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Abstract

South Africa is rich in platinum group metals (PGMs) and these metals are important in

providing jobs as well as investments some of which have been seen in the Johannesburg

Securities Exchange (JSE). In this country this sector has experienced some setbacks

in recent times. The most notable ones are the 2008/2009 global financial crisis and

the 2012 major nationwide labour unrest. Worrisomely, these setbacks keep simmering.

These events usually introduce jumps and breaks in data which changes the structure of

the underlying information thereby inducing spurious long memory (long range depen-

dence). Thus it is recommended that these two phenomena must be addressed together.

Further, it is well-known that financial returns are dominated by stylized facts. In this

thesis we carried out an investigation on distributional properties of platinum returns,

structural changes, long memory and stylized facts in platinum returns and volatility

series. To understand the distributional properties of the returns, we used two classes of

heavy tailed distributions namely the alpha-Stable distributions and generalized hyper-

bolic distributions. We then investigated structural changes in the platinum return series

and changes in long range dependence and volatility. Using Akaike information criterion,

the ARFIMA-FIAPARCH under the Student distribution was selected as the best model

for platinum although the ARCH effects were slightly significant, while using the Schwarz

information criteria the ARFIMA-FIAPARCH under the Normal distribution. Further,

ARFIMA-FIEGARCH under the skewed Student distribution and ARFIMA-HYGARCH

under the Normal distribution models were able to capture the ARCH effects. The best

models with respect to prediction excluded the ARFIMA-FIGARCH model and were

dominated by ARFIMA-FIAPARCH model with non-Normal error distributions which

indicates the importance of asymmetry and heavy tailed error distributions.
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Chapter 1

Introduction

As a result of economic growth in emerging economies such as the then BRIC (Brazil,

Russia, India and China) and advanced economies, the South African mining sector

has experienced a boom that started globally in 2001 up until 2008. Within the sector

is the platinum group of metals (PGMs) (Matthey, 2013a), and which mainly extract

platinum, palladium, rhodium, ruthenium, and iridium. From the later point in time,

the sector has experienced major setbacks/challenges, namely the global financial crisis of

unprecedented proportions in 2008 followed by the recurring labour unrest since the 2012

Marikana incident which resulted in lost productivity as a result of lost production during

labour unrest. This occurred mainly in three major PGMs producers, which comprise

Impala Platinum, Lonmin, and Anglo American Platinum, and the loss was estimated to

be around 750 000 oz (Matthey, 2013a). Further, the declining demand of platinum as a

result of lower market share of diesel cars in Europe which uses platinum in autocatalysts

and the weak rand to dollar exchange exacerbated the situation.

Despite these setbacks and challenges faced by the industry, the minerals resources

sector remains the largest employment sector. On average, from 2008 to 2013, the per-

centage contribution to the South African GDP from this sector was 2.3% with a yearly

increase of 3.3% and an employment head count of 191 781 with R27 826 as the average

employee salary (Matthey, 2013a). Due to the abundance of the PGMs, mining is the

mainstay of the South African economy. South Africa holds more than 80% of platinum

and 80% of the resources of the PGMs. It is rich in PGMs particularly platinum and

palladium. These types of metals have attracted investments to the country. Also, it

is noteworthy that South Africa is the largest producer of platinum and second largest

1



when it comes to palladium with Russia supplying more. Table 1.1 shows the demand

and supply of platinum. The rise in demand is solely because of difficulty in finding a

substitute for their main application in catalytic converters. Platinum is predominantly

used in diesel cars autocatalysts and palladium used in gasoline cars. Europe being the

only manufacturer of diesel autos, this suggests that the demand for platinum is mostly

derived from European diesel auto sales.

Table 1.1: Platinum Supply and Demand

Supply 2011 2012 2013

South Africa 4 860 4 090 4 120
Russia 835 800 780
Others 790 760 840

Demand 2011 2012 2013

Autocatalyst 3 185 3 190 3 125
Jewellery 2 475 2 780 2 740
Industrial 1 975 1 605 1 790
Investment 460 455 765

PGMs in South Africa are not only important in providing jobs but investments in

PGMs is also seen in the stock market’s exchange traded funds (ETF). ETFs are funds

that track an underlying asset like indexes, commodities, forex, equities and so on. The

value of ETF’s are derived from these underlying assets. Two palladium funds, Standard

Bank’s AfricaPalladium ETF and Absa Capital’s newPaladium ETF were launched in

March of 2014 in the JSE. These exchange traded funds are backed by the physical

palladium metal. With such an environment of investments and economic contribution

by PGMs, it is important to understand the distribution and volatility dynamics of the

PGM prices. In this thesis, we will only analyze platinum prices and its volatility.

Challenges in PGMs sector have attracted a lot of interest from researchers to analyse

the risk and volatility of these prices. A lot of researchers have studied related topics, this

includes a paper by Huang et al. (2014) where they investigated the South African mining

index and found that the returns of the South African Mining Index are not Guassian

but explained by a heavy tailed distribution. Socgina and Wilcox (2014) compared the

generalized hyperbolic distributions for equity returns on the JSE mining stocks and they

found evidence of departure from the Guassian assumption, specifically, the long memory

phenomenon has been thoroughly investigated in the PGMs. Areas where this volatility
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phenomenon has been studied exist in the literature. Such papers include Holton (2004),

Hammoudeh et al. (2011), Lane et al. (2012). Arouri et al. (2012b) investigated long

memory spot futures prices of precious metals using GARCH type models and found that

the FIGARCH model explains conditional volatility spot and futures prices better. Other

papers include Arouri et al. (2012a) who investigated the potential of structural changes

and long memory in return of precious metals and concluded that there is evidence of

long memory in precious metals price using an ARFIMA-FIGARCH model. In analysis

and modelling of financial returns, there are stylized facts that we must address. In the

following section, we will discuss these phenomena further.

1.1 Stylized Facts of Returns

In econometrics and financial market studies, stylized facts refer to the presentation of

some empirical findings during a study. These findings are then summarized. The main

issue with such generalizations is that they may have inaccuracies and some spurious

information. A simple way to explain stylized facts is taking the common denominator

among properties observed in studies of different markets and instruments and general-

izing it as a rule.

It is widely accepted that the distribution of financial returns are not normal. This

is true for some returns structure, that is the reason each researcher needs to check this

before analysis is done. The following is a list of stylized facts that are common for

financial returns:

• Autocorrelations of asset returns are often insignificant.

• The distribution of returns have a Pareto-like tail with a finite tail index.

• As the time scale increases over which returns are calculated, their distributions

look more and more like a normal distribution.

• Different measure of volatility display a positive autocorrelation over several days,

which suggest that high volatility events tend to cluster in time, this is known as

volatility clustering.

• Residual time series exhibit heavy tails, even after conditional heteroscedastic mod-

els corrections.
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• The autocorrelation function of absolute returns decays slowly as a function of time

lag. This suggests long-memory in data.

• Most measures of volatility of an asset are negatively correlated with the returns of

that asset.

This is a summary of the stylized facts in literature. A detailed list can be found in Cont

(2001).

1.2 Research Problem and Objectives

Price volatility of precious metals is still a major interest in financial economics (Arouri

et al., 2012a). This is because this measure is used mostly in risk management and

valuation of assets. The price data that we will use to study the evolution of the volatility

process of platinum prices is from Matthey (2013b). The research seeks to develop a model

which will identify and capture the evolution of the volatility of platinum prices in light

of platinum prices.

In this study, we will use different long memory tests which will be able to detect

whether the long memory is inherent in platinum prices and hence assist us in selecting

the best suitable model which will explain the volatility evolution of the price data. The

objectives of this study are as follows:

• Analyse the structure of platinum price returns,

• Perform different long memory tests in identifying tests that better explain the

returns,

• Determine the best fit for return error distributions using heavy tailed distributions,

• Model price returns using different ARFIMA models to identify the best model,

• Compare other GARCH type models with FIGARCH type models for analysis of

volatility.
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1.3 Thesis Structure

In chapter 2, we discuss discrete time series process under the Box-Jenkins methodology.

We first discuss stationary and then non stationary processes, autoregressive moving

average (ARMA) and autoregressive integrated moving average (ARIMA) and further

variance stabilizing transformations. The chapter ends with a discussion of model selec-

tion methods.

In chapter 3, we discuss spectral analysis theory methods that are used in long memory

models. These methods are in the frequency domain. The chapter starts by discussing

Fourier analysis as it forms the basis of spectral analysis. Then this theory is used in the

discussion of the spectrum which is similar to the ACF when working in time domain.

The periodogram, which estimates the spectrum, is then elaborated on with its properties

and methods proposed in literature to smooth it as it is an inconsistent estimator of the

spectrum. Theory and methods of long memory are discussed in chapter 4. We start the

chapter by discussing self-similar processes, this is because these processes have attractive

properties that assists in deriving some properties on long memory. We then discuss

ARFIMA processes which are normally used as a mean equation when modeling long

memory. There-after we discuss discrete and semi-parametric long memory estimation

methods. This then leads us to discussing structural breaks in long memory and spurious

long memory.

In chapter 5 we discuss associated heavy tailed distributions. The first property of

heavy tailed distributions we discuss is the infinite divisibility property. We will then

discuss Levy processes which can also be used in explaining infinite divisibility as it

has increments that have this property. Distributions that we consider are the alpha-

stable distributions and generalized hyperbolic distribution. In chapter 6, we discuss

conditional heteroscedastic models and estimation methods. We start by discussing short-

term dependency models which are ARCH and GARCH models. We then continue to

discuss FIGARCH type models which are FIGARCH, FIEGARCH, FIAPARCH and

HYGARCH processes.

In chapter 7, we discuss different forecasting methods but we place more focus on the

Mincer-Zarnowitz regression as this is the test we will use for testing models forecasting

performance. Using methods discussed in the preceding chapters we will then analyse

South African platinum return series in chapter 8. In chapter 9 we summarise the methods
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and findings of this thesis.
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Chapter 2

Time Series Processes

A stochastic process time series is a collection or a family of random variables indexed by

time t. There are two types of such stochastic processes, namely discrete and continuous

time processes. A stochastic process Xt is a discrete time process if it is defined only

for a set of time t = 1, 2, ..., T , else Xt is a continuous process defined on t ≥ 0. In this

study we consider discrete time stochastic processes. The basic assumption in classical

time series analysis is stationarity. In the next section, we discuss stationary time series

processes and their characteristics.

2.1 Stationary Processes

There are two concepts of stationarity, namely strict and weak stationarity. A time series

{Xt} is said to be strictly stationary if the joint distribution of {Xt1 , ..., Xtr} is identical

in distribution to {Xt1+k, ..., Xtr+k} for all time tr. A weak stationarity condition requires

that the mean and the covariance do not depend on time. Thus, for a stationary process

{Xt}, the mean E(Xt) and the variance V ar(Xt) are constant and the covariance γ(t, s)

is a function of the lag |t− s| only. In univariate time series analysis linear dependence of

the variable Xt to its past values Xt−i, for i = 1, 2, ..., t− 1, is of interest as this reveals

some of the properties of the time series process. The basic diagnostic tool for linear

dependence is the autocorrelation defined by

ρ(k) =
γ(k)√

V ar(Xt)V ar(Xt)
, (2.1)
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where

γ(k) = Cov(Xt, Xt+k), (2.2)

is the autocovariance function. The autocovariance and autocorrelation function has

some interesting properties which are,

1. γ(0) = V ar(Xt) and ρ(0) = 1.

2. |γ(k)| ≤ γ(0) and |ρ(k)| ≤ 1.

3. γ(k) = γ(−k) and ρ(k) = ρ(−k) for stationary processes.

After removing the linear mutual dependence of the intervening variables {Xt+1, ..., Xt+k−1},

the autocorrelation of Xt and Xt+k is explained by the partical autocorrelation function

(PACF) defined by

Φkk = Corr(Xt, Xt+k|Xt+1, ..., Xt+k−1). (2.3)

Another important process in time series analysis is the white noise process. By definition,

a process {at} is called a white noise process if it is a sequence of uncorrelated random

variables from a fixed distribution with a constant mean, constant variance, i.e. γ(k) =

Cov(at, at+k) = 0 for all k 6= 0 . Then the autocovariance of this process is given by

γ(k) = σ2
a, k = 0, (2.4)

where σ2
a is the variance of the process. The autocorrelation function and partial auto-

correlation functions are respectively given by ρ(k)=1 and Φ(kk) = 1 for k = 0 and both

equal to zero for k 6= 0. If E(at) = 0, the white noise process is referred to as zero mean

Gaussian process.

Since a time series is characterised by its mean, variance, autocorrelation and patial

autocorelation, it is important to understand their estimations. In this Section we will

only consider single realization estimation. The sample mean of a time series process is

X̄ = E(Xt)

=
1

T

T∑
t=1

Xt.
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This is an unbiased estimator of the mean since

E(X̄) =
1

T

T∑
t=1

E(Xt)

=
1

T
.T.µ

= µ, (2.5)

and it can be shown that this estimator is also a consistent estimator since

lim
T→∞

X̄ = lim
T→∞

1

T

T∑
t=1

Xt

= µ. (2.6)

Thus a time series with this property is said to be ergodic. This is very important as a

ergodic process has a property that ρt → 0 as t→∞, that is

lim
t→∞

1

T

T−1∑
t=−(T−1)

ρt = 0 (2.7)

and hence

lim
t→∞

V ar(Xt) = 0. (2.8)

This property tells us that if we have two observations that are far apart, then they are

almost uncorrelated. The sample autocovariance function can be calculated as

γ̂(k) =
1

T

T−t∑
k=1

(Xt − X̄)(Xt+k − X̄). (2.9)

The sample autocovariance γ̂(k) is an asymptotically unbiased estimator of γ(k), hence

for the process to be ergodic, the autocovariances must be summable, i.e.

∞∑
t=−∞

|γ(t)| <∞. (2.10)

9



The sample autocorrelation function is then be defined as

ρ̂(k) =
γ̂(k)

γ̂(0)

=

∑T−t
k=1(Xt − X̄)(Xt+k − X̄)∑T

t=1(Xt − X̄)2
. (2.11)

The sample autocorrelation function can be used to plot a correlogram by plotting ρ̂(k)

against k. To calculate the partial autocorrelation, a recursive method

Φ̂(t+ 1, t+ 1) =
ρ̂(t+ 1)−

∑t
j=1 Φ̂(tj)ρ̂(t+ 1− j)

1−
∑t

j=1 Φ̂(tj)ρ̂(j)
, (2.12)

is often used where

Φ̂(t+ 1, j) = Φ̂(tj)− Φ̂(t+ 1, t+ 1)Φ̂(t, t+ 1− j), j = 1, 2, ..., k. (2.13)

In the analysis a time series {Xt} can be represented as a moving average (MA) or an

autoregressive (AR) process. In MA representation, we write the process Xt as a linear

combination of a sequence of uncorrelated random variables as

Xt − µ = at + θ1at−1 + ...

=
∞∑
j=0

θjat−j, θ0 = 1, (2.14)

where {at} is a white noise process and

∞∑
j=0

θ2
j <∞. (2.15)

A compact form of the representation is useful and for this, we use the backshift operator

LXt = Xt−1 to present the MA process as follows

Xr − µ = at + θ1L
1at + θ2L

2at + ...

= (1 + θ1L
1 + θ2L

2 + ...)at

= θ(L)at, (2.16)
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where θ(L) is called the MA polynomial. The expectation and variance of this process is

E(Xt) = µ,

V ar(Xt) = σ2
a

∞∑
j=0

θ2
j ,

and the covariance function

γ(k) = E(XtXt+k)

= E

(
∞∑
i=0

∞∑
j=0

θiθjat−iat+k−j

)

= σ2
a

∞∑
i=0

θiθi+k. (2.17)

The ACF is then given by

ρ(k) =

∑∞
i=0 θiθi+k∑∞
i=0 θ

2
i

. (2.18)

This shows us that the mean and variance are constant and the autocovariance and

autocorrelation depends only on lag k. From the above properties,
∑
θ2
j <∞ and hence

this process is stationary. This is a linear process which any stationary process can be

represented. In an AR representation, the process Xt is of the form

Xt = φ1Xt−1 + φ2Xt−2 + ...+ at

= φ1LXt + φ2L
2Xt + ...+ at(

1−
∞∑
j=1

φjL
j

)
Xt = at

φ(L)Xt = at, (2.19)

and 1+
∑
∀j |φj| <∞. This process is invertible and this property is useful for forecasting.

For a process to be invertible, the roots of φ(L) = 0 must lie outside the unit circle, and

thus, for the AR process to be stationary, it must be presentable as an MA process

Xt =
1

φ(L)
at

= θ(L)at. (2.20)
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The shortcoming of the MA and AR representations are that they produce infinite pa-

rameters that needs to be estimated using finite data series. To overcome this, we let the

AR process be of order p

φp(L)Xt = at, (2.21)

and the MA process be of order q

Xt = θq(L)at. (2.22)

In order to describe a variety of time series models, a class of ARMA(p, q) processes is

used. This is a combination of AR and MA processes of order p and q respectively. The

ARMA(p, q) is given by

φp(L)Xt = θq(L)at, (2.23)

where φp(L) = 1− φ1L− φ2L
2 − ...− φpLp and θq(L) = 1− θ1L− θ2L

2 − ...− θqLq are

polynomials of respective orders p and q. For this process to be invertible and stationary

we require the roots of θq(L) = 0 lie outside the unit circle and the roots of Φp(L) = 0 to

lie outside the unit circle, respectively.

2.2 Nonstationary Processes

The study of nonstationary processes is of utmost importance in econometrics. This is

because most time series data in practice are not stationary. This can be as a result of

non-constant means or time-varying variance functions. Processes that are nonstationary

in mean posses a challenge in model estimation and forecasting. They however can be

transformed into a stationary process. If a series is nonstationary in mean, the most used

method is to integrate the series through differencing.
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2.2.1 Autoregressive Integrated Moving Average (ARIMA) Pro-

cesses

Autoregressive integrated moving average (ARIMA) models are used to describe nonsta-

tionary ARMA models. This is done by differencing the nonstationary time series using

the differencing operator ∆d = (1− L)d. An ARIMA model is of the form

φp(L)(1− L)dXt = θq(L)at, (2.24)

where d = 1, 2, ... is the order of difference parameter. This process can be presented as

an ARMA process by letting

Wt = (1− L)dXt.

Then, the resulting process becomes the usual ARMA process

φp(L)Wt = θq(L)at. (2.25)

This process is only useful in the case where a time series process is nonstationary in

mean. There are separate methods proposed in literature that are used for processes that

are nonstationary in variance. The following subsection explains these phenomena and

their transformation to stationarity.

2.2.2 Variance-Stabilising Transformations

Differencing a time series is useful when the process in nonstationary in mean. However,

this method is not useful when the time series is nonstationary in variance. Variance can

change as its levels changes, and this can be represented by

V ar(Xt) = cf(µt). (2.26)

For this times series to be stationary in variance, we need a transformation function,

T (Xt), that would result in the transformed series having a constant variance. For this
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type of nonstationarity, we could use the logarithmic transformation function

T (Xt) = ln(Xt). (2.27)

The transformed series T (Xt) will have a constant variance. If the variance of the series

is proportional to the levels, such that

V ar(Xt) = cµt, (2.28)

then a square root transformation

T (Xt) =
√
Xt, (2.29)

is used which will result in a constant variance. If the standard deviation of the series is

proportional to the square of the level, such that

V ar(Xt) = cµ4
t , (2.30)

then the reciprocal function transforms the series to be stationary in variance. In general

a power transformation which belongs to the Box and Cox (1964) class of transformations

is of the form

T (Xt) =
Xλ
t − 1

λ
. (2.31)

This transformation class incorporates all the above discussed transformations. The

parameter λ plays an important role in deciding the transformation function to be used.

In applications and practice, λ is selected such that it minimises the residual mean squared

error. Seasonal nonstationarity will be considered in the next section.
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2.3 Seasonal Time Series Models

Consider an additive seasonal time series model

Xt = Pt + St + et

= α0 +
m∑
i=1

αiUit +
k∑
j=1

βjVjt + et, (2.32)

where Pt = α0 +
∑m

i=1 αiUit is the trend-cycle, St =
∑k

j=1 βjVjt is the seasonal compo-

nent and et is the irregular component. Normally, St is represented by using sinusoidal

functions as

St =

[s/2]∑
j=1

[
βjsin

(
2πjt

s

)
+ γjcos

(
2πjt

s

)]
, (2.33)

and hence, the above additive seasonal time series is then given by

Xt = α0 +
m∑
i=1

αit
i +

[s/2]∑
j=1

[
βjsin

(
2πjt

s

)
+ γjcos

(
2πjt

s

)]
+ et. (2.34)

This logic can be applied to ARIMA models

φp(L)(1− L)dXt = θq(L)bt (2.35)

and in this case, {bt} is not white noise as it will contain seasonal correlations. To

overcome this, a Box-Jenkins multiplicative seasonal ARIMA model is used. This model

is given by

ΦP (Ls)φp(L)(1− L)d(q − Ls)DXt = θq(L)ΘQ(Ls)at (2.36)

where ΦP (Ls) = 1 − Φ1L
s − Φ2L

2s − ... − ΦPL
Ps and ΘQ(Ls) = 1 − Θ1L

s − Θ2L
2s −

... − ΘQL
Qs with the sub-index s referring to the seasonal period. This model is of

the form of an ARIMA with extra parameters for seasonality and is denoted as an

ARIMA(p, d, q)X(P,D,Q)s
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2.4 Forecasting

One of the main objectives of modelling in time series is forecasting future values of the

series. In forecasting, the objective is to produce optimal forecasts that have little or

no error. The criteria that is normally used is the minimum mean square error (MSE)

criterion. There are many other criteria used in literature to find optimal forecasts but

for simplicity and ease of use, the MSE criterion is normally used.

The optimal forecasts of Xn+l is given by its conditional expectation

E(Xn+l|Xn, Xn−1, ...). (2.37)

For the ARIMA(p, d, q) model, this is expressed as ,

X̂n(l) = E(Xn+l|Xn, Xn−1, ...)

= φ1X̂n(l − 1) + ....+ φp+dX̂n(l − p− d)

+ân(l)− θ1ân(l − 1)− ...− θqân(l − q), (2.38)

where

ân(l) = Xn+l − X̂n+l−1, and ân(j) = 0, ∀l ≥ 1. (2.39)

2.5 Model Identification

Model identification refers to the methodology in identifying the required transforma-

tions, such as variance stabilising transformations and differencing transformations and

polynomial orders of AR(p) and MA(q). Model identification steps are as follows

1. Plot the time series data and choose proper transformations.

2. Compute and examine the sample ACF and the sample PACF of the original series

to further confirm a necessary degree of differencing so that differenced series is

stationary. If the sample ACF decays very slowly and the sample PACF cuts off

after lag k, then it indicates that differencing is needed.

3. Compute and examine the sample ACF and PACF of the properly transformed
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and differenced series to identify the orders of p and q. If the ACF tails off in

an exponential decay or damped sine wave fashion and PACF cuts off after lag p,

then the process is AR(p). If the ACF cuts off after lag q and PACF tails off as

exponential decay or damped sine wave fashion, then the process is MA(q).

