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Abstract

The BDI agent architecture includes a plan library containing pre-defined 

plans. The plan library is included in the agent architecture to reduce the 

need for expensive means-end reasoning, however can hinder the agent’s 

effectiveness when operating in a changing environment. Existing research 

on integrating different planning methods into the BDI agent to overcome 

this limitation include HTNs, state-space planning and Graphplan. Genetic 

Algorithms (GAs) have not yet been used for this purpose.

This dissertation investigates the feasibility of using GAs as a plan 

modification mechanism for BDI agents. It covers the design of a plan 

structure that can be encoded into a binary string, which can be operated 

on by the genetic operators. The effectiveness of the agent in a changing 

environment is compared to an agent without the GA plan modification 

mechanism.

The dissertation shows that GAs are a feasible plan modification mech-

anism for BDI agents.
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Chapter 1

Introduction

Autonomous agents are a form of software program that is capable of inde-

pendent actions in pursuit of its goals. While the exact definition of what

constitutes an agent is not universally agreed upon, some of the common

criteria used to describe agents include the requirement to be situated in

a specific environment, to be able to sense the environment and to act on

the environment in pursuit of its own agenda (Franklin and Graesser 1996;

Russell and Norvig 2010; Wooldridge and Jennings 1995a).

Based on those definitions, this dissertation will define an agent as a

piece of software which is in an environment and is part of that environment

and which can perceive and act upon that environment in pursuit of its

goals, without input from an external source.

Agents began as an extension of Distributed Artificial Intelligence (DAI),

a sub-field of Artificial Intelligence (AI). One of the earliest agent architec-

tures to be explored was the deliberative architecture. The earliest of these

deliberative architecture agents were GPS (Allen Newell and Herbert A

Simon 1961) and STRIPS (Fikes and Nilsson 1972). A later architecture,

better equipped to handle time-constrained problems, was the reactive AI

theory (R. Brooks 1986; R. A. Brooks 1990).

In the late 1980s and early 1990s, researchers began looking at alterna-
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tives to the purely reactive architecture. One of the results of this was the

Belief-Desire-Intention (BDI) architecture (Jennings et al. 1998).

The BDI architecture is based on the theory of practical reasoning

(M. E. Bratman et al. 1991). In the theory intentions are considered as in-

complete, structured courses of action. The theory also covers what makes

intentions rational, mostly relating to whether the intention is achievable

and how a rational agent should act when intentions that it has are no

longer achievable.

While originally a theory of philosophy (M. Bratman 1987), Bratman,

along with Israel and Pollack, considered the applications of the theory

of practical reasoning to Artificial Intelligence (AI) (M. E. Bratman et al.

1991). The architecture that they proposed for agents, the BDI architec-

ture, is intended for resource-bounded rational agents. The basic compo-

nents of the architecture include beliefs, what the agent knows about the

environment; desires, general goals that the agent wishes to achieve and

intentions, goals that the agent has committed to and that are achievable.

The BDI architecture also includes a plan library, a set of known actions

that can be used to achieve goals.

While having a pre-built plan library does allow the agent to pursue

its goals quickly and to avoid the cost of resource-intensive deliberative

planning (Walczak et al. 2006), the library does constrain the agent to the

environment it was designed for and the plans can become inappropriate

if the environment changes sufficiently. Changes in the environment can

result in the plans contained within the library becoming less efficient and

even causing them to fail to deliver the results the agent expects (Meneguzzi

et al. 2004).

This lack of deliberative planning in BDI agents has been the topic of

many papers over recent years with various options proposed for extending

the BDI architecture to include some form of planning.
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Meneguzzi et al (Meneguzzi et al. 2004) added a form of propositional

planning using a Graphplan-based algorithm and De Silva and Padgham

(Silva and Padgham 2004; De Silva and Padgham 2005) investigated inte-

grating hierarchical task networks with BDI agents. Walczak et al (Wal-

czak et al. 2006) investigated the integration of a state-based planner into

a BDI Agent. The 3APL agent programming language allows for plan re-

vision rules to be defined, allowing plans to change during execution (Ten

Hoeve et al. 2003). The XFRM planner, designed for robots in changing

environments, revises the plans based on their outcomes (Beetz and Mc-

Dermott 1994). A plan modification system for reactive agents has also

been investigated (Boella and Damiano 2002). Their system allows for

plans to be decomposed into partial plans and then reassembled to form

different plans. This use of partial plans is similar to the plan design in

this dissertation.

These bodies of research are discussed in more detail in Section 2.5.

1.1 Problem Statement

The BDI Agent architecture uses a plan library, defined at the time that

the agent is created, which it uses to achieve its goals. This plan library is

fixed for the life of the agent.

The fixed plan library exists so that the agent does not have to per-

form resource-intensive planning during its normal execution. In a static

environment, a static plan library is sufficient. In a dynamic environment,

the static plan library may be problematic, as the plans may become less

suitable as the environment changes (Meneguzzi et al. 2004).

Previous research into integrating planning have investigated state-

based planners, hierarchical task networks and propositional planning (Wal-

czak et al. 2006; Silva and Padgham 2004; De Silva and Padgham 2005;
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Meneguzzi et al. 2004). However there has been no investigation into using

genetic algorithms to modify plans within a BDI agent.

Genetic Algorithms (GAs) are a form of evolutionary computation, orig-

inally devised by Holland (John H Holland 1975). They are search and op-

timisation algorithms based on the principal of biological evolution. GAs

have been applied to many problem areas, including that of motion plan-

ning and network routing (Ahuactzin et al. 1991; Sugihara and Smith 1997;

Ahn and Ramakrishna 2002).

GAs have been used in combination with agents in a number of ways.

They have been used to evolve a genotype from which agents can be devel-

oped, as well as to select intentions as part of the deliberation cycle.

In this dissertation GAs will be investigated to determine whether they

are a feasible method of plan modification for BDI agents. The scenario in

which this will be tested is that of a simulated network routing problem.

A directed graph is used for the network. The BDI agents will be tasked

with transmitting messages across the simulated network, using the route

with the lowest latency. The message transmission times will be used to

determine the performance of the agents.

1.2 Research Question

Based on the problem statement defined above, the question which this

study attempts to answer can be refined as follows:

Is a GA a feasible mechanism for plan modification for BDI

agents?
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1.3 Methodology

The methodology in this dissertation is the experiment. The aim of the

study is to test a theory, specifically the theory that GAs can be a feasible

plan modification mechanism for BDI agents. The testing of a theory is one

of the goals of experimental research in Computer Science (Olivier 2009).

In order to test the theory, this study uses a simulated communication

network as the environment. A BDI agent, referred to as the Environ-

ment Agent (EA), operates on the environment to simulate entropy. This

agent changes the latency on nodes and links within the network. These

changes ensure that the plans with which the BDI agent starts will change

in efficiency as time progresses

The component responsible for delivering messages across the network

is a BDI Agent referred to as the Messaging Agent (MA). The MA has a

set of plans which are valid when each test starts. Due to the operation of

the EA, the plans may not remain valid for the duration of the test. The

performance of the MA will change over the course of the test due to the

operation of the EA. The exact definition of the performance of the agent,

and how it is measured, are discussed in Section 4.2.3.

The GA plan modification component is integrated into the MA. The

comparisons between the performance of the MA without the GA plan

modification component and performance of the MA with the GA plan

modification component is used to determine whether or not the GA is an

effective mechanism for plan modification in this specific environment.

1.4 Scope

The scope of this dissertation is limited to determining whether GAs can

be a feasible mechanism for plan modification in BDI Agents within a simu-
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lated network environment. As such, the only comparisons will be between

the BDI Agent running without the GA plan modification mechanism and

the BDI Agent running with the GA plan modification mechanism.

1.5 Limitations and Exclusions

This dissertation is not concerned with creating new network routing pro-

tocols nor will it include any comparisons with existing network routing

algorithms.

The GA plan modification process is run synchronously with the MA

in this dissertation. Asynchronous operations are not investigated.

No form of predictive analysis using the GA plan modification process

is considered.

It is not the goal of this study to compare the GA plan modification

mechanism with any other form of planning.

Only one plan design and GA encoding will be considered. Comparisons

between different forms of plan encoding will not be investigated.

1.6 Significance

This study is significant as there have been no previous studies using GAs

for planning within BDI Agents. Other planning mechanisms, such as

HTNs and propositional planning, have been used (Walczak et al. 2006;

Silva and Padgham 2004; De Silva and Padgham 2005; Meneguzzi et al.

2004). GAs have been used for other aspects of BDI agents, including

the initial design (Calderoni, Marcenac, and Courdier 1998; Calderoni and

Marcenac 1998; Dellaert and Beer n.d.), but there does not appear to

have been any research on using GAs for planning mechanisms within BDI

agents.
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GAs have been used in planning in areas other than agents, including

motion planning (Sugihara and Smith 1997; Ahuactzin et al. 1991) and

network routing (Ahn and Ramakrishna 2002; Nagib and Ali 2010).

1.7 Dissertation Layout

This document is laid out as follows:

Chapter 1 contains the problem statement, research objectives, a sum-

mary of the method, the scope of the study, limitations and exclusions and

the dissertation layout.

Chapter 2 covers the background and details of BDI agents and will

discuss several of the studies on integrating planning into the BDI agent.

Chapter 3 discusses Genetic Algorithms and their use in planning and

network routing problems.

Chapter 4 covers the design of the feasibility study. It will detail how

the Genetic Algorithm is integrated into the BDI agent, how the plans

are structured to allow a Genetic Algorithm to operate on them, and the

options for triggering the plan modification.

Chapter 5 details the results of the experiments and will show what

effect the inclusion of the GAs had on the performance of the MA in the

changing environment.

Chapter 6 summarises the research and suggests possible future lines of

research.
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Chapter 2

Autonomous Agents

In this chapter the literature on Autonomous Agents are discussed with

particular focus on architectures, history and current research. To get a

common ground for discussion, the different definitions of what an agent

is will be examined and summarised. Three architectures, specifically the

reactive, deliberative and Belief-Desire-Intention (BDI) architectures will

be then be discussed in terms of their history, design advantages and short-

comings.

The BDI agent architecture will be discussed in detail. The use of a

plan library will be examined in detail including its advantages and disad-

vantages.

Literature on integrating planning algorithms into BDI agents will be

covered, since the integration is directly relevant to this study. A number

of studies within the area will be examined and discussed.

2.1 History of Agents

The history of autonomous agents is a complex one with diverse roots. Sev-

eral different disciplines within AI as well as disciplines outside of computer

science have contributed to the current state of agent research.
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Agents began as an extension of Distributed Artificial Intelligence (DAI),

a sub-field of Artificial Intelligence (AI). DAI evolved and specialised into

two sub fields, multi-agent systems, which studies interactions between

agents, and autonomous agents, which studies the individual agents.

Within the field of autonomous agents, the deliberative architecture was

one of the first to be developed. It was seen as a natural derivation of the

traditional field of logical planning. The earliest of the planning systems

were GPS (Allen Newell and Herbert A Simon 1961) and STRIPS (Fikes

and Nilsson 1972) in the 1960s and 1970s.

By the mid 1980s it was clear that, in many circumstances, first-order

principles are not adequate when dealing with a time-constrained environ-

ment (Chapman 1989; Wooldridge and Jennings 1995b). From this came

the reactive AI theory (R. Brooks 1986; R. A. Brooks 1990).

In the late 1980s and early 1990s, researchers began looking at alterna-

tives to the purely reactive architecture, which, while well suited to certain

domains and problems, was less suitable for complex tasks, scenarios with

changing tasks or in scenarios where the inputs have to be integrated over

time (Russell and Norvig 2010; Jennings et al. 1998). One outcome was the

BDI architecture, based on theories of human reasoning and thought (M. E.

Bratman et al. 1991).

The other main outcome was the concept of layered architectures, where

an agent has two or more layers, each with a different architecture. Re-

search into layered architectures and their application is still continuing

today (Jamali and Ren 2005).

With the origins and history of agents covered, the varying and often

contradictory definitions for what an agent is, will be discussed next.
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2.2 Definition of an Agent

A review of the literature surrounding agents reveals a number of different

definitions of agent. There are common elements that are found in more

than one of the existing definitions. In this sectio,n several of the definitions

are examined and the commonalities between them discussed.

Russell and Norvig (Russell and Norvig 2010) defined an agent as any-

thing that can be viewed as perceiving its environment and acting upon

that environment. This definition is broad and far reaching and allows

many unrelated items to be classified as agents. For example, a thermostat

could be classified as an agent by this definition.

Maes (Maes 1995) stated that agents are computational systems that

inhabit some complex environment, sense their environment and act upon

it in order to achieve one or more goals.

Wooldridge and Jennings (Wooldridge and Jennings 1995b) offered two

notions of an agent. They offer a weak notion of agency where an agent

has the properties of autonomy, social ability, reactivity and pro-activeness.

Their alternative stronger notion of agency also included mobility, veracity,

rationality and a requirement that an agent will not lie.

Franklin and Graesser (Franklin and Graesser 1996) came to a defi-

nition after an exploration of the varying definitions for agents that had

been mentioned in literature. They stated that “An autonomous agent is

a system situated within and a part of an environment that senses that

environment and acts on it, over time, in pursuit of its own agenda and so

as to effect what it senses in the future.”

The most commonly mentioned elements included in the definition of

an agent are:

• Environment: An agent is situated in and is part of an environment.

Often they are specific to an environment and if placed in a different
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environment can no longer function (Maes 1995).

• Perceptive: The agent perceives its environment through sensors. It

may, depending on the requirements of the architecture, build up an

internal representation of the environment. An agent does not require

input to be given to it by another program or by a user (Russell and

Norvig 2010).

• Reactive: An agent reacts to changes and occurrences in its environ-

ment and acts on that environment in pursuit of its own goals and

objectives. It reacts in a timely manner to changes in the environ-

ment (Wooldridge and Jennings 1995a).

• Flexible: The actions which the agent takes are not scripted or pre-

decided but are chosen by the agent in response to situations that

it has perceived and recognised and in pursuit of goals or objectives

that it has (Franklin and Graesser 1996).

• Autonomous: Agents operate without direct intervention of users

or other programs. Agents have control over their internal state.

Russell and Norvig phrase it as “A system is autonomous to the extent

that its behaviour is determined by its own experience” (Russell and

Norvig 2010).

• Goal-orientated: An agent has objectives and goals. The agent can

take actions that are not a reaction to the environment, but are in

pursuit of one or more of its goals. It must determine, before taking

these actions, that the goals are achievable and that the planned

action advances those goals (Wooldridge and Jennings 1995a).

