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ABSTRACT 

 

Return on Capital Employed (ROCE) is a popular financial instrument and 

communication tool for the appraisal of companies. Often, companies management 

and other practitioners use untested rules and behavioural approach when 

investigating the key determinants of ROCE, instead of the scientific statistical 

paradigm. The aim of this dissertation was to identify and quantify key determinants 

of ROCE of individual companies listed on the Johannesburg Stock Exchange (JSE), 

by comparing classical multiple linear regression, principal components regression, 

generalized least squares regression, and robust maximum likelihood regression 

approaches in order to improve companies decision making. Performance indicators 

used to arrive at the best approach were coefficient of determination (  ), adjusted 

   (    
  , and Mean Square Residual (MSE). Since the ROCE variable had positive 

and negative values two separate analyses were done.  

 

The classical multiple linear regression models were constructed using stepwise 

directed search for dependent variable log ROCE for the two data sets. Assumptions 

were satisfied and problem of multicollinearity was addressed. For the positive 

ROCE data set, the classical multiple linear regression model had a    of 0.928, an 

    
  of 0.927, a MSE of 0.013, and the lead key determinant was Return on Equity 

(ROE),with positive elasticity, followed by Debt to Equity (D/E) and Capital Employed 

(CE), both with negative elasticities. The model showed good validation 

performance. For the negative ROCE data set, the classical multiple linear 

regression model had a    of 0.666, an     
  of 0.652, a MSE of 0.149, and the lead 

key determinant was Assets per Capital Employed (APCE) with positive effect, 
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followed by Return on Assets (ROA) and Market Capitalization (MC), both with 

negative effects. The model showed poor validation performance. The results 

indicated more and less precision than those found by previous studies. This 

suggested that the key determinants are also important sources of variability in 

ROCE of individual companies that management need to work with. 

 

To handle the problem of multicollinearity in the data, principal components were 

selected using Kaiser-Guttman criterion. The principal components regression model 

was constructed using dependent variable log ROCE for the two data sets. 

Assumptions were satisfied. For the positive ROCE data set, the principal 

components regression model had a    of 0.929, an     
  of 0.929, a MSE of 0.069, 

and the lead key determinant was PC4 (log ROA, log ROE, log Operating Profit 

Margin (OPM)) and followed by PC2 (log Earnings Yield (EY), log Price to Earnings 

(P/E)), both with positive effects. The model resulted in a satisfactory validation 

performance. For the negative ROCE data set, the principal components regression 

model had a    of 0.544, an     
  of 0.532, a MSE of 0.167, and the lead key 

determinant was PC3 (ROA, EY, APCE) and followed by PC1 (MC, CE), both with 

negative effects. The model indicated an accurate validation performance. The 

results showed that the use of principal components as independent variables did 

not improve classical multiple linear regression model prediction in our data. This 

implied that the key determinants are less important sources of variability in ROCE of 

individual companies that management need to work with.  

 

Generalized least square regression was used to assess heteroscedasticity and 

dependences in the data. It was constructed using stepwise directed search for 
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dependent variable ROCE for the two data sets. For the positive ROCE data set, the 

weighted generalized least squares regression model had a    of 0.920, an     
  of 

0.919, a MSE of 0.044, and the lead key determinant was ROE with positive effect, 

followed by D/E with negative effect, Dividend Yield (DY)  with positive effect and 

lastly CE with negative effect. The model indicated an accurate validation 

performance. For the negative ROCE data set, the weighted generalized least 

squares regression model had a    of 0.559, an     
  of 0.548, a MSE of 57.125, and 

the lead key determinant was APCE and followed by ROA, both with positive effects. 

The model showed a weak validation performance. The results suggested that the 

key determinants are less important sources of variability in ROCE of individual 

companies that management need to work with. 

 

Robust maximum likelihood regression was employed to handle the problem of 

contamination in the data. It was constructed using stepwise directed search for 

dependent variable ROCE for the two data sets. For the positive ROCE data set, the 

robust maximum likelihood regression model had a    of 0.998, an     
  of 0.997, a 

MSE of 6.739, and the lead key determinant was ROE with positive effect, followed 

by DY and lastly D/E, both with negative effects. The model showed a strong 

validation performance. For the negative ROCE data set, the robust maximum 

likelihood regression model had a    of 0.990, an     
  of 0.984, a MSE of 98.883, 

and the lead key determinant was APCE with positive effect and followed by ROA 

with negative effect. The model also showed a strong validation performance. The 

results reflected that the key determinants are major sources of variability in ROCE 

of individual companies that management need to work with. 
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Overall, the findings showed that the use of robust maximum likelihood regression 

provided more precise results compared to those obtained using the three competing 

approaches, because it is more consistent, sufficient and efficient; has a higher 

breakdown point and no conditions. Companies management can establish and 

control proper marketing strategies using the key determinants, and results of these 

strategies can see an improvement in ROCE. 

 

KEY WORDS 

 

Classical multiple linear regression, principal components regression, generalized 

least squares regression, robust maximum likelihood regression, Return on Capital 

Employed, stepwise directed search, Kaiser-Guttman criterion, key determinants.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

The Johannesburg Stock Exchange (JSE) as the sole equities exchange in South 

Africa approves all companies seeking a listing (MacLeod, 2008). Companies across 

the range of mining, manufacturing, commerce, and service industry are listed on the 

JSE. The JSE initially established as a primary financing source to sustain the 

mining of gold, discovered in the South African mountain range, Witwatersrand, in 

1886, make a considerable component of the economic activities of South Africa 

(MacLeod, 2008). Companies listed on the JSE contribute about 8.6 % of South 

Africa’s Gross Domestic Product (GDP) indirectly and create an average monthly 

traded value of R63.99 million (Mkhize and Mbanga, 2006). In 2009, the listed 

companies sustained more than 137 million jobs throughout South Africa and added 

an estimated R10836.2 billion to state coffers (Econex and Quantec Research, 

2010). Currently, the JSE is the best in Africa and is one of the top 20 exchanges in 

the world in terms of total market capitalization (World Federation of Exchanges, 

2012). The positive performance of the JSE is an indicator of healthy economy of the 

South African. 

 

The four markets offered by the JSE are equities, interest rate, active financial 

derivatives, and agricultural products. At the equities market, various companies 

meet to raise the public capital needed to expand their businesses. Likewise 

institutions (companies and government) and individuals in turn, approach the 
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equities market to invest their money into these companies. Each listed company 

agrees on a certain amount of shares of their stock to be sold to the investing 

community in return for cash to finance its business. The investing community bet on 

the fact that the purchased stock will financially perform well and eventually produce 

a return for the investor. The improvement in the company’s profits shows that the 

company is performing well overall. The measures of profitability include: 

1) Gross Profit Margin (GPM). 

2) Net Profit Margin (NPM). 

3) Return on Investment (ROI). 

4) Total Shareholder Return (TSR). 

5) Return on Capital Employed (ROCE) (Damodaran, 2007; Eljelly, 2009;  

Nimalathasan and Brabete, 2010).  

In this dissertation, we concentrate on ROCE. 

 

Return on Capital Employed (ROCE) is a popular financial instrument and 

communication tool for the appraisal of companies (Singh and Yadav, 2013). It is a 

key parameter for measuring the performance of the management and value of a 

business (Damodaran, 2007). Return on Capital Employed (ROCE) indicates how 

well a company is utilising its capital to generate revenue and is calculated as 

                                

                
      (Mandal et al., 2010). Because ROCE measures 

profitability with respect to invested capital, it is important for firms that require large 

amounts of initial capital investment before they start producing goods/products. The 

advantage of this ratio is that it considers all the factors of a company and is widely 

used in 1) showing how much a company is gaining for its assets or losing for its 

liabilities, 2) proving the value the business gains from its assets and liabilities, 3) 
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assessing whether a business generates enough returns to pay for its cost of capital, 

and 4) making intra- and inter-business comparisons (Damodaran, 2007; Singh and 

Yadav, 2013). While ROCE takes into consideration all the capital invested in the 

business, it does not deal with the sensitivity to capital structure and the fact that no 

account is taken of the cost of the capital employed. Return on Capital Employed 

(ROCE) is also distorted by the inclusion of non-operating assets such as surplus 

cash and investments on which the shareholders should not expect to earn more 

than a market rate of return (Singh and Yadav, 2013).  

 

A positive ROCE indicates that a company 1) offers products that command a return 

and 2) is growing, well managed and profitable (Pattabiraman, 2013; Singh and 

Yadav, 2013). This means that a greater portion of its profits is invested back into the 

business for the benefit of shareholders and generation of further growth. 

Companies with negative or zero ROCE are at risk of making loss if trading 

conditions deteriorate (Pattabiraman, 2013; Singh and Yadav, 2013). Often, such 

companies are subject to changes in management control and the immediate task of 

new management is to lift ROCE (Singh and Yadav, 2013). 

 

1.2 Justification  

For management to enhance ROCE, it must identify and control the key 

determinants of ROCE. Companies use a variety of methods to establish, organize 

and prioritize the key determinants in order to improve ROCE, and become more 

competitive. Often, management resorts to subjective methods, such as instinct, 

beliefs, trial and error, tradition, personal experience, and role modelling for 

establishing the key determinants (Hobarth, 2006). When data is available, 
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management prefer to use financial statements to understand the relationship 

between the attributes and ROCE (Singh and Yadav, 2013). Appearance of a pattern 

in the analysis of financial statements suggests existence of variables which 

contribute to ROCE (Hillestad, 2007; Pattabiraman, 2013). However, this does not 

provide enough information for identifying variables as financial statements are not 

exhaustive, and is more meaningful as a ratio analysis instead of a modelling 

procedure. Some studies (Cameron, 2011; Steyn, 2012) have utilized the 

behavioural approach anchored on social science methodologies when investigating 

the key determinants of ROCE, in contrast to the scientific statistical paradigm. 

Companies management are interested in developing a procedure that will be 

applied in a broader way using a statistical technique. In searching for a statistical 

method that finds the key determinants of ROCE, simple linear regression was 

proposed and used to model ROCE (Kan and Robotti, 2009). Models were 

developed based on the available data in sectors such as finance, equity, retail, and 

construction. The simple linear regression approach models the relationship between 

a continuous dependent variable and one continuous or categorical independent 

variable (Hussien, 2010). While the simple linear regression model gave the effect of 

each variable on ROCE, it failed to detect the collective effects of the variables as 

the workings of systems are not represented by a simple formulation.  

 

1.3 Problem Statement 

This dissertation seeks to construct the best/optimal models which explain variability 

in positive ROCE and negative ROCE of individual companies by comparing 

classical multiple linear regression analysis, principal components regression, 
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generalized least squares regression, and robust maximum likelihood regression 

approaches in order to improve companies decision making.  

 

1.4 Motivation 

The motivation behind the desire to apply the regression approaches to real life 

situation data lies in the general interest of the theory on parametric regression and 

passion to assess the strengths and weaknesses of the different regression 

approaches, and to infer appropriate conclusions. 

 

1.5 Objectives 

The objectives of this study are:  

1) To assess the joint effect of the key determinants on positive ROCE and negative 

ROCE. 

2) To identify the specific lead key determinants on positive ROCE and negative 

ROCE. 

3) To evaluate the use value of the key determinants on positive ROCE and negative 

ROCE.  

 

1.6 Significance 

The regression models are used to guide company management, potential investors, 

shareholders, creditors, debtors, and policy planners to develop better decisions, 

and minimize risk. The models are useful because they give information about the 

variables which have the greatest impact on ROCE, and serve as strong guidelines 

to risk measurement in decision making. The variables are used in crafting marketing 

strategies that see a positive response in ROCE. When a company improves in 
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ROCE, it attracts more investors, shareholders, creditors, and debtors. This in turn, 

induces a positive influence on the performance of the JSE market and the broader 

economy of South Africa.  

 

1.7 Dissertation Outline 

This dissertation has five chapters. Following this introductory chapter is Chapter 2 

which is the literature review. The chapter has seven sections. Section one 

discusses the measures of company performance and key determinants. The 

previous studies on predictive models relating to ROCE are presented in section two. 

This leads to the introduction of the potential key determinants of ROCE to be used 

in the research in section three. The last four sections review literature on the 

proposed regression techniques used to carry out this study. Section four delves into 

the relevant literature of classical multiple linear regression analysis. This is followed 

by the review of the motivational literature of principal components regression, 

generalized least squares regression, and robust maximum likelihood regression in 

sections five, six, and seven, respectively. 

 

Chapter 3 presents the real data set used in this study. The data set came from the 

McGregor Bureau of Financial Analysis (BFA) database. The chronological 

procedures which are followed in order to perform classical multiple linear regression 

analysis, principal components regression, generalized least squares regression, 

and robust maximum likelihood regression are outlined and discussed in this 

chapter. 
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The results of the actual implementation of classical multiple linear regression 

analysis using real data are discussed in Chapter 4. The key conditions for modelling 

data using classical multiple linear regression analysis are:  

1) Absence of multicollinearity among the independent variables. 

2) Linearity of the coefficients. 

3) Normal distribution for the residual terms. 

4) Common distribution and independence of the residual terms. 

Classical multiple linear regression analysis has a breakdown value of 0 % (Mutan, 

2004). This implies that, any small distortion and contamination in the data cause 

violations of the four conditions, leading estimated regression coefficient values to 

vary in           Hence, when the four conditions are not satisfied the classical 

multiple linear regression analysis technique is not optimal and give incorrect 

conclusions. In the respective situations, we demonstrate that principal components 

regression, generalized least squares regression, and robust maximum likelihood 

regression techniques are alternatives for modelling ROCE. The data analysis is 

done using SPSS and R statistical software packages. Lastly, some concluding 

remarks which include the summary of the dissertation and proposals for future 

research are presented in Chapter 5.  
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CHAPTER 2 

 

LITERATURE REVIEW 

    

2.1 Measures of Company Performance and Key Determinants 

The various measures of company performance belong to one of the financial 

groups (Eljelly, 2009; Hobarth, 2006; Nimalathasan and Brabete, 2010).  

For example: 

1)  Most returns belong to the profitability group. 

2) Market value includes Market Capitalisation Growth (MCG) and Stock Price (SP)  

change. 

3) Operating Profit Margin (OPM) and stock turnover are some of the indicators of  

operating efficiency. 

4) Production is expressed in terms of sales efficiency. 

5) Cash flow is indicated by dividends distributed to shareholders. 

6) Growth is indexed by price to book value (Eljelly, 2009; Hobarth, 2006;  

Nimalathasan and Brabete, 2010). 

Generally, most companies prefer customary means such as profitability to indicate 

performance (Eljelly, 2009).  

 

The key determinants of a firm’s performance belong to one of the following groups  

1) Liquidity/solvency. 

2) Asset utilisation. 

3) Capital structure. 

4) Profitability. 
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5) Growth ability. 

6) Shareholder. 

7) Size. 

8) Market (Eljelly, 2009; Hobarth, 2006; Nimalathasan and Brabete, 2010). 

Examples of each group are shown in Table 2.1.  
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Table 2.1. Examples of measures of key determinants 
 

Measure 

 

Examples 

 Liquidity/ 
Solvency 

Average Collection Period, Average Payment Period, Expenses 
Income, Capital Adequacy Ratio, Cash Conversion Cycles, Cash 
Flow to Total Debt, Cash to Sales, Cash to Current Liabilities, 
Creditors/Payables Turnover Ratio, Current Assets, Current Assets 
Turnover, Current Liabilities, Current Ratio, Current Asset to Total 
Asset Ratio, Current Liabilities to Total Assets Ratio, Debtors 
Turnover Ratio, Funds Flow to Total Liabilities, Inventory Turnover 
Ratio, Liquidity Assets to Current Liabilities, Market Value Equity to 
Total Debt, Net Current Asset Turnover, Payable Ratio, Quick 
Ratio/Acid Test Ratio, Total Debt, Total Liabilities, Total Debt to 
Total Assets, Total Equity to Total Assets. 
 Asset 

utilisation 
 

Assets per Capital Employed, Assets Turnover, Fixed Assets, Fixed 
Assets Turnover Ratio, Return on Assets, Total Assets per 
Employee, Working Capital per Employee. 
 Capital 

structure 
 

Capital Gearing Ratio, Debt to Assets Ratio, Debt to Capital Ratio, 
Debt to Equity Ratio, Equity Capital, Indebtedness Ratio, Interest 
Coverage Ratio, Long Term Debt Ratio, Debt to Total Fund Ratio, 
Proprietary Ratio, Fixed Assets to Proprietor’s Fund Ratio. 
 Profitability Cash Flow Return on Investment, Cash Return Ratio, Expenses 
Ratio, Gross Profit Margin Ratio, Net Profit Margin Ratio, Net 
Income to Total Sales, Operating Profit/Earnings before Interest and 
Tax, Operating Revenue per Employee, Profit per Employee, 
Retained Earnings to Total Assets, Return on Capital Employed/ 
Return on Invested Capital, Return on Equity, Return on Investment, 
Return on Net Worth, Return on Risk-Adjusted Capital, Return on 
Sales, Sales Turnover, Tax to Total Assets, Total Shareholder 
Return, Equity Shareholder Return. 
  Growth ability 

 
Retention Rate, Sustainable Growth Rate, Growth Rate on Net 
Profit, Growth Rate on Total Assets, Price to Book Value, Turnover 
Growth.  
 
 
 

Shareholder 
 

Book Value per Share, Cash Flow per Share, Dividend Yield, 
Dividend Payout Ratio, Dividend Cover, Dividend per Share, 
Dividend Rate, Earnings per Share, Earnings Yield, Price to 
Earnings Ratio, Price to Earnings Growth, Price to Cash Earnings 
per Share, Sales per Share, Shareholders’ Equity. 
 Size 

 
Capital Employed/Total Assets, Human Resource, Market Share, 
Sales Volume.  

Market Balanced Scorecard, Beta, Book Value per Market Value Ratio, 
Cash Value Added, Discounted Cash Flows, Economic Value 
Added, Free Cash Flows, Internal Rate of Return, Jensen’s Alpha, 
Market Capitalization, Market Value Added, Market Value to Book 
Value Ratio, Net Present Value, Share Price, Shareholder Value 
Analysis, Tobin’s Q Ratio, Total Business Return, Tracking Stocks.  
  

