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Abstract

The thesis presents a new method of Symmetry Analysis of the Black-Scholes Merton
Finance Model through modified Local one-parameter transformations. We deter-
mine the symmetries of both the one-dimensional and two-dimensional Black-Scholes
equations through a method that involves the limit of infinitesimal w as it approaches
zero. The method is dealt with extensively in [23]. We further determine an invariant
solution using one of the symmetries in each case. We determine the transformation
of the Black-Scholes equation to heat equation through Lie equivalence transforma-

tions.

Further applications where the method is successfully applied include working out
symmetries of both a Gaussian type partial differential equation and that of a differ-
ential equation model of epidemiology of HIV and AIDS. We use the new method to
determine the symmetries and calculate invariant solutions for operators providing

them.

Keywords: Black-Scholes equation; Partial differential equation; Lie Point Symme-

try; Lie equivalence transformation; Invariant solution.
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Introduction

The Lie group analysis of differential equations is the area of mathematics pioneered
by Sophus Lie in the 19th century (1849-1899). Sophus Lie made a profound and
far-reaching discovery that all ad-hoc techniques designed to solve ordinary differen-
tial equations (e.g separable variables, homogeneous, exact) could be explained and
deduced simply by his theory. These techniques were in fact special cases of a general
integration procedure of classifying ordinary differential equations in terms of their
symmetry groups. This discovery led to Lie identifying a full set of equations which

could be integrated or reduced to lower order equations by his method [6],[14].

The Lie Symmetry method is analytic and highly algorithmic. The method system-
atically unifies and extends ad-hoc techniques to construct explicit solutions for dif-
ferential equations. The emphasis is on explicit computational algorithms to discover
symmetries admitted by differential equations and to construct invariant solutions

resulting from the symmetries [6],[13].

Lie group analysis established itself to be an effective method of solving non-linear
differential equations analytically. In fact the first general solution of the problem
of classification was given by Sophus Lie for an extensive class of partial differential
equations [14]. Since then many researchers have done work on various families of
differential equations. The results of their work have been captured in several out-
standing literary works by amongst others Ibragimov (1999), Hydon(2000), Bluman
and Anco(2002), etc [6], 9], [13].



The present project titled A Lie Symmetry Analysis of the Black-Scholes
Merton Finance Model through modified Local one-parameter transfor-
mations seeks to explore the analysis of the widely used one-dimensional model of
Black-Scholes partial differential equation through determining the new symmetries
and invariant solutions of some of these symmetries. The analysis is through a new
method developed in [23], [28]. Further exploration of the method can be found in
[25], [26],[27]. Throughout the project we use Lie point symmetries.

The Black-Scholes equation is a partial differential equation that governs the value
of financial derivatives. Determining the value of derivatives had been a problem in
finance for almost 70 years since 1900. In the early 70s, Black and Scholes made
a pioneering contribution to finance by developing a Black-Scholes equation under
restrictive assumptions and the option valuation formula. Scholes obtained a No-
bel Prize for economics in 1997 for his contribution (Black had passed on in 1995
and could not receive the prize personally) [32]. Furthermore, information on the
derivation of and the restrictive assumptions in the development of the Black-Scholes

equation can be obtained in the texts [4], [8], [10], [11], [12], [21], [22] and [30].

The thesis outline is as follows:

Chapter 1 presents the concept of Local One-parameter Point Symmetries. We
introduce concepts of Local One-parameter Point transformations, generator, pro-
longation formulas, determining equation and Lie algebras. These concepts serve as

tools in the analysis of the Black-Scholes partial differential equation.

Chapter 2 presents the Symmetry Analysis of equation (2.1) as outlined in [9]. The
chapter presents the symmetry of (2.1),finite symmetry transformations and the

transformation of the equation (2.1) to the heat equation.



Chapter 3 is the core of the thesis. It introduces the Symmetry Analysis of equation
(2.1) by using the method developed through contributions in ([23]) and ([28]). The
chapter details the symmetries of one-dimensional Black-Scholes equation (2.1) as
well as the two-dimensional case through modified Local one-parameter transforma-

tions.

Chapter 4 involves the transformation of the transformed Black-Scholes equation to
heat through Lie equivalence transformations. We calculate this transformation by

using a method similar but with slight modification to that developed in [17].

Chapter 5 presents other areas where the method was successfully applied. The appli-
cation includes determining the symmetries and invariant solutions of the Gaussian

type differential equation and symmetries in the epidemiology of HIV and AIDS.

Contributions to the study

The thesis is based on peer reviewed contributions to the study as outlined in the
publications ([1]) and ([28]). Several texts for example ([6]), ([13]),([14]) etc. present
symmetries of differential equations in the way initially introduced by Sophus Lie.
However, in this publications we introduce an alternative way to determine these

symmetries, and the method present new additional symmetries.



Chapter 1

Local One-parameter Point

Symmetries

The chapter presents the underlying theory of Lie Symmetry Analysis and the tools
we will use in subsequent chapters. The most common of all symmetries in practice

are Local One-parameter Point symmetries.

1.1 Local One-parameter Point transformations

To begin, we consider the following definition.

Definition 1 Let
x = G (x;¢€) (1.1)

be a family of one-parameter ¢ € R invertible transformations, of points x =
(xt,---  2Y) € RN into points x = (z%,--- ,z2") € RN. These are known as one-

parameter transformations, and subject to the conditions
X|€:0 = X. (12)

That is,
G (x;¢) = X. (1.3)



Expanding (1.1) about € = 0, in some neighborhood of € = 0, we get

_ oG et [ 0*°G oG 9
x-x—i—e(a >+§<W )—l—---—x-l—e(a )+O(6). (1.4)
e=0 e=0 e=0
Letting
0G
§(x) = | (1.5)
e=0
reduces the expansion to
x =x+ € (x)+ O (€%). (1.6)
Definition 2 The expression
X =x+€e(x), (1.7)

is called a Local One-parameter Point transformation.

The components of £ (x) are called the infinitesimals of (1.1) [6].

1.2 Local One-parameter Point transformation groups

The set G of transformations

_ 0G e [ 0°G ,
=+<a— )*5(7 )* =123 ()

becomes a group only when truncated at O (€2).

That is, GG is a group since the following properties hold under binary operation +:
1. Closure. If x.,,X., € G and €1,€e2 € R, then
Xe, +Xe, = (614 6)(x) = X, €G, and €3 =€ + €6 € R.
2. Identity. If X = I € G such that for any e € R
X+ X, = X = X+ X,

then X is an identity in G.



3. Inverses. For X, € G, € € R, there exists X_' € G, such that

— — — — —
X, +Xe = Xe+X, 7, X = = X1,

and €' = —e € D, where + is a binary composition of transformations and it is

understood that X, = X, — x. Associativity follows from the closure property.

Example 1 :

Group of Rotations in the Plane

T1 = I1COSE€+ Tysince,
Tog = X9COSE — Tpsine.
That is,
Li’l = $1+ZB2€,
.i‘Q = T — X1E€.

Example 2 : Group of Translations in the Plane

T, = xi+€,

Example 3 :

Group of Scalings in the Plane



z; = (1+€);. [6], [15].

1.3 The group generator

The Local One-parameter Point transformations in (1.7) can be rewritten

in the form

Xx=x+¢€(x)-Vx, (1.9)
so that
x=(1+€(x)-V)x. (1.10)
An operator,
G=¢(x)-V, (1.11)

can then be introduced, so that (1.9) assumes the form
x=(1+¢€G)x. (1.12)

The operator (1.11) has the expanded form
S
G=> ¢"— (1.13)

or simply

G = 5’“%. 6], [16], [18]. (1.14)

1.4 Prolongations formulas

It often happens that the invariant function F' does not only depend on the point x
alone, but also on the derivatives. When that is the case then we have to use the

prolonged form of the operator G.



1.4.1 The case N =2, with 2! =z and 22 =y

The case N = 2, with 2! = z and 2 = y reduces (1.13) to

0 0
G = — —. 1.15
&, y) 5 +n(,y) o5 (1.15)
In determining the prolongations, it is convenient to use the operator
of total differentiation
0 0 0
D= —_ /! n_-_ ... 1.16
o tVa, TVt (1.16)
where
dy d*y
== = 1.17
The derivatives of the transformed point is then
dy
y = —=. 1.18
V= (1.18)
Since
T=x+¢e and y=y+en, (1.19)
then
., dy+edn
e — 1.20
Y7 de + ede (1.20)
That is,
o dy/da:—i—edn/d:c‘ (1.21)
dzx/dx + edS/dx
Now introducing the operator D:
"+eD "+eD 1—eD

1+ €D(E) 1—e(D(¢))

Hence



g = Y= e(Dm) —y' D) — (D(E))
1 —e*(D(§))? '
That is,
g =y +eDn) —yDK)),
7 =y +e,
with

¢t =D(n) —y'D(&).

It expands into

Ct=ma + (ny — &)Y — %y

The first prolongation of G is then

0 0 0
Gl = — — 4+ .
§(x,y)ax + 77(967y)ay +¢ o
For the second prolongation, we have
" 1
—//_y +€D(<)N " 2
=Ty VT

with
¢*=D(¢") —y"D(&).

This expands into

CQ = Nzz + (277:1:3/ - fxx)y/ + (nyy - Qé‘xy)ylz

- y/3€yy + (ny - 2590 - 3y/€y)yu-

The second prolongation of GG is then

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)



0 0 0 0
G[2] = g(xay)% + U(ﬂf,?/)a—y + Cla_y, + Czay//'

Most applications involve up to second order derivatives. It is reasonable then to

(1.32)

pause here, for this case [14] .

1.4.2 Invariant functions in R2

Theorem 1 A function F'(z,y) is an invariant of the group of transformations (1.13)
if for each point (z,y) it is constant along the trajectory determined by the totality
of transformed points (Z, 7):

F(z,9) = F(z,y). (1.33)

This requires that
GF =0, (1.34)

leading to the characteristic system

dr dy
—_— == 1.35
& (1:3)
Proof. Consider the Taylor series expansion of F'(X) with respect to e:
oF
F(z,9)=F(z,y)| +e—| +- . (1.36)
=0 Oe e=0
This can be written in the form
0T 0F 00y 0F
F(z,y)=F(z,y —+ =—— 1.37
.0) = Flog)| +e(G5 - e ) (187
That is,
OF  OF
F(x>y):F(fB,?/)+€<§—_+77T) te (1.38)
ox ] L
or
F(z,y) = F(z,y) + §8+ OV Fy (1.39)
z,y) = F(x el E=—+n=— e .
Hence
F(z,y) = F(x,y) + ¢GF, (1.40)

10



with
0
sz—x+n—. (1.41)
For € = 0 then we get
F(z,y) = F(z,y), (1.42)

thus proving the theorem [16].

1.4.3 Multi-dimensional cases

In dealing with the multi-dimensional cases, we may recast the generator (1.13) as

- 0 0
G=¢— “ . 1.43
o T g (1.43)
We consider the kth-order partial differential equation
ou
F(x,u,uny, ug), ..., urk)) where o= (21...2,), up) = e (1.44)

By definition of symmetry, the transformations (1.1) form a symmetry group G of the

system (1.44) if the function u = u(z) satisfies (1.43) whenever the function u = u(z)

satisfies (1.44). The transformed derivatives %y, ..., U are found from (1.4) by
using the formulae of change of variables in the derivatives, D; = D;(f)D;. [6]
Here
0 0 0
D; = . a—— @ ce 1.45
9t ) + g ) (1.45)

is the total derivative operator w.r.t. x* and Dj is given in terms of the transformed
variables. The transformations (1.13) together with the transformations on @) form
a group, G| which is the first prolonged group which acts in the space (z,u, U(1))-

Likewise, we obtain the prolonged groups G'? and so on up to G*.
The infinitesimal transformations of the prolonged groups are:

ﬂ’;ll ~ U’;ﬁl + agzq(‘r7 u, U’(l)) )

a ~o a a
Uy = Uy +a ij(xv U, U(1), U(Q)) )

a

= ~ 1,0 a
Uy g U G, T Q il...ik(x7 U, U(1), - - - 7“(k)) :

(1.46)

11



The functions ¢f(x, u, uq)), ¢f4(7, u, uq), u)) and

a
11...0k

(@, u, uqy, ..., u)) are given, recursively, by the prolongation formulas:
¢ = Di(n*) —ugDi(&)

ij = Dj(@a) - UuDj(fl) )

(1.47)
sz = le( qu...ik_l) - uli1~-~ik—1Dik (51) .
The generator of the prolonged groups are:
G = fl(x, U) 821' + 77“(% U) aga + lel(g;, u, u(1)>82§ )
(1.48)
GM = &z, u) 2% + 1" (z, u) 52 + (v, uy) 3 (1.49)
I Z...ik@?u""’u(k))%%' (6], [15].

i1 .ig

Definition 3 A differential function F(x,u, ..., uy)), p > 0, is a pth-order differen-

tial invariant of a group G if
F(x,u,...,u(p)):F(f,ﬂ,...,ﬂ(p)), (150)

i.e. if F is invariant under the prolonged group G, where for p = 0, Uy = u and

Gl = @.

Theorem 2 A differential function F'(z,u, ..., ug)), p > 0, is a pth-order differential
invariant of a group G if

GPE =0, (1.51)

where Gl is the pth prolongation of G and for p =0, G’ = G.

The substitution of (1.49) and (1.50) into (1.5) gives rise to
Ea(f, Uy U(1)y - - - ,ﬂ(k)) ~ EU([L’, Uy U(1)y - - - ,U(k)) + (I(G[k]EJ) , (1.52)

c=1,...,m.

12



Thus, we have
G[k}EU(m,u,u(l),...,u(k)):O, c=1,...,m,

whenever (1.44) is satisfied. The converse also applies.

1.4.4 Invariant functions in RY

(1.53)

Theorem 3 A function F(x) is an invariant of the group of transformations (1.13)

if for each point x it is constant along the trajectory determined by the totality of

transformed points X:

This requires that

leading to the characteristic system

dz! B dzv

Ca

Proof. Consider the Taylor series expansion of F'(X) with respect to e:

OF
+e—

F(R) = F(x) _*ege

€ e=0

That is,

For ¢ = 0 then we get

thus proving the theorem [16].

13
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(1.59)
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1.5 Determining equations

Equations (1.53) are called the determining equations. They are written compactly
as

G[k]E0<1’,U,U(1),...,U(k)) |(1) :0, g = 1,...,m,
where |1y means evaluated on the surface (1.44).

The determining equations are linear homogeneous partial differential equations of
order k for the unknown functions & (z,u) and n®(z,u). These are consequences
of the prolongation formulae (1.47). Equations (1.5) also involve the derivatives
U1y, - - -, wk) some of which are eliminated by the system (1.44). We then equates
the coefficients of the remaining unconstrained partial derivatives of u to zero. In
general, (1.5) decomposes into an overdetermined system of equations, that is, there
are more equations than the n+m unknowns ¢° and 7. There are computer algebra

programs that can perform the task of solving determining equations [3].

Since the determining equations are linear homogeneous, their solutions form a vector

space L [6].

1.6 Lie algebras

There is another important property of the determining equations, viz. if the gener-
ators

‘ 0 0
G, = 51(%“)% + U?(ﬂﬁau)%

and

7 a a 6
Gy = fz(%u)@ + UQ(SU’U)%

satisfy the determining equations, so do their commutator |G, Gs] = G1Gy — G2G

0

G1,Ga] = (G1(6) ~ GalED) s+ (G () — Gal) o

which obeys the properties of bilinearity, skew-symmetry and Jacobi’s identity, viz.

14



1. Bilinearity. If G1,Gs, G3 € L, then

[aG\ + fGa,Gy) = a[Gh,Gy) + 5[G2,Gs), a,§ are scalars

2. Skew symmetry. If G, Gy € L, then

(G1,Gs] = —[Ga,G4].

3. Jacobi Identity. If G;, G5, G35 € L, then

[G1, Ga] , G| + [[G2, G3] , G1] + [[G3, G4] , Ga] = 0.

The vector space L of all solutions of the determining equations forms a Lie algebra

which generates a multi-parameter group admitted by (1.44) [15],[16].

1.7 Solvable Lie algebras

In this section, we will show that if » = 1, then the order of an ODE can be reduced
constructively by one. If n > 2 and r = 2, the order can be reduced constructively
by two. But if n > 2 and r > 2, it will not necessarily follow that the order can be
reduced by more than one. However, if the r-dimensional Lie algebra of infinitesimal
generators of an admitted r-parameter group has a g-dimensional solvable subalgebra,

then the order of the ODE can be reduced constructively by q.

Definition 4 A subalgebra A of the Lie algebra L™ with dimension r, is called an
ideal or normal subalgebra of L" if [G,,Gs] € A, for all G, € A and Gg € L".

Definition 5 The Lie algebra L", with dimension r, is called an r-dimensional solv-

able Lie algebra if there exists a chain of subalgebras
AtcA*c...c L,

with A*~! being an ideal of A%, and k < r.

15



Definition 6 A Lie algebra A is Abelian if [G,, Gg] = 0, if both G, and G4 are in
A. [16]

Theorem 4 An abelian algebra is solvable [16].

Theorem 5 A two-dimensional algebra is solvable.
Proof Let L be a two-dimensional Lie Algebra with infinitesimal generators X; and

X5 as basis vectors. Suppose that
[Xl,XQ] = CLXl + bXQ =Y
If Cle -+ CQXQ € L, then

Y, C1 X1+ Co Xyl = CGiY, Xq] + ColY, Xy
= Olb[Xg,Xl] _I_CQCL[Xl,XQ]
= (OQCL — Clb)Y

Therefore Y is a one-dimensional ideal of L. Hence the proof [5].