• Learning: An agent learns or adapts by making changes to its be-

haviour based on previous experiences. Not all agent architectures
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allow for, or encourage learning. The reactive architecture does not

allow for agents to learn or change over time. The BDI architecture

allows new intents to be added to the intention list based on experi-

ences or changes in the environment (Franklin and Graesser 1996).

In summary, it can be said that there are two important aspects that

distinguish an agent from a program.

1. An agent is in an environment and is part of that environment.

2. An agent can perceive and act upon that environment in pursuit of

its goals, without input from an external source.

A program will lack one or more of those aspects. This definition of an

agent will be used for the remainder of this dissertation.

Having looked at the definitions and aspects of what makes an au-

tonomous agent different from a standard computer program, three of the

agent architectures will be examined along with how they are implemented

and how they function.

2.3 Agent Architectures

There are a number of different architectures that have been proposed

and used over the years. Some of the earlier agent architectures were the

deliberative agent architectures (A. Newell and H. A Simon 1976; Fikes

and Nilsson 1972; Wooldridge and Jennings 1995b) and the reactive agent

architectures (R. Brooks 1986).

More recently, the BDI architecture was developed by Bratman (M.

Bratman 1987). It is based on a theory of rational action in humans and

on the tradition of practical reasoning. Practical reasoning is reasoning

about actions and the choosing of actions. It is a form of folk-psychology
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that describes choice of actions in terms of attributes, such as beliefs and

intentions, and behaviour as the interaction between those attributes

In this section three agent architectures are examined namely the De-

liberative Agent architecture, the Subsumption Agent Architecture and the

BDI Agent Architecture.

2.3.1 Deliberative Agents

A deliberative architecture contains a complete and representative symbolic

model of the world in which the agent exists. This environmental model

is expressed in terms of logical formulae. The agent then makes plans

concerning what actions to take in the environment in a logical, deductive

manner, finding the best possible action to take in any circumstance. This

reasoning is based on symbolic manipulation in much the same way that a

theorem-solving application would go about solving a theorem (Wooldridge

and Jennings 1995b).

A well-known planning systems using a deliberative, logical method is

STRIPS developed by Fikes and Nilsson (1972).

There are a number of limitations to a deliberative architecture, deriving

from the use of logical formulae to express the environment in which the

agent operates. To build such an agent, one must translate the environment

into a symbolic description. If the environment is static, then this can be

done completely and accurately within an acceptable time frame. For a

dynamic environment, this symbolic description must be modified as the

environment changes. This modification must be done quickly enough, so

that the agent does not deduce an action based on outdated information.

Another problem with the deliberative agent architecture is one of com-

plexity. Real-world environments are information-rich and can require a

large number of logical formulae to describe completely. The more formu-

lae exist, the more work the symbolic manipulator must do to determine
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the optimum action. It becomes difficult in complex environments to guar-

antee that the symbolic manipulator will complete its work in an acceptable

time, or to guarantee that it will complete at all (Russell and Wefald 1991).

2.3.2 Reactive Agents

R. Brooks (1986) first suggested the reactive architecture as an alternative

to the deliberative architecture. He introduced the Subsumption Agent

Architecture, an architecture built from several simple layers, each con-

structed from one or more finite state machines.

In the Subsumption Agent Architecture, situations that are perceived

in the environment map directly to actions that the agent can take. These

actions are built into several layers, either horizontal or vertical. Lower

layers having a higher priority than higher layers, as shown in Figure 2.1.

The levels are implemented as augmented finite state machines (AFSM).

Figure 2.1: Subsumption Agent Architecture

Each level takes an input from the sensors and has an output. This

output is either an action or an input to another AFSM on the same level.

The state machines can also be inhibited or suppressed. If an AFSM is

suppressed then the input to the AFSM is overridden. If it is inhibited then

the output is suppressed. This simple set up allows one level of behaviour

to override another so as to produce coherent behaviour.
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The Subsumption Agent Architecture, unlike the deliberative architec-

ture, requires no representation of the world (Luck et al. 2003). They can

be fast since there is no planning or symbolic manipulation to be done.

The environmental model does not need to be read to decide on an action

or rewritten in response to a change in the environment. The AFSMs can

be executed in parallel as they are all independent of one another.

It became clear by the early 1990s that the reactive architecture, despite

its simplicity, was well suited to certain agent tasks (Jennings et al. 1998).

There are, however, limitations to the reactive architecture. Since there

is no stored representation of the environment, there must be sufficient

information available in the environment to allow the agent to determine

an acceptable output and since they do not store history and cannot take

into account information that is not available in the environment, they

must take a short-term view.

With the Reactive and Subsumption agent architectures covered, the

Belief-Desire-Intention is discussed in the next section

2.3.3 Belief-Desire-Intention Agents

The BDI architecture, as mentioned before, is based on a theory of rational

action in humans and on the tradition of practical reasoning (M. Bratman

1987).

Practical reasoning is reasoning about actions. Bratman describes it as

the process of weighing the considerations for and against various options,

based on desires and current beliefs about the environment (M. E. Bratman

1990).

The theory of practical reasoning focuses mainly on intentions and the

part that these play in reasoning and in constraining the actions that an

agent must consider. Actions that are incompatible with the current in-

tention can be discarded with no further consideration necessary.
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As a practical example of this, suppose one were to have an intention

to drive from Johannesburg to Pretoria. Actions which involve booking

flights or checking the swell off Port Elizabeth can be discarded, as they

do not in any way assist in achieving the current intention.

The BDI architecture has three main components (Wooldridge 1995).

It has beliefs about the environment, desires that the agent is attempting

to achieve and intentions that it is currently working to bring about.

The beliefs which an agent holds contain all the information that the

agent has about its environment. Sometimes the beliefs will also contain

information about the agent’s internal state. The beliefs may contain full

or partial information on the environment, depending on whether the en-

vironment is fully observable or partially observable (Russell and Norvig

2010).

The desires are the goals that it currently has, that is the tasks that it

is attempting to achieve. The desires can be active goals that could become

intentions. They can be inactive desires if they are not achievable under

the current set of beliefs or current state of the environment. The process

of generating the desires is the core of the reasoning abilities of the agent.

Intentions are desires that the agent has committed to achieving. Inten-

tions must be possible to achieve with the current beliefs. The agent must

not commit to achieving a goal that it cannot achieve under the currently

known conditions.

Intentions influence the beliefs and in turn should influence future rea-

soning. If an agent intends to achieve something, it should hold a belief

that the action will be performed and the intention achieved. Hence it can

develop future plans based on intentions that have not been achieved.

The requirement for intentions to be rational is one of the key features

of the BDI Agent. For intentions to be considered rational, they must meet

several criteria (Wooldridge 2000).

25



• Intentions must be achievable. It is not rational to intend to achieve

a goal that cannot be achieved, either due to the state of the en-

vironment or to limitations of the agent. If an intention cannot be

achieved due to the current state of the environment, then it must

be discarded. It is possible that the intention may be generates at a

later time, from the desires, if the state of the environment at that

later time allows for the intention to be achieved.

• Intentions must lead to action. It is not rational to hold an intention

and never to act upon it.

• Intentions must persist. Intentions should be held until they are

achieved or are no longer achievable.

• Intentions must be discarded if they cannot be achieved. It is not

rational to retain an intention that can no longer be achieved either

due to the actions of the agent or due to environment changes.

The main functions that operate on the components of the BDI archi-

tecture are the option generation function, the filtering function and the

action selection function. These are shown in Figure 2.2.

The option-generation function takes the current beliefs and desires

and formulates a new list of desires. The option-generation function is the

core of the reasoning capability of the BDI agent. The resulting desires

generated by the option-generation function must be consistent with the

current beliefs.

The filtering function takes the current beliefs, the current desires and

the current intentions and forms a new set of intentions. The new set

of intentions will be based on the previously held set of intentions and on

changes that have occurred in the environment since the previous intentions

were generated. Intentions that can no longer be achieved, intentions that
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have too high a cost and intentions that have already been achieved will

be dropped.

The action-selection function takes the current list of intentions and se-

lects one option to pursue based upon the current state of the environment

and upon the plans that it has in its plan library.

The option-generation, filtering and action-selection functions are col-

lectively known as the deliberation phase (Wooldridge 1995). Below is a

high-level description of the deliberation phase of a BDI agent:

1. Updating of Beliefs: The agent will update its set of beliefs based the

current beliefs that it holds and on what it can observe in its environ-

ment. The agent may also update beliefs based on the achievability

of desires or intentions that it has (Rao and Georgeff 1995).

2. Updating of Desires: The desires will be updated based on the current

desires and intentions and on the new set of beliefs.

3. Updating of Intentions: The agent will select new intentions based

on the current intentions and desires. These intentions will be ones

that, based on the state of the environment, it believes it can achieve.

4. Select Action: In this phase the agent takes the set of intentions, i.e.

goals that it has committed to achieving and, based on the current

state of the environment, selects a plan that it will use to achieve said

intention.

This sequence is illustrated in Figure 2.2.

The BDI architecture uses a library of built-in plans. These plans store

the implementation details for the selected intentions (Wooldridge 1995).

This gives the agent the ability to select from a number of possible plans

based on the current set of beliefs. Rao and Georgeff (1995) described this

plan library as specifications of the options that the agent has for achieving
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Figure 2.2: BDI Agent Deliberation Phase
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its desires and M. E. Bratman et al. (1991) describe the plan library as a

set of recipes for achieving desired outcomes.

The reason this plan library exists is because agents are considered to

be resource-bounded. The existence of a known set of options that have an

intended effect in a situation, defined by a set of beliefs, allows the agent

to reduce the amount of costly reasoning that it must do. The purpose of

a plan library is three-fold (M. E. Bratman et al. 1991):

• Drive the means-end reasoning that the agent engages in. If an agent

has no plans covering a set of beliefs and desires then the agent should

not consider those desires when formulating intentions as it will have

no ability to achieve that desire.

• Provide constraints on the options that the agent needs to consider

on any execution cycle, as it can avoid considering options that it has

no available plan to achieve.

• Influence the beliefs that the agent holds. As an example an agent

that only has plans involving the order in which to visit a number of

shops during a short period during the day does not need to hold or

evaluate beliefs regarding the positions of the planets. Those beliefs

could be useful for a different set of plans regarding the optimal time

to go stargazing.

This use of a plan library however poses a potential problem with the

BDI agent architecture. BDI agents are highly adaptive to changing en-

vironments (Silva and Padgham 2004). The hardcoded plan library, com-

bined with the inability to change those plans, can hinder the agent in

dynamic environments where the environment can change from that which

the agent designers anticipated. The agent can only cope with situations

that it has a partial or complete plan for. Partial plans are plans which
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the agent can combine to form a complete plan (see Partial Order Plans

on Page 32).

BDI agents with a hardcoded plan library have no capability to do any

form of look-ahead or deliberative planning (Subagdja et al. 2009), nor do

they have the capability to deal with scenarios that were not anticipated

when the plan library was populated (Meneguzzi et al. 2004). The agents

trade off correctness of actions for performance in that they do not have

the computational overhead of deliberative planning (Walczak et al. 2006).

In an effort to alleviate this limitation there has been a significant

amount of research done on integrating various forms of deliberative plan-

ning into agents. This deliberative planning provides an alternative to the

reactive planning that the BDI agent architecture provides. These inves-

tigations along with some details on general planning will be discussed in

the next section.

2.4 Planning

Planning can be said to be the process of constructing a sequence of actions

that will satisfy a specified goal, given a specific initial state of the envi-

ronment and a list of possible actions that can be performed (Weld 1999).

Russell and Norvig (2010) describe a planner as a program that searches

for a solution. Basic representations used by most classic planners are the

STRIPS-like languages.

A planning problem needs states, goals and actions. States describe the

current world, or the portion of the world relevant to the planning problem.

These could be equated to BDI agent beliefs. Goals describes the desired

state of the world. These would equate to BDI agent intentions. Actions

have pre-conditions and effects. Pre-conditions are states of the world that

must be true before the action can be executed. Effects are descriptions of
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how the state of the world changes as a result of the action (Russell and

Norvig 2010).

The simplest planner is the state-space search. There are two main

approaches to a state-space search, namely forward or progression search,

and backwards or regression search.

State-space represents a set of states that a world can be in. The set

of states forms a directed graph where states are connected by actions. An

action connects two states if, by applying the action, the world changes

from one state to the other. It is worth noting that this form of planning is

essentially a search or optimisation problem. Search algorithms such as A*

are complete planning algorithms when applied to a state space (LaValle

2006).

A forward state-space search starts with the initial conditions and searches

across all possible states to find a goal state. Forward state-space searches

can be inefficient if a large number of the states that it searches through

are irrelevant to achieving the goal. This is because it may not be appar-

ent initially which actions are applicable for a particular problem. A large

search space, which is common for planning problems, can result in ineffi-

cient searches. It is possible, with good heuristics, for forward state-space

searches to be efficient (LaValle 2006).

By contrast, a backward state-space search starts with the desired goal

and works backwards to the starting conditions. This can be more efficient

than a forward search, as only actions that are relevant to the goal need to

be considered. To be able to perform a backward search, there must be a

known manner to regress from one state to a prior state. Not all planning

problems allow for this regression (LaValle 2006).

Forward and backward state space searches both construct what is

known as a fully ordered plan. A fully ordered plan is a plan that con-

sists of a sequence of actions. An alternative form of plan is the partially
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ordered plan.

Partial order planning allows for the problem to be broken down into

sub-problems and plans created or selected for the sub-problems. The sub-

plans can then be combined, potentially in a number of different orders,

subject to the pre-conditions of the sub-plans.

Classical planners tend to make a number of assumptions. Common

assumptions are that the world is static, that the planner has full knowl-

edge of the observable environment and that only the agent is changing

the environment (Rao 1997; Kambhampati et al. 1995). When agents are

situated in a dynamic world, or those agents only have partial visibility,

those assumptions no longer match reality. Invalid assumptions may lead

to failures in planning. These failures include failure to generate the plan,

and generated plans that do not work.

More recent planning approaches, such as decision-theoretic planning

extend the classical planners and are capable of planning under uncer-

tain conditions and handling undesirable outcomes and side effects (Blythe

1999).

Two of the planners that have been used with autonomous agents and

will be examined here are Hierarchical Task Networks (HTNs) and Graph

Planning.