This modelling methodology is referred to as Box-Jenkins methodology.

2.6 Model Estimation

In the ARIMA(p, d, q) estimation, the maximum likelihood estimation (MLE) has been

widely used because of ease of use and some interesting properties of asymptotic normality

that can be derived from the estimates. Box et al. (1994) suggested maximizing the

unconditional log-likelihood function

lnL(φ, µ, θ, σ2
a) = −n

2
ln[2πσ2

a]−
S(φ, µ, θ)

2σ2
a

, (2.40)

where S(φ, µ, θ) is the unconditional sum of squares function given by

S(φ, µ, θ) =
n∑

t=M

[E(at|φ, µ, θ,X)]2 . (2.41)

where E(at|φ, µ, θ,X) is the conditional expectation of at. After this estimation process,

the model needs to be checked for adequacy.

2.7 Diagnostic Checking

In estimation, we have assumed that {at} is a white noise process. However, after estima-

tion, we need to check the residual series {ât} if this assumption is met. A test popularly

used in literature is the portmanteau lack of fit test. The null hypothesis is then

H0 : ρ1 = ρ2 = ... = ρk = 0, (2.42)

where the test statistic is given by

Q = n(n+ 2)
K∑
k=1

(n− k)−1ρ̂2
k. (2.43)
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Under the null hypothesis, Q statistic approximately follows the χ2(k−p−q) distribution.

This test is also known as the Lung-Box statistic.

2.8 Statistical Tests

Tests that we will use for Normality in the thesis are the Kolmogorov-Sminorv(KS)(Chakravarti

et al., 1967), Jarque-Bera(JB)(Jarque and Bera, 1987) and Phillips-Peron(PP)(Phillips

and Perron, 1988), we chose these tests to compare with similar results in literature. The

KS test is used for testing the null hypothesis that the cumulative distribution function

F (x) equals a hypothesized distribution F1(x). The test statistic is

Dn = sup
x
‖Fn(x)− F1(x)‖. (2.44)

We reject the null hypothesis is Dn is too large. The JB test statistic is defined as

JB =
N

6

(
S2 +

(K − 3)2

4

)
, (2.45)

where S is the skewness, K is the kurtosis, and N is the sample size. The JB statis-

tic follows χ2 distribution with 2 degrees of freedom. The PP test involves fitting the

regression

yi = α + ρyi−1 + εi. (2.46)

There are two statistics

Zp = n(ρ̂n − 1)− 1

2

n2ρ̂2

s2
n

(
λ̂2
n − γ̂0,n

)
Zτ =

√
γ̂0,n

λ̂2
n

− 1

2
(λ̂2

n − γ̂0,n)
nσ̂

γ̂nsn
(2.47)
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where

γ̂j,n =
1

n

n∑
i=j+1

ûiûi−j

λ̂2
n = λ̂0,n + 2

q∑
j=1

(
1− j

q + 1

)
γ̂j,n

s2
n =

1

n− k

n∑
i=1

û2
i (2.48)

where ui is the OLS residual, k is the number of covariates in the regression, q is the

number of Newey and West (1994) lags.

2.9 Model Selection

Model selection criteria are used in selecting the best model to be used. There are

several methods proposed in literature. The most widely used criteria for selection are

the Akaike’s information criterion (AIC) and the Bayesian information criteria (BIC).

The AIC is defined as

AIC(M) = −2ln[maximum− likelihood] + 2M, (2.49)

where M is the number of parameters in the model. The disadvantage of this method,

seen by Shibata (1976) is that it overestimates the orders of autoregression, as a result

the BIC was introduced. The BIC is defined as

BIC(M) = nln(σ̂2
a)− (n−M)ln(1− M

n
) +M ln(n) +M ln

[(
σ̂2
X

σ̂a

2
)
/M

]
, (2.50)

where σ̂2
X is the sample variance of the time series. Schwarz (1978) introduced the

Schwartz’s Bayesian criterion and is defined as

SBC(M) = nln(σ̂2
a) +M ln(n). (2.51)

It is advisable to use all of the above mentioned criteria to check the best model as AIC

overestimates the order of autoregression.
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2.10 Chapter Summary

In this chapter, we discussed fundamental time series proceses that build sophisticated

models. We started by discussing stationarity which is important in any time series

analysis. This is due to some interesting properties that are derived when a series is

stationary. ARMA models are stationary and invertible but when financial data is fitted

to this model, it wont’ work as there is nonstationary in financial returns. As a conse-

quence, different methods were discussed which would assist. If the series is nonstationary

in mean, then a series would be differenced until it is stationary. If the series in nonsta-

tionary in variance, then other methods are applied. Methods discussed in this chapter

are the variance-stabilising transformations which consists of the following methods

• Logarithmic transformation

• Square-root transformation

• Reciprocal transformation, and in general the

• Power transformation

Seasonal models were also considered to address seasonality and from then, we discussed

a simple forecasting method for ARIMA models, a method that could be used to identify

an ideal parsimonious ARIMA model. The maximum likelihood estimation was discussed,

diagnostic checks using the portmanteau lack of fit test is used in literature for goodness

of fit. For model selection, we discussed three model selection methods, the AIC, BIC

and SBC.
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Chapter 3

Spectral Analysis Theory in Long

Memory

Spectral analysis plays a major role in searching for periodicities in data. By definition,

a periodic function repeats its values over intervals of a fixed length. The range between

these intervals is called the period. Trigonometric functions are known to be periodic and

hence are useful in the study of periodicity. A sinusoidal function is a good example of a

periodic function. For instance a sinusoidal function

sin(2πft) (3.1)

has a period T = 1/f where f is a parameter that is measured in cycles per unit time.

This then becomes the frequency of the function such that sin(2πft) = sin(ωt). The

parameter ω = 2πf is called the angular frequency of the sinusoidal function which is

measured in radians per unit time. This measurement however does not give meaning in

practice and instead normalized angular frequencies

f = ωt/2π, t = 1, 2, ..., T

are used. This is measured in cycles per unit time. In the next section, we will discuss

Fourier analysis which forms the fundamentals in spectral analysis.
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3.1 Fourier Analysis

The study of Fourier analysis is the basis for constructing arbitrary functions using si-

nusoids. For a finite sequence {Xt} for t = 1, 2, ..., T , it can be represented as a linear

combination of trigonometric functions

Xt =

[T/2]∑
k=0

[
akcos

(
2πkt

T

)
+ bksin

(
2πkt

T

)]
+ εt, (3.2)

for t = 1, 2, ..., T , and this is called the Fourier series of the sequence {Xt}. The values

ak and bk are called Fourier coefficients. From the orthogonal properties of trigonometric

functions

ak =
1

T

T∑
t=1

Xtcos

(
2πkt

T

)
, k = 1, 2, ..., [(T − 1)/2], (3.3)

where [.] refers to the integer part if T is even

ak =
2

T

T∑
t=1

Xtcos

(
2πkt

T

)
, k = 1, 2, ..., [(T − 1)/2], (3.4)

if T is odd. The representation of bk is given as

bk =
2

T

T∑
t=1

Xtsin

(
2πkt

T

)
, k = 1, 2, ..., [(T − 1)/2]. (3.5)

Fourier frequencies are then defined

ωk =

(
2πkt

T

)
t = 1, 2, ..., [(T − 1)/2].

When we use complex exponential, the Fourier series can be represented as

Xt =
∑

Cke
iωkt + εt, ∀k, (3.6)

where the inverse is given by

Ck =
1

T

T∑
t=1

Xte
−iωkt, (3.7)
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and Ck are Fourier coefficients. Hence the sequence can be represented as

Xt =

T/2∑
k=0

(akcos(ωkt) + bksin(ωkt)) . (3.8)

Then it can be seen that a periodic function is uniquely determined by its pattern in

a range of one period and hence the series in equation 3.8 is periodic with n periods.

This forms the fundamental in understanding spectral analysis. The frequency domain is

based on Fourier analysis using the periodogram or the sample spectrum. In the following

sections, we will discuss the spectrum and the periodogram, it’s estimator.

3.2 The Spectrum

By using the Fourier theory, for a given time series Xt with a period of T can be expressed

as a sum of sinusoids with frequencies

ωk = k/T, k = 1, 2, ...,

In the literature, there are two types of models for sinusoidal functions, the real sinusoidal

model given by

Xt =

q∑
k=1

[Akcos(ωkt) +Bksin(ωkt)] , (3.9)

for Ak, BK ∈ R are amplitude parameters satisfying the conditions

A2
k +B2

k > 0.

The complex sinusoidal model is given by

Xt =

q∑
k=1

Ckcos(ωkt+ φk), (3.10)
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where Ck > 0 for k = 1, 2, ... are the amplitude parameters and φk ∈ (−π, π) are the

phase parameters. The frequencies are assumed to be in the order

0 < ω1 < ω2 < ... < ωq < π.

In time domain inference, the ACF is used to explain the properties of the time series.

The ACF can also be represented in frequency domain as a linear combination of many

sinusoidal functions with different frequencies. If γ(h) is the ACF of a stationary process

{Xt}, then there exists a unique non-decreasing right continuous function F (ω), with

F (−π) = 0, such that

γ(h) =
1

2π

∫ π

−π
eiωhdF (ω). (3.11)

F (ω) is the spectral distribution function. If γ(h) is absolutely summable such that

∞∑
i=1

|γ(h)| <∞, (3.12)

then there exists a unique uniformly continuous non-negative function f(ω) called the

spectral density function such that

γ(h) =
1

2π

∫ π

−π
f(ω)eiωhdω, (3.13)

and

f(ω) =
1

2π

∞∑
h=−∞

γ(h)e−iωh. (3.14)

In frequency domain analysis of long memory, inference is based on the spectral density

f(ω), and it’s estimator the periodogram. If a time series {Xt} has autocovariance γ(h)

satisfying

∞∑
h=−∞

|γ(h)| <∞, (3.15)
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then there is a spectral density defined by

f(ω) =
1

2π

∞∑
h=−∞

γ(h)e−2πiωh. (3.16)

The spectral density gives an alternative view of a stationary series. One method of

estimating the spectral density of a time series {X1, X2, , , XT} is by replacing the γ(.)

by the sample autocovariance

γ̂(h) =
1

n

T−|h|∑
t=1

(
Xt+|h| − X̄

) (
Xt − X̄

)
. (3.17)

Another method that is widely used in literature is by computing the periodogram, which

is defined to be the square of the discrete Fourier transform (DFT) modulus at frequency

ωj. An advantage of using the periodogram is that its asymptotic expectation is the

spectral density f(ω), which shows that the periodogram is an unbiased estimator of the

spectral density. In the following section, we discuss the periodogram method and its

properties.

3.3 The Periodogram

In time series, a periodogram is used to identify the periodicity of a time series. This

can be helpful for identifying the dominant cyclic behavior in a series, particularly when

cycles are not related to the commonly encountered seasonality. The periodogram is

the square of the modulus of the DFT. A time series {Xt} with T observations can be

represented using a Fourier representation as

Xt =

T/2∑
k=0

[akcos(ωkt) + bksin(ωkt)] . (3.18)

where ωk are Fourier frequencies and ak and bk are Fourier coefficients. Fourier coefficients

are estimates of fitting the regression model

Xt =

q∑
k=1

[Akcos(ωkt) +Bksin(ωkt)] + et. (3.19)
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For a sequence {X1, X2, , , XT}, the DFT is given by {W (ω0),W (ω1), ...,W (ωT−1)} where

W (ωk) =
1√
T

T∑
t=1

Xte
−2πiωkt, (3.20)

and the Fourier frequencies

ωk =
2πk

T
, k = 0, 1, 2, ..., T/2.

The periodogram is then defined as

I(ωj) = |W (ωj)|2

=
1

πT

∣∣∣∣∣
T∑
t=1

Xte
−iωjt

∣∣∣∣∣
2

. (3.21)

The periodogram is asymptotically an unbiased estimator of the spectral density f(ω).

This means that

E(I(ω)) = f(ω).

The periodogram however is an inconsistent estimator of the spectral density.

3.4 Properties of the Periodogram

In order to understand the properties of the periodogram, an analysis of the Fourier

coefficients can be used. For an iid N(0, σ2) time series

E(ak) =
2

T

T∑
t=1

E(Xt)cos(ωkt) = 0, (3.22)

26



and

Var(ak) =
4

T 2

T∑
t=1

σ2cos2(ωkt)

=
4σ2

T 2

T∑
t=1

cos2(ωkt)

=
4σ2

T 2
.
T

2

=
2σ2

T
. (3.23)

similarly,

E(bk) = 0,

and

Var(bk) =
2σ2

T
.

Hence, ak and bk are iidN(0, 2σ2/T ) so that

Ta2
k

2σ2
and

Tb2
k

2σ2
(3.24)

follows a chi-square distribution with 1 degree of freedom. For k 6= j,

Cov(ak, bj) =
4

T 2
E

(
T∑
t=1

Xtcos(ωkt).
T∑
u=1

Xusin(ωju)

)

=
4

T 2

T∑
t=1

(E (Xt) cos(ωKt)sin(ωjt))

=
4σ2

T 2

T∑
t=1

(cos(ωkt)sin(ωjt))

= 0, ∀k, j (3.25)

and hence, the periodogram ordinates

I(ωk)

σ2
=

T

2σ2

(
a2
k + b2

k

)
(3.26)
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follows a chi-square distribution with two degrees of freedom. The shortfall however of

this estimator is that it is an inconsistent estimator of the spectral density. This is as a

result of the variance of the periodogram not depending on T , such that

lim
T→∞

Var(I(ω)) 6= 0 (3.27)

This then suggests that some form of averaging is needed for the periodogram to be

consistent. In the literature, smoothing techniques are used as a form of averaging to

remove some of the inconsistency in the periodogram estimate.

Consider the sample spectrum

f̂(ωk) =
1

4π
I(ωk). (3.28)

We can therefore deduce that

f̂(ωk) ≈ f(ωk)
χ2(2)

2
(3.29)

and we can use equation 3.29 to find moments of the sample spectrum. The first moment

is given by

E(f̂(ωk)) = E

[
f(ωk)

χ2(2)

2

]
= f(ωk) (3.30)

with the variance is

Var(f̂(ωk)) = V ar

[
f(ωk)

χ2(2)

2

]
= [f(ωk)]

2 . (3.31)

Thus we can see that the variance does not depend on T . This shows the inconsistency

of the sample spectrum and the peridogram. The periodogram ordinates are then given

by

Cov(f̂(ωk)), f̂(ωj)) = 0, k 6= j.
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A natural way of reducing this variation is by smoothing the sample spectrum in the

vicinity of the target frequency. A smoothed sample spectrum obtained from weighted

average of M values at a target frequency ωk,

f̂W (ωk) =
M∑

j=−M

WT (ωj)f̂(ωk − ωj), (3.32)

where M , the number of frequencies used in the smoothing is the function of T such that

M →∞ as n→∞. WT (ωj) is the weighting function such that

1.

M∑
j=−M

WT (ωj) = 1. (3.33)

2.

WT (ωj) = WT (−ωj). (3.34)

3.

lim
T→∞

M∑
j=−M

WT (ωj) = 0. (3.35)

This weighting function WT (ωj) is called the spectrum window. Calculating moments of

the sample spectral in equation 3.32 yields

E[f̂W (ωk)] =
M∑

j=−M

WT (ωj)E(f̂(ωk − ωj))

≈ f(ωk)
M∑

j=−M

WT (ωj)

= f(ωk) (3.36)
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and

V ar[f̂W (ωk)] ≈
M∑

j=−M

W 2
T (ωj)(f(ωk))

2

≈ (f(ωk))
2

M∑
j=−M

W 2
T (ωj) (3.37)

and thus, using property in equation 3.35, the variance of this sample spectrum decreases

as mT increases. This smoothing procedure, like any other statistical smoothing proce-

dures, suffers from the balance between variance reduction and bias.

Since the spectrum is the Fourier transform of the autocovariance function γ(k), an

alternative smoothing can be applied to sample autocovariances ˆγ(k) using the weighting

function W (k). This is represented by

f̂W (ω) =
1

2π

(T−1)∑
k=−(T−1)

W (k)γ̂(k)e−iωk (3.38)

and due to the symmetric nature of the autocovariance, this can also be given as

f̂W (ω) =
1

2π

M∑
k=−M

W (k)γ̂(k)e−iωk (3.39)

where M is the value that depends on T . The weighting function WT (k) for the auto-

covariance is called the lag window. The lag window and the spectral window has the

following relationship;

1.

WT (ω) =
1

2π

M∑
k=−M

WT (k)e−iωk (3.40)

is the spectral window, and

2.

WT (k) =

∫ π

−π
WT (ω)eiωkdω (3.41)

is the lag window.
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The above relationship shows that the spectral window is the Fourier transform of the

lag window and the lag window is the inverse Fourier transform of the spectral window.

This kind of relationship forms a Fourier transform pair. In the following section, we

discuss some of the commonly used lag and spectral window and properties thereof.

3.5 Windows of the Periodogram

Smoothing techniques of the estimated spectrum using lag or spectral windows is dis-

cussed in the sections. One of the most basic and simple windows is the rectangular

window. This lag window is defined as

WR
T (k) =

 1 |k| ≤M

0 |k| > M
, (3.42)

where M < T − 1 is a truncation point, and the corresponding spectral window is given

by

WR
T (ω) =

1

2π
WR
T (k)e−iωk

=
1

2π

sin(ω[M + 1/2])

sin(ω/2)
. (3.43)

The bandwidth of the rectangular estimator is

2π

2M + 1
,

and hence this bandwidth has an inverse relationship with the truncation point M . This

simply means that as M increases, the bandwidth decreases and the variance of the

smoothed spectrum increases and the bias decreases. When M decreases, the variance

will also decrease and the bias increases. This displays the trade-off between the variance

and the bias problem.

The advantage of using the rectangular lag window is its simplicity and mathematical

ease of use. The disadvantage however is that this window may lead to negative values

for some frequencies ω. This results violates the properties of the spectrum that it is a

nonnegative function.
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Bartlett’s proposed the lag window

WB
n (k) =

 1− |k|/M |k| ≤M

0 |k| > M
, (3.44)

and the corresponding spectral window given by

WB
n (ω) =

1

2π

M∑
k=−M

(
1− |k|

M

)
e−iωk

=
1

2πM

[
sin(ωM/2)

sin(ω/2)

]2

. (3.45)

From these results, the Bartletts spectrum estimator is nonnegative. It can be shown

that some of the shortcomings of the rectangular lag window are corrected when using

the Bartletts triangle lag window. This includes a phenomena called the leakage which

results from big side lobes of a window which then results in functions that has sharp

corners. These type of functions are always avoided in the estimation.

Blackman and Tuckey introduced the lag window

W T
n (k) =

 1− 2a+ 2acos(πk/M) |k| ≤M

0 |k| > M
(3.46)

and the corresponding spectral window is given by

W T
n (ω) =

1

2π

M∑
k=−M

[
1− 2a+ 2acos

(
πk

M

)]
e−iωk

=
a

2π

[
sin[(ω − π/M)(M + 1/2)]

sin[(ω − π/M)/2]

sin[(ω + π/M)(M + 1/2)]

sin[(ω + π/M)/2]

]
+

(1− 2a)

2π

sin[ω(M + 1/2)]

sin(ω/2)
. (3.47)

This is a weighted linear combination of the spectral windows for the rectangular lag

function at frequencies (ω − π/M), ω, and ,(ω + π/M). Thus, there is a possibility

that the Blackman-Tukey spectrum may also be negative at some frequencies ω. When
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a = 0.25, this window is given by

W T
n (k) =

 1/2[1 + cos(πk/M)] |k| ≤M

0 |k| > M
(3.48)

and is called the Tukey-Hanning window. Parzen introduced a lag window given by

W P
n (k) =


1− 6(k/M)2 + 6(|k|/M)3 |k| ≤M/2

2(1− |k|/M)3 M/2 < |k| ≤M

0 |k| > M

(3.49)

and the corresponding spectral window for an even and large M is given by

W P
n (ω) ≈ 3

8πM3

[
sin(ωM/4)

1/2sin(ω/2)

]4

. (3.50)

It must be noted that the bandwidth of the Tukey-Hanning window is narrower that

the bandwidth of the Parzen spectral window. This suggests that the Tukey-Hanning

estimator will contain lesser bias that the Parzen estimator. This also shows the challenge

in time series that is faced by researchers, which is the selection of the optimal bandwidth.

It is known in theory that wider bandwidths produce smoother spectrums with smaller

variance of the estimators and narrower bandwidths lead to smaller bias and smudging.

This needs a trade-off between high stability and high resolution. In literature, the

window closing algorithm is normally applied to minimise the error of selecting a non-

optimal bandwidth. The window closing algorithm is as follows:

1. Chose a spectral window with an acceptable and desirable shape.

2. Initially calculate the spectral estimates using a large bandwidth and then re-

calculate the estimates by gradually reducing the bandwidth until optimal stability

and resolution is achieved.

3.6 Summary

This chapter discusses spectral theory and methods which forms the fundamentals in long

memory analysis in frequency domain. We started the chapter with Fourier analysis, this

is mainly because spectral analysis is based on transforming a series into a sinusoidal
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function. This can be done using Fourier transforms and to go back to the initial func-

tion using the inverse Fourier transform. With this information, we then discussed the

spectrum. The spectrum is as important in frequency domain as much as the ACF is in

time domain. Using Fourier transforms, we constructed general spectrum and we then

discussed the periodogram which is used to estimate the spectrum. The periodogram is

shown to be an unbiased but inconsistent estimator of the spectrum. An inconsistent

estimator resulted from the periodogram being independent of the period, T . This was

further shown using the sample spectrum.

Inconsistency is estimating the spectrum has been dealt with in the literature. In

this chapter, we discussed lag and spectral windows which could be used to smooth the

periodogram or the sample spectrum and reduce the inconsistency in variation. Lag

and spectral windows rely on bandwidths which are used in a trade-off between high

stability and high resolution. The main challenge that we found is that of selecting the

optimal bandwidth does not have a direct method. We only discussed the closing-window

algorithm, which is simple to use and can assist in selecting an optimal bandwidth. In

the next chapter, we will discuss long memory processes. The theory that was studied in

the chapter will be useful when discussing long memory models under frequency domain.
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Chapter 4

Theory and Methods of Long

Memory Processes

A stationary process Xt is a long memory process if there exists a real number 0 < H < 1

such that the autocorrelation function (ACF,) ρ(τ) has the following hyperbolic decay

lim
τ→∞

ρ(τ) = C2H−1, C > 0, (4.1)

where C is a finite constant and H is the Hurst exponent. A covariance stationary process

{Xt} with autocovariance function γ(k) is said to have long memory if

∑
∀k

|γ(k)| =∞. (4.2)

This displays the property of unsummability of the autocovariance in long memory pro-

cesses. The autocovariance decays slowly at a hyperbolic rate overtime as given by

equation 4.1. In the literature of long memory models, the long range parameter d is

often used and sometimes used interchangeably with the Hurst exponent, H. The long

range dependence parameter d of a stationary process with long memory varies in the

interval

0 < d <
1

2
, (4.3)
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and has the following relationship with the Hurst exponent

d = H − 1

2
. (4.4)

By using this equality, we can deduce the equivalent interval for the Hurst exponent which

is 1/2 < H < 1. For a stationary long memory process satisfying the above discussed

conditions, the spectral density, if it exists, satisfies

f(ω) = C|ω|−2d, 0 < d < 1/2. (4.5)

This shows that a decay rate of C2H−1 is similar to the decay rate of |ω|−2d of the spectral

density f(ω) near the frequency ω = 0. Long memory processes have a relationship with

self-similar processes and sometimes can be better understood using these processes. In

the next section, we discuss self-similar processes and their properties thereof.

