 + ζ, (3.62)

let a real number M be such that 0 < M <
(

λ
2η

) 1
2
,

If Y (0) ≤ M , and ζ ≤ λM
2

, then Y (t) is bounded by M for all t > 0 [5] .

Proof.
This result is proven by contradiction. Suppose that there exists a t such that Y (t) > M ,
and define

t? = inf{t∈R+, Y (t) > M},
we have Y (t?) = M and Y ′(t?) > 0.

1. We first show that Y (t?) = M .
Set I = {t∈R+, Y (t) > M} and choose any ε>0, we have

t? − ε<t? and t? = inf(I),
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and so t? − ε doesn’t belong to the set I. It follows that Y (t? − ε)≤M , and this is
true for each ε>0, hence

Y (t?)≤M.

At the other hand, for each natural number n, we have t? + 1
n
>t?. We make use of

the fact that t? = inf(I) to see that there exists φn∈I such that

t?≤φn≤t? +
1

n
,

φn is not necessarily unique. We choose one value that φn may take and we denote
it by tn. This defines a real sequence {tn}∞n=1.
For each natural number n, since tn∈I, we have that Y (tn)>M . The fact that
t?≤tn≤t? + 1

n
implies that the sequence {tn}∞n=1 converges to t?. We make use of

the continuity of Y to see that the sequence

{Y (tn)}∞n=1 converges to Y (t?).

Since tn∈I for each n, we have Y (tn)>M , and then Y (tn)→Y (t?) implies that

Y (t?) ≥ M.

It follows that Y (t?)≤M and Y (t?) ≥ M , therefore

Y (t?) = M.

2. Next we show that Y ′(t?) > 0.
Suppose that Y ′(t?)≤0, then there exists a nonnegative natural number n such
that Y decreases on the interval (t?, t? + 1

n
).

Also we have that

t?≤tn≤t? +
1

n
,

this implies that
Y (t?)≥Y (tn).

But from part (1.), we have Y (t?) = M and Y (tn)>M because tn∈I, it follows
that

Y (t?)<Y (tn).

Hence Y (t?)≥Y (tn) and Y (t?)<Y (tn), which is impossible. Therefore

Y ′(t?) > 0.
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Finally we show that Y ′(t?) ≤ 0 and this contradicts the result obtained in (2.).
From (3.62), we have

Y ′(t?) ≤ −λY (t?) + ηY 3(t?) + ζ

≤ −λM + ηM3 + ζ (because Y (t?) = M)

≤ −λM + ηM(M2) + ζ

≤ −λM + ηM(
λ

2η
) + ζ

≤ ζ − λM

2

≤ 0 because of the hypothesis (ζ≤λM

2
).

Therefore Y (t)≤M for all t∈R+.

♦
Theorem 3.5 (Global existence.)
Assume that the initial and boundary data are sufficiently small, precisely

‖∇u0‖ ≤
(

κµ3

64c2c4
1

) 1
4

and P̃ <
µ

4c1c3

(
κ3µ

4c3
2

) 1
4

, (3.63)

then for all T ≥ 0, there exists a weak solution u∈L2(0, T ;V) of problem 3.1 and it
satisfies the inequality

‖∇u‖ ≤
(

κµ3

64c2c4
1

) 1
4

. (3.64)

Proof
We recall the energy estimate (3.46)

d

dt
‖∇un‖2 + (µ− 2Kc2c4)‖∆̃un‖2≤16c4

1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
,

the inequality (3.7)

‖∇un‖ ≤ c2‖∆̃un‖,
and the assumption (3.51) which states that K is such that

κ = µ− 2Kc2c4>0.

We make use of these estimates and we obtain that

d

dt
‖∇un‖2 +

κ

c2

‖∇un‖2≤16c4
1

µ3
‖∇un‖6 +

2c2
3P̃

2

µ
. (3.65)
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Set
Yn = ‖∇un‖2,

the energy estimate (3.65) takes the form

Y ′
n + λYn≤ηY 3

n + ζ,

where

λ =
κ

c2

, η =
16c4

1

µ3
and ζ =

2c2
3P̃

2

µ
.

Also we have
Yn(0) = ‖∇u0‖2 for each integer n.

Set

M0 =

(
λ

2η

) 1
2

=

(
κµ3

32c2c4
1

) 1
2

.