HTNs operate by decomposing complex tasks into networks of more

primitive actions with constraints joining them. These primitive actions are

directly implementable. The methods of decomposing actions are stored

in a plan library. When applied to a high level action, the result of the

decomposition is a partially ordered plan comprised of primitive actions

that can be executed (Russell and Norvig 2010). Essentially, a HTN can

be seen as a search through a constrained space of ways of getting things

done, the knowledge about the decompositions being the constraints upon

the space.
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It is entirely possible a task to have multiple decompositions, each hav-

ing different pre-conditions that decide which decomposition will be ap-

plied. The fewer decompositions that are required for a high level action

to be transformed into executable primitives, the more efficient the HTN

is (Russell and Norvig 2010).

Graph planning, developed by Blum and Furst (1997), involves convert-

ing the planning problem into a graph that can then be navigated. The

graph consists of a sequence of levels that represent steps in time. Each

level has a set of literals, the state of the environment, and a set of actions

that could have their pre-conditions satisfied at that step.

The planning graph starts with the initial state of the environment

expressed as a list of literals. Into that are added all the actions whose pre-

conditions are met in the initial state of the environment. Each action is

connected to the literals that form its prerequisites. Additional “persistence

actions” are added, indicating a literal that persists unchanged to the next

level.

The second level of literals contains all the literals that could potentially

be the result of any subset of the actions in the previous level. Each of the

literals is connected to the actions that caused it. The next set of actions

is then the actions whose pre-requisites are satisfied by the new set of

literals. Both the action levels and literal levels contain mutual exclusions,

designating actions or literals that cannot both occur.

The graph can be expanded until it levels off. Levelling off is when two

subsequent levels have exactly the same literals. Once a planning graph

has levelled off, any further levels will remain the same and hence there is

no point in expanding further. Figure 2.3 shows a fully expanded planning

graph for the problem of having your cake and eating it (Russell and Norvig

2010).

The planning graph can be used both for estimating the cost of achiev-
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Figure 2.3: Completed planning graph

ing any particular set of literals and for extracting a plan. The cost es-

timations can then be used by partial order or state-space planners. The

GraphPlan algorithm is one that can extract plans directly from the plan-

ning graph (Russell and Norvig 2010).

GraphPlan works by adding levels to the planning graph until it levels

out and the number of unachievable goals remains static across two of more

levels, or until all goal conditions are present in the literals without any

mutual exclusions between them. Once that occurs a plan can be extracted

by searching backwards up the planning graph (Russell and Norvig 2010).

The full mathematical treatment of the expansion of a planning graph

is given in (Ghallab et al. 2004).

In this section the theory of planning and how planning is related to

search was discussed. Two planning algorithms were examined in detail.

In the next section the integration of planning into agents will be examined

using a number of examples from literature.

2.5 Planning and Autonomous Agents

There has been a great deal of research done on the integration of planning

mechanisms into autonomous agents. This includes both a number of dif-

ferent planning mechanisms and a number of different agent architectures.

De Silva and Padgham (2004; 2005) wrote a number of papers on their
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investigation into integrating a Hierarchical Task Network (HTN) planner

into a BDI agent.

Their aim was to allow the programmer of the agent to specify places

where the HTN planner would be invoked or specific events that would

cause the planner to be called. The planner would produce a partially-

ordered sequence of primitive actions that the BDI agent would then ex-

ecute. This allows the developer of the agent to decide which portions of

the activities which the agent will be taking would be best served with the

traditional reactive planning of the BDI architecture and which requires

the additional overhead of the HTN planner.

Meneguzzi et al. (2004) investigated the addition of propositional plan-

ning to BDI Agents by using GraphPlan as an external planning algorithm

in combination with an extended BDI architecture. They referred to this

extended BDI architecture as X-BDI. They added a propositional planning

phase to the execution loop placed after the selection of intentions. Unlike

in the work done by De Silva and Padgham, the planner would be invoked

automatically during every deliberation cycle, whether or not any planning

was necessary. This allowed the agent to solve a problem that the unmodi-

fied X-BDI agent could not, however it could be computationally inefficient

as the planner is invoked automatically, not just when necessary.

Walczak et al. (2006) augmented a BDI agent with a state-based plan-

ner. They investigated both the requirements for the planner and its inte-

gration with the BDI agent. They distinguished between two main options

for the integration of a planner into a BDI agent. The first option is for the

planner to generate long term plans and delegate the execution of those

plans to a BDI subsystem; the second for a relatively simple planner that

is invoked by the BDI agent as necessary to generate short term plans.

The first of those options has a disadvantage when executing in a dy-

namic environment. The longer the planner spends planning, the greater
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the chance that the environment would have changed by the time the plan-

ner completes. The change of the environment may have invalidated the

generated plan. The second option is less susceptible to this issue as its

planning cycle is shorter giving less opportunity for the environment to

have significantly changed during planning. Susceptibility to the problem

of a changing environment depends on how fast that environment changes

relative to the time taken for the planner to execute.

Walczak et al. (2006) chose with the second option, integrating a state-

based planner at a level below that of the BDI agent itself and allowing the

BDI deliberation cycle to choose to invoke the planner rather than selecting

a plan from the plan library. This is the option chosen in this dissertation

as well. It allows the means-end reasoning to work where possible, keeping

the agent responsive and fast and invoking the more complex and slow

planning component only when the means-end reasoning fails to cope.

In each of these, the planning engine, when invoked, creates new plans

from scratch. The planning process ignores the current set of plans and

generate completely new ones. The plan library, however, contains a num-

ber of plans for the agent. It may in some cases be more efficient to modify

the existing plans than to generate new plans from scratch.

A theoretical study by Nebel and Koehler (1992) came to the conclusion

that it is computationally more expensive to modify plans than to gener-

ate them. They analysed the complexity of plan generation compared with

plan modification using the propositional STRIPES planning framework.

They defined plan modification as the process of taking a plan from a li-

brary, potentially making modifications, and then applying that plan to the

current problem. Given the chosen planning framework, they produced a

mathematical proof that shows that plan modification is at least as com-

plex as plan generation. It is however not certain if the result extends to

other frameworks and methods.
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There are existing systems that implement a form of plan modification.

The 3APL agent programming language provides for plan revision rules

that can modify plans based on certain beliefs that the agent has. These

rules are applied during the deliberation cycle of the agent, after selecting a

plan and before executing it. The plan revision in this case does not change

a stored plan; it changes which subroutines the plans call (Ten Hoeve et al.

2003; Riemsdijk et al. 2004).

The plans in 3APL are abstract in nature; they specify what must be

done and the plan revision rules define how it will be done. This allows

for flexibility. While the plan specifies what must be done, it is only at

deliberation time that it is decided how it will be done. The plan revision

rules also allow for alternative actions if the specified action fails.

The XFRM planner, designed for robots in changing, partially known

environments, optimised existing plans based on the observations which

the robot makes of the environment (Beetz and McDermott 1994). This is

achieved by generating sample execution results for the plan, based on the

current environments. The results of the samples are used to determine

how good the plan is. The plan is revised based on those outcomes by

switching out sections of the plan based upon the reason for the failure.

Beetz and McDermott found that while this increased the time required

to perform a specific set of actions, the success rate and effectiveness was

higher.

Boella and Damiano (2002) investigated the use of a plan-modification

strategy with reactive agents. In their study, they designed a system that

would decompose a plan into partial plans. These partial plans could then

be switched out for others that were more appropriate to the current state

of the environment.
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2.6 Conclusion

In this chapter the history of autonomous agents was examined, looking at

the different agent architectures which were developed over time.

The BDI architecture was discussed in detail, focusing on the plan li-

brary component. The reasons for the existence of the plan library were

discussed in light of the requirements imposed by the resource-bounded

nature of agents. The disadvantages of using a static plan library were

discussed in light of the operation of the agent within a changing environ-

ment.

From there, the subject of planning was examined, looking at state-

space planners, HTNs and the GraphPlan algorithm. Finally, the inte-

gration of planning algorithms into BDI agents was discussed and several

research studies in that direction were examined.

In the next chapter the theoretical base for GAs will be discussed, as

well as their use in planning problems and existing uses within agents.
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Chapter 3

Genetic Algorithms

In this section the literature on Genetic Algorithms (GAs) is surveyed by

examining the history of Evolutionary Computing and GAs in particular.

The GA is examined in detail, looking at the components and steps of the

execution cycle.

Finally a number of studies on the use of GAs and other forms of evo-

lutionary computation with Autonomous Agents will be examined and dis-

cussed.

3.1 Background

Evolutionary computation collectively describes a number of computing

techniques based on natural evolution. The techniques use various compu-

tational models of evolutionary processes to solve search and optimisation

type problems.

A variety of different evolutionary algorithms exist, with varying pur-

poses and goals. Evolutionary Strategies were originally designed to auto-

matically vary parameters of experiments. Genetic Programming was de-

signed to evolve computer programs. These and other variations use many

of the same basic techniques for breeding and evolving potential solutions.
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Evolutionary computation can be traced back as far as the 1950s, with

the work of Bremermann, Friedberg, Box and others (Back et al. 1997).

One of the forms of evolutionary computing, and the one of primary rele-

vance to this dissertation, is Genetic Algorithms.

Genetic Algorithms were first devised by Holland (1962; 1975) as an

abstraction of biological evolution. They were later expanded by Bagley

(1967). They are effective, robust search and optimisation algorithms based

on the biological principles of evolution and survival of the fittest. They

have been applied to problems in many areas, including optimisation, eco-

nomic modelling, ecological modelling, learning and social system mod-

elling (Mitchell and Forrest 1994).

In a traditional GA, it is assumed that a potential solution to a prob-

lem can be mapped to a number of parameters. A complete set of values

for these parameters is known as an individual. The parameters are then

encoded to allow the genetic operators to operate on them. The represen-

tation must satisfy two conditions to be useful:

• The complete set of all possible values for the parameters has to cover

all of the solution space, or the portion of interest to the problem if

the solution space is infinite.

• The application of the genetic operators to a highly performing in-

dividual is likely to produce an individual of comparable or better

performance (Floreano and Mattiussi 2008, pp. 26–30).

In GAs the representation is usually a fixed-length binary string. There

has been work done on alternative, higher cardinality alphabets (Beasley

et al. 1993a).

The parameters of the problem are each mapped to a binary string,

referred to as a gene. The genes are then concatenated to form a single

binary string. This is called a chromosome.
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Despite the design of the representation being a step of utmost im-

portance to the effectiveness of the evolutionary algorithm, little theoreti-

cal work has been done on designing effective representations (Back et al.

1997).

3.2 Execution cycle

In this section the execution cycle of a GA will be described and the indi-

vidual selection and fitness concepts discussed.

When a GA begins execution it needs an initial population of individuals

that it can operate on. This starting population can be randomly generated

or it can be based on a starting condition of the particular problem. The

number of individuals is decided on by the specifics of the problem. For

example, if a GA was to be used to obtain solutions for the travelling

salesman problem, the initial population could contain a set of random

routes between the cities defined for the problem.

Each individual in the starting population is assigned a fitness score.

This is a measure of how close to the optimal solution of the problem the

individual is. The fitness function is designed so that individuals that are

closer to the optimal solution have higher fitness values. The fitness score

for an individual is determined by running the fitness function defined for

the problem upon the individual. Fitness functions will be discussed later

in this chapter.

A GA will execute for either a pre-determined number of generations or

until the improvement in fitness between the generations falls below a pre-

defined threshold, i.e. very little improvement is seen from one generation

to the next. If the improvement in fitness falls below a certain level, the

population is said to have converged. At that point the individual with the

highest fitness would be chosen as a “good-enough” solution. GAs do not
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guarantee that the optimal solution will be found.

The execution cycle of the GA is shown in Figure 3.1.

Figure 3.1: GA Execution Cycle

The process of selecting which individuals will be selected to produce

the next generation is based on the fitness function defined for the problem.

The value that an individual obtains from the fitness function determines

how likely it is that the individual will be selected as a parent, and if it

is, how many offspring it will have. The fitter the individual, the more

offspring it will generally have. The specifics of how and which individuals

are selected as parents and how many offspring they have varies from one
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GA implementation to another. Some options will be discussed later in

this chapter.

Depending on the specific options used for the GA, the individuals

created by the genetic operators may replace their parents, becoming the

new population or may be added to the population alongside their parents.

This process is then repeated for a number of generations. In theory this

produces a higher proportion of fit individuals in later generations (Beasley

et al. 1993b).

It is possible for a later generation to have a lower maximum fitness

than a previous generation. There are variations of the GA that seek to

address problems such as these with variations on the selection of individ-

uals to make up a population. For example only replacing a parent with

its offspring if the offspring has a higher fitness (Beasley et al. 1993a).

A population is said to converge when, over successive generations,

the fitness of the individuals tends towards a single value. A population

converging is considered a success in GAs. A gene is said to have converged

when 95% of the population share the same fitness (De Jong 1975).

This convergence is accompanied by a loss of genetic diversity. This

may be acceptable in most scenarios. If using GAs to repeatedly identify

optimal solutions in a changing environment when the fitness function is a

time-dependent function it may be more of a problem. The loss of genetic

diversity hinders the ability of the GA to react to changes. One possible

solution is to not discard the low fitness individuals from the population.

This would keep the genetic diversity high and allow the GA to operate

even in changing environments (Gaspar and Collard 1999). Another option

would be to increase the mutation rate so that mutations could replace lost

genetic diversity.
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3.3 Genetic Operators

The two genetic operators that are mainly used in GAs are Crossover and

Mutation. In this section the two main genetic operators will be discussed

and their purpose explained.

3.3.1 Crossover

Crossover, also called recombination, is the process of combining the in-

formation from two or more parents to produce new individuals that have

some of the characteristics of their parents. The theory is that the offspring

may have favourable traits, in terms of the fitness function, from both par-

ents, especially if the evolutionary algorithm used only allows individuals

with high fitness levels to become parents (Back et al. 1997; Beasley et al.

1993b).

The chromosomes of two individuals are split at a single point. The

two resulting portions of each individual, called the head and the tail, are

switched to form two new individuals. The point at which the split is done

is usually chosen at random.

Figure 3.2: Simple crossover

The most common crossover is the single-point crossover, shown in Fig-

ure 3.2. There are other forms of crossover including multi-point crossover
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and uniform crossover (Beasley et al. 1993a).

With multi-point crossover two or more points are chosen at which

to split the string and the resulting portions crossed over. With uniform

crossover a bitmask determines which bits will be taken from which parent

to form the new individual. Multi-point crossover and uniform crossover

are illustrated in Figures 3.3 and 3.4.

Figure 3.3: Multi-point crossover

Figure 3.4: Uniform crossover

An analysis of the effects of different forms of crossover was done by

De Jong and Spears (1991). They concluded that in larger populations less

disruptive forms of crossover, such as single and double point crossovers,

work well, while in smaller populations there is some benefit to using multi-

point crossover with more than two points or uniform crossover as it helps
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overcome the limitations of genetic diversity in smaller populations.

