
The CSCW Paradigm for Software Development

by

ZELDA VILJOEN

submitted in part fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: PROFESSOR A.L. STEENKAMP

JUNE 1995

INDEX

Abstract lll

Acknowledgements lV

Table of Contents v

Preface Vlll

List of Figures x

List of Tables Xll

List of Acronyms Xlll

Definitions of Terms XIV

Dissertation Body
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

References XVI

lll

ABSTRACT

People work together to solve a wide variety of problems using different forms

of cooperation for each class of problem. Modern technology is complex, and

therefore it is unusual for an individual to attempt the development of a major

project single-handedly. In an attempt to provide computer-based support for the

problems that arise when two or more people attempt to cooperate to perform

a task or solve a problem, the area of Computer Supported Cooperative Work

(CSCW) becomes relevant. The software development process almost invariably

involves cooperation that crosses group, professional, and subcultural boundaries.

The complexity of software development demands that highly integrated groups

of analysts, designers, and users are involved in the process. Many development

activities may occur concurrently. The area of CSCW and advanced information

technology, with its enormous capabilities for transmitting and storing

information, holds considerable promise for the software development process.

KEYWORDS

Software Development, Software Engineering, Software Development Life Cycle,

Cooperation, Computer-Based Support, Computer Supported Cooperative Work

(CSCW), Groupware, Object-Orientation.

lV

ACKNOWLEDGEMENTS

To my Lord and Saviour Jesus Christ - Thank You for the strength and hope given to

me to complete this work.

My sincere gratitude to my husband, Merwe, for his indulgence as sacrifices were made

for the sake of my studies - I love you for that!

A special word of thanks to my parents for their loyalty and support throughout the

years. Thank you Mom for being my best friend.

Thank you to Professor Bornman, Head of the Department of Computer Science and

Information Systems, University of South Africa, for approving my studies and sabbatical

leave.

Finally, a sincere thanks to Professor Lerine Steenkamp. I gratefully acknowledge her

invaluable advice, support and guidance throughout this project.