We choose

M =

(
κµ3

64c2c4
1

) 1
2

=
M0√

2
,

it follows that
0 < M < M0.

According to the hypothesis, we have

Yn(0) = ‖∇u0‖2 ≤
(

κµ3

64c2c4
1

) 1
2

= M,

and from the fact that P̃ < µ
4c1c3

(
κ3µ
4c32

) 1
4
, we obtain that

ζ =
2c2

3P̃
2

µ
≤ κ

2c2

(
κµ3

64c2c4
1

) 1
2

=
λM

2
.

Remark 3.4
We make use of lemma 3.3 to find that Yn = ‖∇un‖2 is bounded by M for all t > 0 and
the bound doesn’t depend on n. Poincaré’s inequality (3.1) implies that

‖un‖2
1 = ‖un‖2 + ‖∇un‖2

≤ CΩ
2‖∇un‖2 + ‖∇un‖2

≤ (1 + C2
Ω)‖∇un‖2

≤ (1 + C2
Ω)M.
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Let T > 0 be any positive real number,

‖un‖2
L2(0,T ;V) =

∫ T

0

‖un‖2
1dt

≤ (1 + C2
Ω)MT, since ‖un‖2

1 ≤ (1 + C2
Ω)M.

Thus for each nonnegative real number T , the sequence {‖un‖L2(0,T ;V)}∞n=1 is bounded.
We make use of lemma 3.1 to extract a subsequence {unq}∞q=1 that converges to an
element u of L2(0, T ;V) and we use the same steps as we did for the local existence to
show that u is a weak solution of problem 3.1.
Furthermore, the fact that the sequence {∇un}∞n=1 is bounded by

√
M implies that the

subsequence
{∇unq

}∞
q=1

is also bounded by
√

M .

Therefore, since ∇u is the limit of this subsequence, it follows that

‖∇u‖≤
(

κµ3

64c2c4
1

) 1
4

.

¨

3.5 Uniqueness of the solution

In this section, we are going to prove that there exists a time interval where the solution
of problem 3.1 is unique.

Theorem 3.6 (Uniqueness.)
There exists a time interval T1 where the solution of problem 3.1 is unique.

Proof.
Assume that there exist two solutions u(1) and u(2) associated with the same data. Set
w = u(1) − u(2). Consider (3.39) with ϕ = w. We have

(
∂u(1)

∂t
,w) + b(u(1),u(1),w) + a(u(1),w) = c(t,w),

and

(
∂u(2)

∂t
,w) + b(u(2),u(2),w) + a(u(2),w) = c(t,w).

By substraction, we obtain that

(
∂w

∂t
,w) + a(w,w) = b(u(2),u(2),w)− b(u(1),u(1),w). (3.66)

We recall that a is a bilinear form, b is a trilinear form and c is a linear form described
by (3.14), (3.15) and (3.16) respectively. We evaluate every term of (3.66):

(
∂w

∂t
,w) =

1

2

d

dt
‖w‖2,
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also

a(w,w) = µ‖∇w‖2 +
3∑

i=1

Ki

∫

Γi

|w · n|2ds,

and

b(u(2),u(2),w)− b(u(1),u(1),w)

= b(u(2),u(2),w)− b(u(2) + w,u(2) + w,w)

= b(u(2),u(2),w)− b(u(2),u(2) + w,w)− b(w,u(2) + w,w)

= b(u(2),u(2),w)− b(u(2),u(2),w)− b(u(2),w,w)− b(w,u(2),w)− b(w,w,w)

= −b(w,w,w)− b(u(2),w,w)− b(w,u(2),w).

It follows that

1

2

d

dt
‖w‖2 + µ‖∇w‖2 +

3∑
i=1

Ki

∫

Γi

|w · n|2ds = −b(w,w,w)− b(u(2),w,w)− b(w,u(2),w).

(3.67)
We now make use of some classical estimates to evaluate the righthand side of (3.67) as
follow:

b(w,w,w) = ((w · ∇)w,w)

=

∫

Ω

3∑
i=1

(
3∑

j=1

wj
∂wi

∂xj

)
widx

= −
∫

Ω

3∑
i=1

(
3∑

j=1

∂(wiwj)

∂xj

)
widx +

∫

Γ

(w ·w)(w · n)ds

= − ((w · ∇)w,w)−
∫

Ω

(w ·w)(∇ ·w)dx +

∫

Γ

(w ·w)(w · n)ds

= −b(w,w,w) +

∫

Γ

(w ·w)(w · n)ds because ∇ ·w = 0.

