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Summary:

In this investigation an attempt was made to determine the

misconceptions that engineering students have of the idea of a limit.  A

comprehensive literature study showed that there are a number of

common misconceptions that students normally form. The empirical

investigation was done in two phases. A questionnaire on the idea of a

limit was given to the students during the first phase. During the second

phase six interviews were conducted. The findings were grouped

according to the nature of a limit and students’ views on the relationship

between the continuity of a function at a point and the limit at that point.

An analysis of these findings led to the identification of the

misconceptions that these students have of the idea of a limit.

Key words:  Limit; Mathematics Education; Calculus; Misconceptions

Opsomming:

In hierdie ondersoek is gepoog om die wanbegrippe wat

ingenieursstudente van die limietbegrip vorm, bloot te stel. ‘n

Omvattende literatuurstudie het ‘n aantal algemene wanbegrippe aan

die lig gebring. Die empiriese ondersoek het in twee fases plaasgevind.

Tydens die eerste fase is ‘n vraelys aan die studente gegee in ‘n poging

om meer te wete te kom van hulle begrip van ‘n limiet. Die vraelys is

opgevolg deur ses onderhoude. Die responsies is gegroepeer in terme

van die aard van ‘n limiet en studente se sienings van die kontinuïteit

van ‘n funksie by ‘n punt en die limiet by daardie punt. Die analisering

van hierdie responsies het die identifisering van ‘n aantal wanbegrippe

by hierdie groep studente moontlik gemaak.

Sleutelwoorde:  Limiet; Wiskunde-onderwys; Calculus; Wanbegrippe
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CHAPTER 1

BACKGROUND AND OVERVIEW OF THE STUDY

1.1 Introduction

The researcher became aware of students’ problems with the idea of a

limit when she started lecturing at tertiary level two years ago. The first

topic in the second-year syllabus was limits. This included the limit of a

function at a point, a limit as x approaches infinity and the relationship

between limits and continuity. Little time, about four hours, was

allocated to these aspects related to limits. This was just a brief

preparation for the derivative and differentiation which took up a large

part of the syllabus and the lecturing time.

Due to the inexperience of the researcher lecturing at tertiary level, the

teaching was strictly according to the textbook.  At the end of the unit,

the students could calculate limits in a variety of problems, but they

found it very difficult to explain the idea of a limit in their own words. The

researcher became curious and wanted to investigate the idea of limits

further. She wanted to determine why students find this idea so

complicated; whether the complexity is inherent to the nature of the idea

itself; whether it is due to the way in which it is taught or whether it is

due to any other reasons.

A possible explanation for the identified problem is that the idea of a

limit is often taught in isolation. Students see the idea as a concept on

its own without any relationship to other Calculus ideas. Students do not

realize the important role that limits play in the study of Calculus at

tertiary level in Differential Calculus, Integral Calculus and continuity.
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They cannot explain why the idea of a limit is fundamental to Calculus.

They are unable to link limits to the broader field of Calculus. The

motivation for this investigation thus was to determine the conceptions

that students have of the idea of a limit and to try and reveal the specific

misconceptions concerning limits.

1.2 Background of the study

White & Mitchelmore (1996:79) mention that there is much concern

about the large numbers of students taking Calculus and the rote,

manipulative learning that takes place. Research into the understanding

of Calculus has shown a whole spectrum of concepts that cause

problems for students. In particular, student difficulties with the abstract

concepts of rate of change, limit, tangent and function are well

documented. These concepts involve mathematical objects or

processes specific to Calculus. The general tendency now is for less

emphasis on skills and greater emphasis on the understanding of the

underlying concepts.

In an article, The History of Limits, the authors state that the idea of

“limit” is the most fundamental concept of Calculus. Every major

concept of Calculus namely derivative, continuity, integral, convergence

or divergence is defined in terms of limits. In fact “limit” is what

distinguishes at the most basic level what we call Calculus, as the

mathematics of change, variation, related rates and limits, from the

other branches of mathematics (algebra, geometry and trigonometry).

(http://occawlonline.pearsoned.com/bookbind/pubbooks/thomas_awl/

chapter1/medialib/cu).

Cornu (1991:153) agrees that the mathematical concept of limit holds a

central position which permeates the whole of mathematical analysis –

as a foundation of the theory of approximation, of continuity and of
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differential calculus and integral calculus. He is of the opinion that this

mathematical concept is a particularly difficult idea, typical of the kind of

thought required in advanced mathematics.

Cornu further mentions that one of the greatest difficulties in teaching

and learning the idea of a limit does not only lie in its richness and

complexities, but also in the extent to which the cognitive aspects can

not be generated purely from the mathematical definition. The

distinction between the definition and the concept itself is didactically

very important. Remembering the definition of a limit is one thing, but

acquiring the fundamental conception is another.

The limit concept has long been considered fundamental to an

understanding of Calculus and Real Analysis. Recent studies have

confirmed that a complete understanding of the limit concept among

students is comparatively rare (Williams 1991:219). There is general

agreement in the literature that students have trouble with the idea of

limit, whether it is in the context of functions and continuity or of

sequences and series (Davis & Vinner, 1986; Tall, 1992; Monaghan,

1991; Bezuidenhout, 2001; Williams, 1991). Moreover, many of the

difficulties encountered by students in dealing with other concepts

(continuity, differentiability, integration) are related to their difficulties

with limits. The reason for this may be due to inappropriate and weak

mental links between knowledge of limits and knowledge of other

calculus concepts such as continuity, derivative and integral. Well-

constructed mental representations of the network of relationships

among calculus concepts are essential for a thorough understanding of

the conceptual underpinnings of the calculus (Bezuidenhout 2001:487).
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Williams (1991:219) states that conceptions of limit are often

confounded by issues of whether:

• a function can reach its limit,

• a limit is actually a boundary,

• limits are dynamic processes or static objects

• limits are inherently tied to motion concepts.

These issues give rise to incomplete or alternative conceptions of limit.

Williams is of the opinion that these alternative conceptions of limit

relate closely to the view of limiting processes held by the mathematical

community prior to Cauchy’s rigorous delta-epsilon definition of limit.

Williams (1991:219) mentions Ervynck’s view that most students

completing a course in calculus have a pre-rigorous understanding of

limit and very few ever achieve full understanding of the rigorous

definition. Cottrill et.al (1996:167) confirm students’ difficulties when

they say that most students have little success in understanding this

important mathematical idea. Although for many students such pre-

rigorous understanding may suffice, Tall (1980:173) suggested that

such informal models of limit could lead to more serious

misunderstandings and interfere with future learning.

There are unavoidable sources of naive misconceptions inherent to the

idea of a limit (Davis & Vinner 1986:298-300; Tall 1992:501). One is the

influence of language or words, in which certain terms remind us of

ideas that intrude into students’ attempts to represent mathematical

concepts. These terms are phrases such as ‘tends to’, ‘approaches’ or

‘gets close to’. When these phrases are used in relation to a sequence

approaching a limit, they invariably carry the implication that the terms

of the sequence cannot equal the limit.
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For example, in the sequence 1; ½; �; ¼; ...., the 0
1

lim =
∞→ nn

, although

the last term will never be equal to zero.

In addition to the words, there are the ideas that these words conjure

up, which have their origins in earlier experiences. These ideas should

not be part of a mental representation of the mathematical concept.

Another source of misconceptions is the sheer complexity of the ideas.

These ideas cannot appear “instantaneously in complete and mature

form”, so that “some parts of the idea will get adequate representations

before other parts will”. It would therefore be necessary for each student

to gradually build mental representations of the limit concept.

1.3 The problem statement

The following key problems or questions related to the idea of a limit

need to be investigated. They are:

• How do students understand the idea of a limit?

• What kind of misconceptions do they form?

• How do they relate the continuity/discontinuity of a function at a

point to the existence of a limit at that point?

1.4 Aim of the research

The aim of this investigation is to identify the specific misconceptions

that engineering students have of the limit concept. The focus will be on

the limit of a function. The researcher wants to determine whether these

misconceptions are different to or in accordance with those found in the

literature.
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In order to achieve this aim, the following objectives are formulated:

• To gather data of the students’ understanding of the limit concept

by means of a questionnaire and interviews,

• To analyse the gathered data in order to determine

misconceptions that students have.

1.5 The research design

This research project was conducted at the Nelspruit campus of the

Tshwane University of Technology. The researcher lectures

Mathematics at this institution. The students are enrolled for a Diploma

in Electrical Engineering. Mathematics is a compulsory subject in this

course. Many of the students have to follow a bridging course before

they can commence with Mathematics 1. There are two reasons for this

practice. The first reason being their low marks in Mathematics in the

Grade 12 examination and the second, that they can be better prepared

for the Mathematics 1 course. Mathematics 1, 2 and 3 are semester

courses and students can complete their Mathematics courses required

for this diploma within a year and a half.

The content of the Mathematics 2 course corresponds more or less to a

first-year Calculus course. The main topics are differentiation and

integration including their applications in real-life, engineering situations.

The focus of the course is on the application of students’ mathematical

knowledge and skills in an engineering context. They are taught the

mathematics that they need so that they can use and apply this

knowledge in other engineering subjects such as Control Systems and

Digital Systems. It is a multi-cultural classroom and the students are

taught through the medium of English, which is their second language.
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Initially, the second year students were chosen to be the subjects in the

study. The original plan was to interview six of them to determine their

initial understanding of a limit prior to the discussion in class. Then limits

were to be taught in class by making use of discussions, problem

solving tasks, group work and other written tasks. These tasks were to

be assessed in order to determine possible misconceptions. The idea

then was to interview the same six students for a second time to

determine in which way the teaching has altered their views on limits, if

at all.

Due to the fact that limits were omitted from the second-year course at

the beginning of the second semester of the year 2004, the planned

strategy had to be adapted. The decision was made to use the third-

year students in the study because they dealt with limits during the first

semester of the same year. The approach was strictly according to the

textbook due to the researcher’s inexperience at that time. The second-

years were to take part in the pilot study of the planned questionnaire as

well as in the interviews. A pilot study of the questionnaire was

completed first in order to check whether it needed any changes. The

responses were recorded and analysed in order to identify possible

misconceptions. Thereafter two students were interviewed in order to

determine whether the interview schedule needed to be changed.

1.5.1 Literature study

A library search was done with the following descriptors: limit,

misconceptions, Calculus and Mathematics Education. The aim of the

literature study was to identify relevant literature and research projects

that were conducted on the teaching and learning of limits to shed more

light on the research questions.



8

The following related aspects were investigated in the literature:

• The historical development of limits;

• Epistemological obstacles in the historical development of limits;

• The nature of the idea of a limit; informal and rigorous definitions;

• Models of limit held by students;

• Misconceptions of the idea of a limit;

• Prerequisites for the understanding of limits - functions and

continuity and

• Possible strategies for the teaching and learning of the idea of a

limit.