3.3.2 Mutation

Mutation is the other major genetic operator used in GAs. The main

purpose of mutation is to add novel individuals to the population, that

is individuals that could not be created by recombination (Back et al.

1997). In natural evolution, mutation is the instrument of change, creating

individuals that could not be created by crossover. Mutation has a similar

role in GAs.

Mutations are usually applied to a very small percentage of the individ-

uals, typically around 0.1% (Beasley et al. 1993b). A study by Hesser and

Männer (1991) found that the optimum mutation rate depends on the pop-

ulation size. The larger the population, the smaller the rate of mutation

should be. Stanhope and Daida (1998) investigated crossover and muta-

tion rates in dynamic environments and showed that for a faster changing

environment, a higher mutation rate can result in a more efficient GA.

With a binary string, the simplest mutation is a switch of one bit of

the string somewhere along its length. Both the individual selected for the

mutation and the position within the binary string are typically chosen at

random. An example of a single-bit mutation is shown in Figure 3.5.

Figure 3.5: Mutation
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3.4 Encoding and Fitness Function

Two of the most crucial choices around implementing a GA are the design

of the representation, or encoding, and the design of the fitness function.

The encoding is the method by which the problem is converted into a binary

string suitable for the genetic operators to be applied to. A good encoding

will give similar individuals a similar encoded form so that they are nearby

in the solution space (Floreano and Mattiussi 2008).

A poor representation can make the problem of finding an optimal so-

lution much harder. For example, a representation where two similar chro-

mosomes map to vastly different points on the solution space can result

in the crossover of two high-fitness individuals producing a new individual

that represents a completely different portion of the solution space and is

of much poorer fitness. This hinders the ability of a GA to narrow in on

the optimal areas of a solution space (Moscato 1989).

The design of the fitness function has two goals. The function must

return a deterministic value for each individual in the population indicating

how close to optimal that individual is in terms of potential solutions to the

problem. The function should use as few resources as possible to execute

as its execution time is one of the main factors that affect the performance

of a GA.

An inefficient fitness function can result in excessive execution times for

the GA. In a standard GA design, the fitness function is executed at least

once per individual per generation. Hence we can say that the execution

time of the GA, tGA, is bounded below by the sum of the times of all the

executions of the fitness function, as described in Equation 3.1, where G

is the total number of generations, P is the population size and tf is the

execution time of the fitness function.
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tGA =
G∑
i=0

(Ptf ) (3.1)

Hence, purely from an execution time perspective, smaller populations

are more efficient. The counter-argument to this is that smaller populations

have less genetic diversity. Lower genetic diversity within a population

can be partially overcome by having higher mutation rates (Hesser and

Männer 1991) or by using crossover forms such as uniform or multipoint

crossover (De Jong and Spears 1991).

In this section the execution cycle and components of a GA were de-

scribed. In the next section the uses of GAs for planning purposes will be

examined. The kinds of problems they are suitable for will be described

and a number of papers on the use of evolutionary computing for planning

will be discussed.

3.5 Genetic Algorithms and Planning

Genetic Algorithms are at their core an optimisation technique. One of

the key differences between GAs and other commonly used search algo-

rithms, such as random walk, hill-climbing, gradient descent or simulated

annealing, is that GAs are population based. Instead of searching the entire

solution space one solution at a time they focus towards optimal choices,

essentially performing a directed search. They are not as susceptible to the

problem of local maxima as hill climbing techniques and they tend to be

more efficient than random walk techniques (Keane 2001; Goldberg 1989).

As a form of optimisation algorithm, GAs can be used in planning

problems. Planning can be expressed as a specialised form of optimisation:

that is, seeking the best series of actions to achieve some goal. LaValle

(2006) describes a variety of search algorithms as ways to solve simple

planning problems. He defines simple planning problems as ones where
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the possible states of the planning problem can be formulated as a finite

or infinite graph. An additional component of the definition is that the

search algorithm is systematic, able to evaluate all states or, in the case of

an infinite graph, able to evaluate in finite time that there is no solution.

To achieve the aforementioned conditions requires:

1. The planning problem can be represented by a series of values which

will become the genes.

2. The optimality of a potential solution can be computed, which is

necessary for the fitness function.

Ahuactzin et al. (1991) used GAs to solve the path-planning problem

for both a robotic arm with two degrees of freedom and a mobile robot

within an environment containing moving obstacles. By expressing the

path planning problem as an optimisation problem it became a problem

perfectly suited to GAs. Their solution was both correct, in that it found

acceptable paths, and of sufficient speed for the desired application.

Another use of GAs for motion planning was by Sugihara and Smith

(1997). They utilised a GA to do both path and trajectory planning for

an autonomous mobile robot. They investigated both off-line and online

planning options. They encoded the paths as pairs of direction and distance

in the x and y directions, thus enabling them to use fixed length binary

strings for the GA. They found that the GA identified an optimal path in

the majority of their tests.

3.6 Evolutionary Computing and Agents

There has also been prior work done on the use of GAs, or other forms of

evolutionary computing, to evolve agent architecture or behaviour.
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Calderoni, Marcenac, and Courdier (1998) used Genetic Programming

in order to evolve dynamic behaviour in agents. Each evolved behaviour

was then partially evaluated against the current state of the environment

to determine the relevance and usefulness of the evolved behaviour. Their

foraging robot experiment showed a promising increase in the efficiency of

the robots over time as compared to hardcoded behaviour. This allowed

the robots to adapt to a dynamic environment.

Dellaert and Beer (n.d.) did similar research into evolving complete

agents, although instead of evolving the behaviour of the agent, they evolved

a genotype that a development process could then grow into an agent. They

investigated two different models, one simplified and one closely following

biological processes. With both the complex and the simple models, they

had notable success in evolving agents to execute complex tasks in a static

environment. With the complex model they needed to start out with a

hand-crafted genome as they were unable to evolve an agent from scratch.

They were able to evolve an agent from scratch with the simplified model.

Nonas and Poulovassilis (1998) applied GAs to a variant of the BDI

agent architecture called Active Databases. Active Databases are databases

that include an event-driven system to respond to internal and external

conditions (Paton and Dı́az 1999).

In their experiments they used a simulated network consisting of nodes

with connections between them. This is superficially similar to the network

used in this dissertation however designed for a different purpose. The

network used in this dissertation is a construct to send messages across.

The network is a connected set of nodes that provide a number of services.

Each node has a single service it could offer and an agent running on that

node. The agent’s goal is to respond to a requested set of services as

efficiently as possible, using nearby nodes to provide the services which it

does not provide itself.
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In the study, the GA operated as part of the deliberative cycle. It

was capable of selecting intentions. This is different from the work in this

dissertation, where the GA is used to alter the plans stored in the plan

library.

3.7 GAs and network routing

The environment chosen in this dissertation, for the testing of the GA

plan modification component, is that of a simulated communication net-

work. The purpose of this dissertation is not however to provide a new

routing algorithm for networks, nor to compare results with existing rout-

ing algorithms. The common routing algorithms are discussed below for

completeness.

The shortest path algorithms are well regarded for network routing

and have been used for many years. The commonly used algorithms for

distributed networks are the Bellman-Ford algorithm and Dijkstra’s algo-

rithm (Medhi and Ramasamy 2010). These are both shortest path routing

algorithms.

Despite the popularity of shortest path algorithms, GAs have also been

used for network routing.

Ahn and Ramakrishna (2002) use a GA for shortest path routing in an

ad-hoc wireless network. They define the chromosome representation to

be the sequence of nodes through which the routing path passes. As such,

their chromosome is of variable length. Their fitness function calculates

the cost of the network path and represents the fitness of each individual

as the inverse of that cost. They use a variation on the normal crossover

where two individuals can only be selected for crossover if they have a

partial route in common. Additionally the crossover point can only be at

the boundaries of the genes. They showed that their GA converges to the
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route found by Dijkstra’s algorithm and has a lower failure ratio on ad-hoc

networks than the GA solutions that they compared against.

Nagib and Ali (2010) used GA in a network routing protocol. Their

GA has performance comparable with Dijkstra’s algorithm while returning

the same result. The encoding they use is the same as that used by Ahn

and Ramakrishna use.

3.8 Conclusion

In this chapter the history and evolution of GAs have been discussed. Their

components and execution cycle were discussed along with the different

genetic operators which they use.

The use of GAs within planning and within agents were examined,

giving details of how GAs, which are at their core an optimisation or search

technique can be used in planning problems and what requirements there

are for GAs to be used in planning. Additionally previous studies which

used GAs for planning were described.

The use of GAs within network routing problems was also examined.

While this dissertation is not concerned with new network routing algo-

rithms, the environment used is one of a simulated communications net-

work and hence a brief look at how GAs have been used for network routing

is required.

In the next chapter the design for the experiments will be described,

including the environment, the agents used and the method for integrating

the GA plan modification mechanism into the BDI Agent.
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Chapter 4

Research Design

In this chapter the design of the simulated network environment and the

two BDI agents used for the experiments are discussed. The two agents are

referred to as the Messaging Agent (MA) and the Environment Agent (EA).

The MA is the agent which is modified to include the GA plan modification

mechanism. The EA is the agent which operates on the environment to

enact the changes to it.

The design of the GA plan modification method is described in detail,

along with the method of integrating it into the execution cycle of the BDI

Agent.

4.1 Methodology

The methodology chosen for this dissertation is experimentation. The ex-

perimentation methodology is a form of empirical research, involving trials

and tests.

Mouton (2001) describes experimental research as research which an-

swers causal questions. It operates on a small number of cases in highly

controlled conditions.

Experimental research in Computer Science has three possible goals (Olivier
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2009):

1. To explore an area in hopes of finding something interesting.

2. To test a theory.

3. To prove a theory.

The first of those, exploratory experimentation, involves running ex-

periments within an area to see whether further investigation is warranted.

The second revolves around a limited set of experiments to see whether a

theory holds true in specific cases. The third is concerned with investigating

whether there are any cases where the theory does not hold true.

Tichy (1998) states that experimentation is used for testing theories

against reality and for exploring areas where theory does not yet reach .

He also mentions that when testing theories against reality, the goal is to

see if there are any areas where the theory fails.

The experiments done in this dissertation fall into the category of a

limited set of experiments to see whether a theory holds true. The goal

for the experiment described in this dissertation is to discover whether, in

a specific scenario, GAs can be a feasible plan modification mechanism.

This is done by running a set of experiments in controlled conditions to

determine whether the theory holds.

The experimental methodology is appropriate for this study as the goal

of the research is to determine whether or not the inclusion of a GA plan

modification component can improve performance of a BDI agent operating

in a dynamic environment. Specifically this is the testing of a theory.

The experimental methodology allows for the performance of the BDI

agent to be evaluated both without and with the GA plan modification

component and two sets of data evaluated and compared.
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4.2 Simulation design

In this section the design of the experimental system will be discussed along

with the motivation behind that design. Emphasis will be given to the GA

planning component and how it integrates with the BDI agent.

The system created for the experiments, referred to as the System

henceforth, consists of a simulated communications network across which

messages of various priorities and sizes are transmitted. The network envi-

ronment is dynamic. The latency on the nodes and links changes over the

course of the experiment. In addition nodes and links can be disabled or

enabled.

The programming language that the prototype is developed in is Java.

The Java language is used because of the freely available agent and GA

libraries for it. Examples are given below.

BDI Agent Frameworks, as listed in (Mascardi et al. 2005) include:

• JACK (Busetta et al. 1999)

• JAM (Huber 1999)

• Jadex (Pokahr et al. 2003)

• 3APL (Ten Hoeve et al. 2003)

Genetic Algorithm Frameworks include:

• JGAP (Meffert et al. n.d.)

• ECJ (Luke et al. n.d.)

• JCLEC (Ventura et al. 2008)

The agent framework chosen for this experimental system is Jadex (Pokahr

et al. 2003), a BDI agent framework built on top of the Jade (Bellifemine
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et al. 2001) agent library. The GA library used is JGAP (Meffert et al.

n.d.).

In Jadex, an agent definition file, in the XML format, defines the beliefs,

goals and plans of the agent. The beliefs are defined as Java data types,

either individual values or collections of values. These can be built-in types

or custom classes. The goals contain conditions that trigger the activation

and deactivation of the goal. These conditions are based on the beliefs.

The plans reference Java classes and each goal can have one or more plan

associated with it. A simplified agent definition is shown in Listing 4.1.

1 <agent xmlns= "http:\\jadex.sourceforge.net/jadex"

2 xmlns:xsi= "http:\\www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation= "http:\\jadex.sourceforge.net/jadex/jadex-0.96.xsd"

4 name= "EnvironmentAgent"

5 package= "Experiment">

6

7 <imports>

8 <import>jadex.runtime.*</import>

9 <import>jadex.util.*</import>

10 <import>jadex.*</import>

11 <import>Java.util.Date</import>

12 </imports>

13 <beliefs>

14 <belief name="gui" class="NetworkGUI">

15 <fact>

16 new NetworkGUI(\$agent.getExternalAccess())

17 </fact>

18 </belief>

19 <belief name="NetworkWidth" class="int"

20 exported="true"/>

21 <belief name="MaxLinks" class="int"

22 exported="true"/>

23 <belief name="GAStatus" class="int"

24 exported="true"/>

25 </beliefs>

26

27 <goals>

28 <performgoal name="performUpdateCounter"

29 retry="true" exclude="never">

30 </performgoal>
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31 <performgoal name="performChangeEnvironment">

32 </performgoal>

33 </goals>

34

35 <plans>

36 <plan name="UpdateCounter">

37 <body class="PlanUpdateCounter"/>

38 <trigger>

39 <goal ref="performUpdateCounter"/>

40 </trigger>

41 </plan>

42 <plan name="ChangeEnvironment">

43 <body class="PlanChangeEnvironment"/>

44 <trigger>

45 <goal ref="performChangeEnvironment"/>

46 </trigger>

47 </plan>

48 </plans>

49 </agent>

Listing 4.1: A simplified Jadex agent definition file

The agent described in Listing 4.1 has four beliefs, one defined as a

custom Java class and three as integer values. It has two goals, each goal

having a single plan that can be used to achieve that goal.

The experimental system consists of two main parts, the Environment

Agent (EA) and the Messaging Agent (MA). The EA simulates nature and

external factors and changes the characteristics of the network over time.

It is also responsible for generating messages for the MA to send.

The job of the MA is to deliver messages across the network, from the

source node S to the destination node D.