Source: Modified from the literature of Eljelly (2009), Hobarth (2006), Nimalathasan 
and Brabete (2010)  
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The key determinants and performance are relative measures that apply differently 

(Hobarth, 2006). Some determinants of performance are performance indicators and 

vice-versa, and depend on the performance factor being measured (Hobarth, 2006). 

Identifying and quantifying key determinants of performance assist practitioners to 

take action with regard to the optimal variables that generate maximum output. This 

leads us to examine some previous studies on predictive models in our next section. 

 

2.2 Previous Studies on Predictive Models 

Models developed to investigate sources of variation in ROCE used the classical 

multiple linear regression analysis method (Cameron, 2011).  

 

Nimalathasan and Brabete (2010) found that there is a significant moderate linear 

relationship between Interest Coverage and ROCE among the capital structure 

variables that were used in the model. The    value of the relationship is 0.750.  

 

According to Azhagaih and Gavoury (2011), variables Expenses Income, Debt to 

Assets, and Current Ratio had significant non-linear relationships with ROCE among 

the capital structure and liquidity variables that were fitted, with the model giving a    

value of 0.159.  

             

On the other hand, Tudor (2009) observed significance of                        and 

                               , and strong linear relationships of these variables 

with ROCE. The    value of the model is 0.214.  
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Ray (2011) showed that there are significant linear relationships of Debt to Assets, 

Dividend Yield, Accumulated Depreciation to Gross Fixed Assets, Gross Fixed Asset 

to Net Fixed Asset, Current Asset Turnover, Net Current Asset Turnover, and 

Liquidity Assets to Current Liabilities with ROCE. The    value of the model is 0.970.  

 

In another study, Mohamad and Saad (2010) revealed that there are significant non-

linear relationships of Cash Conversion Cycles, Current Assets to Current Liabilities, 

and Current Assets to Total Assets with ROCE among the liquidity variables that 

were fitted. The resulting model has a low    value of 0.194.  

 

Sulait (2010) showed that there exists a significant non-linear relationship between 

Social Relational Capital and ROCE among the variables that were fitted. The model 

showed a low     value of 0.283. 

 

A study by Aanu et al. (2014) provided significant non-linear relationships of audit 

committee independence and board size with ROCE. The model yielded a low    

value of 0.198.  

 

The previous studies found that the classical multiple linear regression models are 

non-exhaustive and generally have poor fits. Most independent variables in the 

models depicted non-linear relationships with ROCE. It is possible to improve the 

predictability of ROCE by fitting principal components regression, generalized least 

squares regression, and robust maximum likelihood regression (Fox and Weisberg, 

2010; Motyka, 2003; Myung, 2003; Sabbagh, 2003). The next section highlights the 

potential key determinants which are used in this study. 
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2.3 Potential Key Determinants 

Thirteen variables are assessed on ROCE based on 1) findings gleaned from 

previous studies and 2) ease of computations. The variables on companies listed on 

the JSE are outlined as follows: 

 

1) Assets per Capital Employed (APCE) 

Assets per Capital Employed (APCE) shows how efficient a company is in 

generating assets from the money invested and is computed as 
            

                
 

(Arafat and Shahimi, 2013). 

 

2) Capital Employed (CE) 

Capital Employed (CE) is the value of all the physical and material assets employed 

in running a company (Shourvarz and Sadeddin, 2011). It is determined by using the 

formula fixed assets + current assets–current liabilities (Shourvarz and Sadeddin, 

2011). 

 

3) Debt to Assets (D/A) 

Debt to Assets (D/A) gives total liabilities per total assets of a company and is 

computed as  
           

            
 (Nimalathasan and Brabete, 2010). 

      

4) Debt to Equity (D/E) 

Debt to Equity (D/E) is the relative proportion of shareholders’ equity and debt used 

to finance a company’s assets (Ray, 2011). Companies in heavy industries need 

investments in property and machinery resulting in a higher debt to equity ratio (Ray, 
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2011). It is used to assess the ability of the firm to meet its liabilities and is calculated 

by using the formula  
                  

      
 (Ray, 2011). 

 

5) Dividend Yield (DY) 

Dividend Yield (DY) also called dividend-price ratio is the return the investor gets 

from a stock (Shobhana and Karpagavalli, 2011). It is calculated by dividing the 12 

month dividend per share by the last market share price (Erasmus, 2013).  Investors, 

who want to get regular income, invest their money in stocks with high stable DYs. 

 

6) Earnings per Share (EPS) 

Earnings per Share (EPS) is an indicator of the economic performance of a firm 

(Mandal et al., 2010). It measures the financial position that looks at the cash flow 

generated by the company on a share basis (Sharma, 2011). It is computed by 

dividing the Net Income available to common shareholders by the number of Equity 

Shares outstanding (Erasmus, 2013).  

 

7) Earnings Yield (EY) 

Earnings Yield (EY) is earning per share per current market price and is determined 

by the ratio of reported earnings to share price (Wilcox, 2007). The advantage of this 

ratio is that it is easily compared with other forms of investments like fixed deposits 

and it grows over time.  
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8) Market Capitalization (MC) 

Market Capitalization (MC) is the total market value of all outstanding shares publicly 

available and it measures company size (Comincioli et al., 2012). It is calculated as 

share price   number of shares outstanding (Comincioli et al., 2012).      

 

9) Operating Profit Margin (OPM) 

Operating Profit Margin (OPM) indicates the extent of sales that is absorbed by the 

cost of goods sold and operating expenses of a company, and it varies among 

individual companies of the same industry (Nimalathasan and Brabete, 2010). It is 

calculated by using the formula  
                               

        
       (Nimalathasan 

and Brabete, 2010). 

 

10)   Price to Earnings (P/E) 

Price to Earnings (P/E) measures the expensiveness of a stock, and it expresses the 

relationship between share price and earnings per share of a firm (Sharma, 2011). It 

is used to decide whether or not to buy shares in a company, with low P/E indicating 

better value of the company. Price to Earnings (P/E) is computed by using the 

formula  
                  

                        
 (Sharma, 2011). 

 

11)  Return on Assets (ROA) 

Return on Assets (ROA) indicates how profitable a company is relative to its total 

assets (Mandal et al., 2010). The parameter measures what the company can do 

with what it has got (Comincioli et al., 2012). It is generally computed as 
          

            
 

(Comincioli et al., 2012). 
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12)  Return on Equity (ROE) 

Return on Equity (ROE) measures the profit that a company generates with the 

investor’s money (Damodaran, 2007). This ratio provides information which is useful 

in estimating efficiency of a firm in generating earnings, meaning a high ROE ratio 

implies that equity shareholders are given a higher dividend (Comincioli et al., 2012). 

It is calculated as  
                

                                   
       (Damodaran, 2007). 

  

13)  Share Price (SP) 

Share Price (SP) is the market price at which a share is bought or sold, and is 

generally calculated as  
                

                
 (Sharma, 2011). 

A brief review of classical multiple linear regression analysis follows in the next 

section.  

 

2.4 Classical Multiple Linear Regression Analysis  

Classical multiple linear regression analysis (Fielding and Gilbert, 2000) is a flexible 

statistical technique. It is informative when applied to any process or system. 

Classical multiple linear regression analysis uses ordinary least squares (OLS) to 

identify and model the relationship between measurable attributes (Mutan, 2004). 

The OLS is an estimation procedure which seeks the estimated regression 

coefficients that provide the most accurate description of the data (Myung, 2003). 

The method was developed by Adrien Marie Legendre (1752-1833) and Carl 

Friedrich Gauss (1777-1881). Legendre and  Gauss started applying the OLS 

method in determining the orbits of bodies about the sun from astronomical data and 

this led to the first publication of the method as an appendix to a book by Legendre 

in 1805 (Mutan, 2004). More recent applications of the OLS method have been in 
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agriculture, engineering, management, manufacturing, and psychology. For 

example, see Hussien (2010), Myung (2003), Person (2011), Pierce et al. (2010), 

and Shaffer (2007) for some of these applications. 

 

2.4.1 Selection Procedures 

Modelling is done to find a powerful model that explains the dependent variable. In 

developing a classical multiple linear regression model, too many independent 

variables cause a higher prediction variance, whereas too few independent variables 

give a biased prediction (Ryan, 2008). A problem arises on which variables to 

exclude or include for prediction. Ryan (2008), pointed to three major techniques for 

solving the problem namely: 

1) Stepwise regression. 

2)  All possible subsets regression. 

3) Alternative sub-regressions. 

The stepwise regression procedures are: 

1) Backward elimination (BE). 

2) Forward selection (FS). 

3) Stepwise directed search. 

The alternative sub-regressions include: 

1) Variation of the principal components method.  

2) Latent root regression analysis (LRRA).  

 

The BE procedure starts with the whole regression model and removal of all 

unnecessary independent variables without increasing the prediction variance 

(Faraway, 2002). The FS procedure works from the opposite direction of BE and 
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involves less computations than BE (Bowerman and O’Connel, 1990). The variables 

are inserted one at a time, starting with the independent variable that is most highly 

correlated with the dependent variable. However, FS gives predictors which are poor 

and inadequate. Stepwise directed search is the best and common variable 

screening method. It is a combination of FS and BE. A combination of FS and BE 

finds better subsets than the separate methods (Shaffer, 2007). However, stepwise 

directed search stops prematurely before all the important variables are captured 

hence the formulation of the best subset is not guaranteed. In addition, it fails to give 

room for the existence of other possible sub regressions. The all possible regression 

method fits every possible regression equation out of a total number of possible 

regressions (Ryan, 2008). However, it is not feasible in case of many independent 

variables.  

 

2.4.2 Assumptions 

Classical multiple linear regression model requires that statistical assumptions be 

fulfilled. The assumptions are: 

1) Linearity of the coefficients. 

2) Normal distribution for the residual terms.  

3) Common distribution (homoscedasticity) of the residual terms. 

4) Independence among the residual terms. 

When modelling ROCE of companies listed on a stock exchange market using 

financial data, it is possible that these assumptions are not satisfied (Nimalathasan 

and Brabete, 2010).  
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2.4.3 Diagnostics 

Nimalathasan and Brabete (2010) used the following multiple decision criteria: 

1) Highest coefficient of determination    and adjusted   . 

2) Lowest Mean Square Residual (MSE). 

3) P-value for the F-statistic<0.05 for significance of the overall estimated  

regression. 

4) P-value for the T-statistic<0.05 for significance of individual estimated regression  

coefficients. 

 

The    statistic is the coefficient of multiple determinations. It measures the 

proportion of variation in the dependent variable, which is obtained by using the 

independent variables in the model. The problem of    is that it will always increase 

even if the added variable is not significant, hence adjusted    is used. The adjusted 

   statistic has the advantage that if insignificant variables are added to the model 

the value of adjusted    decreases (Draper and Smith, 1998). A model with a good 

fit is indicated by    and adjusted    values close to 1 and a value of MSE close to 0 

(Bowerman and O’Connel, 1990; Draper and Smith, 1998). 

 

The major weakness of the classical multiple linear regression model is the instability 

of OLS estimates when the independent variables are involved in multicollinearity 

(Shaffer, 2007). Multicollinearity is a statistical phenomenon in which two or more 

independent variables in a classical multiple linear regression model are heavily 

related (Bowerman and O’Connel, 1990; Hair et al., 2010). Two variables exhibit 

complete collinearity if their correlation coefficient is 1 and complete lack of 

collinearity if their correlation coefficient is 0 (Hair et al., 2010). A diagnostic statistic 
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called Variance Inflation Factor (VIF) is often used to identify multicollinearity 

(Shaffer, 2007). In addition to the aforementioned decision criteria, we propose 1) 

fulfilment of all statistical assumptions, 2) VIF <10 for lack of multicollinearity among 

the independent variables, and 3) Cook’s Distance< 
 

           
 for absence of 

influential data points on the prediction model. A data point is influential if its removal 

causes large changes in the estimated coefficients and fitted values (Hussien, 2010). 

In this study, we relate situations when outliers and leverages are classified as 

influential points. An outlier is a data point which is not typical of the rest of the data 

and a leverage point shows how much an individual point influences its own 

predicted value (Faraway, 2002). Variance Inflation Factors (VIFs) and Cook’s 

Distances hedge the prediction model from multicollinearity and influential data 

points, respectively (Bowerman and O’Connel, 1990).  

 

Validation concludes the construction of a classical multiple linear regression model. 

The purpose of validating the prediction model is to assess its performance. 

Validation ensures that the prediction model is reliable if it is used outside the vicinity 

of the original data (Shaffer, 2007). Bowerman and O’Connel (1990), and Hair et al. 

(2010) divided validation into 1) the split-sample to assess the predictability of the 

model, 2) use of the results of the prediction model in comparison with other 

previously validated results, and 3) collection of new data to validate the prediction 

model. The current study focuses on the last one of the three methods. The 

existence of multicollinearity leads to unstable estimates due to inflated variance. To 

address this problem, principal components regression is considered in the next 

section. 
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2.5 Principal Components Regression 

Principal components regression is a means of regressing principal components on 

the dependent variable using OLS. Principal components analysis attempts to 

overcome the ill-conditioned situation of multicollinearity. It is a permanent solution 

for multicollinearity as it replaces original variables with their linear combinations 

which are uncorrelated and of maximum variance (Soosova, 2005). By their nature, 

there is no multicollinearity which exists between the principal components. The first 

principal component accounts for much of the variability in the data, and each 

principal component that follows accounts for most of the remaining variability than 

the subsequent ones (Andreica, 2009). It is the first few subsets of all the principal 

components which are used in regression, and thus reducing the dimensionality of 

the data without loss of information. Including all the principal components result in a 

model with large variance of regression coefficient estimates leading to insignificant 

of some of the principal components.  

 

Principal components regression is criticised for using regressors that have no 

relevance with the dependent variable (Grosswindhager, 2009). Thus, there is a 

possibility for a less important principal component to be very important in predicting 

the dependent variable. More criticism is ascribed to a lack of meaning attached to 

the principal components as compared to their original variables (Faraway, 2002). 

Overall, it is concluded that principal components are meaningless unless 

interpreted. 

 

Multicollinearity exists when the number of independent variables exceeds the 

sample size because the data tend to crowd at one place. Multicollinearity is 
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unavoidable because most variables in a system are correlated. A typical data set is 

found in a financial system of companies listed on a stock exchange market. When 

predicting ROCE of companies listed on a stock exchange market the independent 

variables are often near collinear (Azhagaih and Gavoury, 2011).  

 

Introduced by Adcock (1878) and developed by Pearson (1901), Spearman (1904) 

and Hotelling (1933); the first motivations for principal components analysis started 

in classical analytic geometry and then found applications in other fields of study 

(Cook, 2007). The first regression models implicating principal components were 

applied in calibration, chemometrics, climatology, image recognition, measurement 

error, and microarray data (Cook, 2007).  

 

Recent studies of multicollinearity data have applied principal components 

regression (Cook, 2007). Principal components regression for reliability prediction is 

investigated in Shirgaokar (2009) who developed principal components regression 

models based on thermo-mechanical data by examining a wide range of variables. 

Shirgaokar (2009) then demonstrated the validity of the models predictors by using 

validation datasets which were not used for model development. 

 

For linear regression, Li (2010) developed a principal components regression model 

using Fourier Transform Infrared (FTIR) data. Fourier Transform Infrared (FTIR) data 

is characterised by several hundred multicollinear variables which are more than the 

sample size. It is not possible to give reliable results when using the classical 

multiple linear regression model. Regression models developed using principal 
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components of the variables are useful (Li, 2010). Li (2010) further illustrated the 

principal components regression technique using a simulated study.  

 

Maitra and Yan (2008) discussed the computational procedures, theoretical 

properties and interpretations of the principal components regression algorithm in a 

case that the independent variables are correlated; and illustrated the procedures 

using a simulated data set.  

 

Similarly, Motyka (2003) described the principal components regression algorithm to 

analyse financial mortgage market data, the results which showed that the technique 

significantly reduced the residual variance after each component was captured in the 

model.  

 

The application of the principal components regression model in analyzing 

dendroecological data is illustrated in Fekedulegn et al. (2002). In estimating a 

response function, Fekedulegn et al. (2002) compared five principal components 

selection methods, some of which are discussed in this study. Fekedulegn et al. 

(2002) noted that the differences in sign, magnitude and statistically significance of 

the estimated coefficients were attributable to the selection method.  

 

Ma (2007) applied the principal components analysis method to lymphoma data and 

used the resulting principal components in the linear regression survival model. 

Lymphoma data is right censored survival data with high dimensional microarray 

measurements (Ma, 2007). Ma (2007) compared the principal components 
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regression approach with other model reduction techniques and found that it was 

relatively insensitive to the number of covariates.  

 

Functional linear modelling has undergone the most development since the 

late1990s theoretically and practically (Tran, 2008). In Tran (2008), the principal 

components based method, as used in functional data analysis is discussed, 

assuming a linear regression model. An observation represents a curve instead of a 

point in a functional data set (Tran, 2008). Tran (2008), noted that functional data are 

infinite dimensional and measurement on the same curve displays high correlation 

invalidating the classical multiple linear regression model. In this dissertation, we 

address multicollinearity amongst independent variables by using a principal 

components regression model. The problem of non-constant variances and 

dependences among the residuals in classical multiple linear regression analysis is 

solved by using generalized least square regression. Thus, we consider generalized 

least square regression in our next section. 

 

2.6 Generalized Least Squares Regression 

Technical advances in regression analysis during the 1970s acknowledged and 

embraced the problems caused by heterogeneous of the residual term (Howarth, 

2001). This led, to the introduction of generalized least square regression to 

overcome such problems and other techniques for fitting residuals in variables and 

mixture models (Howarth, 2001). 

 

Generalized least squares regression is an extension of classical multiple linear 

regression. It provides a possibility for unequal residual variances and dependences 
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between different residuals of the classical multiple linear regression model (Fox and 

Weisberg, 2010). In certain instances, these violations in assumptions are not 

corrected by basic transformations. Consequently, classical multiple linear 

regression often gives a false result. Thus, generalized least square estimation is 

intended to provide a linear model when the assumptions of homoscedasticity and 

independence of the residual terms fail efficaciously (Faraway, 2002). Its main thrust 

is to get better independent estimates of the residual variance than those for the 

presumed poor OLS estimates. However, the many elements in the residual 

variance-covariance matrix; sometimes make its estimation difficult without 

specifying further structure for the dependent residuals (Fox and Weisberg, 2010). 