This implies that

b(w,w,w) =
1

2

∫

Γ

(w ·w)(w · n)ds

≤ 1

2

(∫

Γ

(w ·w)2ds

) 1
2
(∫

Γ

(w · n)2ds

) 1
2

(A.6)

≤ c5‖w‖2
L4‖w‖ (A.13)

≤ c6‖w‖‖∇w‖2 (A.3), (3.1).

Also,

|b(u(2),w,w)| ≤ sup
Ω
|u(2)|‖∇w‖‖w‖

≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2 (A.4),
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and
|b(w,u(2),w)| ≤ sup

Ω
|∇u(2)|‖w‖2.

It follows that

|b(u(2),w,w) + b(w,u(2),w)| ≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2 + sup

Ω
|∇u(2)|‖w‖2.

We now make use of these estimates in (3.67) to find that

1

2

d

dt
‖w‖2 + µ‖∇w‖2 +

3∑
i=1

Ki

∫

Γi

|w · n|2ds ≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2

+ sup
Ω
|∇u(2)|‖w‖2 + c6‖w‖‖∇w‖2.

Thus

1

2

d

dt
‖w‖2+µ‖∇w‖2 ≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2 + sup

Ω
|∇u(2)|‖w‖2 + c6‖w‖‖∇w‖2,

which gives that

d

dt
‖w‖2 + (µ− 2c6‖w‖)‖∇w‖2 ≤

(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)
‖w‖2.

Since w(0,x) = 0, there exists T1 > 0 such that ‖w‖ ≤ µ
2c6

with 0 < T1 < T ?. On the
interval (0, T1), we have

d

dt
‖w‖2≤ϑ(t)‖w‖2, (3.68)

where

ϑ(t) =

(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)

is a real function depending on t.
The uniqueness theorem follows from Gronwall’s inequality (A.11) as w(0,x) = 0. ¨

3.6 Stability of the solution

In this section, we are going to prove that there exists a time interval of continuous
dependence on the data. We start with the boundary conditions and afterward we move
on to the initial condition.
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3.6.1 Boundary conditions stability.

We recall the boundary conditions: On the artery wall Γwall, no-slip boundary condition

u(x, t) = 0, x ∈ Γwall, t > 0

holds. On each artificial boundary Γi (i = 1, 2, 3), the boundary condition

pn− µ(∇u)n−Ki(u · n)n = Pin for t > 0, x∈Γi

is prescribed, where Ki is a suitable nonnegative constant, Pi ∈L∞(0, T ) is assumed to
be a given function and n represents the outward normal unit vector on every part of
the vessel boundary.
The purpose of this subsection is to show that there exists a time interval where a small
change in the given functions Pi (i = 1, 2, 3) produces a correspondingly small change
in the solution.

Theorem 3.7
There exists a time interval where the solution of problem 3.1 depends continuously on
the prescribed data as the real functions Pi, (i = 1, 2, 3) are varied.

Proof.
Denote by u(1) the solution associated with the data P

(1)
i (i=1,2,3) and, correspondingly,

by u(2) the solution associated with P
(2)
i (i=1,2,3).

Set
w = u(1) − u(2), P = max

i=1,2,3

∣∣∣P (1)
i − P

(2)
i

∣∣∣ .

We make use of (3.39) for u(1) and u(2) with ϕ = w. We obtain that

(
∂u(1)

∂t
,w) + b(u(1),u(1),w) + a(u(1),w) = c1(t,w),

and

(
∂u(2)

∂t
,w) + b(u(2),u(2),w) + a(u(2),w) = c2(t,w),

where

c1(t,v) = −
3∑

i=1

P
(1)
i (t)

∫

Γi

n · v ds for each v ∈ H1(Ω),

and

c2(t,v) = −
3∑

i=1

P
(2)
i (t)

∫

Γi

n · v ds for each v ∈ H1(Ω).

By substraction, we obtain that

(
∂w

∂t
,w) + a(w,w) = b(u(2),u(2),w)− b(u(1),u(1),w) + c1(t,w)− c2(t,w). (3.69)
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This gives us

1

2

d

dt
‖w‖2 + µ‖∇w‖2 +

3∑
i=1

Ki

∫

Γi

|w · n|2ds = −b(w,w,w)− b(u(2),w,w)− b(w,u(2),w)

+
3∑

i=1

(P
(2)
i − P

(1)
i )

∫

Γi

w · n ds.