1.8 Lie equations

One-parameter groups are obtained by their generators by means of Lie’s theorem:

Theorem 6 Given the infinitesimal transformations zi = 2% + e£*(z), u® = u® +
en®(z) or its symbol G, the corresponding one-parameter group G is obtained by

solution of the Lie equations

dz’ ) du®
di —€i(z,0), —— =n70),

subject to the initial conditions

Fle—o =2, @|=o=u". [18] (1.61)

16



1.9 Canonical Parameter

If in the group property 1., discussed above, the expression (€1, €2) can be written

as
o(€1,€2) = €1 + €,

then the parameter a is said to be canonical. In general, a canonical parameter exists

whenever ¢ exists. That is, one has the following theorem:

Theorem 7 : For any ¢(a,b), there exists the canonical parameter
B / “ da
a= :
o Ald)

- heo.  [18]

where

This system, with a as the canonical parameter below, transforms form-invariantly

in variables t, z,y, z, u, v, w, p, u (see [?]) under

e [/ u}lfa(/m] e U uFd'UL(/m] e U u%)] |

o[ ) e ) o= ool )

t

I
I

w

@

1.10 Canonical variables

Theorem 8 : Every one-parameter group of transformations ( z = f(z,y,€), y =

g(x,y, €) reduces to a group of translations t =t + ¢, @ = u with the generator

0

X = —
ot

17



by a suitable change of variables

t=t(x,y), wu=u(z,vy).

The variables ¢, u are called canonical variables.

Proof: Under change of variables the differential operator

0 0

transforms according to the formula

0 0

(1.62)

Therefore, canonical variables are found from the linear partial differential equation

of the first order:

X(t) = g@,wwﬂ(m,y)&gy)
X(u) = §(x,y)W+n(g¢,y)%‘Z?ﬂ

Hence the proof [15].

=1

= 0. (1.63)

Theorem 9 : By a suitable choice of the basis G, G5, any two-dimensional Lie

algebra can be reduced to one of the four different types, which are determined by

the following canonical structural relations:

L.
[Gl,GQ] = O, G1 V G2 7’é 0;

I1.
[Gl,GQ] = O, G1 V G2 = O,

I1I.
[G1,Ga] #0, GV Gy #0;

Iv.

[Gl,GQ] 7& O, G1 V G2 - O,

18
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(1.65)

(1.66)

(1.67)



where

G1V Gy = &M — méa,

and

0 0 0

oy G, = 52% + o

0
G1—51%+771 ay

Type 1.
[Gl, GQ] = O, G1 V G2 7é 0

This condition reduces

to

dy’
i,
f@) '

with C] being the integration constant.

Type II.
[Gl,Gg] = O, Gl V Gg = 0;

This condition reduces

to

[15].

y:/(/f(w)dx> dz + Cha + C.

with C and (5 being the integration constants.
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Type 1II.
[G1,G2] #0, GV Gy #0;

This condition reduces

y” = _f(y/)7
to
dy N
) @)+ O

with C being the integration constant.

Type IV.
[leGQ] 7£ 07 Gl \ G2 = 07

This condition reduces

to

y=C} / eJ T@)dz g, o Cs.

Theorem 10 : The basis of an algebra L, can be reduced by a suitable change of

variable to one of the following forms:

L. ) )
G| = 97 Gy = a—y;
II.
Gi = gy’ Gy = x%;
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III.

0 0 0
G = N Gs _x%+y8_y’
V.
0 0
Gi=—, Gy=9y—.
1 ay7 2 y@y

The variables z and y are called canonical variables.

1.11 One Dependent and Two Independent Vari-

ables.

We consider the equations

Up = Ugy, (1.68)

. In order to generate point symmetries for equation (1.68), we first consider a change
of variables from ¢,z and u to t*, x* and u* involving an infinitesimal parameter e.

A Taylor’s series expansion in € near € = 0 yields

t ~ t+el(t,z,u)

T = r+e(t,x,u) (1.69)
u ~ u-+e((t,z,u)

where
% =0 = T(t,z,u)
?)_f e=0 — f(t,x, U) ) (170)
% e=0 — C(t,l’,U)

The tangent vector field (1.12) is associated with an operator

0 0 0
GZTE—FS%'FC%, (1.71)

called a symmetry generator. This in turn leads to the invariance condition

G[g] [F(t7 Ly Ugy Ugy Uy y Utts umc)] |{F(t,x,ut,uz,um,utt,uzz)ZO} = 07 (172)
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where G is the second prolongation of G. It is obtained from the formulas:

where

and

1.12

G[Q] = G+ Ct Dur Cx g Ctt Oure

+ Ctmm + gﬁxm7
F) B F)
G o= G [ - G- G (173)
F) ) ) aT
Bl [ - 50— B T
of 8T 825
6t2 +u 8t2 + [25 - W} Uy — U

1220 -

G o= 3

le]
Qa_gutxa

2 0 9 92T
- 9+ 8xg+[__ﬁ:|ux 8x2ut

xTr ox

+ [f - QgT} Upz — 2 z Utz

2 _ *f 9°T
Gla = s T Uy T [2 oz 8t8:1:] Ut
of _ 0% or _ o
T [25 - Btax] up = [f = Gt — 5] v

or [2l3
- %utt ot o Ugz-

One Dependent and Three Independent Vari-

ables.

In order to generate point symmetries for equation (1.68), we first consider a change

of variables from ¢,z and u to t*,x* and u* involving an infinitesimal parameter e.

A Taylor’s series expansion in € near € = 0 yields

where

t ~ t+el(t,z,u)
T =~ x4+t r,u) (1.75)
u ~ u-+eC(t,r,u)
g—iezg = T(t,z,u)
Slemo = &t a,u) (1.76)
%620 = ((t,z,u)
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The tangent vector field (1.12) is associated with an operator

0 0 0
G = Tat+f%+C%, (1.77)

called a symmetry generator. This in turn leads to the invariance condition

G[Q] [F<t7 Ty Uty Ugy Utz Ugt, umc)] |{F(t,x,ut,uz,um,utt,uzz):o} = 0, (178)
where G is the second prolongation of G. It is obtained from the formulas:

GD] = G+ Ctla%t + C%% + Cttautt

2 0 2
+ Ctz Ot + Ca:x Ougs’

where
) ) B )
G o= Gt - G G (179)
) ) )
G o= grugt - 5w - G (1:80)
) 2 02
ng - at2 +u at2 £+ [Q_f o %Tﬂ Ut — aéuw
+ [f — Q%ﬂ Ut — 2 7 Wt
82 2
31 = 8x2+ 8$2+[2 ox 87§:| u$_gT€ut
and
0 92g a f 9T
Gz = otor T Yoo T [2_ - 6t8x] Uy
of 92¢ ar ot
+ [25 o 8t8:v] Uy — |:f - ot 8ac:| Utz
)
gz;utt aﬁuzz

We now look at two dimensional and three dimensional heat equation given respec-
tively by
Up = Uy + Uy, (1.81)

and

Up = Ugg + Uyy + Uss. (1.82)
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In order to generate point symmetries for equation (1.81), we first consider a change
of variables from ¢, x,y and w to t*, x*, y* and u* involving an infinitesimal parameter

e. A Taylor’s series expansion in € near € = 0 yields

t

Q

t+€l'(t,z,y,u

Y

I
2

x4+ et x,y,u

( )
( ),
y+ep(t,z,y,u),
u+eC(t,z,y,u)

(1.83)

<
Q

S
X

where

g—ge:o = T(ta T, Y, U

)
%620 = f(t xayvu)v
)
u)

Y

o (1.84)
3_Z|e:0 - @(t T, y,u
(t,

Y

% e=0 — C Lz, y,u
The tangent vector field (1.84) is associated with an operator

0 0 0 0
G = Tt+§a—m+§0a—y+<—

5 o~ (1.85)

called a symmetry generator. This in turn leads to the invariance condition

2 _
G[ ] [F(t7 Ty Uty Ugy Uy Utgy Uty Utty Ugas Ugy, uyy)] |{F(t,x,ut,uz Uy Utz Uty Utt Uz Uzy Uyy ) =0} — 07

(1.86)
where G is the second prolongation of G. It is obtained from the formulas:
Gl = G+ (> (Mt 250 T e + CGiann
+ (5 Ju Cty Bugy Cooge Bume T <Q%y Duey Coy afyyv
where
G o= Gl [ B S (18
G = grugh+[f - Glu— G —uwg, (1.88)
G = Grud+[f - 5w - Fu—wh - wf, (159
G = 8752 +u 8t2 + [2616 - 8627?} U = %“x - g_jg“y

+ [f - 2%} Ut — 2%1%:1: 28 uyt;
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2 _ 0%g f o2T
= t Upmr T |57 — Bmon | W

tx otox
af 0%¢ T
T [25 - 8t8:}c] e — uy g — [2F = 250 — 5] e
0§ ¢
[at + 8:c:| Uz — [2_% + } Ugy-
2 _ 92T
Cty - 8t8m +u 6t + |:2 ox atax} Uy
af 92¢ T ot
+ [25 - atax] Uy — [f — o ax} Uty
16)
— Gt — i as.
) B 92 2
3%30 = 8362 +u 8902 + 2_f 8x§:| Ug — %Lguy o ??Tgut

6 o)
+ [f - 235] Ugy — Qa_iua:ya _2(69_:“151:7

9 82g 9%f of &y 9. T
Gy = ooy T Yooy T 2ay atoy | Yy — Bray Ue — gz Ut
o0 4 el ofoe, oc o _or
[2 ot T ay] Uy — 2 [at + 8y:| Uzy + [Qf 2% ay] Uyt
2 _ (0f 9% 92 9T
w = gptu 82 [+ 2ay ay? ] Uy = Fzle — gyzlt

- [f — 22| uyy = 2| %] ey + [2F — 22wy

1.13 One Dependent and Four Independent Vari-

ables.

For the equation (1.82) the tangent vector is given by

9 o o o 0o
78 4 e 1,9 059 9 1.
=T +8a: T 2ay, T8 T Cau (1.90)

and

3 ) ) 9
G2l = G—l—Ctla—ut—l—@m‘i‘cyla—%-i‘(zlm"‘@taun

2 0 2 0 2 0 2 0 2 0 o) 2
+ Ctxm + Cty Dty + Cox Oz + Cﬂcy auzy + sz s + yy Dty + C zauyz

+ zzﬁuzz + ztauzf

2 2 2 2 :
gz = %_‘_ﬂ +uz(2ﬂ_ gzﬁ)_uxgzg _uygy‘:@ ut%_'—uzz(f_z%)
_2uzz 2uzygi 2uzt 0z
029 0f of 0%
2
_ 29, L2 27 1.91
S on?  Jd(n— 1)2u +tin on  On? * (1.91)
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1.14 Omne Dependent and n Independent Variables.

The Local One-parameter Point transformations

T = Xi(w,u,€) =z +ef(x,u) + 0 (1.92)

u = Uz,u,e) =u+en(r,u) +0 i=1,2,...,n (1.93)

acting on (x,u) - space has generator

0
+n(z,u)5-

a.’lﬂ'i

The kth extended infinitesimals are given by
(@, ), (e, w),n (@, u,0u), ..., (2, u,0u, ..., ouD), (1.94)

and the corresponding kth extended generator is

0 0 0 0
X® = Xj—+n—+¢} e i =1,2,...,n 1=1,2,....k k>1[6].
or Plgg ta gt G Gy T L2 2,k k> 1]6]
(1.95)
Theorem 11 The extended infinitesimals satisfy the recursive relations
V= D —(Di&)uy, i=1,2,...,n (1.96)
Czklzzzk = Dik iklzfgl...ik_l - (Diéj)uili?--ik—lj (197)

1=1,2,...,nfor 1l =1,2,...,k with £ > 2

Proof. Let A be an n X n matrix

DXy - DiX,

D, X, --- D,X,

and assume that A™! exists. From equation (1.92) and the matrix A we have that

Dy(zy +€€1) Di(wa+€&) -+ Di(w, +€6y)
A D2($1‘+ 1) Da(wo+€b) --- D2(952'+ 23 1 0(2) =1 +eB+0(e)
i Dn(l’l + Efl) Dn<I2 + 652) e Dn(JTn + Efn) |
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where [ is the identity matrix and

D& D& - Dh&,
B - D2‘§1 D?fz e D2.€n
| Dnél Dn€2 te Dngn |

Then A~! = I — B + 0(¢?) Using some transformations we arrive at that

k k-1 L
il’iz.‘.ikl ‘Dl 11%9... u1122--~1k711
k k—1 L
11%2...1k . 254149... . B u1112---1k—12
k k-1 L
i1i2...’ikn ] | Dn 11%9... | | ulll2~~~1k71n |

i=1,2,...,nforl =1,2,... k with £ > 2 and this leads to (1.97). Hence the proof.

The details of the proof are contained in [6].

1.15 m Dependent and n Independent Variables.

We consider the case of n independent variables z = (z....

.2™) and m dependent
variables u(z) = u'(z)...u"(z). Partial derivatives are denoted by u}' = 2“. The
notation

ou=0"=ui(z)... u(x).. . u(x).. u(z)

denotes the set of all first-order partial derivatives

Pu = {uf ,jp=1...m:iy...i,=1...n}

i1
OPuP () : .
{mm:1...m:21...2p:1...n}

denotes the set of all partial derivatives of order p. Point transformations of the form

T = f(z,u) (1.98)

u = g(z,u) (1.99)
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acting on the n + m dimensional space (x,u) has as its pth extended transformation

(@) = fi(xu) (1.100)
(wr) = g"(z,u) (1.101)
(@) = H(e,u,du) (1.102)
(1.103)
(Uﬁ_zp) = hflmip(x,u,ﬁu ... 0%u) (1.104)
with 2,41,...,4 = 1,...,n; p=1...m %j;))i. The transformed components of
the first-order derivatives are determined by
(w)y hy Dy g"
Wh | | m || D
(), h; D,g"
where A~! is the inverse of the matrix
Dyft - Dyfr
A= : :
Dpf' -+ Duf"
in terms of the total derivative operators
0 0 0
B T G T i T
i =1,...,n [7]. The transformed components of the higher-order derivatives are
determined by
()i, 1 hiy iy 1 I
(U)ZZPQ _ hﬁ...iﬂ eS| D2h¢1...ip_1
i (&)Zzp” 1 i hiy i, ] i Dyhi i, 0 ]

The situation where the point transformation (5.154,5.155) is a one-parameter group

of transformation given by

T = fizue) =2 +ef(z,u) +0(), i=1,..n (1.105)

' = g'(z,u,€) =u + e (mu) +0(), p=1,..m (1.106)
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will have the corresponding generator given by

. 0 0
X = €@, u) g+ () 7] (1.107)
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Chapter 2

Symmetry Analysis of
Black-Scholes Equation

In this chapter we state the Symmetry Analysis as presented in the paper by Ibragi-
mov and Gazizov ([9]). We present the symmetries of one-dimensional Black-scholes
equation, finite symmetry transformations of determined operators, transformation
to heat equation and invariant solutions from some operators. The one-dimensional

Black-scholes model is given by the partial differential equation
L oo
Uy + §A T Uy + Bru, — Cu =0 (2.1)

with constant coefficients A, B and C, where A # 0, and define D = B — ATQ. The
Symmetry Analysis of the equation (2.1) as outlined in [9] follows in the subsequent

sections.

2.1 Symmetries

For the Black-Scholes model (2.1), n = 1, 2! = z the generator or symbol of infinites-
imal symmetry is given as

X = §l(t,x)2 + g?(t,x)ﬁ + n(t,x)ﬁ

Ot oxr ou (2:2)
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Its extension up to the second prolongation is given by

0 0 0
X® =X+ ngl)a—ut + 775»1)% + Ug,-)ﬁ (2.3)

where X is defined by equation (2.2) and the functions ¢°, (*and ¢! are given by

(" = Dy(n) — uDy(€) — ul,Dy(&")

=N+ Ughy — Utf? - U?fg - Uxftl - Utuxfi

¢ = Dy(n) — wD;(&°%) — ulDy(€Y)
Ch =0+ — w€y — wue€y — ug€y — uzE,

("' = Dy(C") = a1 D (€°) — ttigr Dy (€F)

¢ = Du(¢Y) = uaDa(€") — e Da(€')
= Naw + 2y €y, + UsgThy + U — 242
— )y, — 2ugtzE, — (Uplag + 2uatug )&y — uully,
= 2y — Unbyy — 2055, — BUalery — UpEy,

where D, and D, are total derivatives with respect to the variables x and ¢ respec-

tively and are defined by

D —£+u £+u 0 +u i+
T or T T ou, T Ouy
0 0 0
D, a‘l— 5 +u:ct8_uz+utt8_ut+ 9]

The determining equation is given by

1 1
{CO+5+A2$uxx§1+§A2$2C11+Buﬂcfl+3$gl_Cn}|ut:—%A2x2uzI—Bxuz+Cu =0 (24)
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The substitutions of ¢?, ¢! and ¢! in the determining equation yields that
1 1
ne + (—§A2x2um — Baug, + Cu)(n, — &) — (—§A2x2um — Bau, + Cu)?¢0—
1 1
Ul — (—§A2x2um — Bau, + Cu)ugEl + Arug &' + §A2x2nm + A%2% Uy,

1 1
+ §A2x2um(nu — 2& — 3u$fi) + §A2x2ui(nuu — 2511“) - A2x2um§2
1 1
— — A% (— = A%2%uy, — Brug + Cu)
2 2
1 1 1 1
— §A2x2um(—§f12x2um — Bau, + Cu)éd — §A2x2(—§A2x2um — Bxu, + Cu)

0 - A2x2(—%A2x2um — Bau, + Cu)&?,

w
- %A%Quiﬁm + Bu,&' — A*xPugu, ) + Brug(n, — &)
— Ba:(—%AQ:I:QuM — Bru, + C’u)fg + Bxn, — Bxux(—%AzﬂfQUm — Bru, + Cu)fg
— Bru2¢l — Cn=0.

