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Abstract

In this paper, we prove the quasi-orthogonality of a family of 2F2 polynomials

and several classes of 3F2 polynomials that do not appear in the Askey scheme

for hypergeometric orthogonal polynomials. Our results include, as a special

case, two 3F2 polynomials considered by Dickinson in 1961. We also discuss the

location and interlacing of the real zeros of our polynomials.
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1. Introduction

A sequence {Pn} of real polynomials of exact degree n ∈ N is orthogonal with

respect to a positive-definite moment functional L if (cf. [3])

L[Rm(x)Rn(x)] = 0 for m ∈ {0, 1, . . . , n− 1}.

A well-known consequence of orthogonality is that the n zeros of Pn(x) are real

and simple and lie in the supporting set of L (cf. [3]). The zeros of Pn depart
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from the supporting set of L in a specific way when the parameters are changed

to values where the polynomials are no longer orthogonal and this phenomenon

can be explained in terms of the concept of quasi-orthogonality.

We say that a polynomial sequence {Rn} is quasi-orthogonal of order r ≥ 1,

r ∈ N with respect to a moment functional L if

L[Rm(x)Rn(x)] = 0, |n−m| ≥ r + 1

∃ s ≥ r such that L[Rs−r(x)Rs(x)] 6= 0.

It is equivalent to say that

L[xmRn(x)] = 0, m ∈ {0, 1, . . . , n− (r + 1)}, n ≥ r + 1

∃ s ≥ r such that L[xs−rRs(x)] 6= 0.

Furthermore, Rn has at least n− r distinct, real zeros in the supporting set of

L (cf. [3]).

Quasi-orthogonal polynomials of order 1 were first introduced by Riesz [22] in

1923 in his solution of the Hamburger moment problem and Fejér [13] considered

quasi-orthogonality of order 2 in 1933. In 1937, Shohat [23] generalised the

concept of quasi-orthogonality to any order and showed that whenever there

exists an orthogonal polynomial sequence {Pn} for L, then {Rn} being a quasi-

orthogonal polynomial sequence of order r ≥ 1 with respect to L, is equivalent

to

Rn(x) =

n
∑

ν=n−r

cn,n−νPν(x), n ∈ {r, r + 1, . . . }, (1.1)

whilst

Rn(x) =

n
∑

ν=0

cn,n−νPν(x), n ∈ {0, . . . , r − 1},

and ∃ s ≥ r such that cs,s−r 6= 0.

A more general definition of quasi-orthogonality was given in 1957 by Chihara

(cf. [2]), who discussed quasi-orthogonality in the context of three-term re-

currence relations, proving that a quasi-orthogonal polynomial of any order r

satisfies a three-term recurrence relation whose coefficients are polynomials of

appropriate degrees. Draux [5] proved the converse of one of Chihara’s results
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and Dickinson [4] improved Chihara’s result by deriving a system of recurrence

relations that is both necessary and sufficient for quasi-orthogonality. Dickinson

applied this method to some special cases of Sister Celine’s polynomials

fn(a, x) = 3F2





−n, n+ 1, a

1
2 , 1

;x



 =

n
∑

m=0

(−n)m(n+ 1)m(a)m
(

1
2

)

m
(1)m

xm

m!

and proved that fn
(

3
2 , x

)

and fn(2, x) are quasi-orthogonal of order 1 on the

interval (0, 1) with respect to the weight functions (1− x) and x−1/2(1 − x)3/2

respectively. Algebraic properties of the linear functional associated to quasi-

orthogonality are given in [5, 18, 19, 20]. More recent results, particularly on

the zeros of order 1 and 2 quasi-orthogonal polynomials, are due to Brezinski,

Driver and Redivo-Zaglia [1] and Joulak [16]. For the convenience of the reader,

we summarise some of these results.