4.1 Self-Similar Processes

By definition, self-similar processes are non-stationary processes whose increments may

generate stationary long memory processes under certain conditions. A continuous stochas-

tic process {Xt} is said to be self-similar of index H > 0 if, for all a > 0, the finite-

dimensional distributions of {X(at)} are the same as those of {aHX(t)}. A good example

of a self similar process is a Brownian motion with H = 1/2. Let

rH(s, t) =
1

2
|s|2H + |t|2H − |s− t|2H , (4.6)

for a Gaussian process {Xj}. Let {Xt} be an H-self similar stationary increment (H-sssi)

process with index H > 0, and X0 = 0, E(X2
t ) <∞. Then

Cov(Xs, Xt) = σ2rH(s, t), σ2 = E(X2
1 ). (4.7)

Moreover, if E(X2
t )→ 0 as t→ 0, then 0 < H ≤ 1. Now define a process Yk = Xk+1−Xk,

then

γY (k) =
σ2

2

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
. (4.8)
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For any 0 < H < 1, the following hold:

i.) rH(s, t) is a covariance function

ii.) The process {Yk} is a covariance stationary process with an autocovariance function

Cov(Yj, Yk) = γY (j − k) ∀k, j, (4.9)

and

γY (k) = σ2H(2H − 1)|k|2H−1 +O(k−2), k →∞. (4.10)

Moreover, for 0 < H < 1/2,

∑
∀k

γY (k) = 0. (4.11)

An important property to note is the fact that for H = 1/2, {Yk} is an uncorrelated

process, whereas for 1/2 < H < 1 ,
∑
∀k γY (k) = ∞ and hence {Yk} has long memory

with parameter d = H − 1/2. A Brownian motion is a Gaussian process {B(t)} with

B(0) = 0, E(B(t)) = 0 and covariance function

γB(s, t) = E(B(s)B(t))

= min(s, t). (4.12)

Further, a Brownian motion process is non-stationary since Var(B(t))=t but has sta-

tionary increments B(t + h) − B(t) which follows N(0, h) and are independent. The

processes {B(t)} is H−self similar with parameter H = 1/2, and for any a > 0,

{B(at)}=a1/2{B(t)}. Fractional Brownian motion is a classical example of H-self sim-

ilar processes. Let 0 < H < 1, a Gaussian process BH = {BH(t)} with BH(0) = 0,

E(BH(t) = 0) and covariance function rH(s, t) is called the fractional Brownian motion

with parameter 0 < H < 1. This implies that for 0 < H < 1, BH is an H−sssi pro-

cess. Thus, for any a > 0, the Gaussian process {BH(at)} and {aHBH(t)} have equal

covariances, rH(at, as) = a2HrH(s, t), which imply H−self similar property. From the

above discussion, it is clear that self-similar processes are non-stationary processes whose
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increments may generate stationary long memory processes under certain conditions. In

the following sections, we discuss a widely used process in long memory modelling.

4.2 ARFIMA Processes

In long memory processes, one of the mostly used and understood parametric models

is the autogregressive fractionally integrated moving average (ARFIMA) model. This

model was introduced by Granger and Joyeux (1980) to model processes which have

unsummable autocovariances and hence presenting hyperbolic decay of autocorrelations.

These models have an advantage in that they are similar to autoregressive integrated

moving average (ARIMA) processes which are also widely used in econometrics. The

only difference in these models is that ARFIMA processes generalise ARIMA processes

by allowing non-integer values for d.

To further define d, consider the differencing operator ∆d = (1−L)d with non-integer

values d > −1 are used. A Taylor expansion is used to evaluate (1− L)d as follows:

(1− L)d =
∞∑
k=0

Γ(d+ 1)Lk

Γ(k + 1)Γ(d− k + 1)

= 1− dL− d(1− d)

2!
L2 − d(1− d)(2− d)

3!
L3 − ...

= 1−
∞∑
k=0

Ck(d)Lk, (4.13)

and it is highlighted that Ck = Γ(k − d)/Γ(k + 1) k−(d+1) is large and hence the coef-

ficients of the polynomial will decay hyperbolically. The process {Xj} is said to be an

ARFIMA(0, d, 0) process with −1/2 < d < 1/2 if {Xj} is a stationary solution with zero

mean of the difference equations

∆dXj = εj, ∀j, (4.14)

where εj WN(0, σ2
ε ) is a white-noise sequence. A linear process of {εj} can then be found
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by impulse response weights as

Xj = ∆−dεj

=
∞∑
k=0

πk,−dεj−k, (4.15)

where πk,d =
(
k−d−1
k

)
and π0,−d = 1. This linear process is a unique stationary solution to

equation 4.14. To study the properties of this process, the following theorems are made

use of.

Theorem 4.1. Let

Xj =
∞∑
k=0

πk,−dεj−k (4.16)

with

i.) π0,d = 1 and

πk,−d =
Γ(k + d)

Γ(k + 1)Γ(d)

=
k∏
s=1

s− 1− d
k

, k = 1, 2, ...

=
1

Γ(d)
k−1+d(1 +O(k−1)), k →∞. (4.17)

Moreover, for −1/2 < d < 0,

∞∑
k=0

πk,−d = 0,
∑
∀

γX(j) = 0 (4.18)

ii.) The spectral density is

fX(ω) =
σ2
ε

2π

∣∣1− eiω∣∣−2d

=
σ2
ε

2π

∣∣∣2sin
(ω

2

)∣∣∣−2d

≈ σ2
ε

2π
|ω|−2d (4.19)
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iii.) For j = 1, 2, ...

γX(0) = σ2
ε

Γ(1− 2d)

Γ2(1− d)

γX(j) = σ2
ε

Γ(j + d)

Γ(j − d+ 1)

Γ(1− 2d)

Γ(1− d)Γ(d)

rX(j) =
Γ(j + d)

Γ(j − d+ 1)

Γ(1− d)

Γ(d)

=

j∏
k=1

k − 1 + d

k − d
(4.20)

and as j →∞

γX(j) Cγj
−1+2d, Cγ =

Γ(1− 2d)

Γ(d)γ(1− d)
σ2
ε (4.21)

Theorem 4.2. Suppose −1/2 < d < 1/2, d 6= 0 and {εj} is an ergodic white-noise

process. Then {Xj}, where

Xj =
∞∑
k=0

πk,−dεj−k,

is a unique stationary ergodic zero-mean solution of

∆dXj = εj, ∀j.

Moreover, {Xj} is invertible:

εj = ∆dXj

=
∞∑
k=0

πk,dXj−k, π0,d = 1, (4.22)

where

πk,d =
1

Γ(−d)
k−1−d(1 +O(k−1)), k →∞. (4.23)

Keeping the above theorems for ARFIMA(0,d,0) process in mind, we will discuss

the ARFIMA(p,d,q) process. The stationary zero mean process {Xj} is said to be an
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ARFIMA(p, d, q) process with parameter d, −1/2 < d < 1/2 if it satisfies the model

φ(L)∆dXj = θ(L)εj, (4.24)

where {εj} is a WN(0, σ2
ε ) sequence and φp(L) and θq(L) are polynomials of order p and

q respectively.

The solution {Xj} of an ARFIMA(p, d, q) can be causal or invertible. It is said to be

causal if it can be represented as a moving average

Xj =
∞∑
k=0

akεj−k,
∞∑
k=0

a2
k <∞ (4.25)

and if invertible is represented as

εj =
∞∑
k=0

νkXj−k,
∞∑
k=0

ν2
k <∞ (4.26)

which holds for real numbers {νk}. The following theorem establishes square summability

and existence of E(Xj) = 0, V ar(Xj) = σ2
ε

∑∞
k=0 a

2
k,−d, and

γX(j) = σ2
ε

∞∑
k=0

ak,−dak+j,−d.

Theorem 4.3. Suppose that |d| < 1/2 and assume |φ(z)| > 0,|θ(z)| > 0. Then the

process {Xj} represented by

Xj = A(L)εj

=
∞∑
k=0

ak,−dεj−k, a0,−d = 1 (4.27)

has the following properties

i.) if d=0, then for some α > 0 and C > 0:

|ak,0| ≤ Ce−αk, k ≥ 1

|γX(j)| ≤ Ce−αj, j ≥ 1.
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ii.) If d 6= 0 then with ν = θ(1)
φ(1)

and Ca = ν
Γ(d)

,

ak,−d = νπk,−d +O(k−2+d)

= Cak
d−1 +O(k−2+d)

γX(j) ≈ ν2γY (j)

≈ Cγj
−1+2d, Cγ = C2

aL(d, 1− 2d)σ2
ε ,

and in addition, if −1/2 < d < 0, then

∞∑
k=0

ak,−d = 0,
∑
∀

γX(j) = 0.

iii.) The spectral density of {Xj} is

fX(ω) =
σ2
ε

2π

∣∣∣2sin
(ω

2

)∣∣∣−2d
∣∣∣∣ θ(e−iω)

φ(e−iω)

∣∣∣∣2
≈ σ2

ε

2π

∣∣∣∣ θ(1)

φ(1)

∣∣∣∣2 |ω|−2d. (4.28)

The proof of the above theorems can be found in Giraitis et al. (2012). The following

theorem establishes the existence and uniqueness of an invertible moving average solution

to ARFIMA equations and demonstrates the existence of its infinite order autoregressive

(AR) representation

εj =
∞∑
k=0

bk,dXj−k, (4.29)

where AR weights bk,d are defined by the expansion

(1− α)d
φ(z)

β(z)
=
∞∑
k=0

bk,dz
k, |z| < 1, b0,d = 1 (4.30)

and for d 6= 0 have the property

bk,d = (ν ′ +O(1))πk,d

≈ ν ′

Γ(−d)
k−1−d, k →∞, ν ′ =

φ(1)

θ(1)
.

42



Theorem 4.4. Suppose −1/2 < d < 1/2, {εj} is an ergodic process and assume |φ(z)| >

0, |θ(z)| > 0, |z| ≤ 1. Then the process

Xj = A(L)εj

is a unique invertible stationary ergodic zero mean solution of the ARFIMA equation

φ(L)∆dXj = θ(L)εj.

4.3 Discrete Long Memory Methods

In long memory testing, a widely used method in estimating the Hurst exponent is the

rescaled range estimator (R/S)(n) that was developed by Hurst (1951). This is mainly

due to its simplicity and easy to estimate and interpret. In the following sections, we

discuss discrete methods of estimating the Hurst exponent. The first method that we

elaborate on is the rescaled range estimator, followed by the KPSS statistic which is used

to differentiate between a long memory and a short memory stationary process. Lastly

we will discuss the rescaled variance estimator which is based on centering the KPSS

statistic.

4.3.1 Rescaled Range estimator

A rescaled range static, (R/S)(n), was formerly introduced by Mandel (1971) in finance.

The (R/S)(n) is used to estimate the Hurst exponent. This estimator can characterize a

series, and examples of this was done in the paper by Kale and Butar (2010). Consider a

time series {Xt} of length T and divide it into N adjacent sub-periods of length ν = T
N

.

Then for each of the sub-periods generated, calculate the average values and the series

of accumulated standard deviations from the arithmetic mean values. This is known in

literature as a profile. The range is then calculated as the difference of the maximum and

the minimum values of the profile divided by the standard deviation for each sub-period.

Each range (Ri) is standardised by the corresponding standard deviation (Si) and forms

a rescaled range (R/S) (ν) for the sub-period (Kale and Butar, 2010). Below we further

discuss this statistic and further analysis is found in Teverovsky et al. (1999). For a time
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series {Xt} with a partial sum

Y (n) =
n∑
i=1

Xi, n ≥ 1, (4.31)

and a sample variance

S2(n) =
1

n

n∑
i=1

(
Xi −

1

n
Y (n)

)n
, n ≥ 1. (4.32)

The R/S static is defined

(R/S) (n) =
1

S(n)

{
max
0≤t≤n

(
Y (t)− t

n
Y (n)

)
− min

0≤t≤

(
Y (t)− t

n
Y (n)

)}
, n ≥ 1, (4.33)

and this can further be related to

E [(R/S)(n)] ∼ C1n
H as n→∞, (4.34)

where H is in the interval (0, 0.5), C1 is finite positive constant independent of n. Then

ln (E [(R/S)(n)]) = lnC1 +Hln(n), (4.35)

which can be re-parameterised by letting α = lnC1 and β = H and hence resulting in

the following

η = α + βln(n). (4.36)

The above log equation is used to graphically estimate H, where we equate the estimator

of H with the slope of the graph. If the data process is white noise then the plot is a

straight line with slope of 0.5. If the process is persistent the slope is greater than 0.5.

And if the data process is anti-persistent, the slope is less than 0.5. The values that are

used for the expected values of the R/S estimate are approximated by Granero et al.

(2008) using

E [(R/S)(n)] =


n− 1

2

n

Γ(n−1
2

)√
πΓ(n

2
)

∑n−1
i=1

√
n−i
i

for n ≤ 340

n− 1
2

n
1√

nπ
2

Γ(n
2

)

∑n−1
i=1

√
n−i
i

for n ≥ 340
, (4.37)
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and we must note that the above was calculated using the normality assumption in

Teverovsky et al. (1999). The results that were found by Granero et al. (2008) using the

above formula was not consistent with their data and thus they opted to using the linear

regression of the classical R/S analysis with an extra term

lnHn = ln(R/S)(n)− lnE(R/S)(n) + ln(n)/2, 25 (4.38)

where the expectation is defined above. To find H, they then used the regression (Granero

et al., 2008)

ln(Hn) = ln(C1) +Hln(n). (4.39)

If the time series is short term, then the relation becomes

E [(R/S)(n)] ∼ C1n
1
2 as n→∞. (4.40)

The difference between the two estimates above is known as the Hurst Effect.

The above R/S statistic has been said to be too sensitive to short-term memory thus

Lo (1991) introduced a modified statistic. Consider the above estimator obtained from

4.36, instead of normalising R with S2(n), normalise it with the weighted sum of auto-

covariances

Sq(n) =

(
S2(n) + 2

q∑
j=1

ωj(q)γ̂j

)
, (4.41)

where γ̂j are sample autocovariances and weights ωj(q) are such that

ωj(q) = 1− j

q + 1
, q < n, (4.42)

where q = 0 is similar to the classical R/S statistic and it produces the sample variance

which is used to normalise the range. The modified R/S statistic is defined in Teverovsky

et al. (1999) as

Vq(n) =
1√
n

[
R

Sq(n)

]
. (4.43)

The main challenge outlined in Teverovsky et al. (1999) is to find an appropriate choice
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of q. A data driven approach used is estimating the optimum q by the formula

qopt =

[(
3n

2

)1/3(
2ρ̂

1− ρ̂

2)2/3
]
, (4.44)

where n is the length of data, ρ̂ is the estimated first-order auto-correlation coefficient

and [.] is the greatest integer function.

R/S have been further tested by Kristoufek (2012) on how is it affected by different

memory and distributional properties. It was found that the modified R/S is biased if

there is presence of short memory in the time series, the classical R/S was also tested and

found that it is biased toward short-range dependence. The conclusions of Ladislav and

Petra (2013) agreed with what other authors in this field have recommended that this

estimate must not be used in isolation, it must be used in conjunction with other tests.

4.3.2 The KPSS Statistic

The KPSS (Kwiatkowski et al., 1992) statistic is used to test stationarity against unit

root. This test is mostly used to distinguish between short and long memory processes.

This statistic was used by Lee and Schmidt (1996) to test long memory in stationary

time series. The KPSS statistic is defined as:

η =
1

T 2σ̂T
2(q)

∑
∀t

S2
t , (4.45)

where St is the partial sum
∑
êi, {êi} are the residuals of the regressions and σ̂2

T (q) is the

estimate of the variance of the residuals. A similar statistics to the KPSS and the rescaled

range statistic is the rescaled variance statistic introduced by Giraitis et al. (2001).

4.3.3 The Rescaled Variance Statistic

The Rescaled Variance (V/S) statistic is based on centering η the KPSS statistic and is

defined as

(V/S) =
1

T
V̂ (S∗1 , . . . , S

∗
T ) ∗ 1

σ̂2
T (q)

, (4.46)

where S∗j =
∑j

i=1(Xi − X̄N), the (V/S) is the sample variance of the series of the partial

sum. The (V/S) has uniformly higher power that the KPSS statistic and is less sensitive
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to the choice of the order q than the modified (R/S) statistic. For a level series 2 ≤

q ≤ 10 detects the existence of long memory. The properties of this test are further

discussed in Giraitis et al. (2003). The R/S, V/S and KPSS statistic are time domain

tests. Other time domain methods that could be used are the Aggregated variance

method, Differenced aggregated variance method, Aggregated absolute value method,

Fractal (Higuchi) dimension method and variance of residuals (Peng) method among

other. As an alternate to these tests are frequency domain estimation methods which

we discuss in the following sub section. As an alternate to these tests, frequency domain

estimation methods have been proposed in literature.

4.4 Semi-Parametric Long Memory Methods

In frequency domain analysis, there are two widely used statistical procedures in the

class of semi-parametric estimation which are based on the log periodogram namely, (1)

Geweke, Porter and Hudak (GPH) estimator (Geweke and Porter-Hudak, 1983) and (2)

the Local Whittle Estimator (LW). LW known to be more effecient than GPH regression

in the stationary case (Shimotsu and Phillips, 2005).

4.4.1 Log Periodogram Regression

Geweke and Porter-Hudak (1983) proposed a semi-parametric approach to the testing of

long memory. For a given a fractionally integrated process, its spectral density is given

by

f(ω) = [2sin(ω/2)]−2d fu(ω), (4.47)

where ω is the Fourier frequency, fu(ω) is the spectral density and ut is a stationary short

memory disturbance with a zero mean. The log periodogram regression is based on

ln[f(ωj)] = ln[fu(0)]− dln
[
4sin2

(ωj
2

)]
+ ln

[
fu(ω)

fu(u)

]
. (4.48)

This then becomes

ln[I(ω)] = a+ dln
[
4sin2

(ωj
2

)]
+ ζω, (4.49)
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which we can re-parameterise as

yj = a+ dxj + ζj, (4.50)

where yj = ln[I(ωj)] and xj = ln
[
4sin2

(ωj
2

)]
. The long range dependence parameter is

estimated as

d̂ =
Nx̄ȳ −

∑m
j=1 yixi(∑m

j=1 x
2
i − nx̄2

) , (4.51)

where m = g(T ) and this estimator is asymptotically normal in large samples, i.e.

d̂ ∼ N

(
d,

π2

6
∑m

j=1(Xj − X̄)

)
. (4.52)

As T →∞ we get

√
m(d̂− d) ∼ N

(
0,

π2

6
∑m

j=1(Xj − X̄)

)
, (4.53)

and the parameter m must be selected such that m = T ν , 0 < ν < 1. This formulation

assumes OLS and hence an OLS estimate is derived with error terms being independent

and identically Guassian distributed. In the following Section we discuss the Whittle

estimator.

4.4.2 Whittle Estimator

The Whittle estimator is the second semi-parametric estimator based on the periodogram

(Taqqu and Teverovsky, 1996). It is the estimator which minimizes the function

Q(θ) =

∫ π

−π

I(ω)

f(ω;θ)
dω, (4.54)

where I(ω) is the periodogram

I(ω) =
1

2πN

∣∣∣∣∣
N∑
i=1

Xje
ijω

∣∣∣∣∣
2

, (4.55)

and f(ω; θ) is the spectral density at frequency ω and θ denotes the vector of unknown

parameters. Under fractional integrated model, θ is the Hurst exponent (Shimotsu and
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Phillips, 2005). This means that the Whittle estimator of θ0 is

θ̂T = arg min
θεΘ

Q(θ), (4.56)

where Q(θ) is

Q(θ) =
1

T

T∑
t=1

[
ln(f(ωt; θ)) +

I(ωt)

f(ωt; θ)

]
, ωy =

2πt

T
. (4.57)

The Local Whittle estimator of θ is known to have the limiting distribution (Baillie and

Kapetanios, 2007; Zaffaroni, 2009)

m
1
2

(
d̂− d0

)
→ N

(
0,

1

4

)
, (4.58)

where d0 denotes the true value of d and m represents the choice of bandwidth such that

m ≤ T 4/5. Long memory at times results from occassional mean breaks which introduces

structural breaks in data. Such breaks may result in spurious long memory. Thus in the

estimation of long memory, we need to cater for structural breaks that might arise and

we discuss this phenomena in the following Section.

4.5 Long Memory and Structural Breaks

A number of methods have been introduced in literature to address structural breaks

in time series processes. In this section we discuss the ICSS algorithm which is used to

identify breaks in the mean and for modeling long range dependence breaks, we apply

the split methodology and visual inspection of cumulative samples methodology.

4.6 Iterative Cumulative Sum of Squares Algorithm

The ICSS algorithm due to Inclan and Tiao (1994) is one of the most widely used algo-

rithm in testing for structural breaks. To calculate the ICSS, we first need to calculate

the Inclan-Tiao(IT) statistic which is given by

IT (k) = sup
k

∣∣∣∣∣
(
T

2

) 1
2

Dk

∣∣∣∣∣ ,
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where T is the length of the series, D0 = DT = 0, and Dk =
[
Ck
CT

]
− k

T
for k = 1, 2, ..., T

with Ck =
∑k

t=1 r
2
t . The null hypothesis when using this test is that the unconditional

variance is constant against the alternative that there is a break at some point in the data.

The value of k that maximise IT (k) is the estimate of the break time point in the data

series and the factor (T/2)0.5 is used to standardise the distribution of Dk. If there are

no breaks in the time series, the value of Dk revolves around zero. If breaks are detected

then Dk revolves away from zero. Under the null hypothesis, Dk is asymptotically a

Brownian bridge, i.e. Ŵr = W (r)− rW (1) where W (r) is a standard Brownian motion.

Since the IT (k) statistic was designed for independent and identically distributed

(i.i.d) processes, it has been found to be oversized when the underlying process is not

i.i.d, therefore non-parametric Bartlett kernel adjustment is applied. The adjusted IT (k)

is given by

AIT (k) = sup
k

∣∣T 1/2Gk

∣∣ ,
where Gk = ω̂−1/2

[
Ck −

(
k
T

)
CT
]
,ω̂ = γ̂0 + 2

∑m
l=1 [1− l(m+ 1)−1] ω̂l,ω̂l = 1

T

∑T
t=l+1(r2

t −

σ̂2)(r2
t−l − σ̂2) and σ̂2 = T−1CT . The lag truncation parameter m is selected under the

Newey and West (1994) methodology.