1.5.2 Empirical study

This investigation took place in two phases in the form of a quantitative-

descriptive (survey) design (de Vos 2002:142-143). The aim was to

obtain insight into the students’ understanding of a limit in order to

identify their misconceptions.

In the first phase a questionnaire on the idea of a limit was given to the

whole group of 47 third-year mathematics students. The items in the

questionnaire focused on the concept itself and not on calculating limits

or the manipulative aspects thereof (See Appendix A). The data in the

questionnaire were recorded and thereafter analysed in order to find out

more about these students’ understanding.

The second phase consisted of interviews with six of the students.

Students who gave exceptional responses or answers different to the

usual ones in the questionnaire were selected for interviews. The

interview schedule consisted of six questions with the aim once again to

determine their misconceptions  (See Appendix B). The interviews were

tape-recorded and later transcribed. The responses were analysed
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according to the nature of a limit, the relationship between the continuity

of functions and limits and other conceptions that might be identified.

1.6 Value of the research

The important role that limits play in Calculus is acknowledged by most

educators and educationists, but it is a fact that the inherent nature of

limits is quite complex. Most students find it difficult to understand this

idea. For many years teachers and lecturers have been seeking for

answers to why students have misconceptions and what they can do to

help them develop mathematically correct conceptions.

The identification of the students’ misconceptions ought to be of value in

the following ways:

1. It might lead to a better understanding of the students’ thought

processes and the quality of learning that takes place.

2. Knowledge of misconceptions can be employed in planning more

effective teaching strategies and methods.

3. It can also be used to present richer learning experiences to the

students.

4. The researcher can assist other lecturers in teaching limits in a

more effective way.

5. The identification of misconceptions can create worthwhile

opportunities to enhance learning.

6. Removing misconceptions and providing better understanding of

the idea of a limit.
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1.7          Terminology

1.7.1 The limit concept

Limits occur in many different mathematical contexts. They are the limit

of a sequence, a limit of a series and a limit of a function [f(x) as x→a or

f(x) as x→∞]. Limits also occur in the notion of continuity, differentiability

and integration (Tall 1992:501). The focus of this study is on the limit of

functions only (continuous as well as discontinuous) and two examples

are given:

Examples of the limit of a function

1 For the function f(x) = x + 2, the 3)(lim
1

=
→

xf
x

Fig 1:

-2

0
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2 If ,
93
9

)(
2

−
−=

x
x

xg  then 2)(lim
3

=
→

xg
x

Fig 2:

The limit concept has an informal (intuitive) definition as well as a formal

(rigorous) epsilon-delta definition.

An informal definition of the limit is:

Let f be a function which is defined at all x near a. If, as x tends to a from

both the left and the right, f(x) tends to some number b, then we say that

the limit of f(x), as x tends to a, is b                bxf
ax

=
→

)(lim

The formal epsilon-delta definition is as follows:

A function f(x) is said to approach a limit b as x approaches the value of

a if, given any small positive å, it is possible to find a positive number δ

such that | f(x) − a| < å for all x satisfying 0 < |x − a| < δ .

1.7.2 Misconceptions

Olivier (1989:11) and Bezuidenhout (1998:397) agree that a

lecturer/teacher cannot transmit knowledge ready-made and intact to

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4 5



12

the students/learners. They see errors and misconceptions as the

natural result of people’s efforts to construct their own knowledge.

These misconceptions are intelligent constructions based on correct or

incomplete (but not wrong) previous knowledge. Misconceptions,

therefore, cannot be avoided. They may however, hinder the

development of more sophisticated understandings of fundamental

mathematical concepts to a great extent.

Such errors and misconceptions should not be treated as terrible things

to be uprooted. This may confuse the learner and shake his/her

confidence in his/her previous knowledge. Instead, making errors is best

regarded as part of the process of learning.

This suggests that lecturers become aware of their students’ possible

misconceptions. A classroom atmosphere that is tolerant of errors and

misconceptions ought to be created. Misconceptions should be taken

into account when teaching strategies are developed. The identification

of misconceptions can create worthwhile opportunities to enhance

learning.

1.7.3     Misconceptions related to limits

David Tall’s earliest research began with calculus and limits. This led

him to the discovery of differences between mathematical theories and

cognitive beliefs in many individuals. For example, the limit ‘nought point

nine recurring’ has mathematical limit equal to one. Cognitively there is

a tendency to view the concept as getting closer and closer to one,

without actually reaching it. (Limits, Infinitesimals and Infinities :

http://www.warwick.ac.uk/staff/David.Tall/themes/limits-infinity.html).

He gives the following reason for this tendency. The primitive brain

notices movement. Therefore the mental idea of a sequence of points

tending to a limit is more likely to focus on the moving points than on the
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limit point. The idea of a limit is thus first conceived as a process and

then as a concept. In the case of the limit, the process of tending to a

limit is a potential process that may never reach its limit (it may not even

have an explicit finite procedure to carry out the limit process). This

gives rise to cognitive conflict in terms of cognitive images that conflict

with the formal definition.

Tall & Vinner (1981:152) use the term concept image to describe the

total cognitive structure (in an individual’s mind) that is associated with a

specific mathematical concept. This includes all the mental pictures and

associated properties and processes. The concept image is built up

over time through all kinds of experiences and changes as the individual

meets new stimuli. Every individual has his own, unique concept image

of a mathematical idea.

The concept definition, on the other hand is quite a different matter. Tall

& Vinner (1981:152) regard the concept definition to be a form of words

that specify that concept. Such a concept definition may be formal and

given to the individual as part of a mathematical theory. It may be

personal, invented by the individual to (partially) describe his concept

image. A personal concept definition may be considered as part of the

concept image, but the formal concept definition may or may not be

(Tall 1980:172).

In most countries, the limit is introduced in an informal manner first, with

a formal definition coming much later, if at all. This means that a

concept image is built up long before any formal concept definition is

given. The concept images of limit are therefore likely to contain factors

which conflict with the formal/concept definition (Tall 1980:174).
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For example, if the initial teaching tends to emphasize the process of

approaching a limit, rather than the concept of limit itself, then the

concept imagery contains many factors which conflict with the formal

definition (‘approaches but cannot reach’, ‘cannot pass’, ‘tends to’). The

students develop images of limits which relate to misconceptions

concerning the process of ‘getting close’ or ‘growing large’ or ‘going on

forever’ (Cornu 1991:156).

In the literature the following types of misconceptions related to limits

are described:

• confusion over whether a limit is actually reached,

• confusion regarding the static characteristic of a limit and

• uncertainty about whether limits are dynamic processes or static

objects (Cottrill et.al 1996:173 ; Williams 1991:219 ; Tall 1980:175

; Thabane 1998:23 ; Davis & Vinner 1986:294).

1.8 Layout of the investigation

The way in which the rest of this research project is discussed is as

follows:

Chapter 2 gives an overview of the literature study that was done. The

historical development of limits is sketched. The nature of limits as well

as the epistemological obstacles inherent to limits is described.

Students’ conceptions and misconceptions of limits are described. Limit-

related aspects such as functions and continuity also receive attention.

Important aspects regarding the teaching and learning of limits are also

included.

In Chapter 3 the empirical investigation is described. This includes a

description of the research design. The instruments used to gather data

namely the questionnaire and interview are highlighted. Reasons are
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given for the inclusion of each item in the specific measuring instrument.

The ways in which the gathered data were analysed, also receive

attention.

Chapter 4 consists of a representation of the data that were gathered

during the empirical investigation. An analysis of the responses in the

questionnaire as well as the interviews is given. The analysed data are

interpreted in terms of the findings from the literature.

In the final chapter, Chapter 5, summaries are given of the findings from

the literature review, the research approach and the findings in the

empirical investigation. Research findings are put in perspective with

what is known about misconceptions in the literature and what was

found during the empirical part of the research. The limitations of this

research project are described as experienced by the researcher. A

conclusion is drawn from all the different aspects and the chapter is

concluded with recommendations for further research on limits.
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CHAPTER 2

THEORETICAL BACKGROUND TO THE STUDY OF

LIMITS

2.1 Introduction

The purpose of this chapter is to present a literature review of the

research that has been done on limits. The historical development of the

idea of a limit is described briefly. The views of various authors and

researchers on the nature of limits are then discussed and evaluated.

The models that students have of the idea of a limit are described. This

includes students’ understanding of the concept as well as their

misconceptions. The problem-centred approach to learning is discussed

as possible teaching method. Thereafter, the role of technology in the

teaching and learning of limits is discussed.

2.2 The historical development of limits

For many centuries, the ideas of a limit were confused with vague and

sometimes philosophical ideas of infinity i.e. infinitely large and infinitely

small numbers and other mathematical entities. The idea of a limit was

also confused with subjective and undefined geometric intuitions

(The History of Limits,

http://occawlonline.pearsoned.com/bookbind/pubbooks/thomas_awl/cha

pter1/medialib/cu).

Cornu (1991:159) is of the opinion that the idea of a limit was introduced

to resolve three types of difficulty:

• Geometric problems, for example, the calculations of area,

‘exhaustion’ and consideration of the nature of geometric lengths;

• The problem of the sum and rate of convergence of a series;
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• The problems of differentiation that come from the relationship

between two quantities that simultaneously tends to zero.

The term limit in our modern sense is a product of the late 18 th and early

19th century Enlightenment in Europe. It was developed as a means of

putting the differential and integral calculus on a rigorous foundation.

Until this time, there were only rare instances in which the idea of a limit

was used rigorously and correctly. Our modern definition is less than

150 years old. The idea of a limit remains one of the most important

concepts (and sometimes one of the most difficult) for students of

mathematics to understand (The History of Limits,

http://occawlonline.pearsoned.com/bookbind/pubbooks/thomas_awl/cha

pter1/medialib/cu).

In the beginning, when Newton and Leibniz were developing calculus,

their work was based on the idea of ratios and products of arbitrarily

small quantities or numbers. Newton called them fluxions and Leibniz

referred to them as differentials. These ideas were built on the work of

Wallis, Fermat and Decartes who had found a need in their work for

some concept of the ‘infinitely small’ (The Platonic Realms,

http://www.mathacademy.com/platonic_realms/encyclopedia/encyhome.

html).

The root of these issues poses the following question: “How close can

two numbers be without being the same number?”  Another question is:

“How small can a number be without being zero?” The effective answer

given by Newton and others was that there are infinitesimals. They are

thought of as positive quantities that are smaller than any non-zero real

number. Such a concept seemed necessary, because the differential

calculus relied crucially on the consideration of ratios, both of whose

terms were vanishing simultaneously to zero. Despite the success of
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Newton’s and Leibniz’s methods as well as the enthusiasm of

mathematicians such as Lagrange and Euler, the idea of infinitesimal

became more and more difficult to support during the 18th century. The

main complaint was that it is impossible to imagine in any concrete way

an object that is infinitely small. Without a firm theoretical basis for

infinitesimals, mathematicians could not be completely confident in their

methods. Such a theoretical basis did not seem forthcoming, despite

nearly two centuries of effort by the mathematical community of Europe.