Lemma 1.1. Let {Pn} be real, monic polynomials of exact degree n that are or-

thogonal with respect to a positive-definite moment functional L with supporting

set (a, b) and let xi,n, i = 1, 2, . . . , n, be the zeros of Pn(x) and yi, i = 1, 2, . . . , n,

the zeros of Rn(x), where

Rn(x) = Pn(x) + anPn−1(x)

with an 6= 0. Let fn(x) = Pn(x)/Pn−1(x). Then

(a) y1 < a if and only if −an < fn(a) < 0;

(b) b < yn if and only if −an > fn(b) > 0;

(c) Rn has all its zeros in (a, b) if and only if fn(a) < −an < fn(b);

(d) xi,n < yi < xi,n−1 for i = 1, . . . , n − 1, and xn,n < yn if and only if

an < 0;

(e) xi−1,n−1 < yi < xi,n for i = 2, . . . , n and y1 < x1,n if and only if an > 0;

(f) y1,n+1 < y1,n < y2,n+1 < · · · < yn,n+1 < yn,n < yn+1,n+1 if and only if

fn+1(yn,n)+an+1 < 0 when an < 0 or fn+1(y1,n)+an+1 > 0 when an > 0.

Proof. Parts (a), (b) and (c) are proved in [16, Theorem 4], parts (d) and (e)

in [16, Theorem 5] and (f) in [16, Theorem 6].
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Lemma 1.2. Let {Pn} be real polynomials of exact degree n that are orthogonal

with respect to a positive-definite moment functional with supporting set (a, b),

and let xi,n, i = 1, 2, . . . , n, be the zeros of Pn(x) and yi, i = 1, 2, . . . , n, the zeros

of Rn(x), where

Rn(x) = Pn(x) + anPn−1(x) + bnPn−2(x)

with bn 6= 0. Let fn(x) = Pn(x)/Pn−1(x). Then

(a) If bn < 0 then all of the zeros of Rn are real and distinct and at most two

of them lie outside the interval (a, b).

In particular,

(b) if bn < 0 then the zeros of Rn are such that y1 < x1,n−1, xi−1,n−1 < yi <

xi,n−1 for i = 2, ..., n1, and xn−1,n−1 < yn. Additionally,

(i) yn < xn,n if −an − bn/fn−1(xn,n) < 0 and yn > xn,n if −an −

bn/fn−1(xn,n) > 0;

(ii) yn < b if −an−bn/fn−1(b) < fn(b) and yn > b if −an−bn/fn−1(b) >

fn(b);

(iii) y1 < x1,n if −an − bn/fn−1(x1,n) < 0 and y1 > x1,n if −an −

bn/fn−1(x1,n) > 0;

(iv) y1 < a if −an−bn/fn1(a) < fn(a) and y1 > a if −an−bn/fn−1(a) >

fn(a).

Proof.

(a) This is proved in [23, Theorem VII].

(b) This is proved in [1, Theorem 5].

In this paper, we prove the quasi-orthogonality of some general classes of hy-

pergeometric polynomials of the form

pFq





−n, β1 + k, α3 . . . , αp

β1, . . . , βq

;x



 =

n
∑

m=0

(−n)m(β1 + k)m(α3)m . . . (αp)m
(β1)m . . . (βq)m

xm

m!
,

k ∈ {1, 2, . . . , n − 1}, which do not appear in the Askey scheme for hypergeo-

metric orthogonal polynomials (cf. [17, p. 183]). One of our results includes
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the two polynomials considered by Dickinson [4] as special cases. Results on

the location and interlacing of the real zeros related to the quasi-orthogonality

of the polynomials under consideration are also discussed. The location of real

zeros of hypergeometric functions plays an important role in, for example, prob-

lems arising in weighted Bergman spaces (cf. [25]) and convergence of rational

approximants of hypergeometric functions (cf. [7]). The zeros of classes of hy-

pergeometric polynomials that are not orthogonal are of interest and the need

to find new results specifically for more general hypergeometric polynomials was

highlighted at the NATO conference on Special Functions: Current Perspectives

and Future Directions held in Tempe, Arizona in 2000.

Some progress has been made and interesting results concerning the zeros of

several classes of 3F2 and 4F3 polynomials that can be written as products of

2F1 polynomials (cf. [6], [8], [11] and [12]) have been obtained. The asymptotic

behaviour of the zeros of certain families of 3F2 functions were studied by Driver

and Jordaan in [9] using Hurwitz theorem with [24] by Srivastava, Zhou and

Wang completing this work. In [10], Driver, Jordaan and Mart́ınez-Finkelstein

prove that the zeros of some families of 3F2 hypergeometric polynomials are all

real and negative using the theory of Pólya frequency sequences and functions.

As a consequence, they establish the asymptotic distribution of these zeros when

the degree of the polynomials gets large.