 

 A common application of generalized least square estimation is in time series 

regression where it is very unlikely that residuals are independent, because 

observations denote different equally spaced intervals of time (Fox and Weisberg, 

2010). Fox and Weisberg (2010) discussed the application of generalized least 

square compared to OLS. They considered the assumption of independence 

between different residuals of the classical multiple linear regression model, 

illustrating with an example on crime rate distributions and admitting inappropriate 

distribution modelling. Kariya and Kurata (2004) compared generalized least square 

and OLS methods for the simple linear regression model with an auto-regressive 

residual distribution, to model emission data. The study revealed that generalized 

least square estimates performed better than OLS estimates. In a related study, 

Smadi and Abu-Afouna (2012) derived generalized least square estimates and OLS 

estimates for the simple linear regression model with periodic auto-regressive 

residuals. They investigated the relative efficiency of the estimates using real data 
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and Monte-Carlo simulation. The results showed that generalized least square 

estimates out-performed OLS estimates in terms of estimating the actual variances 

of the estimates.  

 

Orsini et al. (2006) used generalized least square technique for trend estimation of 

summarized dose-response epidemiology data. In epidemiology studies the concern 

of the practitioner lies in constructing a variance-covariance estimate for the log 

relative risks; and whether the relationship between increasing levels of exposure 

and the risk of diseases follows a linear dose-response pattern. Orsini et al. (2006) 

examined many real examples citing the consequences of using different models.  

 

Previous applications include the use of linear regression methods in the repeated 

measures settings. In most repeated measures designs, measurements are 

correlated and the dependent variable has non-constant variances because 

observations appear in duplicate or replicate. Generalized least square analysis 

allows for more flexibility in the configuration of the experiment and is helpful to 

repeated measures designs, because it accounts for unstructured variance-

covariance between measurements than OLS (Holsclaw, 2007, p. 23). Holsclaw 

(2007) provided three types of the generalized least square regression method in 

terms of variance-covariance matrices of the residual terms, focusing on procedures 

for testing the models for homoscedasticity and independence of the residual 

distribution in repeated measures designs. The paper presented several real 

examples and results of simulations, evaluating the performance of the three 

generalized least square regression models. Given that in our data set each 

observational unit has a single reading of ROCE, the focus of this study is in the first 
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and simplest type of the generalized least square method. When the assumptions 

are not satisfied in classical multiple linear regression analysis, we use robust 

maximum likelihood regression. This is considered in the next section. 

 

2.7 Robust Maximum Likelihood Regression 

Classical multiple linear regression analysis perform badly when the assumptions 

are violated especially the normality assumption. The presence of a heavy/fat tailed 

residual distribution due to contamination in the data is common. Under such 

conditions, robust maximum likelihood regression becomes a viable option. It is not 

vulnerable to unusual data, hence restrains the influence of outlying data points. 

Robust maximum likelihood seeks the estimated regression coefficient values that 

are mostly likely to have produced the data (Myung, 2003). It gives reduced weights 

at the tails of the distribution whilst OLS gives weight one to all observations (Howell, 

2013). In this way, larger residuals caused by influential data have a smaller effect 

on maximum likelihood estimates than OLS estimates. This results in a more precise 

representation of the relationship between independent variables and dependent 

variable, giving a deeper insight into the system being studied. By extracting as 

much information as possible, practitioners make better informed decisions.  

 

Although maximum likelihood regression is robust in the face of data contamination 

and demands no distributional assumptions, making it to have a wider 

generalizability than the aforementioned techniques, the method has no basis for 

testing hypotheses and thus making it possible for a rise in complexities when testing 

the significance of the regression coefficients (Mutan, 2004; Myung, 2003).  
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Robust maximum likelihood regression was introduced by R.A. Fisher (1922-1925) 

and was first applied by P.J. Huber, F. R. Hampel and J.W. Tukey in the context of 

estimating the centre of a distribution (Fox, 2002; Howell, 2013). Huber, Hampel and 

Tukey showed that maximum likelihood estimates are consistent and asymptotically 

normal under certain conditions (Fox, 2002; Howell, 2013).  

 

More recently, Sabbagh (2003) investigated the method of maximum likelihood 

estimation as applied to discrete-time single-input single-output (SISO) Hammerstein 

models. Hammerstein models are applied to model dynamic systems having 

nonlinearity as its input (Sabbagh, 2003). Two maximum likelihood based 

identification methods to a Hammerstein model are presented. Sabbagh (2003) then 

demonstrated the findings using several real and Monte Carlo simulated examples. 

 

In 2003, Myung applied the method of robust maximum likelihood to the 

psychological science field of study to estimate the parameters under exponential 

and power distributions for a multiple linear regression model. Maximum likelihood 

estimates of regression coefficients were derived and compared with OLS estimates. 

Myung (2003) showed that maximum likelihood estimates are more consistent, 

sufficient, and efficient compared to OLS estimates in the two distributions. 

 

In a study performed by Chen (2002), the robust maximum likelihood regression 

method was used to model growth data. Growth data are time series data, and thus 

maximum likelihood regression was applied to model the data as they vary over 

time. Chen (2002) found that maximum likelihood estimates have high sample 

efficiency to OLS estimates when the residual terms are heteroscedastic and 
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dependent. Thus, improving classical multiple linear regression model using 

maximum likelihood regression model is promising for our data set. 

 

Lokshin and Sajaia (2004) discussed maximum likelihood method as regards to 

fitting the endogenous switching regression model. In this model, the switching 

equation sorts individuals over two different states with one regime observed 

(Lokshin and Sajaia, 2004). An example is presented using data obtained from the 

finance sector.  

 

Karlsson (2002) presented a maximum likelihood method for Gaussian/normal 

distribution, Student-t distribution and Generalized Residual distribution in the 

context of fitting the Generalized AutoRegressive Conditional Heteroscedadticity 

(GARCH) model to the financial return series. The intention was to examine the 

robustness property of maximum likelihood in fitting the GARCH model. According to 

Karlsson (2002), implementing the maximum likelihood method to the GARCH model 

leads to two problems namely 1) the unrealistic modelling of noise by a Gaussian 

distribution and 2) the calculation of unobservable values from the observed sample. 

In the last section we give a summary of this chapter.  

 

2.8 Summary 

The literature review encapsulates: 

 

 Measures of company performance which belong to profitability, market, 

operating efficiency, sales efficiency, shareholders, and growth. 
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 Measures of key determinants of a firm’s performance which belong to 

liquidity/solvency, asset utilisation, capital structure, profitability, growth ability, 

shareholder, size, and market.  

 Potential key determinants of ROCE which are APCE, CE, D/A, D/E, DY, 

EPS, EY, MC, OPM, P/E, ROA, ROE and SP.  

 Strengths and weaknesses/limitations of classical multiple linear regression 

analysis in modelling ROCE. 

 Principal components regression as a technique considered to address the 

problem of multicollinearity among the independent variables in classical 

multiple linear regression analysis. 

 Generalized least square regression as a technique proposed to solve the 

problem of non-constant variances and dependences among the residuals in 

classical multiple linear regression analysis. 

 Robust maximum likelihood regression as a technique proposed when the 

assumptions are violated in classical multiple linear regression analysis. 

 Strengths and weaknesses/limitations of principal components regression, 

generalized least squares regression, and robust maximum likelihood 

regression in modelling ROCE. 

 Applications of principal components regression, generalized least squares 

regression, and robust maximum likelihood regression by various scholars. 

 Possibilities for improving classical multiple linear regression model using 

principal components regression, generalized least squares regression, and 

robust maximum likelihood regression models for our data set. 

The next chapter provides statistical methods for modelling ROCE of companies 

listed on the JSE.  
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

3.0 Introduction 

In addressing the research problem indicated in this study, secondary data on the 

audited performance from JSE for the period 2010 was used to demonstrate various 

statistical techniques. Statistical software packages used were SPSS and R. Various 

statistical methods were assessed namely classical multiple linear regression 

analysis, principal components regression, generalized least squares regression, 

and robust maximum likelihood regression. The following section gives a description 

of the data set. 

 

3.1 The Data Set   

The secondary data used in this study is on the audited performance results of 

companies listed on the JSE at annual company financial statements for the period 

2010 (Johannesburg Stock Exchange, 2010). In general, the financial statements 

provide information to the potential and existing investors. The information assists 

investors in decision making with respect to buying and selling of shares. The data 

set was sourced from the McGregor BFA database (http://www.mcgregorbfa.com). A 

total of 387 listed companies constituted the data set. However, some of the data on 

the companies contained missing values or incomplete data. Because of missing 

values and incomplete data, 30 companies were deleted from the data set. Thus, the 

cleaned data set consisted of 357 listed companies on 14 variables. The variables 

considered are:  

http://www.mcgregorbfa.com/
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Dependent variable: Return on Capital Employed (ROCE). 

 

Independent variables: Assets per Capital Employed (APCE),  Capital Employed 

(CE),  Debt to Assets (D/A),  Debt to Equity (D/E),  Dividend Yield (DY),  Earnings 

per Share (EPS),  Earnings Yield (EY),  Market Capitalization (MC), Operating Profit 

Margin (OPM),  Price to Earnings (P/E),  Return on Assets (ROA),  Return on Equity 

(ROE), and  Share Price (SP).  

Table 3.1 presents these variables and codes associated with them in the 

subsequent discussions. 

 

Table 3.1. Variables and codes associated with the variables 

 ROCE APCE CE D/A D/E DY EPS EY MC OPM P/E ROA ROE SP 

Y                                            

  

The ROCE data has positive and negative values. The values are percentages. To 

address the problem of losing data/information, two separate analyses were done. 

To avoid statistical problems when using negative values, modulus transformation 

(Hair et al., 2010) was used for the negative ROCE data analysis. There are 278 

companies in the data set for positive ROCE and 79 companies in the data set for 

negative ROCE. The classical multiple linear regression analysis procedures are 

discussed in the following section. 
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3.2 Classical Multiple Linear Regression Model  

3.2.1 Model 

The classical multiple linear regression model takes the form (Shaffer, 2007) 

                                                        with                      (3.1) 

where     is the value of the dependent variable in the ith observation,    is the 

intercept parameter representing the value when all independent variables are set to 

zero,    is the slope parameter representing the effect in the dependent variable   

associated with a unit change in    holding other independent variables constant,     

is the value of the jth independent variable in the ith observation,    is a random error 

term of the ith observation,   is the number of independent variables, and   is the 

number of observations. According to Person (2011), each independent variable in 

the model requires 10 to 20 observations. To handle the problem of the small data 

set (n=79), correlation matrix was used to remove some of the independent variables 

which had significance correlations with the dependent variable. Correlation matrix 

provides the evidence regarding the association between the dependent variable 

and independent variables, and also among the independent variables. A 

conservative significance level 5 % was used in determining whether the correlation 

was significant or not. 

 

We write (3.1) in matrix form as 

                                                       =    +                                                           (3.2) 

where,               
  is an nx1 data vector and an n x (k+1) incidence matrix 
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consisting of the independent variables whose (i, j) th element is the value of the ith 

observation for the jth independent variable. The columns of   are linearly 

independent with                               
  is a (k+1) x 1 parameter 

vector and               
  is an nx1 vector of random error.   

 

3.2.2 Estimation  

Various estimation methods exist, but discussed here is the ordinary least square 

(OLS) estimation procedure. The estimates of regression parameters in (3.1) are 

obtained using OLS which operates by minimizing the residual sum of squares. Thus  

                                              
  

              
  

                                                   (3.3) 

is minimized where     is the ith predicted value (Faraway, 2002). We write (3.3) in 

matrix notation as  

            
 
              

 
                                          (3.4)       

Consider partial derivatives with respect to components of    in (3.4) and equate 

results to zero to obtain the OLS estimates of parameter vector. Solving the following 

normal equations  

                                                                                                                  (3.5) 

for    gives a vector of OLS estimated regression parameter values 

                                                                                                                   (3.6) 

We obtain    explicitly from the data. The fitted OLS regression function is 

                                                                                                            (3.7) 

with the variance-covariance matrix of    given by 

                                                                                                                        (3.8)               

where,    is estimated by 
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                                            (3.9) 

 

3.2.3 Variable Selection Procedure  

Three stepwise regression methods namely 1) Backward Elimination (BE), 2) 

Forward Selection (FS), and 3) Stepwise directed search are widely discussed in 

many textbooks [see, for example, Bowerman and O’Connel (1990), Draper and 

Smith (1998), Faraway (2002), Ryan (2008)]. Stepwise regression is vulnerable 

because slight variation in the data causes selection of some variables in place of 

others and fails to consider the underlying knowledge of the process. Other relevant 

variables find chance to be added in the model.   

 

The BE method enters all the independent variables and finds the contribution of 

each variable by checking p-to-remove or partial regression sum of squares 

(Bowerman and O’Connel, 1990). The FS method enters the independent variables 

one after the other until all variables significantly explain the dependent variable 

(Bowerman and O’Connel, 1990). At each stage of stepwise directed search, the 

variable with highest significant partial correlation coefficient is added to the model, 

and p-to- remove for all variables now in the model is computed to check if any of the 

variables previously added contribute insignificantly to the regression and be 

removed  (Bowerman and O’Connel, 1990). In the development of the model, 

stepwise directed search was preferred due to its property that allows for 

reassessment of a dropped variable. 
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3.2.4 Model Assumptions 

Model (3.1) is based on normality, independence, constant variances and linearity 

assumptions. The validity of these assumptions is assessed by conducting analysis 

of residuals,     =         For direct comparison purposes, standardized residuals 

   
         

        
 apply,  instead of the raw values due to  different measurement units (Hair 

et al., 2010). The residual plots are commonly used and have the advantage of 

showing a variety of features quickly and clearly (Ryan, 2008). We assessed the 

data on normality, constant variance and independence assumptions using residuals 

from a classical multiple linear regression analysis. 

Normality  

The residuals are assumed to be normally distributed,               . Testing for 

non-normality of the residuals was done using normal quantile-quantile (Q-Q) plot, 

normal probability plot (NP-P), frequency distribution plot (histogram),  coefficients of 

skewness and kurtosis values, Kolmogorov-Smirnov test, and Shapiro-Wilk test  

(Hair et al., 2010). A straight 45 degree line is formed in normal Q-Q plot and normal 

P-P plot if the normality assumption is satisfied. Skewness and kurtosis values equal 

or close to 0 and 3 respectively, show that the normality assumption is fulfilled. 

Violation of the normality assumption (p-value< 5 %) was tested using Kolmogorov-

Smirnov and Shapiro-Wilk.  

Constant Variance  

The homogeneity of variance (Ho:   
    

        
      against Ha: At least two 

variances are not equal was conducted. A systematic pattern of    versus 

standardized     plot instead of a random scatter of points shows violation of the 

assumption.  
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Independence  

Testing of no autocorrelation among the residuals was conducted using Durbin-

Watson (D-W) (Fox and Weisberg, 2010). The terms               are mutually 

independent if                  for m    The D-W test statistic is given by 

                                               
             

  
   

    
  

   
.                                                     (3.10) 

The decision criteria are shown in Table 3.2, where    and    are the lower and 

upper bounds for the critical values at 5 % level of significance, respectively. 

Rejection of the null hypothesis means that there is autocorrelation. Doubt is thus 

cast on the fitted model and the data is reconsidered in light of this new information. 

 

 Table 3.2. Decision criteria for testing autocorrelation of residuals 

Positive autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Negative autocorrelation 

 
If       reject null hypothesis 

 

If         reject null hypothesis 

 

 

 

 

If      do not reject null hypothesis If        do not reject null hypothesis 

If          test is inconclusive 

 

If             test is inconclusive 
 

The distribution of F and T test statistics depends on these assumptions. When the 

assumptions are violated the test statistics values become inflated. The statistics 

cease to be valid (Holsclaw, 2007). This problem was resolved by applying suitable 

transformations. Common transformation methods are:  

1) Logarithmic. 

 2) Square root. 

 3) Inverse. 

 4) Box-Cox.  

The Box-Cox transformation is given by the formula  

                                                    
   

   
           

          
                                     (3.11)                
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where   is a transformation parameter estimate which is chosen by maximum 

likelihood (Faraway, 2002). We used the logarithm (base 10) transformation in this 

study. Often, however, the violations in assumptions are not corrected by basic 

transformations. Under these circumstances some alternative methods to classical 

multiple linear regression become viable options. In this dissertation, we investigated 

generalized least square and robust maximum likelihood regression procedures. 

These are explained in sections 3.4 and 3.5 respectively.  

 

3.2.5 Tests of Statistical Significance 

The procedure followed in classical multiple regression analysis involves 1) 

determining if the independent variables affect the dependent variable, 2) how each 

independent variable affects the dependent variable given that it does affect, and 3) 

developing simple prediction model. Part (1) corresponds to  

                                     Ho:                 against Ha:      for at least one 

j. The test was performed through an analysis of variance (ANOVA) table. In general, 

a ANOVA table format is shown in Table 3.3.  

 

    Table 3.3. Analysis of variance for fitting classical multiple linear regression 
 

Source of 

Variation 

DF SS MS F-statistic P-value 

Regression           
   

 
      

   

   
 Sig if <0.05 

Residual               
   

     

     

  

 Total            
 

SS is sum of squares term, DF is degrees of freedom for SS term and MS is mean of 

square term. The F test statistic for the hypothesis is  

                                                   
   

   
                                                        (3.12) 
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We reject Ho in favour of Ha if p-value of the F-statistic is less than ∝-level. We 

conclude that at least one of the independent variables is related to the dependent 

variable. A ∝-level 5 % was used in this dissertation. 

 

Part (2) corresponds to testing for significance of the individual regression 

coefficients. The hypothesis for testing the significance of    is presented as                                           

                                                  Ho :        against 

                                                  Ha :        

The test was done using a T test. A T test statistic for the hypothesis is given by 

                                                      
   

        
                                                    (3.13)  

where se (   ) is the standard error of       Rejection of Ho means that     is 

significantly different from zero and thus    is used as a predictor of  . Non rejection 

of Ho means that    is not a significant explanatory variable. The variable is removed 

and another model is estimated without this variable. 