Also

3∑
i=1

(P
(2)
i − P

(1)
i )

∫

Γi

w · n ds ≤
3∑

i=1

P

∫

Γi

|w · n| ds

≤
3∑

i=1

ciP

(∫

Γi

|w · n|2 ds

) 1
2

where ci =

(∫

Γi

ds

) 1
2

≤
3∑

i=1

(
c2
i P

2

4εi

+

∫

Γi

εi|w · n|2 ds

)
for each εi ∈R (A.4)

≤ c7P
2
+

3∑
i=1

Ki

∫

Γi

|w · n|2 ds, where εi = Ki.

It follows that

1

2

d

dt
‖w‖2 + µ‖∇w‖2 ≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2 + sup

Ω
|∇u(2)|‖w‖2

+c6‖w‖‖∇w‖2 + c7P
2
.

Thus

d

dt
‖w‖2+(µ−2c6‖w‖)‖∇w‖2 ≤

(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)
‖w‖2+2c7P

2
. (3.70)

Since w(0,x) = 0, there exists T1 > 0 such that ‖w‖ ≤ µ
2c6

with 0 < T1 < T ?. On the
interval (0, T1), we have that

d

dt
‖w‖2 ≤

(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)
‖w‖2 + 2c7P

2
. (3.71)

It follows that
d

dt
‖w‖2 ≤ c8‖w‖2 + 2c7P

2
,

where

c8 = sup
(0,T1)

[(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)]
.

According to Gronwall’s inequality (A.10), we deduce that in the interval (0, T1),

‖w‖ ≤ c max
0<t≤T1

P , where P = max
i=1,2,3

|P (1)
i − P

(2)
i |. (3.72)



CHAPTER 3. BLOOD FLOW IN LARGE ARTERIES 43

Hence a small change in the given data produces a correspondingly small change in the
solution.
Therefore the solution of problem 3.1 is stable in the interval (0, T1) as the real functions
Pi, (i = 1, 2, 3) are varied. ¨

3.6.2 Initial condition stability.

We recall the initial condition (3.10)

u(x, 0) = u0(x), x ∈ Ω.

where the given initial velocity field u0 is divergence free. In this subsection, we aim
at showing that there exists a time interval where a small change in the initial data
produces a correspondingly small change in the solution.

Theorem 3.8
There exists a time interval where the solution of problem 3.1 depends continuously on
the prescribed data as the initial condition u0(x) is varied.

Proof.
Denote by u(1) the solution associated with the initial data u

(1)
0 and, correspondingly,

by u(2) the solution associated with the initial data u
(2)
0 .

Set w = u(1) − u(2).
Consider (3.39) with ϕ = w. We have that

(
∂u(1)

∂t
,w) + b(u(1),u(1),w) + a(u(1),w) = c(t,w),

and

(
∂u(2)

∂t
,w) + b(u(2),u(2),w) + a(u(2),w) = c(t,w).

By substraction, we obtain that

(
∂w

∂t
,w) + a(w,w) = b(u(2),u(2),w)− b(u(1),u(1),w), (3.73)

and this gives us

1

2

d

dt
‖w‖2 + µ‖∇w‖2 +

3∑
i=1

Ki

∫

Γi

|w · n|2ds = −b(w,w,w)− b(u(2),w,w)− b(w,u(2),w).

(3.74)
We estimate the righthand side of this equality like we did in the case of uniqueness and
we obtain that

1

2

d

dt
‖w‖2 + µ‖∇w‖2 +

3∑
i=1

Ki

∫

Γi

|w · n|2ds ≤ µ

2
‖∇w‖2 +

1

2µ
(sup

Ω
|u(2)|)2‖w‖2

+ sup
Ω
|∇u(2)|‖w‖2 + c6‖w‖‖∇w‖2.
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Thus,

d

dt
‖w‖2 + (µ− 2c6‖w‖)‖∇w‖2 ≤

(
1

µ
(sup

Ω
|u(2)|)2 + 2(sup

Ω
|∇u(2)|)

)
‖w‖2. (3.75)