A new way of thinking about ratios of vanishing quantities was being

introduced by the French mathematician, D’Alembert, namely the

method of limits. His formulation was nearly identical to that in use

today, although it relied heavily on geometrical intuitions. For example,

D’Alembert saw the tangent to a curve as a limit of secant lines, as the

end points of the secants converged on the point of tangency and

became identical with it ‘in the limit’. This is exactly how the derivative is

motivated by calculus courses world-wide today. However, considered

purely as a geometrical argument, without a numerical or functional

foundation, this idea of limiting secant lines is subject to age-old

objections of the sort exhibited by Zeno’s paradoxes (The Platonic

Realms,

http://www.mathacademy.com/platonic_realms/encyclopedia/encyhome.

html).

Another great French mathematician, Cauchy, provided the rigorous

formulation of the limit concept that would meet all objections. Cauchy’s

definitions of the derivative and the integral as limits of functions

transformed our understanding of the calculus. It opened the door to a

rich period of growth and innovation in mathematics (The Platonic

Realms, http://www.mathacademy.com/platonic_realms/encyclopedia/

encyhome.html).
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2.3 Epistemological obstacles in the historical

development

It is useful to study the history of the limit concept to locate periods of

slow development and the difficulties which arose during its

development. This may indicate the presence of epistemological

obstacles.

Brousseau in Cornu (1991:159) defines an epistemological obstacle as

knowledge which functions in a certain domain of activity and becomes

well-established. Then it fails to work satisfactorily in another context

where it malfunctions and leads to contradictions. It then becomes

necessary to destroy the original insufficient knowledge and to replace it

with a new concept that operates satisfactorily in the new domain.

Epistemological obstacles occur both in the historical development of

scientific thought and in educational practice. They have two essential

characteristics:

• They are unavoidable and essential constituents of knowledge to

be acquired,

• They are found, at least in part, in the historical development of

the concept (Cornu 1991:158).

There are four major epistemological obstacles in the history of the limit

concept according to Cornu (1991:159-162), these are:

• The failure to link geometry to numbers,

• The idea of the infinitely large and infinitely small,

• The metaphysical aspect of the idea of limit and

• Is the limit attained or not?
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The idea of a limit is difficult to introduce in mathematics because it

seems to have more to do with metaphysics or philosophy. This

metaphysical aspect of limit is one of the principal obstacles for today’s

students. This obstacle makes the comprehension of the limit extremely

difficult, particularly because it cannot be calculated directly using

familiar methods of algebra and arithmetic. The question whether the

limit is actually reached or not, is still alive in the minds of today’s

students. This is another obstacle to the idea of a limit.

2.4 The nature of the idea of a limit

The idea of a limit is first defined informally and then formally

(rigorously) before different views on its nature are discussed. As

mentioned in Chapter 1, the focus of this investigation is on the limits of

functions.

An informal definition of limit

If the values of a function f(x) approach the value L as x approaches c,

we say that f has limit L as x approaches c and write Lxf
cx

=
→

)(lim

The formal definition

The limit of f(x) as x approaches c is the number L if the following

criterion holds: Given any radius ε > 0 about L there exists a radius δ >

0 about c such that for all x, 0 < x – c < δ  implies f(x) – L  < ε

The idea of a limit signifies a progression to a higher level of

mathematical thinking which Tall (1992:495) calls, advanced

mathematical thinking. This progression involves a difficult transition. It

begins where concepts have an intuitive basis founded on experience to
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one where they are specified by formal definitions and their properties

reconstructed through logical deductions. During this transition (and

long after), earlier experiences and their properties as well as the

growing body of deductive knowledge, exist simultaneously in the mind.

This produces a wide variety of cognitive conflict that can act as an

obstacle to learning.

Tall (1991:501) quotes Cornu who sees the idea of a limit as the first

mathematical concept that students meet where one does not find a

definite answer by a straightforward mathematical calculation. Abstract

ideas such as limit, could be conceived operationally as processes or

structurally as objects. The dual character of mathematical concepts

that have both a procedural and a structural aspect was investigated by

many researchers. Sfard (1991:20) used the word reification to describe

the gradual development of a process becoming an object. Dubinsky

(1991:101) postulated a theory of how concepts start as processes

which are encapsulated as mental objects that are then available for

higher-level abstract thought. Gray & Tall mentioned in Kidron & Zehavi

(2002:206) formulated the idea of a procept, as a combination of

process and concept, called up by a single symbol. In the case of the

limit, the same symbol n
n

alim
∞→

 may be simply a process, the process of

tending to a limit. If it can be seen as a new entity that is detached from

the process that produced it, then it becomes an object. Processes can

then be performed on this object and a new kind of static construct

obtained (Kidron & Zehavi 2002: 205-206).

There is general agreement in the literature that process or operational

conceptions must precede the development of structural object notions

(Cottrill et.al 1996:173; Tall 1992:508). Various authors have the

tendency to set up a dichotomy between dynamic or process
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conceptions of limit and static or formal conceptions. The latter is

normally identified with the formal ε - δ definition (Cottrill et al 1996:174).

Kidron & Zehavi (2002:205) use Cornu’s explanation that the definition

of limit is formulated in terms of an unencapsulated process ‘give me an

ε > 0 and I will find an N such that .... ’, rather than a concept, in the

form ‘there exists a function N(ε) such that .....’ as in the case of a limit

of a sequence.

There is general agreement that process or operational conceptions

must precede the development of structural or object notions (Sfard

1991:1). There are, however, two different views of the relationship

students have to a process conception of limit, also called a dynamic

conception. Some authors seem to indicate that a dynamic conception

is easy and natural for students to develop (Tall 1992; Williams 1991;

Tall & Vinner 1981). According to this view, the main difficulty is for

students to pass from a dynamic conception to a formal understanding

of limits. There is even a suggestion that students’ dynamic ideas hinder

their movement toward developing a formal idea.

Other authors seem to feel that developing a strong dynamic conception

is necessary for a formal understanding. A formal understanding must

build on the student’s dynamic conception. In this view, the difficulty

comes in constructing the dynamic idea and this difficulty is the obstacle

to understanding (Davis & Vinner 1986 ; Cottrill et al 1996).

The nature of the idea of a limit is relatively complex. Epistemological

obstacles occur because of the nature of the concept itself. The models

that students have of the idea of a limit are discussed in greater detail in

the next section. These models can have certain misconceptions which

are the focal point of this investigation.
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2.5 Models of limit held by students

2.5.1 Spontaneous conceptions of limits

The teaching of most mathematical ideas does not begin on virgin

territory. In the case of limits, the student already has a certain number

of ideas, images and knowledge, from daily experience, before any

teaching on this subject commences. Cornu (1991:154) describes these

conceptions of an idea that occur prior to formal teaching, as

spontaneous conceptions. During a mathematics lesson these

spontaneous ideas do not disappear, but they mix with newly acquired

knowledge, are modified and adapted to form the student’s personal

ideas.

In the case of the idea of a limit, the words ‘tends to’ and ‘limit’, have a

significance for the students before any lesson begins. The students

continue to rely on these meanings after they have been given a formal

definition. Investigations have shown many different meanings for the

expression ‘tends towards’. Some of them are: 'to approach' (eventually

staying away from it), 'to approach ... without reaching it', 'to approach

... just reaching it and to resemble' (without any variation).

The word limit itself can have many different meanings to different

individuals at different times. Most often it is considered as an

‘impassable limit’. It can also be: an impassable limit that is reachable, a

point that one approaches, without reaching it (or reaching it), the end or

finish and an interval (Cornu 1991:154-155 ; Monaghan 1991:21-22).

2.5.2 Misconceptions of the idea of limit

Many authors distinguish between concept images and concept

definitions (Vinner 1991; Tall 1992; Davis & Vinner 1986; Cornu 1991).
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The term concept image is used to describe the total cognitive structure

that is associated with a concept. This includes all the mental pictures

and associated properties and processes. This concept image is built up

over the years through all kinds of experiences and is subject to

change. The concept definition, on the other hand, is seen as a form of

words used to specify that concept (Tall & Vinner 1981:152).

For each individual, a concept definition generates its own concept

image. There is no single idea of limit in the minds of students. The

concept images of limit contain factors that conflict with the formal

concept definition. This gives rise to several kinds of misconceptions.

Cornu (1991) mentions the following example: “It is clear that the initial

teaching of limits tends to emphasize the process of approaching a limit,

rather than the concept of the limit itself. The concept imagery

associated with this process, contains many factors that conflict with the

formal definition (‘approaches but cannot reach’, ‘cannot pass’, ‘tends

to’, etc.) Students develop images of limits and infinity which relate to

misconceptions concerning the process of ‘getting close’ or ‘growing

large’ or ‘going on forever’” (p 156).

The following types of misconceptions are described in literature

(Williams 1991:219; Thabane 1998:65; Laridon 1992:398; Cottrill et. al

1996:173).

• Confusion over whether a function can reach its limit,

• Confusion over whether a limit is actually a boundary,

• Confusion whether limits are dynamic processes or static objects

and

• Whether limits are inherently tied to motion concepts.
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Thabane (1998:65) and Laridon (1992:398) mention more common

misconceptions. Students think that ‘limits’ simply entail substituting the

value at which the limit is to be found, into the expression. They often

think that limits are only encountered when trying to ascribe a value to a

function at a point where the function is undefined. Students often think

that function values and limits are the same. Students talk of a limit not

being defined at a point, when it is the function that is not defined at the

point. Students think only about the manipulative aspects and do not

focus on the idea of the limit. Bezuidenhout (2001:489) argued that

formula might make calculations easier, but did not promote

understanding. He advises that the development of students’ conceptual

understanding should go hand in hand with the development of their

manipulative skills.

The conclusion can be drawn that the idea of a limit is complex.

Students have difficulty in understanding this important idea. Cottrill et al

(1996:172) mention that they have not found any reports of success in

helping students overcome their difficulties. Some authors report that

even using technology has not been successful in doing so.

2.5.3 Prerequisites for the understanding of limits

In order to understand limits and other calculus concepts, students

ought to have a global interpretation of the behaviour of functions and

their graphs (Lauten, Graham, & Ferrini-Mundy 1994:227). This includes

the idea of the continuity of functions. Students also need to be familiar

with graphs i.e. the interpretation of given graphs as well as the

sketching of a graph when its algebraic formula is given. Another

important related aspect is the idea of infinity.
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2.5.3.1 Global understanding of functions

The function concept is one of the most fundamental in all of

mathematics and one for which students seldom develop a satisfactory

understanding. Reasons students have difficulty with the concept seem

to centre round its complexity and its generality. The concept has many

facets and associated sub-concepts which can be stated at different

levels of abstraction (Dreyfus & Eisenberg 1983:119).