TABLE OF CONTENTS

Preface .. viii

List of Figures ... x

List of Tables .. xii

List of Abbreviations and Acronyms xiii

Definition of Terms .. xiv

CHAPTER l Statement of the Area of Investigation . 1

1.1 Introduction ... 1

1.2 The Problem and its Relevance . 2

1.3 Current Status of the Area of Investigation 5

1.3.1 The Software Development Process 6

1.3.2 Computer Supported Cooperative Work . 8

1.4 Proposed Solution . 10

1.4.1 Scope of the Investigation . 11

1.4.2 Method of Investigation. 15

1.5 Structure of the Dissertation . 16

CHAPTER 2 Computer Supported Cooperative Work in Perspective 19

2.1 Introduction .. 20

2.2 Origins of CSCW . 21

2.3 The Nature of CSCW ... 23

2.3.1 Human and Social Factors 23

2.3.2 Technology Factors . 25

2.3.3 Changing practices . 26

2.4 Definition of CSCW . 27

2.5 CSCW Technology . 32

2.5.1 CSCW Products ... 32

2.5.2 Classification of CSCW Systems . 39

v

2.6 Requirements for CSCW . 48

2.6.1 General Requirements .. 49

2.6.2 Specific CSCW Requirements . 54

2.6.3 Architecture Requirements 60

2.7 Main Components of CSCW .. 64

2.7.1 The Support of Groups .. 65

2.7.2 Categories of CSCW Technology 65

2.7.3 Dimensions of the CSCW Field . 65

2.8 CSCW Meta Primitives . 71

2.9 Summary and Conclusions . 84

CHAPTER 3 Cooperative Aspects of the Software Development Process 86

3.1 Introduction .. 87

3.2 Abstraction and Structure in Software Development . 88

3.3 Software Process Models . 91

3.4 Information System Building Blocks . 97

3.4.1 Building Block - PEOPLE 99

3.4.2 Building Block - DATA. 103

3.4.3 Building Block - ACTIVITIES . 104

3.4.4 Building Block - NETWORKS 106

3.4.5 Building Block - TECHNOLOGY 108

3.5 Building Process of Information Systems . 110

3.5.1 Cycle 1 - Feasibility . 110

3.5.2 Cycle 2 - Analysis . 112

3.5.3 Cycle 3 - Design . 114

3.5.4 Cycle 4 - Implementation . 117

3.6 CSCW in Software Development . 119

- 3.7 Requirements of CSCW in Software Projects . 123

3.8 Summary & Conclusions . 125

CHAPTER 4 Software Development within a CSCW Environment 126

4.1 Introduction . 126

4.2 CSCW Technology for Software Development

4.2.1 CSCW Support for Project Management

128

128

4.2.2 CSCW Support for Collaborative Software Development 139

4.2.2.l CSCW Tools for the Analysis & Design Cycles 140

4.2.2.2 CSCW Tools for the Implementation Cycle 150

4.3 CSCW Software Development Environments . 154

4.3.1 Generic Facilities . 155

Vl

4.3.2 Cooperative Models for Software Development . 157

4.4 Summary . 162

CHAPTER 5 A CSCW Conceptual Model for Software Development 163

5.1 Introduction 163

5.2 A Meta Model of Cooperative Software Development . 164

5.2.1 A Groupwork Model for Task Cooperation . 165

5.2.2 A Multi-Agent Conversation Model for Task-Oriented Negotiations 168

5.2.3 Software Process Data Model . 169

5.2.4 Model Integration ... 171

5.3 CSCW Conceptual Model for Software Development . 172

5.3.1 Computer Support Primitives for Software Development 173

5.3.2 Cooperative Work Primitives for Software Development 176

5.4 A Framework for Software Development within a CSCW Environment 179

5.5 Summary & Conclusions . 183

CHAPTER 6 Summary, Evaluation and Conclusions . 184

6.1 Introduction 184

6.2 Summary of Investigation . 184

6.3 Evaluation & Conclusions . 186

6.4 Areas for further Investigation . 187

REFERENCES .. xvi

vu

Vlll

PREFACE

This dissertation has been done in partial fulfilment of the MSc degree in

Information Systems at the University of South Africa. The other half of the

degree requirements were the completion of five study modules, which were:

• Software Design: The module covered advanced software design concepts,

design methodologies, real-time software design, and object-oriented

software design.

• Expert Systems: The module covered the concepts, characteristics and

classification of expert systems. The architectures and methods of different

types of expert systems were discussed. Most importantly, the manner in

which expert systems are constructed was illustrated.

• Software Engineering Environments: The principles of software engineering

formed the underlying theme of the module. The concepts, requirements,

and characteristics of environments supporting software development

according to software engineering principles were covered.

• The Object-oriented Approach - A Comparative Study: A special topic

module which covered the underlying concepts of the object-oriented

approach. Frameworks were established for the comparison of object­

oriented approaches, and for the comparison of traditional (structured)

software engineering techniques with object-oriented techniques.

• The RASCAL Approach - A Middle Way To Software Engineering: A

special topic module (project) which described the Rascal Approach, which

uses the strengths of both the object-oriented and structured approaches -

the best of both worlds! A case study was conducted following the Rascal

IX

Approach and the comparative framework of the previous special topic

module was used to evaluate the approach.

The research presented in the dissertation is concerned with the area of software

development, with emphasis on computer-based support for the development

process. Much of today's work is not done individually, but rather in groups.

Software development is also collaborative in nature, due to the complexity of the

task, the severe time constraints, and the requirement for broad expertise. The

idea of computer support for group-based work activities, such as software

development, is a useful and challenging one, for it represents a break from

approaches that focussed on centralised and bureaucratic systems of

communication and control.

Computer Supported Cooperative Work (CSCW) has emerged as an identifiable

research field which focusses on the role of the computer in group work. The

study explores the dynamic and distributed nature of cooperative work and

determines the requirements of CSCW technology in general, and in particular

for support of the software development process.