Inclan and Tiao (1994) computed the critical value of 1.358 being the 95th percentile

of the asymptotic distribution of Dk. Thus, a breakpoint in variance will be identified if it

exceeds the boundary ±1.358 in the Dk plot. We must note that the function Dk alone is

not powerful when a series contains multiple breaks. To address this shortcoming, Inclan

and Tiao (1994) developed an algorithm that uses the Dk function to systematically check

for change points in the series. This algorithm evaluates the function Dk over different

time periods. In the next section, we discuss structural breaks diagnosis in long memory.

4.6.1 Sample split and differencing methodology

When long memory is due to structural changes in data, it is known as spurious long

memory. A method that is used in literature to detect spurious long memory is due to

Shimotsu (2006). In this method, the series of returns is split into b sub-samples and

for each sub-sample, the long memory parameter is estimated using the local Whittle

estimator.
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Let the process of a split series be {Xt : t = (a − 1)T/b + 1, ..., aT/b} where a =

1, ..., b. We assume the periodogram ordinates 2π/(T/b), ..., 2π(m/b)/(T/b) as calculated

in Shimotsu (2006). Thus, for each of the samples we get

d̂(a) = arg min
d∈[α1,α2]

R(a)(d), (4.59)

where

R(a)(d) = ln[Ĝ(a)(d)]− 2d
b

m

m/b∑
j=1

ln(ωj),

Ĝ(a)(d) =
b

m

m/b∑
j=1

ω̃2d
j I

(a)(ω̃j), ω̃j =
2πj

T/b
, j = 1, ..., T/b, (4.60)

and

I(a)(ω̃j) =
1

2πT

∣∣∣∣∣∣
aT/b∑

t=(a−1)T/b+1

Xte
itj

∣∣∣∣∣∣
2

. (4.61)

The assumptions of this methodology can be found in Robinson (1995). A first test

that can be used is the visual inspection. This test however can only be used to detect

the structure of the data. In testing, the null hypothesis is

H0 : d = d(1) = d(2) = ... = d(k)

against the alternative of structural change hypothesis, where d̂(a) is the value of d from

the ath sample. The sample that is split into b sub-samples has

d̂b =


d̂− d0

ˆd(1) − d0

...

ˆd(b) − d0

 ,

and
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A =


1 −1 ... 0

. . . .

1 0 ... −1

 ,

where d0 is the true parameter and d̂ is the estimate of the total sample. We can

define

Ω =

 1 J ′b

J b bIb

 ,

where I i is a b× b identity matrix, and J i is a vector of ones. The Wald statistic and

the adjusted Wald statistic under H0 are

W = 4mAd̂b (AΩA′)
−1
(
Ad̂n

)′
and

Wc = 4m

(
cm/b

(m/b)

)
Ad̂b (AΩA′)

−1
(
Ad̂n

)′
respectively, where the correction cm is given by

cm =
m∑
j=1

v2
j vj = logj − 1

m

m∑
j=1

logj for m < T.

Under H0, Wc has an asymptotic χ2 distribution with n− 1 degrees of freedom.

Another test that is used by Shimotsu (2006) is based on the behavior of the differ-

enced series. If an I(d) series is differenced d̂ times, where d̂ is the consistent estimator

of d, the resulting series should be I(0). Two tests that are used on the differenced series

are the KPSS test statistic and the Phillips Perron test statistic. The first step in this

method is to demean the series

Xt − µ0 = (1− L)−d0ut1{t≥1}, (4.62)

where 1{t≥1} is an indicator function. The mean of the process Xt is estimated by the

sample average X̄ when d0 < 1. When d0 >1, the mean can be estimated by X1 and to
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cater for both of these conditions, an adjustment µ̂(d̂) can be used as an estimator of the

mean of the process. The dth differenced series is then defined as

ût = (1− L)d(Xt − µ̂(d̂)), (4.63)

and then we apply the unit roots test to ût. The adjustment µ̂(d̂) is

µ̂(d̂) = w(d)X̄ + (1− w(d))X1, (4.64)

where w(d) is a smooth weight function such that w(d) = 1 for d ≤ 1/2 and w(d) =

0 for d ≥ 3/4. When d ∈ (1/2, 3/4), then the value of w(d) that could be used is

1/2[1 + cos(4πd)].

4.6.2 Cumulative Samples Methodology

In the literature, most authors use sub-sample splitting methodology, as outlined in the

previous section, to investigate breaks in long memory using the long range dependence

parameter, d This method is attractive as it is simple to implement. However, it is

difficult to identify the dynamics of long memory in data overtime. A method that can

assist is the use of cumulative samples which can identify the structure of the long range

dependence parameter estimates and possible regimes that might exist overtime.

For a sample of size T , we can break it into b sub-samples each of size ti, i = 1, 2, ..., b

such that the total sample size is T = t1 + t2 + ...+ tb, for all ti > ti−1. For the purpose of

defining cumulative sub-samples, let T (i) = t1 + t2 + ...+ ti and define X̃i as a cumulative

sub-sample of size T (i). Then, we can define the i−th cumulative sample as

X̃i = {Xj}T (i)
j=1

= {Xj}t1+t2+...+ti
j=1

= {Xj}
∑i
k=1 tk

j=1 . (4.65)

For each of the cumulative sub-sample, we can then calculate the long range dependence

parameter estimate, d̂

d̂(i) = arg min
d∈[α1,α2]

R(i)(d), (4.66)
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where di is the parameter estimate of the i−th cumulative sub-sample. Plot the estimates

to visually view the evolution of long range dependence in data overtime. However, we

must note that this method is only a visual inspection of the long range dependence

parameter estimates overtime.

4.7 Chapter Summary

Similar to short memory time series processes, stationarity in long memory processes

play an integral role. To summarise this chapter, we started by definitions of covariance

stationary processes. This property is important as covariance stationary processes ex-

hibit long memory for unsummable autocovariances. The hurst exponent is then used to

measure the degree of long memory.

Self-similar processes are stochastic processes that are closely related to long memory

processes. This is as a result of self-similar process increments generating long memory

under certain conditions. From the idea of self-similar processes, we then discussed

a parametric long memory model, ARFIMA. ARFIMA is widely used in econometrics

literature to model return data which exhibit long memory. There are discrete and non-

parametric methods which are used in estimating the long range dependence parameter.

Discrete methods in time domain discussed are

• Rescaled range statistic,

• KPSS statistic,

• Rescaled variace statistic,

• Aggregated variance method,

• Differenced aggregated variance method,

• Aggregated absolute value method,

• Fractal dimension method, and

• Variance of residuals method,

and the semi-parametric methods in frequency domain are the
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• Log periodogram regression, and

• Whittle estimator.

Because of jumps and breaks in data, these methods produce uncertain results. In

order to overcome this, structural breaks methods are used to test level of breaks and

how it affects the memory of data series. The first method we discussed is the Inclan-tiao

which uses an iterative cumulative sum of squares algorithm to identify breaks. The

second method compares the equality of long range dependent parameters derived from

samples.
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Chapter 5

Heavy Tailed Distributions

Heavy tailed error distributions have been widely used in the econometrics literature to

model financial asset returns, an example would be a paper by Wright (2000) and Huang

et al. (2014). Recently generalized hyperbolic distributions have been used to model

heavy tailed data since they are able to capture information in the tails of empirical

distribution. This family of distributions include hyperbolic distribution, the student-

t distribution, the Laplace distribution, the generalized inverse Gaussian distribution,

exponential distribution, the variance-gamma distribution and the skewed generalised

hyperbolic student-t distribution.

In the theory of heavy tailed distributions, the upper tail of the distribution is im-

portant as this is studied to get the tail behavior and properties of the distribution. The

upper tail of a random variable X with distribution function F (X) is defined

SX(x) = P (X > x). (5.1)

In life analysis and linear models applications this is known as the survival function. The

tail behavior can be studied by observing SX(x) as x increases. Tail behavior has been

associated with Pareto-type tails. A distribution has Pareto-type tails if it decays like a

power function as x becomes large. This suggests that SX(x) can be explained by

SX(x) = x−αY (x), 0 < α < 2, (5.2)

where Y > 0 is a slowly varying function which is slower than any power function and
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−α is an index. A slow varying function has a property

lim
x→∞

Y (tx)

Y (x)
= 1, t > 0 (5.3)

hence, for any α > 0,

lim
x→∞

xαY (x) =∞ (5.4)

and

lim
x→∞

x−αY (x) = 0. (5.5)

For large x, α is called the tail index as it controls the rate of tail decay and provides a

measure of the fatness of the tails. For any λ > 0, the distribution of a random variable

X with distribution function F (x) is said to have a heavy right tail if

lim
x→∞

eλxSX(x) =∞, ∀λ > 0. (5.6)

The above definition uses a class of distributions called subexponential distributions. For

this type of distributions, the decay rate is slower than the exponential. There have been a

number of distributions that have been proposed in literature to model heavy tails. Alpha-

stable distributions are said to be the origin of heavy tailed distributions in finance. The

use of this type of distributions have been widely reviewed in the econometrics literature.

This is because it is an alternative to the Gaussian law and contains some interesting

properties such as the stability property. This property is attractive in that the index of

the alpha-stable remains the same under scaling and addition of different stable random

variables with the same shape parameter. This type of phenomenon raises an interesting

feature of these type of distributions which is referred to as infinite divisibility. In the

next section, we expand on infinite divisibility and example of processes which have this

property.
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5.1 Infinite Divisibility

In modeling of financial returns, infinitely divisible distributions are attractive and ap-

pealing as they make modeling of returns simpler. A random variable X is said to be

infinitely divisible if for every n ∈ N it can be written, in distribution, as

X
d
= X1 + ...+Xn, (5.7)

where X1, ..., Xn are independent and identically distributed random variables. An al-

ternative definition of infinite divisibility is by the use of the characteristic function. A

random variable X is said to be infinitely divisible, if for all n ∈ N, there exist a random

variable X(1/n) such that

φX(u) = (φX(1/n)(u))n , (5.8)

where φX(u) denotes the characteristic function. By definition a distribution F is in-

finitely divisible if for each n, there exists a distribution function Fn such that F is the

n-fold convolution Fn ∗ ... ∗ Fn of Fn. For any finite non-negative measure

φX(u) = exp

{
dx

∫
R
(eiux − 1− iux)

1

x2
µ(dx)

}
(5.9)

is the characteristic function of infinite divisibility distribution with mean 0 and variance

µ(R). Every infinite divisible distribution with mean 0 and finite variance is the limiting

law of Sn = Xn,1 + ...+Xn,rn for some independent triangular array satisfying

1. E(Xn,k) = 0,

2. limn→∞max1≤k≤rn E(X2
n,k) = 0,

3. supn≥1 S
2
n <∞, where S2

n =
∑rn

k=1E(X2
n,k).

Levy processes are stochastic processes that are closely related to infinite divisibility. To

understand this, we will discuss these processes below. A stochastic process {Xt, t ≥ 0}

is a Levy process if

i.) X0 = 0 almost surely,

ii.) Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent for any a ≤ t1 < t2 < ... < tn <∞,
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iii.) Xt −Xs is equal in distribution to Xt−s for any s < t, and

iv.)

lim
h→0

P (|Xt+h −Xt| > ε) = 0 (5.10)

for any ε > 0 and t ≥ 0.

v.) Xt is right continuous with left limits almost surely.

The Levy-Khintchine formula is fundamental in the study of Levy processes. Let X be

a Levy process in Rd. Then there exists a triplet (A, γ, ν) of A a symmetric non-negative

definite d× d matrix (the Gaussian covariance), γ a constant in Rd and ν a measure on

Rd with ν0=0 and
∫
Rd(|y|

2 ∧ 1)d(ν(y)) < ∞ (the Levy measure). Which in that case is

uniquely determined such that for all u ∈ Rd and t ≥ 0, E(eiux(t)) = etψ(u), where

ψ(u) = −1/2 < u,Au > +i < u, γ > +

∫
Rd

(ei<u,x> − 1− 1(|x|≤1)i < u, x >)dν(x).(5.11)

If γ0 = γ −
∫
|x|≤1

xdν(x) is well defined and finite, then we may re-write the Levy-

Khintchine formula with a new triplet (A, γ0, ν)0 (the drift) as

ψ(u) = −1/2 < u,Au > +i < u, γ > +

∫
Rd

(ei<u,x> − 1)dν(x). (5.12)

If γ1 = γ+
∫
|x|≤1

xdν(x) is well defined and finite, the we can re-write the Levy-Khintchine

formula with a new triplet (A, γ1, ν)1 (the center) as

ψ(u) = −1/2 < u,Au > +i < u, γ > +

∫
Rd

(ei<u,x> − 1− i < u, x >)dν(x). (5.13)

Thus a random variable X is infinitely divisible if and only if its characteristic function

φX(u) is given by

logφX(u) = iβu− σ2µ2

2
+

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)νd(x) (5.14)

for some β ∈ R, σ ≥ 0 and a Levy measure ν such that
∫

(x2 ∧ 1)ν(dx) <∞.

There are two widely used Levy processes that are applicable to financial returns.

These are the Brownian motion and the Poisson process.
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If Xt is a Brownian motion process (or Weiner Process), the probability of the incre-

ments Xt −Xs have a normal distribution with an expected value of 0 and the variance

t − s. If Xt is a Poisson process, the probability of increments Xt − Xs have a Poisson

distribution with an expected value of λ(t− s).

From this discussion, we can now show that stable distributions are infinitely divisible

distributions.

Theorem 5.1. If a distribution of X is stable, then the distribution is infinitely divisible.

Proof. let n ∈ N and {Xt} be a sequence of independent variables, each with the same

distribution as X. By the stability property, there exists an ∈ R and bn ∈ (0,∞) such

that
∑
Xi has the same distribution as an + bnX. But

1

bn

(
n∑
i=1

Xi − an

)
=

n∑
i=1

Xi − an/n
bn

(5.15)

has the same distribution as X. Thus, it can then be deduced that {(Xi − an/n)/bn} is

an i.i.d sequence and hence has the same distribution as X and is infinite divisible.

Examples of distributions that are stable and infinitely divisible are the normal and

the Cauchy distribution. If X has a normal distribution with mean µ ∈ R and standard

deviation σ ∈ (0,∞), then for n ∈ N, X has the same distribution as X1 +X2 + ...+Xn

where {Xi} are independent, and Xi has a normal distribution with mean µ/n and

standard deviation σ/
√
n for i = 1, 2, ..., n. If X has a Cauchy distribution with location

parameter a ∈ R and scale parameter b ∈ (0,∞), then for n ∈ N, X has the same

distribution as X1 + X2 + ... + Xn where {Xi} are independent, and Xi has a Cauchy

distribution with location parameter a/n and scale parameter b/n for i = 1, 2, ..., n.

5.2 Stable Distributions

A class of heavy tailed distributions in common use are stable distributions. A random

variable X is stable if two random variables X1 and X2 are independent copies of X for

some positive constants a and b, the distribution of aX1 +bX2 is equal to the distribution

of cX+d. X is then considered strictly stable if d = 0 ∀a, b. X is symmetric stable if the

distribution of X is equal to the distribution of −X. In other words, if random variables
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X1, X2, ..., XT are i.i.d, they are then considered to be α-stable if the distribution of

X1 +X2 + ...+XT is the same as the distribution of cTX + αT , where cT is of the form

T 1/α. The α-stable distribution is characterised by parameters:

• Characteristic exponent α, 0 < α ≤ 2,

• Skewness parameter β, −1 ≤ β ≤ 1,

• Scale or gamma parameter γ > 0, and

• Location parameter δ.

The characteristic exponent α is the rate at which the tails decay. Then, a random

variable X with the above parameters is denoted as X ∼ S(α, β, σ, µ). Only three α-

stable distributions have closed form density functions and that is the Normal, Cauchy

and Levy distribution. If X follows N(µ, σ2) then its density is

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

and if X ∼ Cauchy(γ, δ) then it has a density

f(x) =
1

π

γ

γ2 + (x− δ)2
, −∞ < x <∞

and if X ∼ Levy(γ, δ) then it has a density

f(x) =

√
γ

2π

1

(x− δ)3/2
exp

(
− γ

2(x− δ)

)
, δ < x <∞.

In some α-stable distributions, it is a bit difficult to express the density function, as

an alternative, the characteristic function is used. Any probability distribution can be

defined by its characteristic function as

f(x) =
1

2π

∫ ∞
−∞

φ(t)e−ixtdt.

The characteristic function of X assumes

lnφX(t) = −σα|t|α(1− iβsgn(t)tan(πα2) + iµt).
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When α 6= 1 and when α = 1 it assumes

lnφX(t) = −σ|t|(1− iβ π
2

sgn(t)ln|t|) + iµt).

Another form of the characteristic function is

lnφX(t) = −σα2 |t|α(1− iβ2sgn(t)
π

2
K(α) + iµt).

where K(α) = α for α ≤ 1 and K(α) = α − 2 otherwise, this is further discussed in ? .

σ2 = σ(1 + β2tan2(πα
2

))1/2α and tan(β2
πK(aα)

2
) = βtan(πα

2
) for α 6= 1, and for α = 1

lnφX(t) = −σ|t|(π
2

+ iβ2
π

2
sgn(t)ln|t|))

Some useful properties of stable distributions are as follows:

1. If X1 and X2 are independent stable random variables with Xi ∼ S(αi, βi, σi, µi)

for i = 1, 2, ..., n, then X1 +X2 ∼ S(α, β, σ, µ) with

σ =

(
n∑
i=1

σαi

)1/α

,

β =

∑n
i=1 βiσ

α
i∑n

i=1 σ
α
i

,

µ =
n∑
i=1

µi.

2. X + a S(α, β, σ, µ+ a) if X S(α, β, σ, µ) and some constant a.

3. The tail of the density function decays like a power function

P (|X| > x) ≈ Cx−α, x→∞

4. Moments satisfy

E(|X|)p <∞, 0 < p < α,

E(|X|) =∞, p ≥ ∞.
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5. The expectation of an α - Stable distribution is

E(X) = µ, α > 1,

E(X) = ∞, , α ≤ 1. (5.16)

The following method is used to generate stable distribution random numbers. The

parameters used in the algorithm are that U ∼ U(−π
2
, π

2
), E is a standard Exponential

random variable independent of U , and U0 = −π
2
β2

K(α)
α

and the random variable is

defined

X =
sinα(U − U0)

(cosU)1/α

{
cos(U − α(U − U0))

E

} 1−α
α

α 6= 1

X =
(π

2
+ β2U

)
tan(U)− β2ln

(
Ecos(U)

π/2 + β2U

)
, α = 1

and the algorithm steps to generate stable numbers is

1. Generate U1 U(−π
2
, π

2
) and U2 U(0, 1).

2. E=-lnU2,

3. If α 6= 1 then B(α, β) = tan−1(βtan(πα/2))
α

, S(α, β) = (1 + β2tan2(πα/2)1/2α and then

X = S(α, β)
sinα(U +B(α, β))

(cos(U))1/α

(
cos(U − α(U +B(α, β)))

E

) 1−α
α

and if α = 1,

X =
2

π

(π
2

+ βU
)

tan(U)− βln

[ π
2
Ecos(U)
π
2

+ βU

]
,

4. Set

Y = σX + µ for α 6= 1,

Y = σX +
2

π
βσln(σ) + σ for α = 1.
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5.3 Generalised Hyperbolic Distributions

The generalised hyperbolic (GH) distribution is given by

gh(x|λ, α, β, δ, µ) =

a(λ, α, β, δ, µ)(λ2 + (x− µ)2)(λ− 1
2

)/2Kλ− 1
2
(α
√
α2 + (x− µ)2)exp(β(x− µ))

with

a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ−

1
2 δλKλ(δ

√
α2 − β2)

,

where Kλ(.) is the modified Bessel function of the third kind, δ ≥ 0 and 0 < |β| < α.

If β = 0, it is symmetric and elliptical and if α → ∞ and δ → ∞ such that δ/α → σ2

then the gh(x) is the normal distribution with mean µ+ βσ2 and variance σ2.

If λ = 1, the resulting distribution is the mostly used hyperbolic distribution. The

hyperbolic distribution is given by

hyp(x|α, β, δ, µ) = a(α, β, δ, µ)exp
{
−α
√
δ2 + (x− µ)2 + β(x− µ)

}
,

where

a(α, β, δ, µ) =
√
α2 − β2

[
2δαK1

(
δ
√
α2 − β2

)]−1

for δ > 0 and 0 ≤ β < α. In the literature, the (ξ, χ) parameterization is normally

used. then the hyperbolic distribution is defined as

hyp(x|ξ, χ, δ, µ) =

a(ξ, χ, δ, µ)exp

− 1− ξ2√
ξ2 − χ2

√
1 +

(
x− µ
δ

)2

− χ(1− ξ2)

ξ2
√
ξ2 − χ2

(
x− µ
δ

)(5.17)

where

a(ξ, χ, δ, µ) =

[
2δ

ξ

ξ2 − χ2
K1

(
1− ξ2

ξ2

)]−1

.

If β → 0, the resulting distribution is the widely known and used Student-t distribution.
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The limits for ξ and χ are 0 ≤ |χ| < ξ < 1 which provides a useful presentation of the

parameters known as the hyperbolic shape triangle. This can be summarised as follows:

• If ξ → 0, the resulting distribution is a Normal distribution. If ξ → 1, we get the

Laplace distribution,

• If χ→ ±ξ we get the generalised Inverse Gaussian distribution and if |χ| → 1 the

resulting distribution is the Exponential distribution.

The Normal Inverse Gaussian distribution results if λ = −1
2

and is given by

nig(x|α, β, δ, µ) =

a(α, β, δ, µ)
(
δ2 + (x− µ)2

)−1/2
K1(α

√
δ2 + (x− µ)2)exp(β(x− µ)), (5.18)

where

a(α, β, δ, µ) = π−1δα(δ
√
α2 − β2), δ > 0, 0 ≤ |β| < α

and the density function is obtained from the GH density. If β > 0 and δ = 0, this

results in a limiting case known as the variance-gamma distribution and is given by

vg(x|α, β, δ, µ) =
(
√
α2 − β2)2λ|x− µ|λ−1/2Kλ−1/2(α|x− µ|)√

πΓ(λ)(2α)λ−1/2
, (5.19)

where Γ(.) is the gamma function. When λ = −ν
2

and α → |β|, the skewed generalised

hyperbolic Student-t is obtained and is given by

sgh(x|ν, β, δ, µ) =

δν |β|(ν+1)/2K(ν+1)/2

(
β
√
δ2 + (x− µ)2

)
eβ(x−µ)

2(ν+1)/2Γ(ν/2)
√
π
(√

δ2 + (x− µ)2
) , (5.20)

where δ > 0, ν > 0, β 6= 0.