(2.5)

The solution of determining equation (2.5) provides an infinite dimensional vector

space of infinite symmetries of the equation (2.1) spanned by the operators

X, = 2A2t22 +2A%*x1In xi +{(Inx — Dt)? + 2A%Ct* — AQt}ua2
u

ot ox
Xy, = Qt% +z(lnx + Dt)% + (Ct)u%
X; = % (2.6)
X, = A%ta% + {lnz — Dt}u%
X5 = x%
and
Nomul X =gt 27

The function g(¢,x) in (2.7) is an arbitrary solution of equation (2.1) and X is an

infinite symmetry [9].

2.1.1 Finite symmetry transformations

The finite symmetry transformations
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corresponding to the generators (2.6) and (2.7) are found by solving the Lie equations

(1.8). These are given by:

_ t t [(Inz—Dt)2+4+242Ct2]¢;
X, t = oAt T = 1242t g =ur/1 — 2A2€1t6 1-24%¢t
_ €
— _ 2_ _ 2_
X 1 t= te%, T = zegeP(@ 62)t, a0 = uefE@t ¢, #0

and
Xe : t=t, T=uz, u=ue €e5#0
Xy + t=t, T=z, u=u+g(tx)
The functions €q,..., € are the parameters of the one-parameter groups generated

by Xji,...Xs, and g¢(t,z) is an arbitrary solution of (2.1). The operators X7, ...X¢

generate a six-parameter group and X, generates an infinite group.

2.2 Transformation to heat equation

In the paper [9] as well the text [17] Gazizov and Ibragimov inform that equation

(2.1) is reducible to heat equation
Ur = Uy, (2.8)
by Lie equivalence transformation

T=0(), y=alt,z), v=~(t,2)u, a,#0, B #0. (2.9)

With change of variables (2.9) the equation (2.8) becomes

2755 QO Uy Oé?c Yz Ay O Yy aif)/t Az Vx
Y By Oy By Y By By g7y

um—i—[ ]u:O (2.10)

Equation (2.10) compared to (2.1) written in the form

2B 2 2C

+ A%um + A2I2ut — A%Qu =0

UCEQB
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results in the system

2
% - —ﬁ (2.11)
2::9” + agft = O;:” - j—fx (2.12)
R el el 219
Solving for «v in (2.11) results in that
alt, z) = %m +o(l), B = —%go(t)Q (2.14)

with ¢(t) and 1(t) as arbitrary functions. The substitution of (2.14) in (2.12) results

n

B 1, ¥t Py nz
v(t,x) = v(t)zaz 2T Atz ! (2.15)

with an arbitrary function v(t). The solution of (2.13) results in two possibilities,

either
7 L—th’ V= LthJFN’ K#0,
and the function v(¢)
Vy M?K? K A> B B?
v L—Ki? 2L—Ki) 8 2 247
or

p=L, &=Mt+N, L#0,

and the function v(t)

v,  M? K A*> B B?

v I7 2AL-Ki 8 2 22
with arbitrary constants K,L,M and N. This results in two different transformations
that associate (2.1) and (2.8). The first transformation is given by

Inx M 1
- N, r=————— 1P K#0
Y= dn—rn ok Y T Takgpomn T K
Klnx

2 B 1 MK
v = ENIL — Kte[2<]\LJf(Kt)*%(ﬁfg)zfc}tfcﬁrﬁf§+A(L*Kt)JrzA?(LfKt)u (216)

while the second transformation is

2

L
—t P L#0

u (2.17)

L
y = Zln:c—l—Mt—i—N, T



The calculation presents two different transformations that associate (2.1) and (2.8)

([9])-

2.3 Invariant Solutions

One of the important components of classification of symmetry analysis is the con-
struction of invariant solutions. The paper ([9]) illustrates the calculation of invariant
solution by considering a subgroup and the procedure is applied to each operator and

the results are as follows: The one-parameter subgroup with the generator

0 0 0

provides invariants given by
U
]1:t—h'l$, ]2:—
T
The invariant solution is of the form

L=¢() or u=uz¢(z), z=t—Inz.

The substitution of these invariants in equation (2.1) results in the equation with

constant coefficients given by

ST (1-B=5)0 4 (B-C)o=0

which is solvable. Applying the procedure to individual operators the results are as

follows:
1 (lnz—Dt)Q Inz
X u = _6( 2A2¢ +Ct)¢(7)’ // — 0

1 \/E ¢

hence
nr— t 2
u::(ﬁﬁk%f4_éé)e¢L5§}L+cn
t2 W/t
Inz Inz
X:u:€Ct ——D\/I_f, A2 ”_Z/:O, Z:—_D\/g
: 4Sv- ), A% — 20 =

whence

¢(z) = Kl/ e dy + K,
0
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1
X3 :u= ¢(x), §A2x2¢" + Bx¢' — C¢p = 0.

The equation reduces to linear coefficients when z = In z is introduced.

((lnszt)2) ’ 1
Xy:tu=ce" 222 'P(t), ¢ +(2—t—0)¢:()
whence
K o
= ¢
0=
and hence
w= L
Vit
Xs:u=0¢t), ¢ —Cp=0 (2.18)
whence
u = Ke“ (2.19)

K, K, K, are constants of integration, and

D=B_ia
2

Operators Xg, Xo do not provide invariant solutions.
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Chapter 3

Introduction of new method

This chapter presents the Symmetry Analysis of transformed one-dimensional and
two-dimensional Black-Scholes equations. The method employs a formula that we
shall henceforth be refer to as the Manale’s formula. The rationale and justification of
Manale’s formula is presented in Appendix A . We determine the symmetries from a
modified transformation with an infinitesimal w — 0. We compute the Commutator
Table for operators in one-dimensional and determine invariant solutions for one

operator in each case. Graphical solutions are presented for the calculated solutions.

3.1 The transformed one-dimensional Black-Scholes

equation

We present a new method to Symmetry Analysis of (2.1) where we start with trans-
forming the equation in a different independent variable, r. The one-dimensional

Black-Scholes equation (2.1) is transformed using the following change of variables.

ou
Up = —
T Ox
e = 5 = Olnx

xT
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Let

We therefore express

Also,

Therefore

== (3.2)

(3.3)

(3.4)

G = {5 G
1 0rou 10%
_%?ngmg
1 1
{ xa%;w}

0%u

TU; = Uy
(3.5)

2
T Ugy = Upyp — Uy

where 7 is given by equation (3.2). We substitute equation (3.5) in equation (2.1)

and define

2
p-p-2x
2

then the Black-Scholes one dimensional equation transforms to

1
Uy + §A2urr + Du, — Cu = 0.
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3.2 Solution of determining equation for (3.6)

The infinitesimal generator for point symmetry admitted by equation (3.6)

is of the form

0 0 0
X=¢ t tr)— 3.7
£t )5y + () o+t )5 (37)
The extension of the equation up to the second prolongation is given by
0 0 0
x@ = x LW m_Z (2) 3.8
g I s T g (3.8)
where X is defined by equation (3.7).
The determining equation is given by
"+ A%M +DnY — Cn =0 (3.9)
when
2
Upp = (— AQ)[ut + Du, — Cul (3.10)
where we define the following from ([6],[15])
n=futyg
0 = g+ fout [f — &ue — Eur
777(~1) = gr + fru+ [f - gg]ur - giut (3'11)
777(3) Grr + frru+ [2fr — rr]u - irut
+[f - 253]“7~r - 2€:utr
The substitutions of nt ,77r ) and 77 in the determining equation yields that
gt+ftu+ [f_gtl]ut _gfur ( A2){grr+frru+ [2fr Tr]u
2
— &+ [f =26 ](——[Ut + Du, — Cul) — 2& us } (3.12)

+ (D)[gr+fru+ [f_gr]ur_giut] —Cfu—Cg:O

We set the coefficients of u,, u,., u; and those free of these variables to zero. We thus
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have the following monomials which we termed defining equations

wy o EM =0, (3.13)
u =& +282 =0 (3.14)
U o €+ A+ DE — JA% =0 (3.15)
u gt %Azgw + Dg, — Cg =0, (3.16)

TR A %Asz +Df, —20€2 =0 (3.17)

From defining equations (3.13) and (3.14) we have that

2 =0 (3.18)

rr

Thus

which can be expressed using Manale’s formula with infinitesimal w as

7 2

in(<5) + b “
a sin( )j‘iu;b cos( )7 where gb:sin(%), (3.20)

& =

and a and b are arbitrary functions of t. We differentiate equation (3.20) with respect
to r and t and obtain

the following equations

£=a cos(w—,r) — bo sin(ﬂ), (3.21)
i i
2 = —_w a sin(w—_r) - 8 b o cos(ﬂ), (3.22)
i i i i
), _ G sin(£-) 4 bg cos(F) (3.23)
¢ —iw '
and from defining equation (3.14) we have & = 22 which implies that
€' = 2at cos(“L) — 2bt¢ sin(“L) + C. (3.24)
i i

We substitute equations (3.21), (3.22) and (3.23)

in the defining equation (3.15) to get the expression for f,. given by

B wr wbo bgb Da L wr wa a Dbg
Jr = cos(5 >{ 2  Aw A2}+Sm( i ){ 2% A%iw A } (3:25)
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Integrating equation (3.25) with respect to r gives the expression for f

2 A2 A%2w

]

2 + A20? A2w

wr { bo bop Dia} P (wr){a a Dibo

f =sin() } k() (326

We use equations (3.25) and (3.26) to get expressions for f,. and f; given by

Jrr = Sin(w—,r){ - b b¢ + Daw} + cos(ﬂ){@ + a + wa¢} (3.27)

i 2 A2 T A2 i 2 A2 A2
and
L wr bp  bp  Dia wr. (a @  Dia¢ )
fo=sinCo =5~ gms ) e G e TR (329

We substitute equations (3.21), (3.25), (3.27) and (3.28) into the defining equation
(3.17) and solve the equation

a i Dibg

wr bgb bgb Dia wr

(o = 5 = s w200} o5+ i — Ty 209
, wr bA2w%p bp Daw wr, (aA%w? a  Dbwo

+ R () +Sln(_'){ T4 2 o } COS(T){ PR IY }+

wr Dbw¢ Dby D% Cwr Daw  Di  D%¢\
{_ % A%iw A2}+Sm<7>{_ % Atw | A }_0

(3.29)

We collect all the coefficients of sine function together and equate
them to zero. A similar step is taken with the cosine function.
For the coefficients of sine function we have:

bp by  Dia bA*w*¢ b¢ Daw

2 AQ(,UQ AQW 4 2 22 (3 30)

D Di D% '
aw  Di D0 song -0

24 A2 A?

which simplifies to a second-order ordinary linear differential equation

pA%Wt D2
Y2 L 20A%h = 0 (3.31)

Ly
b4 bA“w* + 1 ye

Solving equation (3.31) we proceed as follows. Let

A2 2 D2
8= 2” . and by = ——5 20 (3.32)

We also set

o =bB8%—k, then dy =0b8%d; = bs> (3.33)
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Equation (3.31) transforms to
ap + 2d; + a1 8% = 0. (3.34)

To find the solution of equation (3.34) we proceed as follows. We set

ap = cz (3.35)

where ¢ = ¢(t), z = z(t). Then
of = dz+c (3.36)
of = d'z+2d2 + ¢ (3.37)

We substitute equations (3.35), (3.36) and (3.37) into equation (3.34)

and after rearranging we solve the equation
e’ + (2c+2d )z + (" +2d + Be)z2 =0 (3.38)

The choice for ¢ is such that

2c+2¢ =0, (3.39)
whence
c=¢e". (3.40)
The equation (3.38) simplifies to
24+ (7= 1)z =0 (3.41)

The solution for equation (3.34) is now written

sin w cos wt _;sinwt

oy = ¢! (O 4 Goe (3.42)
w
so that when = +1 or w — 0 the solution for z is linear, and we define
w=4/p%2-1 (3.43)
We substitute for b in equation (3.33) to obtain that
et sin @ cos wt _,sinwt D?* 4C
b= F{((JIT> + et P Zrt g (3.44)
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Similarly for the coefficients of the cosine function we have

a N i¢  Dibg N aA2w2¢ N a N Dbo@ B Db@

2 A2w? A%w 4 2 21 24 (3.45)
Dby  D3a '

T B TR0

which simplifies to a second-order ordinary linear differential equation

A4 4 D2
i+ aA2w? + % - aA—Q — 2aA%*C =0 (3.46)

Solving equation (3.46) we find the solution for a to be
et sin & cos Wt sin ot D?  4C
L (ot ey DdC
a 52 {( 3 = + Cy > + P2 3 (3.47)

and we also have that

Et)=0 = k() =Cs (3.48)

We differentiate equations (3.44) and (3.47) to obtain expressions for a and b

—t - ,t . ,t —t
i _66_2@3@ n Cflf;w ) ﬂ_( — Cysinmsin®t + Cy cos@t) (3.49)
Similarly
. et sin @ cos wt sin Wt et
h= _§<ClT—|—Cz 5 ) ?<—C’1 sinw sin wt + Cy cos@t) (3.50)

We substitute equations (3.32),(3.44),(3.47),(3.48),(3.49) and (3.50) into equation
(3.26) and get the expression for f given as

s (wr ) { Cigetsinwcoswt Chpe tsinwt  D*¢  4Co
= sin(—)J — — — —
i 2% 28% 2334~ B
Cige tsinwcoswt  Cype tsinwt  Cige ! sinw cos wt
233 233 233
Cype tcoswt CsDiwe tsinwcoswt CyDiwe tsinwt  D3iw }
25 255 258 2P A2
wr. (Cse tsinwcoswt Cyetsinwt D? 4Co
+ COS(—.){ — + — + -
i 25%w 232w 233 A2 I6;
Csetsinwcoswt Cyuetsinwt Cse tsinisinwt
2% 2550 255
Cyetecoswt  CioDiwe ! sinw cos wt
25 25
CypDiwe tsinwt  D3¢iw
- - b+
233 2354
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3.2.1 Infinitesimals for equation (3.6)

The linearly independent solutions of the defining equations (3.12) lead to the in-

finitesimals
2tet 2t D*
¢ = cos (%){ 5;0 {<C3 sin@cos@t) +Cy Sin@t} + BZAQ}
2tpet
— sin <ﬂ> { (26_ { (01 sin w cos @t) + (5 Sin@t} (3.51)
i ORI
2tpD? 8Ct wr 8Ctp . [wr
+,82A2}_ E co <T>+—B sm<7>—|—C’6
—t D2
£? = sin <w77"> {% <C’3 sin w cos wt 4+ Cy sin@t) — MB—ZAQ}
—t D2
+ cos (%) { —;Qj@i (Cl sin w cos wt — Cy sin @t) - zwﬁ—;ﬁl?} (3.52)
4Ci . swr 4C1¢9 wr
+ ——sin <—> + COS (—)
wf i wp 7
f=si (wr>{ Cigetsinwcoswt Coge tsinwt  D*¢  4C¢
= sin(—)3 — — — —
l 2320 23200 233 A2 6]
N Cige tsinweoswt  Cope tsinwt  Cipe ! sinw cos wt
233w 233w 233
B Cype™t cos wit B CsDiwe™! sin @ cos wt B C,Diwe "t sin wt B D3iw }
2733 233 233 233 A2
wr, (Cse~tsinwcoswt  Cyetsinit D? 4C¢
= — 3.53
+cos( 1 2520 T Tope oAz 3 (8:53)
Cselsinwcoswt Cyelsinwt  Cse !sinisinwt
233w 233w 233
B Cie~tcoswt B C1¢pDiwe ™t sin w cos wt
233 233
CopDiwe tsinwt  D3¢iw
= = b+
233 233 A2
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3.2.2 The symmetries for equation (3.6)

According to (3.12), the infinitesimals: (3.53), (3.51) and (3.52), lead to the genera-

tors
2tet 0 4 0
X = ( — 662w¢ sin w cos Wt sin (wr)) 5 + <;2—wzi sin w cos wt cos <%))E
—¢ —t
+ < — ¢ sin @ cos Wt sin “r + ¢ sin w cos Wt sin ﬂ
232w 2ﬁ3w )
n e tp | _ (our) Dubwe sin w cos Wt (wr)} 0
inwcoswtsin [ — ) — cos | — ) pu—
253 > SRS 25 "\ )
(3.54)
2te g wry\ 0 e lip . wryy 0
Xy = ( 5% smwtsm( - ))a— (%smwtcos (7)>E
—t —t
+ { - 2652¢ sin wt sin (cur) + 2€ﬁ3¢ sin @t sin (%) (3.55)
-t _—l Digwe ™t sin wt wr 0
~ o cos wt sin <7> — R cos <—> }u%
% (Zte t . (cur)) 0 N < ety . - (oﬂ")) 0
3 = sin t cos wt cos — sinwcoswtcos | — | | =—
G20 ot [row i or
—t —t
+ {Q;Qw sin w cos Wt cos (%) - 2653w sin & cos Wt cos (%) (3.56)
et . (wr) Diwe tsinw coswt | (wr)} 0
— —— sin @ sin wt cos — sin (— ) pu—
233 i 233 i} ou
2te "t e lig . swry\ O
X4 = ( 720 smwt coSs ( )) <ﬁ2_ sin twt sin <_>)3_
7 r
—t
+ {252 sin wt cos < > 253 sin (wt cos (a;?‘) (3.57)

t

+e* ; (wr) Diwe tsinwt <wr>} 0
—— cos wt cos - sin|— ) pu—
2533 i 2533 i

2

%= S (s ()~ o9 (1)) 5+ i (9 (F)
—i—sm( )) B3A2< i (%) + ¢ cos (%) (3.58)

+ Dsin (cu >+D¢cos <wr>) ;u

0
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X7=— .
T= o (3.60)

= G e () v (1) oo () ()
+ %((bsin (%) — COS <%>>U%

The defining equation (3.16) gives an infinite symmetry

(3.61)

0
Xy = g(t,r)% (3.62)

3.2.3 Table of Commutators

The determined set of operators (3.54) to (3.61) form a Lie Algebra if their commu-
tator is bilinear, anti symmetric and satisfy the Jacobi identity as stated in (1.6).