4.2.1 Simulated Network Design

The simulated network has a start node S and destination node D, con-

nected to a grid of N × N interconnected nodes in a directed graph. The

network is arranged into N rows and N columns. Node (2, 3) represents
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the node with x = 2 and y = 3, as highlighted in Figure 4.1. The number-

ing starts at 0. In a real network the nodes would be routers, switches or

servers. The links which connect the nodes represent network connections.

The experiments used N ∈ {32, 64, 128}, corresponding to network grid

sizes of 32× 32, 64× 64 and 128× 128. An example network with N = 8

is shown in Figure 4.1.

Figure 4.1: Example 8x8 grid

Each node, other than D, is linked to at least one node in the next row.

There are no reverse links.

The network is not fully connected. There is a maximum number of

output links, with m allowed per node. This value is smaller than the

total number of nodes in the next column. The starting node S is the only

node that does not have this limit. The starting node links to all nodes in

the first column. This number is based upon the size of the graph. The

max number of links per node is m, where m = N/4. This value for m
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was chosen to limit the number of paths through the network. Limiting

the paths means that there are fewer opportunities for the MA to route

around nodes affected by the changing environment. A fully connected

network would be more resilient to changes to the environment as there

are more alternate routes which can be chosen.

Each outgoing link is given a number, an ordinal value, starting at

0, which uniquely identifies the link within that specific node. This is

illustrated in Figure 4.2.

Figure 4.2: Link numberings

The nodes and links are both characterised by a Latency variable L

and a Reliability variable R. Additionally each node and link can be in

an enabled or disabled state. When disabled, no messages can be routed

through it. The start and destination nodes cannot be disabled, neither

can the links from or to the start or destination nodes.

When the network is created, the latency on the nodes is set to a random

value between 0 ms and 100 ms and the latency on the links to is set to a

value between 0 ms and 1000 ms as detailed in Listing 4.2. These figures

were chosen so that there is scope for the values to change in both directions

during the course of the experiment. All nodes and links are enabled.

1 nodeLatency = (int) Math.round(rand.nextDouble()*100);
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2 linkLatency = (int) Math.round(rand.nextDouble()*1000);

Listing 4.2: Latency starting values

4.2.2 Environment Agent

A BDI Agent, defined as the EA acts upon the environment. It changes

the properties of the nodes and links and potentially disables or enables

them. This ensures that the picture that the MA has of the environment

is not completely accurate and that any routing plan that the agent comes

up with will not remain optimal.

The EA, since it is implemented as an agent, runs in parallel with the

MA. This is intentional. Doing so allows for the environment to change

while the MA is executing and, once the GA plan modification mechanism

is added, while the GA is evolving plans.

The EA has a permanent goal which increments an internal counter

then sleeps for 200 ms. The counter is solely used to determine when the

environmental modification routines run. Every time that this goal runs,

the EA checks a random number, generated using the java.util.Random

class, against a constant chance to modify the environment, defined as cO.

The value for cO is set to 0.01 in all the experiments. Hence each time the

internal counter is incremented there is a 1% chance that the environment

will be changed.

The routine invoked when the environment changes loops over all of the

nodes in the network. For each node it generates a random number using

the java.util.Random class and checks that generated random number

against the base chance for the node to be modified, defined as cN . The

cN is hardcoded and based upon the size of the network.

For a network with N = 32, cN = 0.6. For a network with N = 64,

cN = 0.4. For a network with N = 128, cN = 0.2.
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To summarise, when the environment change routine runs, each node

in the network has a chance equal to cN to be modified at that time.

These values were chosen based on initial tests into the effects of the

changing environment on the performance of the MA. The values were

chosen so that the degradation of the performance of the MA as the envi-

ronment changed was similar across the three network sizes. The second

reason was to ensure that the failure rate on the larger networks did not

increase, during the test, to the point where useful data could not be ob-

tained.

If a node passes the random check, the latency of the node is modified,

as per Listing 4.3, lines 1 and 2.

The EA then generates a second random number and compares that

random number with the value of R for the node to see if the node should

be disabled or enabled, as shown in Listing 4.3, lines 4 to 12.
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1 nodeLatency += (int) Math.round((rand.nextDouble-0.5)*80);

2 nodeLatency = Math.max(nodeLatency, 0);

3

4 chanceOfDisable = rand.nextDouble*1000;

5

6 if(!currentNode.isEnabled() && chanceOfDisable < currentNode.Reliability())

7 {

8 currentNode.enableNode();

9 }

10 if(currentNode.isEnabled() && chanceOfDisable > currentNode.Reliability()) {

11 currentNode.disableNode();

12 }

Listing 4.3: Node changes

The changing environment means that the plans included in the agent

may not be appropriate at any given time and hence some form of plan

modification or complete plan recreation will be necessary to keep the op-

erations efficient.

4.2.3 Messaging Agent

A BDI Agent, which will be referred to as the MA, has the job of sending

messages across the network from the source node S to the destination

node D. The goal of the MA is to deliver messages as quickly as possible.

This goal is hindered by the EA which intermittently alters the charac-

teristics of nodes and links, possibly resulting in messages being discarded

or delayed. If the EA disables a node or link, messages sent to that node or

sent across that link are discarded and that message delivery is considered

a failure. If the EA increases the latency on a node or link, messages sent

to that node or across that link take longer to be delivered.

The MA cannot see the entire network, hence it cannot tell the status

of the entire network at any point in time. The partially observable envi-

ronment means that the MA cannot work out the perfect route at the time

of sending a message and must rely on information that was obtained from
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previously sent messages.

There is a single agent delivering messages. It would certainly be pos-

sible to have multiple agents, each with their own plan libraries and each

with different configurations of the GA; however that will be left for future

work.

The MA has access to a collection of plans, in the form of the BDI

Agent architecture plan library. These plans describe how to achieve the

goals which the agent has; that is to route the messages in order to deliver

them as quickly as possible.

Initially, this set of plans is static and all that the agent is able to do is

choose between them. This is the normal behaviour for a BDI agent and

will give a baseline for the performance of the agent. Within the context

of the messaging simulation, the performance is based upon how long it

takes for a message to be delivered. Shorter delivery times means higher

performance.

The time taken to deliver a message (tmsg) is the total latency of all the

nodes and links that the message passes through and can be expressed as

shown in Equation 4.1, where Ln is the latency of the node and Ll is the

latency of the link.

tmsg =
N∑
i=1

Lni
+ Lli (4.1)

Once this baseline is established, the GA plan modification component

will be added and the performance again examined. The difference between

the performance without the GA and the performance with the GA will

be the measure for determining how successful the GA plan modification

mechanism is.

To further test the hypothesis, additional tests will be run with different

settings for the GA and the environment. The full list of all experiment

configurations is detailed in the next chapter.
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4.2.4 Plan design

In Jadex plans are implemented as Java classes. The class inherits from

the jadex.runtime.Plan class and must, at a minimum, implement the

body() method. This method is the core of the plan; the actual actions

that will be executed by the agent to achieve its goals.

To facilitate the evolution of these plans, they are abstracted as a delim-

ited string and stored within a plan cache object. The execution of a plan

involves decoding the string and following the directives contained within.

Each element corresponds to a specific block of code; in this case defined

as a Java function.

As an example, a plan to obtain a cup of coffee could be specified as:

fillKettle; boilKettle; fetchCup; addCoffeeToCup; addSugarToCup;

addWaterToCup; addMilkToCup; stirCup

An alternate plan to achieve the same goal could be:

goToCar; driveToNearestSteers; buyCoffee; driveHome

Each of those elements of the string (fillKettle, buyCoffee, etc.)

would then map to a Java function that would implement the logic for that

small fragment. This way the plan can be evolved out of small fragments

of code. There will be combinations of elements that will make no sense

together. It will be one of the jobs of the fitness function to weed these

combinations out by assigning them a low fitness.

1 public void body() {

2 CachedPlan executionPlan = Cache.FetchActivePlan();

3 boolean success = executionPlan.Execute();

4

5 if (!success) {

6 \\ fail the goal.

7 }

8 }

Listing 4.4: Plan Class definition

With the plan stored as such strings, the Java Plan classes can be
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reduced to code shown in Listing 4.4.

The Execute method of the plan would be responsible for breaking up

the string representation of the plan, interpreting each portion and taking

the appropriate actions in order to execute it.

Consider the simplified network of 64 nodes, plus start and destination,

in an 8× 8 grid shown in Figure 4.1.

With that network structure a plan for the first option discussed above

appears as follows: Link3; Link0; Link0; Link1;Link1; Link1; Link1;

Link0; Link0

This plan is read as: from the starting node use link 3, from the node

in Row x = 1, use link 0 and so on. The route described by this plan is

shown in bold in Figure 4.1.

Given this plan form, the Execute(plan) method converts the plan to

its string representation, splits the string into an array and then executes

each element of the plan sequentially, as shown in Listing 4.5.

1 private boolean Execute(CachedPlan executionPlan) {

2

3 Boolean success = false;

4 String[] StrArray = executionPlan.getStringRepresentation().split(";");

5 for (int i=0; i\textless StrArray.length; i++) {

6 if (StrArray[i] == "dispatchMessageLink0")

7 success = dispatchMessage(0);

8

9 if (StrArray[i] == "dispatchMessageLink1")

10 success = dispatchMessage(1);

11

12 if (StrArray[i] == "dispatchMessageLink2")

13 success = dispatchMessage(2);

14

15 if (!success)

16 break;

17

18 }

19 return success;

20 }

21
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22 public Boolean dispatchMessage(int LinkNo) {

23 Node currentNode = msg.getCurrentLocation();

24 \\ call dispatch on the node

25 return currentNode.dispatch(msg, LinkNo);

26 }

Listing 4.5: Execute method of the Plan class

In this section the design of the plan has been discussed as well as how

the plan is executed by the Jadex agent. In the next section, the design

of the GA plan modification component is discussed showing how the plan

design facilitates the operation of the GA on the plan.

4.2.5 Plan Library Design

The plan library is implemented as a Java HashSet.

When the network is generated, the plan library is populated with a

starting set of plans. The initial set consists of Kinit plans where Kinit =

4N . For the example 8× 8 network shown in Figure 4.1, Kinit = 32. These

plans are generated at random. The code which generates the starting set

of plans is shown in Listing 4.6.

1 private void generatePlanCache() {

2 Cache.PlanCache = new HashSet<CachedPlan>();

3

4 for (int i=0; i<Environment.NetworkSizeNodesPerRow*4;i++) {

5 PlanCache.add(generateRandomPlan());

6 }

7

8 initialSize = PlanCache.size();

9 }

10

11 private CachedPlan generateRandomPlan() {

12 CachedPlan randomPlan;

13 int transmissionDelay, minBandwidth;

14 String initialPlanStringRef = "";

15 Node CurrentNode;

16 int i;

17
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18 i = (int) Math.random()*Environment.NetworkSizeNodesPerRow;

19

20 initialPlanStringRef = "dispatchMessageLink" + i + ";";

21 transmissionDelay = 0;

22 minBandwidth = Integer.MAX_VALUE;

23 CurrentNode = Environment.Network.get("Node0x" + Integer.toString(i));

24 while (!CurrentNode.IsDestinationNode()) {

25 i = (int) (Math.random()*CurrentNode.GetAllConnections().size());

26 initialPlanStringRef = initialPlanStringRef +

27 "dispatchMessageLink" + i + ";";

28 transmissionDelay = transmissionDelay +

29 CurrentNode.totalLatency() +

30 CurrentNode.getLink(i).transmissionDelay;

31 minBandwidth = Math.min(minBandwidth,

32 CurrentNode.availableBandwidth());

33 CurrentNode = CurrentNode.getLink(i).Destination;

34 }

35

36 randomPlan = new CachedPlan(0);

37 randomPlan.setStringRepresentation(initialPlanStringRef);

38 randomPlan.updateStats(transmissionDelay,minBandwidth,true);

39

40 return randomPlan;

41 }

Listing 4.6: Generation of initial set of plans

The plans generated at the start is not a complete set of all possible

plans. The network contains between N2(N −1) and mN2(N −1) possible

paths, where N is the number of nodes per row and m is the maximum

number of links per node.

The number of possible paths is far higher than the number of plans.

Having plans for every possible route is possible in this scenario but would

not be in general. Even in this scenario, having a plan for every possi-

ble route would make choosing a plan from all the options a non-trivial

operation.
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4.3 Genetic Algorithm Design

In this section the design of the GA and how it integrates with the plan

design will be explored. The encoding and fitness function will be discussed

in detail.

4.3.1 Encoding

It is necessary to encode the delimited string, described in the Section 4.2.4,

so that a standard GA can operate on in. This is done by taking the

ordinal value of the link to send the message on, expressed in binary, as

the binary representation. If the plan is Link4; Link0; Link0; Link1;

Link1; Link1; Link1; Link0; Link0, the encoded plan would then be

100000000001001001001000000. This would describe the route in bold in

Figure 4.1.

In the case of the sample network shown in Figure 4.1, the maximum

number of links possible from a single node is 8. The start node (S) alone

can have that many. As such, a 3-bit string is necessary and sufficient to

encode all possible options. For larger networks such as the network with

N = 128 used in the experiments, a longer string would be required to

hold all the possible values. An N = 32 network requires a 5-bit string, an

N = 64 network requires a 6-bit string and an N = 128 network requires a

7-bit string.

The 3-bit string for each link allows for up to 8 links from a single node.

This is more than any node other than the start node can have. In these

cases, illegal plans, i.e. ones that reference links that do not exist, are

weeded out by the fitness function. It does this by assigning any plan with

such illegal elements a fitness of 0.
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4.3.2 Fitness function

The job of the fitness function is to give the individuals in the population

a value that allows them to be ranked in order of effectiveness. With the

dynamic environment that this GA acts in, the fitness function cannot be

a static function. It must be based on the state of the environment at the

time that the GA runs.

There is more than one possible design for a fitness function for the

configuration described so far.

The simplest is a fitness function that simply tests each plan on the real

network or on a cached simulacrum of the network if that is not possible.

The fitness function tests a route to obtain the latency and validity of a

route. A route is considered invalid if any of the nodes or links it uses are in

a disabled state. This is the option that will be used for these experiments.

In these experiments the actual network will be used because it is al-

ready a simulation. In a real network, this would not be possible and the

fitness function would have to operate against a simulacrum of the network

that has the last known properties of the network. Depending on how ac-

curate those last known properties, are the plan modification may be less

efficient than in the experiments described in this dissertation.