Ferrini-Mundy & Lauten (1993:157) mention that various researchers in

mathematics education have been interested in students’ understanding

of functions. These researchers have studied the sub-concepts of

function (domain, range, representation and correspondence),

representations used for function (graphs, rules, tables and arrow

diagrams) and ways in which students use and conceptualise functions.

This research has shown that the working definition of function held by

most students is that of function as a rule of correspondence,

represented by a formula. Students are strongly committed to this view

and believe that a function must have the same rule of correspondence

over its entire domain. Functions defined differently on different parts of

the domain (piecewise functions) present great difficulty. A number of

these researchers have noted that students interpret functions in a

point-by-point, or local, way rather than globally. Tasks that encourage

students to interpret graphs qualitatively may help build a global

interpretation.

In this discussion, the focus is primarily on the ‘limit of a function’ and

the ‘continuity of a function at a point’.
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2.5.3.2   The continuity of functions

The issue of continuity has become one of practical as well as

theoretical importance. Continuous functions are the functions we

normally use in the equations that describe numerical relations in the

world around us. They are the functions we use to describe how a body

moves through space or how the speed of a chemical reaction changes

with time. It is important to know when continuity is called for, what it

entails and how to test for it (Finney & Thomas 1993:91).

A function y = f(x) that can be graphed throughout its domain with one

continuous motion of the pen (that is without lifting the pen) is an

example of a continuous function. A function is continuous if it is

continuous at each point of its domain. The continuity test can be used

to test for continuity at a point.

The continuity test

A function y = f(x) is continuous at x = c if and only if it meets all three of

the following conditions:

1 f(c) exists ( f is defined at c)

2 )(lim xf
cx →

exists ( f has a limit as x→c)

3 )()(lim cfxf
cx

=
→

(the limit equals the function value)

To test for continuity at endpoints, the appropriate one-sided limit is

used (Finney & Thomas 1993:92).

For any function y = f(x) it is important to distinguish between continuity

at x = c and having a limit as x → c. The limit is where the function is

headed as x → c. Continuity is the property of arriving at the point where

f(x) has been heading when x actually gets to c (Finney & Thomas

1993:98).
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2.6 The teaching and learning of the idea of a limit

The teaching and learning of this important, but complex idea ought to

be planned and implemented with great care. The problem-centred

approach based on a constructivist perspective seems to be an effective

way to teach and learn the idea of a limit.

2.6.1 A constructivist perspective on teaching and learning

The central idea of the constructivist theory is that mathematical

knowledge cannot be transferred ready-made from one person to

another. It ought to be constructed by every individual learner. This

theory maintains that students are active meaning-makers who

continually construct their own meanings for ideas communicated to

them. This is done in terms of their own, existing knowledge base. This

suggests that a student finds a new mathematical idea meaningful to

the extent that connections are established between the new idea and

his/her existing knowledge (Bezuidenhout 1998:390).

Mathematical learning is a constructive process that requires individual

cognitive activity. This individual cognitive activity cannot be controlled

and manipulated by a lecturer as if it is a physical phenomenon. This

view of learning is in contrast to the view that a student is a passive

receiver of knowledge and that misconceptions can be deleted from

memory by taking in clear explanations from the person giving the

explanations. Due to this constructive process, the mathematical

knowledge (contained in the explanations) can be modified during the

process of transmission (Bezuidenhout 1998:390).

Learning a mathematical idea, such as limit, involves a construction

process. This implies that students build on and modify their existing

concept images. The concept image consists of all the mental pictures

together with the set of properties that an individual associates with a
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given concept. The concept images which an individual constructs

through his own activities may differ in various respects to the formal

mathematical concepts. This leads to the formation of alternative

conceptions or misconceptions (Bezuidenhout 1998:391).

2.6.2 A problem-centred learning approach to teaching

A problem-centred approach to mathematics teaching is based on the

acceptance that students construct their own knowledge. This approach

attempts to establish individual and social procedures to monitor and

improve the nature and quality of those constructions. The construction

of mathematical knowledge is firstly an individual and secondly a social

activity (Murray et. al 1998:30).

In the problem-centred approach, problem solving plays a dual role

according to Human (1993:22). The development of problem solving

skills plays a central role on the one hand and problem solving is the

dominant learning type on the other hand. Students learn mathematics

through solving problems. They do not learn new mathematics when

they solve problems by purely utilising existing knowledge.

To learn through the solution of problems, students need to be exposed

to problems which are new to them. The knowledge that develops

through this process should not have been available beforehand. This,

however, does not neglect the fact that there is still some mathematical

knowledge that students cannot discover by themselves, namely the

physical knowledge and the social knowledge.

The role of the teacher is no longer that of transmitter of knowledge to

the students, but rather a facilitator of their learning. This facilitating role

that the teacher plays puts a lot of pressure on his/her organisational

skills as well as subject didactical knowledge.
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Social interaction plays an important role in the problem-centred

approach. Murray et al (1998:31) mention the following three purposes

of social interaction in the classroom:

• Social interaction creates the opportunity for students to talk

about their thinking and encourages reflection;

• Students learn not only through their own constructions but also

from one another and

• Through classroom social interaction the students also interact

with the teacher.

The teacher therefore plays an important role in selecting appropriate

problems that have to be solved. The teacher also has to create a

classroom culture that is conducive to learning. Murray et al (1998:31)

stress the fact that the amount and quality of learning that takes place,

depend on the classroom culture and on the expectations of both the

teacher and the students.

Laridon (1992:399) warns that most students need to be eased into the

difficult concepts of calculus, especially the idea of a limit. He advocates

methods that are generally intuitive rather than rigorous, especially in

the beginning. He states that nothing is guaranteed to build up an

antipathy to calculus more than a ‘long, formal, dry treatment’ of the

idea of a limit as step one. If in addition, the ε - δ definition is used, the

limit notation will more than likely trigger a mental block whenever it is

encountered in future. When teaching first courses in calculus, it must

be kept in mind that it took the most brilliant minds of the mathematical

community centuries to arrive at this rigour (Laridon 1992:400).
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2.6.3 The role of technology in teaching and learning limits

The research on the role of technology in teaching and learning limits is

very limited. Tall (1992:503) reports that teaching the idea of a limit

using the computer has, on the whole, fared badly.

Cornu (1991:165) is of the opinion that the computer may very well play

a significant role in providing an environment where the student may

gain appropriate experiences to construct the limit concept. However,

such approaches are very likely to contain their own peculiar

epistemological obstacles. It is necessary to reflect on student

experiences in the new environment to see precisely what is learnt and

in what form the knowledge is stored in the memory.

Cornu (1991:166) further states that the interaction with the computer

may involve programming. The individual can construct computer

processes that may permit the acquisition and mastery of the

corresponding mathematical ideas. It may involve pre-prepared

software to enable the student to experience carefully selected

environments that model the idea of a limit. It is also possible to imagine

a kind of computer ‘toolbox’ for the learning of the mathematical idea: a

computer environment that will permit students to manipulate objects

and to construct knowledge.

Various other approaches are possible. In a context such as that of

studying limits, it is vital that the computer software is designed within a

teaching strategy based on the careful analysis of the idea that must be

acquired.

Lauten et.al (1994:227) mention that an increasing number of students

is using graphic calculators as they become more available and

inexpensive. Claims are widespread that:
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• the use of graphic calculators will allow for more conceptual

approaches;

• students will understand the relationships between symbolic

algebra and graphical representations more readily;

• students will now be able to solve problems that were previously

inaccessible to them because of the formal mathematics required

for their solution.

It is evident that more research is needed to determine the specific role

that technology plays in learning about limits.

2.7 Conclusion

There is ample evidence in literature and research results that the idea

of a limit is complex. There were certain epistemological obstacles in

the historical development thereof and there still are in educational

practice today.

Research on student understanding of limits is less extensive. Williams

(1991:219) mentions that recent studies have confirmed that a complete

understanding of limits among students is comparatively rare. Although

students can calculate limits and deal with problems involving limits,

they do not have a satisfactory understanding of the nature of the idea

itself.

Students seem to experience conflict between formal, precise

definitions and the informal, natural language interpretations used

conveniently in discourse. Students commonly believe that a limit

cannot be reached. They are uneasy about the mismatch between their

intuitions and the answers they produce through mathematical

manipulation (Lauten et.al 1994:227). It is quite discouraging to read
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that Cottrill  et.al (1996:172) have found no reports of success in helping

students overcome these difficulties because lecturers want students to

have correct and complete conceptual understanding.

It is clear that the last word on the teaching and learning of limits has

not been spoken. Further research is needed to shed more light on the

following issues:

• Which teaching strategy is likely to bring about the desired

understanding of limits in students?

• How can technology be used to improve student understanding of

limits?

• In what way can knowledge of students’ misconceptions be used

to improve teaching strategies and the quality of their learning?

With this theoretical background in mind, the aim of this investigation is

to identify the misconceptions that engineering students have of limits.

This investigation is an attempt to add valuable and interesting findings

and/or viewpoints.
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CHAPTER 3

METHOD OF RESEARCH

3.1 Introduction

The aim of this investigation was to determine engineering students’

understanding of the idea of a limit in order to identify possible

misconceptions. In this chapter the various procedures used to achieve

these goals are discussed. The following aspects regarding the

investigation are described:

• The research design;

• The methods used to collect the data;

• A description of the items as well as a motivation for including

them in the questionnaire and the interview schedule;

• The sampling procedures used for the questionnaire as well as

the interviews;

• The pilot testing of the questionnaire and interviews and

• The procedures used for analysing the obtained data.

A quantitative-descriptive design, also known as a survey, was used in

this research project. The investigation was done in two phases. In the

first phase a questionnaire was used to gather data on students’

understanding of limits. The responses were recorded and analysed.

During the second phase interviews were conducted with six students.

These students were selected according to their responses in the

questionnaire. Students whose responses indicated the presence of

misconceptions were chosen to be interviewed.
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3.2 The survey design

In survey research the investigator selects a sample of respondents and

administers a questionnaire and/or conducts interviews to collect

information on the variables of interest. The data that are gathered are

used to describe characteristics of a certain population. Surveys are

generally used to find out more about people’s beliefs, attitudes, values,

understandings as well as other types of information. They are

frequently used in education, politics, business, government and

psychology because accurate information can be obtained for large

numbers of people with a small sample. Most surveys describe the

incidence, frequency and distribution of the characteristics of an

identified population (Mc Millan & Schumacher 2001:304-309 & de Vos

2002:142-143).