The commutator for the pair of operators (3.54) and (3.55) is determined as follows:

2te”! otet P
(X1, X5] = {Xi(- % sin wt sin (%)) - X5(— ;2@¢ sin tw cos Wt sin (%)) 5
_t. —t' a
+ 1(;2—@23 sin Wt cos (%)) — 2(;2—@23 sin @ cos Wt cos (WTT)) >
—t ¢
+ {X1( — 2652(5} sin wt sin (WTT) + 265301 sin (wt sin (%)
—t D J ot
+ —625? cos Wt sin (%) — ngw;ﬁgsmw cos (%))
X ( ¢ sin  cos Wt sin (w'r‘) + - sin tw cos wt sin (wr)
2% A YT ;
—t Di o o 5
+ —6263 sin @ cos wt sin (%) _ Digwe QSBISWCOSOJ coS (%))}u% (3.63)
The equation (3.63) simplifies to
4t2 —2t a a a
[X1,X2] = ( ,@‘fw sin? @ sin? (%))a +0 x E +0x u% =0
as w — 0. Thus we have that
[X1, Xo] =0 (3.64)

Similarly we determine the other pairs of commutators that are defined and end with

the Commutator Table given as in Figure (3.1).

The Commutator Table is determined for that instant w — 0.
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L] Xy | Xo | Xg | Xy | X5 | X6 | Xs
X000, 010,001 071]0
Xo! OO L0001 071]0
Xz 0,010,001 071]0
X0 0000010710710
Xs0 0000010710710
X¢| O O] O] 0 0] 0O
Xg| O O] O] O00O]O0]|O0

Figure 3.1: Commutator Table

3.3 Invariant Solution for equation (3.6)

We consider the symmetry given by equation (3.56). The invariants are determined

from solving the equation

2tet
B2

t

oI ( ol N ( ety . o <wr))8l
o] = — ———sinwcoswtcos [ — ) ) —
s ot \ Bow i )] or
—t —t

€ . _ wr e - _ wr

+ {Qﬁ%) sin w cos wt cos <7> ~ 30 sin t cos Wt cos <7> (3.65)
eto wr Diwe 'sinwcoswt . [wr oI

T sin @ sin @t cos (7) — 258 sin ( )}u% =

The characteristic equation of (3.65) is given by

dt dr du
- = 3.66
w> ue tK ( )

2te—* sin @ cos Wt cos (%) e~ t4 sin @ sin wt cos (—

1
B2w B2ow

L N wr
sin w cos wt cos | —
1

0

l

where
sin  cos Wt cos (%) sin  cos Wt cos <ﬂ>

K= { 2320 a 2330

(3.67)
sin w sin wt cos (%) Diw sin w cos wt sin (%)
B 233 B 233 }

From equation (3.66) we have that

dt dr
- (3.68)
2te—*t sin @ cos Wt cos (ﬂ> e~ tisin @ sin @t cos (ﬂ>

(3 (3

B2w B2ow

47



simplifies to

dt
— = 2£dr
t )
whose solution is
t=Ce "
The first invariant is given by
2wr
e i
V1=~
From equation (3.66) we also have that
dr du

Kue?

e~ tisin @ sin @t cos %)

B2ow

where K is given by (3.67). Equation (3.72) simplifies to

f—1-w—-Divwtan(¥) w du
( 20 ) i u

We integrate equation (3.73) and obtain

wr

Bwr wr  wwr Dawlncos(¥)|

_ 2 — U C=1
281 281 20 23 He=u
We approximate
fwr  wr  wwr Dwwlncos()| wr
28i  2Bi  2Bi 23 o

= =C
e
The equation (3.76) simplifies to
u
or = Yo
€ i

which is our second invariant. If we define

o = 90(101)

where 1); is given by equation (3.71), then an invariant solution is given by

u= e ()
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(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)



We differentiate equation (3.79) with respect to ¢ and twice with respect

to r and get the following expressions for wu;, u, and ..

3wr

2w7'e i

U= T ¢ (Y1) (3.80)
wT 2 3wr
Uy = () + Tje (1) (3.81)
e = — e (i) — 2i (1) - 6ie‘°’f’"so'<w1>
e (3.82)
— e ¢" (Y1)

12
We substitute equations (3.80), (3.81) and (3.82) into the

original equation (3.6) and get the following equation

3wr

Qwre i wr A% ser 3A%0° 2
— ———¢'(1) — e (i) — et ¢ (1) - @' (11)
i t t ¢ (3.83)
2A2 5ug'r 17 D(A) wr 2D(A) 3wr /

" et @' (1h) — CeVp(ih) =

Equation (3.83) is a second order equation in ¢(¢;). We rearrange it in

the order of derivatives of h(1), and apply equation (3.32)

48 sur 2wr et 48 s 68 s
Qtj)e T () — W;)k T tper te (3.84)
e T e (e — pe — CeTy =0
Letting w — 0 equation (3.84) simplifies to
4 4 6
Do)~ L) — L) — fotun) ~ Colwr) =0 (3:89)

which can be simplified to

480" (1) + 108" (1)
12 t

+ (B+C)e(¢r) = 0. (3.86)

We eliminate ¢ from equation (3.86) by applying the following change of variables.
From equation (3.71) we let

dX\ = tdyn,
(3.87)
(1) =h
then
@' (Y1) =ty (3.88)
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and

() = g {ten}
__ _dt d
= an o Tty

dpx
Lax

= t*{hy — SOAG_QZ'M}

:%SDA—H

For w — 0 equation (3.89) simplifies to

@' (1) = t*{oan — o}

The substitution of equations (3.88), (3.90) transforms equation (3.86) to

4Bpxx +68px + (B+ C)p = 0.

The solution to equation (3.91) is given by

—38— 2_ _ 2_
38—V 9346 4B(B+C) )()\) 38+ 9546 4B(B+C) )(/\)

Y= Cyel + Oyel

Thus the invariant solution is

(fSﬁf\/ssfﬁfw(aJrC))()\) n Cze(73ﬁ+\/96;746(ﬁ+0))(>\)

u=e7{Che

}

However the equation (3.93) can be expressed as

—38—i/— 2_ C - in/ — 2_ C
( 38—y (9fﬂ 48(B+ )))()\) +02€( 38+1iy/ (94{35 4B8(8+ )))(}\)

u=-c7 {Ce

}

This simplifies to
u = 6%{016_73)‘6_ZA>‘ + 026—73,\61‘AA}

V=957 = 1(5 + C))
45

where A =
Since A < 0, we express equation (3.95) as
u= e%{Cle%’\ sin(AN) + Caea cos(AN)}

We however advance the same reason that for equation (3.96) to return
to the linear form as A — 0 it has to be transformed to be
wr sin(A\) cos(AN)

u= eT{C’le_Ts’\_Z—,A + Che A }

where ¢ = sin(T)
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Figure 3.2: Plot for the solution (3.100) with dependent variable u represented on

the vertical axis and independent variable ¢ represented on the horizontal axis
3.3.1 Solutions for equation 3.97

This equation (3.97) has some few solutions as w — 0. We recall that

2wr

A= tf%2 ds; (3.98)
2wr d=
- f11112 ?t
= Co - 623”0 Int
Solution 1
wr 33 sin(AX
u=Aeie 4’\% (3.99)
= Ae elCot 3 mpsinACoze T o)
as w — 0, the solution becomes
u =Vt (3.100)
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Solution 2

u = Ae e AN (3.101)
= A(cos(wr) — sin(wr)e(3Y Sifi(iAA/\)
as w — 0, the solution becomes
= AN Sﬁi(iAAA) (3.102)
This result is comparable to (2.19).
800 ]
600 ]
5
2001 1
O;o - - . . .

Figure 3.3: Plot for solution (3.102) with dependent variable u represented on the

vertical axis and independent variable A\ represented on the horizontal axis
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Solution 3

e ay sin( Afwﬁw tdyn)

= A
u= AweT —AL
wr 8 ke gy d sin( Afwﬁw tdin)
= Awe i e 1)n — , ]
dw —1A
wr _purte gy diy d sin( Afwﬁw tdyn)
= Awe i e 4’1
dw dw —iA (3.103)
2wr 1/)1+w
= Awe'i e -1 ’fll+wd1/) 2re ¢ €08 Af d¢1)]t
it —iA
Vit g, et
— AweTe il T E T
it
~ Aw 27‘6‘3“1”
i
But
we't = w cos(3wr) — iw sin(3wr)
Wit = w’ cos(3wr) — iw? sin(3wr) (3.104)
1
= —{w? cos(3wr) — iw? sin(3wr
L cos(Bur) — i sin(3ur))
and
w3r? cos(w—,r) wedr
)
- 11
W’ = ——szeg“” (3.105)
wr
3wr 1 ]_ 3wr
e+ = ar—ze
We substitute in equation (3.103) and obtain
2r 11
= Aw———¢r 3.106
Ll (3.106)
as w — 0, the solution becomes
2A
U= — (3.107)
ir
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25

15 T
1.0 N

05 B

Figure 3.4: Plot for solution (3.107) with dependent variable u represented on the

vertical axis and independent variable r represented on the horizontal axis

3.4 Two-Dimensional Black-Scholes Equation

3.4.1 Transformed two-dimensional Black-Scholes Equation

A two-dimensional Black-Scholes equation is given by
Lo s Lo o
u + §A11m Uzz + §A22y Uyy + Bizu, + Boyu, — Cu = 0. (3.108)

We apply change of variables similar to (3.4), and use equation (3.5) to reduce

equation (3.108) to

1 1
Uy + §Aflum« + §A§2uss + Diu, + Doug — Cu = 0. (3.109)
where
A2
Dy =B ——*
AQQ (3.110)
Dy=B, - =%
The infinitesimal generator for point symmetry admitted by equation (3.109) is of
the form
0 0 0 0
X = £I(t7 T, 8)_ + 52(t7 T, S)_ + gg(ta r, S)_ + n(ta r, 5>_ (3111)

ot or 0s ou
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Its first and second prolongations are given by

3} 0 0 0 0
X®@ = x 1) (1)_—_ (1) (2) (2) 3.112
T S T e, T B, T B, T (3.112)
where X is defined by equation (3.111).
3.4.2 Solution for determining equation for (3.109)
The determining equation for (3.109) is given by
m + 5 Aumr + Azgnss + DY + Dot —Cyp =0 (3.113)
when
1 1
Uy = —§A%1uw — §A32uss — Dyu, — Doug + Cu (3.114)
where we define the following from ([5])
n=futyg
0 = gt frut [f = &llue — Gup — Eu
777(~1) =gr+ fru + [f - 53]”1" - f}ut - fgus
Uél) = 0s + fsu + [f - 53]’&5 - giut - fszur
(3.115)

777(3) = Grr + frru + [2fr grr] grrut 3 rrUs + [f - 263]“7’7’
- 25}1“# - 253“?"8

Ug) = gss T fSSu + [Qfs - ss] fssu’t é-?sur + [f - 252]““)’5
- QS;U’tS - 263“7’3

%)



The substitutions of 77t ,777(}), 77,(}), ng) and ng) in the determining equation (3.113)

yield that

1

2
1

_ffur_gfus‘i‘_A 1{gr'r+frru+[2f7" gTT]u

1
E (= A?lurr — §A§2uss — Dyu, — Doug + Cu) — frus

1
Gt + fru+ [f - gth__A%lurr - A22uss Dy, — Dyug + Cu)

+ [ = 262 unr — 26 Uty — 265Urs} + = A 50 Gss + fosu + [2fs — € Jus

— &l (— A%luw — %A%uss — Dy, — Doug + Cu) — E2u, + [f — 265 ugs (3.116)
= 285ts — 260uns} + Di{gy + fru+ [f = &ur

~ (g Ay —
+ Dz{gs + fou+ [f — &]us
et -

—Cfu—Cg=0

Asyugs — Dyu, — Doug + Cu) — E3uy}

1
§A§2uss — Dyu, — Doug + Cu) — ffur}

We set the coefficients of uy,., U, Uss, Upp, Uss, Uy, U, w and those free of these variables

to zero. We thus have the following defining equations

uy 1 & =0, (3.117)
u, £ =0, (3.118)
U 1 E5HE =0, (3.119)
Upr %&1 & =0, (3.120)
Uss %@1 —& =0, (3.121)
wp o =&+ AL S — Digl — lAiffr +Dyg} =0, (3.122)
us = A+ A fs — Afo — Do)+ Doy =0 (3.123)

w i fit —A b e §A32f55 + D1 fr + Dofs — C& =0, (3.124)
TR A Angm« + %Agzgss + D1g, + Dyg, —Cg=0 (3.125)

From defining equation (3.120) we have that

£ =0 (3.126)
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Thus
E=ar+b (3.127)

which can be expressed using Manale’s formula with infinitesimal w as

a sin(2") 4 be cos(“")

i (3.128)
where ¢ = sin(z),

& =

and also a and b are arbitrary functions of ¢. Similarly, from defining equation (3.121)
we have that

=0 (3.129)

SS

This implies that
& =cs+h (3.130)

which can be expressed using Manale’s formula with infinitesimal w as

c sin(%*) 4+ ho cos(%*)

—iw (3.131)
where ¢ = sin(g),
i

€ =

and also ¢ and h are arbitrary functions of . We differentiate equation (3.128) with

respect to r and ¢ and obtain expressions for 2, £2, and
e a sin(%) + bo cos(<F) (3.132)
—iw
2=uq cos(w ) — b sm(wr) (3.133)
i i
2 = o sin(w—,r) ey o) cos(w—,r), (3.134)
i i i i
Similarly we differentiate equation (3.131) with respect to s and ¢ and obtain expres-
sions for &, €2, and &2,
€ _ ¢ sin(?) + he cos(2*) (3.135)
—iw
€8 = ¢ cos(2) — ho sin("2), (3.136)
i i
3= Y sy — Y h g cos(ZD). (3.137)
i i i i
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The defining equations (3.120) and (3.121) imply that £ = 2¢2 and &} = 2¢2 which

translates to that

& =2{a Cos(a; ) +c cos(u; )= 2¢{bsm( ) + hsi n(is)} (3.138)

The integration of equation (3.138) results in the infinitesimal
wr ws
& =2t{a cos( )+ ¢ cos(—)} — thb{bsm( ) - hsm( )} +C. (3.139)
i

We substitute equations (3.132), (3.133), (3.134) and (3.138) into the defining equa-
tion (3.122) to get the expression for f,. given by

B wr bwo i)¢ Dia
Jr = cos(5 ){ 2  Aliw A7 }

. wr wa a Dlgzﬁb}

2y 22 3.140
+sin(5 ){ 2% A | A (3.140)
2Dc wSs 2D1ph | ws

X, cos(—) + x, sm(T)

Similarly we substitute equations (3.135), (3.136), (3.137) and (3.138) into the defin-
ing equation (3.123) to get the expression for f given by

f (ws) { whao hgzﬁ Dgc}
s = cos(—) — — ,
i 2 Aliw A2

. WS wce ¢ D2h¢}
+sin( ){ 2% Aiw | AL
2Dsa wr 2D0b . wr
2, COS(T) + 2, sin(—)
Integrating equation (3.140) with respect to r gives

(3.141)

i (wr){ _ bo B bop B Dlz'a}
S 2 A%w? Alw

wr. (a a Dq1bo
iz — 3.142
+ cos ){ 3t A2 w?  A%w } ( )

2D cr w$s 2D1hro .

—A—%lcos(T)—{— A, si (z)+k()

Similarly integrating equation (3.140) with respect to s yields

WS{_@_ hé _Dgic}
2 A3w?  Ajw
ws. (C ¢ Doiho
il — 3.143
+ cos( ){ 2 + A3w? Adw } ( )
2Dsas wr 2D2b5q§

—A—%2(:os(7)+ yea ( ; )+k()
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Reconciling equations (3.142) and (3.143) we get the expression for f given by

fosin(y{ b0 b0 Dia 2D
v 2 Afj W Ajw A3,
el )
+ Sm(?){ - h2—¢ - Ag:iz - fgjj + 211;;”} (3.144)
ol PG e T )

+ k(t)

We differentiate equation (3.144) to obtain expressions for f;, f. and fs.