5.4 Generalized Error Distributions

Another class of distributions used in volatility modeling is that of the generalized error

distribution (GED). This comes from the exponential family and in this thesis we will
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use parameterization by Box and Tiao (1973). The GED(µ, σ, γ) distribution is given by

f(y) = ω(γ)σ−1exp

[
−c(γ)

∣∣∣∣y − µσ
∣∣∣∣] (5.21)

where

ω(γ) =
(Γ(3(1 + γ)/2))1/2

(1 + γ)Γ(1 + γ)/2)3/2
(5.22)

and

c(γ) = −
(

Γ(3(1 + γ)/2)

Γ((1 + γ)/2)

)1/(1+γ)

(5.23)

where y ∈ (−∞,∞), µ is the location parameter, and σ is the scale parameter. γ is the

shape parameter that is related to the kurtosis of the distribution. The GED is symmetric

with zero skewness and kurtosis is defined by

k3 =
Γ(5(1 + γ)/2)Γ((1 + γ)/2)

(Γ(3(1 + γ)/2)2
. (5.24)

There are special cases of the GED. For γ = 0 the GED is the Normal distribution. if

γ=1 it becomes the double exponential distribution and if γ →-1 it becomes the uniform

distribution.

5.5 Chapter Summary

In summary, heavy tailed distributions have been shown to explain financial returns

better than the normal distributions. The tails of financial return data is said to behave

like Pareto-tails and have infinite divisible distributions. In this chapter, we started by

discussing infinite divisibility. This property is important in explaining heavy tails. In

order to understand infinite divisibility, we studied Levy processes. Levy processes are

stochatic processes which have the infinite divisibility property. From the definitions of

Pareto tails and infinite divisibility, we discussed alpha-stable distributions and a class of

generalised hyperbolic distributions which have been widely used in literature to explain

financial returns.
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Chapter 6

Conditional Heteroskedastic Models

and Estimation

In time series analysis, especially in regression models, one of the basic assumptions is

that the variance of residuals is constant. Literature and applications have shown that

this assumption does not hold. Financial data is a good example where it has been shown

in many research papers that in most cases the assumption of constant variance does not

hold. This has opened up interest in volatility modeling and hence there are a number of

models that can be used to model volatility. A class of heteroskedastic models is one class

that is widely used to explain conditional volatility evolution, behaviour and properties.

6.1 ARCH and GARCH models

Consider a regression model

Yt = X′t + at, (6.1)

where at are uncorrelated errors but have variances that are not constant. This error

term can be modeled by

at = σtεt, (6.2)
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where εt are iid random variables with mean 0 and variance 1, and σt is the variance of

errors. The evolution of the variance can be described by

σ2
t = α0 + α1a

2
t−1 + ...+ αsa

2
t−1, (6.3)

and hence, we can find the conditional variance of at which is given by

V ar(at|Ft−1) = α0 + α1a
2
t−1 + ...+ αsa

2
t−1, (6.4)

where Ft−1 is the filtration of the process {at}. This representation is known as the au-

toregressive conditional heteroscedastic model developed by Engle (1982) and it shows an

important property in volatility analysis which is volatility clustering. Volatility cluster-

ing is defined when a large error tends to be followed by another large error. This model is

helpful in modeling conditional volatility and deriving some facts but has disadvantages.

Some of the disadvantages of this model are

• The model assumes that positive and negative shocks have the same effects on

volatility as it depends on the square of the previous shocks.

• Parameter constraints becomes complicated for higher order ARCH models.

• The ARCH model does not provide information about the source of variation in

financial time series.

• The ARCH model respond slowly to large isolated shocks and hence are likely to

over-predict volatility.

• This model often requires many parameters to adequately describe the volatility

process.

In light of the above shortcomings, Bollerslev (1986) proposed a generalisation of the

ARCH model known as the generalised ARCH(GARCH) model. The GARCH represen-

tation of volatility is

σ2
t = α0 +

m∑
i=1

αia
2
t−1 +

s∑
j=1

βjσ
2
t−j. (6.5)
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For ease of use, this formula is often represented in ARMA form by letting ηt = a2
t − σ2

t

and then

a2
t = α0 +

max(m,s)∑
i=1

(αi + βi) a
2
t−i + ηt −

s∑
j=1

βjηt−j, (6.6)

where

max(m,s)∑
i=1

(αi + βi) < 1. (6.7)

To incorporate the break points in the series, the above standard GARCH(1,1) model is

then defined

σ2
t = α0 + d1D1t + ...+ dnDnt + α1a

2
t−1 + β1σ

2
t−1, (6.8)

where Dit, for i = 1, 2, ..., n are indicator variables associated with each break point in

the variance for all time, t. Incorporating such regime shifts, the persistence in volatility,

(α1 + β1), is expected to decrease than when using the standard GARCH model. The

main advantage is using this model over the ARCH model is that fewer parameters are

required to model the time series. If the above restriction is not met, such that

max(m,s)∑
i=1

(αi + βi) = 1, (6.9)

then the model is integrated and the resulting model is called an integrated GARCH(IGARCH).

When using this model, the effect of errors on the conditional variance is symmetric in

a sense that for the same magnitude, negative and positive shocks produces the same

effect. A simple IGARCH(1,1) model is of the form

σ2
t = α0 + βσ2

t−1 + (1− β)a2
t−1, (6.10)

where 0 < β < 1. To accommodate for symmetric relationship between financial variables

and volatility changes, Nelson (1991) proposed as model

ln(σ2
t ) = α0 +

1 + β1L+ ...+ βsL
s

1− α1L− ...− αmLm
g(εt−1), (6.11)
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and

f(x) =

 (θ + γ)εt − γE(|εt|) : if εt ≥ 0

(θ − γ)εt − γE(|εt|) : if εt < 0,

where α0 is a constant and g(εt) = θεt + γ[|εt| − E(|εt|)] and 1 − α1L − ... − αmLm are

polynomials with zeros outside the unit circle. In this model, the function g(εt) enables

the model to respond asymmetrically to positive and negative lagged values of at. In

some instances, the returns of a security may depend on its volatility such that

rt = µ+ cσ2
t + at. (6.12)

This phenomenon is addressed by the GARCH-In-Mean (GARCH-M) model. A simple

GARCH-M(1,1) is of the form

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1. (6.13)

6.1.1 Estimation

For a sample of observations {x1, x2, ..., xn} that are independently and identically dis-

tributed with a distribution function f(x) and parameters θ, the joint density function is

defined

f(x1, x2, ..., xn|θ) = f(x1|θ)×, f(x2|θ)× ...× f(xn|θ)

=
∏
∀i

f(xi|θ)

and this can be seen as a likelihood function

L(x1, x2, ..., xn|θ) =
∏
∀i

lnf(xi|θ)

and hence, the log-likelihood function is then defined

l(x1, x2, ..., xn|θ) =
∑
∀i

lnf(xi|θ).
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For a GARCH(p, q) model of the conditional variance. Without loss of generality, let

ht = σ2
t . The conditional variance is then

at =
√
htεt, ht = α0 +

p∑
i=1

αia
2
t−i +

q∑
j−1

βjσ
2
t−j.

A basic case would be to assume that at is normally distributed with zero mean and

conditional variance ht, and then the distribution will be

p(at|at−1, ..., a0) =
1√

2πht
exp

(
− a2

t

2ht

)

The parameters of the log-likelihood function would then be

θ = (α0, ..., αq, β1, ..., βp)
T

and hence

l(θ) =
n∑

t=q+1

lt(θ)

=
n∑

t=q+1

(
−1

2
ln(2π)− 1

2
lnht −

a2
t

2ht

)
.

Then we can find

∂lt(θ)

∂θ
=

(
a2
t

2h2
t

− 1

2ht

)
∂ht
∂θ

,

and

∂2lt(θ)

∂θ∂θT
=

(
a2
t

2h2
t

− 1

2ht

)
∂2ht
∂θ∂θT

+

(
1

2h2
t

− a2
t

h3
t

)
∂ht
∂θ

∂ht
∂θT

,

where

∂ht
∂θ

= (1, a2
t−1, ..., a

2
t−q, ht−1, ..., ht−p)

T +

p∑
i=1

βi
∂ht−i
∂θ

.
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Thus, the gradient and Fisher information is then defined by

G(θ) =
1

2

n∑
t=q+1

(
a2
t

2h2
t

− 1

2ht

)
∂ht
∂θ

and

J(θ) =
n∑

t=q+1

E

[(
a2
t

2h2
t

− 1

2ht

)
∂2ht
∂θ∂θT

+

(
1

2h2
t

− a2
t

h3
t

)
∂ht
∂θ

∂ht
∂θT

]

= −1

2

n∑
t=q+1

E

(
1

h2
t

∂ht
∂θ

∂ht
∂θT

)
.

For a simple GARCH(1,1) model

ht = α0 + α1a
2
t−1 + β1ht−1,

the gradient and Fisher information is then

G(θ) =
1

2

n∑
t=2

(
a2
t

h2
t

− 1

ht

)
∂ht
∂θ

and

J(θ) = −1

2

n∑
t=2

E

(
1

h2
t

∂ht
∂θ

∂ht
∂θT

)
,

where

∂ht
∂θ

= (1, a2
t−1, ht−1)T + β1

∂ht−1

∂θ
.

We can then use Newtons iterative methods

θk+1 = θk + J−1(θk)G(θk),

where the initial guess is

θ0 = (α0, ..., αq, β1, ..., βp)
T (6.14)
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is required and estimation of ∂ht
∂θ

. The iterations are repeated until θ converges.

6.1.2 Forecasting

For forecasting using a simple GARCH(1,1) model, we use

σ2
h+1 = α0 + α1a

2
h + β1σ

2
h

for a 1-step ahead forecast

σ2
h(1) = α0 + α1a

2
h + β1σ

2
h

while for a 2-step ahead forecast

σ2
h(2) = α0 + (α1 + β1)σ2

h(1)

and in general,

σ2
h(l) =

α0[1− (α1 + β1)l−1]

1− (α1 + β1)
+ α1 + βl−1

1 σ2
h(1),

where

lim
l→∞

σ2
h(l) = lim

l→∞

α0[1− (α1 + β1)l−1]

1− (α1 + β1)
+ α1 + βl−1

1 σ2
h(1)

=
α0

1− (α1 + β1)

which is the unconditional variance of at.

6.2 FIGARCH Processes

Sometimes the return series contains long memory, then its correlations are not summable

with lags declining hyperbolically. In this case, the fractional IGARCH (FIGARCH)

model is then used. The FIGARCH model is characterised by a volatility persistence

shorter than an IGARCH model but longer than the GARCH model. The FIGARCH

model is then obtained by extending the IGARCH model and allowing the integration
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factor to be fractional. The FIGARCH(p, d, q) is defined

rt = µt + at

εt = σtzt

σ2
t = ω(1− β(L))−1 +

{
1− (1− β(L))−1φ(L)(1− L)d

}
a2
t , (6.15)

where zt is i.i.d N(0,1). This can further be defined as

σ2
t = ωβ(L)σ2

t + (1− β(L))a2
t − φ(L)(1− L)da2

t (6.16)

= ω(1− β(L))−1 +
{

1− (1− β(L))−1φ(L)(1− L)d
}
a2
t

= ω(1− β(L))−1 + λ(L)a2
t

= ω ∗+
∞∑
i=1

λiL
ia2
t .

A Taylor expansion is used to study (1− L)d as follows:

(1− L)d =
∞∑
k=0

Γ(d+ 1)Lk

Γ(k + 1)Γ(d− k + 1)

= 1− dL− d(1− d)

2!
L2 − d(1− d)(2− d)

3!
L3 − ...

= 1−
∞∑
k=0

Ck(d)Lk (6.17)

and it is highlighted that Γ(k − d)/Γ(k + 1) k−(d+1) is large and hence the coefficients of

the polynomial with decay hyperbolically.

Baillie and Morana (2009) introduced an adaptive FIGARCH model which captures

long memory and sructural changes in the volatility process. The conditional variance is

then defined as

[1− β(L)](ht − ωt) = [1− β(L)− φ(L)(1− L)d]ε2t ,

where the intercept parameter ωt is allowed to be time varying and defined as

ωt = ω0 +
k∑
j−1

[
γjsin

(
2πjt

T

)
+ δjcos

(
2πjt

T

)]
(6.18)
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This model allows for breaks, cycles and changes to the drift of the time series process.

Ben Nasr et al. (2010) introducted the fractionally integrated time-varying GARCH model

to capture both long memory and structural changes in the volatility process. This model

is defined as

[1− φ(L)](1− L)da2
t = ωt + [1− βt(L)]ηt,

where at = εth
1/2
t and εt is N(0, 1). The conditional variance is decomposed into two

components. The first component follows the standard FIGARCH process and the second

is a time varying component. It is noted that this model is not strictly stationary. Because

of this, a re-parameterization of this model was then given as

[1− β(L)]ht = ωt + [1− βt(L)− (1− φt(L))(1− L)d]a2
t ,

where the conditional variance of the model is

ht = ωt[1− βt(L)]−1 +
(
1− [1− βt(L)]−1(1− φt(L))(1− L)d

)
a2
t

= ω̃t +
∞∑
j=1

ψj,ta
2
t−j.

To address non-linearity in the conditional volatility process, Kilic (2007) introduced a

smooth transition FIGARCH. This model is able to accommodate smooth changes both in

the amplitude of the volatility clusters as well as asymmetry in the conditional volatility.

The first order of this model is defined as

(1− φ(L))(1− L)da2
t = α0 + [1− β(1−G(zt−s,γ,c))L− β∗G(zt−s,γ,c)]ηt,

where ηt = a2
t − ht, 0 < d < 1 , β and β∗ are the volatility dynamics parameters and

G(zt−s,γ,c) = [1 + exp(−γ(zt−s−c))]
−1

is the logistic transition function with transition variable s and period lagged z. s is

called the delay parameter and c is the location parameter. γ is assumed to be positive

and characterise the speed of transition between extreme regimes. To address asymmetric
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effects in volatility, Hwang (2001) introduced the asymmetric FIGARCH model defined

as

at =
√
htzt, zt ∼ N(0, 1)

where

√
hλt =

α0

1− β1

+

[
1− (1− φ1L)(1− L)d

1− β1L

]
f ν(at)h

λ/2
t

with

f(at) =

∣∣∣∣atσt − b
∣∣∣∣− c(atσt − b

)
, |c| ≤ 1,

and zt are iid with mean 0 and variance 1. The values of b and c represent the shift and

the rotation of the news impact curve. A modified version by Ruiz and Prez (2003) is

defined by

(1− φ1)(1− L)d
h
λ/2
t − 1

λ
= α0∗+ α(a− φ1L)h

λ/2
t−1[f ν(zt−1)− 1].

In the following subsection, we discuss inequality constraints of FIGARCH models which

are necessary and sufficient conditions to ensure nonnegativity of the FIGARCH condi-

tional variance.

6.2.1 Inequality Constraints of the FIGARCH(1,d,1) Model

Inequality constraints are necessary and sufficient conditions that ensure the nonnegativ-

ity of the conditional variance of the FIGARCH model. Various conditions are available

in literature but most used conditions are of Baillie et al. (1996) constraints defined by

0 ≤ β1 ≤ φ1 + d and 0 ≤ d ≤ 1− 2φ1.

Bollerslev and Mikkelsen (1996) inequality constraints defined by

β1 − d ≤ φ1 ≤
2− d

3
and d

[
φ1 −

1− d
2

]
≤ β1(φ1 − β1 + d).
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Chung (1999) constrains are given by

0 ≤ φ1 ≤ β1 ≤ d < 1.

Conrad and Haag (2006) inequality constraints uses an ARCH(∞) representation of the

FIGARCH(1, d, 1) using ψi defined by

ψ1 = d+ φ1 − β1,

ψi = β1ψi−1 + (fi − φ1)(−gi−1) ∀i ≥ 2 or

ψi = β2
1ψi−2 + [β1(fi−1φ1) + (fi − φ1)fi−1] (−gi−2), ∀i ≥ 3.

The inequality constraints are summarised in the corollary below found in Conrad and

Haag (2006).

Corollary 1

The conditional variance of the FIGARCH(1, d, 1) in nonnegative almost surely iff:

Case 1:0 < β1 < 1.

Either ψi ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≤ fk, it holds that

ψk−1 ≥ 0.

Case 2: −1 < β1 < 0.

Either ψ1 ≥ 0,ψ2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2), or

For k > 3 fk−2(β1 + fk−1)/(β1 + fk−2) < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1), it

holds that ψk−1 ≥ 0 and ψk−2 ≥ 0,

where Fi = fi − φi, f=
j−1−d
j

and gj = fj.gj−1 =
∏j

i=1 fi, and the initial conditions are

g0 = 1, f1 = −d < 0, f2 = (1 − d)/2 > 0, and fi > 0, ∀j > 2. The FIGARCH model

is one of the most understood and easier models to work with when modeling fractional

integration of conditional heteroscedastic models. This model has some drawbacks that

are not ideal for modeling financial returns. One drawback that is mostly found in almost

all applications of this models is that we must have d ≥ 0 and the polynomial coefficients

must satisfy the above mentioned constraints for the conditional variance to be positive.
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In the following sections, we discuss more models which could be used to avoid this

shortcoming of the model.

6.3 FIEGARCH Processes

The exponential FIGARCH(FIEGARCH) model is defined by

ln(σ2
t ) = α0 +

1−
∑p

i=1 αiL
i

1−
∑q

j=1 βjL
j
(1− L)−dg(εt−1), (6.19)

where the function

g(εt−1) = θεt−1 + γ[|εt−1| − E(|εt−1|)] ∀t ∈ Z. (6.20)

FIEGARCH processes models volatility clusters, asymmetry and model long memory

in volatility. These models offer better modeling as they don’t suffer from FIGARCH

drawbacks since the variance under FIEGARCH is defined in terms of the logarithm

functions. It is easier to identify stationarity since this process is weakly stationary iff

d < 0.5. This process has variations of parameterizations, we will define it as given by

Lopes and Prass (2014). Let {Xt, t ∈ Z} be a stochastic process defined as

Xt = σ2
t εt, (6.21)

ln(σ2
t ) = α0 +

α(L)

β(L)
(1− L)−dg(εt−1), ∀t ∈ Z, (6.22)

where α0 ∈ R and g(.) is defined as

g(εt) = θεt + γ[|εt| − E(|εt|)] (6.23)

for all t ∈ Z, with θ, γ ∈ R then {Xt, t ∈ Z} is a FIEGARCH process denoted by

FIEGARCH(p, d, q). A much more defined criterion for the FIEGARCH model to be

stationary is stated in the following theorem.
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Theorem 6.1. Define {σ2
t },{Xt} and {εt} for all t ∈ Z by

Xt = σtεt, εi iid(0, 1) (6.24)

ln(σ2
t ) = αt +

∞∑
k=1

λkg(εt−k), λ1 = 1, and (6.25)

g(εt) = θεt + γ[|εt| − E(|εt|)], (6.26)

where {αt, t ∈ Z} and {λt, t ∈ N} are real, nonstochastic, scalar sequances and assume

that θ and γ do not both equal zero. Then {e−αtσ2
t }, {e−αtX2

t } and {ln(σ2
t ) − αt} are

strictly stationary and ergodic and {ln(σ2
t ) − αt} is covariance stationary if and only if∑∞

k=1 λ
2
k <∞.

If
∑∞

k=1 λ
2
k =∞,then |ln(σ2

t )− αt| =∞ almost surely. If
∑∞

k=1 λ
2
k <∞ then for k > 0,

Cov(εt−k, ln(σ2
t )) = λk(θ + γE(Xt|Xt|)) (6.27)

and

Cov(ln(σ2
t ), ln(σ2

t−k)) = V ar(g(εt))
∞∑
j=1

λjλj=k (6.28)

In order to gain more modelling flexibility, fractional integrated asymmetric power

ARCH (FIAPARCH) models have been suggested in the literature.

6.4 FIAPARCH Processes

The fractional integrated asymmetric power ARCH (FIAPARCH) process increases the

flexibility of the conditional variance specification by allowing

• An asymmetric response of volatility to positive and negative shocks.

• The data to determine the power of returns for which the predictable structure in

the volatility pattern is strongest, and

• Long range volatility dependence

A simple FIAPARCH(1,d,1) model is given by

(1− φL)(1− L)df(at) = α0 + (1− βL)at (6.29)
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where

f(at) = [|at| − γat]δ, (6.30)

where γ is the leverage parameter defined in −1 < γ < 1, δ is the parameter for the

power term, |φ| < 1,α0 > 0 and 0 ≤ d ≤ 1. This process would reduce to the FIGARCH

process for γ = 0 and δ = 2.

6.5 HYGARCH Processes

The hyperbolic GARCH (HYGARCH) model introduced by Davidson (2004) has the

GARCH and FIGARCH as special cases. It is covariance stationary, similar to the

GARCH model and has hyperbolic decay impulse reposed coefficients similar to the FI-

GARCH. The HYGARCH process is obtained by

φ(L)
(
(1− τ) + τ(1− L)d

)
a2
t = α0 + β(L)ηt (6.31)

When τ = 0 and d = 0, the model is GARCH and when τ = 1, the model is FIGARCH.

To further understand this model, we can re-write is as

σ2
t =

α0

β(1)
+ ΨHY (L)a2

t

=
α0

β(1)
+
∞∑
i=1

ψHYi a2
t−i (6.32)

with

ΦHY (L) = τΨFI(L) + (1− τ)ΨGA(L) (6.33)

and thus it follows that

ψHYi = τψFIi + (1− τ)ψGAi . (6.34)
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6.5.1 Inequality Constraints of the HYGARCH(1,d,1)

A restrictive sufficient condition from equation 6.33 for non-negativity of the ψHYi coef-

ficients is the non-negativity of the ψFIi and ψGAi coefficients, for 0 < τ < 1 (Conrad,

2010). A recursive representation for the ARCH(∞) coefficients of the HYGARCH(p, d, q)

is vital in understanding the constraints.

Lemma 6.1. In the HYGARCH(p,d,q), the sequence {ψHYi , i = 1, 2, ...} can be written

as

ψHYi = ψ
HY (p)
i , (6.35)

where

ψ
HY (r)
i = λ(r)ψ

HY (r)
i−1 + ψ

HY (r−1)
i , 1 < r ≤ p, and i ≥ 1 (6.36)

with starting values ψ
HY (r)
0 = −τ , for r = 2, ..., p and {ψHY (1)

i } is given by

ψ
HY (1)
i = τ

(
−ci +

i∑
j=1

ψici−j

)
+ (1− τ)

j∑
i=1

λi−j(1) (φj − βj), for i = 1, 2, ..., q

= λ(1)ψ
HY (1)
i−1 + τFi(−gi−q) i ≥ q + 1 (6.37)

and

ci =
i∑

j=0

λi−j(1) gj. (6.38)

For the HYGARCH(1,d,1) model, the recursive representation of the ARCH(∞) co-

efficients in Lemma 6.1 simplifies to

ψHY1 = τd+ φ1 − beta1,

ψHYi = β1ψ
HY
i−1 + τ(fi − φ1)(−gi−1) , for i ≥ 2,

ψHYi = β2
1ψ

HY
i−2 + τ(β1(fi−1 − φ1) + (fi − φ1)fi−1)(−gi−2), for i ≥ 3. (6.39)

Theorem 6.2. The conditional variance of the HYGARCH(1,d,1) is non-negative almost
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surely if and only if

Case 1 0 < β < 1.

Either ψHY1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≤ fk it holds that

ψHYk−1 ≥ 0,

Case 2 −1 < β < 0.