In this survey, students’ understanding of the idea of a limit was to be

determined in order to identify their misconceptions. The survey as

research design lends itself best to answering the research questions

asked in this investigation. These questions are:

• How do students understand the idea of a limit?

• What kinds of misconceptions do they have?

• How do students relate the continuity/discontinuity of a function at

a point to the existence of a limit at that point? (compare 1.2 &

5.4)

The survey also allows that the information can be collected by means

of a questionnaire at a relatively low cost. The questionnaire can be

distributed to the whole group and collected immediately after

completion. All respondents have to answer the same questions and the

anonymity of each participant can be ensured.
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Heid (http://www.maa.org/saum/maanotes49/109.html) stresses the fact

that students’ answers on tests do not always show their true level of

understanding. Sometimes they understand more than their answers

indicate. Other times, despite using the correct words, they do not

understand what they write. The use of in-depth interviews is of great

value in this regard. This content-based type of interview is not just an

oral test or quiz but rather a way to dig more deeply into the

complexities of students’ mathematical understandings.

3.3 Data collection methods

Data were collected by means of a questionnaire followed by six one-to-

one interviews. The aspects related to the questionnaire are discussed

first.

3.3.1 The questionnaire

The purpose of the questionnaire was to determine how the students

understand the idea of a limit of a function. The focus was on the

informal definition only, since the epsilon-delta definition was not

discussed in this specific mathematics course. The researcher

developed her own questionnaire with the following objectives in mind:

• To determine the student’s understanding of a limit per se;

• To determine the student’s understanding of the continuity or

discontinuity of a function at a point;

• To find out how the students understand the existence or non-

existence of a limit at a point of continuity/discontinuity;

• To determine how the students deal with the graphing of a

function with a discontinuity at a point.
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The questionnaire consisted of questions and statements. Open

questions as well as closed questions were included. Students were

also asked to sketch the graph of a function with a discontinuity at a

point. (See Appendix A)

3.3.1.1 Discussion of the items

The aim with Question 1 was to determine how students understand the

nature of a limit. These aspects are described in the literature as

common conceptions of students regarding this idea.

The researcher also wanted to determine whether the students are able

to verbalise the idea of a limit when no graph or equation of a function is

given as is asked in Question 2.

Question 3 was included to see if students are able to interpret the

symbolic expression of a limit. Another reason was to find out more

about students’ understanding of the relationship between limits and

function values and limits and continuity.

The aim with Question 4 was to determine the students’ understanding

of a discontinuity of a function and how they deal with the limit at that

point. Another reason was to find out how they understand right-hand

limits, left-hand limits and a limit and the function value.

The difference between Question 5 and Question 4 is that no graph of

the function was presented here. The most important reason why this

question was included, was to see if students are able to sketch the

graph being undefined at x = 3. Their answers should also reveal their

understanding of continuity and discontinuity and the existence of a limit

at an undefined point.
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3.3.1.2 Pilot testing

A pilot test of the questionnaire was conducted with the Mathematics 2

students. They were 24 students and have dealt with limits in Grade 12

as well as very briefly in the Mathematics 1 course. The aim of the pilot

test was to get feedback about the questionnaire before it was used in

the study. The researcher wanted to determine the time needed for

completion, whether the directions and items are clear and whether the

data obtained from the questionnaire reflect the real understanding of

the students. The respondents were asked to give feedback on

individual items as well as the questionnaire as a whole.

Each student’s responses to all the items were recorded in a table. They

were then analysed in terms of the following categories:

• Students’ understanding of the nature of the idea of a limit;

• Students understanding of limits and continuity;

• Students’ understanding of limits and function values and

• Any other findings of interest.

Their comments on the different items and the total questionnaire were

also read and interpreted. This feedback was used to alter and improve

the questionnaire before it was administered to the sample in the study.

3.3.1.3 Sampling procedures

The Mathematics III course had 47 students during the second

semester (2004). This group of students took part in the empirical study.

These students were completing the last of the required Mathematics

courses for the Diploma in Electrical Engineering. They were a

multicultural group to whom English is a second language.



39

The idea of a limit was taught during the first semester of 2004 as part

of the Mathematics II course. Since then, the students have not done

any work on this concept at all. They might not remember as much as

was hoped, because most of them rely on their short-term memory.

They do not spend enough time working with the idea in order to make

it part of their long-term memory.

The questionnaire was administered to the group as a whole during one

of their lectures. More or less 35 minutes were needed to complete the

items. The students were not allowed to communicate with each other-

each student’s own work and thoughts were required.

3.3.2 In-depth interviews

Interviews have particular strengths. They are a useful way of getting

large amounts of data quickly. They are an especially effective way of

obtaining depth in data as needed in this investigation. However,

interviews also have limitations. They involve personal interaction and

cooperation is therefore essential. The primary disadvantage of the

interview is its potential for subjectivity and bias. Great care must

therefore be taken to remain objective and open-minded during the

interview (de Vos 2002:305 & Mc Millan & Schumacher 2001:268).

The aim of these content-based interviews was to find out more about

each student’s personal understanding of limits in a way that the

questionnaire did not necessarily reveal. In other words, to determine

the nature of each student’s concept image of a limit. It was a way of

accessing what he/she thought in the absence of additional purposeful

teaching. An interview is not a tutoring session, because the goal is to

understand what the interviewee is thinking and understanding. It is also

to assess the breadth and depth of his/her mathematical

understandings in general.
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The objectives for the interviews were very similar to those mentioned in

the questionnaire. They were:

• To assess the student’s graphical understanding of a limit,

• To assess the student’s symbolic understanding of a limit,

• To determine the student’s understanding of the continuity or

discontinuity of a function at a point,

• To determine how the latter influences the students’

understanding of the   existence or non-existence of a limit at that

point.

3.3.2.1 The interview schedule

Each student’s understanding is unique and this understanding is best

revealed through open-ended questions and related probes. The

interview focuses on the content, what the participant is saying as well

as the process, reading between the lines focusing on how he/she talks

and behaves. The interview schedule consisted of a core set of six

questions on limits. The purpose was to find out how the student made

sense of the mathematics he/she was using (See Appendix B).

The aim with Question 1 was to see if students understand the symbolic

expression of limits. Another reason was to find out how they

understand the idea of infinity and how they link a limit to the behaviour

of the function when x becomes very big.

In Question 2 the researcher wanted to determine how the students

think about approximation and if this understanding is linked to the

conception of a limit as an approximation and/or a limit as unreachable.
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The idea of a limit is found in another context in Question 3 being the

definition of a derivative in Differential Calculus. The researcher wanted

to determine the students’ understanding of this very important definition

especially how they understand the limit in this formula.

Question 4 was aimed at determining whether the students understand

this symbolic expression of a limit. Furthermore, to find out how they

understand the relationship between a function being defined or

undefined at a point and the existence of a limit. It was also included to

find out whether students link limits to function values at the point in

question.

The students’ understanding of the graphical interpretation of a limit was

investigated in Question 5. It could also give an indication whether they

view the limit and the function value as being one and the same thing.

The students’ responses to Question 6 were thought to reveal more

about their ability to deal with an undefined point of a function when

sketching its graph. It could also give an indication of their ability to

sketch a graph of a function and their thoughts on the existence or non-

existence of a limit at that undefined point.

3.3.2.2 Pilot testing

The interview schedule needed to be piloted and revised based on the

success of those pilots in achieving the goals of the interview. Two pilot

interviews were tape-recorded and later transcribed. The following questions

needed to be answered objectively:

• Were the questions understood as intended?

• Were the questions adequate catalysts in determining the students’

mathematical understanding?

• Were there other questions that ought to be included?
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• Was the sequence of questions appropriate for the purpose of the

interview?

• Did the responses reveal the student’s true understanding of

limits?

3.3.2.3 Sampling procedures

As mentioned earlier, there were 47 students in the Mathematics 3

course. Six of these students were selected for an interview. They were

chosen according to their responses in the questionnaire. Students with

unusual, interesting or incomplete responses were chosen. A high-

achiever as well as a low-achiever was also included. The reason for

this was to explore possible differences between good and poor

students’ understanding of a limit.

These interviews were tape-recorded. Attention was also given to the

non-verbal expressions of the interviewees. The interviews were later

transcribed and each response was analysed in depth to assess the

student’s understanding of a limit. The aim was to identify possible

misconceptions in their understanding.

3.3.2.4 Analysis of transcripts

The data were analyzed in order to identify the misconceptions that these

students have of the idea of a limit. The transcripts were analysed by making

use of open coding. Open coding is the part of analysis that pertains

specifically to the naming and categorising of phenomena through the close

examination of data. During open coding, the data are broken down into

discrete parts, closely examined and compared for similarities and

differences. Questions are asked about the phenomena as reflected in the

data.

Conceptualising the data becomes the first step in analysis. It involves taking

apart an observation or response and giving each discrete incident or idea a

name. This name then stands for, or represents a phenomenon. This is done
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by comparing incident with incident so that similar phenomenon can be given

the same name.

Once particular phenomena have been identified in the data, the concepts are

grouped around them. The process of grouping concepts that seem to pertain

to the same phenomenon is called categorising. The categories are then

named. The categories are further developed in terms of their properties

(de Vos 2002:346-347).

The data were grouped according to the following aspects or categories:

• Students’ understanding of the nature of a limit;

• Students’ understanding of limits and continuity;

• Students’ understanding of limits and function values and

• Any other interesting findings.

3.4 Conclusion

The procedures that are implemented during an investigation such as

this play an important role in determining the ultimate success thereof,

as well as the validity and reliability of the end results. This chapter

focused on the research design used in this research project namely the

survey design. The methods used to gather the necessary data were

described. These are the questionnaire and interviews. A motivation or

reason for the inclusion of each item in the questionnaire as well as the

interview schedule was also given.

The sampling procedures used to determine the respondents in the

questionnaire and the interviewees were discussed. Another important

aspect of the investigation namely the pilot testing of the chosen

measuring instruments was also discussed. Finally, the planned

procedure for analysing the data was described. In the following chapter

the data are represented, analysed and interpreted in order to reveal the

research findings.
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CHAPTER 4

DATA ANALYSIS AND INTERPRETATION

4.1 Introduction

The purpose of this chapter is to present, analyse and interpret the data

that were gathered in the empirical investigation. The aim of the data

collection was to determine the students’ understanding of the idea of a

limit in order to identify possible misconceptions. The focus was on the

idea of the limit of a function as described by the informal definition and

not the epsilon-delta definition.

The data collected in the questionnaire are represented first. Thereafter,

data capturing essential and relevant parts of students’ responses in the

transcribed interviews are presented. The data are then analysed and

interpreted in order to reveal the misconceptions that the students have.