 

3.2.6 Goodness of Fit Tests 

The    statistic was used to assess the goodness of fit of the model for the data. The 

formula for     is  

                                         
         

  
   

        
  

   

   
   

   
 

   

   
                                                   (3.14) 

and its value ranges from 0 to 1 inclusively (Bowerman and O’Connel, 1990; Draper 

and Smith, 1998). A model with the    value close to 1 for the data, was regarded 

the best model because the independent variables explain the variation in the 

dependent variable almost perfectly well (Bowerman and O’Connel, 1990). However, 

an additional variable to the model will always increase     irrespective of whether 
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the added variable is statistically significant or not (Draper and Smith, 1998). Thus, it 

is possible for a model that has a large value of    to give poor estimates of the 

dependent variable. To solve this problem, an adjusted    statistic was used. It is 

given by  

                           
    

   

   
 1 

           

         
 1 

   

     
                             (3.15) 

and also its value ranges from 0 to 1 inclusively (Bowerman and O’Connel, 1990; 

Draper and Smith, 1998). If variables of no explanatory power are added to the 

model, the value of     
  does not increase (Draper and Smith, 1998). The MSE is a 

function of     It is expressed as              
  where    

  is an estimate of the 

variance of   and is obtained by using the formula 

                                         
  

        
  

   

   
 

   

   
                                                       (3.16) 

A MSE of 0 means data points lie on the regression plane/hyperplane (Bowerman 

and O’Connel, 1990). A low MSE value was considered to indicate a reliable model. 

 

3.2.7 Multicollinearity 

The presence of multicollinearity increases the standard errors of the estimated 

regression coefficients, causing the p-values of the test Ho:     to be greater than 

5 % (Shaffer, 2007). This makes it difficult to obtain accurate estimates of the 

individual effects of the independent variables, hence reducing the degree of 

confidence that one can place in the coefficient estimates values. It becomes difficult 

to assess the individual effects because the estimated regression coefficient values 

have dubious interpretations (Bowerman and O’Connel, 1990). Incorrect conclusions 

are drawn about the effect of the independent variables on the model. Thus, 

multicollinearity must be eliminated. 
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Variance Inflation Factor (VIF) statistic was used to identify multicollinearity. Each 

independent variable is regressed against other independent variables in the model. 

The VIF for    is 

                                                        
 

     
  
      

                                     (3.17) 

where   
  is the coefficient of multiple determinations from regressing    on the other 

independent variables (Faraway, 2002). A high      (>10) implies high levels of 

multicollinearity for the effect of    (Hair et al., 2010). Multicollinearity was eliminated 

by dropping variables with VIFs>10. However, discarding some of the highly 

correlated variables leads to loss of information. Bowerman and O’Connel (1990), 

and Soosova (2005) proposed several methods to avoid this problem. The methods 

include:  

1) Use of a different data set which is often difficult to get. 

2) Employ ridge regression. 

3) Convert the variables into uncorrelated factors using principal components  

analysis. 

In this dissertation, we focused on principal components regression. Section 3.3 

gives a full discussion of the procedure. 

 

3.2.8 Influential Observations  

The influence of a point is assessed by examining the effects it produces on the fit 

when it is removed in the fitting process (Ryan, 2008). We used Cook’s Distance to 

assess influential observations. The statistic is sensitive to changes in the fitted 

model if observations are removed (Hussien, 2010). Cook’s Distance is given as                    

                                                    
          

 
             

    
                                           (3.18) 
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where,    is the vector of estimated regression coefficient values obtained using all 

the observations and       is the vector of estimated regression coefficient values 

which results from removing the ith observation (Faraway, 2002). Thus, Cook’s 

Distance reveals which observations are influential in the sense that they affect the 

fitted equation’s coefficients. If a point is influential, its removal causes large changes 

and the value of    will be large. An observation with    greater than 
 

 
 is regarded as 

an influential observation (Bowerman and O’Connel, 1990). A scatter plot of    

versus   was used to identify influential observations. Influential points bias the 

prediction and distort the significance of estimated regression coefficients by pushing 

or pulling the estimated regression plane/hyperplane in a certain direction 

(Bowerman and O’Connel, 1990). In the construction of the model, conclusions were 

not based on influential points.  

Identifying Outliers and Leverage Points as Influential Observations 

A                              indicates that the     observation is an outlier (Hair 

et al., 2010). If an outlier affects the values of the estimated coefficients of the model, 

it becomes an influential point and has a major influence on the position of the fitted 

model on its own territory (Hussien, 2010). The fact that an observation is a large 

outlier is generally not good, and at the same time it does not necessarily mean that 

the observation is influential in fitting the chosen model. Outliers that occurred due to 

gross errors during the recording of the data were deleted. However, outliers that are 

genuine observations suggest considerable attention (Hussien, 2010). These data 

points were followed and examined. 

 

We refer to leverage points with regard to   and not       is            and is the 

hat matrix. The ith diagonal element of   is          is the leverage of the ith data 
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point, and lies between 0 and 1 inclusively (Hair et al., 2010). Points with     
    

 
 

are points with high leverage (Bowerman and O’Connel, 1990). However, the points 

may not be influential observations. An observation with                           

and leverage  
    

 
 shows considerable influence on the model fit (Hair et al., 

2010). Outliers and high leverage points were scrutinized carefully to see if they are 

influential points. 

 

3.2.9 Model Validity 

The performance of the prediction model was assessed by fitting it in a new data 

called validation data. The regression parameter estimates, standard errors of 

parameter estimates,        
 , VIF, Mean Square Residual of the Prediction (       

and p-values were calculated for the validation data. Closeness of their values to 

those of the training data means that the prediction model is satisfactory/accurate 

(Hair et al., 2010). The      is computed as 

                                                   
         

  
   

 
                                                  (3.19) 

The Validation Data Set 

The validation data used in this study is on the audited performance results of 

companies listed on the JSE at annual company financial statements for the period 

2011 (Johannesburg Stock Exchange, 2011). The data set was sourced from the 

McGregor BFA database (http://www.mcgregorbfa.com). The cleaned validation data 

set consisted of 322 listed companies. The validation data set was divided into 

positive ROCE and negative ROCE. There are 239 companies in the validation data 

set for positive ROCE and 83 companies in the validation data set for negative 

ROCE. The classical multiple linear regression procedures were implemented using 

http://www.mcgregorbfa.com/
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SPSS software. We utilized principal components regression to handle the problem 

of multicollinearity in the data. 

 

3.3 Principal Components Regression  

Principal components analysis was applied first on the data and then OLS regression 

model was constructed with the principal components. We consider a vector of k 

random variables  =            
  and a coefficient vector                   

   

Our aim is to find    such that        
      

     is maximum subject to the 

normalization constraint   
       where   is a k x k positive semi definite symmetric 

variance-covariance matrix of   and  

                                                                                                        (3.20) 

are the k eigenvalues of   (Faraway, 2002; Sopipan et al., 2012). Using the 

technique of Lagrange multipliers for the optimization problem we maximize  

                                             
          

                                                      (3.21) 

where   is a Lagrange multiplier (Sopipan et al., 2012). Differentiating (3.21) with 

respect to    and equating to the k x 1 zero vector gives 

                                             or                                                  (3.22) 

where    is the k x k identity matrix. Given that       there exists a solution only if 

          such that if   is an eigenvalue of   then    is its corresponding 

eigenvector. Consequently,   is an eigenvalue of   and    is its corresponding 

eigenvector      We maximize 

                                          
       

        
                                             (3.23) 

and by (3.22),   has to be as large as possible. Thus       
       

         , 

the largest eigenvalue by (3.20) corresponding to the eigenvector   . The first 

principal component of   is      
       

 
       The next step is to maximize 
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    (  
   )   

     subject to   
      and   

      where                   
  

(Faraway, 2002; Sopipan et al., 2012). Applying the method of Lagrange multipliers 

for the optimization problem we maximize 

                                      
          

          
                                            (3.24) 

where   and   are Lagrange multipliers (Sopipan et al., 2012). Differentiating (3.24) 

with respect to    and equating to the k x 1 zero vector we get  

                                                                                                         (3.25) 

Multiplying (3.25) by   
  from the left gives 

                                          
        

       
                                             (3.26) 

which results in      because   
        and   

      from Cov (  
      

     

  
            

      
       

       
          

        
       Thus,  

                                            or (                                                (3.27)    

making   an eigenvalue of   and    its corresponding eigenvector. Once more, 

  
       hence by (3.27),   has to be as large as possible. If we assume that   

does not have recurring eigenvalues, then        However, if they are the same 

then        defying the constraint   
       Thus,   is the second largest 

eigenvalue of    and    is its corresponding eigenvector. The second principal 

component of   with        
       is       

       
 
      and the process goes 

on. As the algorithm continues and since              , we find principal 

components of maximum variation orthogonal to the principal components we have 

obtained before, until the total variance has been decomposed. In general, the jth 

principal component of   with        
      , where    is the jth largest eigenvalue 

of   and                   
 
 is its corresponding eigenvector is      

   

    
 
        The original set of variables         ,    is changed to a new set of 

uncorrelated variables         ,     Kaiser-Meyer Olkin (KMO) index and Bartlett’s 
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test of sphericity were used to assess the sampling adequacy of how the correlations 

are for principal components analysis. For an optimal solution, KMO index   0.50 is 

considered adequate (Ul-Saufie et al., 2011).  A p-value<5 % level of significance of 

Bartlett’s test of sphericity shows that there are sufficient correlations for principal 

components analysis (Ul-Saufie et al., 2011). However, Bartlett’s test of sphericity 

tests for correlation among the independent variables, but fail to identify the specific 

variables involved. 

 

To construct the principal components regression model, we assume that the 

independent variables in the classical multiple linear regression model (3.2) have 

been mean centred and standardized (Grosswindhager, 2009). This ensures the 

equivalence of  
   

   
 to the correlation matrix of the independent variables. The values 

of the principal component for each observation are given by  

                                                                                                                     (3.28) 

where, the (i,j)th element of   is the value of the ith observation for the jth principal 

component and   is k x k loading matrix where the unit normalised eigenvector of 

    are the columns of   (Fekedulegn et al., 2002). This means   is an orthonormal 

matrix. The classical multiple linear regression model (3.2) is written as 

(Grosswindhager, 2009) 

           =    +                            with                        (3.29) 

In this way, the principal components take the place of the independent variables in 

the classical multiple linear regression model. In (3.29), OLS is used to find    as 

follows 
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                                                                                           (3.30) 

Equation (3.30) implies that   

                                                                                                               (3.31) 

This is as good as finding    in the classical multiple linear regression model (3.2). 

However, the relevance of principal components regression is seen when 

independent variables are involved in multicollinearity in the classical multiple linear 

regression model. It is possible to find better stable estimates of   if we remove a 

subset of the principal components with small variances (Grosswindhager, 2009). 

From (3.31),                                  
  
                   

                                              
    

 
     

      
    

 

  
 

 
              (3.32)                      

where   
  and    are the jth diagonal of    and jth column of    respectively. The jth 

diagonal of   is the jth largest eigenvalue of          

                               Var (  )     Var (      Var (           ) 

                                                                 

                                                                   

                                                                  

                                                 
    

 
     

     
    

 

  
 

 
                                  (3.33) 

Equation (3.33) shows that independent variables with large coefficients in any of the 

principal components with small eigenvalues have large variance in the elements of 

  . This problem is solved by removing terms in (3.32) that relate to a small   
 . This 

gives     
    

 

  
 

 
       where t<k.       
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A variety of selection criteria have been developed to determine the number of 

principal components t. We restricted to Kaiser-Guttman of eigenvalues and scree 

test. The Kaiser-Guttman criterion stipulates that principal components which have 

eigenvalues  1 bring more information than the original variables, and are 

considered important (Andreica, 2009). However, this method is less useful with 

smaller numbers of variables. A Scree test is performed by plotting eigenvalues with 

their corresponding principal components. The point where the plot levels off 

indicates that eigenvalues beyond this point are small compared to the ones before 

them, and the corresponding principal components are not retained (Andreica, 

2009).                were considered very significant in the principal component 

retained (Hair et al., 2010). Principal components regression was performed in 

SPSS. Generalized least square regression was used to assess heteroscedasticity 

and dependences in the data. 

 

3.4 Generalized Least Squares Regression 

Generalized least square regression has a model of the form (3.2) (Waterman, 

2002). However, it has variation on the variance-covariance structure of the residual 

vector from classical multiple linear regression. The vector of residuals is assumed to 

have the following n x n symmetric, non-singular and positive definite variance-

covariance matrix (Holsclaw, 2007) 

                               

 
 
 
 

  
                

         
         

    

                 
  

 
 
 
                                     (3.34) 

In      
                        and                           where,     is the 

correlation coefficient of     and             and    is the square root of   
  (Holsclaw, 

2007). Equation (3.34) depicts that different diagonal and nonzero off-diagonal 
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entries in    correspond to non-constant residual variances and dependent residuals 

respectively (Fox and Weisberg, 2010). This implies that the residuals are 

independent and heteroscedastic when   is diagonal (Fox and Weisberg, 2010). In 

this situation weighted generalized least square regression is used. We write 

           
 

  
   

 

  
   where the    are the weights (Faraway, 2002). Thus 

            
 

  
    

 

  
   with       where   is a triangular matrix using 

Choleski Decomposition (Faraway, 2002). So       is regressed on      , where the 

column of ones in   is replaced with      (Faraway, 2002). Observations with low 

and high variability get high and low weight, respectively.  

 

Generalized least square estimates of   are obtained by minimizing the generalized 

sum of squares 

                                                    
 
                                                      (3.35) 

over all    (Waterman, 2002). Taking the derivative of (3.35) with respect to the 

components of    and requiring this expression to be (k+1) x 1 zero vector, gives the 

generalized normal equations      

                                                                                                           (3.36) 

By solving (3.36), generalized least square (GLS) estimates are 

                                                                                                           (3.37) 

The fitted values are 

                                                                                                   (3.38) 

and the variance-covariance matrix of       is  

                                                                                                                      (3.39) 
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In an application   is often not known and is estimated. Consider that        

       is known up to a scalar    (Waterman, 2002). In this scenario,    is 

estimated by 

                                                
  

          
 
             

     
 .                                     (3.40) 

Generalized least square regression was done using R and SPSS. The R code for 

generalized least square regression is given in Appendix C. Robust maximum 

likelihood regression was employed to handle the problem of contamination in the 

data.  

 

3.5 Robust Maximum Likelihood Regression  

The robust maximum likelihood regression model has the form (Koller, 2007)                                     

                                                      
                                                             (3.41) 

where      
  and    are the  th row of  ,   and    respectively. Robust maximum 

likelihood estimates are the answer of the regression coefficients for which  

                                       
   

   
     

     
   

   
  

   
 
                                                 (3.42) 

is minimum, where      is an objective function and     is a robust residual scale 

estimate (Koller, 2007; Koller and Stahel, 2011). Some popular objective functions 

are the Huber, Hampel and Tukey bisquare which have varying levels of resistance 

to influential outliers. Because Hampel and Tukey bisquare sometimes are 

troublesome due to low Gaussian efficiency that slows the rate of convergence, 

resulting in convergence to wrong roots, no convergence and multiple roots, in this 

study, we used Huber. Moreover, R by default uses Huber in its maximum likelihood 

estimation procedure. Huber’s objective function is  

                                 
                          

                     
                                               (3.43) 
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where             is a tuning constant (Fox, 2002; Koller and Stahel, 2011). As 

Koller and Stahel (2011) argue,       is a continuous and symmetric function with a 

unique minimum at 0, and is a rapidly increasing function. Thus, this allows 

resistance of robust maximum likelihood estimates to the influence of outliers. 

 

Since    is easily affected by influential outliers it is not used for     (Fox, 2002). 

Based on the iterative algorithm that converges on an estimate for residuals and 

scale of the residuals, two estimation methods have been proposed. The methods 

are re-scaled median absolute deviation (MAD) and Huber’s Proposal 2. Both are 

also built into the maximum likelihood estimation procedure in R. Due to the fact that 

the re-scaled MAD leads to liberal tests and does not vary smoothly with the data, 

we used Huber’s Proposal 2 in this dissertation. In Huber’s Proposal 2 the value of     

is found by solving the equation                            

                                        
 

   
    
    

     
   

   
      

     )                                  (3.44) 

where,      is derivative of       and     
     ) is the expected value of        

when the residuals have a standard normal distribution (Koller and Stahel, 2011).  

 

Differentiating (3.42) with respect to the coefficients    and setting the partial 

derivatives to the (k+1) x 1 zero vector yields the following system of k+1 estimating 

equations  

                                  
 
    

     
   

   
       

 
    

   

   
                                        (3.45) 

Defining a weight function as 

                                          w (u) =
    

 
                                                                  (3.46) 
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gives      
   

   
  with      if       (Fox, 2002). By plugging (3.46) into (3.45) we 

get      
 
     

   

   
             

     
   

 

   
                                                       (3.47)                  

provided        Assigning small weights to extreme values controls problematic 

observations by removing the effect of contamination (Mutan, 2004). This leads the  

maximum likelihood estimates to achieve robustness properties. Equation (3.47) 

implies that    

                                                
     

                 

yielding                      

                                         
      

            
 
                                                  (3.48)                                                                      

The relation (3.48) is expressed in matrix form  

                                                                                                              (3.49)                      

where   diagonal               . Finally, the maximum likelihood (ML) 

estimates are obtained as 

                                                                                                          (3.50)                                                                                                

Given that   depends on the residuals, which also depend on the estimated 

coefficients which again depend upon    maximum likelihood estimates are not 

calculated explicitly from data like OLS estimates (Fox, 2002). Iterative methods 

have been developed as a solution to this problem. In this study, the iteratively 

reweighted least squares (IRLS) algorithm was considered because it is used by R 

to calculate maximum likelihood estimates. The IRLS procedure is done in the 

following steps: 

1) Initial estimates       using OLS are chosen. 

2) Residuals    
     

 and associated weights   
     

       
     

  from previous      

iterations are computed at each iteration  . 



53 
 

3) New weighted-least-squares estimates give     
   

                         

where                   
     

  in the current weight matrix (Fox, 2002). 

The last two steps are repeated until the estimated coefficients converge. 

Convergence is the point at which 
               

         
        (Fox, 2002). The fitted values 

at the n observed regressor locations   
  are                                      

                                                                                                  (3.51) 

and the estimate of the variance-covariance matrix of      is 

                                                     
                                                                (3.52)                                                                             

The R code for robust maximum likelihood regression is given in Appendix D. The 

last section is a summary of this chapter. 