Either ψHY1 ≥ 0,ψHY2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2) or for k = 3 with

fk−2(β1 + fk−1)/(β1 + fk−2) < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1) it holds that

φHYk−1 ≥ 0 and ψHYk−2 ≥ 0.

These are the sufficient conditions for the HYGARCH(1,d,1), more conditions for

higher order HYGARCH are found in Conrad (2010).

6.6 Residual Models

Recently in econometrics literature, there have been interest on residual analysis. This

analysis is specifically on residuals of ARFIMA models. Models that are currently used

for this purpose are the models discussed above. An ARFIMA model is of the form

φ(L)∆dXj = θ(L)εj, (6.40)

where the series {Xj} in this thesis are the log returns and the residuals are {εt}. In order

to better understand these residuals, GARCH-type models can be applied but this will

only show us short-term dependencies. To better capture long term dependencies and

other properties that are not given by GARCH-type models, fractional integrated models

are used. The residual process is then allowed to follow: (1) The FIGARCH(p, d, q) model

as given by

σ2
t = α0(1− β(L))−1 + 1− (1− β(L))−1φ(L)(1− L)dε2t (6.41)

or, (2) the FIEGARCH(p, d, q) model as given by

ln(σ2
t ) = α0 +

1−
∑p

i=1 αiL
i

1−
∑q

j=1 βjL
j
(1− L)−dg(εt−1), (6.42)
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where the function

g(εt−1) = θεt−1 + γ[|εt−1| − E(|εt−1|)], ∀t ∈ Z (6.43)

or (3) the FIAPARCH(p, d, q) model as given by

σδt = α0(1− β(L))−1 + 1− (1− β(L))−1φ(L)(1− L)d(|εt| − γεt)δ (6.44)

and lastly, (4) the HYGARCH(p, d, q) model as given by

φ(L)
(
(1− τ) + τ(1− L)d

)
a2
t = α0 + β(L)εt. (6.45)

When τ = 0 and d = 0, the model is GARCH and when τ = 1, the model is FIGARCH.

All four of these models have different properties and hence they model properties that

are different on the residual series. The best model that would be select will suggest that

the series behaves in that manner.

6.7 Chapter Summary

Conditional heteroscedastic models are methods which are used to model conditional

volatility. This arises as a result of variance of residuals not being constant and hence

the assumption does not hold. The basic model is the ARCH model. This model has a

couple of short-comings but the apparent weakness is in the estimation of parameters.

ARCH models require a lot of parameter estimates, and as a result GARCH models

can be considered. GARCH models generalise the ARCH models and often requires less

parameters to explain the data series. The GARCH model has a restriction

∑
(αi + βi) < 1 (6.46)

but if the series is integrated, this property does not hold in a sence that

∑
(αi + βi) = 1 (6.47)
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and in this case, IGARCH models are used. Where there is a symmetric relationship

in the mean and the volatility, an EGARCH model is used as it can better explain this

phenomenon. Lastly, we discussed GARCH-M which is useful if the returns of a security

depends on its volatility. These models explain short-term dependencies in volatility.

To explain long memory in volatility, a FIGARCH model is used. The FIGARCH

model must satisfy some constraints for the volatility to be non-negative. These con-

straints introduce a weakness in these models.

In order to overcome this short-coming, a FIEGARCH model may be used. This is

because the variance in the FIEGARCH model is determined in term of the logarithmic

function. The FIAPARCH process may be used if we need to determine the power of

returns for which the predictable structure in the volatility pattern is strongest. Lastly,

we discussed the HYGARCH model. The advantage of the HYGARCH models is that it

is covariance stationary similar to the GARCH model and has hyperbolic decay impulse

response coefficients similar to the FIGARCH model. The HYGARCH model also suffers

from the constraints which assures non-negativity of volatility. Last section of the chapter

discusses how the ARFIMA models, which models the return series, is used with volatility

models that are used to model volatility of residuals.
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Chapter 7

Forecasting and Estimation Methods

Volatility is unobservable, this property of volatility makes it difficult to evaluate it

forecast. In the literature, squared returns are normally used as a measure of volatility.

The use of this measure does not guarantee the same result as if the true volatility was

used. In other cases, extreme observations, even if few, may lead to large impacts on

the outcome of forecast evaluations. In this case, loss functions may be utilised as they

can be less sensitive to extreme observations than the widely used square error function.

In evaluating volatility forecast, when the objective of the analysis is the forecasting

accuracy of a single model, the quality of the model can be measured by the correlations

between prediction and realizations. A common method used in this case is the Mincer-

Zarnowitz(MZ) regression, which involves regressing the realization of a variable on a

constant and its forecast. When the forecastor is interested in comparing two or more

models, the Diebold and Mariano test could be used.

There are many methods proposed in literature that could be used to evaluate volatil-

ity forecasts. The hypothesis that we would like to examine in the forecasting of volatility

is

H0 : ht = σ2
t

vs (7.1)

H1 : ht 6= σ2
t

where ht is the volatility forecast and σ2
t is the true conditional variance at time t.
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7.1 Mincer-Zarnowitz Regression

In the literature, evaluating forecasts can be done by using the Mincer-Zarnowitz regres-

sion which is a simple linear regression of the realisation of the conditional volatility on

the forecasts. The Mincer-Zarnowitz regression is given by

σ̂2
t = β0 + β1ht + et

which yields an unbiased estimate of β0 and β1. We will then test the hypothesis

H̄0 : β0 = 0 and β1 = 1

vs (7.2)

H̄1 : β0 6= 0 or β1 6= 0

There have been variants of this test using different volatility measures. More on the

other volatility measures can be found Jorion (1995) and Wright and Bollerslev (1999).

Transformation of volatility done by these authors is mainly due to reduce the impact of

large returns.

For the Mincer-Zarnowitz regression under univariate case,

σ̂2
t = β0 + β1ht + et

generalised least squares can be used to evaluate the residuals for the regression. We have

seen that under the null hypothesis,

et = σ̂2
t − ht

= σ̂2
t (ηt − 1)

and that E(et|Ft−1) = 0, then

V (et|Ft−1) = σ̂4
t V (ηt − 1)

= ω2
t .

But ω2
t is unknown. If we could assume squared returns to be our volatility measure, the
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least squares could be defined as

σ2
t

ht
= β0

1

ht
+ β1 + êt,

where σ2
t = r2

t . Volatility forecasting evaluation can also be used when comparing com-

peting volatility forecasts. The MZ regression can also be viewed as a test of effeciency

in the sense that

E[ht(σ̂
2
t − ht)] = 0. (7.3)

If the forecast and forecast errors are correlated then it would be possible to produce

superior forecasts by the relationship

σ̂2
t − ht = α + (β − 1)ht + et, (7.4)

and thus

E[ht(σ̂
2
t − ht)] = αE(ht) + (β − 1)E(h2

t ) + E(htet) = 0 (7.5)

for α = 0 and β = 1.

7.2 Loss Functions

Another approach that could be used in evaluating forecast performance is by comparing

expected loss evaluated with respect to the true variance. Define the precision measure

in terms of expected loss of some forecast, hk,t with respect to the true E(L(σt, hk,t)).

The aim is to seek conditions that ensure consistency of the ranking between any two

forecasts k and j when a conditional unbiased proxy is substituted to the true variance

such that

E(L(σt, hk,t)) ≤ E(L(σt, hj,t))↔ E(L(σ̂t, hk,t)) ≤ E(L(σ̂t, hj,t)), (7.6)

A loss functions L is robust if the ranking of any two, possible imperfect volatility fore-

casts, h1t and h2t, by expected loss is the same whether the ranking is done using the
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true conditional variance, σ2
t , or some conditional unbiased volatility proxy, σ̂2

t . That is

E(L(σt, h1t)) ≤ E(L(σt, h2t))↔ E(L(σ̂t, h1t)) ≤ E(L(σ̂t, h2t)) (7.7)

for any σ̂2
t such that

E[σ̂2
t |Ft−1] = σ2

t . (7.8)

A sufficient condition for the definition to hold is for

∂2L(σt, ht)

(∂σt)2
(7.9)

to exist and be independent on ht. The squared errors are normally accepted by this

condition. A homogeneous class of consistent loss functions due to the work of Hansen

and Lunde (2006) is given by

L(σ̂2
t , ht) =


1
ξ−1

(σ̂ξt − h
ξ
t )− 1

ξ−1
(σ̂t − ht), : ξ /∈ (0, 1)

ht − σ̂t + σ̂tln(σ̂t/ht), : ξ = 1

σ̂t
ht
− ln(σ̂t/ht)− 1, : ξ = 0.

This loss functions can take variety of shapes. For instance, for xi = 0, 1, 2 the function

can be alternatively derived from the objective functions of the Gaussian, Poisson and

Gamma densities respectively.

7.3 Predictive Ability : Pair-Wise Test

This test is based on the comparison of the mean square error(MSE) of a pair of forecasts

with the target. Define dk,t = σt−hk,t as the forecast error and MSE(Lk,t) = T−1
∑
∀t e

2
k,t

the mean square forecast error of model k with respect to σt. Then, if we seek to compare

model k to model j, we then need to evaluate

MSE(Lk,t)−MSE(Lj,t) = (V ar(ek,t − V ar(ej,t))) + (ē2
k − ē2

j) (7.10)
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where ēi = T−1
∑
∀t ei,t. Then define Dt = ek,t − ej,t, St = ek,t − ej,t, and let D̄ and S̄ be

their respective means. This then allows us to re-write the above evaluation as

MSE(Lk,t)−MSE(Lj,t) = Cov(Dt, St) + D̄S̄. (7.11)

Then by using the hypothesis

H0 : Cov(Dt, St) = 0 (7.12)

we test equal predictive ability. This can further be expressed as a linear regression of

Dt and St as

Dt = α + β(St − S̄) + εt (7.13)

which then the null hypothesis becomes

H0 : α = 0 (7.14)

and under H0, the test is

GN − T =
ρ√

(T1)−1(1− ρ)2
∼ tT−1, (7.15)

where ρ = Cov(Dt, St)/
√
V ar(Dt)V ar(St) and tT−1 is the student-t distribution with

T − 1 degrees of freedom. Another approach (explained in the next sections) of testing

pair-wise predictive ability is a test proposed by Diebold and Mariano (1994).

7.4 Diebold-Mariano Test

The Diebold-Mariano test uses loss functions and under the null hypothesis, predictive

accuracy of competing forecasts is equal versus an alternative of either lesser or more

accurate. This test is used when we need to compare different volatility forecasts against

a specified volatility measure. Suppose we have a series

{σt : t = 1, 2, ..., T}
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of the actual values and

{σit : i = 1, 2 t = 1, 2, ..., T}

as forecast values. We will use two forecasts in this case. A forecast error would then be

found by

eit = σ̂it − σt, i = 1, 2.

If we define a loss function g(eit) to be associated with forecast i at time t, then it

is a function of the forecasting error. Loss functions that are considered are zero or

positive and increase with an increase in eit. g(eit) can take many forms but in literature,

squared returns, absolute returns, realised volatility and modified squared returns have

been used. This test utilises sample realisation of a loss differential series, {dt}Tt=1. The

loss differential is a difference between two forecasts

dt = g(eit)− g(e2t)

and the accuracy of the forecasts can be seen in E(dt) = 0. Hence, the null hypothesis

then becomes

H0 : E(dt) = 0

H1 : E(dt) 6= 0.

The asymptotic distribution is then given as

√
T (d̄− µ)d → N(0, 2πfd(0))

where

d̄ =
T∑
t=1

dt
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is the sample mean,

µ = E(dt) (7.16)

is the population mean, and

fd(0) =
1

2π

(
∞∑

k=−∞

γd(k)

)

is the spectral density of the loss differential at frequency 0, where γd(k) is the autoco-

variance of the loss differential at lag k. Then, under H0,

d̄− µ√
2πfd(0)

T

→ N(0, 1)

Under H0 for an h-step ahead forecast, where h ≥ 2, the Dieblom-Mariano statistic is

then defined as

DM =
d̄√

2πfd(0)
T

,

where

f̂d(0) =
1

2π

T−1∑
k=−(T−1)

l

(
k

h− 1

)
γ̂d(k)

for

γ̂d(k) =
1

T

T∑
t=|k|+1

(dt − d̄)(dt−|k| − d̄)

and

l

(
k

h− 1

)
=

 1 :
∣∣ k
h−1
≤ 1
∣∣

0 : Otherwise.
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We know that under covariance stationary, γ̂d(k) = γ̂d(−k) and hence, the consistent

estimator of fd(0) is then

f̂d(0) =
1

2π

(
γ̂d(0) + 2

h−1∑
k=1

γ̂d(k)

)
.

Then the Dieblom-Mariano(DM) test is

DM =
d̄√

2πf̂d(0)
T

=
d̄√

γ̂d(0)+2
∑h−1
k=1 γ̂d(k)

T

.

To get an adequate estimate, we can use

M∑
k=−M

γ̂d(k),

where M = T 1/3, and thus,

DM =
d̄√∑M

k=−M γ̂d(k)

T

.

Under the null hypothesis, we reject equal accuracy if

|DM | > zα/2.

Other methods that are used to evaluate forecasting performance of models, error

functions are used. Mostly used functions in literature are

1. The Mean Square Error(MSE)

√√√√ 1

N

N∑
t=1

(σ̂t − σt)2.
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2. The Mean Absolute Error(MAE)

1

N

N∑
t=1

|σ̂t − σt|.

3. The Mean Absolute Percentage Error (MAPE)

1

N

N∑
t=1

|σ̂t − σt|
σt

.

4. The Mean Error (ME)

1

N

N∑
t=1

(σ̂t − σt) .

5. The Mean Square Error (MSE)

1

N

N∑
t=1

(σ̂t − σt)2 .

6. The Mean Log-absolute Error (MLAE)

1

N

N∑
t=1

ln|σ̂t − σt|.

where σ̂t is the volatility predicted by the model at time t, and σt is the actual volatility

of the out-of-sample observations.

7.5 Estimation Methods

Bayesian methods are good estimation tools because of their simplicity. Considers a time

series {Xi}, i = 1..., N with the parameter θ having a prior distribution π(θ). Let π(X|θ)

be the likelihood function of the model. The posterior distribution of θ given the X is

π(θ|X) ∝ π(X|θ)π(θ).

93



What is of interest in finding the Bayes estimator for θ? A loss function L(θ,X) can be

considered, that is

θ̂ = argmin

∫
L(θ,X)π(θ|X)dX.

The evaluation of these integrals is complex and hence introduce a challenge to re-

searchers. A simpler method can be used to evaluate these integrals are the Markov

chain Monte Carlo (MCMC) algorithms. Let θ ∈ Θ be a parameter vector for data X. To

make inference, we need information about the distribution π(θ|X). To be successful in

this method, we need to create a Markov process whose stationary transition probability

is specified by π(θ|X). In the literature, there are two well known procedures for this

purpose, the Gibbs sampling and the Metropolis-Hastings algorithm.

7.5.1 Gibbs Sampling

This algorithm has the advantage to decompose a high dimensional estimation prob-

lem into several lower dimensional problems. Suppose the parameter vector consists of

θ1, θ2, θ3 and X is the collection of data. The goal of Gibbs sampling is to estimate the pa-

rameters so that the fitted model can be used to make inference. Further, suppose three

conditional distributions of a single parameter given other parameters are available. That

is,

f1(θ1|θ2, θ3, X),

f2(θ2|θ1, θ3, X),

f3(θ3|θ1, θ2, X)

are available, where f1, f2 and f3 denote the condition distributions of parameters θ1, θ2

and θ3 respectively. What is required in applications in the ability to draw a random

number from these conditional distributions. Suppose θ2,0 and θ3,0 are starting values for

θ2 and θ3 respectively. This method proceeds

1.) Draw a random sample from f1(θ1|θ2,0, θ3,0, X) and denote by θ1,1,

2.) Draw a random sample from f2(θ2|θ1,1, θ3,0, X) and denote by θ2,1.

94



3.) Draw a random sample from f3(θ3|θ1,1, θ2,1, X) and denote by θ3,1.

For the next iteration, we use the new parameters as starting values and repeat the above

iteration. Under regularity conditions, it can be shown that for sufficiently large value

of m, the parameters (θ1,m, θ2,m, θ3,m) are approximately equivalent to a random draw

from the joint distribution f(θ1, θ2, θ2|X).

Under general conditions, suppose θ can be decomposed as θ = (θ1, ..., θr) and we are

able to simulate from the conditional densities

fi(θi|θ1, ..., θi−1, θi+1, ..., θr), i = 1, 2, ..., r.

To sample from the joint distribution of θ, we proceed as follows. Given a sample

(θ1,m, ..., θr,m), generate

1. θ1,m+1 ∼ f1(θ1|θ2,m, ..., θr,m).

2. θ2,m+1 ∼ f1(θ2|θ1,m, ..., θr,m).

3.
...

4. θr,m+1 ∼ f1(θr|θr,m, ..., θr−1,m).

The steps above are repeated with the new parameters. Another method that is used in

the Metropolis-Hasting algorithm.

7.5.2 Metroplis-Hastings Algorithm

This algorithm is used when the conditional posterior distribution is known. Suppose we

need to draw a random sample from the distribution π(θ|X) which contains a complicated

normalization constant such that a direct draw is either too time consuming or infeasible.

But there exists an approximate distribution for which random draws can be sampled.

This algorithm generates a sequence of random draws from the approximate distribution

whose distributions converge to π(θ,X). This algorithm proceeds as follows.

1.) Draw a random sample starting value θ0 such that π(θ0|X) > 0.

2.) For t=1,2,.....
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a.) Draw a candidate sample θ∗ from a known distribution at iteration t given

the previous draw θt−1. Denote the known distribution by Jt(θt|θt−1) which is

called a jumping distribution. The jumping distribution must be symmetric

such that Jt(θi|θj)=Jt(θj|θi).

b.) Calculate the ratio

r =
π(θ∗|X)

π(θt−1|X)

and under the Metropolis-Hasting algorithm

r =
π(θ∗|X)Jt(θt−1|θ∗)
π(θt−1|X)Jt(θ∗|θt−1)

,

Under this algorithm, the jumping distribution does not have to be symmetric.

c.) Set

θ =

 θ∗, min(r, 1)

θt−1, Else
,

under regularity conditions, the sequence {θt} converges in distribution to

π(θ|X).

7.6 Chapter Summary

In time series analysis, forecasting is imperative as models are designed to produce future

forecasts. Since volatility is unobservable, there are a number of volatility measures, that

are available for use. The squared returns have been widely used as a volatility measure.

In producing forecasts, the evaluation of the forecasts is important and in literature

there are methods proposed. The basic method that is used is the MZ regression which

involves regressing the realization of a variable and a constant and its forecast. With this

method, R2 could be compared. Diebold and Mariano test is used for comparing two or

more forecasts from different models. The use of loss functions provides a flexible form

of pair-wise comparison. The pair-wise predictive ability is measured by the difference of

MSE’s. Except for these methods, there are other functions that could be used like the

MAE, MAPE, ME, MLAE among others.
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Chapter 8

Empirical Analysis of South African

Platinum Returns

In this chapter, we use methods discussed in the previous chapters to investigate the

distributional properties of platinum return series and inherent volatility dynamics. In

the literature it has been found that financial returns are explained by heavy tailed distri-

butions.These include generalised hyperbolic distributions and alpha stable distributions

introduced by Mandel (1971). In the analysis of distributional properties, we use alpha

stable distributions and then we apply recently used generalized hyperbolic distributions.

Another platinum price return phenomenon we investigate in this chapter are struc-

tural breaks that occur as a result of major events that affect the structure of the data.

We first use the iterative cumulative sum of squares (ICSS) algorithm to capture mean

breaks and then use a method by Shimotsu (2006) to examine any breaks found in long

memory of data.

In modelling long memory in log mean returns, we apply the widely used ARFIMA

model as it is able to capture long memory dynamics and any form of persistence that

might be inherent in the data series. This model is attractive as it is simpler to estimate

and hence conclude from it. With this model, we can be able to tell if log returns of

platinum are random walk, persistent or anti-persistent. For volatility modelling we use

fractional integrated GARCH type models which capture long memory and other proper-

ties of financial returns volatility. A good example of such properties is the symmetry that

has been found in some financial returns especially commodities (Arouri et al., 2012a;

Diaz, 2016). In the next section we discuss data aspects of platinum price series and any
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formulation of return series we apply going forward.

8.1 Data Series

The data used are daily and monthly closing platinum prices from February 1994 to June

2014. This data is sourced from Matthey (2013b). In the analysis of platinum returns,

we use log returns as defined by

rt = ln

[
Xt

Xt−1

]
, (8.1)

where Xt is the price of the underlying asset at time t. To measure volatility of these

returns, we use squared log returns as the volatility measure.

Descriptive statistics in Table 8.1 shows that the log returns are skewed with high

kurtosis which is greater than the kurtosis of a Normal distribution.

Table 8.1: Descriptive Statistics of Returns

Returns Statistic Platinum Returns

Q1 -3.5970
Q2 0.4938
Q3 4.4950
Mean 0.0249
Kurtosis 14.9697
Skewness 0.6575

Table 8.2: Statistical tests of Returns
Test Test-Statistic P-value

Kolmogorov-Sminov 0.3655 0.0001
Jarque-Beta 31640.87 0.0001
Phillips-Perron (lag=10) -3348.85 0.01

Jarque-Bera and Kolmogorov-Smirnov tests in Table 8.2 illustrates that the series are

not Normally distributed. Figure 8.1 shows the Normal Q-Q plot, this illustrates that

the tails of the data series are heavier than the tails of the Normal distribution.
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Figure 8.1: Normality Q-Q Plots

To test for unit roots, Phillips-Perron test in Table 8.2 shows that platinum return

series are stationary in mean, we use the Phillips-Perron test since it is robust to the

presence of serial correlation and heteroskedasticity.
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Figure 8.2: Platinum prices from February 1994 to June 2014

Figure 8.3: Platinum returns from February 1994 to June 2014
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Figure 8.2 shows platinum prices and Figure 8.3 shows platinum return series. An

erratic behaviour in prices is seen and can be further seen in platinum returns. This

volatility is seen around the period of 2008/2009 where we experienced a global reces-

sion. Further, volatility clustering, a phenomenon explained by heteroskedastic models is

exhibited in both figures. Jumps seen in prices might suggest that the data may contain

structural breaks. In the next section, we discuss distributional properties of the return

series.

8.2 α-Stable Distributions

In order to explain the returns, we fitted α-Stable distributions to platinum returns

series. We fitted the data to four parameter α-stable distributions using Nolan’s S1

parameterization. The estimated parameters are shown in Table 8.3, and the value of

α̂ is in the region (0, 2] which illustrates that the estimated distribution is in the Stable

domain. By definition, the value of α̂ close to zero signifies that a distribution has thicker

tails and if it is close to 2 then a distribution has lighter tails.

Table 8.3: Stable Distribution Parameters
Parameters α̂ β̂ γ̂ δ̂
Estimated 1.287 -0.254 0.04075 0.008417

The value of the tail estimate, α̂, is not far from 2 when we look at the range [0-α̂,α̂-2]

and this suggests intermediate heavy tails.