4.2 Representation and analysis of the data in the

questionnaire

The questionnaire was administered to 42 students during the last 40

minutes of a two-hour mathematics lecture. On that specific day, five

students were absent and never completed the questionnaire at all. The

students were informed about the questionnaire the week before, but

not on the nature of its content. The reason for this was that the

researcher did not want them to revise what they had done earlier. They

had to rely on what they could remember. Some students commented

that they could not remember much about limits because they had not

worked with the idea for about eight months.
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4.2.1 Question 1

The number of true and false responses to the five questions in

Question 1 is shown below.

Table 1:

Item number True False No response

1.1 21 18* 3

1.2 37    4 * 1

1.3   30 *    10 2

1.4 24    17 * 1

1.5   22 *    17 3

* Correct answer of the item

Some common mistakes were:

• Twenty-one of the students (50%) indicated that a limit is a

number past which a function cannot go. This indicates that they

view a limit as a boundary (item 1.1)

• Eighty eight percent of the students (
42
37

) thought that a limit

describes how the value of a function moves as the value of x

moves towards a certain point (item 1.2). These students

probably associate a limit with the function value for a specific

value of x.

• In item 1.3, ten of the students (24%) disagreed with the

statement that a limit is a number that the function value gets

closer to but never reaches. The other 76% of the students

viewed the limit as unreachable.
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• Twenty-four students (57%) were incorrect by saying that a limit is

an approximation that can be made as accurate as you wish (item

1.4)

• Forty percent (17) of the students did not agree that the limit of a

function can fail to exist at a point as asked in item 1.5. These

students are of the opinion that there must be a limit at a certain

point on a function.

4.2.2 Question 2

In this question students were asked to give their own explanation of the

limit of a function. Students experienced difficulty in answering this

question as indicated by the low response rate of 52, 4 %.  Some of the

incorrect responses are as follows:

• Student 27: “When x approaches s, then L gets very big”. This

student probably associates a limit with the idea of

infinity.

• Student 20: “When s approaches the number L, x approaches zero”

• Student 1: “The function is continuous at x = L”

• Student 4: “It means that either it converges or diverges”

• Student 11: “The limit shows how the function is going to be”

• Student 25: “A function gives a certain value for every value for x”

• Student 35: “Approaches infinity”

Three students (numbers 9, 30 and 41) tried to answer the question by

simply writing the wording of the question down. One of the more

sensible answers was “When x approaches s, it will produce the limit, L.”

4.2.3 Question 3

In this question the students were asked to circle the number of the

statement(s) that must be true. The responses of the 42 students to this

question are represented in tabular form below:
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Table 2:

No 3.1 3.2 3.3 3.4 No 3.1 3.2 3.3 3.4

1 * 22 * *

2 * 23 *

3 * 24 *

4 * 25 *

5 * 26 *

6 * 27 *

7 * * 28 *

8 * 29 *

9 * 30 *

10 * 31 *

11 * 32 *

12 * 33 *

13 * * 34 *

14 * 35 *

15 * 36 *

16 * 37 * *

17 * 38 *

18 * 39 *

19 * 40 *

20 * 41 *

21 * 42 * * *

• Only six students (14%) chose 3.4, which is the correct answer.

They realized that none of the other options must be true.

• Fifteen (36%) of the students encircled item number 3.1. This

revealed that they view a limit as a substitution process.
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• Six students chose 3.2 as an answer (14%). They were of the

opinion that a function must be continuous at a point to have a

limit at that point.

• Twenty-one of the students (50%) encircled 3.3 thus indicating

that a function must be defined at a point to have a limit at that

point.

• Three students (no. 13, 22 and 37) encircled two items and

student 42 encircled three items. They were under the impression

that a function must be defined and continuous at a point to have

a limit and that the limit is equal to the function value at the point.

4.2.4 Question 4

Summary of the 42 answers given in each item of this question:

Table 3:

Item number Correct Incorrect No response

4.1 2 26 14

4.2 10 15 17

4.3 13 15 14

4.4 9 17 16

4.5 13 * 9 20

4.6 9 12 21

4.7 5 9 28

* The correct answer to item 4.5 is −�. Only two students had this

answer but 11 of them had �. The latter answer was also considered to

be correct which gives a total of 13.

Common wrong answers are:

• Zero, -2, 3 and -3 in item 4.1
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• In item 4.2, fourteen (33%) of the students had 3 or −3 as

answers

• Nine students thought that the limit of F(x) at x = 3 equals the

function value of F at x = 3 (item 4.7)

The students experienced difficulty with the discontinuity at x = 3 as is

clear from the small number of correct responses. They did not realize

that the function value of F(3) = 3 and not two and that the limit of F(x)

as x approaches three is actually two.

4.2.5 Question 5

In this question students had to sketch the graph of a function and

thereafter answer questions on the graph. The results are indicated in

the table:

Table 4:

Item number Correct Incorrect No response

Graph 3 22 17

5.1 6 19 17

5.2 17 9 16

5.3 14 15 13

5.4 3 11 28

5.5 3 18 21

Typical incorrect answers that occurred:

• In item 5.1, eight students (19%) said that f(x) becomes zero at

the point x = 3 instead of being undefined at the point.

• Nine (21%) of the students thought that the graph is continuous at

the point x = 3 (item 5.2).

• Fifteen students were of the opinion that f(x) does not have a limit

at x = 3 (item 5.3)

• Eleven students wrote 0, 2 or 3 in item 5.4.
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• In item 5.5, seventeen students answered 0, 2 or 3.

The students experienced difficulty in sketching the graph of f(x).

Seventeen of the students (40%) did not even try to sketch the graph

and consequently could not answer the questions on the graph with

ease. Some of the students had zero as the y-intercept instead of one.

Others had the gradient of the graph incorrect. Some of them just

ignored the point x = 3 because they did not know how to deal with the

discontinuity at that point. In order to try something, some of them made

y = 0 which resulted in an x-intercept at x = 3.

4.3 Representation and analysis of the data from the

interviews

Two weeks after the completion of the questionnaire, the interviews

were conducted. The second semester lectures were almost coming to

an end and the test week was due to start the following week. Due to a

time constraint, students were asked to volunteer for the interviews. At

first they were reluctant as they thought that they could not remember

much about limits. As mentioned earlier, they had not worked with limits

for about eight months. This could be seen as a reasonable excuse. In

the end there were six volunteers and they were interviewed one after

the other on the same day. Each interview was tape recorded and

lasted about 10-15 minutes. The numbers one to six were allocated to

the students according to the sequence in which they were interviewed.

The students were not asked to calculate limits algebraically, because

they were able to find most limits in that way. The questions were aimed

at finding out how they understand the idea of a limit, how they think

about limits and function values and how they understand the effect of a

discontinuity at a point on the existence of the limit at the same point.

(See Appendix B for the interview schedule)
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4.3.1 Excerpts from interviews on question 1

In question 1, students were asked to comment on the symbolic

expression 0
1

lim =
∞→ xx

. A rough sketch of the graph of the function was

available for use by the students. Not one of the six students could

remember that the function is called a hyperbola. Some of the

responses to the question: “What happens to the function when x

approaches infinity?” were:

S1: When x gets very big, it becomes smaller.

S2: f(x) gets closer to zero. It can’t be zero, it just reaches zero.

S5: The graph approaches the x-axes, but never touches it.

S6: If x approaches infinity, f(x) also approaches infinity.

The students realized that if x becomes very big, the function value will

reach zero, although it will never be zero itself. They all used the value

of f(x) and did not think that the limit will actually be zero. The

explanation was that if you divide one by numbers that get bigger and

bigger, the answer will eventually reach zero. They all mentioned that

the limit approaches zero, but never reaches zero. This shows that they

viewed a limit as a dynamic process and not as a static object similarly

to what Bezuidenhout (2001:491) and Williams (1991:219) concluded

from their research on limits.

On the question whether we can write f(�) = 0, five of the six students

answered yes. Two of the responses were as follows:

S2: No, well umm, it depends on the formula. Infinity is a symbol

representing numbers that are very big, numbers that you can’t

really write.
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S6: Yes. If you divide one by numbers getting bigger and bigger, 
x
1

becomes smaller and smaller and will eventually reach zero.

This indicated that they see the symbol, �, as a number representing

big numbers and not really as a symbol that represents infinity. Student

S2 named � a symbol, but he gave the impression that you could find

f(�) and that its value depends on the formula of a specific function. In

this specific case, the function reaches zero when x increases.

4.3.2 Excerpts from the interviews on question 2

In this question, students were asked what the value of 9,0  is. None of

them could remember that it is called a recurring decimal number. They

all said that the value is one, but explained it in interesting ways.

S2: It is equal to one, as when you round off numbers, although it is not

right. When you use your calculator, it won’t give you one.

S1: If you round off this thing, it is close to one.

S3: It means that there are still more nines. We can say it is almost equal

to one, but not really one.

S4: If I have to round it off, I can say it is equal to one.

S5: It is close to one.

S6: We can try to make it one.

These responses, with the exception of S4, indicated that they were

thinking of the process of rounding off numbers and that the answer is

close to one. This way of thinking is very similar to that in question 1

where a limit was seen as a number that a function is approaching or

getting closer to, but never reaches.
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4.3.3 Students’ explanations in question 3

This specific question dealt with the idea of a limit in a different context

namely that of 
h

xfhxf

h

)()(
lim

0

−+
→

. They were asked what the meaning

of the limit in this symbolic expression is as well as what this expression

is usually used for. The students experienced great difficulty with this

question as indicated by their responses:

S1: We use the formula for the gradient. If h becomes zero, it is going to be

x.

S2: We use it to calculate the limit. In this formula we do not really care

about h. It just helps us to calculate everything. If we divide by a zero,

it will not be possible we can not use a value at this point. We cancel

out the h.

S3: In Calculus,…in a sequence? I do not know, maybe to find f(x).

S4: I think it is one or two equations and then you have to substitute. If x

approaches nought, no, when h approaches nought, no, we can’t divide

by nought. Ach, I don’t know. If you divide by zero, it is undefined.

S5: They give you f(x) and then you substitute f(x) into all the x’s. I do not

really know. If h approaches zero, it will be zero.

S6: I would say if h approaches zero, then f(x) will approach infinity. Ja.

I’m not sure where we use it.

From these explanations it is clear that the students did not have a clear

concept image of the idea of a limit in this context. They can calculate a

derivative by using this formula if they are asked to do so, but they

cannot describe the concept correctly in their own words.
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4.3.4 Excerpts from the responses to question 4

This question dealt with another type of symbolic expression namely

3)(lim
1

=
→

xf
x

. The students were asked to describe the meaning of the

expression in their own words. The focus was on whether the function

has to be defined at a point to have a limit at that point and what the

relationship between the function value and the limit at that point is.