 

3.6 Summary 

 

 The secondary data on the audited performance results of companies listed 

on the JSE at annual company financial statements for the period 2010 was 

used, and consisted of 278 companies in the data set for positive ROCE and 

79 companies in the data set for negative ROCE. 

 The dependent variable is ROCE, and the independent variables are APCE, 

CE, D/A, D/E, DY, EPS, EY, MC, OPM, P/E, ROA, ROE and SP.  

 The procedures of classical multiple linear regression analysis were 

explained in which the method of estimating the model parameters; the 

stepwise directed search method to screen the variables; and the 

assumptions, statistical significance,         
    mutlicollinearity, influential 

observations, and validity to assess the model were illustrated. 
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 The secondary data on the performance results of various companies listed 

on the JSE at annual company financial statements for the period 2011 was 

used as a validation data set and consisted of 239 companies in the data set 

for positive ROCE and 83 companies in the data set for negative ROCE. 

 The estimation procedures of principal components regression, generalized 

least squares regression, and robust maximum likelihood regression were 

discussed to compare in modelling ROCE with classical multiple linear 

regression analysis. 

 Classical multiple linear regression analysis, principal components regression 

and generalized least squares regression were done using SPSS.  

 Robust maximum likelihood regression was performed in R. 

Chapter 4 is the practical implementation of the procedures using SPSS and R 

statistical packages. 
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CHAPTER 4 

 

DATA ANALYSIS AND DISCUSSION OF RESULTS 

  

4.1 Data Analysis 

4.1.0 Introduction 

The statistical techniques relating to model construction, assumption checking and 

model fitting discussed in Chapter 3 are applied to data on Return on Capital 

Employed (ROCE) of individual companies listed on the JSE. As previously 

mentioned in Chapter 3, we use the positive ROCE data set and negative ROCE 

data set in constructing the models. A preliminary data analysis was performed so as 

to understand the positive ROCE data and negative ROCE data, and is presented in 

the next section. 

 

4.1.1 Preliminary Data Analysis 

The normal Q-Q plots, normal P-P plots and frequency distribution plots of the 

positive ROCE data and negative ROCE data are presented in Figures 4.1 and 4.2, 

respectively. 
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Figure 4.1. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
positive ROCE data  
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Figure 4.2. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
negative ROCE data  
 

There is a severe violation of the normality assumption based on the normal Q-Q 

plots and normal P-P plots in Figures 4.1 and 4.2, which show departure from a 

straight 45 degree line. A close inspection of the frequency distribution plots reveals 

that the non-normality distribution is a leptokurtic distribution, skewed to the right. 
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The asymmetric and extreme leptokurtic distribution nature of the raw data, in 

Figures 4.1 and 4.2, suggested use of test transformation methods, to verify the 

normality assumption. Transformation methods tested were logarithm, square root, 

inverse, and Box-Cox. Table 4.1 shows the results of the four transformation 

methods applied to data. 

 

Table 4.1. Tests of normality results for the transformed data 

 

 

The Kolmogorov-Smirnov and Shapiro-Wilk tests were performed on the transformed 

data. The p-values for the Kolmogorov-Smirnov and Shapiro-Wilk test statistics for all 

transformations are highly significant at 5 % significance level, except logarithm for 

the negative ROCE data. As a result, the logarithm transformation method was 

selected for the negative ROCE data. For the transformed positive ROCE data, there 

is violation on the normality distribution. The coefficient of skewness and kurtosis 

values provided final assessment of normality tests for the transformed positive 

 Tests of 
normality 

 

       Transformation methods tested 
 Logarithm 
(base 10) 

 

 

Square 
root 

 

Inverse Box-Cox 

Positive 
ROCE 
data 
 

Kolmogorov-  

Smirnov 

Statistic 0.080 
 

0.174 0.341 0.517 
D.F 278 

 
278 278 278 

P-value 0.000 
 

0.000 0.000 0.000 

Shapiro-
Wilk 
 

Statistic 0.946 
 

0.546 0.281 0.034 

D.F 278 
 

278 278 278 

P-value 0.000 
 

0.000 0.000 0.000 

Negative 
ROCE 
data  

 

 

Kolmogorov-  

Smirnov 

Statistic 0.056 
 

0.178 0.399 0.523 

D.F 79 
 

79 79 79 

P-value 0.200 
 

0.000 0.000 0.000 

Shapiro-
Wilk 
 

Statistic 0.991 0.757 0.223 0.101 

D.F 79 
 

79 79 79 

P-value 0.841 
 

0.000 0.000 0.000 
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ROCE data. Computation and comparison of the coefficient of skewness and 

kurtosis values of the positive ROCE data was conducted. Results on the four 

transformation methods are given in Table 4.2. 

 

Table 4.2. Results of skewness and kurtosis for choosing transformation methods for 
the positive ROCE data 
 

 

 

The skewness and kurtosis values of the transformation methods are not zero and 

three, respectively. However, the rationale for choosing a particular transformation 

method is based on the premise that the best transformation method is the one that 

gives a most reduction in the skewness and kurtosis values. Explicitly, the values of 

the skewness and kurtosis of the transformed variable are expected to be close to 

zero and three, respectively. The logarithm transformation method with values of the 

skewness and kurtosis closest to zero and three, respectively, is chosen among the 

other transformation methods for this data. Figures 4.3 and 4.4, show the normal Q-

Q plots, normal P-P plots and frequency distribution plots of log (ROCE) for the 

positive data and negative data, respectively. 

 

Transformation Actual 

transformation 

Coefficient 

of skewness 

Coefficient         

of kurtosis 

Chosen 

transformation 

method 

None 

 

ROCE 

 

11.448 146.321  

 Logarithm 

(base 10) 

 

     (ROCE) 

 

-0.144 3.153 Logarithm 

 

Square root 

 
      

 

 

6.231 55.223  

 
Inverse  

    
 

10.238 131.582  

Box-Cox 

(       ) 

 

 

          

    
 

16.673 278.000  
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Figure 4.3. Normal Q-Q plot, normal P-P plot and frequency distribution plot of log 
(ROCE) for the positive data  
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Figure 4.4. Normal Q-Q plot, normal P-P plot and frequency distribution plot of log 
(ROCE) for the negative data  
 

Improved results following log transformations are presented in Figures 4.3 and 4.4. 

Compared to results in Figures 4.1 and 4.2, the normal Q-Q plots and normal P-P 

plots to the straight 45 degree line, and frequency distribution plots to the normal 

distribution indicate much improvement. This implies an improvement of the 

normality of the data. Thus, log (ROCE) is used in the ensuing analysis for the two 

data sets. We demonstrate the application of a classical multiple linear regression 

analysis to the ROCE data in the following section. 
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4.1.2 Classical Multiple Linear Regression Analysis 

The Positive ROCE Data Set 

The stepwise directed search regression procedure was implemented using the 

transformed positive ROCE data because the distribution of the raw/original data 

was leptokurtic and asymmetrical. Table 4.3 presents results of performing the 

stepwise directed search regression to estimate the regression coefficients.  

 

 Table 4.3. Analysis of variance for classical multiple linear regression on log 
(ROCE) and estimates of the regression parameter coefficients for the fitted model 

       

 

Table 4.3 indicates that the p-value of the overall relationship is less than 5 % and 

associated p-values of the five coefficients are less than 5 %. This means that the 

fitted model involving the five independent variables is significant at 5 % level of 

significance. Table A.1 in Appendix A presents the summary and change statistics 

results of each variable in the fitted regression model. 

 

The fitted regression model was assessed for statistical assumptions. Figures B.1 

and B.2 in Appendix B, show normal Q-Q plot, normal P-P plot and frequency 

Source of 
variation 

DF SS MS F-statistic 
 

P-value 

P-value Regression 5 21.062 4.212 34.229 0.000 

Residual 272 33.474 0.123   

Total 277 54.536    

 Parameters Estimates 
 

P-values 
 
 

 Intercept 0.817 0.000 

 ROE 0.003 0.000 

 

 

D/E -0.003 0.000 

 
 

CE -2.243      0.000 

 

 

EPS 0.000 0.000 

 DY 0.004 0.003 
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distribution plot of the standardized residuals; and scatter plot of the standardized 

residuals versus the standardized predicted values, respectively. Figure B.1 depicts 

a non-normality pattern of the residuals as evidenced by a well defined departure 

from a straight 45 degree line of the normal Q-Q plot and normal P-P plot. The 

frequency distribution plot shows that the non-normality distribution is a negatively 

skewed distribution (coefficient of skewness=-1.248). In Figure B.2, there is evidence 

of a distinguishable pattern showed in the scatter plot. Thus, the assumption of 

homoscedasticity is not satisfied. A logarithm transformation was applied to the 

independent variables in the fitted regression model so as to correct the violations in 

the assumptions. Figure 4.5 displays the normal Q-Q plot, normal P-P plot and 

frequency distribution plot of the standardized residuals for the final model.  
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Figure 4.5. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
final classical multiple linear regression standardized residuals 
 
 

Results in Figure 4.5 show the normal Q-Q plot is on the straight 45 degree line and 

normal P-P plot does not seem to deviate much from a straight 45 degree line. The 

data is approximately normal as demonstrated by the histogram (coefficient of 

skewness=-0.773, coefficient of kurtosis=1.296) (Figure 4.5). We conclude that there 
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is no severe non-normality of the residuals for the final model showed. The scatter 

plot of the standardized residuals versus standardized predicted values is shown in 

Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

                        Figure 4.6. Scatter plot of standardized residuals versus                               
                     standardized predicted values of the final classical multiple 
                     linear regression model 
 

The random scattering of points with no clear pattern in Figure 4.6, indicates that the 

homoscedasticity assumption of the residuals for the final model is not violated. To 

test for autocorrelation in our final model (model with an intercept), the Durbin-

Watson test was conducted. The results are:  

         Durbin-Watson                            Durbin-Watson number of observations 
                1.597                                                             260  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

n=200 and k=3 are         ,           ,         , and      

      (Gujarati, 2004). This implies that for positive or negative autocorrelations, the 

null hypothesis that the residuals are not autocorrelated is not rejected. We conclude 
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that the independence assumption of the residuals is satisfied. To check the 

existence of influential observations in the data we examined standardized residuals, 

leverages and Cook’s Distances for the prediction model.  Observations 54, 113, 

135, and 162 were identified as outliers (                          ), high leverages 

points (           
     

 
 

     

   
       ) and influential points (Cook’s 

Distances    
 

 
  

 

   
       ). Observations 3, 67, 77,104,137,145,176, and 225 

were classified as both outliers                               and influential points 

(Cook’s Distances         ), and observations 163, 206, and 277 were classified as 

both high leverages points (                 ) and influential points (Cook’s 

Distances          ). Observations 65, 174, and 203 were identified as just 

influential points (Cook’s Distances          ). Observations 1, 75, 89, 99, 102, 141, 

149, 151,193, 209, 212, 220, 242, 250, and 275 identified as high leverages points 

(                 ) were retained in the data because they were not influential 

points (Cook’s Distances         ). All the identified outliers were influential points. 

Overall, eighteen observations had influence on the prediction model. These were 

removed from the data. We present the Cook’s Distance plot in Figure 4.7.  
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               Figure 4.7. Cook’s Distance plot for the final classical                            
               multiple linear regression model 
 

 

Under the final model, the Cook’s Distance values of the observations in the data set 

are less than        (Figure 4.7). The data contained no observations with serious 

influence on the parameter estimates of the final model. The final and validation 

classical multiple linear regression models for predicting log (ROCE) are presented 

in Table 4.4.  
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Table 4.4. Classical multiple linear regression model for log (ROCE) with 
standard error of estimates in parentheses 
 

 

The values of         
   MSE, maximum VIF for any independent variable, and p-

values for the parameters in the validation model are close to those in the final model 

(Table 4.4). The results in Table 4.4 reflect consistency in magnitude and sign of 

parameter estimates, and standard error of parameter estimates values; between the 

final model and validation model. The percentage differences between elasticities of 

ROE, D/E, and CE are 5.88 %, 19.17 %, and 17.46 %, respectively. These results 

imply that the statistics of the validation model are in general agreement with those 

of the final model. Thus, we conclude that the prediction model is satisfactory. 

The Negative ROCE Data Set 

Table A.2 in Appendix A presents correlation matrix both transformed dependent 

variable and independent variables on the negative ROCE data set. Results in Table 

A.2 show significant correlations at 5 % significance level, of log (ROCE) with 

independent variables APCE, D/A, EY, ROA, CE, MC and SP. There are four pairs 

of these independent variables where EY has significant correlations at 5 % 

significance level (Table A.2). As a result, EY was removed from the data set. A pair 

of CE and MC has high significant correlation at 5 % significance level (Table A.2). 

Parameters Final 
 
 

Validation 

Estimates 
 

P-values 
 
 

Estimates P-values 

Intercept 0.175 (0.052) 0.001 0.274 (0.100) 
 
(0.054) 

0.007 
 Log (ROE) 1.020 (0.018) 0.000 0.960 (0.032) 0.000 

Log (D/E) -0.193 (0.015) 0.000 -0.230 (0.024) 0.000 

Log (CE) -0.063 (0.008) 0.000 -0.074 (0.015) 0.000 

Regression Equation Statistics 

      

   

0.928 
 

 

   0.805 

  

 

    
  

 
    
  

0.927 
 

 

    
  

 

 

0.803 

 

 

 

 
 

MSE 
 

 

0.013 MSEP 
 

0.043 

 

 

 

 

       

 

       

1.036 

 

 

       1.027 
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The variable CE was discarded from the data set because it has lower correlation 

with log (ROCE) than MC (Table A.2). We considered independent variables APCE, 

D/A, ROA, MC and SP as possible candidates for inclusion in the model. The 

stepwise directed search regression procedure was applied to the transformed 

negative ROCE data. The results for the fitted model are displayed in Table 4.5. 

 

Table 4.5. Analysis of variance for classical multiple linear regression on log 
(ROCE) and estimates of the regression parameter coefficients for the fitted 
model 
 

 

Table 4.5 shows that the p-value for the overall model is less than 5 % and p-values 

of the three coefficients are less than 5 %. This implies that the fitted model involving 

the three independent variables is significant at 5 % level of significance. The 

summary and change statistics results of each variable in the fitted regression model 

are presented in Table A.3 in Appendix A. The fitted classical multiple linear 

regression model was assessed for statistical assumptions. Figure 4.8 presents the 

normal Q-Q plot, normal P-P plot and frequency distribution plot of the standardized 

residuals for the final model.  

 

Source of 
variation 

DF SS MS F-statistic 
 

P-value 

P-
value 

Regression 3 23.093 7.698 34.052 0.000 

Residual 75 16.954 0.226   

Total 78 40.048    

 Parameters Estimates 
 

P-values 
 
 

 Intercept 0.595 0.000 

 ROA -0.009 0.000 

 

 

APCE 0.248 0.000 

 
 

MC -2.00        0.000 
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Figure 4.8. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
final classical multiple linear regression standardized residuals 
 

The normal Q-Q plot and normal P-P plot in Figure 4.8 does not seem to deviate 

much from a straight 45 degree line suggesting that the normality assumption is not 

violated. The data is almost normal as shown by the histogram (coefficient of 

skewness=-0.309, coefficient of kurtosis=-0.071) (Figure 4.8). Figure 4.9 presents 

the scatter plot of the standardized residuals versus the standardized predicted 

values.  
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                    Figure 4.9. Scatter plot of standardized residuals versus  
                    standardized predicted values of the final classical multiple  
                    linear regression model 
 
 

The systematic pattern in Figure 4.9 is mild. Thus, the assumption of 

homoscedasticity is fulfilled. The Durbin-Watson test results for autocorrelation in the 

final model (model with an intercept) are as follows:  

          Durbin-Watson                              Durbin-Watson number of observations 
                 2.391                                                             76 

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

n=75 and k=3 are         ,           ,         , and      

      (Gujarati, 2004). This suggests that the data does not contain serious 

autocorrelation problems. We conclude that the independence assumption of the 

residuals is satisfied. Standardized residuals, leverages and Cook’s Distances were 

used to assess influential observations in the data for the prediction model. 

Observations 3, 22, 37, and 63 identified as high leverage points (           

     

 
 

     

  
       )   were not influential (Cook’s Distances    

 

 
  

 

  
       ) 
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on the prediction model. These were retained in the data. Observation 8 was 

identified as an outlier (                         ), a high leverage point 

(                ) and an influential point (Cook’s Distance          ). 

Observation 49 identified as an outlier (                         ) and observation 

28 identified as a point of high leverage (                ) were influential points 

(Cook’s Distances          ). All the identified outliers were influential points. The 

three influential observations were deleted. The Cook’s distance plot is presented in 

Figure 4.10 under the final classical multiple linear regression model. 

 

 

 

 

 

 

 

 

 

 

                     
                      
                     Figure 4.10. Cook’s Distance plot for the final classical  
                     multiple linear regression model 
 

Figure 4.10 shows that Cook’s distance value of each of the observations is less 

than       . This confirms that none of the observations were influential on the 

parameter estimates in the final classical multiple linear regression model. Table 4.6 
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shows the final and validation classical multiple linear regression models for 

predicting log (ROCE). 

 

 Table 4.6. Classical multiple linear regression model for log (ROCE) with         
 standard error of estimates in parentheses 
 

 

The signs of parameter estimates and values of parameter estimates, standard error 

of parameter estimates, and maximum VIF for any independent variable; between 

the final model and validation model are generally concordant (Table 4.6). The 

percentage differences between estimates of APCE, ROA, and MC are 22.83 %, 

27.27 %, and 58.92 %, respectively. However, there is a substantial change in the 

values of         
  and MSE between the final model and validation model; and 

insignificance of the coefficient for MC in the validation model (Table 4.6). These 

statistics showed poor performance of the final model. The application of principal 

components regression to the ROCE data is illustrated in the next section. 