Figure 8.4: Stable Empirical Quantile Distribution
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However, the quantile distribution of the data with Stable quantiles indicate that the

tails of the data series distribution is heavier than the estimated tail value. By inspecting

the sample quantile distribution in Figure 8.4, it is also evident that this distribution

cannot explain the tails of platinum return series. Stable quantiles and empirical quantiles

do not align and thus it appears that the tails of the data can be explained by a tail heavier

than the estimated tail. The value of β̂ < 0 indicates that the fitted series is left skewed.

Table 8.4: Statistical Tests
Statistical Test Test Statistic p-value
Kolmogorov-Smirnov 0.0234 0.1219
Anderson-Darling 2.9840 0.0272

Table 8.4 shows the results of statistical tests, Kolmogorov-Sminorv test has a high

p-value suggesting that we cannot reject the hypothesis of α-Stable returns, however

the Anderson-Darling test which emphasizes tail fits, rejects the hypothesis of α-Stable

returns. Further the tails of return series data and 1.287-Stable distribution, as shown by

figure 8.4 are far apart and thus this suggest another class of distributions that could be

used to explain the heavy tails of this data. In the following section, we fit the generalized

hyperbolic distributions that has recently been widely used in the econometrics literature

to explain financial returns.

8.3 Generalized Hyperbolic Distribution

From the above section, it is evident that the tails of the return series could not be ex-

plained by Normal and Stable distributions. In this section, we fit different generalized

hyperbolic distributions and select the best model based on information criteria. The

results of fitting generalized hyperbolic distributions to platinum return series are dis-

played in Table 8.5. We fit symmetric and asymmetric models to capture as much of

the distributional properties as possible. When using the AIC criteria, the asymmetric

normal inverse Gaussian(NIG) distribution is selected as the best model.
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Figure 8.5: Platinum Returns under Asymmetric Normal Inverse Gaussian Distribution

Table 8.6: Statistical Tests
Kolmogorov-Smirnov Anderson-Darling

Distribution Statistic p-value Statistic p-value
Normal Inverse Gaussian 0.0250 0.0819 2.5440 0.04716
Asymmetric Normal Invese Gaussian 0.0024 0.1540 1.958 0.0969
Generalized hyperbolic p 0.0180 0.3786 1.7420 0.1280
Asymmetric Generalized hyperbolic 0.0197 0.2741 1.282 0.2382
Student-t 0.0239 0.1089 3.7390 0.0117
Asymmetric Student-t 0.0311 0.0141 4.1800 0.0072
Variance Gamma 0.0373 0.0016 5.5890 0.0015
Asymmetric Variance Gamma 0.0331 0.0074 5.5230 0.0016
Hyperbolic 0.0419 0.0003 9.727 0.0001
Asymmetric Hyperbolic 0.0325 0.0090 6.8280 0.0004

Figure 8.5 shows the histogram of the Normal Inverse Gaussian fit, the log-histogram

and quantile-quantile plot for the fitted data, fitted plots for other distributions are shown

in the appendix. From the figures produced, it is evident that the Gaussian distribution

does not explain the data better that any of the generalised hyperbolic distributions.

We must note that as much as the asymmetric NIG fits the returns better, it does not

perfectly fit the tails of the platinum returns.

Statistical tests are shown in Table 8.6. At 5% level of significance, the Kolmogorov-

Smirnov test rejects the null hypothesis of the asymmetric Student t, Variance Gamma,

asymmetric Variance Gamma, Hyperbolic and asymmetric Hyperbolic distribution. The

Anderson-Darling additionally rejects the Student t distribution. This illustrates that

the generalized hyperbolic distributions can be used to explain platinum return series.
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8.4 Structural Breaks Diagnosis

In the structural breaks diagnosis we start by using the mean breaks algorithm which

is the ICSS algorithm to identify breaks that might arise from sudden changes in data.

The second algorithm we use is due to Shimotsu (2006) which investigates long memory

parameter consistency and lastly, we use the sample accumulation algorithm that assists

in identifying trends and regimes in long memory.

8.4.1 Mean Breaks

To identify breaks in mean, we used the ICSS algorithm to determine break dates. Table

8.7 lists the dates of breaks found in platinum return series and respective averages

per regime identified. The 2008/2009 breaks can be attributed to the global financial

crises that resulted in global economy disintegrating, and the 2012/2013 breaks can be

associated with the South African labour unrest in the mining sector. Such breaks may

introduce spurious results in persistence and long memory.

It can be seen from Figure 8.6 that platinum return series is separated into different

regimes. This indicates that persistence observed in the return series might be spurious

and hence arise from breaks and shifts. In testing persistence using the results from the

ICSS algorithm, simple GARCH models are used and a comparison is done by including

dummy variables in one GARCH model to the simple GARCH model without dummy

variables. Using this method, for every break or regime experienced a dummy variable

is assigned. This is done to account for regimes in estimating data persistence. We

compared two GARCH models, the standard GARCH(1,1) model which does not contain

dummy variables and the GARCH(1,1) model with dummy variables and the results are

shown in Table 8.8.
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Table 8.7: ICSS Algorithm Results of platinum squared returns

Break-Dates Averages

02JAN1994 0.000452094
02FEB1994 0.0003475636
24NOV1994 0.0000734619
13JAN1995 -0.000026251
06NOV1996 -0.000818846
02APR1997 0.0010452113
17OCT1997 -0.000356536
02NOV1999 0.0014604989
02MAY2001 -0.001052794
02JUN2001 0.0004234699
24DEC2003 0.0007842299
02MAY2008 -0.001498914
01AUG2008 -0.004645594
01FEB2009 0.0009802843
06JUL2011 -0.000785104
07MAR2012 -0.00026438
13NOV2013 -0.000072072

Figure 8.6: Platinum Returns with Regime Averages

Table 8.8 shows the results of the standard GARCH(1,1) model and GARCH(1,1)

model with dummy variables (D-GARCH(1,1)). The persistence of the model with

dummy variables, in theory, should be less than the persistence of the model without
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dummy variables.

Table 8.8: GARCH(1,1) results and D-GARCH(1,1) the GARCH with dummy variables

Parameter DF Estimate St.Err t-value P-value

GARCH(1,1)
ARCH0 (α0) 1 5.63E-6 2.56E-6 2.20 0.0275
ARCH1 (α1) 1 0.0411 0.003165 12.98 <0.0001
GARCH1 (β1) 1 0.9596 0.002948 325.55 <0.0001
Persistence 1.0007

D-GARCH(1,1)
ARCH0 (α0) 1 6.12E-6 2.57E-6 2.38 0.0173
ARCH1 (α1) 1 0.0406 0.003151 12.88 <0.0001
GARCH1 (β1) 1 0.9597 0.002946 325.73 <0.0001
Persistence 1.0003

Notes: The persistence is measured by the GARCH parameters (α1+β1)

The difference in persistence between the two models is very small and this suggests

that the persistence in platinum prices is not affected by the breaks in data. Hence, the

high persistence observed might come from other sources other than structural breaks.

As it has been investigated in literature that long memory and structural breaks can be

confused since one can arise from another, in the next subsection we investigate breaks

in the long range dependence parameter estimation.

8.4.2 Breaks in Long Memory

In structural breaks diagnosis of long memory, we used a method introduced by Shi-

motsu (2006) which tests parameter consistency using sub-samples methodology. For this

method, we split the sample into sub-samples and for each of the sub-samples selected, we

obtain estimates of d, the long range dependence parameter for the sub-samples, d̂2 and

d̂4 which are the averages of splitting the sub-sample into 2 and 4 samples respectively.

We used the Wald test statistic on d̂2 and d̂4 to test parameter consistency in long range

dependence parameters. Chi-square statistics χ2
0.95(1)=3.84 and χ2

0.95(3)=7.82 were used

as cut off values for testing the significance of d2 and d4 at the 5% level of significance,

respectively.

From Table 8.9, it is evident that the platinum return series contain breaks. It can be

seen that the long range dependence parameter is not consistent between sub-samples.

This is further shown by the rejection of parameter consistency by W2 and W4 tests. The
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KPSS test statistic does not reject the presence of long memory. The results from Table

8.9 shows that sub-sample parameter estimates are not consistent using the Wald test

statistic and the KPSS test does not reject the presence of long memory. This illustrates

that not all long memory presence is due to structural breaks.

Table 8.9: Test Results of platinum squared returns

m d̂ d̂2 d̂4 W2 W4 KPSS p-value(KPSS)

500 0.0125 0.0095 -0.0494 0.6151 5.6580 0.0077 0.1000
1000 0.1275 0.0125 0.0095 7.9680 19.4500 0.0184 0.1000
1500 0.0763 -0.0016 0.0091 0.0001 10.9500 0.0185 0.1000
2000 0.0781 0.1275 0.0125 22.6700 31.5300 0.0089 0.1000
2500 0.0670 0.1156 0.0120 38.5800 15.0100 0.0077 0.1000
3000 0.0722 0.0763 -0.0016 3.0550 11.5700 0.0131 0.1000
3500 0.0672 0.1054 0.1547 16.3000 46.6100 0.0250 0.1000
4000 0.1085 0.0781 0.1275 2.8320 30.0600 0.0093 0.1000
4500 0.1076 0.0712 0.1175 5.3880 33.0400 0.0153 0.1000
5000 0.1076 0.0670 0.1156 8.0600 53.4300 0.0145 0.1000

From Table 8.9 we have seen that different sub samples produce different long memory

results. Following from this, we analyzed the effect of each of the sub-samples to the

long range dependence parameter overtime using a method of sample accumulation and

estimation. With this method, we accumulate sub-samples and estimate the long-range

dependence parameter for each of the accumulations. The results of this method is shown

in Figure 8.7. Thus from Figure 8.7, it can be seen that between sample 30 and sample

40, there was a period where the long range dependence estimate jumped.

Long range dependence (LRD) parameter estimates up to the 20th cumulative sub-

sample are volatile. Data contained are from February 1994 to September 2004. The

total observations used up to this point are 2800 and hence, the volatility seen is due

to small data. From the 21st cumulative sample, the LRD parameter estimates are less

volatile up to sample 34. The introduction of sample 35 to the total sample created a

jump in estimation. Data added is from April 2013 to August 2013. This suggests that

there was a break or a shift in volatility experienced during this period. As a result, from

the 36th sample on-wards, LRD parameter estimates are higher than the initial estimate.

This illustrates that the LRD estimate in this period might be contaminated by breaks

information and thus might not be a true reflection of the memory inherent in data or

another cause might be that LRD of this return series is time varying as shown in Figure
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Figure 8.7: long range dependence parameter of sample accumulation

8.7.

With this information at hand, we can split the data series into 2 regimes as shown

in Figure 8.7. The LRD estimate for the first regime (dR1) and the LRD estimate for

the second regime (dR2), that is dR1=0.07 and dR2=0.11 as defined by the averages. In

modelling of long memory, the first regime can be modelled using dR1 and the second

regime can be modelled using dR2. To confirm the trend shown, a backward estimation

of sub-sampling can be done which in theory should return the same results as shown in

Figure 8.7. Thus, using these results, we can use April 2013 as a date where there was a

shift in long memory inherent in the data series. A formulation can be expressed as

d̂ =

 ˆdR1(t) t < April − 2013

ˆdR2(t) t ≥ April − 2013
,

in modelling of log returns for the platinum return series. In the next section, we

test for LM and estimate the long range dependence parameter using different estimation

methods.
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8.5 Long Memory Tests

In long memory testing, we fitted different long memory tests to the squared log returns

of platinum prices. The Hurst exponent results of long memory tests are shown in Table

8.10 for platinum log squared returns.

Table 8.10: Platinum Log Squared Returns Long Memory Tests

Method Hurst Standard Error t-value p-value

Aggregated Variance Method 0.9358(0.4358) 0.0421 22.2319 <0.0001
Differenced Aggregated Variances 1.1907(0.6907) 0.1813 6.5684 <0.0001
Aggregated Absolute Value Method 0.9909 (0.4909) 0.0253 39.2360 <0.0001
Higuchi Method 0.9739 (0.4739) 0.0358 27.1544 <0.0001
Peng Method 0.6836 (0.1836) 0.1127 6.0681 <0.0001
R/S Method 0.6667 (0.1667) 0.0754 8.8486 <0.0001
Periodogram Method (GPH) 0.9665 (0.4665) 0.0382 25.2618 <0.0001
Boxed(Modified) Periodogram Method 0.8313 (0.3313) 0.0463 17.9453 <0.0001
Wavelet Estimator 0.5248 (0.0248) 0.1005 5.2199 0.0034
Whittle Estimator 0.6080 (0.1080) 0.0089 68.2000 <0.0001

Note: The value of d̂ is shown in brackets

All of the tests used suggest long memory as all the p-values are less than 0.01. Note

that the differenced aggregated variances method violates the condition 0 < H < 1. This

should not be a concern as its main purpose is to distinguish nonstationarity due to jumps

(H u 0.5) to that due to actual trend (H � 0.5). So in this case, trend is not due to

jumps in the data. It is clear that platinum squared returns have high persistence and it

appears they could be explained by a fractionally integrated model. In the next section,

we fit long memory mean models and conditional volatility models on platinum return

series to investigate dual long memory of mean returns and volatility.

8.6 Empirical Results of Volatility Models

To explain the dual long memory of the mean and volatility of platinum return series,

we fitted ARFIMA-FIGARCH type models under heavy tailed error distirubtions. We

used an ARFIMA model for modelling log returns and for volatility we used FIGARCH,

FIEGARCH, FIAPARCH and HYGARCH under heavy tailed error distributions. Dis-

tributions considered are the Normal, Student, Generalized extreme distribution (GED),

and the skewed Student distribution.
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Table 8.11: ARFIMA-FIGARCH Parameter Estimation of Models
Parameters Normal Student GED Skewed Student

Cst(M) 0.0002∗∗ 0.0001∗∗∗ 0.0001∗∗ 0.0003∗∗∗

dm -0.1027∗∗∗ -0.0893∗∗ -0.0838 -0.5276∗∗∗

AR(1) 0.4062∗∗∗ 0.4158∗∗∗ 0.4193∗∗∗ 0.1356∗∗∗

MA(1) -0.9327∗∗∗ -0.9353∗∗∗ -0.9361∗∗∗ 0.0699∗

Cst(V) 0.0013∗∗ 0.0011∗ 0.0011∗ 0.0006
dv 0.6492∗∗∗ 0.6486∗∗∗ 0.6473∗∗∗ 0.6545∗∗∗

ARCH(α1) 0.3686∗∗∗ 0.3567∗∗∗ 0.3543∗∗∗ 0.2138∗∗∗

GARCH(β1) 0.8721∗∗∗ 0.8730∗∗∗ 0.8720∗∗∗ 0.8680∗∗∗

Akaike -2.4717 -2.4720 -2.4715 -2.4017
Schwarz -2.4591 -2.4578 -2.4574 -2.3860
ARCH-LM 4.0565∗∗ 4.7917∗∗∗ 4.6751∗∗∗ 4.5570∗∗

Notes: ∗,∗∗ and ∗ ∗ ∗ represent the significant level at 10%, 5% and 1% levels respectively.

Table 8.12: ARFIMA-FIEGARCH Parameter Estimation of Models
Parameters Normal Student GED Skewed Student

dm -0.4668∗∗∗ -0.4012∗∗∗ -0.3903∗∗∗ -0.0488
AR(1) -0.2576∗∗∗ -0.0012 0.0300 0.4407∗∗∗

MA(1) 0.3411∗∗∗ 0.1230 0.0863 -0.9404∗∗∗

dv 0.8975∗∗∗ 0.9173∗∗∗ 0.9173∗∗∗ 0.6623∗∗∗

ARCH(α1) 1.1344∗∗∗ 1.2337∗∗∗ 1.2557∗∗∗ -0.6664∗∗∗

GARCH(β1) -0.8946∗∗∗ -0.8977∗∗∗ -0.9047∗∗∗ 0.8725∗∗∗

EGARCH(θ1) 0.0234∗∗∗ 0.0645∗∗∗ 0.0433∗∗∗ 0.0414
EGARCH(θ2) 0.2187∗∗∗ 0.2279∗∗∗ 0.2122∗∗∗ 0.1367
Akaike -2.2483 -2.2809 -2.2885 -2.4602
Schwarz -2.2358 -2.2668 -2.2743 -2.4413
ARCH-LM 0.8213 14.202∗∗∗ 14.175∗∗∗ 1.6987

Notes: ∗,∗∗ and ∗ ∗ ∗ represent the significant level at 10%, 5% and 1% levels respectively.

Parameter estimation results are shown from Tables 8.11 to 8.14. Let dm denote LM

paramater in the mean model. For all the models, the long range dependence parameter

of the ARFIMA model is negative (−1/2 < dm < 0) indicating anti-persistence (inter-

mediate persistence) of log returns. This illustrates that log returns of platinum are

mean reverting and hence will revert to the mean overtime. Let dv denote LM paramater

in the volatility model. For volatility the long range dependence parameter is positive

(0 < dv < 1) and shows strong long memory. This confirms the results by other authors

(Arouri et al., 2012a), platinum shows high persistence.

Based on the Akaike information criterion, the best model is ARFIMA-FIAPARCH

under the Student distribution. However, the ARCH-effect is slightly significant (*).

Based on the Schwarz information criterion, the best model is ARFIMA-FIAPARCH un-
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Table 8.13: ARFIMA-FIAPARCH Parameter Estimation of Models
Parameters Normal Student GED Skewed Student

Cst(M) 0.0001 0.0001 0.0001 0.0003∗∗∗

dm -0.0793∗∗∗ -0.0556 -0.0410 -0.5176∗∗∗

AR(1) 0.3920∗∗∗ 0.4053∗∗∗ 0.4137∗∗∗ 0.1308∗∗∗

MA(1) -0.9327∗∗∗ -0.9361∗∗∗ -0.9381∗∗∗ 0.0687∗

Cst(V) 0.0041 0.0043∗ 0.0046∗ 0.0005
dv 0.6512∗∗∗ 0.6462∗∗∗ 0.6378∗∗∗ 0.6432∗∗∗

ARCH(α1) 0.3974∗∗∗ 0.3929∗∗∗ 0.3919∗∗∗ 0.2325∗∗∗

GARCH(β1) 0.8743∗∗∗ 0.8744∗∗∗ 0.8718∗∗∗ 0.8607∗∗∗

APARCH(γ1) -0.2928∗∗∗ -0.3716∗∗∗ -0.4169∗ -0.2012∗

APARCH(δ) 1.8067∗∗∗ 1.7569∗∗∗ 1.7309∗∗∗ 2.0904∗∗∗

Akaike -2.4773 -2.4783 -2.4781 -2.4030
Schwarz -2.4616 -2.4610 -2.4608 -2.3841
ARCH-LM 2.2572 2.6098∗ 2.7374∗ 2.8892∗

Notes: ∗,∗∗ and ∗ ∗ ∗ represent the significant level at 10%, 5% and 1% levels respectively.

Table 8.14: ARFIMA-HYGARCH Parameter Estimation of Models
Parameters Normal Student GED Skewed Student

dm -0.0802∗∗∗ -0.4125∗∗∗ -0.3947∗∗∗ -0.4247∗∗∗

AR(1) 0.3788∗∗∗ 0.0254 0.0684 0.0899∗∗

MA(1) -0.9355∗∗∗ 0.0985∗ 0.0540 0.0587
dv 0.8199∗∗∗ 0.7930∗∗∗ 0.7968∗∗∗ 0.7983∗∗∗

ARCH(α1) 0.2981∗∗∗ 0.1091∗∗∗ 0.1086∗∗∗ 0.0960∗∗∗

GARCH(β1) 0.9142∗∗∗ 0.909∗∗∗2 0.9088∗∗∗ 0.9113∗∗∗

Akaike -2.4590 -2.3467 -2.3547 -2.3710
Schwarz -2.4480 -2.3341 -2.3421 -2.3568
ARCH-LM 1.9986 1.4914 0.72470 0.72483

Notes: ∗,∗∗ and ∗ ∗ ∗ represent the significant level at 10%, 5% and 1% levels respectively.
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der the Normal distribution and has no ARCH-effect. Although the ARFIMA-FIEGARCH

under the Skewed Student distribution and ARFIMA-HYGARCH under the Normal dis-

tribution were not selected based on the two information criteria they have no ARCH-

effects.

This agrees with the results of Diaz (2016) who found that platinum returns volatility

are characterized by asymmetric response to negative and positive shocks as explained by

the FIAPARCH model. From the results for models, γ <0 which illustrates that positive

shocks have relatively more impact than negative shocks on volatility. Although these

metals respond similar to negative and positive news, positive news have a higher impact

and hence making these metals a good investment vehicle as outlined in Arouri et al.

(2012a). We discuss forecast performance of these models in the following section.

8.7 Forecast Evaluation Methods

Evaluation of forecasts for models is important as it helps us understand the forecasting

accuracy of the models estimated. There are a number of forecasts evaluation measures

available in literature. For our analysis, we used three measures commonly used in

literature, namely the mean square error (MSE), the mean absolute error (MAE) and the

Theil Inequality Coefficient (TIC). These measures are defined as

MSE =
1

n

n∑
t=1

(σt − σ̂t)2,

MAE =
1

n

n∑
t=1

|σt − σ̂t|,

TIC =

√
1/n

∑n
t=1(σt − σ̂t)2√

1/n
∑n

t=1 σ
2
t +

√
1/n

∑n
t=1 σ̂t

2
,

where n is the number of forecasts, σt is the observed volatility and σ̂t is the predicted

conditional volatility at time t. The best model must exhibit least prediction error as

given by the three measures. Table 8.15 to Table 8.18 show forecast evaluation re-

sults. For platinum return series, the MSE gives low prediction errors for all models
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Table 8.15: ARFIMA-FIGARCH Forecast Evaluation
Parameters Normal Student GED Skewed Student

MSE 0.0003 0.0003 0.0003 0.0003
MAE 0.0082 0.0082 0.0083 0.0087
TIC 0.6515 0.6517 0.6517 0.6331
Alpha(MZ) 0.0002 0.0002 0.0002 0.0006
Beta(MZ) 1.2062 1.1974 1.1948 1.0028
R2(MZ) 0.0689 0.0670 0.0665 0.0551

Table 8.16: ARFIMA-FIEGARCH Forecast Evaluation
Parameters Normal Student GED Skewed Student

MSE 0.0004 0.0004 0.0004 0.0004
MAE 0.0097 0.0115 0.0107 0.0085
TIC 0.6012 0.5626 0.5773 0.6657
Alpha(MZ) 0.0034 0.0035 0.0037 0.0028
Beta(MZ) 0.5231 0.3826 0.4132 0.7664
R2(MZ) 0.0317 0.0320 0.0307 0.0220

except ARFIMA-FIEGARCH which has slightly high errors. Based on the MAE, the

ARFIMA-FIAPARCH under the Normal and Student distribution and the ARFIMA-

HYGARCH under the Normal distribution gives less prediction errors .Lastly, for the

TIC, the ARFIMA-FIEGARCH under Student distribution gives less prediction error.

Hence this confirms the selection of ARFIMA-FIAPARCH models under Student and

GED error distributions as good models since it it evident for the MAE evaluation mea-

sure.