Some of the responses were as follows:

S2: It says where x is one, our limit is three so as x approaches a one, our

f(x) will approach three. It just approaches the one or the three, it

never reaches the one or the three.

S3: It means that the limit does exist at three.

S4: Ok, it means that if x approaches one, then the graph goes to three.

S5: As x approaches one, the function approaches three.

Five of the six students were adamant that the function must be defined

at x = 1 to have a limit of three. If the function is undefined at that point,

there will be no limit. Student S2 was the only one who thought that the

function needn’t have to be defined at the point. If it is undefined, it can

still have a limit. Further, the other five students were all very confident

that f(1)=3. Student S2 motivated his answer in this way:

The limit is found by substitution, it depends on the formula you have.

4.3.5 Responses to question 5

In this question, the students were given the graph of a function, f(x).

The formula of the function was not given. They had to show where the

limit of f(x) as x �2 is as well as what they think )(lim
2

xf
x→

is. Every

student pointed to the point three on the y-axes. Each student motivated

his/her answer by saying that if x = 2, the value of f(x) is equal to 3.



55

They did not use the word limit, but rather the value of f(x) at

x = 3. All of them said that 3)(lim
2

=
→

xf
x

 the same reason as above.

These responses indicated that the limit and the function value were

seen as being the same, i.e. ).2()(lim
2

fxf
x

=
→

 Bezuidenhout (2001:495)

is of the opinion that this misconception may be mainly due to the use of

a method of substitution to find limits algebraically. This method was

also used when the idea of a limit was taught to the students at the

beginning of the year.

4.3.6 Excerpts from interviews on question 6

In the sixth and final question of the interview, students were asked to

sketch the graph of the function, 
2
2

)(
−
−

=
x
x

xf  which has a discontinuity at

the point x = 2. They had to say whether the function has a limit at x = 2

as well as what the value of f(2) is.

All the students attempted the graph by choosing values for x and

calculating the corresponding f(x) values. At the point x = 2, they had

some difficulty. Students S1, S3 and S4 had the following graph:

Fig 3

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4



56

On the question, what happens when x = 2, five of them answered that

f(x) becomes zero. At first, they did not think of a discontinuity at that

point. On the question, what 
0
0  is, three of them answered that it was

zero. The other three interviewees were correct in saying that it was

undefined, although f(2) remained equal to zero for some of them.

Student S2, who normally gets an A-symbol in mathematics, was the

only one who said that the function was undefined at x = 2 (although he

was one of those who said that f(x)=0). He elaborated on this by saying

that the function is not continuous at the particular point and that there is

no limit at x = 2. On the question whether the limit could be one, his

response was no, because the function does not approach one. He was

under the impression that there was no limit at the point because the

function was undefined at the point.

Due to a hint that the function could be discontinuous at x = 2, the

students realized that they had to make an open circle at x = 2 because

the function was undefined at the point. Three of the students could

then say that the limit at x = 2 is equal to one, although they still

believed that the value of f(x) at x = 2 is equal to zero.

4.4 Students’ conceptions of the idea of a limit

During the interviews, students were given the opportunity to express

their ideas and thoughts not only on limits, but also on infinity and

continuity. As mentioned earlier, the students had not been doing any

work on limits for more than eight months and had to rely on their

memories to provide answers to the set questions. One might expect

that this could reveal their true understanding even better in comparison

to having done the work only recently. At times, some of them seemed a
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little embarrassed although they tried their very best throughout the

interviews.

4.4.1 Summary of the identified conceptions on limits

The following conceptions on the nature of a limit were identified:

• Students see a limit as a boundary (item 1.1)

• Students see a limit as unreachable (item 1.3)

• Students see a limit as an approximation (item 1.4)

• Students are under the impression that a function will always

have a limit at a point (item 1.5)

• Students view a limit as a dynamic process and not as a static

object (item 1.2 and interview questions 1 & 6)

Conceptions regarding the relationship between a continuous function

and a limit were:

• Students think that a function has to be defined at a point to have

a limit at that point. A function that is undefined at a certain point

does not have a limit.

• Students think that when a function has a limit, then it has to be

continuous at that point. (Item 3 of the questionnaire and

Question 4 & 6 of the interview)

Other misconceptions were:

• The limit is equal to the function value at a point, i.e. a limit can be

found by a method of substitution (Questions 3, 4 & 5 of the

questionnaire).

• When one divides zero by zero, the answer is zero (Interview

question 6). Most of the students know that any other number

divided by zero is undefined.
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• When one rounds a number off, the number gets closer to

another number, but does not equal it, ex. 0,999… � 1 (Interview

question 2).

4.4.2      Interpretation of the findings

The identification of these conceptions points to the fact that most of

these students have very limited conceptions about limits and continuity.

This could be ascribed to the fact that little time (more or less four

hours) was allocated to the teaching of limits and continuity as an

introduction to the derivative and differentiation of various functions. The

time delay from working with limits and encountering them again in the

questionnaire and interviews could also play a role in these limited

conceptions. At the beginning of the second semester of 2004, limits

were completely eliminated from the Mathematics 2 syllabus. The

course now starts with derivatives and the focus is largely on the

application of the rules used in finding derivatives. This might change

again at the beginning of the next academic year (2005).

Several researchers have experienced the difficulty that students have

with limits and have investigated the conceptions that they have. The

conceptions mentioned above, are in accordance with those that these

researchers have found. Williams (1991:219) and Tall (1992:501)

concluded that conceptions of limit are often confounded by issues of

whether a function can reach its limit, whether a limit is actually a

boundary, whether limits are dynamic processes or static objects and

whether limits are inherently tied to motion concepts.

Thabane (1998:66) and Bezuidenhout (2001:493) investigated first year

students’ understanding of limits and found that students have in mind

that the limit is about mechanical substitution. They also found that

students only think about the manipulative aspects and do not focus on
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the concept of a limit. According to their findings, students talk of a limit

not being defined at a point when it is the function that is not defined at

that point. Laridon (1992:398) confirms the fact that students think that

limits simply entail substituting the value at which the limit is to be found,

into the expression. He also found that students think that limits and

function values are the same. Furthermore, limits are only encountered

when trying to ascribe a value to a function at a point where it is

undefined (Example: 
3
92

3
lim −

−
→ x

x
x

).

Lauten, Graham & Ferrini-Mundy (1994:227) go a step further by saying

that students commonly believe that a limit cannot be reached and are

uneasy about the mismatch between their intuitions and the answers

they produce through mathematical manipulation. They seem to

experience conflict between formal, precise definitions and the informal,

natural language interpretations used commonly in the discourse. Tall

(1992:502) is of the opinion that the formal definition is also fraught with

cognitive problems. In this course, the students only dealt with the

informal definition, the formal definition was not discussed.

Tall in Limits, Infinitesimals and Infinities

(http://www.warwick.ac.uk/staff/David.Tall/themes/limits-infinity.html)

explains that the primitive brain notices movement. The mental notion of

the limit of a function is more likely to focus on the moving point than on

the limit point. The limit concept is conceived first as a process and then

as a concept or object. Anna Sfard (1991:1) calls this the dual nature of

mathematical conceptions. She is of the opinion that abstract notions

such as function or limit, can be conceived in two fundamentally

different ways: structurally as objects, and operationally as processes.

These two approaches, although ostensibly incompatible, are in fact

complementary. The processes of learning and of problem-solving
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consist in an intricate interplay between operational and structural

conceptions of the same notions. The operational conception is, for

most people the first step in the acquisition of new mathematical

notions. The transition from computational operations to abstract objects

is a long and inherently difficult process. This could explain why most

students see a limit as a process and not as an object- not enough time

is allowed to make this transition.

4.5 Conclusion

The data analysis and data interpretation shed some light on the ways

in which students think about limits. The identified misconceptions are

very similar to the ones identified by other researchers. The findings of

this study show that many students’ knowledge and understanding rest

largely on isolated facts and procedures and that their conceptual

understanding of limits, continuity and infinity is deficient. Lecturers

ought to become aware of their students’ understanding and possible

misconceptions. Diagnosing the nature of students’ conceptual

problems enables lecturers to develop specific teaching strategies to

address such problems and to enhance conceptual understanding.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

The idea of a limit is viewed by many authors as the most fundamental

concept of calculus. Every major concept of calculus namely derivative,

continuity, integral, convergence or divergence is defined in terms of

limits. The idea of a limit is thus a very important concept, but one of the

difficult ones for calculus students to understand (compare 1.1). This

concept has a very long history which could reflect its complexity. It took

mathematicians centuries to develop the idea of a limit, although the

modern definition is less than 150 years old (compare 2.2).

Different investigations done on limits, show that the majority of

students do not master the idea of a limit, even at an advanced stage of

their studies. This does not prevent them from working out exercises,

solving problems and passing their examinations. A possible

explanation for this could be that this concept is often taught in isolation

- students encounter the idea for a period of time and hardly ever again.

Students do not understand why this idea is fundamental to calculus

and cannot link it to other aspects of calculus (compare 1.1).

There is much concern about the large numbers of students taking

calculus and the rote, manipulative learning that takes place. Most of

the time, the approach in textbooks as well as the teaching strategies

focus on the manipulative aspects of limits and not on understanding

the limit per se. These practices do not promote conceptual

understanding and could result in misconceptions (compare 1.2 & 2.7).
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Students need time to develop the correct understanding of a limit - a

concept image that is in accordance with the concept definition

(compare 2.5.2). As a result of this, the general tendency now is for less

emphasis on skills and greater emphasis on the understanding of the

underlying concepts of calculus such as limits.

5.2 Summary of the findings

5.2.1 Summary of the literature review on the nature of

limits

Tall (1992:501) quotes Cornu who views the idea of a limit as the first

mathematical idea that students encounter where one does not find a

definite answer by a straightforward mathematical calculation. This is

quite a different (and unexpected) situation to deal with in comparison to

the students’ previous experiences with mathematical ideas. Tall

(1992:495) confirms this when he mentions that the idea of a limit

signifies a progression to a higher level of mathematical thinking which

he calls advanced mathematical thinking. This progression involves a

difficult transition. It starts off where concepts have an intuitive basis

founded on experience to one where they are specified by formal

definitions and their properties reconstructed through logical deductions.

During this transition (and long after), earlier experiences and their

properties as well as the growing body of deductive knowledge, exist

simultaneously in the mind. This produces a wide variety of cognitive

conflict that can act as an obstacle to learning (compare 2.4.2).

Furthermore, abstract ideas such as limit could be conceived

operationally as processes and structurally as objects. The dual

character of mathematical ideas that have both a procedural and a
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structural aspect was investigated by many researchers. Anna Sfard

(1991:20) used the word reification to describe the gradual development

of a process becoming an object. Dubinsky (1991:101) postulated a

theory of how concepts start as processes which are encapsulated as

mental objects that are then available for higher-level abstract thought.