Section 2 of this paper contains our results on quasi-orthogonality and resulting

new information for the zeros of a class of 2F2 polynomials while Section 3

focuses on several classes of 3F2 polynomials.

2. Quasi-orthogonality and real zeros of a class of 2F2 polynomials.

We begin by proving the following lemma which is used extensively in our

proofs.

Lemma 2.1. Let n ∈ N, k ∈ {1, 2, . . . , n − 1} and α2, . . . , αp, β1, . . . , βq ∈ R

with α2, . . . , αp, β1, . . . βq 6∈ {0,−1,−2, . . . ,−n} and α2 6∈ {0, 1, . . . , k−1}. Then

pFq





−n, α2 + 1, . . . , αp

β1, . . . , βq

;x



 = ak pFq





−n+ k, α2 − k + 1, . . . , αp

β1, . . . , βq

;x



+ . . .
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+ a1 pFq





−n+ 1, α2 − k + 1, . . . , αp

β1, . . . , βq

;x





+ a0 pFq





−n, α2 − k + 1, . . . , αp

β1, . . . , βq

;x



 (2.2)

for some constants ai, i ∈ {0, 1, . . . , k} depending on the parameters n, α2 and

k.

Proof. A contiguous relation for the pFq function (cf. [21, p. 82, eqn. (14)])

with α1 = −n and αk = α2 is given by

α2 pFq





−n, α2 + 1, . . . , αp

β1, . . . , βq

;x



 (2.3)

= (n+ α2) pFq





−n, α2, . . . , αp

β1, . . . , βq

;x



 − n pFq





−n+ 1, α2, . . . , αp

β1, . . . , βq

;x



 .

Applying (2.3) iteratively to both polynomials on the right-hand side of

(2.3) k − 1 times, we find that pFq





−n, α2 + 1, . . . , αp

β1, . . . , βq

;x



 may be written

as the linear combination (2.2). Since the use of (2.3) introduces a denominator

α2(α2−1) . . . (α2−k+1) for each ai, we have to assume that α2 6∈ {0, 1, . . . , k−

1}.

Theorem 2.2. Let n ∈ N, α, β ∈ R, β, β + k 6∈ {0,−1, . . . ,−n} with α > −1,

k ∈ {1, . . . , n − 1} fixed. Then the polynomial 2F2





−n, β + k

α+ 1, β
;x



 is quasi-

orthogonal of order k on (0,∞) with respect to the Laguerre weight e−xxα and

has at least n− k distinct real positive zeros.

Proof. Let p = q = 2, α2 = β + k − 1, β1 = α + 1 and β2 = β in (2.2). Then

there exist constants ai, i ∈ {0, . . . , k} such that

2F2





−n, β + k

α+ 1, β
;x





= a0 2F2





−n, β

α+ 1, β
;x



+ . . .+ ak 2F2





−n+ k, β

α+ 1, β
;x
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= a0 1F1





−n

α+ 1
;x



+ . . .+ ak 1F1





−n+ k

α+ 1
;x





= a0
n!

(α+ 1)n
Lα
n(x) + . . .+ ak

(n− k)!

(α+ 1)(n−k)
Lα
n−k(x)

where Lα
n(x) =

(α+ 1)n
n!

1F1





−n

α+ 1
;x



 denotes Laguerre polynomials (cf.

[17, (9.12.1)]). The result then follows from equation (1.1) together with the

orthogonality of Laguerre polynomials (cf. [17, (9.12.2)]).

It follows from Theorem 2.2 that the hypergeometric polynomial

2F2





−n, β + 1

α+ 1, β
;x





is quasi-orthogonal of order 1 on the positive real line and consequently has at

least (n− 1) real and distinct positive zeros for any β ∈ R.

Theorem 2.3. Let α > −1 and n ∈ N, β 6∈ {0,−1, . . .− n − 1}. Denote the

zeros of Fn = 2F2





−n, β + 1

α+ 1, β
;x



 by yi, i ∈ {1, 2, . . . , n} and those of the

monic Laguerre polynomials L̃α
n = (−1)nn! Lα

n by xi,n.Then

(i) yi > 0 for i ∈ {1, 2, . . . , n} if and only if either β < −n or β > 0;

(ii) y1 < 0 and yi > 0 for i = 2, 3, . . . , n if and only −n < β < 0;

(iii) The zeros of Fn interlace with those of L̃n and L̃n−1 as follows:

(a) y1 < x1,n and xi−1,n−1 < yi < xi,n ∀ i = 2, . . . , n if and only if

β > −n;

(b) xi−1,n−1 < yi < xi,n ∀ i = 2, . . . , n and xn,n < yn if and only if

β < −n.