L bop bop Dyia  2Dsbs¢
ft_sm(i){ 2 A% uw? A%lw—i_ A2, }

N Cos(w_f){a i Dby QDQaS}
1

+
2 A% w? A% w A2,

. ws hqﬁ hgb Dsic 2D1h7”¢ (3.145)
+ sin( i ){ 2 Aw? A%Qw * A2, }
) 3 Doil 9D ¢
+cos(w—,s){f ¢ 2ih 1CT}

2 ALw?  ALw A%
+ E'(t)
. wr wi¢  bp  Diwa
om0 Dy
v 11 11? (3 146)
2 D1bwe '
+ Cos(—r){w ¢, ! }
i 2 A2, 1A%
. WS w?he¢  hed  Dowce
oS -2 g _ Dy
! 2 A (3.147)
+ Cos(g){w—% + ¢ Dgewgb}
i U2 T Az, Al
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We substitute equations (3.133), (3.136) (3.138), (3.140), (3.142),(3.148), (3.149) and
(3.150) into the defining equation (3.124) and solve the equation

. wr bgb bd) Diia 2ngsgz5 wr. (a a
sin(= ){ 2 AW Alw * A3, }+COS< i >{ A2 w2

]
Dllbgb 2D2d$ }

Afw A3,
O e )
o5t e )
PG B A 2

2 2 1 9 .
O

oD% ws.  2D%¢h . ws ws Dywh¢  Dyh¢ D2
TGRS sin(<5) + cos(S5){ = =5 - By AZ)
ws Dowe  Dyé D2ho 2D2a wr.  2D3¢b . wr

{ 2i AgQZ'w A2, } A§2 cos(5) + — g —sin(5)
—2C{a COS(WZ )+ c cos( )} - 2C¢{bsm( ) + hsm(wls)}

(3.148)

We collect all the coefficients of sine function together and coefficients of cosine

function together and equate each to zero. We thus have the following equations:

wr. b bop Dlia+2D2bs¢ A3 w?bg b

e S Sl Rl L X 4 2 (3.149)
Diwa = 2D2¢b Diwa  Dia  D3¢b ‘
- - 2Cpb =0
T YA, T w Aw oAz, TR0
_ws h¢  hé¢  Dyic  2D1hr¢  AQwhé  ho
sin(“2) = o — s — e+ T -5
l 2 Ajw?  Ajw A 1 2 (3.150)
Dowe  Dowe  Dyé  D3ho '
- - 2C¢h =0
TTo T o Aiw oAy, 00
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wr

cos(—) :

a

i

Dyibe _ 2Dsas n A% wia

2

) 2 .2 A2
2 Afw Afjw

ws

cos(—) :=

1

N Dibwé  Dibwd  Dib¢  Dia N 2D2pb

¢

2
A22

4

a

2

¢ Dyihg¢  2Dyér  Aw?c ¢
| Dahwé  Dywed Dyh¢ D3¢ 2D2%c
2i 2  Aliw A%, A2

Equation (3.149) splits into

4

4,4
Tiw*b

b+ bA%w? + 2

2Dasb | 2D3b
a, T

2
A22

=0

Solving equation (3.153) we proceed as in (3.1). We define

We also set

A2 2
p= "1, and
D2
jl = —A—21 ZA%IWQC
11
631 :bﬁ%_]lv then
021 = bﬁ%a
d = b

We express equation (3.153) as

b+ 261b + B2 — D2w?b — 43,Cb =0

Equation (3.157) transforms to

) + 201 + a7 = 0.

—2Ca=0

—2Cec=0

— D?w?b — 2A3,w*Ch =0

To find the solution of equation (3.158) we proceed as in (3.1). We set

where ¢ = ¢(t), 2

a1 =

(674

= z(t). This results in that

e

sin wy cos wit

w1

sin (,Jlt

2
Dll

>+02

61

w1

b+

prAL

4C
A

(3.151)

(3.152)

(3.153)
(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

(3.159)



and

et sin wy cos Wyt sin w;t D? 4C
b:—{(0+)+0 ¢ } + = 3.160
5% ! w1 ? w1 5%14%1 & ( )
where
Gy = /p? — 1. (3.161)
Solving equation (3.154) results in that
Dy,
b= Che s (3.162)

The general solution for b is given by the linear combination of linearly independent

solutions (3.161) and (3.162) as

b= %{( 1—Sin°jljlos w) 4O Sir:flt} 4 Cye B B%DA%% + 45—? (3.163)
Similarly equations (3.150), (3.151) and (3.152) give rise to the splits
h+ 282h + f2h — D3w?h — 48,Ch = 0 (3.164)
k. Qjﬁh — 0, (3.165)
i+ 2814+ B2a — D3w?a — 45,Ca =0 (3.166)
2gee 4 200 (3.167)
and
¢+ 2B9¢ + B3¢ — D3w?c — 46,Cc =0 (3.168)
2y 1 2l — g (3.169)
respectively, where
P2 = % (3.170)

The general solutions for i, ¢ and @ in the equations (3.164), (3.165), (3.166), (3.167),
(3.168) and (3.169) are given by

et sin wy cos Wot sin wyt D, D? 4C
h:—{(0+)+0 ¢ }+Ce_7t+ 2 2 3
B3 ! Wa °a ’ B3A3, B ( )
et { < sin Wy COS Wt sin Wat Dy D? 4C
c=— C+>+C — }+Ce*7t+ 2+, 3.172
53 ! w2 * w2 ? 5314%2 B ( )
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and
—t

D? 4C
B%A% B

e sin wlt

B8

respectively, where

(3.173)

{ ( sin wy cos wyt
a= _

w ) +Cn

1
Wy =1/B2 — 1. (3.174)

We differentiate equations (3.163), (3.171), (3.172), and (3.173), to get expressions

Doy
} + Clge_Tt

for b, h, ¢ and a respectively.
t

. e~ sin Wy cos wit sin wyt Dy _ by,
a = ClO— CH — 012—6 s
B Wi Wi s

<Cw sin Wy sinw;t + C1q cos w1t>

(3.175)

—t
51
. et sin wy cos Wyt sin wqt D, »p
bh=— {(01;) + G g2
51 w1 w1 S
—t

— 5_ <01 sin wy sinwyt + Cy cos wlt)
1

(3.176)

et sin Wy COS (Wt Sin wot D, »p
(o) iy
62 %) Wa r

—t
— ﬁ_ (07 sin Wy sin Wyt + Cg cos wgt)
2
. et sin Wy cos Wt sin Wyt D, b
h= - {(IEEEEEE)  E  e
52 Wa r
¢

- 5_ <C4 sin Wy sin wsot + C cos th>
2

C= —

(3.177)

2 (3.178)

3.4.3 Infinitesimals for equation (3.109)

We substitute for equations (3.163), (3.171),(3.172),(3.173),(3.175),(3.176), (3.177),
and (3.178) in equation (3.144) to obtain the expression for f given as

e~t¢ _ sinw;coswit . wr etpsinwt | wr
f=- 2ﬂ% | o SID(T) ~Cgp o SIH(T)
- Cagoe (%) - P gsin(4D) - X puin( )
62;? C] sin w; sinw; t sm(wZ ) —Cy 25? coS wltsm( ) 25? C sin chchlos it sin(
LG Q;Ib su;ajlt sin(ﬂ) 2ﬁ1¢D2 _ D2y m<wir) B l;lﬁszcmsmwl;loswlt sin(%)
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_ gggCllsiI;flt Sin(%) — glﬁileme 2 sm(wlr)
2?%”124?1 in(w_.r) B QDEZ;}C sin(%) N 2651;?311;22801 sin chchlos Wit sin(%)
2 ;i; o) S”;t’lt sin(“7) + —2?515 j;: sin(7) —81)122;?20 sin(T)
n 26% Cio sin wlwclos wit COS(OJT) 011 7 SHZ:lt cos(wzr) L Cmée_%t cos(a;r)
+ 2@?1:%1 cos(wr) + 25—(1} cos(wT_T) — ;;,) C’losmwflmwlt cos(wT,r)
+ ;—;}C’ll% cos(u;r) — g—ﬁlj%e_%t cos(wzr) ;; Cho sinwy sinwi t cos(u;r)
261 Chy coswit cos(wzr) Dlg}?e_t 1 sin wlc::los wrt cos(%)
_ Dlz;ﬁ?e_t OQSH;JJ cos(%) - D;;Lj(sze Dthos(u;r) 2%3;:%? cos(w.r)
B 2D1iwgC wr 2Dyse”t _ sinw; coswyt wr 2Dyse™t

sin Wyt wr

—) - C —) — C —
i O BT A3, 0 w1 cos( Z) BAZ, G cos( Z>
2Dss Do wr 2D2D s wr 8DysC wr

Ciae™ s Fcos(= ———— cos(— cos
Ag2 . & t )~ B%A%A% cos( t )~ 511422 ( )
e '¢  sinwycoswst . ws _tqﬁ sinwpt . ws Dy, . WS
C — C
25 4 ch sin( - ) — B o ——sin(— - ) — Co= gbe ' sin(— - )
D? 20 —t —t
" oAl ¢ sin (wzs> - —2¢ sin(ws) 625j04 sin wy sin Wyt sm( ) + 05 25 COS Wot sin(?)
el smwg COS Wat ws et sin wot ws Cs D1 Dy ws
— sin + C ———sin 4+ 2 p——e 7+ lgin
2ﬁ2 W ( ) P28 W ( ) 253, 5 i )
Dyiw . sinwsy coswst . ,ws Doiw  sinwst . ws Dgzw Dy, ws
— C —) - C —) - C
253 7 2 sin ; ) 2 sin( - ) 25, ve sin(— - )
Diiw . (ws) DsiwC . (ws) N 2e '@ Dir _, sinwy coswat | (ws)
smm{—) — SN — 4 — SIN{ —
25314%2 165 G B3 AL Wo t
2e '@ Dir _ sinwot ws 2D2Dqr¢ ws 8DroC ws
C _ws o 2D5Dirg ws. 8DireC . ws
aa e M e, D T )
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et sinws,cos (,Jgt ws ¢ sin wgt ws _Dy ws

C C’ C ot —
D? ws 2C ws et sinwy coswyt ws
bt Wl e C ol
*opgag, )t g ) mam g, (%)
—t in wot Cy D -t
55 Cs % cos(?) — 2—592716_3175 cos(wT,S) 265 C'7 sin wy sin wot cos(a;S)
2 2
ws Doyiwge™ _ sinws, cos Wt wr
252 Cg oS Wat cos(— ; ) — 25 Cy - COS(T)
Dyiwge™" _ sinwyt (ws) Dsiwg Dy <ws) D3iwae (ws>
— cos(— 6C cos cos
2033 * G ( 23 ( 2[5 A3,
2Dqiwo <w8> 2D re~t _ sinws, cos Wat (ws)
— cos(—) — cos(—
23 i 342, T Wy i
2D re ! sinwst ws 2Dir _Dpy ws 2D, D2r ws
Cy———cos(—) — Cg—5—¢~ 7 'cos(—) — =555 cos(—)
B3 A% W2 t A} l B3 A3, A%, ?
8D rC’ ws
3 114 ( )+ Cua
2

(3.179)
We substitute equations (3.163) and (3.173) into equation (3.128) to get the expres-

sion for &2 given by

. 7t . — — . 7t . —
9 1€ sinwj; coswit . wr 1e sinwt . wr
= C S —) + C S -
5 /B% 10 5 ln( i ) %w 11 o 11’1( ; )
iCly _Day . wr D% . wr.  4iC . wr
+ —e s sm—+ ——I——Sln—
w ( ) A%IBI ( ) U.)/Bl ( 7 )
'Le t¢ sinch cos wyt wr. e t(b smwlt wr. 1030 _ Dz wr
— cos( )+ —— cos(—) + —e¢ cos(—)
51 W1 51w w1 1 w 1
D%gf) wr,  4iC¢ wr
cos(—) + cos(—)
151 wp

(3.180)
Similarly we substitute equations (3.171) and (3.172) into equation (3.131) to get

the expression for £ given by

t

ie”t _ sinwycoswWet . ws ie ! sinwst . ws

3
_* o Wiy ws
£ 2 - - sin( ; )+ o — sin( - )
1Cy _Dyi, . WS D3 . ws, = 4iC | ws
+—e rsin(—) + + ——sin
( ) A%QﬁQ ( ) w s ( )

N ie;tgbalsinwg foswgt cos(—) N ie tp Slniwgt COS(w_.s) N iCsp b1 Cos(w_'s)
W Wa Siw Wo i w i
D2i¢ ws, 4iC¢ ws

—5——5 COs + COS
wA3, 03 ( ) w s ( )
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We substitute equations (3.163), (3.171), (3.172) and (3.173) into equation (3.138)
to get the expression for ¢! given by

2tet sin wp cos Wyt wr 2te~t sin Wyt wr
61 = 01() — cos(—) + Cll — COS(—
/6% wl ( ) /81 wl ( 7 )

2tD} 8tC
+ Crae™ = cos(wrr)—i- 55 Cos(wrr)—i-—cos(w—,r)
BrAL

2te~!  sin Wy COS ot ws 2te~" sin Wyt ws Dy ws
C C, —)+C
+ R 5 cos( )+ Cs 7 o cos( ; )+ Coe™ 7 ' cos(— - )
2t D3 ws 8t ws 2tpet  sinw; coswt . wr
co + —co 4 — sin(—
22[452 ( ) /62 ( l ) 6% @1 ( i )
2t t
gf Slr;oljl sin( - ) Cspe = sm(wlr)

2tpD? <w7") 8tpC' (wr) 2t¢e‘t0 Sin W cos Wyt (ws>
— sin(—) — sin(—) — sin(—
T i B >, i
2tpe tsinwat | ws Dy, . ws,  2¢D3 | ws
_C ) Cype

s ———— 5 wz sin( - ) spe b sin(— - ) — B, 111( —)

e
B2

_02

sm( ; )+ Cis
(3.182)

3.4.4 Symmetries for equation (3.109)

The Symmetries are

2t¢pe "t sinw; coswit . ,wr. 0 ze g sinw,; coswit wr, 0
s cos(2) 2
Ioh Wy l Bl W v or
e lpsinw; coswit | wr e’t L
{—— — in(—) 5 sinw sinw t sin(—)
24 W1 ? 23 ? (3.183)
et sinw, coswt . (wr) 2e~ ' Dys sin w; cos Wit . (wr) '
-0 = mf{—
26} w1 ( B A3, w1 [
Dyiwget sinw; cos wit wr 0
— 5 - cos( }u
2033 Wy Ju

Xlz—

2tge” sinwit . wr 0 ze !¢ sin wyt wr, 0
—— i ) —— cos(— ) —
51 w1 [3’1 w1 1 0r
t —t e tpsinwyt
{- c ;zﬁsm_wl S ¢ cos Wyt sm(wr) ¢Sm_w1 Sin(w—,r)) (3.184)
2687w ¢ 261 251 w1 ¢
2e t¢Dyssinwit | wr Diwge "t sinwt wr 0

sin cos( U—
51 A3, w1 ? 207 w1 } ou

XQI
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J i 8
X5 = —¢e_%t sin(w—,r)— + @e_&tcos wr +{- —¢e_* sin(a;r)
i w i

¢ Dy by, . wr, Diiwd _py, wr 9,
stsin(—) — e s ' cos( }u
2B1 ou

(3.185)

2tpet sinwy coswat | ws. O ie i sinw,y cos Wt ws, 0
Xi=——1 - sm( ) + - cos(— )=
65 Wo Biw Wy i " 0s

—t

¢ . — _t
{_e ¢ sin Wy COS Wo m(ws) € C4smo.1281nw2t81n(ws)

232 - 2
2 e 26 ' (3.186)
e~"¢ sin Wy cos Wot | (ws)+ @ Doiw sin Wy cos Wt | (ws)
in(— sin(—
23 Wy i 203 s i
2D;re”" sin wsy cos Wat ws 0

— cos( U—
Bg A%l (9 } ou

2te tpsinwat | ws O ie tgsinwat ws, 0

7 = sm( ) + o COS(T)g
_t . — t _t _t . — t
‘ Zﬁsm_wg sin(“2) + (bcoswgtsm(ws) + ¢Sm_w2 sin(w—,s) (3.187)
205wy 252 Qﬁz ) G
2e7 '@ Dirsinwyt | ws Dyiwge™t sin wot ws }u 0
%A%l Wo (4 253 ) ou

X5 =~

+{-

(3.188)

2te~t sin Wy cOS Wat ws. 0 z'e Sinwsy coswot . ,ws, 0
Xr=— — cos(— ) sm( )=
B3 W i 62w W Os
Dyiw sin wy cos wat . ws et sin wy cos Wat ws
3 - sin(—) + -— — cos(—)

233 Wo 7 203 Wo 1
e~ sin Wy cos Wat <ws) et ; (ws)
— — cos(—) — ——=3 Sin Wy sin wot cos

3

2D;re~" sin wy cos Wat ws } 0
— cos( U—

212 -
B3 A%, (W ou

+{-
(3.189)
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2te~t sin wot ws. 0 de lsinwet . ,ws, O

Xg= —— cos(—)=— + —— sin(—)—
8 ﬁ% Wao ( 1 )8t + ﬁ%w W ( 1 )88
{ Dsiw sin wot | (ws) e’ s1nw2t (ws)
- — sin cos(—
—t ws et coswst ws
73 COS wot cos T E— cos(—
2D re ! sin wot ws } 0
—— cos( U—
2A2, Wy ou
Dy s, 0 1 ws, 0 1 1 ws
Xog = =t —_—)— —e Tt _ ) — — -t -
g=¢e cos( )875 e sin( )83 + {26 cos(—)
Dyiw _py, . ws Dy _by, ws, 2Dyr _by, ws 0
— e 7 'sin(—) — e~ 7 'cos(—) — e~ 7 'cos(—) tu—
23, () 2081 () A2, ( 1 )} ou
2te~t sin Wy cos Wit wr. 0 ie sinw; coswit . ,wr, O
XIO - 2 — COS( ) — Sll’l(—.)—
Ioh W 61 W v or
Djiw sinwy coswit ., wr e~ sin wy cos Wyt wr
{—— — sin(—) + ——3 — cos(—)
251 w1 1 2/31 W1 2
et . (wr) et sin Wy sin wyt (wr)
sin w0 sin w;t cos cos(—
ST T i 2B 5 i
2Dyse~t sin wy cos wyt wr } 0
cos( U—
B A3, wq u
2te~ ! sinwyt wr. 0 detsinwyt . wr 0
X1 = —3 —— cos(— )— sin —)—
B wi i 5100 Wi or
{ Diiwsinwyt . (w'r) et sinwyt (wr) et ; (w'r’)
- — sin cos(— cos wi t cos
2688 261 W i 253 ! i
—t . <wr) 2Dyse” ! sin wyt wr} 0
cos w; t cos — cos( U—
251 ! i B2AZ, W u
Dy wr. 0 1 _ Dy wr, 0
Xip =€ s fcos — e lsin(—)—
12 ( )at ( i ) I
Dyiw _py, w 1 _by, wr 1 Dy _ps, wr
+ 11— e s sin(—) 4+ =€ s "cos(—) — ———€ s cos(—
(- 55 ) CORP s )
2Dys _py, wr 0
— e s 'cos(—) tu—
Az, ( i )} ou
0
)
B o
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(3.191)