Gray & Tall mentioned in Kidron & Zehavi (2002:206) formulated the

notion of ‘procept’ as a combination of process and concept evoked by

a single symbol. In the case of a limit, the same symbol an
n

lim
∞→

 may be

simply a process (the process of tending to a limit), but if it can be seen

as a new entity that is detached from the process that produced it, then

it becomes an object. Other processes can then be performed on this

object to obtain a new kind of static construct (Kidron & Zehavi

2002:205-206).

5.2.2 Summary of students’ conceptions of limits

In the light of what was said above, one can understand that most

students find it difficult to come to terms with this complex idea. The

following types of misconceptions are described in the literature

(Williams 1991:219; Thabane 1998:65; Laridon 1992:398; Cottrill et. al

1996:173).

• Confusion over whether a function can reach its limit,

• Whether limits are inherently tied to motion concepts,

• Confusion over whether a limit is actually a bound and

• Confusion whether limits are dynamic processes or static objects.

Thabane (1998:65) and Laridon (1992:398) found that students think

that ‘limits’ simply entail substituting the value at which the limit is to be

found into the expression. They often think that limits are only

encountered when trying to ascribe a value to a function at a point
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where the function is undefined. Students often think that limits and

function values are the same. They talk of a limit not being defined at a

point when it is the function that is not defined at a point. Students think

only about the manipulative aspects and do not focus on the idea of a

limit. One explanation for this could be the way in which the concept is

taught to students. Another reason could be the approach used in most

calculus text books namely the use of formulas and calculations of

limits. Bezuidenhout (2001:489) argued that formula might make

calculations easier, but do not promote understanding. In this way the

source and nature of misconceptions may go undetected (compare

2.5.2).

5.2.3 Summary of the research approach

This research project was undertaken to determine engineering

students’ understanding of the limit concept in order to identify possible

misconceptions.

This investigation was in the form of a quantitative-descriptive (survey)

design and was done in two phases. In the first phase a questionnaire

on the idea of a limit was given to a group of 42 third-year mathematics

students. The questions focused on the concept itself and not on

calculating limits or the manipulative aspects thereof (Appendix A).

The students had not done any work on limits for a period of about eight

months. At that time, limits were discussed according to their prescribed

textbook, due to the inexperience of the researcher. It was just touched

on as an introduction to the slope of a tangent to a curve and the

derivative which covered a large part of the syllabus. At first, tables

were used to find limits where the value of x, where the limit was to be

found, was omitted. Later limits were calculated algebraically. The

continuity of functions was also discussed briefly. The data in the
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questionnaires were recorded and thereafter analysed in order to find

out more about these students’ understanding.

The second phase consisted of interviews with six of the students. The

interview schedule consisted of six questions with the aim once again to

find out more about their understanding (Appendix B). The interviews

were tape-recorded and later transcribed. The responses were analysed

according to the nature of a limit, the relationship between continuity

and limits and other conceptions for example rounding off and division

by zero. A summary of these findings are given in 5.2.4.

5.2.4 Summary of the findings in the empirical

investigation

The findings in the empirical investigation are very similar to the

descriptions that are found in the literature. The findings are as follows

(compare Chapter 4):

Findings regarding students’ views on the nature of a limit:

• Some students see a limit as a boundary past which a function

cannot go,

• Some of them see a limit as unreachable i.e. the limit comes

closer and closer to a point but never reaches the specific value,

• Many students see limits as a dynamic process and not as static

objects which is related to the above-mentioned view,

• Some students view a limit as an approximation meaning that you

can make the limit as accurate as you wish.
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Other misconceptions related to limits are:

• A function must be defined at a point to have a limit at that point -

discontinuous functions can not have a limit at the point of

discontinuity,

• A function has to be continuous at a point to have a limit at that

point,

• The value of the limit at a point is equal to the function value at

that point i.e. )3()(lim
3

fxf
x

=
→

. Students view finding limits and the

substitution process as exactly the same thing.

Other interesting findings:

• In the case of an approximation like 0,999… the students see it

as less than one and not equal to one,

• Zero divided by zero is equal to zero although most of them know

that any number divided by zero is undefined (compare Chapter

4).

5.3 Limitations of the study

The original aim of this research project was to identify specific

misconceptions that the second year engineering students have of the

idea of a limit after having discussed it in class. The plan was to teach

this idea by using alternative strategies to lectures such as group work,

problem solving tasks and various tasks on their computer program

called MATLAB. In the past this specific course started with limits which

were followed by derivatives and the whole topic of differentiation.
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At the beginning of the second semester of 2004, limits were completely

omitted from the syllabus. Due to this, the research project had to be

adapted. There was no time in the semester plan to include this topic.

The decision was then taken to use the present third year students as

subjects, although they had not worked with limits for a period of about

eight months. The second year students were used in the pilot study to

test the content of the questionnaire and two students were interviewed.

These students did limits in Grade 12 and just revised it briefly in their

Mathematics I course.

Two limiting factors have been identified. They are:

• The time span (of eight months) between when limits were

discussed with the third year students and when the real

answering of the questionnaire took place and

• The fact that the topic was taught and learnt in a traditional way

strictly according to the prescribed textbook.

5.4 Conclusion

The project was undertaken to find answers to the following research

questions:

1 How do students understand the idea of a limit?

2 What kind of misconceptions do they have?

3 How do they relate the continuity/discontinuity of a function at

          a point to the existence of a limit at that point? (compare 1.3)

These research questions can now be answered as follows:

The outstanding observation was that students see a limit as

unreachable. This could be due to the language used in many textbooks
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to describe limits for example ‘tends to’ and ‘approaches’. These words

are verbs or action words and as Monaghan (1991:23) describes, the

action in this mathematical setting is ‘getting to a limit’ sets up a

dynamic interpretation of a limit. These words represent a movement

towards a point without ever getting there. This explains the dynamic

view of the majority of students that a limit is a process and not an

object. Another view of a limit that the students have is that a limit is a

boundary point. This could be because of their experience with speed

limits, although that could always be exceeded.

Many students think that a function must be defined at a point to have a

limit at that point. If there is a point of discontinuity there could not be a

limit at that point. They also think that a limit is equal to the function

value at that point. This is true for continuous functions but not for

piecewise functions or discontinuous functions.

5.5 Recommendations for further research

The following recommendations are made as a result of the findings in

this investigation:

• To investigate those cognitive processes which are assumed to

be involved in the student’s acquisition of the idea of a limit;

• To investigate the role of a problem-centred approach on the

learning of limits and students subsequent understanding;

• To investigate the effect that the use of technology, for example

computer programs and graphing calculators might have on

students’ understanding of limits;

• To develop a teaching strategy that will lead to the most accurate

understanding of limits.
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The first reason for these recommendations is that the researcher was

curious to find out more about these issues, but they could not be

addressed due to the changes in the syllabus for the specific

mathematics course. There was no time at all in the semester plan to

include limits. Another reason is the acknowledgement of the fact that

students construct their own meaning of mathematical ideas and that

knowledge should not be transmitted to them in a ready-made manner.

The researcher wanted to move away from the old-fashioned talk-and-

chalk method to a more contemporary approach of allowing students to

construct their own meaning and developing their own understanding of

limits by solving problems and working in groups.

The investigation of these four aspects related to the teaching and

learning of this important idea in calculus, ought to lead to more

effective teaching strategies. The use of better teaching strategies ought

to result in more precise understandings of the students and fewer

misconceptions. This is the aspiration of every mathematics educator

worldwide.
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Appendix A

THE IDEA OF A LIMIT

QUESTIONNAIRE

The purpose of this questionnaire is to determine how you understand

the idea of a limit. Please answer these questions as best as you can.

The results will be used in a research project currently in progress at

this institution. You will remain anonymous throughout the investigation.

Thank you for your cooperation.

Name: ........................................... Student no: ......................

Mark the statements about limits as true or false. Circle the T if you

think that the statement is true or F if you think that it is false (not true).

1.1 T  F A limit is a number past which a function cannot go.

1.2 T  F A limit describes how the value of a function moves as the

value of x moves towards a certain point.

1.3 T  F A limit is a number that the function value gets closer to

but never reaches.

1.4 T  F A limit is an approximation that can be made as accurate

as you wish.

1.5 T  F The limit of a function can fail to exist at a certain point.

2 Describe in your own words what it means to say that the limit of a

function f as x → s is some number L.
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3 Which statement(s) in 3.1 to 3.3 below must be true if f is a

function for which ?3)(lim
2

=
→

xf
x

 Encircle the number in front of

your choice(s). Encircle 3.4 if you think that none of them are

true.

3.1 f(2) = 3

3.2 f is continuous at the point x = 2

3.3 f(x) is defined at x = 2

3.4 None

For the function g graphed below, find

4.1 =
−

→

)(lim
3

xg
x

…….. 4.2 =
+→

)(lim
3

xg
lix

 …….

4.3 =
→

)(lim
3

xg
x

…….. 4.4 g(3) = ……

4.5 )(lim xg
x −∞→

= ……… 4.6 =
∞→

)(lim xg
x

……

4.7 Complete: The limit of g as x �3 is (equal/not equal) to the function

value of g at x = 3. Underline your choice.

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5
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5.  Sketch the graph of the function 
93
9

)(
2

−
−=

x
x

xf

Answer the following questions:

5.1 What happens at the point where x = 3?

5.2 The function is (continuous / discontinuous) at the point x = 3

(Underline your choice).

5.3 Does the limit of f(x) exist at x = 3?   (YES / NO)

5.4 If you have answered yes in 5.3, what is the limit of f(x) at x = 3?

5.5 What is the value of the function at x = 3, i.e. f(3)?
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Appendix B

The interview schedule

QUESTION 1

Let 
x

xf
1

)( =

1.1 What do you understand by ?0
1

lim =
∞→ xx

1.2 Can we write ?0)( =∞f

QUESTION 2

What is the value of 0,999?

QUESTION 3

3.1 What does the following expression mean?

h
xfhxf

h

)()(
lim

−+
∞→

3.2 What do we use this formula for?

-2

0

2

4

6

8

10

-2 -1 0 1 2 3 4 5
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QUESTION 4

4.1 Explain the following: 3)(lim
1

=
→

xf
x

4.2 Must the function be defined at x = 1 to have a limit?

4.3 Must f(1) = 3 or not?

QUESTION 5

Look at the graph:

5.1 What is the limit of f(x) as x � 2?

5.2 What is ?)(lim
2

xf
x→

QUESTION 6

Let 
2
2

)(
−
−=

x
x

xf

6.1 Sketch the graph of the function.

6.2 What is the value of f(2)?

6.3 Does f(x) have a limit at x = 2?

6.4 If yes, what is the limit?
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