Proof. Letting p = q = 2, α2 = β+ k− 1, β1 = α+1, β2 = β and k = 1 in (2.3),

we obtain

2F2





−n, β + 1

α+ 1, β
;x



 =
n+ β

β
1F1





−n

α+ 1
;x



 −
n

β
1F1





−n+ 1

α+ 1
;x





7



and hence

(α+ 1)n
(−1)n

β

(n+ β)
2F2





−n, β + 1

α+ 1, β
;x



 = L̃α
n(x) + a1 L̃α

n−1(x)

where a1 =
n(n+ α)

n+ β
. Let fn(x) =

L̃α
n(x)

L̃α
n−1(x)

, then we see that lim
b→∞

fn(b) = ∞.

(i) Since fn(0) = −(n+ α) < −a1 if and only if either β < −n or β > 0, the

result follows from Lemma 1.1(c).

(ii) −an < fn(0) < 0 if and only if −n < β < 0 and hence the result follows

from Lemma 1.1(a).

(iii) This is a direct consequence of Lemma 1.1 (d) and (e) with the constant

a1 either positive or negative.

For n ∈ N fixed, it follows from Theorem 2.2 that 2F2





−n, β + 2

α+ 1, β
;x



 is

quasi-orthogonal of order 2 on the positive real line and consequently has at

least (n− 2) real and distinct positive zeros for any β real. The remaining two

zeros can be two real zeros, one double zero, or two complex conjugate zeros.

Theorem 2.4. Let α > −1 and n ∈ {2, 3, . . .}, β 6∈ {0,−1, . . . ,−n−2}. Denote

the zeros of the polynomial 2F2





−n, β + 2

α+ 1, β
;x



 by zi, i ∈ {1, 2, . . . , n} and

those of the monic Laguerre polynomials L̃α
n by xi,n. If −n− 1 < β < −n, the

zeros of 2F2





−n, β + 2

α+ 1, β
;x





(i) are all real and distinct and at most two of them are negative;

(ii) interlace with the zeros of L̃α
n and L̃α

n−1 such that z1 < x1,n−1, xi−1,n−1 <

zi < xi,n−1 for i = 2, . . . , n− 1 and xn−1,n−1 < zn.

Proof. Iterating (2.3) twice, we obtain

α2(α2 + 1)

(n+ α2)(n+ α2 + 1)
pFq





−n, α2 + 2, . . . , αp

β1, . . . , βq

;x



 (2.4)
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= pFq





−n, α2, . . . , αp

β1, . . . , βq

;x





−
2n

n+ α2 + 1
pFq





−n+ 1, α2, . . . , αp

β1, . . . , βq

;x





+
n(n− 1)

(n+ α2)(n+ α2 + 1)
pFq





−n+ 2, α2, . . . , αp

β1, . . . , βq

;x



 .

In (2.4), let p = q = 2, α2 = β, β1 = α+ 1, β2 = β. Then

β(β + 1)

(n+ β)(n+ β + 1)
2F2





−n, β + 2

α+ 1, β
;x





= 1F1





−n

α+ 1
;x



 −
2n

n+ β + 1
1F1





−n+ 1

α+ 1
;x



+

n(n− 1)

(n+ β)(n+ β + 1)
1F1





−n+ 2

α+ 1
;x





and hence

β(β + 1)(−1)n(α+ 1)n
(β + n)(β + n+ 1)

2F2





−n, β + 2

α+ 1, β
;x



 (2.5)

= L̃α
n +

2n(α+ n)

β + n+ 1
L̃α
n−1 +

n(n− 1)(α+ n)(α+ n− 1)

(β + n)(β + n+ 1)
L̃α
n−2

and the result follows from Lemma 1.2 when the coefficient of L̃α
n−2 in (2.5) is

negative.

3. Quasi-orthogonality and real zeros of some 3F2 polynomials

Our first result for 3F2 polynomials generalises work done by Dickinson [4].