(3.192)

(3.193)

(3.194)

(3.195)



0

X = u—
14 Uau
2t D? wr 2tpD? wr\ 0 D%i wr
X5 = (555 cos(—) — == sin(—)) = + sin
5= (G, )~ o, g+ (g )
D3¢ wr o\ 0 D? wr Diiw . wr
7 ) o g o) ~ g, )
2D?Dys¢ . D3 wr 2D2D23 wr
Tz Sn(=)+ cos — L= cos(—
an A, ) 3, )~ g, ()

Diigw wr } s,
— cos( u—
253 A%y du

X16 = (E COS( ’L ) Bl

. 4iC i (wr )

—sin

wB
DyiweC wr Dlsz’ . wr 8D23¢C .wr

BN AR B
8DysC' (wr) 0

— ————cos(— )u—
2A2, i’ Ou

2t D2 ws.  2teD3 . ws.\ 0

X = (—= _ 7)) =
= (g, ()~ g, ™)
Dl ws DZig ws.\ 0
- (+ wAZ, 03 n(—) YN WA§2@2 cos(5- i ))g
D2 WS Dg’zw . ws.  2D3Dyr¢ |
U g ) g, ) g )
N D2 ws 2D2Dr ws D3igw ws 0

2324z, )~ Fag,an )~ g, ) Mg,

8tC ws 8topC' . ws.,\ 0 4iC" .

ws
X18 = (E COS(T) — 52 Sln(-,))-t + (W_BQ Sln(—,))
4iC'¢o ws ¢ ws E ws DsiwopC ws
T ) et ¢(>+@m“U 7 )
DyiwC | ws 8DiroC . wr D rC wr 0
— —% SlH(T) + W SIH(T) — ﬂ%A%l COS(T)}U%
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(3.198)

(3.199)
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3.4.5 Invariant Solution for equation (3.109)

We consider the symmetry given by equation (3.191). The invariants are determined

from solving the equation

Dy ws 0l i _py ws, 0l 1 ws
Xol =e 7! Y 4 —e T bgin(—)— — —e =+t ==
ol =e COS(i>8t+we Sln(i)83+{ 5¢ COS(@’>
1 Dy by, . ws,  Dyiw by,  ws 2Dy by, ws,y 01
P r _) — r _) = — r —_— _— 0
+ G T e sin( - ) 5 e sin( - ) 527“6 cos( - )}uau
(3.202)
The characteristic equation of (3.202) is given by
dt d d
= - = (3.203)
e”lcos(2?) e v 'sin(%?) uM
where
1 1 1 D 1
M = {Z¢e~ Tt eos(22) - ﬁ—le Fsin(2h)
. 2" ' (3.204)
Dyiw _pi, . (ws) 2D1r6_D1tCOS(ws)}
— e+ 'sin ———e —
From equation (3.203) we have that
dt d
- ® (3.205)
Dy, “ Dy, .
e~ tcos(2) e v 'sin(%?)
simplifies to
dt = < cot(22)ds (3.206)
i i
The solution to equation (3.206) is
B+t =Insin|(22)] (3.207)
i
which results in that the first invariant is given by
B; = e~'sin(22) (3.208)
i
Also from equation (3.203) we have that
dt du
B oy M (3.209)

e~ 'cos(%?)
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where M is given by (3.204). We simplify equation (3.209) by dividing the each term

in the denominator by e~ 2 ' cos(%?) and letting w — 0 to

1 du
—dt = — 3.210
5 ” (3.210)
The solution to equation (3.210) is
ue” ' = By (3.211)

Since B is independent of u, every invariant solution is of the form

ue 2t = F(e™ sm(ws)) (3.212)
i
or equivalently
1 —t . WS
u=-e2"F(e "sin(—)) (3.213)
i
Differentiating equation (3.213) we obtain
]_ 1 1
w = §e§tF—e*§tsm(“—fs)F’ (3.214)
i
u; = gF’e_%tcos(w—fs) (3.215)
i i
2 2
Uss = C;,j—2e_%tF” COSZ(?) - o;—Qe_%tF Sln(is) (3.216)
w = 0 (3.217)
Uy = 0 (3.218)

We substitute equations (3.214) to (3.218) into equation (3.109) and obtain

1 1 2
SeHF — 3 sin(S2)F 4 DAL e 3 cos?(S0) -

i Z ' (3.219)
1 2 t / wSs w8 lt
Azz—e 2" F' sin(— - )+D2—F@ 3 L cos(— z ) — Ce2

If we apply equation (3.170) and let w — 0 equation (3.219) simplifies to

1
— e 2 — (C — §)e%tF =0
or
1
—BoF" — (C — 5)thF =0 (3.220)
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Equation (3.220) simplifies to

o (1—2C)e*
202

Solving equation (3.221) and substituting for equation (3.170) we arrive at two lin-

F=0 (3.221)

early independent solutions for F' given by

aels

F=Aes (3.222)

aels

F = Be “%° (3.223)

where
V20 —1
Agg

The general solutions for u is given by linearly independent solutions

a =

aels

H(Ae w) (3.224)

[NIES

u = e€

t

_ae’s

=) (3.225)

N

u = e2'(Be

with A, B as constants. If w — 0 equation (3.224) cannot be defined and equation
(3.225) reduces to
u=Hez' (3.226)

where H is a constant. Hence the invariant solution is given by (3.226).The graphical

solution is given in the accompanying Figure.
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Figure 3.5: Plot for solution (3.226)with dependent variable u represented on the

vertical axis and independent variable r represented on the horizontal axis
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Chapter 4

Transformation of equation (3.6)

to heat equation

In this chapter we show that the transformed Black-Scholes equation (3.6) is trans-
formable to the classical heat equation (2.8) using an equivalence transformation for

the independent and dependent variables given by

P28, y=altr), v=(tr)u

(4.1)
ar, #0, B #0.
We recall the theorem from ([17]) without proof which goes as follows:
Theorem 12 The parabolic equation
U — Ugz +alt,z) +c(t,z) =0

can be reduced to the heat equation

Vg — Upe = 0
by an appropriate linear transformation of the dependent variable

u = ve b (4.2)

without changing the independent variables ¢ and z if and only if the semi-invariant

K =aa, —azp +a; +2c, =0 (4.3)
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The function p in the transformation (4.2) is obtained by solving the equations

do 1 do 1, 1
g~ 2% g 2 %t (4.4)

4.1 Transformation

To determine the transformation of equation (3.6) to the classical heat equation (2.8)

we consider some derivatives arising from (4.1).

ovdpB Ovdy
vy = %E + Fy%
= v B +
but
Uy = Yy
thus
v = U S + iy (4.5)
We also have that
UV = wy + gy (4.6)
From
Up = UyQty
we have that
Uy
Uy = o (4.7)

Equations (4.5),(4.6) and (4.7) give the expression for v, as

o QU7 + QU — QgUyp7y

vy 4.8
O‘rﬁt ( )
We define
ov dy
vV = ——
Oy dr
U = U0y (4.9)
Thus
Uy = Q20 + VyQyy (4.10)
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But from

U = YU+ Uy (4.11)
we have that
Uppr = Vrr + 2“7"71" + UprY, (412)
also
Uy = VyQty (4.13)
results in that
vy, = Vrt + Uy (414)
a’f’

The equations (4.10),(4.12) and (4.14) imply that

(%u+ur7)

rr + 2'LL7« T + Ugy” — Opp
s ] ] o (4.15)

v
vy 2
(8 %m

The substitution of these derivatives, especially the equations (4.8) and (4.15)

in the heat equation (2.8) result in the equation

Oézu% + CX%UW — QU A YrU + A Uy
= Vrr — 2“7"71 = Upp?Y + -

ﬂt Q.

We rearrange equation (4.16) in terms of u and its partial derivatives,

0 (4.16)

divide each term by v and this results in the equation

2V, oy Qe o) Yor 2V QY
+ Ty, — Ly (T = 4.17)
Y By Oy } By ‘ { v By QY } (

Uy + {

The equation (4.17) can be compared to equation (3.6) written in the form

2 2B 2C

Upp + ﬁut + ﬁuqq — ﬁu =0 (4.18)

We equate corresponding coefficients in the equations (4.17) and (4.18)

and the results is the system of equations

a? 2
E = -5 (4.19)
29 Qpoy Oy 2B
YV E T T & (4:20)
Yrr . O‘z’Yt . QprYr _ _20 (4 21)
v By ey A2 '
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The simplification of equation (4.19) implies that

V=20
A )

oy =

however if we set v/—28; = ¢(t), then we can define

p(t)
=7 4.22
o = (4.22)
whence
t
. UL (4.23)
A
and
L
Br = —§S0 (t) (4.24)
From the equations (4.22) and (4.37) we have that
"(t)r ,
o = EO 4yt (1.25)
and
= 0. (4.26)

We substitute for (4.22), (4.24), and (4.26) in (4.20) and we have the simplification

Vr o' (t)r B
9dr _ 9 92
v A%p(t) T

which gives the expression for v as

(4.27)

with f(¢) as some function of t. From the equation (4.27) we get the expressions for

Ve, Vrs Vrr glven respectively as

(4.28)
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¢(tyr By 2w +(%+ AU] )r—%

/ T‘2 ’
2 = 10 () T ()
t

A ( ) ( ) (4.30)
2 ;Agtap T +Ag;t1 =3
T ft { ) (ga > } ® O]
The substitutions in equation (4.21) yield the equation
¢'(t) (1) ¢'(t) CAORSRCIOTA0KS
go(t)+( t) <¢t)> TAZ () A2 () A2 s
(B2 2B B0 |
o) )34 T o) 2T A 2f()
The equation (4.31) splits into the following
"(t) PO\ _
0 (o) = 432
V() P(t)¢'(t)
— 0 4.33
EORED): 439
Q'(t) | 2¢'(t) Br | (' (t)\2r* | B _ ')
a0 em # Gw) B R S a0
From equation (4.32) we have that
¢ _,
dt o(t)
thus
¢'(t)
=K
o(t)
for some function K. This results in that
@ = Lef (4.35)

for some function L. Also equation (4.33) implies that

dy(t)
dt o(t)

and

78



whence

p="—""eR K #0.

ML
K

Hence we have the expression for a given as

L ML
et

Kt
a=—-re + —
A K

The function % from (4.34)is given as

f'(t) 4KBr 2K?r?
=92K — +4C
0 t— t—E et
which implies that
df (t) 4K Brt 2K%*r’t 2Bt
—= =2Kt
0 Tt T e T
Thus
F(t) = KR 2B
or

4KBrt | 2K2%r2t | 2Bt
f(t) _ KleQKt+ v + v +A2 +4C't

for some arbitrary constants K and K. The transformation is given as

T:_1L2€Kt £T6Kt+ML€Kt

2 Y=y K

2
2Kt+4KBrt+2K2r2t+@+4Ct KQ(Z)QT
v = Kje A2 T T a2 e

A
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A2 T A u
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(4.37)
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Chapter 5

Further Applications

The chapter presents examples of areas where the method is applied successfully. We
consider two examples of Gaussian type partial differential equation and a differential
equation model of epidemiology of HIV and AIDS. We determine the symmetries us-
ing the method in Chapter 3 and calculate invariant solutions for operators providing

them.

5.1 Gaussian type partial differential equation

In this section we look at the application of the method in Chapter 3 on the Gaussian

type differential equation. The Gaussian function

/ e dx (5.1)
0

is classified as an integral whose antiderivative cannot be expressed in closed form
(i.e. cannot be expressed analytically in terms of a finite number of certain well

known functions)[34].

The current undertaking seeks to determine the solution of its derived differential
equation using Lie Symmetry method which is a mathematical theory that synthe-

sizes symmetry of differential equation [13].

In order to apply Lie Symmetry method to the Gaussian type function, we need to
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first present it as a differential equation by substituting
a=t,

and letting
u= / e~ da (5.2)
0
resulting in

Uy = —2ze . (5.3)

If we differentiate equation (5.3) with respect to t then the resulting partial differ-

ential equation becomes
1
Uty = ;um — x2ux. (54)

Equation (5.4) is a partial differential equation with independent variables t and x,

and differential variable .

5.1.1 Solution of determining equation

The infinitesimal generator for point symmetry admitted by equation(5.4) is of the

form
0 0 0
X =& (t2) =+t x)=— +nt,v)— 5.5
€ (t, ) + €2t ) o+t 7) - (55)
Its first and second prolongations are given by
0
X® = x 40— 4 p@ 0 (5.6)

T Ouy

where X is defined by equation (5.5). The invariance condition for (5.4) is given by

3um

1
X® T Tl + 2?u,)

_1 p—
|utmf?u$—12um

) ) (5.7)
(i) = 51 + 56w + 206D u + 2Py, 21, o, =0
We define the following from ([6],[13])
n=fut+yg
' = g+ fou+ [f = §u = Guy
Y = go + fou+ [f — Elua — Euy (5.8)

Ug) = Gtz + fta:u + [ft - f?x]uw + [fa: - gtla:]ut

[ — & — &) — e — Epun
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The substitutions of 7);1) and ng) in the invariance condition (5.7) yield the deter-
mining equation

1
Gtz + frat + [fo = & Jua + [fo — Elue + (;Ux — 2?u,)[f — & — €]
1 1 1 1 1
- f?uxx - Zga: - ;f:cu - ;ux[f - 55] + zut&i + t_Qflux - fiutt <59)
+ 237&2”:8 + m2gz + x2fa:u + xguar [f - 59%] - x2€alcut =0
We set the coefficients of g, us, us,, us, u and those free of these variables to zero.

We thus have the following monomials which we call defining equations

Usg @ & =0, (5.10)
up & =0, (5.11)
u : fo=0, (5.12)
up o fi - %&3 + t%sl + 228 + 2% =0, (5.13)

U fe=0, (5.14)
u o g = %gx — 2%, (5.15)

We differentiate defining equation (5.13) with respect to t and apply equation (5.10)

to obtain the equation

fue — (%ftl)t + (%£1>t + x2£t1t =0 (5.16)

The differentiation of equation (5.16) with respect to x and the application of equa-
tions (5.11) and (5.12) result in that

22¢), =0
whence
& =0 (5.17)
Thus we have that
l=at+b (5.18)
which can be expressed using Manale’s formula with infinitesimal w as
a sin(“t) + b cos(<h)

=
—iw (5.19)
where ¢ = sin(%) and a = a(z),b = b(x).

82



We differentiate equation (5.19) with respect to ¢ and obtain expressions for £}, and

it

& =a cos(w?t) — bo sin(%t), (5.20)
& = _Tw a sin(wT_t) — %d b o COS(%t), (5.21)

Similarly we differentiate defining equation (5.13) with respect to x and obtain

(2€%), = —2¢} (5.22)

We integrate equation (5.22) with respect to x and simplify to obtain the expression

for €2, given as

1
€ = —§m§§ + A (5.23)
which translate to
1 t 1 t
& =——ax cos(w—_) + —bxo sin(w—,) + A. (5.24)
2 1 2 l
The equation (5.16) imply that
1 1
fu = (¥€t1>t - (;fl)t — 2%,
which translate to
t b t t b t
fue = —% sin(oi—,) — C:—tgb cos(cj—,) — %COS(%) + t—f sin(u:—,)
a wt bo . wt a . wt bo wt
— COS(T) + - sm(T) — o sm(T) ~ o COS(T) (5.25)
2 t.  box? ¢
e sin(w—_) + ¢x d cos(w—,)
i i i i

The integration of equation (5.25) results in the expression for f; and f given as

a wt, b, . wt ai . wt bi wt
fi = n COS(T) - Z(b sm(T) - Esm(T) - W—;ZCOS(T)
a . wt 1bo wt a wt b . wt
~ o ST — g eos() + g eos(5) — g sin() (5:26)
t
— ax® cos(w—,) + bpa® sin(—)
i
and
ar . wt b wt a wt bo . wt
f = —w SIH(T) + a(b COS(7> — m COS(T) + W SIH(T)
a . wt the . wt a . wt 1bo wt
T sm(T) N sm(T) t—=n SlIl(T) + COS(T) (5.27)
2 t. biga? t
_lax sin(w—,) B (0% (w_) 4B
w i w i
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respectively. From the defining equation (5.11) we have that

a sin(2) + bg cos(2)
—iw

=0 (5.28)

£ =

This results in that

a=0 and b=0
(5.29)

Hence a=C; and b= Cy

The defining equation (5.12) f, = 0 imply that the last terms of f i.e.