Therefore, on any interval during which ‖w‖ ≤ µ
4c6

, Poincaré’s inequality (3.1)

‖w‖ ≤ CΩ‖∇w‖

gives that

d

dt
‖w‖2 +

(
µ

2C2
Ω

− 1

µ
(sup

Ω
|u(2)|)2 − 2(sup

Ω
|∇u(2)|)

)
‖w‖2≤0. (3.76)

It follows that
d

dt
‖w‖2 ≤ −c7‖w‖2,

where

c7 = sup
J

(
µ

2C2
Ω

− 1

µ
(sup

Ω
|u(2)|)2 − 2(sup

Ω
|∇u(2)|)

)
,

and J is an interval of time during which ‖w‖ ≤ µ
4c6

.
According to Gronwall’s inequality (A.10), we deduce that in the interval J ,

‖w‖ ≤ c max
J

w0, where w0 = u
(1)
0 − u

(2)
0 . (3.77)

Hence a small change in the given data produces a correspondingly small change in the
solution.
Therefore, the solution of problem 3.1 is stable in the interval J as the initial condition

u(x, 0) = u0(x), x ∈ Ω

is varied. ¨



Chapter 4

Conclusion

This work has reviewed the basic physiology of the cardiovascular system, and described
the anatomy of blood and some cardiovascular equations. The main emphasis was placed
on the blood circulation through the large arteries. The problem of modelling blood
flow as well as some simplifying assumptions were discussed. We established the weak
formulation of the considered boundary value problem for both stationary case and
nonstationary case. Then we showed that the weak formulation did not depend on the
blood pressure. Rather than giving serious thought to the artificial sections boundary
conditions, in seeking a variational formulation, the test space was left free on these
portions of the boundary. For this purpose, we introduced

V ≡ {ϕ∈H1(Ω) : ϕ|Γwall
= 0,∇ ·ϕ = 0}

as the test space. The Stoke’s operator ∆̃ was defined, we made use of the fact that its
inverse ∆̃−1 is self adjoint and possesses a sequence of eigenfunctions which is orthogo-
nal in the space of test functions V and orthonormal in L2(Ω), to derive some helpful
estimates. We employed galerkin’s method by first solving the problem in some finite
dimensional spaces, then we were able to construct a sequence of finite dimensional so-
lutions, and showed that this sequence weakly converged by considering a compactness
argument. In this regard, we made use of Brouwer’s fixed point theorem in the case of
the stationary problem to prove the existence of Galerkin approximations. When con-
sidering nonstationary problem, we made use of an existence theorem from the theory of
ordinary differential equations. An energy estimate was derived as well, this helped us to
prove the local existence of a weak solution. Later on, we proved that the weak limit of
the Galerkin approximantions was indeed a weak solution of the initial/boundary value
problem.

We moved on to prove the uniqueness of a local solution and its continuous dependence
upon the data. Gronwall’s inequality was useful in the proof of the uniqueness and the
stability of the results.

Blood is a very complex fluid in its nature. It is not homogeneous and consists of plasma
and corpuscules. Its flow properties are uniquely adapted to the architecture of the blood
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vessels. In the large arteries, whole blood can be approximated as a Newtonian fluid. In
the future, we are going to consider the shear thinning viscoelastic nature of blood for
more accuracy and this will lead us to the reformulation of the initial boundary value
problem described in this dissertation.



Appendix A

appendix

In this section, we gather in one place the results that are continually employed through-
out the dissertation.

A.1 Linear Functional analysis

A.1.1 Banach spaces.

Let X denote a real linear space.

Definition. A mapping ‖ ‖ : X → [0,∞) is called a norm if
(i) ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ X.
(ii) ‖λu‖ = |λ|‖u‖ for all u∈X, λ ∈ R.
(iii) ‖u‖ = 0 if and only if u = 0.

Inequality (i) is the triangle inequality.
Hereafter we assume that X is a normed linear space.

Definition. We say a sequence {uk}∞k=1 ⊂ X converges to u∈X, written

uk → u,

if
limk→∞‖uk − u‖ = 0.

Definitions.

A sequence {uk}∞k=1 ⊂ X is called a Cauchy’s sequence provided for each ε > 0 there
exists N > 0 such that

‖uk − ul‖ < ε for all k, l≥N.
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X is complete if each cauchy sequence in X converges; that is, whenever {uk}∞k=1 is a
Cauchy sequence, there exists u∈X such that {uk}∞k=1 converges to u.
A Banach space is a complete, normed linear space.