Thus, the purpose of the research was to explore how CSCW could be used in

support of the software development process. This is in accordance with the

Object-oriented Information Systems Engineering Environment (referred to as

OISEE) project undertaken by the Department of Computer Science and

_ Information Systems at UNISA, which aims at establishing a foundation for an

information systems engineering environment within which other research

projects may be undertaken at postgraduate level. For the purpose of this

research, the spiral life cycle model for object-oriented development, as specified

by Du Plessis and Van Der Walt (1992), is adopted. The fundamental paradigm

is object orientation which was found to be especially suitable for the simultaneous

independent work nature of CSCW.

x

LIST OF FIGURES

Figure 1.1 General Conceptualisation of the CSCW paradigm 13

Figure 2.1 CSCW Scenarios 22

Figure 2.2 An Active Mail Configuration 33

Figure 2.3 Active Mail Conversation 34

Figure 2.4 The Process Structure in a Conference 35

Figure 2.5 A Meeting Scheduler 36

Figure 2.6 Typical Screen Arrangements in Media Space 38

Figure 2.7 Monitor Orientations and Placements possible in the

Layout of an Oval Conference Table as in Capture Lab 39

Figure 2.8 Forms of Cooperation in CSCW Systems 40

Figure 2.9 Geographical Nature in CSCW Systems 41

Figure 2.10 Comparison of Models of Cooperation 42

Figure 2.11 Interaction in Shared Information Systems 43

Figure 2.12 The Role of Standards in Message Based Systems 45

Figure 2.13 Four Approaches for Real-time Shared Workspace Design 48

Figure 2.14 MOCCA Viewpoints on CSCW 61

Figure 2.15 Basic CSCW Architecture 62

Figure 2.16 Time and Location of Work 66

Figure 2.17 Gladstein's Framework for Group Performance 72

Figure 2.18 Example of an Organigram 73

Figure 2.19 Example of a Process Interaction Diagram 74

Figure 2.20 Structure of an individual, mediated Action in an Activity 75

Figure 2.21 Basic Structure of an Activity 76

Figure 2.22 The CSCW Object Model 83

Figure 2.23 Conceptual Model of CSCW Meta Primitives 85

Figure 3.1 Universal Level of the Development Process Model 93

Figure 3.2 The three Levels of Software Development Modelling 94

Figure 3.3 Revised Spiral Model for Cooperative Object-oriented Development 96

Figure 3.4 The Five-Component Model of an Information System 99

Figure 3.5 The People Building Block of Information Systems 100

Figure 3.6 The Data Buiding Block of Information Systems 103

Figure 3.7 The Activity Building Block of Information Systems 105

Figure 3.8 Information System Types in support of Business Functions 106

Figure 3.9 The Networks Building Block of Information Systems 107

XI

Figure 4.1 Two Versions of a System and the Argumentation involved 131

Figure 4.2 Communications Infrastructure of GROUPKIT 134

Figure 4.3 The transparent Layers of the CaveDraw Tool 144

Figure 4.4 System Architecture of ClearBoard 145

Figure 4.5 A View of the Screens of Conversation Board 146

Figure 4.6 A typical Software Development Environment 158

Figure 4.7 Distributed Computing Architecture with Middleware 161

Figure 4.8 Multimedia Platform for Cooperative Applications 162

Figure 5.1 Groupwork Model: Organisational and Project Perspective 166

Figure 5.2 Multi-agent Conversation model 169

Figure 5.3 Software Process Data Model 170

Figure 5.4 Model Integration - Groupwork in Software Projects 172

Figure 5.5 CSCW Conceptual Model for Software Development 178

Xll

LIST OF TABLES

Table 2.1 Message Based Systems and their Form of Control 45

Table 2.2 The Classes of Conferencing System 46

Table 2.3 Task Types 68

Table 2.4 Seven Media and their associated Constraints 70

Table 3.1 Information Systems Role Summary 102

Table 5.1 The Type and Nature of Cooperative Work 176

Table 5.2 CSCW support for Project Management 180

Table 5.3 CSCW support for the Analysis & Design Cycles 181

Table 5.4 CSCW support for the Implementation Cycle 182

Xlll

LIST OF ABBREVIATIONS AND ACRONYMS

AI

CASE

CIM

cs cw
DBMS

DSS

EIS

GDSS

HCI

HIPO

JIT

KBMS

LAN

LCM

MAN

MIS

NGT

OODBMS

ODP

OISEE

OOA

OOD

OSI

PC

RVL

SADT

SDLC

SE

SEE

SPMP

WAN

WYSIWYG

Artificial Intelligence

Computer-aided Software Engineering

Computer-integrated Manufacturing

Computer Supported Cooperative Work

Database Management System

Decision Support Systems

Executive Information Systems

Group Decision Support Systems