' t,  biga® ¢
T in (Y 19 COS(w—,):O (5.30)

w 1 w 1

5.1.2 Infinitesimals

The linearly independent solutions of the defining equations (5.10) to (5.15) result

in the infinitesimals

¢&=-0 Sin.(%t) — 02co§(w7t) (5.31)
iw iw
2= —%Clx cos(u:—,t) + %¢ng sin(wT,t) + A (5.32)
F= S sin(2) + 2 cos(Sh) - S cos D)
+ C;L:Z sin(w?t) - % sin(%t) - l§2¢ sin(%t) (5.33)
+ % in(%t) + f;if %)+ B

5.1.3 Symmetries

The symmetries according to infinitesimals (5.31) to (5.33) are:

sin(£) 9 1 wt, 0
Xi=——r— = — )5
! w0t 2:ccos( ) )836
1. wt 1 wt
+ {E SIH(T) — 2—252 COS(T) (534)
1 wt 7 Cowt 0
— (,U_Q SlIl(T) + 3_t2 SIH(T)}U%
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Xy =— L 4 sxgsin(—) o
2 ¢ w 8t+2x¢81 ( )8x
1 wt ¢ . wt
+ {aqﬁ COS(T) + o sm(T) (5.35)
1) wt (10) wt 0
tw ( 7 )+ w3t? os( i >}u8u
0
Xy= 2 .
5= 5, (5.36)
0
Xy =u— 5.37
17 % (5:37)
The function g(¢, x) could not be determined and thus leads to an infinite symmetry
generator
0
X, = g(t. x)u— 5.38
ot wus (5.38)

5.1.4 Invariant Solutions
Invariant solution through the symmetry X,

We consider the symmetry given by equation (5.32). The invariants are determined

from solving the equation

cos()oI 1 wt, Ol
Xol = — 2 L S pgsin(t) 2
ol = =05 T ey,
7 wt o . wt
+ {agb 008(7) + o sm(T) (5.39)
1wt 1) wt y Ol
- 5111(7) + s COS(T)}U% =0
The characteristic equation of (5.39) is given by
B e dx
¢# %x¢81n(w7t) (5 40)
B du '
u{¢ cos(2L) + —L5sin(2) — 2 sin(<L) + 225 cos(2)}
From equation (5.40) we have that
dt dx
S 5.41
¢COS'(“T) srdsin() (5.41)

w
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simplifies to

2 t
—dr = —wi tan(w—_)dt (5.42)
T i

The solution to equation (5.42) is given by

t
C+2lnzx = —lncos](w—,)\ (5.43)
i

for an arbitrary function C, which results in that the first invariant is given by

t
C) = 2 cos(w ) (5.44)
i
Also from equation (5.40) we have that
. wt 10} wt
g mi? o)+ ) i
o . wt 10 wt du '
- 8111(7) + 5 COS(T)} =
We simplify left hand side of equation (5.45) by multiplying through by - (wt), and
for smaller value of w we have the approximation
1
dt{- — 2 0 + } =
Hence the equation becomes
dt d
i (5.46)
t U
The solution to equation (5.46) is
% =0, (5.47)
Since (] is independent of u, every invariant solution is of the form
t
% F(22 cos(2)) (5.48)
7
or equivalently
t
u = tF(2? cos(w ) (5.49)
1
Differentiating equation (5.49) we obtain
t
u, = 2xtF’ cos(w—,) (5.50)
1
t t 2wt
Uy = 2xF cos(w—,) ) vy o sin(w, ) — 3t -F" si (i) (5.51)
1 i i i
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We substitute for equations (5.50) and (5.51) in equation (5.4) and obtain
2wt

t t
2xF' cos(w—,) B Py o sin(w—,) B Pl 2 sin(—)
ot "ot ¢ (5.52)
— 22 F" cos(—) + 2%t F' cos(—) = 0
i i
If we let w — 0 equation (5.52) simplifies to
203 =0
or
F'=0 (5.53)
Hence
F=A (5.54)
The solution is given by
u= At (5.55)

where A is a constant.

Invariant solution through the symmetry X;
We consider the symmetry given by equation (5.31). The invariants are determined

from solving the equation

Xl =— — — =
! w ot 2" i Ox
T . wt 1 wi
+ {a SID(T) ~ COS(T) (5.56)
1 wt i wt .y Ol
T sm(T) + e 1n(7)}u% =0
The characteristic equation of (5.56) is given by
at dx
S osin(2) T _lycos(9)
iw ? ' (5.57)
B du
u{t sin(2) — Ly cos(4) — & sin(%) + —&5 sin(4)}
From equation (5.57) we have that
dt d
- ’ (5.58)

T sin(ety 1 wt
Smi(wz ) —gxcos(%)
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simplifies to
2 , wt
—dx = wi cot(—)dt
x i
The solution to equation (5.59) is given by

t
A+2Inz = —lnsin|(w—,)]
i

which result in that the first invariant is given by

dt i wt 1 wt

a sm(“t){tw 111(7) W2 COS(7>
1wt 1 o wt du
— w—2 SlIl( i ) + w3t2 SIH(T)} = ?

We simplify left hand side of equation (5.62) by multiplying through by

for smaller value of w we have the approximation

1 1 1 du
dt{- — = -0+ =} =—
{ tt? + 12 } U
Hence the equation becomes
dt  du
t
The solution to equation (5.63) is
u
A
/ 2

Since A; is independent of u, every invariant solution is of the form

2= F(e? sin(“))

1

or equivalently

= tF (2 sin(%t))

Differentiating equation (5.66) we obtain
t
Uy, = 2atF’ sin(w—,)
i

2wt
7

wt
Uy = 2xF sin(—
i

t
)+ 20t cos(w—,) I ey 2 sin(
i i i

)
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We substitute for equations (5.67) and (5.68) in equation (5.4) and obtain

wt wt 2wt
22 F' sm( )+ 2xt o COS( )+ :B3t - F" sin(— ~ )
i

R o (5.69)
— 2zF sm( )+ 22°tF sm( )=0
i

If we let w — 0 in equation (5.69) we get no solution.

Invariant solution through the symmetry X;

The invariant solution through symmetry X5 = % yields that
u= H(t) (5.70)

where H(t) denotes some function of ¢, consistent with equation (5.71) The method

produced symmetries which provided a linear invariant solutions. This is consistent

o 1
/ e dy = —\/g, t>0 (5.71)
; 2\ 1

5.2 Symmetries in the epidemiology of HIV and
AIDS

with the result in [34] that

In the paper [35], Torrisi and Nucci apply Lie group analysis to a seminal model given
by Anderson [2], which describes HIV transmission in male homosexual /bisexual

cohorts. A technique introduced by Lie [?]. The equations have the form

dvy —Bocvivy

_— = — — 5.72
dt v+ oy +ug POV (5:72)
d’UQ . /3001)11)2

dt v+ v+ s (v po) v, (5.73)
dv

_dt3 = UVUy — Qvs, (574)

Here, the parameter pg is the per capita natural death rate of both susceptibles and

infecteds, and « is the AIDS-related death rate. The term X is the per capita force
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of infection and is defined as:

Bocvy
)
U1 + (%) + Vs

A =
where [ is the average probability that an infected individual will infect a susceptible
partner over the duration of their relationship, and c is the effective rate of partner
change within the specified risk category. The dependent variables vy, v9, and vy

divide the population into the population at time t susceptibles (HIV negatives),
infecteds (HIV positives), and AIDS patients, respectively.

Torrisi and Nucci’s application of Lie group analysis to the system 5.72-5.74, led to
the solutions

vt

€7 7°Cy
M7 e [t (Boc — v) e + e fod]
vy = (B()C — V) [/BOCCQ + C3
6,uos+ut
. [e”t (Boc — V) c1 + eﬁoCtﬁoc} [e”t (Boc —v)c1 + GBOCtI/]
g =

eﬁoct+,uot+ut [eut (600 _ I/) ¢+ 6'80@5500] (BOC _ y)
(Boc — v) IBocea + ¢3
eﬂgct—l-,uot—i-ut [ez/t (BOC _ I/) c1 + EBOCtﬁoc] (ﬁOC _ V)
nut

€ Co
etot [e¥t (Byc — 1) 1 + ePoct Byc]

with

eBoct+2vt
/ : dt. (5.75)

ePoct Byc + et Byce; — evsey u)2
Torrisi and Nucci noticed that if Syc = 2v these solutions, constituting the general
solution, assume a simpler form. But there is a problem. Other than the fact
that this condition reduces the solutions to an integrable form, there is nothing
else that does, meaning we have to patiently wait for experimental data to fit this
condition, otherwise it cannot be supported. This then brings up to the purpose of

our contribution. That being to integrate (5.75).
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5.3 Integrating (5.75)

The integral (5.75) is a special case of

u = / esHt, (5.76)

for s =1 and

1 Boct+2vt
H:—m(( ¢ ) (5.77)

s eBoct Boc + et Bycey — evteyw)’
However, it is well known that the Gaussian antiderivative cannot be established
through quadrature. Our approach is to reduce this integral into a second order
differential equation. Because such equations have more than one solution, the miss-
ing antiderivative can then be generated through transformations from the other

solutions.

A simple differential equation possible from (5.76) is
Ugst = H'U/t, (578)

a partial differential equation with the dependent variable u = u(s,t), depending on
s, and t. The antiderivative then should result from this equation with ¢ assuming

specific values. This we now solve through symmetries.

Traditional Lie symmetries do not assist much in this regard, What we do differently,

is to introduce an infinitesimal complex parameter
w
i

= -

into Lie’s method. This parameter, discussed extensively in [23] and [28], facilitates

evaluations through quadrature by invoking L’hopital’s principle.

5.3.1 Applying the Lie symmetry generator to (5.78)

In order to generate point symmetries for equation (5.78), we first consider a change

of variables from s,t, and u to s*,¢*, and u* involving an infinitesimal parameter e.
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A Taylor’s series expansion in € near € = 0 yields

s* ~ s+eS(s,tu)
t* =~ t+el(s t,u) (5.79)
ut o~ u+eC(s, tu)
where
% leco = S(s,t,u)
(‘gz e=0 — S(S,t,U) : (580)
% €= = C(‘Sa t? U)
The tangent vector field (5.80) is associated with an operator
0 0 0
X=5— — — 5.81
as "o T (5:81)

called a symmetry generator. This in turn leads to the invariance condition
X (g = ) [fuppmizuny = 0, (5.82)

where X is the second prolongation of X. It is obtained from the formulas:

XP = X4V +<t =+

2
+ (D2 + ¢

where
(O By B [ 8] gy — %y, (5.83)
1 d ) F)
¢V = S+ [ - B w— L, (5.84)
2 2 2
§ = Z4+uldh+ 2% - 25| u, - Zfu
+ |:f - 2(?9_5} Ugs — 2 ust7
@ 829 [ 00f _ _g] . azsu
tt - 8t2 at2 ot ot2 otz '
[ } Ut — Um
and
2 _ of _ 9%8
Gt = 838t +u asat + [2 asat] Us
af 8% as 8¢
T [2$ Bsat] u = [f = G5 — i) wat
G~
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It is to be understood here that the simplification ((s,t,u) = uf(s,t) 4+ g(s,t). The

invariance condition (5.82) then leads to the equation

629 +U82f + [2% _ 825] Us

OsOt OsOt ot Osot
of _ 0%, _[f_0S _ o
+ [2 s 88815] Ut [f s 8t] Ust

_%_fuss - %Utt — 28wy
2 (0 of o€ as _
—t2 (5 +ug + [f = 5w — Gus) =0,
called determining equation, from which follows the monomials

\

Lo gst — Hgr =0,

u oo fse—Hft =0,

us : 2fi —Sq+ HS; =0,

Uss - S; =0,

Ut : £ =0,

U - 2fs — &st
+ (2f+Ss+&)H
+ H¢ —EH = 0.

called the defining equations.

The second equation in (5.85) leads to

LOf,
fi Os -
so that
In f; = Hs + «,
or
I f, = asin pcos(ps) + Hsin(us)‘
v
That is,
f /exp (a sin p cos(ps) + Hsin(us)) i+
W
Similarly,
: s
g = /exp (,8 sin p cos(us) + sm(us)) i+ d
i

where a = a(t), 8= p(t), 0 =0, a = a(s), and d = d(s).
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The third equation in (5.85) leads to
HSS = _2ft

Substituting (5.88) into (5.91) gives

HS, = —2exp<
1

That is,

asin pcos(us)+H sin(us)

S—/_2exp< . >ds—|—A0,

H

where Ay is a constant.
The sixth equation in (5.85) leads to

Ht _Q(ft_fs)
“Toptt T m

Hence,

_ Q(ft_fs)
g—x/ﬁ/—H\/ﬁ dt + BoVH,

and

a:COt+C'1

where By, Cy, and C are constants.
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5.3.2 Infinitesimals

The linearly independent solutions of the defining equations (5.85) lead to the in-

finitesimals
) exp (asin,ucos(,u,s)JrH sin(,us))
S = / - dt + Ay, (5.97)
H
2 (ft - fs)
= H/—dt+B H, 5.98
{ =V I 0V (5.98)

and

dt +a

¢ = /exp (asinucos(us

)
o
N u/exp (ﬁ sin p cos(ps) + Hsin(us)) @t
+ ud. (5.99)

+ Hsin(;w))

1

5.3.3 The symmetries

According to (5.81), the infinitesimals: (5.97), (5.98), and (5.99), lead to the gener-

ators
asm cos(us)+ H sin(us)
. /—2eXP ooty v )ds Pl
! H ds
fs) ] d
+ \/_ 2= o) ] 2
{ HVH ot
N {/exp <asm,ucos(,u )+Hsm(us)) dt} 27
i ou
0
X2 - %7
(5.100)
X, = VEL
3 ata
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and

0

X, = —
4 au7
0
X5 = s—.
b S@u

The functions 8 = §(s), and g = g(s,t) cannot be determined, as such, it leads to
an infinite symmetry generator. That is,
Xo — [/ exp (ﬁ sin p cos(pus) + Hsin(,us)) dt} 9
1 ou
0

+ d(s)u%.

5.3.4 Construction of invariant solutions

Invariant solutions through the symmetry X;

The characteristic equations that arise from the symmetry X; :

ds
asin p cos(ps)+H sin(ps)

| D)
dt
2(ft—1s)

VH [t

B du

o feXp (asinucos(us)—f—Hsin(us))dt.

(5.101)

n

The equation
ds

asin p cos(pus)+H sin(us)

f —2exp( n )dS

H
dt
- (5.102)
vV H f 2(ft fs

arising from it, leads to the invariant n:

\/_ 2(ft fs dt
n=t—/ | il

ds. (5.103)

asinp COS(HS)+H sin(us)

: ) s

—2 exp(

H
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The other component:

ds
asin p cos(ps)+H sin(us)

f 72exp( — o )ds
du

= f exp <asinucos(p;)+Hsin(ps)> dt’

leads to the invariant ¢, contained in the expression

f exp (asinucos(uz)+H sin(,us)) dt
u=¢+ /

dt.

asin p cos(pus)+H sin(us)

[ o)

The invariant 7, leads to

o (YA
—2exp asin p cos(ps)+H sin(us)
it

i ) g

H

2(f _fs)
_ VH [ = dt
ns - - asin p cos(pus)+H sin(us) ?

f 726Xp( L )dS

H

and

YRR
nst - T a sin p cos(pus)+H sin(us) )

o \ el - o

H

while ¢ gives

Uy = €Z'577t+1/1t7

Ust = éntrls + énts + ¢t57
and
Us = ¢775 + wsa

with

asin p cos(pus)+H sin(us) S.

f —2exp( w )dS

H

j‘ exp (ozsin,ucos(,u:)—i—H sin(,us)) dt
o= d
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(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)
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Now substituting (5.109), (5.110) into (5.78) gives

Ot + & (s — Hmp) = Hipy — . (5.113)

The function « is determined here by requiring ns = 0, leading to the solution

s — H
u=1— /(% M) dn + ¢q. (5.114)
Nts —
The function « is
o =
ool / Hp _ Hsin(ps) | o)
sing  sin pcos(us)

Lot g (5.115)

sin(us)

where ¢q, and D, are constants.

Invariant solutions through the symmetry X,

The invariance condition from symmetry X; given as

ol
— =0 5.116
P (5.116)
leads to characteristic equation
ds dt du
— = —=—. 5.117
1 0 0 ( )

The characteristic equation (5.117)gives an invariant

u = 1(t). (5.118)
The substitution of (5.118) in (5.78) leads to that

29 (t) =0 (5.119)

Whence
I(t) = K (5.120)

where K is a constant.
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Invariant solutions through the symmetry X;

Similarly the invariance condition from symmetry X3

ol
H— =0 5.121
leads to characteristic equation
dt dt d
a4 4w (5.122)

The invariant v = x(s) from (5.122) presents no invariant solution.

The symmetries X4 and X5 do not provide invariant solutions.
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Conclusion

In this project a different method to determine symmetries of one-dimensional and
two-dimensional Black-Scholes equations was introduced. The method analyzes the
behaviour of functions as the infinitesimal w approaches zero. This method provided

additional symmetries to the equations compared to the one in [9].

In carrying out the implementation of the method, Black-Scholes equation was trans-
formed and expressed in terms of new variables. A method similar to the one in ([9])
was utilized to transform to the heat equation using Lie equivalence transformation.
The symmetries generated from the transformed equation led to two additional op-
erators as compared to the ones in ([9]). We determined an invariant solution using
one of the operators and in the case of transformed one-dimensional Black-Scholes

equation, further solutions were produced.

The method was further applied successfully on a Gaussian type differential equa-
tion, and symmetries for HIV/AIDS model type partial differential equations were

determined. Invariant solutions for those operators that provided were worked out.

Future projects on the method would include to calculate all invariant solutions for
all operators that provide them and work out an optimal system of subalgebras of

the one-dimensional and two-dimensional Black-Scholes equations.

100



Bibliography

1]

Adams,C.M., Masebe,T.P., Manale,J.M. Gaussian type differential equation:
Proceedings of the 2014 International Conference on Mathematical methods

and Simulation in Science and Engineering, Interlaken, Switzerland, Feb. 22 -

24, 2014. 28 - 31.

Anderson,R.M. 1988. The role of Mathematical models in the study of HIV
transmission and the epidemiology of AIDS. JAIDS Journal of Acquired Im-
mune Deficiency Syndromes, 1(3):241256.