 

 

Parameters Final 
 
 

Validation 

Estimates 
 

P-values 
 
 

Estimates P-values 

Intercept 0.450 (0.113) 0.000 0.529 (0.136) 0.000 
 

APCE 0.368 (0.079) 0.000 0.284 (0.069) 0.000 

ROA -0.011 (0.001) 0.000 -0.008 (0.001) 0.000 

MC -1.979        
(0.000) 

0.000 -3.145       
(0.000) 

0.061 

Regression Equation Statistics 

    0.666    0.399 

 

 

    
  

 

0.652     
  

 

 

0.377 

 
 

MSE 
 

 

0.149 MSEP 
 

0.429 

 

 

       

 

1.025        1.041 
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4.1.3 Principal Components Regression  

The Positive ROCE Data Set 

Due to large variation of the independent variables in the positive ROCE data set, a 

logarithm (base 10) transformation was applied to the independent variables. The 

Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity results for the transformed 

independent variables are presented in Table 4.7.  

 

        Table 4.7. KMO and Bartlett’s test 
 

KMO 0.579 

Bartlett’s Test of Sphericity Approx. Chi-Square 4.236       
D.F 78 

P-value  0.000 
 

The highly significant Bartlett’s test (Table 4.7) confirms existence of sufficient 

correlations between the independent variables. The KMO value in Table 4.7 is 

greater than 0.5. Thus need to apply principal components analysis. Principal 

components analysis on the correlations matrix of transformed independent 

variables on the positive ROCE data set was conducted. The eigenvalues of each 

principal component before extraction, after extraction and after varimax rotation are 

displayed in Table 4.8.  
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Table 4.8 shows that the data has 13 principal components before extraction, with 

principal component 1 explaining 26.988 % of total variance. By Kaiser-Guttman 

criterion (Andreica, 2009), there are four principal components with eigenvalues 

greater than 1 and these principal components accounted for about 76 % of the total 

variance. The eigenvalues pertaining to these principal components are given in the 

middle column of Table 4.8 without the values of the excluded principal components. 

The last column of the table shows the eigenvalues of the four principal components 

after varimax rotation. Rotation has the effect of equalising the relative importance of 

the four principal components (Ul-Saufie et al., 2011). Before rotation, principal 

component 1 accounted for 26.988 % of the total variance compared to 20.524 %, 

Table 4.8.Total variance explained 

 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.508 26.988 26.988 3.508 26.988 26.988 3.291 25.314 25.314 

2 2.668 20.524 47.512 2.668 20.524 47.512 2.441 18.777 44.091 

3 2.218 17.059 64.571 2.218 17.059 64.571 2.335 17.960 62.051 

4 1.484 11.412 75.982 1.484 11.412 75.982 1.811 13.932 75.982 

5 .903 6.946 82.929       

6 .776 5.972 88.901       

7 .649 4.989 93.890       

8 .338 2.601 96.491       

9 .258 1.988 98.479       

10 .084 .647 99.126       

11 .060 .462 99.588       

12 .053 .408 99.996       

13 .001 .004 100.000       
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17.059 % and 11.412 %. However, after rotation it accounted for 25.314 % of the 

total variance compared to 18.777 %, 17.960 % and 13.932 %. The scree plot for the 

principal components solution before extraction is displayed in Figure 4.11. 

 

 

                              

 

 

 

 

 

 

 

 

 

 

 

                                         
 
                     
                     
                    Figure 4.11. Scree plot for the principal components 
 

The plot levels off from component 5 to component 6 (Figure 4.11), refuting the 

previous result from Table 4.8 that the optimal principal components solution is 

described by four components. Table 4.9 presents the rotated matrix using varimax 

rotation with Kaiser normalization. 
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Table 4.9.  Rotated component matrix 

 
Component 

 
1 2 3 4 

Log (MC) .918 -.182 .046 .061 

Log (EPS) .897 .258 -.024 .095 

Log (CE) .887 -.147 .032 -.049 

Log (SP) .848 -.238 -.059 .166 

Log (EY) -.065 .964 .082 .054 

Log (P/E) .064 -.964 -.080 -.054 

Log (DY) -.105 .498 -.124 .102 

Log (D/E) .064 -.100 .922 .117 

Log (D/A) -.127 -.071 .878 .202 

Log (APCE) .072 .113 .706 -.148 

Log (ROA) -.092 .137 .177 .834 

Log (ROE) .211 .281 .133 .798 

Log (OPM) .199 -.176 -.362 .585 

 

 

The rotated matrix has the loading of each variable on each component for all 

values. The variables dominating the principal components are as follows (Table 

4.9):  

Principal component 1 (PC1) has log (MC), log (EPS), log (CE), and log (SP). 

Principal component 2 (PC2) has log (EY) and log (P/E). 

Principal component 3 (PC3) has log (D/E), log (D/A) and log (APCE). 

Principal component 4 (PC4) has log (ROA), log (ROE) and log (OPM). 

 

A principal components regression model which considered the transformed positive 

ROCE data was constructed. The regression results for the fitted model are shown in 

Table 4.10.  
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     Table 4.10. Analysis of variance for principal components regression on log  
     (ROCE) and estimates of the regression parameter coefficients for the fitted    
     model 

 

The p-value for the overall model is less than 5 % and p-values of three coefficients 

are less than 5 % (Table 4.10). This suggests that the fitted model is significant at 5 

% level of significance. The fitted principal component regression model was 

assessed for statistical assumptions. The normal Q-Q plot, normal P-P plot and 

frequency distribution plot of the standardized residuals are shown in Figure 4.12. 

 

 

 

 

Source of 
variation 

DF SS MS F-statistic 
 

P-value 

P-
value 

Regression 4 30.524 7.631 86.761 0.000 

Residual 273 24.012 0.088   

Total 277 54.536    

 Parameters Estimates 
 

P-values 
 
 

 Intercept 0.016 0.892 

 PC1 -0.007 0.207 

 

 

PC2 0.115 0.000 

 
 

PC3 -0.050 0.004 

 

 

 

PC4 0.309 0.000 
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Figure 4.12. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
final principal regression standardized residuals 
 

Most parts of the normal Q-Q plot and normal P-P plot in Figure 4.12 are on the 

straight 45 degree line, suggesting that the normality assumption of the residuals is 

satisfied. The frequency plot resembles a normal distribution (coefficient of 

skewness=-0.501, coefficient of kurtosis=1.284). The scatterplot of the standardized 

residuals versus the standardized predicted values is presented in Figure 4.13.   
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                   Figure 4.13. Scatter plot of standardized residuals versus 
                   standardized predicted values of the final principal                           
                   component regression model 
 

The plot in Figure 4.13 shows that the residuals have a random scatter. Thus, we 

accept the model as fitting the homoscedasticity assumption. The results for the 

Durbin-Watson test for positive or negative autocorrelation in the final principal 

component regression model (model with no intercept) are as follows: 

          Durbin-Watson                              Durbin-Watson number of observations 
                  1.967                                                             265  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

n=200 and k=2 are         ,           ,           and            

(Gujarati, 2004). This shows that the data has no autocorrelation, suggesting that the 

independence assumption of the residuals is fulfilled. We used standardized 

residuals, leverages and Cook’s Distances to identify points that do not fit with the 

regression model. Observations 5, 77, 113, 135, and 163 were classified as both 

outliers                               and influential points (Cook’s Distances   
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       ), and observations 202, 209, 212, 234, and 262 were classified as both 

high leverages points (           
     

 
 

     

   
       ) and influential points 

(Cook’s Distances          ). Observations 101,193 and 250 had Cook’s Distances 

greater than 0.0144. This shows that these observations are influential points. 

Observations 24, 184 and 189 identified as high leverages points (           

      ) and observations 1, 54,128, 129, 145, 149, 162, 198, 211, and 252 identified 

as outliers                               were retained in the data because they 

were not influential points (Cook’s Distances         ). Overall, 13 observations 

were influential on the prediction model. The thirteen influential observations were 

deleted. Figure 4.14 presents the Cook’s Distance plot under the final principal 

component regression model. 

 

 

 

 

 

 

 

 

 

 
                        
                        
                         
                                  
                        Figure 4.14. Cook’s Distance plot for the final principal  
                        components regression model 
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Figure 4.14 reveals that Cook’s Distance values are less than 0.0144, implying that 

there were no observations which were influential on the parameter estimates in the 

final model. The final and validation principal components regression models for 

predicting log (ROCE) appear in Table 4.11.  

 

 Table 4.11. Principal components regression model for log (ROCE) with 
 standard errors of estimates in parentheses 
 

 

 

There is general resemblance in values of         
   MSE, maximum VIF for principal 

components, and significance of the parameters; between the final model and 

validation model (Table 4.11). There is conformity in sign and size of parameter 

estimates, and values of standard error of parameter estimates; between the final 

model and validation model (Table 4.11). The percentage differences between 

estimates of PC2 and PC4 are 22.54 % and 0.36 %, respectively. Thus, the final 

model has resulted in a satisfactory validation performance.  

The Negative ROCE Data Set 

The KMO and Bartlett’s test of sphericity results for the negative ROCE data set are 

presented in Table 4.12.  

Parameters Final 
 
 

Validation 

Estimates 
 

P-values 
 
 

Estimates P-values 

PC2 0.142 (0.024) 0.000 0.174 (0.032) 0.000 

PC4 0.281 (0.005) 0.000 0.280 (0.007) 0.000 

Regression Equation Statistics 

 

 

   
 

 

0.929 

 

 

 

   
 

0.893 

 

 
 

 

 

    
  

 

 

 

0.929 

 

 

 

    
  

 

 

0.892 

 

 

 

 

 
 
 

MSE 
 

 

 

0.069 

 

 

 

 

MSEP 
 

0.111 

 

 

 

  

 

       

 

1.064        1.037 
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        Table 4.12. KMO and Bartlett’s test 
 

KMO 0.319 

Bartlett’s Test of Sphericity Approx. Chi-Square 381.940 

D.F 78 

P-value  0.000 
 

The KMO value in Table 4.12 is less than 0.5, thus the data is not adequate for 

principal components analysis. However, Bartlett’s Test is highly significant (Table 

4.12) and sixteen pairs of independent variables have significant correlations at 5 % 

significance level (Table A.2). Thus principal components analysis is suitable for this 

data. We proceed with the analysis. Table 4.13 shows the eigenvalues of each 

principal component before extraction, after extraction and after varimax rotation.  

 

Table 4.13.Total variance explained 
 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 2.599 19.992 19.992 2.599 19.992 19.992 2.046 15.735 15.735 

2 1.975 15.194 35.186 1.975 15.194 35.186 1.866 14.351 30.086 

3 1.564 12.032 47.218 1.564 12.032 47.218 1.690 12.999 43.084 

4 1.195 9.196 56.414 1.195 9.196 56.414 1.404 10.802 53.886 

5 1.129 8.686 65.100 1.129 8.686 65.100 1.319 10.148 64.034 

6 1.049 8.072 73.172 1.049 8.072 73.172 1.188 9.138 73.172 

7 .820 6.309 79.481       

8 .770 5.924 85.405       

9 .657 5.055 90.460       

10 .542 4.168 94.628       

11 .428 3.294 97.923       

12 .251 1.930 99.852       

13 .019 .148 100.000       
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The initial solution has 13 principal components, with principal component 1 

explaining 19.992 % of total variance (Table 4.13). There are six principal 

components with eigenvalues greater than 1. These six principal components 

accounted for about 73 % of the total variance using the Kaiser-Guttman criterion 

(Andreica, 2009). Before rotation, principal component 1 accounted for 19.992 % of 

the total variance compared to 15.194 %, 12.032 %, 9.196 %, 8.686 %, and 8.072 

%. After rotation it accounted for 15.735 % of the total variance compared to 14.351 

%, 12.999 %, 10.802 %, 10.148 %, and 9.138 %. The scree plot for the initial 

solution is shown in Figure 4.15. 

                                    

                                     

 

                              

 

 

 

 

 

 

 

 

 

 

 

                        

                       Figure 4.15. Scree plot for the principal components 

                                   
 

The plot levels off from component 5 to component 6 (Figure 4.15), validating the 

result from Table 4.13 that the optimal principal components solution is described by 

six components. The rotated matrix using varimax rotation with Kaiser normalization 

is presented in Table 4.14.  
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The principal components are as follows (Table 4.14): 

Principal component 1 (PC1) has MC and CE. 

Principal component 2 (PC2) has D/E and ROE. 

Principal component 3 (PC3) has ROA, EY and APCE.  

Principal component 4 (PC4) has EPS and SP. 

Principal component 5 (PC5) has DY and P/E. 

Principal component 6 (PC6) has OPM. 

 

A principal components regression model which considered the transformed 

negative ROCE data was constructed. The regression results are displayed in Table 

4.15.  

 

Table 4.14. Rotated component matrix 
 

 Component 

 1 2 3 4 5 6 

MC .968 .017 .072 -.112 -.101 -.093 

CE .943 .028 .003 .082 -.162 .046 

ROE .018 -.887 -.056 -.017 -.025 .043 

D/E .022 .795 -.063 .067 -.030 -.015 

APCE .089 .071 -.748 .030 .098 .218 

EY .113 .570 .649 -.056 .032 .028 

ROA .178 -.078 .634 .026 .114 .380 

D/A -.046 -.325 -.476 .131 .154 .467 

EPS .189 .038 .115 .822 -.059 -.065 

SP .276 -.036 .216 -.739 .000 -.076 

P/E -.217 -.024 -.083 .212 .794 .011 

DY -.046 .020 .037 -.300 .768 -.061 

OPM -.050 .020 -.011 -.036 -.097 .866 
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     Table 4.15. Analysis of variance for principal components regression on log  
     (ROCE) and estimates of the regression parameter coefficients for the fitted    
     model 

 

The p-value for the overall model is less than 5 % and p-values of the three 

coefficients are less than 5 % (Table 4.15). This shows that the fitted model involving 

the six principal components is significant at 5 % level of significance.  

 

The fitted regression model was assessed for statistical assumptions.  Figure 4.16 

shows normal Q-Q plot, normal P-P plot and frequency distribution plot of the 

standardized residuals of the final principal components regression model. 

 

 

Source of 
variation 

DF SS MS F-statistic 
 

P-value 

P-
value 

Regression 6 24.152 4.025 18.234 0.000 

Residual 72 15.995 0.221   

Total 78 40.048    

 Parameters Estimates 
 

P-values 
 
 

 Intercept 0.777 0.000 

 PC1 -1.474       0.017 

 

 

PC2 0.000 0.002 

 
 

PC3 -0.007 0.000 

 

 

 

PC4 -1.217      0.745 

 PC5 0.001 0.201 

 PC6 1.172      0.972 
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Figure 4.16. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
final principal regression standardized residuals 
 

Figure 4.16 portrays a normality pattern of the residuals as evidenced by a normal 

Q-Q plot and normal P-P plot which are on a straight 45 degree line. The frequency 

distribution plot shows the normality distribution (coefficient of skewness=0.168, 

coefficient of kurtosis=-0.170). The scatter plot of the standardized residuals versus 

the standardized predicted values is displayed in Figure 4.17. 
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                   Figure 4.17. Scatter plot of standardized residuals versus 
                   standardized predicted values of the final principal                           
                   component regression model 
 

There is a weak distinguishable pattern showed in the scatter plot (Figure 4.17). 

Thus, the assumption of homoscedasticity is satisfied. The Durbin-Watson test for 

autocorrelation in the final model (model with an intercept) was conducted. The 

results are:  

         Durbin-Watson                            Durbin-Watson number of observations 
                2.108                                                             74  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

n=70 and k=2 are         ,           ,         , and      

      (Gujarati, 2004). This shows that the data has no autocorrelation, suggesting 

that the independence assumption of the residuals is satisfied. Standardized 

residuals, leverages and Cook’s Distances were used to check the existence of 

influential observations in the data for the fitted model. Observation 75 was identified 

as an outlier (                         ), a high leverage point (          
     

 
 

     

  
       ) and an influential point (Cook’s Distance   

 

 
 

 

  
       ). 
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Observation 49 identified as an outlier (                         ) and observations 

3 and 22 identified as points of high leverages (                 ) were influential 

points (Cook’s Distances          ). Observation 28 was classified as just an 

influential point (Cook’s Distance          ). All the outliers and points of high 

leverages were influential points. The five influential observations were removed 

from the data. A Cook’s Distance plot is presented in Figure 4.18 for the final 

principal components regression model.  

 

 

 

 

 

 

 

 

 

                        
 
                        Figure 4.18. Cook’s Distance plot for the final principal  
                        components regression model 
 

The Cook’s Distance values of the observations in the data set are less than 0.0506 

(Figure 4.18). This indicates that none of the observations were influential on the 

parameter estimates of the final model. Table 4.16 presents the final and validation 

principal components regression models for predicting log (ROCE).  
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  Table 4.16. Principal components regression model for log (ROCE) with 
  standard errors of estimates in parentheses 
 

 

 

 

 

 

 

 

 

The signs of parameter estimates and values of         
   MSE, parameter estimates, 

standard error of parameter estimates, and maximum VIF for principal components; 

between the final model and validation model are generally similar (Table 4.16). 

However, there is insignificance of the coefficient for PC1 in the validation model 

(Table 4.16). The percentage differences between estimates of PC1 and PC3 are 

91.55 % and 28.57 %, respectively. Overall, the prediction model is accurate. The 

next section presents the application of generalized least squares regression to the 

ROCE data.  