More complex fitness functions could involve the creation and mainte-

nance of a representation of the network that includes both the last known

statistics and the historical trends in order to attempt to predict future be-

haviour. With this, a fitness function can consider both the current state

of the network and the historical behaviour. This option for a fitness func-

tion will not be investigated in this experiment, but could be considered

for future work. The fitness function used in these experiments is shown in

Listing 4.7

1 private double PlanCostLatency(CachedPlan plan) {

2
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3 boolean isWorking = true;

4 int totalLatency = -1;

5 String[] PlanRepresentation = plan.getBinaryRepresentation();

6 if (!isValid(PlanRepresentation))

7 isWorking = false;

8 else

9 totalLatency =

10 Environment.EvaluateRouteLatency(PlanRepresentation);

11

12 double fitness;

13 if (!isWorking)

14 fitness = 0;

15 else

16 if (totalLatency < = 0)

17 fitness = 0;

18 else

19 fitness = (1/(double) totalLatency)*10000;

20

21 return fitness;

22 }

Listing 4.7: Fitness Function

The fitness, F, is constrained as 0 <= F . F = 0 indicates that the

evaluated route is not valid or does not exist. If the route is valid, the

fitness is calculated as shown in Equation 4.2. Higher fitness values are

better.

F = 10000.(frac1tmsg) (4.2)

4.3.3 Commitment

The decision as to when the GA is invoked is of utmost importance. If

the GA is invoked too frequently, the system spends all its time evolving

and does no useful work. If the GA is invoked too infrequently, the system

exhibits poor performance due to unnecessarily poor plans.

For the purposes of this study, a simple trigger is used for invoking the

planning for the initial tests. If the MA records three failures then the GA
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is invoked. This value was chosen as balance between invoking the GA on

every failure which may be too often and invoking it too seldom. A failure

is a message not delivered because the route it uses contains a disabled link

or node.

An additional test is done where the invocation of the GA was invoked

on a regular basis, therefore decoupled from the outcome of the plans.

4.3.4 Retention

A changing environment is not ideal for a traditional GA. A GA typically

works by retaining high performance individuals and discarding low per-

formance individuals hence improving the overall fitness of the population.

This works well for static environments which is typically where GAs are

used. In a dynamic environment, that discarding of low performance in-

dividuals inhibit the long term usefulness of the GA, as individuals that

show low performance at one point in time may show high performance at

a later time.

One of the mechanisms that can be used to avoid this is to not discard

the low-performing individuals from the population, but rather retain them

in case they become useful in the future. This is the approach taken by

Gaspar and Collard (1999).

In the initial design for this study, the starting population is the entire

contents of the plan library. As will be discussed in Section 5.4, doing so

proved impractical due to the increased execution time of the GA.

In the revised design, each time the GA is invoked its starting popu-

lation is drawn from a random sample of the plans existing in the plan

library. Because no plans are ever discarded from the plan library, this al-

lows the GA to have the necessary genetic diversity to produce good plans

without needing to change the basic implementation of the GA.

The size of the sample is constant over the duration of the experiment,
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and therefore the GA execution time also remains constant over the dura-

tion of the experiment.

4.4 Criteria

The criteria for invoking the GA can be chosen based on the exact scenario

and the requirements of the BDI agent. If we take as an example a BDI

agent with the goal to send messages quickly then there are a number of

possible triggers for invoking the GA:

• When the message transmission time increases by more than a thresh-

old amount.

• When the current plans fail or there have been more than a threshold

number of failures since the last GA execution.

• On a schedule on the assumption that there is always a more efficient

plan.

• Run asynchronously and continually, adding new plans to the plan

library all the time.

In this study, the second of those options is the criteria used.

4.5 Conclusion

In this chapter the design for the experiments was described in detail. The

chosen frameworks and language for the experiment were listed.

The chosen environment for the experiment, that of a simulated com-

munications network, was detailed, its properties listed and its starting

condition described.
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The two BDI agents that operate within the simulated environment

were described in detail. Their behaviour and goals were listed and the

performance of the MA was defined.

The plan design was explained, showing how a plan can be constructed

in such a way as to allow for a GA to evolve it. The design of the GA,

including fitness function, encoding is explained, along with the options for

invoking the GA plan modification mechanism.

In the next chapter the results of the experiments will be discussed and

analysed.
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Chapter 5

Results

The core question in this dissertation is whether the use of a GA to evolve

the plan library of a BDI agent provides any benefit for message routing in

a changing environment and, if it does, under what circumstances.

This question is answered in this chapter by examining the performance

characteristics of a BDI agent in a simulated network environment and

analysing the differences in performance between the tests which do not

include the GA plan modification component and the tests which do make

use of the GA plan modification component.

In this chapter the results of the experiments described in Chapter 4

are described and analysed.

5.1 Test configuration

The experiments are performed on three different sized networks, N ∈

{32, 64, 128}. For each size 100 tests are run. A number of different con-

figurations of the GA are tested to get a broad view of how well the GA

plan modification component behaves. The configurations investigated are

covered in Table 5.1.

The random seeds are fixed for the specific numbered test in each envi-
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Test Number GA generations % individuals added GA trigger

1 25 1/8 3 failures

2 5 1/8 3 failures

3 100 1/8 3 failures

4 25 1/64 3 failures

5 25 1/8 Every 50 messages

6 25 1/8 Every 20 messages

Table 5.1: Test Configuration

ronment. In other words the first test for the N = 32 environment without

the GA uses the same random seeds as the first test for the N = 32 environ-

ment with the GA enabled. The EA uses pseudo-random number streams,

controlled by these random seeds to generate the random numbers which

are used to modify the environment. Keeping the random seeds the same

for each numbered experiment ensures that the environments change iden-

tically and allow the effectiveness of the GA plan modification mechanism

to be compared as like with like. The exact details of the execution of the

EA are detailed in Section 4.2.2.

5.2 Data Collection

During execution the MA records the statistics of each message sent. If

the message succeeds then the total duration is recorded along with the

exact path that the message took through the network. If the message fails

then the partial path, the location that the message delivery failed and the

reason for the delivery are recorded. These are stored in an array. When

the test run has sent 1000 messages it writes the delivery log out to disk

in a delimited file.

Once all 100 runs of a test are completed, the output files are imported
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into SQL Server for analysis. The analysis in SQL Server involves the

averaging of the message durations across the 100 tests in each set as well

as averaging the percentage improvement between the baseline experiment

without the GA active and the experiment with GA. These averaged values

are then exported into Excel for graphing.

The specific route that each message takes through the network is not

relevant to the result.

The aggregated data in the form of an Excel spreadsheet as well as a

SQL Server database backup containing the raw data are available from

http://gilamonster.za.net/blog/resource-files/

5.3 Tests with no GA

The first set of experiments was with the GA inactive to form the baseline

for future comparison. Hence there was no mechanism present that could

modify the plans held by the agent based on the changing environment.

Plans that became inefficient because of changing conditions had to be

reused. The reactive planning allowed it to pick the best plan that it has,

but allows no new plans to be created.

The message durations over the tests for each configuration were aver-

aged and graphed in Figures 5.1, 5.3 and 5.5.

The averaging process for each message in the experiment involved tak-

ing the sum of the transmission time for each test across the 100 tests,

discarding the values of transmission time for any of the messages that

failed delivery and dividing by the number of messages successfully deliv-

ered.

The averaging is done because there is a huge amount of raw data for

each experiment. Graphing each experiment run individually would make

it hard to draw an overall conclusion. While the standard deviation values
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are high, the averaging is valid because while the individual experiment

runs vary in their transmission times, the overall pattern is similar across

the tests. In addition, this study is an investigation into feasibility, not a

comparison with existing methods and hence the comparisons which need

to be made are between experiments within the study, not with existing

benchmarks.

As the network moves further from its starting configuration, so the

performance of the existing plans degrades and the message delivery times,

referred to as tmsg, increase. The initial values of tmsg are within the range

12s ≤ tmsg ≤ 15.5s. The final values of tmsg are within the range 15s ≤

tmsg ≤ 24s. The spread of starting and ending values for tmsg is due to

the random configuration of the network in each test. The latency values,

L, vary independently from one run to the next. As such the standard

deviation, SD, of the message delivery times is high. For the averaged data

shown in Figure 5.1, 0.8 ≤ SD ≤ 2.5.

The average value of tmsg across the 100 tests will be referred to as tavg.

Initially the increase in tavg is relatively steep, indicated on Figure 5.1

as Phase 1. After this, in Phase 2, the rate of change decreases. The values

of that increase in seconds per message are given in Table 5.2.

Rate of change in

seconds per message

Phase 1 0.005

Phase 2 0.0015

Table 5.2: Rate of change, N = 32, no GA

To see the specifics of an individual test run, without the averaging, the

values for five individual runs are graphed in Figure 5.2. The gaps in the

lines are where messages failed delivery. If a delivery failed tmsg cannot be

77



Figure 5.1: Average durations, N = 32 network
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recorded as the message was not delivered. It is left blank, leading to gaps

in the graph lines.

tmsg for the individual messages in each of the five selected tests start

within a small range, 13.3s ≤ tmsg ≤ 14.6s. The values diverged as the

networks were modified in different ways by the EA.

The progression with the N = 64 network, shown in Figure 5.3, is much

the same as for the N = 32 network shown in Figure 5.1. It shows a steady

increase in the tavg as the plans that the agent has become less and less

appropriate for the changing configuration of the network.

The rate of change of tavg is detailed in Table 5.3. The phases mentioned

in the table are indicated on Figure 5.3.

Rate of change in

seconds per message

Phase A 0.008

Phase B 0.0025

Table 5.3: Rate of change, N = 64, no GA

At the start of the experiment, tavg = 29s and at the end tavg = 35.6s.

As with the N = 32 network, the standard deviation, SD, is high due

to the independence of the networks in the 100 tests, falling withing the

range 957 ≤ SD ≤ 2877. The transmission times for five individual tests

are shown in Figure 5.4.

In this case, while the increase slowed towards the end of the test, it

did not slow as much as it did on the smaller network. This would make

sense if the levelling out is a result of the network reaching a steady state.

The N = 64 grid has a much larger range of possible transmission times

than the N = 32 network has and a larger set of starting plans. This is

due to the larger number of nodes and links that the N = 64 network has.
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Figure 5.2: Individual durations for five tests, N = 32 network
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Figure 5.3: Average durations, N = 64 network
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Figure 5.4: Individual durations for five tests, N = 64 network
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Figure 5.5: Average durations, N = 128 network
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The results for the largest network, N = 128, are shown in Figure 5.5.

They show the largest increase in the average network transmission time,

with an almost linear increase across the course of the experiment. This

increase is at a rate of 0.009 seconds per message.

5.4 First set of tests with GAs

The first experiment using the GA to evolve the plans used a single message

failure as a trigger. The GA used the entire contents of the plan library as

a starting population. The evolution was set to proceed for five generations

and then to add the fittest 1/8 of the final generation to the plan library.

The plan library started with Kinit plans, where Kinit = 4N . Since each

execution of the GA added the 1/8 of the final generation with the highest

fitness, K increased by 1/8 each time the GA executed.

The growth of the plan library is shown in Figures 5.6 and 5.7.

The addition of multiple plans to the library is intended to increase the

chance that a new plan replaces one that is currently failing and reduces

future failures by giving the MA more options to choose from. The dis-

advantage of doing so is that the plan library grows faster than if a single

plan is added. This requires additional resources in the form of memory

to store the plan library and processing time to locate a plan within the

library.

Given that the GA is operating in a changing environment, the low

fitness individuals should not be permanently discarded, as was discussed in

Section 4.3.4. Because the environment is constantly changing, the fitness

function is time dependent. As such, an individual with a poor fitness at

time t1 may have a much better fitness at a later time t2. If that individual

is discarded when it has a low fitness, it may hinder the evolution process

at a later time when that discarded genome may have a higher fitness value.
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Figure 5.6: Growth of the plan library (linear)

Figure 5.7: Growth of the plan library (logarithmic)
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The method chosen in this dissertation is to use the default configura-

tion for JGAP of keeping a fixed population during each execution of the

GA. The initial population for the GA is not randomly created but is cre-

ated from the plan library. The entire plan library, as it is at the time the

GA execution starts, is used as the starting population. The plan library

increases in size by 1/4 on every execution of the GA. Hence the starting

population size increases with every invocation of the GA. As was discussed

in Section 3.4 the execution time of a GA is bounded below by the sum

over all generations of the product of the population size (P) and execution

time of the fitness function (tf ), as per Equation 5.1.

tGA ≥
G∑
i=1

(Ptf ) (5.1)

The increase in population produces a sharp increase in the processing

time of the GA each time it is invoked. The growth of the population is

given by Equation 5.2, where P (1) is the starting size of the population.

P (I) =
5

4
P (I − 1) (5.2)

The increase in GA execution time and increase in the size of the plan

library are shown in Figures 5.8 and 5.9.

The increase in execution time was exponential. This indicated that

the initial design choice was infeasible. The increase in time was such that

the majority of the time spent was being spent running the GA to generate

new plans rather than using the generated plans.

The increase in GA time is shown in Table 5.4.

A second problem which occurred with the initial design is the time

required to search the plan library for the best plan. The search method

used is a linear search, an O(n) algorithm. The faster the library size in-

creased, the longer the time required to search through all increases. This
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Figure 5.8: Population increase

Figure 5.9: Evolution time increase
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Invocations Population Evolution Invocations Population Evolution

size time (ms) size time (ms)

0 0 0 24 1413 5271

1 96 579 25 1589 6109

2 108 428 26 1787 6815

3 121 443 27 2010 7843

4 136 476 28 2261 8464

5 153 535 29 2543 9540

6 172 602 30 2860 10776

7 193 691 31 3217 12622

8 217 766 32 3619 13818

9 244 877 33 4071 15494

10 274 1106 34 4579 17694

11 308 1086 35 5151 19727

12 346 1215 36 5794 22075

13 389 1400 37 6518 24802

14 437 1608 38 7332 27899

15 491 1886 39 8248 32393

16 552 2157 40 9279 38500

17 621 2434 41 10438 42508

18 698 2652 42 11742 47414

19 785 2950 43 13209 51510

20 883 3493 44 14860 64878

21 993 3797 45 15460 78430

22 1117 4404 46 17392 133307

23 1256 4881

Table 5.4: Increase in GA execution time due to increasing population size
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would favour keeping the plan library as small as possible. An alterna-

tive would be to use a more efficient search algorithm, potentially one of

the O(log(n)) search algorithms. Doing so would mitigate the problem

of searching through the plan library, however would not help with the

increase in the execution time of the GA.

The time required to find a plan was not included in the measurements

of tmsg and so the increasing library did not affect the results described

later in this chapter. In a real system using the technique outlined in this

dissertation, steps to keep the plan library small would be required. These

might include removing duplicate or near-duplicate plans, removing plans

that failed on their previous execution or dividing the plan library into two

sections, one containing plans that are currently effective and the other

section containing the remaining plans. The last option would require an

additional process to periodically test the effectiveness of plans. Depending

on the environment, that may not be possible.