Human Computer Interface

Hierarchical Input, Process, and Output

Just-in-time

Knowledge Base Management System

Local Area Network

Life Cycle Model

Metropolitan Area Networks

Management Information Systems

Nominal Group Technique

Object-oriented Database Management System

Open Distributed Processing

Object-oriented Information Systems Engineering Environment

Object-oriented Analysis

Object-oriented Design

Open Systems Interconnection

Personal Computer

Relational View Language (RVL)

Software Analysis and Design Technique

Software Development Life Cycle

Software Engineering

Software Engineering Environment

Software Project M2.nagement Plan

Wide Area Network

What You See Is What You Get

CASE

cs cw

Groupware

Groupware System

Life Cycle Models

Method

Methodology

Paradigm

Processes

Products

Software Development
Life Cycle

XIV

DEFINITIONS OF TERMS

The automation of the software engineering process by
means of tools which can be applied to the full or partial
software development life cycle.

Work by multiple active subjects sharing a common object
and supported by information technology. In more simple
terms, CSCW is the attempt to provide computer-based
solutions to the problems that arise when people
cooperate in groups to perform a task.

The electronic (computer-based) components supporting
participants engaged in group activity.

A computer-based system that supports groups of people
engaged in a common task (or goal) and that provides an
interface to a shared environment.

The management of large software projects by dividing
the development into cycles or phases, each with a
prescribed work breakdown structure, deliverables, review
points and management procedures for planning,
monitoring and controlling a project.

A definite, orderly way of doing something, for the
purpose of this investigation applied to the specific
approach of carrying out one or more of the software
development activities; it is usually based on an
intellectual model of how to accomplish an activity; it is
implemented through the use of procedures and tools.

A collection of methods, techniques, procedures and tools
that provides the overall approach to developing and
improving software; it is usually based on an underlying
intellectual model (the paradigm).

An abstract (conceptual) or intellectual model on which
something is based.

Any software related activities, normally having a time
factor.

Any artefacts, documents or deliverables which result
from processes.

A life cycle model to support the breakdown of work
during development, implementation and maintenance of

Software Engineering -

Software Engineering
Environments

Technique

Tool

xv

a software system.

A discipline that proposes that software development
should be followed according to sound engineering
principles which entails the production of quality software
systems efficiently.

An environment consisting of integrated CASE tools,
utilities, procedures and storage facilities to support a
particular development methodology which covers the
entire software development process.

An informal method.

A mechanism by which a method can be executed;

CHAPTER 1
Statement of the Area of Investigation

CONTENTS

1.1 Introduction

1.2 The Problem and its Relevance

1.3 Current Status of the Area of Investigation

1.3.1 The Software Development Process

1.3.2 Computer Supported Cooperative Work

1.4 Proposed Solution

1.4.1 Scope of the Investigation

1.4.2 Method of Investigation

1.5 Structure of the Dissertation

1.1 Introduction

In recent years, literature about work has increasingly focussed on the importance

of collective communication, tacit knowledge, and group activities (Greenbaum,

1988). The idea of establishing computer support for group-based work activities,

which may be called cooperative work, is a useful and challenging one, for it

breaks away from centralised and bureaucratic systems of communication and

control. The shift from computer systems that support a single user working

alone to those supporting a group of users working together has considerable

impact. It leads to the consideration of the ways people work together in

everyday life, and possible ways to support and extend their interactions. Perhaps

more importantly, it suggests that the unique capabilities of computers should be

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 2

embedded more firmly in ordinary work practices (Gaver, 1991).