 

4.1.4 Generalized Least Squares Regression  

The Positive ROCE Data Set 

The stepwise directed search regression procedure was applied to the raw/original 

positive ROCE data; and the results were used to construct classical multiple linear 

regression and generalized least squares regression models. Table A.4 in Appendix 

A presents the summary and change statistics results of each variable in the fitted 

regression models. The results of fitting classical multiple linear regression and 

Parameters Final 
 
 

Validation 

Estimates 
 

P-values 
 
 

Estimates P-values 

Intercept 0.794 (0.066) 0.000 0.802 (0.084) 0.000 

PC1 -1.443       
(0.000) 

0.007 -2.764       
(0.000) 

0.075 

PC3 -0.007 (0.001) 0.000 -0.005(0.001) 0.000 

Regression Equation Statistics 

 

 

   
 

 

0.544 

 

 

 

   
 

0.478 

 

 
 

 

 

    
  

 

 

 

0.532 

 

 

 

    
  

 

 

0.465 

 

 

 

 

 
 
 

MSE 
 

 

 

0.167 

 

 

 

 

MSEP 
 

0.368 

 

 

 

  

 

       

 

1.045        1.035 
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generalized least squares regression models are displayed in Table A.5 in Appendix 

A. The Durbin-Watson results for testing autocorrelation in the fitted classical 

multiple linear regression model (model with an intercept) are:  

          Durbin-Watson                              Durbin-Watson number of observations 
                  1.933                                                             278  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

k=4 and n=200 are         ,           ,           and            

(Gujarati, 2004). This implies that the data has no autocorrelation. Thus, the data 

satisfies the independence assumption of the residuals. Figure B.3 in Appendix B, 

presents the scatter plot of the standardized residuals versus the standardized 

predicted values of the fitted classical multiple linear regression model. The scatter 

plot in Figure B.3 shows signs of a systematic pattern which implies that the data 

violated the assumption of homogeneity of variance. However, the models for the 

classical multiple linear regression and generalized least squares regression fits are 

in perfect agreement (Table A.5). Thus, generalized least squares regression is not 

sensitive to heteroscedasticity. To correct the anomaly, weighted generalized least 

squares regression model was fitted. The results of fitting classical multiple linear 

regression model and weighted generalized least squares regression model are 

displayed in Table 4.17. 
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       Table 4.17. Classical multiple linear regression and weighted generalized  
       least squares regression models for ROCE with standard errors of estimates 
       in parentheses 
 

  Fitted 

Parameter Classical multiple linear 

regression 

Weighted generalized least 

squares regression 

Estimate 

 

P-value 

 

Estimate 

 

P-value 

 
ROE 0.857 (0.008) 0.000 0.729 (0.014) 0.000 

D/E -0.091 (0.020) 0.000 -0.075 (0.014) 0.000 

DY -0.120 (0.034) 0.001 0.025 (0.012) 0.032 

CE -4.184      

(0.000) 

0.001 -1.946      

(0.000) 

0.000 

          Regression Equation Statistics 

    0.976    0.920 

     
  0.976     

  0.919 

 MSE 79.506 MSE 0.044 

        1.054        Not applicable 

Validation 

    0.914    0.921 

      
  0.912     

  0.920 

 MSEP 107.995 MSEP 0.045 

 

 

The Durbin-Watson results for testing autocorrelation in the fitted classical multiple 

linear regression model (model with no intercept) are:  

          Durbin-Watson                              Durbin-Watson number of observations 
                  1.841                                                             278  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

k=4 and n=200 are         ,           ,           and            

(Gujarati, 2004). This implies that the data has no autocorrelation. Thus, the data 

satisfies the independence assumption of the residuals. Figure 4.19 shows the 

scatter plot of the standardized residuals versus the standardized predicted values of 

the fitted classical multiple linear regression model.                      
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                   Figure 4.19. Scatter plot of standardized residuals versus  
                   standardized predicted values of the fitted classical multiple  
                   linear regression model 
 

The plot in Figure 4.19 shows that there is increasing residual with increasing 

predicted value. This testifies that the homoscedasticity assumption is invalid in the 

fitted classical multiple linear regression model.  

 

The percentage differences in OLS estimates and weighted generalized least square 

estimates of ROE, D/E, DY, and CE are 14.94 %, 17.58 %, 116 %, and 53.49 %, 

respectively (Table 4.17). The standard error values of weighted generalized least 

square estimates are generally less than those for OLS estimates (Table 4.17). 

Overall, the weighted generalized least square regression prediction model appears 

to fit the data considerably better than the classical multiple linear regression 

prediction model, with the largest difference noticed in the MSE statistic (Table 4.17). 

The weighted generalized least square regression validation model is considerably 

better than the classical multiple linear regression validation model, with the largest 

difference noticed in the MSEP statistic (Table 4.17). The differences between the 

models for the classical multiple linear regression and weighted generalized least 
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square regression fits for the positive ROCE data set are due to the 

heteroscedasticity in the data (Figure 4.19). 

The Negative ROCE Data Set 

The stepwise directed search regression procedure was applied to the raw/original 

negative ROCE data. The modulus values of the negative ROCE were used. The 

summary and change statistics results of each variable in the fitted regression 

models are presented in Table A.6 in Appendix A. The stepwise directed search 

results were used to construct classical multiple linear regression and generalized 

least squares regression models. The results of fitting classical multiple linear 

regression and generalized least squares regression models are shown in Table A.7 

in Appendix A. The Durbin-Watson results for testing autocorrelation in the fitted 

classical multiple linear regression model (model with an intercept) are:  

          Durbin-Watson                              Durbin-Watson number of observations 
                  1.913                                                             79  

For a two-tailed test at 5 % significance level, the Durbin-Watson critical values for 

k=2 and n=75 are         ,           ,           and            

(Gujarati, 2004). This indicates that the data has no autocorrelation, suggesting that 

the independence assumption of the residuals is fulfilled. Figure 4.20 presents the 

scatter plot of the standardized residuals versus the standardized predicted values 

for the fitted classical multiple linear regression model.  
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                     Figure 4.20. Scatter plot of standardized residuals versus  
                     standardized predicted values of the fitted classical multiple  
                     linear regression model 
 
 

The plot in Figure 4.20 shows that there is increasing variance with increasing 

predicted value. This confirms that the homoscedasticity assumption is not satisfied. 

However, the models for the classical multiple linear regression and generalized 

least squares regression fits are identical (Table A.7), suggesting that generalized 

least squares regression is not sensitive to heteroscedasticity. The weighted 

generalized least squares regression model was fitted so as to correct the anomaly. 

The results of fitting weighted generalized least squares regression model are shown 

in Table 4.18. 
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          Table 4.18. Weighted generalized least squares regression model  
           for ROCE with standard errors of estimates in parentheses 
 
 

 

 

 

 

 

 

 

 

 

 

The percentage differences in OLS estimates and weighted generalized least 

squares estimates of APCE and ROA are 73.37 % and 214.02 %, respectively 

(Tables A.7 and 4.18). The standard error values of weighted generalized least 

squares estimates are generally less than that for OLS estimates (Tables A.7 and 

4.18). The weighted generalized least squares regression prediction model is 

considerably better than the classical multiple linear regression prediction model, 

with the largest difference noticed in the MSE statistic (Tables A.7 and 4.18). The 

weighted generalized least squares regression validation model is considerably 

better than the classical multiple linear regression validation model, with the largest 

difference noticed in the MSEP statistic (Tables A.7 and 4.18). The differences 

between the models for the classical multiple linear regression and weighted 

generalized least squares regression fits for the negative ROCE data set are due to 

  Fitted 

Parameter Weighted generalized least 
squares regression 

Estimate 
 

P-value 
 

Intercept -20.144 (4.966) 0.000 

APCE 17.827 (3.538) 0.000 

ROA 1.472 (0.175) 0.000 

Regression Equation Statistics 

    0.559 

     
  0.548 

 MSE 57.125 

        Not applicable 

Validation 

    0.078 

      
  0.055 

 MSEP 387.985 
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the heteroscedasticity in the data (Figure 4.20). The application of robust maximum 

likelihood regression to the ROCE data is illustrated in the next section. 

 

4.1.5 Robust Maximum Likelihood Regression  

The Positive ROCE Data Set 

The stepwise directed search regression results of the raw/original positive ROCE 

data were used to construct robust maximum likelihood regression model. Huber 

objective function was used. The results of fitting robust maximum likelihood 

regression model are displayed in Table 4.19. 

 

                  Table 4.19. Robust maximum likelihood regression model for  
                   ROCE with standard errors of estimates in parentheses 
 

 Fitted 

Parameter Robust maximum likelihood regression 

Estimate 

 

P-value 

 
Intercept -0.816 (0.214) 0.000 

ROE 0.857 (0.003) 0.000 

D/E -0.081 (0.007) 0.000 

DY -0.082 (0.012) 0.000 

CE 0.000 (0.000) 0.000 

Regression Equation Statistics 

    0.998 

     
  0.997 

 MSE 6.739 

        Not applicable 

Validation 

    0.995 

      
  0.993 

 MSEP 5.499 

 

The percentage differences in OLS estimates and maximum likelihood estimates of 

ROE, D/E, DY, and CE are 1.039 %, 2.410 %, 5.750 %, and 0 %, respectively 

(Tables A.5 and 4.19). The standard error values of maximum likelihood estimates 

are slightly less than those for OLS estimates (Tables A.5 and 4.19). The robust 
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maximum likelihood regression prediction model is slightly better than the classical 

multiple linear regression prediction model, with the largest difference noticed in the 

MSE statistic (Tables A.5 and 4.19). The robust maximum likelihood regression 

validation model is slightly better than the classical multiple linear regression 

validation model, with the largest difference noticed in the MSEP statistic (Tables A.5 

and 4.19). The differences between the models for the classical multiple linear 

regression and robust maximum likelihood regression fits for the positive ROCE data 

set are due to the non-normality distribution of ROCE (Figure 4.1) and 

heteroscedasticity characteristics of the data (Figure B.3). 

The Negative ROCE Data Set 

The stepwise directed search regression results of the raw/original modulus values 

of the negative ROCE were used to construct robust maximum likelihood regression 

model. Huber objective function was used. The results of fitting robust maximum 

likelihood regression model are shown in Table 4.20. 

 

                  Table 4.20. Robust maximum likelihood regression model for  
                  ROCE with standard errors of estimates in parentheses 
 

  Fitted 

Parameter Robust maximum likelihood regression 

Estimate 

 

P-value 

 
Intercept -35.061 (3.016) 0.000 

APCE 32.142 (1.850) 0.000 

ROA -1.171 (0.039) 0.000 

          Regression Equation Statistics 

    0.990 

     
  0.984 

 MSE 98.883 

        Not applicable 

Validation 

    0.999 

      
  0.993 

 MSEP 121.661 
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The percentage differences in OLS estimates and maximum likelihood estimates of 

APCE and ROA are 51.99 % and 9.30 %, respectively (Tables A.7 and 4.20). The 

standard error values of maximum likelihood estimates are far less than those for 

OLS estimates (Tables A.7 and 4.20). The robust maximum likelihood regression 

prediction model is considerably better than the classical multiple linear regression 

prediction model, with the largest difference noticed in the MSE statistic (Tables 

Tables A.7 and 4.20). The robust maximum likelihood regression validation model is 

considerably better than the classical multiple linear regression validation model with 

largest differences noticed in the        
  and MSEP statistics (Tables A.7 and 4.20). 

The appreciable large differences between the models for the classical multiple 

linear regression and robust maximum likelihood regression fits for the negative 

ROCE data set are due to the non-normality distribution of ROCE (Figure 4.2) and 

heteroscedasticity characteristics of the data (Figure 4.20). The next section gives a 

discussion of the results.  

 

4.2 Discussion of Results 

4.2.1 Classical Multiple Linear Regression Analysis 

The Positive ROCE Data Set 

The results are:  

1) There is positive elasticity of ROCE with respect to change in ROE, and are  

negative elasticities of ROCE with respect to changes in D/E and CE. 

2) The lead key determinant of ROCE is ROE, followed by D/E and CE. 

This indicates that practitioners should maximize ROE, and minimize D/E and CE in 

order to generate maximum profit. Given that ROE has a positive elasticity and thus 
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more powerful in maximizing profit, practitioners should consider prioritizing ROE in 

crafting marketing strategies.  

The Negative ROCE Data Set 

The results are:  

1) There is positive effect on ROCE with respect to change in APCE, and are  

negative effects on ROCE with respect to changes in ROA and MC. 

2) The lead key determinant of ROCE is APCE, followed by ROA and MC comes far  

much later. 

This shows that practitioners should minimize ROA and MC, and maximize APCE in 

order to minimize risk of making loss. Given that ROA and MC have negative effects 

and thus more influential in minimizing risk, practitioners should prioritize ROA and 

MC in crafting marketing strategies.  

Comparing with Previous Studies 

The results are more and less precise than those found by previous studies (Aanu et 

al., 2014; Azhagaih and Gavoury, 2011; Mohamad and Saad, 2010; Nimalathasan 

and Brabete, 2010; Ray, 2011; Sulait, 2010), indicating that ROCE is quite difficult to 

predict. This suggests that the key determinants are also important sources of 

variability in ROCE of individual companies that the practitioners need to work with.  

 

4.2.2 Principal Components Regression  

The Positive ROCE Data Set 

The results are: 

1) There are positive effects on ROCE with respect to changes in all key  

determinants. 

2) The lead key determinant of ROCE is PC4 and followed closely by PC2. 
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Practitioners should maximize and prioritize all key determinants in order to generate 

maximum profit and when crafting marketing strategies, respectively.  

The Negative ROCE Data Set 

The results are: 

1) There are negative effects on ROCE with respect to changes in all key  

determinants. 

2) The lead key determinant of ROCE is PC3 and followed by PC1. 

Practitioners should minimize and prioritize all key determinants in order to minimize 

risk of making loss and when crafting marketing strategies, respectively.  

Comparing with Classical Multiple Linear Regression Analysis 

In the discussion, the results indicate less precision of the principal components 

regression models, reflecting that using principal components as independent 

variables do not improve classical multiple linear regression model prediction for the 

two data sets. This suggests that the principal components regression models have 

led to accounting less of the total variation, highlighting that the key determinants are 

less important sources of variability in ROCE of individual companies.  

 

4.2.3 Generalized Least Squares Regression  

In the discussion, the results indicate more precision of the weighted generalized 

least squares regression model than the classical multiple linear regression model, 

signifying that improvements in modelling ROCE using weighted generalized least 

squares regression is possible for the positive and negative data sets. This suggests 

that the independent variables in the weighted generalized least squares regression 

models are important sources of variability in ROCE of individual companies that the 

practitioners need to work with. 
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The Positive ROCE Data Set 

The results are:  

1) There is positive effect on ROCE with respect to change in ROE and DY, and are  

negative effects on ROCE with respect to changes in D/E and CE. 

2) The lead key determinant of ROCE is ROE, followed by DE, DY, and CE. 

This indicates that practitioners should maximize ROE and DY, and minimize D/E 

and CE in order to generate maximum profit. Thus practitioners should prioritize 

ROE and DY in crafting marketing strategies.  

The Negative ROCE Data Set 

The results are:  

1) There is positive effect on ROCE with respect to changes in APCE and ROA. 

2) The lead key determinant of ROCE is APCE and ROA comes far much later. 

Practitioners should maximize all key determinants in order to minimize risk of 

making loss. Thus practitioners should not prioritize key determinants when crafting 

marketing strategies. 

 

4.2.4 Robust Maximum Likelihood Regression 

The differences between the classical multiple linear regression model and robust 

maximum likelihood regression model for the positive ROCE data set and negative 

ROCE data set, point to the danger of using classical multiple linear regression 

model when some of the assumptions are not satisfied. This leads to wrong decision 

making about the effects of variables upon ROCE resulting in incorrect levels of 

company performance. Maximum likelihood estimates have a higher breakdown 

point; and are more consistent, sufficient and efficient than OLS estimates; making 

robust maximum likelihood regression more suitable for modelling ROCE than 
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classical multiple linear regression. In the discussion, the results show that improving 

classical multiple linear regression using robust maximum likelihood regression in 

modelling ROCE is very possible for the two data sets. This reflects that the 

independent variables in the robust maximum likelihood regression models are major 

sources of variability of individual companies contributing to ROCE, that the 

practitioners need to work with. 

The Positive ROCE Data Set 

The results are:  

1) There is positive effect on ROCE with respect to change in ROE, and are  

negative effects on ROCE with respect to changes in D/E and DY. 

2) The lead key determinant of ROCE is ROE, followed by DY and D/E comes very  

closely. 

This indicates that practitioners should maximize ROE, and minimize D/E and DY in 

order to generate maximum profit. Thus practitioners should prioritize ROE in 

crafting marketing strategies.  

The Negative ROCE Data Set 

The results are:  

1) There is positive effect on ROCE with respect to change in APCE and negative 

effect on ROCE with respect to change in ROA. 

2) The lead key determinant of ROCE is APCE and ROA comes far much later. 

Practitioners should minimize ROA and maximize APCE in order to minimize risk of 

making loss. Thus practitioners should prioritize ROA in crafting marketing 

strategies. 

We provide a summary of this chapter in the next section. 
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4.3 Summary 

Classical multiple linear regression analysis reflected that: 

 

 The final model has a    of 0.928, an     
  of 0.927, a MSE of 0.013, and 

maximum VIF of 1.036 for the positive data set.  

 There is positive elasticity of ROCE with respect to change in ROE, and are 

negative elasticities of ROCE with respect to changes in D/E and CE for the 

positive data set. 

 The lead key determinant of ROCE is ROE, followed by D/E and CE for the 

positive data set. 

 The final model has a    of 0.666, an     
  of 0.652, a MSE of 0.149, and 

maximum VIF of 1.025 for the negative data set.  

 There is positive effect on ROCE with respect to change in APCE, and are 

negative effects on ROCE with respect to changes in ROA and MC for the 

negative data set. 

 The lead key determinant of ROCE is APCE, followed by ROA and MC for the 

negative data set. 

 ROCE is difficult to predict.  

 

Principal components regression revealed that: 

 

 The final model has a    of 0.929, an     
  of 0.929, a MSE of 0.069, and 

maximum VIF of 1.064 for the positive data set.  

 There are positive effects on ROCE with respect to changes in all key 

determinants for the positive data set. 
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 The lead key determinant of ROCE is PC4 and followed by PC2 for the 

positive data set. 

 The final model has a    of 0.544, an     
  of 0.532, a MSE of 0.167, and 

maximum VIF of 1.045 for the negative data set.  

 There are negative effects on ROCE with respect to changes in all key 

determinants for the negative data set. 

 The lead key determinant of ROCE is PC3 and followed by PC1 for the 

negative data set. 

 Using principal components as independent variables do not improve 

classical multiple linear regression model prediction for the two data sets.  

 

Generalized least squares regression showed that: 

 

 Improving classical multiple linear regression using weighted generalized 

least squares regression in modelling ROCE is possible for the positive and 

negative data sets.  

 The weighted generalized least squares regression model has a    of 0.920, 

an     
  of 0.919 and a MSE of 0.044 for the positive data set. 

 There is positive effect on ROCE with respect to changes in ROE and DY, 

and are negative effects on ROCE with respect to changes in D/E and CE for 

the positive data set. 

 The lead key determinant of ROCE is ROE, followed by DE, DY and lastly by 

CE for the positive data set.  