The second version of the GA design involved triggering the evolution on

every nth failure instead of on every failure, with n = 5. Since the evolution

was triggered much less often, the size of the plan library increased slower

and the evolution time increased proportionally slower.

This allowed the required number of messages to be sent without the

evolution time becoming overwhelming as shown in Figure 5.11. However

the problem of exponential growth of the starting population still existed.

Had the experiment been scaled past the 1000 message mark, there would

have been a point where the time required for the GA evolution cycle

became unacceptably large when compared to tmsg.

Considering those results, it was necessary to rethink how the initial

population was created each time the GA was invoked.
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Figure 5.10: Population increase

Figure 5.11: Evolution time increase
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5.5 Revised design

The root cause of the rapid increase in evolution time is the exponential

increase in the size of the starting population over the course of the exper-

iment. A way of avoiding that increase in evolution time would be to fix

the size of the starting population. If the starting population size is fixed,

then the time required for the GA to execute a fixed number of generations

is a linear function.

The concern with this approach is the potential loss of genetic diversity

across the invocations of the GA, as discussed earlier in this chapter. If the

starting population for any invocation of the GA is to be kept at a fixed

number with the total number of plans in the plan library increasing, the

plans selected to form the initial population must be selected at random

from the set of all plans available to the MA in order to allow for a large

genetic diversity.

It is possible to use a high mutation rate instead of a random selection

of the population as the higher mutation rate would add in the necessary

genetic diversity, as was mentioned in Section 3.3.2. This approach is not

used here.

The revised design for the GA used the following configuration settings:

• A fixed number of individuals is used as the starting population for

each invocation of the GA. This number equals the initial size of the

plan cache for that size network, outlined earlier in this chapter.

• The GA is invoked on every 3rd message failure. This was chosen

as a balance between invoking the GA as soon as there is evidence

that the current plans are no longer optimal and waiting for multiple

failures and allowing messages to execute with plans known to be

sub-optimal.
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• At the end of each invocation of the GA, the top 1/8 fittest individuals

are added to the plan library. This would be 1/8 of the number of

individuals in the starting population. For an N = 32 network, this

works out to 16 plans, for an N = 64 network, 32 plans and for the

N = 128 network, 64 plans.

The plan library increases in size linearly, as each invocation of the GA

adds the same number of plans to the library. The final size (Kf ) of the

plan library can be expressed as a function of the initial size (Kinit) and

the number of times which the GA is invoked (i) as shown in Equation 5.3.

Kf = Kinit + (1/8 ·Kinit) · i (5.3)

The starting population size for the GA is fixed and hence the execution

time of the GA over the total number of generations remains constant across

the duration of the experiment.

5.6 Second set of tests with GAs

The results over the hundred tests for each configuration are averaged and

compared against the statistics for the tests without the GA, shown in

figures 5.12, 5.13 and 5.14.

All three tests show a sharp initial reduction in tavg. This is due to the

GA finding more efficient plans than the initial set which the experiment

began with. The extent and gradient of the initial reduction is listed in

Table 5.5. Phases 1 and 2 are indicated on Figures 5.12, 5.13 and 5.14.

The cut-off point betwee the phases in these and subequent graphs were

identified by examining linear trend lines and seeing at what point the

trend lines cross.

After that initial steep improvement, the change in tavg flattens out

with only moderate improvements over the course of the experiment. Dur-
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Figure 5.12: Average durations, N = 32 network, GA enabled
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Figure 5.13: Average durations, N = 64 network, GA enabled
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Figure 5.14: Average durations, N = 128 network, GA enabled
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Network size End of Phase 1 - rate Phase 2 - rate

Phase 1 of change of change

32 338 -0.0065 0

64 291 -0.025 -0.001

128 230 -0.05 -0.006

Table 5.5: Rates of change across all network sizes

ing this period the environment is still changing further from the initial

configuration.

An alternate way to look at the results of these tests is to evaluate

the percentage improvement that the test with the GA plan modification

component showed over the default test without the GA. The percentage

improvement for the three network sizes are graphed in Figures 5.15, 5.16

and 5.17.

The alternate method of analysis shows the steep initial improvement

in tavg followed by a slower increase that flattens out on the N = 32 and

N = 64 networks. On the N = 128 network the increase does not flatten

out.

Given that the tavg of the tests without the GA present worsens over

the entire course of the experiment while the tavg with the GA present

shows a sharp initial improvement with a slower later improvement, this

suggests that the GA achieves the goal of optimising the plans to cope with

a slowly changing environment. The addition of the GA plan modification

component was the only change between the two tests.

5.7 Tests with different generation limits

The concern with the overhead of the GA remains valid. While the GA

evolution executes, the MA has to either use outdated plans or has to stop
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Figure 5.15: Percentage improvement over test without GA, N = 32 net-

work, GA enabled
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Figure 5.16: Percentage improvement over test without GA, N = 64 net-

work, GA enabled
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Figure 5.17: Percentage improvement over test without GA, N = 128

network, GA enabled

99



executing and wait for new plans. The longer the execution cycle of the

GA takes, the more messages must be sent with plans that are known

to be sub-optimal. Alternately the MA must pause and wait for the GA

execution cycle to complete, thus reducing the overall rate at which it can

send messages.

Given that, reducing the time spent by the GA would theoretically

decrease its impact. If one starts from the assumption that the fitness

function is already as efficient as possible, then the two avenues for reducing

the execution time of the GA are to reduce the starting population size or

to reduce the number of generations that the GA executes, as discussed in

Section 3.4.

Reducing the population size would reduce the genetic diversity that

the GA starts with. Considering that the initial population is a random

selection of the current plans, reducing the starting population may reduce

the ability of the GA to find plans suitable for the state of the environment

every time it is invoked due to potentially low genetic diversity in its start-

ing population. This option has not been investigated in this dissertation.

It may be suitable for future work.

Reducing the number of generations reduces the degree to which the

GA can find optimal solutions. In this particular scenario this approach

may be acceptable, since all that is needed is for the GA to find new plans

which perform better than the current ones, that is, plans which result in

a lower tmsg.

Further experiments were done to investigate the effect of different num-

bers of generations, G, which the GA evolves for. In the first set of experi-

ments G = 25. The further experiments consist of one set with G = 5 and

one set with G = 100. The results of these are shown in Figures 5.18, 5.19

and 5.20.

The test with G = 5 showed a slower and prolonged initial improvement
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Figure 5.18: Average durations, N = 32 network, GA enabled with differ-

ent number of generations
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Figure 5.19: Average durations, N = 64 network, GA enabled with differ-

ent number of generations
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Figure 5.20: Average durations, N = 128 network, GA enabled with dif-

ferent number of generations
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Figure 5.21: Average durations, N = 32 network, GA enabled with G = 5
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Figure 5.22: Average durations, N = 64 network, GA enabled with G = 5
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Figure 5.23: Average durations, N = 64 network, GA enabled with G = 5
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Network size Message No around Phase 1 - rate Phase 2 - rate

which Phase 1 ends of change in of change in

sec/message sec/message

32 300 -0.004 -0.0005

64 550 -0.008 -0.001

128 930 -0.01 -0.0018

Table 5.6: Rates of change across all network sizes with G = 5

phase, with the largest network showing a flattening only after message 900.

The rate and extent of the initial reduction phase is listed in Table 5.6 and

the division between the two phases is indicated on Figures 5.21, 5.22 and

5.23.

On the smallest network, the GA appears to have a delayed effect, with

the average transmission time starting to drop only after message 100,

indicated by point marked “1” on Figure 5.21. This is an artefact of the

averaging process. On the smallest network, most of the individual tests

do not have three message failures within the first 100 messages and the

GA is only invoked after three message delivery failures. As such, tavg only

shows a steady decrease later on the graph than for the larger networks.

The larger networks where the triggering three failures occur earlier, the

drop in the average performance occurs earlier.

The test with G = 100 did not show any improvement over the 25-

generation test. Instead it showed a similar performance during the early

stages of the tests on the N = 32 and N = 64 networks and with a

worsening of performance later. On the N = 128 network the G = 100 test

showed worse performance than the G = 25 test.

The details are shown in Tables 5.7 and 5.8 and in Figures 5.24, 5.25

5.26, 5.27, 5.28 and 5.29.

After the initial improvement phase the test with G = 5 showed the
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Network size Message No around Phase 1 - rate Phase 2 - rate

which Phase 1 ends of change in of change in

sec/message sec/message

32 340 -0.0065 0

64 260 -0025 -0.001

128 230 -0.05 -0.006

Table 5.7: Rates of change across all network sizes with G = 25

Network size Message No around Phase 1 - rate Phase 2 - rate

which Phase 1 ends of change in of change in

sec/message sec/message

32 340 -0.008 0.0016

64 430 -0.018 0.002

128 197 -0.036 -0.006

Table 5.8: Rates of change across all network sizes with G = 100
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Figure 5.24: Average durations, N = 32 network, GA enabled with G = 25

109



Figure 5.25: Average durations, N = 64 network, GA enabled with G = 25
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Figure 5.26: Average durations, N = 64 network, GA enabled with G = 25
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Figure 5.27: Average durations, N = 32 network, GA enabled with G =

100

112



Figure 5.28: Average durations, N = 64 network, GA enabled with G =

100
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Figure 5.29: Average durations, N = 64 network, GA enabled with G =

100
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same levelling out as in the previous test with G = 25, although it never

reached the same improvement as the test with G = 25. The tests with

G = 100 showed an initial improvement close to that of the tests with

G = 25 however their overall improvement decreased later in the tests.

The relative effects of the different generations can be seen more clearly

on a graph comparing the percentage improvement each test had over the

base test with no GA as shown in Figures 5.30, 5.31 and 5.32.

Despite the smaller gains, the test with G = 5 can be considered a

success. The faster execution cycles of the GA, resulting from the smaller

number of generations, allows the GA plan modification component to

complete its execution with fewer changes to the environment occurring

during that execution time. It also allows the MA to operate with shorter

interruptions as the GA executes.

Given the lack of improvement in effectiveness of the test with G =

100, increasing the number of generations is considered to be inefficient in

this scenario and preference is given to lower generation counts in further

experiments.

5.8 Tests with fewer selected plans

In the light of the effectiveness of the test with a small number of genera-

tions a further test is done with a reduced number of plans added to the

plan library. In previous tests, the 1/8 of the plans with the highest fitness

were added to the plan library each time the GA completed its execution.

In this test, the number of plans added is the 1/64 with the highest fitness.

This percentage results in two plans on the N = 32 network, four plans on

the N = 64 network and eight plans on the N = 128 network.

As in the initial set of tests, G = 25. The results of the tests in this

configuration can be seen in Figures 5.33, 5.34 and 5.35.
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Figure 5.30: Percentage improvement, N = 32 network, GA enabled with

different number of generations
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Figure 5.31: Percentage improvement, N = 64 network, GA enabled with

different number of generations

117



Figure 5.32: Percentage improvement, N = 128 network, GA enabled with

different number of generations
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Figure 5.33: Average durations, N = 32 network, GA enabled with fewer

plans added to the library
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Figure 5.34: Average durations, N = 64 network, GA enabled with fewer

plans added to the library
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Figure 5.35: Average durations, N = 128 network, GA enabled with fewer

plans added to the library
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The results of this test suggest that it is not necessary to make large

changes to the plan library on each execution. Smaller changes may be

adequate. It also suggests that adding a single plan on each execution

is not as effective as adding multiple plans. The balance between adding

too few plans and reducing the effectiveness of the GA plan modification

component and adding too many plans and bloating the plan library is

likely to differ from one scenario to another. The ideal number of plans

added would have to be determined on a case-by-case basis if using the GA

plan modification mechanism in a real situation.

On the N = 32 network adding a smaller number of plans has a mea-

surable negative effect on the efficiency of the MA compared with previous

configurations of the GA. The relative improvement achieved is shown in

Figures 5.36, 5.37 and 5.38. With the N = 32 network the test with reduced

number of plans reached a maximum improvement of 26% compared with

the 38% which the test with the larger number of selected plans reached,

marked as “1” on Figure 5.36.

In the N = 32 network the GA operates on a population size of 128

individuals. With this number and the lower percentage of selected plans,

only two plans are added after each invocation of the GA. As such, the

ongoing changes to the environment are likely to make these two plans

inefficient or invalid faster than if a larger number of plans are added. This

could be avoided by adding a larger percentage of plans on smaller networks

and smaller percentage on larger. An alternative option is to add a fixed

number of plans rather than a fixed portion of the starting population size,

for example, adding eight plans to the plan library after each invocation

of the GA, rather than a number of plans dependent on the size of the

network.

On the N = 64 and N = 128 networks, the test with a reduced number

of plans performed better. On the N = 64 network the test with reduced
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Figure 5.36: Percentage improvement over test without GA, N = 32 net-

work, GA enabled with fewer plans
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Figure 5.37: Percentage improvement over test without GA, N = 64 net-

work, GA enabled with fewer plans
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Figure 5.38: Percentage improvement over test without GA, N = 128

network, GA with fewer plans
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number of plans performed comparably with the previous test until around

message number 580, indicated by “1” on Figure 5.37. After this point the

performance degraded, with the percentage improvement over the base test

without GA decreasing for the remainder of the test.

On the N = 128 network, the test with fewer plans performed compa-

rably with the test with the larger number of plans across the entire 1000

messages.

5.9 Tests with scheduled executions of the

GA

In all of the previous configurations, the trigger for the invocation of the

GA is a fixed number of messages failing to be delivered, specifically three.

The reasons why messages fail are discussed in Section 4.2.3.

Since the plans are valid at the time they are created, a failure of a

plan indicates that the environment has changed sufficiently so that plans

which were valid at the time they were created are now failing.

The potential problem is that the metric used to decide when to invoke

the GA is not the same one that the GA is optimising to minimise. The

GA is optimising for reducing tmsg, not for reducing failures.

In this series of tests the GA is invoked at scheduled times. The first set

of tests had the GA invoked after 50 messages have been sent, regardless

of how many message failures had occurred. The second set of tests had

the GA invoked after 20 messages. The results for this series of tests can

be seen in Figures 5.39, 5.40 and 5.41.