Definition. We say X is separable if X contains a countable dense subset.

Theorem A.1 (Brouwer’s fixed point theorem.)
Let X be a finite dimensional linear space endowed with a norm. Assume

u : B(0, 1) → B(0, 1) (A.1)

is continuous, where B(0, 1) denotes the closed unit ball in X. Then u has a fixed point;
that is, there exists a point x∈B(0, 1) with

u(x) = x.

Definition. Let X and Y be Banach spaces, X ⊂Y . We say that X is compactly
embedded in Y , written

X ⊂⊂ Y,

provided

1. ‖x‖Y ≤C ‖x‖X (x∈X) for some constant C, and

2. each bounded sequence in X is precompact in Y .

Theorem A.2 (Rellich-Kondrachov compactness theorem).
Assume U is a bounded open subset of Rn, with a C1 boundary. Suppose 1 ≤ p < n.
Then

W 1
p (U) ⊂⊂ Lq(U) (A.2)

for each 1 ≤ q < p?, where 1
p? = 1

p
− 1

n
. As a result of that, we have

‖u‖Lq(U)≤C‖u‖W 1
p (U). (A.3)

A.1.2 Hilbert spaces.

Let H be a real linear space.

Definition. A mapping ( , ) : H ×H → R is called an inner product if
(i) (u, v) = (v, u) for all u, v ∈ H,
(ii) the mapping u 7→ (u, v) is linear for each v ∈ H,
(iii) (u, u) ≥ 0 for all u ∈ H,
(iv) (u, u) = 0 if and only if u = 0.

Notation. If ( , ) is an inner product, the associated norm is ‖u‖ := (u, u)
1
2 (u ∈ H).
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Definition. A Hilbert space H is a Banach space endowed with an inner product which
generates the norm.

Definitions. (i) Two elements u, v ∈ H are orthogonal if (u, v) = 0.
(ii) A comptable basis {wk}∞k=1⊂H is called orthonormal if
(wk, wl) = 0 (k, l = 1, ...; k 6= l) and ‖wk‖ = 1 (k = 1, ...).

If u ∈ H and {wk}∞k=1⊂H is an orthonormal basis, we can write

u =
∞∑

k=1

(u,wk)wk,

the series converging in H. In addition

‖u‖2 =
∞∑

k=1

(u,wk)
2.

A.1.3 Bounded linear operators.

Linear operators on Banach spaces. Definitions. A mapping A : X → Y is a
linear operator provided

A[λu + γv] = λAu + γAv

for all u, v ∈ X, λ, γ ∈ R.

The range of A is R(A) := {v ∈ Y | v = Au for some u ∈ X } and
the null space of A is N(A) := {u ∈ X |Au = 0 }.
Definition. A linear operator A : X → Y is bounded if

‖A‖ := sup {‖Au‖Y | ‖u‖X ≤ 1 }<∞.

A bounded linear operator A : X → Y is continuous.

Definitions. A bounded linear operator u? : X → R is called a bounded linear
functional on X.
We write X? to denote the collection of all bounded linear functionals on X; X? is the
dual space of X.

Definitions. If u ∈ X, u? ∈ X? we write

< u?, u >

to denote the real number u?(u). The symbol < , > denotes the pairing of X? and X.
We define

‖u?‖ := sup{< u?, u > | ‖u‖≤1}.
A Banach space is reflexive if (X?)? = X. More precisely, there exists u ∈ X such that

< u??, u? >=< u?, u > for all u? ∈ X?.
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Linear operators on Hilbert spaces.

Now we let H be a real Hilbert space, with inner product ( , ).

Theorem A.3 (Riesz Representation Theorem.)
H? can be canonically identified with H; more precisely, for each u? ∈ H? there exists
a unique element u ∈ H such that

< u?, v >= (u, v) for all v ∈ H.

The mapping u? 7→ u is a linear isomorphism of H? onto H.

Definitions. If A : H → H is a bounded, linear operator, its adjoint A? : H → H
satisfies

(Au, v) = (u,A?v) for all u, v ∈ H.

A is symmetric if A? = A.

A.1.4 Weak convergence.

Let X denotes a real Banach space.