 The weighted generalized least squares regression model has a    of 0.559, 

an     
  of 0.548 and a MSE of 57.125 for the negative data set. 
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 There is positive effect on ROCE with respect to changes in APCE and ROA 

for the negative data set. 

 The lead key determinant of ROCE is APCE and followed by ROA for the 

negative data set.  

 

Robust maximum likelihood regression indicated that: 

 

 Improving classical multiple linear regression using robust maximum 

likelihood regression in modelling ROCE is possible for the positive and 

negative data sets.  

 The robust maximum likelihood regression model has a    of 0.998, an     
  

of 0.997 and a MSE of 6.739 for the positive data set. 

 There is positive effect on ROCE with respect to change in ROE, and are 

negative effects on ROCE with respect to changes in D/E and DY for the 

positive data set. 

 The lead key determinant of ROCE is ROE, followed by DY and lastly by D/E 

for the positive data set.  

 The robust maximum likelihood regression model has a    of 0.990, an     
  

of 0.984 and a MSE of 98.883 for the negative data set. 

 There is positive effect on ROCE with respect to change in APCE and 

negative effect on ROCE with respect to change in ROA for the negative data 

set. 

 The lead key determinant of ROCE is APCE and followed by ROA for the 

negative data set.  

Chapter 5 is the overall conclusion of the dissertation. 
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CHAPTER 5 

 

CONCLUDING REMARKS 

 

This dissertation centred on identifying and quantifying key determinants of Return 

on Capital Employed (ROCE) of individual companies listed on the Johannesburg 

Stock Exchange (JSE), by comparing classical multiple linear regression analysis, 

principal components regression, generalized least squares regression, and robust 

maximum likelihood regression approaches. The procedures of the different 

regression approaches were discussed. 

 

For the positive ROCE data set, the classical multiple linear regression model had a 

   of 0.928, an     
  of 0.927, a MSE of 0.013, maximum VIF of 1.036, and the lead 

key determinant was ROE with positive elasticity, followed by D/E and CE, both with 

negative elasticities.  For the negative ROCE data set, the classical multiple linear 

regression model had a    of 0.666, an     
  of 0.652, a MSE of 0.149, maximum 

VIF of 1.025, and the lead key determinant was APCE with positive effect, followed 

by ROA and MC, both with negative effects. 

 

For the positive ROCE data set, the principal components regression model had a 

   of 0.929, an     
  of 0.929, a MSE of 0.069, maximum VIF of 1.064, and the lead 

key determinant was PC4 (log (ROA), log (ROE), log (OPM)) and followed by PC2 

(log (EY), log (P/E)), both with positive effects.  For the negative ROCE data set, the 

principal components regression model had a    of 0.544, an     
  of 0.532, a MSE 

of 0.167, maximum VIF of 1.045, and the lead key determinant was PC3 (ROA, EY, 
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APCE) and followed by PC1 (MC, CE), both with negative effects. In this 

dissertation, we worked with only two principal components selection methods. It is 

possible to use diverse principal components selection methods in order to explore 

the accuracy and reliability of each method (Fekedulegn et al., 2002; Maitra and 

Yan, 2008). Further investigation of the sources of variation on ROCE could be 

pursued by exploring other shrinkage regression methods. A comparative analysis of 

principal components regression, partial least squares regression, ridge regression, 

least absolute shrinkage and selection operator regression, and elastic net 

regression methods can be performed to ascertain their efficacy. The superior 

method is adopted based on   ,     
  and MSE.  

 

For the positive ROCE data set, the weighted generalized least squares regression 

model had a    of 0.920, an     
  of 0.919, a MSE of 0.044, and the lead key 

determinant was ROE with positive effect, followed by DE with negative effect, DY 

with positive effect and lastly CE with negative effect.  For the negative ROCE data 

set, the weighted generalized least squares regression model had a    of 0.559, an 

    
  of 0.548, a MSE of 57.125, and the lead key determinant was APCE and 

followed by ROA, both with positive effects. Thorough data analyses are essential in 

order to investigate the validity of these findings. 

 

For the positive ROCE data set, the robust maximum likelihood regression model 

had a    of 0.998, an     
  of 0.997, a MSE of 6.739, and the lead key determinant 

was ROE with positive effect, followed by DY and lastly D/E, both with negative 

effects. For the negative ROCE data set, the robust maximum likelihood regression 

model had a    of 0.990, an     
  of 0.984, a MSE of 98.883, and the lead key 
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determinant was APCE with positive effect and followed by ROA with negative effect. 

The work presented here was restricted to the general approach of robust regression 

method. Future research work could focus on higher breakdown point, more efficient 

and more equivariant robust; and nonparametric regression methods, such as, least 

absolute deviation, least trimmed squares, least median of squares, modified 

maximum likelihood, Theil, weighted Theil, and Winsorized least squares as 

described in Koller and Stahel (2011), and Mutan (2004). Simulation studies can be 

carried out in order to establish the behaviours of these regression estimators.  

 

The findings showed that the use of robust maximum likelihood regression produced 

more accurate/precise results compared to those obtained using the three competing 

approaches, because it has a higher breakdown point and is more consistent, 

sufficient and efficient. Besides that, the use of robust maximum likelihood 

regression was considered less complex due to no or minimal conditions. However, 

assessment of models performance suggested that the constructed models can also 

be used for identification and quantification of key determinants of ROCE. This 

study’s findings suggest that companies management can establish and control 

proper marketing strategies using the key determinants and results of these 

strategies can see an improvement in ROCE. 
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APPENDIX A  

 

ADDITIONAL TABLES 

 

 Table A.1. Stepwise directed search regression model summary and change      
 statistics for the transformed positive ROCE data set 

 

 
Table A.2. Correlation coefficients and the associated p-values in parentheses for 
the transformed negative ROCE data set 
 

 Log 

ROCE APCE D/A D/E DY EPS EY OPM P/E ROA ROE CE MC SP 

Log 
ROCE 

1 0.407 
(0.00) 

0.310 
(0.01) 

0.045 
(0.70) 

0.104 
(0.36) 

-0.150 
(0.19) 

-0.492 
(0.00) 

-0.018 
(0.88) 

0.218 
(0.054) 

-0.633 
(0.00) 

0.001 
(0.995) 

-0.336 
(0.00) 

-0.369 
(0.00) 

-0.223 
(0.049) 

APCE  1 0.317 
(0.00) 

-0.018 
(0.89) 

-0.024 
(0.83) 

-0.010 
(0.93) 

-0.356 
(0.00) 

0.065 
(0.57) 

0.080 
(0.49) 

-0.145 
(0.20) 

-0.021 
(0.86) 

-0.006 
(0.96) 

-0.046 
(0.69) 

-0.129 
(0.26) 

D/A   1 -0.216 
(0.06) 

-0.041 
(0.72) 

0.014 
(0.91) 

-0.379 
(0.00) 

0.214 
(0.06) 

0.186 
(0.10) 

-0.099 
(0.38) 

0.245 
(0.03) 

-0.078 
(0.49) 

-0.159 
(0.16) 

-0.126 
(0.27) 

D/E    1 -0.008 
(0.94) 

0.021 
(0.86) 

0.261 
(0.02) 

-0.023 
(0.84) 

-0.030 
(0.79) 

-0.007 
(0.95) 

-0.501 
(0.00) 

0.060 
(0.60) 

0.042 
(0.72) 

-0.124 
(0.28) 

DY     1 -0.191 
(0.09) 

0.014 
(0.90) 

0.000 
(0.996) 

0.302 
(0.01) 

-0.008 
(0.95) 

-0.001 
(0.991) 

-0.244 
(0.03) 

-0.033 
(0.78) 

0.104 
(0.37) 

EPS      1 0.096 
(0.40) 

-0.023 
(0.84) 

-0.017 
(0.88) 

-0.002 
(0.99) 

-0.080 
(0.48) 

0.158 
(0.16) 

0.091 
(0.42) 

-0.313 
(0.01) 

EY       1 -0.017 
(0.89) 

-0.062 
(0.59) 

0.295 
(0.01) 

-0.549 
(0.00) 

0.104 
(0.36) 

0.151 
(0.18) 

0.239 
(0.03) 

OPM        1 -0.045 
(0.70) 

0.064 
(0.57) 

0.06 
(0.60) 

0.049 
(0.67) 

-0.092 
(0.42) 

-0.077 
(0.50) 

P/E         1 -0.040 
(0.73) 

0.001 
(0.996) 

-0.229 
(0.04) 

-0.351 
(0.00) 

-0.156 
(0.17) 

Variables as 

retained by 

stepwise 

directed search 

   

 

    
  

  

MSE 

            

   

Change 

 

 

F 

Change 

 

DF1 

 

DF2 

 

P-value 

Change  

ROE 0.255 0.253 0.147 0.255 94.620 1 276 0.000 

D/E 0.297 0.292 0.139 0.042 36.605 2 275 0.000 

CE 0.324 0.317 0.135 0.027 14.247 3 274 0.000 

EPS 0.366 0.357 0.127 0.042 4.398 4 273 0.000 

DY 0.386 0.375 0.123 0.020 5.141 5 272 0.000 
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ROA          1 0.047 
(0.68) 

0.111 
(0.33) 

0.142 
(0.211) 

0.098 
(0.391) 

ROE           1 0.004 
(0.97) 

0.006 
(0.96) 

-0.014 
(0.90) 

CE            1 0.917 
(0.00) 

0.131 
(0.25) 

MC             1 0.317 
(0.00) 

SP              1 

 
 

 

Table A.3. Stepwise directed search regression model summary and change 
statistics for the transformed created negative ROCE data set 

 

 
 
 
 
Table A.4. Stepwise directed search regression model summary and change                    
statistics for the raw positive ROCE data set 

 
   
       
 
 
 

Variables as 

retained by 

stepwise 

directed search 

   

 

    
  

  

MSE 

            

   

Change 

 

 

F 

Change 

 

DF1 

 

DF2 

 

P-value 

Change  

ROA 0.400 0.393 0.312 0.400 54.420 1 77 0.000 

APCE 0.502 0.489 0.262 0.102 13.131 2 76 0.000 

MC 0.577 0.560 0.226 0.075 4.237 3 75 0.000 

Variables as 

retained by 

stepwise 

directed 

search 

   

 

    
  

  

MSE 

 

   

Change 

 

 

 

F 

Change 

 

DF1 

 

DF2 

 

P-value 

Change 

ROE 0.973 0.973 82.992 0.973 9.931     1 276 0.000 

D/E 0.975 0.974 78.245 0.002 4.655     2 275 0.000 

DY 0.975 0.975 76.701 0.000 1.686     3 274 0.000 

CE 0.976 0.975 75.419 0.001 0.85     4 273 0.000 
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       Table A.5. Classical multiple linear regression and generalized least 
       squares regression models for ROCE with standard errors of estimates 
       in parentheses for the raw positive ROCE data set 
 

  Fitted 

Parameter Classical multiple linear 

regression 

Generalized least 

squares regression 

Estimate 

 

P-value 

 

Estimate 

 

P-value 

 
Intercept -2.389  (0.600) 0.000 -2.389  (0.600) 0.000 

ROE 0.866 (0.008) 0.000 0.866 (0.008) 0.000 

D/E -0.083 (0.019) 0.000 -0.083 (0.019) 0.000 

DY -0.087 (0.035) 0.013 -0.087 (0.035) 0.013 

CE -2.898      

(0.000) 

0.018 -2.898      

(0.000) 

0.018 

          Regression Equation Statistics 

    0.976    0.976 

     
  0.975     

  0.975 

 MSE 75.419 MSE 75.419 

        1.013        Not applicable 

Validation 

    0.897    0.897 

      
  0.895     

  0.895 

 MSEP 108.028 MSEP 108.028 

 
 
 
 
Table A.6. Stepwise directed search regression model summary and change                    
 statistics for the raw negative ROCE data set 

 

 

 

 

 

 

Variables as 

retained by 

stepwise 

directed 

search 

   

 

    
  

  

MSE 

 

   

Change 

 

 

 

F 

Change 

 

DF1 

 

DF2 

 

P-value 

Change 

APCE 0.496 0.490 4892.493 0.496 75.823 1 77 0.000 

ROA 0.815 0.810 1817.788 0.319 91.835 2 76 0.000 
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         Table A.7. Classical multiple linear regression and generalized least  
         squares regression models for ROCE with standard errors of estimates 
         in parentheses for the raw negative ROCE data set 
 

  Fitted 

Parameter Classical multiple linear 

regression 

Generalized least 

squares regression 

Estimate 

 

P-value 

 

Estimate 

 

P-value 

 
Intercept -79.401  (8.751) 0.000 -79.401 (8.751) 0.000 

APCE 66.947 (5.367) 0.000 66.947 (5.367) 0.000 

ROA -1.291 (0.113) 0.000 -1.291 (0.113) 0.000 

          Regression Equation Statistics 

    0.815    0.815 

     
  0.810     

  0.810 

 MSE 1817.788 MSE 1817.788 

        1.021        Not applicable 

Validation 

    0.007    0.007 

      
  -0.018     

  -0.018 

 MSEP 192492.427 MSEP 192492.427 
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APPENDIX B 

  

ADDITIONAL FIGURES 

 

  

   

 

 

 

                             

 
Figure B.1. Normal Q-Q plot, normal P-P plot and frequency distribution plot of the 
classical multiple linear regression standardized residuals for the transformed 
positive ROCE data set 
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                    Figure B2. Scatter plot of standardized residuals versus  
                    standardized predicted values of classical multiple linear  
                    regression for the transformed positive ROCE data set 
 
 

 

 

 

 

 

 

 

 

 

 
 
                      
                    
                   Figure B.3. Scatter plot of standardized residuals versus  
                   standardized predicted values of the fitted classical multiple  
                   linear regression model for the raw positive ROCE data set 
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APPENDIX C 

 

R CODE FOR GENERALIZED LEAST SQUARES REGRESSION 

 

Positive ROCE Data Set  

 
## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

>require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
PositiveData 

>PositiveData<-read.spss("E:/POSITIVE DATA.sav") 

 
## We load the nlme package which enables us to perform the Generalized 
Least Squares Regression analysis 

>Library(nlme) 

## We perform the Generalized Least Squares Regression analysis. ROCE is 
the dependent variable 

>g<-gls(ROCE~APCE+ROA, PositiveData) 

Finally we get the summary statistics for the Generalized Least Squares 
Regression analysis 

>Summary(g) 

 

Positive ROCE Validation Data Set   

## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
PositiveValidationData 

PositiveValidationData<-read.spss("E:/POSITIVE VALIDATION DATA.sav") 

 
## We load the nlme package which enables us to perform the Generalized 
Least Squares Regression analysis 

Library(nlme) 

## We perform the Generalized Least Squares Regression analysis. ROCE is 
the dependent variable 

g<-gls(ROCE~APCE+ROA, PositiveValidationData) 

Finally we get the summary statistics for the Generalized Least Squares 
Regression analysis 

Summary(g) 
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Negative ROCE Data Set  

 
## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

>require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
NegativeData 

>NegativeData<-read.spss("E:/NEGATIVE DATA.sav") 

 
## We load the nlme package which enables us to perform the Generalized 
Least Squares Regression analysis 

>Library(nlme) 

## We perform the Generalized Least Squares Regression analysis. ROCE is 
the dependent variable 

>g<-gls(ROCE~APCE+ROA, NegativeData) 

Finally we get the summary statistics for the Generalized Least Squares 
Regression analysis 

>Summary(g) 

 
Negative ROCE Validation Data  

## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
NegativeValidationData 

NegativeValidationData<-read.spss("E:/NEGATIVE VALIDATION DATA.sav") 

 
## We load the nlme package which enables us to perform the Generalized 
Least Squares Regression analysis 

Library(nlme) 

## We perform the Generalized Least Squares Regression analysis. ROCE is 
the dependent variable 

g<-gls(ROCE~APCE+ROA, NegativeValidationData) 

Finally we get the summary statistics for the Generalized Least Squares 
Regression analysis 

Summary(g) 
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APPENDIX D 

 

R CODE FOR ROBUST MAXIMUM LIKELIHOOD REGRESSION 

 

Positive ROCE Data Set 
 

 
## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

>require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
PositiveData 

>PositiveData<-read.spss("E:/POSITIVE DATA.sav") 

 
## We load the MASS package which enables us to perform Robust Maximum 
Regression analysis 

>Library(MASS) 

## We perform the Robust Maximum Regression analysis. ROCE is the 
dependent variable 

>g<-rlm(ROCE~APCE+ROA, PositiveData) 

Finally we get the summary statistics for the Robust Maximum regression 
analysis 

>Summary(g) 

 

Positive ROCE Validation Data Set 
 

## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

> require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
PositiveValidationData 

>PositiveValidationData<-read.spss("E:/ POSITIVE VALIDATION DATA.sav") 

 
## We load the MASS package which enables us to perform Robust Maximum 
Regression analysis 

>Library(MASS) 

## We perform the Robust Maximum Regression analysis. ROCE is the 
dependent variable 

>g<-rlm(ROCE~APCE+ROA, PositiveValidationData) 

Finally we get the summary statistics for the Robust Maximum regression 
analysis 

>Summary(g) 
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Negative ROCE Data Set 
 

 
## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

>require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
NegativeData 

>NegativeData<-read.spss("E:/NEGATIVE DATA.sav") 

 
## We load the MASS package which enables us to perform Robust Maximum 
Regression analysis 

>Library(MASS) 

## We perform the Robust Maximum Regression analysis. ROCE is the 
dependent variable 

>g<-rlm(ROCE~APCE+ROA, NegativeData) 

Finally we get the summary statistics for the Robust Maximum regression 
analysis 

>Summary(g) 

 

Negative ROCE Validation Data Set 
 

## First we load the “foreign” package in order to read the data files 
since the data files were generated using SPSS 

> require(foreign) 

## Here we import the SPSS file into R, and assign it to the variable 
NegativeValidationData 

>NegativeValidationData<-read.spss("E:/NEGATIVE VALIDATION DATA.sav") 

 
## We load the MASS package which enables us to perform Robust Maximum 
Regression analysis 

>Library(MASS) 

## We perform the Robust Maximum Regression analysis. ROCE is the 
dependent variable 

>g<-rlm(ROCE~APCE+ROA, NegativeValidationData) 

Finally we get the summary statistics for the Robust Maximum regression 
analysis 

>Summary(g) 

 

 