The sharp drop seen in Figures 5.39, 5.40 and 5.41 occurs at the first

scheduled execution of the GA. This is at 50 messages for the slower sched-

uled GA and message number 20 for the faster scheduled GA. The average
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Figure 5.39: Average durations, N = 32 network. Scheduled invocations

of the GA
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Figure 5.40: Average durations, N = 64 network. Scheduled invocations

of the GA
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Figure 5.41: Average durations, N = 128 network. Scheduled invocations

of the GA
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rate of change of tavg after that first sharp decrease is detailed in Table 5.9

Network size Average rate of change, Average rate of change,

GA after every 50 GA after every 20

messages messages

32 0.002 0.002

64 0.002 0.002

128 0.001 -0.001

Table 5.9: Rate of change in seconds/message

The alternate analysis, graphing the percentage improvement, is shown

in Figures 5.42, 5.43 and 5.44.

The sharp changes at intervals of 50 messages in the first set of tests and

at 20 messages in the second set of tests occur because in this configuration

the GA is invoked at the same point for each of the 100 tests. In previous

configurations the GA was invoked after a fixed number of messages failed

delivery. As such, the point at which the GA was invoked differed across

the 100 tests and the decrease in message delivery time appears as a steady

decrease once the average was taken.

It can be seen, especially on the largest network, that the GA is not

always equally effective. After some optimisations the resultant plans are

better as after others, in that they result in lower tavg. This is especially

noticeable at message number 100 and again at message 250, indicated by

points “1” and “2” on Figure 5.41.

The varying effectiveness would be a result of the environment changing

while the GA is active. The larger network shows this effect best because

the GA has the largest population with this network size and hence the

GA takes the longest to execute out of all the network sizes. As such the

network has the highest chance of changing during this execution. This
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Figure 5.42: Percentage improvement over test without GA, N = 32 net-

work, Scheduled GA
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Figure 5.43: Percentage improvement over test without GA, N = 64 net-

work, Scheduled GA
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Figure 5.44: Percentage improvement over test without GA, N = 128

network, Scheduled GA
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is because the network changes occur at a constant rate, the longer the

GA takes to execution, the more changes would have occurred during that

execution.

5.10 Effects of different rates of environment

change

One of the conditions of the hypothesis investigated in this dissertation is

that the environment is slowly changing. “Slowly” is defined as relative

to the execution time of the GA plan modification component. The idea

is that the GA plan modification component has time to run the required

number of evolutions, add new plans to the plan library and those plans

still be valid and efficient when the MA goes to use them.

As the rate of change of environment, C, increases, the efficiency of the

GA plan modification component is expected to decrease. If it is triggered

by a set number message failures, as the first four sets of tests were, the

more rapidly changing environment is expected to result in more messages

failing delivery. These failures, occurring more frequently, trigger the GA

plan modification component more frequently, increasing the overhead of

the GA.

To determine whether those expectations are true, the test with N = 64

and G = 25 was re-run with higher values of C. C is defined for this test as

the number of times which the modification code in Listing 4.3 is executed

for each node in the network.

For example with C = 2, when the environment change routines, de-

scribed in Section 4.2.2 run, for each node in the network the code in Listing

4.3 is executed twice. Similarly if C = 4 then the code in Listing 4.3 will

be executed four times.
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Figure 5.45: Increase in number of failures, and hence invocations of the

GA, as the environment changes faster

Average Number

C of Failures

2 140

4 153

8 156

16 224

32 205

Table 5.10: Average failures at higher rates of change
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The average number of failures over the 1000 messages increased as the

environment changes proceeded at higher rates, shown in Figure 5.45 and

Table 5.10.

The effectiveness of the GA decreased as well, as shown in Figures 5.46,

5.47, 5.48, 5.49 and 5.50.

Figure 5.46: The performance of the agent with and without the GA plan

modification mechanism, C = 2

As the rate of change of the environment increased, from C = 2 up

to C = 32, the GA became less effective, despite more frequent invoca-

tions of the GA coming from the higher rate of failures. This decrease in

effectiveness is especially noticeable at C = 16 and C = 32.

From this it is clear that the use of a GA plan modification mechanism

becomes less suitable as the environment changes faster, confirming this as

a plan modification mechanism for slowly changing environments only.
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Figure 5.47: The performance of the agent with and without the GA plan

modification mechanism, C = 4

Figure 5.48: The performance of the agent with and without the GA plan

modification mechanism, C = 8
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Figure 5.49: The performance of the agent with and without the GA plan

modification mechanism, C = 16

Figure 5.50: The performance of the agent with and without the GA plan

modification mechanism, C = 32
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5.11 Analysis

From the graphs included in this chapter it is clear that it is possible for a

GA to act as an effective plan modification mechanism for BDI agents in a

simulated network routing environment. In all cases examined the average

performance of the agent with the GA plan modification component out-

performed the agent without the GA plan modification component.

The main factor which became apparent over the course of these ex-

periments as to whether a GA plan modification mechanism is likely to be

efficient is that of the rate of change of the environment.

For the GA to be effective and useful, the rate of change of the envi-

ronment needs to be slow in comparison to the evolution time of the GA.

That is, during the process of the evolution, the environment should not

change. If it does, then the evolution process is attempting to optimise a

fitness value which changes as the environment changes. This is contrary

to the requirement for a fitness function, discussed in Section 3.4, that the

function return the same value for an individual across the course of the

evolution. The environment also needs to remain relatively stable for long

enough after the GA completes for the new plans that it generates to be

useful.

If the time between changes to the environment is defined as te, then

the ideal relationship between that and tGA is te > tGA.

Hence one can conclude that a suitable application for this manner of

plan modification would be one where the environment changes, large or

small, occur seldom and the GA can complete the full evolution process

between those changes.

If the environment is one that experiences frequent, extreme changes,

then this form of genetic plan modification is not likely to be appropriate.

The other factor that must be considered is the time taken for the GA to
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evolve. In this, it is much like any standard planning algorithm. Planning

is a complex problem and takes time.

There were two possible approaches to running the GA in this experi-

ment:

1. It could be run synchronously by the message delivery agent. This

means that when the GA is invoked all message delivery halted until

the GA completed.

2. It could run asynchronously. In this case when the GA is invoked,

the evolution proceeds on another thread and the message delivery

continues unhindered.

There are advantages and disadvantages to both. In the first option,

which is the design that was used in this experiment, there were delays

before messages could be sent if the messages were queued for delivery

while the GA was executing.

In the second option, there would have been no delays, however the

messages sent while the GA was in the process of evolving would have

been using the older plans, plans that had resulted in message failure often

enough to result in the GA being invoked in the first place. The second

option was not examined in this dissertation and may be suitable for future

research.

The second option would also allow for the GA to be used to predict

potential future changes to the environment. Such a prediction is beyond

the scope of this study, but it could involve a simulation of the environment

upon which possible changes that might occur in the real environment to

be implemented and the GA allowed to evolve plans. This would mean

that should the predicted state occur in the real environment, plans would

already exist for that state of the environment. This is also a possible

avenue for future research.
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Potential applications of this form of genetic plan modification must

allow for processing to halt while the plans are evolved, or for processing to

continue with inefficient plans while the GA evolves. If neither is possible,

then an alternate form of plan modification or plan generation should be

considered instead.

As has been shown, the use of GA can be effectively used to modify

plans for a BDI agent in a slowly changing environment, provided the

overhead of the GA can be accepted and providing that the environment

changes relatively slowly relative to the time taken for a set of plans to be

modified.

5.12 Conclusion

The core question in this dissertation is whether the use of a GA to evolve

the plan library of a BDI agent provides any benefit for message routing in

a changing environment and, if it does, under what circumstances.

In this chapter the results of the experiments run to answer that ques-

tion were discussed and analysed. These results were in the form of the

performance characteristics of a BDI agent operating in a slowly-changing

simulated network environment.

The performance characteristics of the MA operating without a GA

plan modification component were compared with the performance char-

acteristics of the MA operating with various configurations of the GA plan

modification component. The different configurations included changing

the number of generations which the GA evolved for, changing the num-

ber of plans added to the plan library on each invocation of the GA and

changing the criteria for invoking the GA.

The results showed an improvement in the performance of the MA in

the tests which used the GA plan modification mechanism, thus answering
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the core question of this dissertation.

There is also scope for improvement on the design used in this study,

which will be elaborated on in the next chapter.
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Chapter 6

Conclusion

The aim of this study was to investigate whether Genetic Algorithms (GAs)

are a feasible method for plan modification in a changing environment.

To achieve this, a simulated network environment was created, using a

directed graph, and two Belief-Desire-Intention (BDI) agents were added

to that environment. The task of one agent was to make changes to the

environment, the job of the other agent was to transmit messages across the

network as quickly as possible. The design of these agents was discussed

in detail in Chapter 4.

The performance of the BDI agent, with and without the GA plan

modification mechanism was discussed in Chapter 5.

In this chapter the results will be summarised and discussed in the light

of the problem statement laid out in Section 1.1. Future possibilities for

further research will also be discussed.

6.1 Motivation

The BDI Agent architecture uses a plan library, defined at the time the

agent is created, which it uses to achieve its goals. This plan library is

fixed for the life of the agent.
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The fixed plan library exists so that the agent does not have to perform

resource-intensive planning during its normal execution. In a static envi-

ronment, a static plan library is sufficient. In a dynamic environment, the

static plan library may be problematic as the plans become less suitable as

the environment changes (Meneguzzi et al. 2004).

Various forms of planning have been investigated for incorporation into

a BDI agent to allow for the plan library to be modified during the execution

of the agent. These include state-based planners, hierarchical task networks

and propositional planning (Walczak et al. 2006; Silva and Padgham 2004;

De Silva and Padgham 2005; Meneguzzi et al. 2004).

GAs have not been used within BDI agents for this purpose. The moti-

vation for this study was to determine whether GAs could be used in this

manner.

6.2 Findings

The research question, posed in Section1.2, was based on the defined prob-

lem statement. The answer to that question, as supported by the results

of this study will be discussed in this section.

Is a GA a feasible mechanism for plan modification in a BDI

agent?

In order to answer this question, it was necessary to set up a test en-

vironment to situate the agents. The environment chosen was that of a

network routing environment and the performance of the BDI agent was

defined to be a function of the time taken to send the messages across the

network.

In retrospect, the choice of environment was possibly not the best.

While GAs have been used in network routing problems (Ahn and Ramakr-

ishna 2002; Nagib and Ali 2010), they are not common there. In addition,
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the use of an environment for which there are well-known algorithms, dis-

cussed in Section 3.7, allows for confusion as the purpose of the study. A

choice of robot motion, warehouse-type storage or resource optimisation

based environments may have been more suitable as an experiment choice.

In the simulated network routing environment, adding the GA plan

modification mechanism to a BDI agent resulted in improved performance

over the default BDI agent in all experiment types.

Additional experiments were done to understand the behaviour of the

GA plan modification mechanism. One unexpected result, was that increas-

ing the number of generations which the GA evolved for did not improve

the performance. Instead, when the GA was allowed to evolve for more

generations, the performance remained the same or decreased compared to

performance with the GA evolving for fewer generations.

This behaviour was likely due to the changing environment. With the

GA running for more generations, there was a higher chance that the en-

vironment would change while it was evolving, which would hinder the

convergence of the population.

It was also interesting to note that decreasing the number of generations

down to only five still resulted in a performance improvement over the base

agent without the GA plan modification mechanism. The performance

improvement was not as great as for the experiments where the GA ran for

more generations.

The experiments where the GA plan modification mechanism ran on a

schedule rather than in response to failures of the existing plans showed

strong performance improvements, better for much of the duration of the

tests than when the GA was invoked due to failure of the plans.

Overall these results show that GAs can indeed be a feasible method of

plan modification for BDI agents, at least within the environment selected

for these experiments
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6.3 Contribution to the Field

This study contributes to the body of knowledge in that it adds another

mechanism that may be used with BDI agents when the static plan li-

brary that they include hinders the performance of the agent in a changing

environment.

The study shows that, in a sufficiently slowly changing environment, a

GA can run for a small number of generations and provide an improvement

over the plans that it started operating on. This is not the usual way of

running GAs, but has shown to be effective in this scenario and may be

applicable for other scenarios using GAs.

6.4 Future Research

The most obvious avenue for future research is in investigating whether

these results hold in other types of environments, such as the robot motion

mentioned earlier. Such research could lead to an analysis of what kind of

environments a GA plan modification mechanism can be effective in.

A second path for future research would be to adapt the GA plan modi-

fication mechanism to work in a MAS application, either with the multiple

agents sharing a plan library which is the target for the GA plan modifica-

tion mechanism, or for each agent to have its own, independently changing

plan library.

Another potential line of research is in making the GA plan modifi-

cation mechanism run continually in real time, similar to what was done

in the NERO video game (Stanley et al. 2005). The later experiments in

this study, specifically the small number of generations and the scheduled

invocation of the GA could be taken further to a scenario where the GA

plan modification mechanism runs continually, evolving for a small number
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of generations G = 5 or even G < 5 and adding the one or two highest

fitness plans into the plan library on each execution.

A fourth, and more complex, potential path of research is that of pre-

dicting possible future changes to the environment and evolving plans in

anticipation of their being needed. In short, instead of evolving plans to

match how the environment has changed, the GA plan modification mech-

anism could use a history of environmental changes in order to predict

possible future states. It could then evolve plans based on those possible

future states so that if those states occurred, optimal plans would already

exist.

6.5 Conclusion

The basic form of a BDI agent contains a static plan library to reduce the

need for computationally expensive deliberative planning. The existence

of that plan library however could hinder the performance of the agent

in changing environments. Previous research has focused on integrating

planning mechanisms into BDI agents.

The aim of this study was to investigate whether GAs are a feasible

method for plan modification in a changing environment. The results have

shown that, in a specific environment, the integration of a GA plan modi-

fication mechanism provided a performance benefit to the BDI agent over

the agent without the GA component.
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Appendix A

Terms and Abbreviations

Abbreviation Definition

AFSM Augmented Finite State Machine

AI Artificial Intelligence

BDI Belief-Desire-Intention

D Destination Node

DAI Distributed Artificial Intelligence

EA Environment Agent

GA Genetic Algorithm

HTN Hierarchical Task Network

MA Messaging Agent

MAS Multi-Agent System

S Source Node

SD Standard Deviation

Table A.1: Abbreviations
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Appendix B

Variables

Variable Definition

C Rate of change of the environment

c0 Chance to run environment modification

cN Chance to a node to be modified

F Fitness

G Number of generations

i Invocations of the GA

K Number of plans in the plan library

L Latency

m max links per node

N Network size

P Population size

R Reliability

Table B.1: Variables
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Variable Definition

te Time between changes of the environment

tf Execution time of the fitness function

tGA Total execution time of a GA

tmsg Delivery time for a message

tavg Average delivery time across all tests

Table B.2: Variables, cont
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