In recent years, increasing attention has been focused on the problem of

Computer Supported Cooperative Work (CSCW). It has gained acceptance both

within the research community and in the popular press as denoting a new

perpective on computer system development and use. CSCW, broadly defined,

is the attempt to provide computer-based solutions to the problems that arise

when people (more than a single individual) attempt to cooperate to perform a

task or solve a problem (Borenstein, 1992). CSCW is a subject that draws on

research in various disciplines, such as psychology, sociology, computer science,

and artificial intelligence. Group work may be considered of special interest for

all these areas, but the provision of computer-based support for groups of people

working together is central to CSCW.

Software development involves substantial integrated and cooperative elements.

This has particular implications for the way the software system should be

developed. The software development methodology should reflect these elements

of cooperation (across functional areas or within the organisational hierarchy)

and demands some form of participatory approach (Green, 1991). This leads to

the belief that CSCW should be incorporated in the software development

process.

1.2 The Problem and its Relevance

Software development according to sound software engineering (SE) principles

aims at producing quality software systems efficiently. More specifically, the

software development process involves a set of activities aiming at

conceptualising, specifying, and producing software systems in accordance with

the requirements of the users under existing economical and technological

constraints.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 3

Many of the activities of the software development process could be performed

either individually or in collaboration. As modern technology is complex, it is

unusual for an individual to attempt the development of a major software project

single-handedly. Integrated groups of analysts, designers and users work together

to establish a clear understanding of the software system that should be

developed. These software teams have the challenge of solving the difficult

problems of task coordination and information integration.

Software development almost invariably involves cooperation that crosses group,

professional, and subcultural boundaries (Bannon, 1991). Different groups,

professions, and subcultures embody different perspectives - they communicate

in different "jargon". The difficulties of working in such situations where

individuals in the group have different practices, traditions, and working

objectives may lead to a lot of time wasted in clearing up differences between the

parties involved. Different groups reflect different ways of doing things (a

different ontology1 and epistemology2). These distinct groups will be referred

to as semantic communities (Bannon, 1991). Efforts within the systems

development process to emphasize the importance of good communicative

practices between the differing semantic communities attest to the difficulties that

are experienced.

Many problems are experienced in the early phases of the software development

process, particularly in the analysis cycle. One of the challenges that software

developers face in this cycle is the overall analysis (and subsequent detailed

specification) of complex and ill-defined opportunities, opportunities surrounding

the coupling of user needs with system functionality. The opportunities span a

spectrum that ranges from easy to define (and specify) to continually evolving

and almost impossible to specify. There are often extensive communication and

Ontology is a branch of metaphysics dealing with the nature of being (Oxford Dictionary, 1982).

2 Epistemology is the theory of the method or grounds of knowledge (Oxford Dictionary, 1982).

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 4

cooperation barriers between the analysts and the users. This could lead to

software being developed without fully understanding (or being able to build on)

what users already know about their tasks. Software developers are often forced

to assess situations, determine user requirements, outline system functionality,

and develop software within very short time frames and at low budgets, without

compromising system functionality or putting users into compromising positions.

Groupwork during the software development process introduces problems of

organisation, coordination and communication. The tasks carried out by the

groups can rapidly become overwhelming because of the complexity of the

interactions and the amount of information that is generated. Due to the

interdependence in conducting their work, cooperating workers have to articulate

(divide, allocate, coordinate, schedule, mesh, interrelate, etcetera) their respective

activities. Entering into cooperative work relations, the software developers must

engage in activities that are in a sense extraneous to the activities that contribute

directly to fashioning the software product and meeting the requirements. A

justification for incurring this overhead cost and the reason for the emergence of

cooperative work formations in software development is that workers could not

accomplish the task in question if they were to do it individually, at least not as

well, as fast, as timely, as safely, as reliably, and as efficiently as a group could

(Schmidt, 1991).

Nowadays, truly distributed applications seem natural in the face of a high ratio

of computing power to available communication bandwidth (Borenstein, 1992).