Baumann, G. 1992. Lie Symmetries of Differential Equations: A mathemat-
ical program to determine Lie-Backland Symmetries. MathSource 0204-680.

Illinois. Wolfram Research Inc., Champaign.

(ksendal, B. 2003. Stochastic Differential Equations: An introduction with

Applications.(6th ed). New York. Springer-Verlag.

Bluman, G. W., Kumei, S. 1989. Symmetries and Differential Equations. New
York, Springer-Verlag.

Bluman,G.W., Anco,S.C. 2002. Symmetries and Integration methods for Dif-

ferential Equations. New York. Springer-Verlag.

Bluman, G. W., Cheviakov,A.F., Anco,S.C. 2010. Application of Symmetries

methods to Partial Differential Equations. New York, Springer.

Bjork , T. 2004. Arbitrage theory in continuous time. Oxford. Oxford Univer-

sity Press.

101



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

Gazizov, R. K., Ibragimov, N.H.1998. Lie Symmetry Analysis of Differential

Equations in Finance. Nonlinear Dynamics 17:387 - 407. June.

Gerald, C. F., Wheatley, P. O. 1992. Applied Numerical analysis.(4th ed). New
York. Addison-Wesley Publishing Company.

Gerald, C. F., Wheatley, P. O. 2003. Applied Numerical analysis.(7th ed). New
York. Addison-Wesley Publishing Company.

Hull, J. 2003. Options, Futures and other Derivatives.(5th ed). New Jersey.
Prentice Hall.

Hydon, P.E. 2000. Symmetry methods for Differential Equations. New York.
Cambridge University Press .

Ibragimov, N. H.1999. Elementary Lie Group Analysis and Ordinary Differen-
tial Equations. London. J. Wiley & Sons Ltd.

Ibragimov, N. H., Kobalev, V.F. 2009. Approximate and Renormgroup Sym-

metries. Beijing. Springer.

Ibragimov, N. H. 2010. A practical course in Differential Equations and Math-

ematical modelling. Beijing. Higher Education Press.

Ibragimov, N.H. 2009. Selected Works: Extension of Euler method to parabolic

equations,volume IV. Sweden. ALGA Publications.

Ibragimov N. H. et al .(Editors). 1995. CRC Handbook of Lie Group Analy-
sis of Differential Equations Vol 2: Applications in Engineering and Physical
Sciences. Boca Ratan. CRC Press.

Ibragimov, N.H. (1994). Sophus Lie and the harmony in Mathematical Physics
on the 150th anniversary of his birth. Mathematical Intelligencer 16(1), 20-28.

Ibragimov, N.H., Unal, G., Jogreus, C. (2004). Approximate Symmetries and
Conservation Laws for Ito and Stratonovich dynamic Systems. Journal of Math-

ematical Analysis and Application. 297: 152 - 168.

102



[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Joshi, M. S. 2003. The concepts and practice of mathematical finance.
[Web:|http://books.google.co.za/books.[Date of access: 15 November 2011].

Kishimoto, M. (2008). On the Black-Scholes Equation: Various Deriva-
tives.http://www.stanford.edu/. japrims/Publications/OnBlackScholesEq.pdf

Manale, J. M. New Symmetries of the heat equation and application to thin
plate heat conduction:In Metin Demiralp, Constantin Udriste, and Gen Qi Xu,
editors, Proceedings of the 2013 International Conference on Mathematics and

Computation, Venice, Italy, Sep. 28 - 30, 2013. 90 - 103.

Manale, J. M. 2000. Group classification of the two-dimensional Navier-Stokes-

type equations. International journal of non-linear mechanics 35.4 : 627-644.

Manale, J. M. 2014. New solutions of the heat equation. International Journal

of Applied Mathematics and Informatics, 8:15-25.

Manale, J. M. 2014. Lie symmetry solutions for the heat and Burgers equations.
La Pensee 76.7 : 113-126.

Manale, J. M. 2014. On a formula for the universal gravitational constant G:

A classical mechanics approach. La Pensee 76. 10 : 267-275.

Masebe, T .P., Manale,J. M. New Symmetries of Black-Scholes Equation:In
Metin Demiralp, Constantin Udriste, and Gen Qi Xu, editors, Proceedings of
the 2013 International Conference on Mathematics and Computation, Venice,

Italy, Sep. 28 - 30, 2013. 221-231.

Olver, P.J. 1991. Applications of Lie Groups to Differential equations. New
York. Springer.

Omiir,U. 2008. An introduction to Computational Finance.London. Imperial

College Press.

Ovsiannikov, L. V. 1982. Group Analysis of Differential FEquations, FEnglish
translation by Chapovsky Y. and Ames W. F. New York. Academic press.

103



[32]

[35]

Silberberg, G. 2001. Derivative Pricing with Symmetry Analysis.
http://www.econ.ceu.hu/download /thesis/Thesis-Silberberg.pdf

Stephani, H. 1989. Differential Equations: their solutions using symmetries,

Cambridge. Cambridge Press.

Wikipedia Foundation. 2013. List of integrals|Online].en.wikipedia.org
Available from http://www.wikipedia.org/wiki/list of integrals [Ac-
cessed:07/12/2013]

Torrisi,V., Nucci, M. C. 2001. Application of lie group analysis to a mathe-
matical model which describes HIV transmission. Contemporary Mathematics.

285:1120.

104



Appendices

Appendix A: Manale’s formulas and the infinitesi-

mal w

It is well-known that Lie’s group theoretical methods seek to reduce procedures for
solving differential equations of any challenging form to simple ones that may also
have the form

Clojj + boy + CoYy = 0, (5123)

for y = y(x), with parameters ag, by and ¢y. It is also that accepted Euler’s formulas

are suitable for solving such equations. They are:

( b,

¢ Zag? (Ae™ + Be®") , b} > 4agco,
A+BZL‘, b% :4(1000,

. (5.124)
e 20" [A cos(wr)]

b
+Be 70" [sin(@z)], b2 < dagcy

where & = /b2 — 4agco/(2ay).

But there is a problem with this system: It does not reduce to y = A + Bx when
by = ¢y = 0. This is because Euler did not solve the equation to get the formulas.
There has never been a need to do so, primarily because the formulas have been very

successful in applications, and they still are.

The need for an exact solution here, is driven by the desire to understand solutions

for equation (5.123) through symmetry methods. It is impossible through Euler’s



formulas. To get such exact formula, first let

y =0z,
with 8 = fB(x) and z = z(z), so that
y =Pz + B,
and
i = Bz + 232+ B5.
These transform (5.123) into
ao (ﬂz +28% + ﬂz) + by <Bz + Bz) +cofz = 0.

That is,
aoﬂé + (2&06 + boﬁ) z 4+ <GOB + boﬁ + Coﬁ) z = 0. (5125)

Choosing f3 to satisfy 2ao3 + by = 0 simplifies equation (5.125). That is,

b

—bo
ﬁ = C()Oe 240 ’

for some constant Cpy. Equation (5.125) assumes the form

a4+ bof+ b
aofs '

. bg — 4(1000
Z = - | Z
4a?

But Z can be written as Zdz/dx. Therefore,
P d_Z _ b(Q) — 4(1000 -
dz 4a’ 7

b2 — 4
zdz = (OT??OCO) zdz.

That is,

or

That is,

22 b2 — 4dapco 22
o (DT 2% < o
2 ( 402 ) g Too

i



for some constant Cy;. That is,

or
d
: = dx.
\/<b 4?000) +2Co
0
That is,
dz b2 — 4agc
— = _0—200 dz,
VA, — 22 dayp
with A2, = 2C;/ 4a°C° . Hence,
2C01 . bg - 4aOCO
Z—m sm( —4—61[2)1'4-002 s
4(1(2)

for some constant Cyy. That is,

—bo 2C b2 —4
y — 0006 2a00 —01 Sln ( _O—GOCO x + 002> .

bz —4agco 4&%
4a%
Letting
_ ba — 4@060
w =
4ad
we have
+ 2Cn
y = Choe 20 2o sin (w x + Cpa),
or
C sin (&
y = Cpoe ™0 o 2001[M cos (wz) + cos (Coz) = (f) x)]
w
A reduction to the trivial case § = 0 requires that sin(Cpe) = Cpssin(w) and

cos(Copz) = Coy cos(w). That is,
Ca, +C3y = 1.

Hence,

Cos sin (w)

)

y = 00062“0 2Cn cos (@ x)

CEE (5.126)
+ 004 COS ((I)) (

—]

E |



or simply

Y= 0006%8552001 Cos sin (w) cos (W)

w
q
004 sin ((IJ ) (5 27)

—b
+ Cooew((;lQCQl

It is very vital to indicate that if the parameters @ in the denominator and sin (w) are
absorbed into the coefficients Cy; and Cps, then formula (5.127) would reduce to one
of Euler’s formulas. But the consequences would be fatal, as formula (5.127) would
not reduce to y = A 4+ Bx when by = ¢y = 0, that is, when @ = 0. Unfortunately,

this result cannot be found in any university textbook.
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Appendix B: Useful limit results

. t
()t
pn—0 v 7

This can be written in the form

It is true that

or

i (Lt
lim {m — Ecos (,u_t)} =
n—0 v 7 ]

Removing the ‘lim’ for greater clarity:

—Sin (%) = éCOS <&t> .

t t t
sin <,u_) = -4 COS (,u_) ,
i ? ?

L. t
(Aﬁ) _isin ()
7 t u

cos (#) _cos(#)
qu K ILL(I+1

Carrying out the derivative on the right hand side:

That is,

or

@,|‘E

We then have

cos (“Tt) —n (f) sin (“Tt) + cos ("Tt) |

,uq MfH’l

Substituting (5.130)

cos () _ 2 (£)" cos (%) + cos ()

7

/’Lq Mq+1

That is,

t t t
L COS (,u_) = ,u2t2 Cos <M—) + cos (M—
? v ?

which can be expressed in the form

t t ' t
12 cos (,u_) — 1*t? cos (N—> = %sin (M—
0 1

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)

(5.133)

(5.134)

(5.135)



Since sin (“Tt) = 0 for p small, it follows then that

t t
,u2 COS (,u_) = ,u3t2 cos (M—) .
{ {

Since e can be expressed in the form cos(ut/i) + i sin(ut/i), then

t
et = 132 cos ('u—)
i
so that )
t 1
\/ﬁe/‘t/4 _ {u?’ oS <N_)} Vi,
i
or )
“NE
\/ﬁe_”t/4 = {,u?’ cos (/L—ﬂ Vi,
i
Therefore (5.138) and (5.139) can then be written in the form

\/ﬁ
[ cos (#)] Vi

o(n),

u =

(5.136)

(5.137)

(5.138)

(5.139)

(5.140)

with g = w*(w? — 1) in the case of (5.137) and pu = w*(w? + 1) for (5.138). That is,

1
Y T wqu(n)

for (5.137), and

for (5.139).

vi

(5.141)

(5.142)



Appendix C: Solution for determining equation (2.5)

The one-dimensional Black-Scholes equation is given by (2.1). Its admitted infinites-

imal generator for point symmetry is of the form

9] 0 0
— ¢0 - 1 _ —_
X =&(t,x,u) Py + & (t, yc,u)am +n(t, z,u) 50 (5.143)
Its first and second prolongations are given by
0 0 0
X=X+ —+—+M— 5.144
+¢ ouy +< Oy, +< Uy ( )

where X is defined by equation (5.143). The functions ¢°, (tand{!! are given by

(" = Dy(n) — uDy(€) — ul,Dy(&")

=N+ Ughy — Utf? - U?fg - Uxftl - Utuxfi

¢ = Di(n) — uD;(€°) — ulDi(€")

Cl = Nz + UgThy, — ut£2 - utuxgg - u:rgi - uigi

Cij = D](gZ) - utziDj(go) - U’:clka](gk)
CH = D:B(CI) - utngg({O) - umD:c(gl)
20

0
— 20, €0 — w0 — 2upu, 0, — (Uyly + 2Ugty )0 — uulEl,

where D, and D, are total derivatives with respect to the variables x and ¢ respec-

tively and are defined by

D—ﬁ—l—uﬁ—l—u 0 +u i%—
T or Yo o, " Ouy
D—Q+u£+u i—|—u +
ot tou T Mtou, | Mo,

vil



[9]
The determining equation is given by

1

1
5 -+ Aqu:r:xgl + §A2$2C11 + Bux€1 + BZUC1 - Cn}’ut:—%AQxQum—Bxuz-i-Cu =0

(5.145)

{¢+

The substitutions of ¢, ¢! and ¢! in the determining equation yields that
1 1
n + (—§A2x2um — Bru, + Cu)(n, — &) — (—§A2x2um — Bau, + Cu)?¢0—
1 1
ULl — (—§A2x2um — Bau, + Cu)ugEl + Arug &' + §A21‘277m + A2 Uy,

1 1
+ §A2x2um(nu — 2{; — 3uxfllt) + §A2x2ui(nuu — 25;) — A2x2um§2

1 1 1

— §A2x2(—§A2x2um — Bau, + Cu)&), — A2x2(—§A2x2um — Bzu, + Cu)&l,
1 1 1 1

— §A2$2um(—§f12x2um — Bau, + Cu)éd — §A2$2(—§A2x2um — Bru, + Cu)&?,
1

— —AP?UBEL + Buy&t — A2 uguE) + Brug(n, — £L)

2
L oo 0
— Ba:(—EA T Uz — Bru, + Cu)é, + Bxn,
1
— Bxu$(—§A2x2um — Bau, + Cu)é® — BruZ€l — Cn = 0.
(5.146)

We set the coefficients of g, U, Uze, u? and those free of these variables to zero and

solve the following monomials termed defining equations.

U - —AT2%E0 — A%2%u, &0 =0, (5.147)
o, 28 1
ul o €l =N =0 (5.149)
1
u, : Bx€) — &+ A%aPn,, — A6, + BE — Bxé =0 (5.150)

2
1
g ot Cull =€) + B + 5 A%, = Cp=0=0,  (5.151)

We solve the defining equations.

e Defining equation (5.147) yields that

° = a(t) (5.152)
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e The defining equation (5.148) is a linear first order ODE

whose integrating factor is
e~ wde — 1
x

Multiplying by the integrating factor and solving for &! results in

a8 _g
dr z =
61
fgtdx —{ }lnx—l—f()
Whence
¢ = {gt lrlna + xf(t) (5.153)

We differentiate equation (5.153) with respect to ¢ and z to obtain

the following equations

&={ }1x+{ }+f() (5.154)
53:{5tt}x1nx+xf() (5.155)
¢ =4 (5.156)

e From defining equation (5.149) we have that
n=at,z)u+ Bt ) (5.157)

e From defining equation (5.150) we have that

1 0
éBxf? %t:vlnx xf'(t) — Agx%t + A%2%a, =0 (5.158)

We apply D = B — %AQ thus have that

LDy - S

5 “xlnx af'(t) + A%, = 0, (5.159)

whence

gtt Qf/(t) — Df?
“lng 4 = ——r) (5.160)

Oy =

AQ

X



resulting in that

o= 22 3l 2 (In )2 + (

2f'(t) — Dg;
We differentiate equation (5.161) with respect to ¢ and equation (5.158)

with respect to = to get expressions for oy and «,, respectively given as

o = A2 gttt (hl :L‘)2 + (Qf//(t>2_ ngt) hll’} + q’(t)

and

gtt gtt Dgto - 2f,<t)
_ In e T A
Qe = A2 222 212 Yo

e The differentiation of defining equation (5.151) with respect to u

yields the following expression after simplification

1

The substitution of equation (5.157) in (5.164) result in that
1
— Cf? + Bzay, + §A2x2am =0

The substitutions of equations (5.160),(5.163) and (5.164)

into equation (5.165) yields
gttt 2 f”<t> gtt O gtt
pap o)™ T e = 5 () = 08+ o7
Bf() _BDE & A?»stt L Ay
A? 2A2 4 4A? 2A2 2A2

Equation (5.166) simplifies to

gttt f”( )
s a) +

Inz

ftt

A2

We equate corresponding coefficients in equation (5.166) and obtain

the following equations

f?tt =0
uon  DE
() = e
?t D? D
qt) = —=+ (ﬁ +C)& — el (t)

Inz+q(t) = -2 + (— +O) — % (1)

(5.161)

(5.162)

(5.163)

(5.164)

(5.165)

(5.166)

(5.167)

(5.168)
(5.169)

(5.170)



From the equations (5.168), (5.169) and (5.170)

1
60 - 501152 + Cgt + 03

f(t) = Cit+Cs

1 D? D?
q(t) = —50175 + ﬁ01t2 + CC’lt2 + ECQt
D
+ CCqt — EC@ + Cs.

Substituting for (5.172) in equation (5.161), gives

C 20, —2DCt + C 1
a:2—1412(1nx)2—|—( ! 2A21 Z)Inm—ﬁClt—k
1 D? D? D
—5at+ Foth + CCit* + ﬁogt + CCyt — EC“t + Cs.
Hence
20, —2DCt 1
n= 2—1412(111 z)?u + ( Cs 2A§1 i CQ)uln:c — QC’ltu—F
D? D? D
ﬁCthU + CCthU + ﬁCgtu + C’Cgtu — ECAJU + C@U + B(t, .’13)
Infinitesimals

The infinitesimals are

1
€0 = 501752 + Cot + C4

€ =Citzlnz + %xlnx + Cytx + Csz

_ G 2C, — 2DCyt + Cy
(ST 942
D2

D? D
@Clﬁu + C’C’lt2u + FCQtu + CCgtu — FCAJU + CGU + B(t, .77)

1
Inz)%u + ( Julnz — iCltu—F

x1

(5.171)

(5.172)

(5.173)

(5.174)

(5.175)

(5.176)

(5.177)