Table 8.17: ARFIMA-FIAPARCH Forecast Evaluation
Parameters Normal Student GED Skewed Student

MSE 0.0003 0.0003 0.0003 0.0003
MAE 0.0081 0.0081 0.0082 0.0087
TIC 0.6699 0.6721 0.6727 0.6384
Alpha(MZ) 0.0004 0.0005 0.0005 -0.0009
Beta(MZ) 1.2716 1.2550 1.2415 1.1667
R2(MZ) 0.0634 0.0584 0.0554 0.0510
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Table 8.18: ARFIMA-HYGARCH Forecast Evaluation
Parameters Normal Student GED Skewed Student

MSE 0.0003 0.0003 0.0003 0.0003
MAE 0.0081 0.0088 0.0087 0.0092
TIC 0.6581 0.6319 0.6351 0.6152
Alpha(MZ) 0.0007 0.0013 0.0013 0.0014
Beta(MZ) 1.2053 0.9064 0.9233 0.8067
R2(MZ) 0.0737 0.0491 0.0495 0.0470

A popular method used for assessing forecasting performance of volatility models is

the Mincer-Zarnowitz regression defined

σ̃2
t = α + βσ̂2

t + ut, t = 12, ..., T,

where σ̃2
t is the observed volatility as measured by squared innovations and σ̂2

t is the

predicted volatility. If the conditional volatility model is correctly specified and σ̃2
t is

unbiased for the true variance then the parameters will be α = 0 and β = 1. This

then suggest that the observed volatility will compleetely be explained by the predicted

volatility. An R2 value from this regression model compares predictive ability of volatility

models. The Mincer-Zarnowitz regression results are shown in Table 8.15 to Table 8.18.

This regression jointly tests the intercept (alpha) and slope (beta). For all the models

used, the null hypothesis for zero intercept is rejected at 5% level of significance. This

tells us that the models will underestimate or overestimate the volatility to some extent

and thus we would need to adjust the forecasts with calculated intercept values. For

the selected models the platinum model has slope of 0.0005, hence the platinum model

underestimates volatility by 0.0005. The null hypothesis of a unit slope is not rejected at

5% level of significance for all models. This tells us that our forecasts from the models

explains the observed values. In summary, the ARFIMA-FIGARCH type models under

heavy tailed error distributions shows an improvement of forecasts as compared to the

assumption of Normally distributed errors, and further ARFIMA-FIAPARCH models

proved to explain platinum returns series under these error distributions.
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8.8 Summary

To summarize this chapter, the return series of platinum prices was found to be not nor-

mally distributed. Different heavy tailed distributions were tested, specifically two classes,

the alpha-stable distributions and generalized hyperbolic distributions. Alpha-stable dis-

tributions do not fit tails of platinum return series, generalized hyperbolic distributions

were then used. In generalized hyperbolic distributions, the normal inverse gaussian dis-

tribution was selected based on the information criteria, as it performed better than other

distributions. We must note however that the asymmetric NIG did not perfectly fit the

returns well.

In modeling volatility, especially long memory models, structural breaks in data pro-

duce spurious long memory. To test spurious long memory, we used a method due to

Shimotsu (2006). This method suggested that memory in data is not spurious. We then

tested long memory in squared returns and all the tests used suggested long memory.

The ARFIMA-FIGARCH type models were used in the modelling of mean and volatility.

ARFIMA models were used for mean process and FIGARCH models were used to model

volatility. ARFIMA-FIAPARCH model was selected under the AIC and BIC criteria,

this illustrates that platinum returns volatility has an asymmetric response to negative

and positive shocks.

On forecast evaluation using the MSE, MAE and TIC, ARFIMA-FIAPARCH models

under heavy tailed error distributions performs well. The Student and GED distributions

were chosen. To examine performance of these models, we used the Mincer-Zarnowitz

regression which jointly estimates the slope and intercept of regressing the forecast value

on true volatility measure. We found that these models will underestimate volatility to

some extent and needs adjustment in estimation.
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Chapter 9

Summary and Further Research

In this thesis, we analyzed log squared returns of platinum price series. Different aspects

of squared log returns were discussed in this thesis which explain conditional volatility

dynamics of the platinum return series. Our data analysis showed that the return se-

ries is skewed and has high kurtosis. This then tells us that the platinum price return

series in not normal. We used different distributions to identify a distribution that best

explains the return series. The first distribution was the alpha-stable distribution, this

distribution could not fit the tails of the return series. The next distribution was the

class of generalized distributions, the decision of the selected distribution was based on

the AIC and the log likelihood.

From the six distributions of the generalized hyperbolic distributions, the NIG was

selected as the distribution of choice. We then tested structural breaks in the returns

series and could only identify additive breaks which occurred in June 2008. This break

did not affect long memory, this was confirmed by the visual inspection of changes in

long-range parameter of different samples. Long memory tests on squared returns all

suggested that there is long memory in platinum squared return series.

In modeling volatility dynamics, we started by GARCH-type models which includes

the ARMA-GARCH, ARMA-IGARCH and ARMA-EGARCH. The first observation that

was identified was with the results of the ARMA-GARCH model,i.e. the two GARCH

parameters were close to unit and this suggests that the data is integrated and hence

cannot be explained by a standard GARCH model. The next model we fitted was the

ARMA-IGARCH and ARMA-EGARCH model.

From the AIC criteria and the log likelihood, the ARMA-EGARCH model was se-
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lected to be the best model. In modeling long range dependence, we fitted four mod-

els, namely, ARFIMA-FIGARCH, ARFIMA-FIEGARCH, ARFIMA-FIAPARCH and

ARFIMA-HYGARCH. From these models, the ARFIMA-FIEGARCH was selected as

the best model based on the AIC and BIC and log likelihood. When studying the Mincer-

Zarnowitz regression’sR2, MAPE and AMAPE forecast evaluation, the ARFIMA-FIEGARCH

has the least forecast errors. These results leave a question for further research onto time-

varying fractional integrated conditional volatility model and stochastic models.
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Appendix A

Platinum Return Distributions

A.1 Results

Figure A.1: Platinum Returns under Asymmetric Generalised Hyperbolic Distribution
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Figure A.2: Platinum Returns under Symmetric Generalised Hyperbolic Distribution

Figure A.3: Platinum Returns under Asymmetric Hyperbolic Distribution
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Figure A.4: Platinum Returns under Symmetric Hyperbolic Distribution

Figure A.5: Platinum Returns under Symmetric Normal Inverse Gaussian Distribution
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Figure A.6: Platinum Returns under Asymmetric Variance-Gamma Distribution

Figure A.7: Platinum Returns under Symmetric Variance-Gamma Distribution
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Figure A.8: Platinum Returns under Asymmetric skewed Student-t Distribution

Figure A.9: Platinum Returns under Symmetric skewed Student-t Distribution
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Appendix B

Programs and Algorithms

B.1 Breaks SAS Program

data platinum(keep=Date pt lag_pt rt rename=(Date=date_));

set work.pt_pd;

lag_pt=lag(pt);

rt=log(pt/lag_pt);

run;

data platinum;

set platinum;

where not missing(rt);

run;

proc sort data=platinum ;

by date_ rt;

run;

data platinum;

set platinum;

week=week(date_);

month=month(date_);

year=year(date_);
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run;

proc sql;

create table platinum as

select

*,

mean(rt) as mean_return

from platinum

group by year, month;

quit;

proc sql;

create table platinum as

select distinct date_, year, month, mean_return

from platinum

;

quit;

proc sort data=platinum nodup;

by date_;

run;

data platinum2;

set platinum;

by year month;

if first.month then output;

run;

proc ucm data=platinum2 ;
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id date_ interval=month;

model mean_return;

irregular;

level plot=smooth checkbreak;

estimate;

forecast plot=decomp;

run;

B.2 Inequality Constraints R Program

#Inequality constrants of FIGARCH(1,d,1)

getConstraints<-function(phi1,beta1,d){

#Baillie

b1=phi1+d

b2=1-2*phi1

cat("Baillie et all [1996]: 0<= ",beta1," <= ",b1," and 0<= ",d," <= ",b2)

#Bollerslev

c0=beta1-d

c1=(2-d)/3

c2=d*(phi1-(1-d)/2)

c3=beta1*(phi1-beta1+d)

cat("\n Bollerslev and Ole Mikkelsen [1996]: ",c0," <= ",c1," and ",c2," <= ",c3)

#Chung

cat("\n Chung [1999]: 0<= ",phi1," <= ",beta1," <= ",d," < ",1)

}

f<-function(j,d){

return((j-1-d)/j)
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}

g<-function(j,d){

sum=1

if(i<=0){return(1)}

else{

for(i in 1:j){

sum=sum*f(i,d)

}

return(-sum)

}

}

psi<-function(phi1,beta1,d,i){

if(i<=1){

return(d+phi1-beta1)

}

else {

return(beta1*psi(phi1,beta1,d,i-1)+(f(i,d)-phi1)*-g(i-1,d))

}

}

B.3 ARFIMA-FIGARCH Type Models OxMetrics

Program

#include <oxstd.h>

#include <oxdraw.h>

#import <packages/garch6/garch>
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main()

{

decl garchobj;

garchobj = new Garch();

//*** DATA ***//

garchobj.Load("C:/Users/Sihle/Documents/oxProjects/examples/data/PGM Data.xlsx");

garchobj.Info();

garchobj.Select(Y_VAR, {"rtr1",0,0});

// garchobj.Select(Z_VAR, {"rt2",0,0}); // REGRESSOR IN THE VARIANCE

garchobj.SetSelSample(-1, 1,3000, 1);

//*** SPECIFICATIONS ***//

garchobj.CSTS(0,0); // cst in Mean (1 or 0), cst in Variance (1 or 0)

garchobj.DISTRI(1); // 0 for Gauss, 1 for Student, 2 for GED, 3 for Skewed-Student

garchobj.ARMA_ORDERS(1,1); // AR order (p), MA order (q).

garchobj.ARFIMA(1); // 1 if Arfima wanted, 0 otherwise

garchobj.GARCH_ORDERS(1,1); // p order, q order

garchobj.ARCH_IN_MEAN(0); // ARCH-in-mean: 1 or 2 to add the variance or std. dev in the cond. mean

garchobj.MODEL(10); // 0: RISKMETRICS 1:GARCH 2:EGARCH 3:GJR 4:APARCH 5:IGARCH

// 6:FIGARCH_BBM 7:FIGARCH_CHUNG 8:FIEGARCH

// 9:FIAPARCH_BBM 10: FIAPARCH_CHUNG 11: HYGARCH

garchobj.TRUNC(2000); // Truncation order (only F.I. models with BBM method)

//*** TESTS & FORECASTS ***//

garchobj.NORMALITY_TEST(1); // 1 to report the normality test, 0 otherwise

garchobj.INFO_CRITERIA(1); // 1 to report Information Criteria, 0 otherwise
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garchobj.BOXPIERCE(<10;15;20>); // Lags for the Box-Pierce Q-statistics, <> otherwise

garchobj.ARCHLAGS(<2;5;10>); // Lags for Engle’s LM ARCH test, <> otherwise

garchobj.NYBLOM(1); // 1 to compute the Nyblom stability test, 0 otherwise

garchobj.SBT(1); // 1 to compute the Sign Bias test, 0 otherwise

garchobj.PEARSON(<40;50;60>); // Cells (<40;50;60>) for the adjusted Pearson Chi-square Goodness-of-fit test, <> otherwise //G@RCH1.12

garchobj.RBD(<10;15;20>); // Lags for the Residual-Based Diagnostic test of Tse, <> otherwise

garchobj.FORECAST(1,15,1); // Arg.1 : 1 to launch the forecasting procedure, 0 otherwize

// Arg.2 : Number of forecasts

// Arg.3 : 1 to Print the forecasts, 0 otherwise

//*** OUTPUT ***//

garchobj.MLE(2); // 0 : MLE (Second derivatives), 1 : MLE (OPG Matrix), 2 : QMLE

garchobj.COVAR(0); // if 1, prints variance-covariance matrix of the parameters.

garchobj.ITER(0); // Interval of iterations between printed intermediary results (if no intermediary results wanted, enter ’0’)

garchobj.TESTS(0,1); // Arg. 1 : 1 to run tests PRIOR to estimation, 0 otherwise

// Arg. 2 : 1 to run tests AFTER estimation, 0 otherwise

garchobj.GRAPHS(0,1,"file2"); // Arg.1 : if 1, displays graphics of the estimations (only when using GiveWin).

// Arg.2 : if 1, saves these graphics in a EPS file (OK with all Ox versions)

// Arg.3 : Name of the saved file.

garchobj.FOREGRAPHS(0,1,"forecast"); // Same as GRAPHS(p,s,n) but for the graphics of the forecasts.

//*** PARAMETERS ***//

garchobj.BOUNDS(0); // 1 if bounded parameters wanted, 0 otherwise

garchobj.FIXPARAM(0,<0;0;0;0;1;0>);

// Arg.1 : 1 to fix some parameters to their starting values, 0 otherwize

// Arg.2 : 1 to fix (see garchobj.DoEstimation(<>)) and 0 to estimate the corresponding parameter

//*** ESTIMATION ***//

garchobj.MAXSA(0,5,0.5,20,5,2,1);

// Arg.1 : 1 to use the MaxSA algorithm of Goffe, Ferrier and Rogers (1994)

// and implemented in Ox by Charles Bos

// Arg.2 : dT=initial temperature
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// Arg.3 : dRt=temperature reduction factor

// Arg.4 : iNS=number of cycles

// Arg.5 : iNT=Number of iterations before temperature reduction

// Arg.6 : vC=step length adjustment

// Arg.7 : vM=step length vector used in initial step

garchobj.Initialization(<>);

// m_vPar = m_clevel | m_vbetam | m_dARFI | m_vAR | m_vMA |

m_calpha0 | m_vgammav | m_dD | m_vbetav |

// m_valphav | m_vleverage | m_vtheta1 | m_vtheta2 |

m_vpsy | m_ddelta | m_cA | m_cV | m_vHY | m_v_in_mean

garchobj.PrintStartValues(0); // 1: Prints the S.V. in a table form; 2: Individually; 3: in a Ox code to use in StartValues

garchobj.PrintBounds(1);

garchobj.DoEstimation(<>);

garchobj.Output();

garchobj.STORE(1,1,1,1,1,"01",0);

// Arg.1,2,3,4,5 : if 1 -> stored. (Res-SqRes-CondV-MeanFor-VarFor)

// Arg.6 : Suffix. The name of the saved series will be "Res_ARG6" (or "MeanFor_ARG6", ...).

// Arg.7 : if 0, saves as an Excel spreadsheet (.xls). If 1, saves as a GiveWin dataset (.in7)

println("********* STARTING THE FORECASTING PROCEDURE****************");

decl forc=<>,h,yfor=<>,shape=<>;

decl number_of_forecasts=1000; // number of h_step_ahead forecasts

decl step=1; // specify h (h-step-ahead forecasts)

decl T=garchobj.GetcT();;

println("Size-T = ",T);

decl distri=garchobj.GetDistri(); println("Distribution = ",distri);

if (distri==1 ||distri==2)

shape=garchobj.GetValue("m_cV");

else if (distri==3)

shape=garchobj.GetValue("m_cA")|garchobj.GetValue("m_cV");

println("shape = ",shape);
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println("Size = ",garchobj.GetSize());

if (T+number_of_forecasts+step-1>garchobj.GetSize())

{

number_of_forecasts+=garchobj.GetSize()-T-number_of_forecasts-step+1;

println("\nWarning: the number of forecast is incompatible with the sample size");

println("number_of_forecasts has been set to ",number_of_forecasts,"\n");

}

for (h=0; h<number_of_forecasts; ++h)

{

garchobj.FORECAST(1,step,0);

garchobj.SetSelSample(-1, 1, T+h, 1);

garchobj.InitData();

yfor|=garchobj.GetForcData(Y_VAR, step)[step-1];

forc|=garchobj.Forecasting()[step-1][];

}

decl Hfor = (yfor - meanc(yfor)).^2; //println("Hfor = ",Hfor);

decl cd=garchobj.CD(yfor-forc[][0],forc[][1],garchobj.GetDistri(),shape);

println("Density Forecast Test on Standardized Forecast Errors");

garchobj.PearsonTest(cd,20|30,garchobj.GetValue("m_cPar"));

garchobj.Auto(cd, number_of_forecasts, -0.1, 0.1, 0);

garchobj.confidence_limits_uniform(cd,30,0.95,1,4);

DrawTitle(5, "Conditional variance forecast and realized volatility");

Draw(5, (Hfor~forc[][1])’);

ShowDrawWindow();

garchobj.MZ(Hfor, forc[][1], number_of_forecasts);

garchobj.FEM(forc, yfor~Hfor);

savemat("C:/Users/Sihle/Documents/oxProjects/data/hygarch

/MeanFor_bbm1.txt",forc[][0]); // Saves the mean forecasts in an Excel file.

savemat("C:/Users/Sihle/Documents/oxProjects/data/hygarch

/VarFor_bbm1.txt",forc[][1]); // Saves the variance forecasts in an Excel file.
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savemat("C:/Users/Sihle/Documents/oxProjects/data/hygarch

//HFor_bbm1.txt",Hfor); // Saves the variance forecasts in an Excel file.

savemat("C:/Users/Sihle/Documents/oxProjects/data/hygarch

//cd.txt",cd); // saves the distribution

savemat("C:/Users/Sihle/Documents/oxProjects/data/hygarch

//yfor.txt",yfor); // save forcasting data

decl d=garchobj.m_dD;

decl phi1=garchobj.m_valphav;

decl beta1=garchobj.m_vbetav;

delete garchobj;

}

B.4 Shimotsu R code

library(forecast)

library(fracdiff)

library(tseries)

library(MASS)

library(afmtools)

library(fArma)

vj <-function(j,m){

sum=log(j)

sum1=0

for(i in 1:m){

sum1=sum1+log(i)

}
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sum=sum-(1/m)*sum1

return(sum^2)

}

crr<-function(m,b){

sum=0;

for(i in 1:m){

sum=sum+vj(i,m)

}

sum=sum/(m/b)

return(sum)

}

wald2<-function(d_0,d1,d2,m){

d=matrix(cbind(c(d_0,d1,d2)))

A=matrix(cbind(c(1,-1,0),c(1,0,-1)),2,byrow=TRUE)

Ad=A%*%d

O=matrix(cbind(c(1,1,1),c(1,2,0),c(1,0,2)),3,byrow=TRUE)

G=ginv(A%*%O%*%t(A))

w=t(Ad)%*%G%*%Ad

#c=c(m,2)

wald=4*m*w#*c

return(wald)

}

wald<-function(theta,A,O,r,m){

Ad=A%*%theta

G=ginv(A%*%O%*%t(A))

w=t(Ad)%*%G%*%Ad
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wald=4*m*w

return(wald)

}

shims<-function(n,X,Y){

data=X[1:n]

b2=as.integer(n/2)

b4=as.integer(n/4)

b41=2*b4

b42=3*b4

b43=4*b4

x11=X[1:b2]

x12=X[b2:n]

x21=X[1:b4]

x22=X[b4:b41]

x23=X[b41:b42]

x24=X[b42:b43]

d11=as.numeric(coef(WhittleEst(x11)))-0.5

d12=as.numeric(coef(WhittleEst(x12)))-0.5

d21=as.numeric(coef(WhittleEst(x21)))-0.5

d22=as.numeric(coef(WhittleEst(x22)))-0.5

d23=as.numeric(coef(WhittleEst(x23)))-0.5

d24=as.numeric(coef(WhittleEst(x24)))-0.5

d=as.numeric(coef(WhittleEst(X[1:n])))-0.5

#d11=as.numeric(rsFit(x11)@hurst$H)-0.5

#d12=as.numeric(rsFit(x12)@hurst$H)-0.5

#d21=as.numeric(rsFit(x21)@hurst$H)-0.5

#d22=as.numeric(rsFit(x22)@hurst$H)-0.5

#d23=as.numeric(rsFit(x23)@hurst$H)-0.5
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#d24=as.numeric(rsFit(x24)@hurst$H)-0.5

#d=as.numeric(rsFit(X[1:n])@hurst$H)-0.5

#Shimotsu Methods

#for b=4

theta=matrix(cbind(c(d,d21,d22,d23,d24)))

A=matrix(cbind(c(1,-1,0,0,0),

c(1,0,-1,0,0),

c(1,0,0,-1,0),

c(1,0,0,0,-1)

),4,byrow=TRUE)

O=matrix(cbind(c(1,1,1,1,1),

c(1,4,0,0,0),

c(1,0,4,0,0),

c(1,0,0,4,0),

c(1,0,0,0,4)

),5,byrow=TRUE)

#for b=2

theta1=matrix(cbind(c(d,d11,d12)))

A1=matrix(cbind(c(1,-1,0),

c(1,0,-1)

),2,byrow=TRUE)

O1=matrix(cbind(c(1,1,1),

c(1,2,0),

c(1,0,2)

),3,byrow=TRUE)

d1=mean(d11,d12)

d2=mean(d21,d22,d23,d24)
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W2=wald(theta1,A1,O1,1,n)

CR=crr(m,2)

WC2=W2*CR

W4=wald(theta,A,O,1,n)

CR=crr(m,4)

WC4=W4*CR

dmrt=Y[1:n]-mean(Y[1:n])

fit.21=arfima(dmrt,max.p=0,max.q=0)

dfit= coef(fit.21)

y.diff=diffseries(dmrt,dfit)

kpy=kpss.test(y.diff)

dmrt=X[1:n]-mean(X[1:n])

fit.21=arfima(dmrt,max.p=0,max.q=0)

dfit= coef(fit.21)

y.diff=diffseries(dmrt,dfit)

kpx=kpss.test(y.diff)

cat(n,"&",signif(d,digits=4),"&",signif(d1,digits=4),"&",signif(d2,digits=4),

"&",signif(W2,digits=4),"&",signif(W4,digits=4),"&",signif(kpy$statistic,digits=4)

,"&", signif(kpy$p.value,digits=4),"\\","\\")

}

#X and Y is the same series

shims(550,X,Y)

#shims(1000,X,Y)

#shims(1500,X,Y)

#shims(2000,X,Y)

#shims(2500,X,Y)

#shims(3000,X,Y)

142



#shims(3500,X,Y)

#shims(4000,X,Y)

#shims(4500,X,Y)

#shims(5000,X,Y)

B.5 Cumulative Sampling R Code

library(fracdiff)

library(longmemo)

N=length(X)

t=1#Running Sample

b=50

n=as.integer(N/b)

rdata=0

perdata=0

i=t

k=1

for(i in 1:b*n){

d_sample=X[1:i]

perdata[k]=arfima.whittle(d_sample,nar=0,nma=0)$d#as.numeric(coef(WhittleEst(d_sample)))

cat("regime[",k,"]=",perdata[k],"\n")

k=k+1

t=i-n

#print(i)

#print(t)

}

plot(perdata[0:b], type=’o’,col=’steelblue’,main=’Sample Accumulation by regime split’,
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xlab="Sub-Samples", ylab="d estimates",xlim=c(0,b))

grid()
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