Theorem 3.1. Let n ∈ N, b, c, d ∈ R, c, d 6∈ {0,−1, . . .}, k ∈ {1, 2, . . . , n− 1}

and b /∈ {1− 2n, 3− 2n, . . . , 2k − 1− 2n}. Then the hypergeometric polynomial

3F2





−n, b+ n, c+ k

c, d
;x



 is quasi-orthogonal of order k with respect to the

weight function |xd−1(1 − x)b−d+k| on
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(i) (0, 1) for d > 0 and b > d− 2;

(ii) (−∞, 0) for d > 0 and b < 1− 2n;

(iii) (1,∞) for d− 2 < b < 1− 2n.

Remark. The quasi-orthogonality of order 1 of the polynomial fn(
3
2 , x) with

respect to (1 − x) on (0, 1) considered by Dickinson (cf. [4]) is a special case

of Theorem 3.1(i) when b = 1, k = 1 , c = 1
2 and d = 1 while the quasi-

orthogonality of order 1 of fn(2, x) with respect to x−
1

2 (1 − x)
3

2 on (0, 1) also

follows from Theorem 3.1(i) by taking b = 1, k = 1 , c = 1 and d = 1
2 .

Corollary 3.2. Let n ∈ N, b, c, d ∈ R, c, d 6∈ {0,−1, . . .} and k ∈ {1, 2, . . . , n−

1} fixed. Then the polynomial 3F2





−n, n+ b, c+ k

c, d
;x



 has at least n − k

real distinct zeros in

(i) (0, 1) for d > 0 and b > d− 2;

(ii) (−∞, 0) for d > 0 and b < 1− 2n;

(iii) (1,∞) for d− 2 < b < 1− 2n.

The proof of Theorem 3.1 makes use of the orthogonality of the 2F1 hyperge-

ometric polynomials which follows from the connection with Jacobi polynomials

(cf. [21, p. 254])

2F1





−n, n+ α+ β + 1

α+ 1
;x



 =
n!

(1 + α)n
P (α,β)
n (1− 2x).

Lemma 3.3. Let Fn(x) = 2F1





−n, b+ n

d
;x



 where n ∈ N, b, d ∈ R and

d 6∈ Z
−. The sequence of polynomials {Fn(x)}

∞

n=0 is orthogonal with respect to

the positive weight function |xd−1(1 − x)b−d| on the intervals

(i) (0, 1) for d > 0 and b > d− 1;

(ii) (−∞, 0) for d > 0 and b < 1− 2n;

(iii) (1,∞) for d− 1 < b < 1− 2n.
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Proof. See Driver and Johnston [6], replacing b with b − n.

Remark. Note that the orthogonality weight and the restrictions on the param-

eters in Lemma 3.3(i) are independent of the degree of the polynomial concerned

whereas the same is not true in cases (ii) and (iii).

Proof of Theorem 3.1. Letting p = 3, q = 2 and using the substitutions α2 =

c+ k − 1, α3 = b+ n, β1 = c, and β2 = d in (2.2) we obtain

3F2





−n, b+ n, c+ k

c, d
;x





= a0 2F1





−n, b+ n

d
;x



+ . . .+ ak 2F1





−n+ k, b+ n

d
;x



 (3.6)

for some constants ai, i ∈ {0, 1, . . . , k} depending on the parameters n, c and k.

Next, we recall the contiguous relation for 2F1 polynomials given in [21, p. 71,

eqn. (9)]

(b− a)(1 − x) 2F1





a, b

d
;x





= (d− a) 2F1





a− 1, b

d
;x



 − (d− b) 2F1





a, b− 1

d
;x



 (3.7)

and use it to write

(b+ 2n− 1)(1− x) 2F1





−n+ 1, b+ n

d
;x





= (d+ n− 1) 2F1





−n, b+ n

d
;x



− (d− b− n) 2F1





−n+ 1, b+ n− 1

d
;x





(3.8)

by letting a = −n + 1 and replacing b with b + n. Applying (3.8) iteratively

until all the 2F1 terms in (3.6) are of the form 2F1





−n+ l, b+ n− l

d
;x



,

l ∈ {0, 1, . . . , k − 1}, we obtain

(1−x)k3F2





−n, b+ n, c+ k

c, d
;x



 =

k
∑

i=0

gk−i(x) 2F1





−n+ i, b+ n− i

d
;x
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where gi is a polynomial of degree i.