Definition. We say a sequence {uk}∞k=1 converges weakly to u ∈ X, written

uk ⇀ u,

if
< u?, uk >→< u?, u >

for each bounded linear functional u? ∈X?.

uk → u implies that uk ⇀ u.
Any weakly convergent sequence is bounded. In addition, if uk ⇀ u, then

‖u‖≤ limk→∞inf‖uk‖.

A.2 Fundamental inequalities

A.2.1 Cauchy’s inequality with epsilon.

ab≤ εa2 +
b2

4ε
(a, b ∈ R, ε > 0). (A.4)

Proof.

0 ≤ (εa− b

2
)2 ≤ ε2a2 − εab +

b2

4
.
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Then

εab≤ ε2a2 +
b2

4
.

Hence

ab≤ εa2 +
b2

4ε
.

♦

A.2.2 Young’s inequality.

Let 1 < p, q < ∞, 1
p

+ 1
q

= 1. Then

ab≤ ap

p
+

bq

q
(a, b > 0). (A.5)

Proof. The mapping x 7→ ex is convex, and consequently

ab = exp(log a + log b) = exp(
1

p
log ap +

1

q
log bq)≤ap

p
+

bq

q
.

♦

A.2.3 Cauchy-Schwarz inequality.

Assume X is a real Banach space, denote by ( , )X and ‖ ‖X the inner product and the
norm defined on X respectively. Then

|(x, y)X | ≤ ‖x‖X‖y‖X (x, y∈X). (A.6)

Proof. Let ε > 0 and note

0≤‖x±εy‖2
X = ‖x‖2

X(±)2ε(x, y)X + ε2‖y‖2
X .

Consequently

±(x, y)X≤ 1

2ε
‖x‖2

X +
ε

2
‖y‖2

X .

Minimize the right hand side by setting ε = ‖x‖X

‖y‖X
, provided y 6= 0. ♦



APPENDIX A. APPENDIX 52

A.2.4 Hölder’s inequality.

Assume 1 < p, q < ∞, 1
p

+ 1
q

= 1. Then if u∈Lp(U), v∈Lq(U), we have

∫

U

|uv|dx≤‖u‖Lp(U)‖v‖Lq(U). (A.7)

Proof.
By homogeneity, we may assume ‖u‖Lp(U) = ‖v‖Lq(U) = 1. Then Young’s inequality
implies that for 1 < p, q < ∞

∫

U

|uv|dx≤ 1

p

∫

U

|u|pdx +
1

q

∫

U

|v|qdx = 1 = ‖u‖Lp(U)‖v‖Lq(U).

General Hölder’s inequality.
Let 1 ≤ p1, ..., pn ≤ ∞, with 1

p1
+ 1

p2
+ · · · + 1

pn
= 1, and assume uk ∈Lpk(U) for

k = 1, ..., n. Then ∫

U

|u1 · · · un| dx ≤
n∏

k=1

‖uk‖Lpk (U). (A.8)

Proof. Induction, using Hölder’s inequality. ♦

A.2.5 Gronwall’s inequality (differential form).

Let η(·) be a nonnegative, absolutely continuous function on [0, T ] which satisfies for a.e
t the differential inequality

η′(t)≤φ(t)η(t) + ψ(t), (A.9)

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t)≤ exp

(∫ T

0

φ(s) ds

)[
η(0) +

∫ T

0

ψ(s) ds

]
(A.10)

for all 0≤t≤T.

In particular, if

η′≤φη on [0, T ] and η(0) = 0, then η≡0 on [0, T ]. (A.11)

Proof. From (A.9) we see

d

ds

(
η(s) exp(−

∫ s

0

φ(r)dr)

)
= exp

(
−

∫ s

0

φ(r)dr)(η′(s)− φ(s)η(s)

)

≤ exp

(
−

∫ s

0

φ(r)dr

)
ψ(s)
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for a.e. 0 ≤ s ≤ T . Consequently for each 0 ≤ s ≤ T , we have

η(t) exp

(
−

∫ t

0

φ(r)dr

)
= η(0) +

∫ t

0

exp

(
−

∫ s

0

φ(r)dr

)
ψ(s)ds

= η(0) +

∫ t

0

ψ(s) ds

This implies inequality (A.11). ♦

A.2.6 Trace theorem.