Multiplying both sides by the weight function w1(x) =
∣

∣xd−1(1− x)b−d
∣

∣ and

by a factor of xj , and integrating with respect to x on the interval (0, 1) we have

∫ 1

0

xj [(1− x)k3F2





−n, b+ n, c+ k

c, d
;x



]w1(x)dx

=

k
∑

i=0

∫ 1

0

xjgk−i(x) 2F1





−n+ i, b+ n− i

d
;x



w1(x)dx. (3.9)

Each term xjgk−i(x) will be of degree j+ k− i and, applying Lemma 3.3(i), we

see that the integrals on the right-hand side of (3.9) will be equal to zero when

d > 0 and b > d−2 for j+k−i ∈ {0, 1, . . . , n−1}, i.e for j ∈ {0, 1, . . . , n−k−1}.

Thus
∫ 1

0

xj
3F2





−n, b+ n, c+ k

c, d
;x



 xd−1(1 − x)b−d+kdx = 0

for j ∈ {0, 1, . . . , n − k − 1} which proves Theorem 3.1(i). The proofs of (ii)

and (iii) follow using an analogous argument, applying Lemma 3.3 (ii) and (iii)

respectively.

Theorem 3.4. Let n ∈ N, b, c ∈ R, c, c + k /∈ 0,−1, . . . ,−n, a < −n,

k ∈ {1, 2, . . . , n − 1} fixed and a /∈ {−n,−n + 1, . . . ,−n + k − 1}. Then

the hypergeometric polynomial 3F2





−n, n+ 2a+ 1, c+ k

c, a+ 1 + ib
;
1− ix

2



 is quasi-

orthogonal of order k with respect to the Pseudo-Jacobi weight function (1 +

x2)a(1+ ix)ke2b arctan x supported on R and has at least n−k distinct real zeros.

Proof. Letting p = 3, q = 2 and α2 = c + k − 1, α3 = n + 2a + 1, β1 = c and

β2 = a+ 1 + ib in (2.2), we can write

3F2





−n, n+ 2a+ 1, c+ k

c, a+ 1 + ib
;
1− ix

2





= a0 2F1





−n, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2





+ a1 2F1





−n+ 1, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2



+

12



. . .+ ak 2F1





−n+ k, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2



 (3.10)

for some constants ai, i ∈ {0, 1, . . . , k} which depend on the parameters n, c

and k. Letting a = −n+ 1, b = n+ 2a+ 1, d = a+ 1+ ib and replacing x with

1−ix
2 in (3.7), we obtain

(2n+ 2a)

(

1 + ix

2

)

2F1





−n+ 1, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2





= (a+ n+ ib) 2F1





−n, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2





+ (a+ n− ib) 2F1





−n+ 1, n+ 2a

a+ 1 + ib
;
1− ix

2



 (3.11)

We now apply (3.11) iteratively until all the 2F1 terms in (3.10) are of the

form

2F1





−n+ l, n− l + 2a+ 1

a+ 1 + ib
;
1− ix

2



 ,

l ∈ {0, 1, . . . , k − 1} to obtain

(1 + ix)k3F2





−n, n+ 2a+ 1, c+ k

c, a+ 1 + ib
;
1− ix

2





=

k
∑

m=0

gk−m(x) 2F1





−n+m,n−m+ 2a+ 1

a+ 1 + ib
;
1− ix

2



 (3.12)

where gi is a polynomial of degree i with complex coefficients. The polynomials






2F1





−n, n+ 2a+ 1

a+ 1 + ib
;
1− ix

2











∞

n=0

are known as Pseudo-Jacobi polynomials (cf. [17, eqn. (9.9.1)]). Note that the

normalisation used here is different from that in [17].

Multiplying both sides of (3.12) by xj (1 + x2)ae2b arctan x and integrating

with respect to x yields

∫

∞

−∞

xj



(1 + ix)k3F2





−n, n+ 2a+ 1, c+ k

c, a+ 1 + ib
;
1− ix

2







 (1 + x2)ae2b arctanxdx
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=

k
∑

m=0

∫

∞

−∞

xjgk−m(x) 2F1





−n+m,n−m+ 2a+ 1

a+ 1 + ib
;
1− ix

2



 (1 + x2)ae2b arctan xdx

(3.13)

where each term xjgk−m(x) is of degree j+ k−m. The result now follows from

equation (1.1) together with the orthogonality of Pseudo-Jacobi polynomials

with respect to the weight function (1 + x2)ae2b arctan x on R given in [17, eqn.

(9.9.2)] (see also [15]) by using an argument analogous to that used in the proof

of Theorem 3.1.

Theorem 3.5. Let n ∈ N, b, c ∈ R, c, c + k, b 6∈ {0,−1, . . .} and k ∈

{1, 2, . . . , n−1} fixed with x ∈ C the independent variable. Then the polynomial

3F2





−n,−x, c+ k

c, b
; t



 is discrete quasi-orthogonal of order k with respect to

(i)
(1 − t)−x(b)x

x!
on (0,∞) for b > 0, t < 0 and n ∈ {0, 1, 2 . . .};

(ii)
(b)−x−b(1− t)x+b

(−x− b)!
on (−∞,−b) for b > 0, 0 < t < 1 and n ∈ {0, 1, 2 . . .};

(iii)

(

N

x

)

t−x

(

t− 1

t

)N−x

on (0, N) for b = −N , N ∈ N, t > 1 and n ∈

{0, 1, 2 . . . , N},

and has, in each case, at least n − k real distinct zeros in the respective given

interval.

Proof. Letting p = 3, q = 2 and α2 = c + k − 1, α3 = −x, β1 = c, β2 = b and

x = t in (2.2), we see that

3F2





−n,−x, c+ k

c, b
; t





may be written as a linear combination of 2F1





−n,−x

b
; t



, 2F1





−n+ 1,−x

b
; t



,

. . . , 2F1





−n+ k,−x

b
; t



. Meixner polynomials (cf. [17, (9.10.1)]), defined
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by

pn(x; b, t) = (b)n 2F1





−n,−x

b
; t



 ,

are orthogonal with respect to the discrete weight function
(b)x

x!(1 − t)x
on the

interval (0,∞) when b > 0 and t < 0 (cf. [17, (9.10.2)]) while they are orthogonal

on (−∞,−b) with respect to the discrete weight
(b)−x−b(1 − t)x+b

(−x− b)!
for b > 0,

0 < t < 1 (cf. [3, p. 177, eqn. (3.7)] and [17, (9.10.2)]). Equation (1.1) now

yields (i) and (ii) respectively. The orthogonality for a finite number of Meixner

polynomials

pn(x;−N, t) = (N)n 2F1





−n,−x

−N
; t



 , n ∈ {0, 1, . . . , N}

with respect to the discrete weight

(

N

x

)

px (1− p)
N−x

when t > 1 and b = −N ,

N ∈ N is precisely that of the Krawtchouk polynomials (cf. [17, (9.11.2)] and

[14]) and this, together with equation (1.1), yields (iii).

Theorem 3.6. Let n ∈ N, λ > 0, 0 < φ < π, c, c+ k 6∈ {0,−1, . . .−n} and k ∈

{1, 2, . . . , n−1} fixed. Then the polynomial 3F2





−n, λ+ ix, c+ k

c, 2λ
; 1− e−2iφ





is quasi-orthogonal with respect to the weight function e(2φ−π)x|Γ(λ + ix)|2 on

R and has at least n− k real distinct zeros.

Proof. The proof uses the orthogonality of Meixner-Pollaczek polynomials de-

fined by (cf. [17, eqn. (9.7.2)])

Pλ
n (x;φ) =

(2λ)n
n!

einφ2F1





−n, λ+ ix

2λ
; 1− e−2iφ





with respect to the weight e(2φ−π)x|Γ(λ + ix)|2 on R for λ > 0 and φ ∈ (0, π)

and is analogous to that of Theorem 3.5.

4. Concluding remarks

More detailed information on the location and interlacing of the zeros of the

four classes of 3F2 polynomials considered in Section 3 can be obtained using
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analogous arguments to those given in Section 2 for the cases for where the

polynomials are quasi-orthogonal of order 1 and 2.

The orthogonality of Hahn, Continuous Hahn, Dual Hahn, Continuous Dual

Hahn, Wilson and Racah polynomials (cf. [17]) in conjunction with equation

(1.1) and 2.1 can be used to prove similar results for the quasi-orthogonality of

certain classes of 4F3 and 5F4 polynomials.
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classiques, Ann. Mat. Pura Appl. IV Ser. 149 (1987) 165–183.
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