Assume U is a bounded domain of Rn and its boundary ∂(U) is C1.
Then there exists a bounded linear operator

T : W 1,p(U) → Lp(∂U)

such that
(i) T u = u|∂(U) if u ∈ W 1,p(U)

⋂
C(U)

and
(ii) ‖T u‖Lp(∂U)≤C‖u‖W 1,p(U), (A.12)

for each u ∈ W 1,p(U), with the constant C depending only on P and U .

Definition. T u is called the trace of u on ∂U .

Theorem A.4 (Trace inequality for solenoidal functions.)
Let u be a solenoidal function defined on U . The following inequality holds:

∫

∂U

(u · n)2ds≤ c‖u‖2. ([7], page 350) (A.13)

A.2.7 Poincaré’s inequalities.

(i) Let U be a bounded, connected, open subset of Rn, with a C1 boundary ∂U . Assume
that 1≤p≤∞. then there exists a constant C, depending only on n, p and U , such that

‖u− (u)U‖Lp(U)≤C ‖Du‖Lp(U)

where (u)U =
∫

U
ds.

(ii) Assume U is a bounded, open subset of Rn. Suppose u ∈ W 1,p
0 (U) for some 1≤p≤∞.

Then we have the estimate
‖u‖≤CU‖∇u‖. (A.14)
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A.2.8 General Sobolev inequalities

Let U be a bounded open subset of Rn, with a C1 boundary. Assume u∈W k
p (U).

1. If
k <

n

p
,

then u∈Lq(U), where
1

q
=

1

p
− k

n
.

We have in addition the estimate

‖u‖Lq(U) ≤ C ‖u‖W k
p (U),

the constant C depending only on k, p, n and U .
In particular, if p = 2, k = 1 and n = 3,

‖u‖L6(U) ≤ C ‖u‖W 1
2 (U), (A.15)

2. We identify u with its continuous version.
If

k >
n

p
,

then u∈Ck−[n
p
]−1,γ(U), where

γ =

{
[n
p
] + 1− n

p
, if n

p
is not an integer

any positive number < 1, if n
p

is an integer.

We have in addition the estimate

‖u‖
C

k−[ n
p ]−1,γ

(U)
≤C ‖u‖W k

p (U),

the constant C depending only on k, p, n, γ and U .
In particular, if n = 3, p = 2 and k = 2, we have

H2(U) ⊂ C(U). (A.16)

A.3 Measure theory

Lebesgue measure provides a way of describing the size or volume of certain subsets of
Rn.
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A.3.1 Measurable functions and integration.

Definition. Let f : Rn → R. We say f is a measurable function if

f−1(U) ∈ M

for each subset U ⊂ R, where M is the set of Lebesgue measurable sets.

Note in particular that if f is continuous, then f is measurable. The sum and product
of two measurable functions are measurable.

Theorem A.5 (Egoroff’s Theorem.)
Let {fk}∞k=1, f be measurable functions and

fk → f a.e. on A,

where A ⊂ Rn is measurable, |A| < ∞. Then for each ε > 0 there exists a measurable
subset E ⊂ A such that

(i) |A− E| ≤ ε

and
(ii) fk → f uniformly onE.

Now if f is nonnegative, measurable function, it is possible, by an approximation of f
with simple functions, to define the Lebesgue integral

∫

Rn

f dx.

This agree with the usual integral if f is continuous or Riemann integrable. If f is
measurable, but is not necessary nonnegative, we define

∫

Rn

f dx =

∫

Rn

f+ dx −
∫

Rn

f− dx,

provided at list one of the terms on the right hand side is finite. In this case, we say f
is integrable.

Definition.

A measurable function f is summable if

∫

Rn

|f | dx < ∞.
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A.3.2 Banach space-valued functions.

We extend the notions of measurability, integrability to mappings

f : [0, T ] → X

where T > 0 and X is a real Banach space, with norm ‖ ‖.
Definition. A function f : [0, T ] → X is weakly measurable if for each u? ∈ X?, the
mapping

t 7→< u? , f(t) >

is Lebesgue measurable.

Theorem A.6 (Bochner.)
A strongly measurable function f : [0, T ] → X is summable if and only if t → ‖f(t)‖
is summable. In this case

‖
∫ T

0

f(t) dt‖≤
∫ T

0

‖f(t)‖dt,

and

< u?,

∫ T

0

f(t) dt > =

∫ T

0

< u?, f(t) > dt

for each u? ∈X?.
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