The users and software developers involved in a specific software development

project may be widely separated geographically. For such cooperative

development efforts, distributed solutions seem inevitable. Unfortunately, the

practical success of such systems has been extremely limited. Three problems that

are not generally faced by single-user development environments should be

solved (Borenstein, 1992). Firstly, there is the problem of the remote installation,

where the participants of the cooperative development effort may have differing

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 5

degrees of motivation for allowing the installation of the cooperative

development software. Related to the problem of getting software installed at

distributed sites is the problem of getting the participants in the software

development process to use the distributed development software once it is

installed. Getting software to work on a wide variety of platforms is a major task,

and one that has to be carefully considered bei ore establishing a fully distributed

development environment. Complex organisations are characterised by distributed

decision making, and require a sharing of perspectives among participants if they

are to coordinate activities and adapt to changing circumstances.

The problems have resulted in the realisation of a need to unleash all the

resources of cooperative work: horizontal coordination, local control, mutual

adjustment, critique and debate, and self-organisation (Schmidt, 1991). Tools and

techniques for cooperation between end users, management and professional

designers should be applied in the software development process.

Advanced information technology, with its enormous capabilities for transmitting

and storing information would seem to hold considerable promise for groupwork

(Gorry, 1988). This is where CSCW has a role to play. CSCW is the attempt to

provide computer-based solutions to the problems that arise when people

cooperate in groups to perform a task. This also has relevance for the software

development process.

1.3 Current Status of the Area of Investigation

A few main topics form part of the area of investigation. The research is

concerned with the area of software development, with emphasis on computer­

based support for the cooperative elements of the development process. The

dynamic and distributed nature of cooperative work, and the requirements of

CSCW technology in general, and in particular for support of the software

development process is discussed.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

TIIE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 6

This section concentrates on key issues relevant to the area of investigation,

namely: the software development process, and CSCW.

1.3.1 The Software Development Process

The compl~xity of the software development process has resulted in a lot of

research efforts in this area over the years. In the 70's, a lot of concern was

expressed over the so-called software crisis. It was found that over 50% of

software systems developed had not met the requirements of users, and exceeded

the time and budget limits originally set. Some software projects even failed to

deliver any sort of software product.

Software engineering (SE), first identified as a discipline in 1968, proposed that

software development should be followed according to sound engineering

principles which entailed the production of qualio/ software systems efficiently. In

the seventies, the advent of the structured approaches to programming, analysis

and design has improved the software development process slightly. Dijkstra

(Dahl et al., 1972), Boehm (1975), and Parnas (1975) have made important

contributions to the acceptance of structured programming. The work of De

Marco (1978), Gane and Sarson (1979), and Yourdon and Constantine (1979),

has resulted in structured analysis approaches that strengthened the interface to

design. The structured design methodologies may be classified according to their

primary focus (Couger et al., 1982):

1. Hierarchical Focus

(a) Functional Decomposition

(b) Structured Analysis and Design Technique (SADT)

(c) Hierarchical Input, Process, and Output (HIPO)

2. Data Flow Focus

(a) The Y ourdon and Constantine, and Myers Approaches

CHAPTER 1 - STATEMENT OF TIIE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 7

3. Data Strncture Focus

(a) The Warnier-Orr Approach

(b) The Jackson Methodology .

Many of these structured design approaches consider additional structural issues

on a secondary level. In addition to their methodological development, the work

of Yourdon and Constantine (1979), and Myers (1978), and others is significant

to the area of evaluating the "goodness" of a design.

The adoption of life cycle models facilitated the management of large software

projects by dividing the development into phases, each with a prescribed work

breakdown structure, deliverables, review points and management procedures for

planning, monitoring and controlling a project (Du Plessis & Van der Walt,

1992). Various software development methodologies have been proposed

incorporating methods and techniques in support of the development and

management tasks of each of the life cycle phases. Emergent technologies, such

as the microcomputer with enhanced graphic capabilities and the mouse, has

created opportunities for tools to support the software development process.

Firstly, computer-aided software engineering (CASE) tools, and later software

engineering environments (SEE) that supported all phases of software

development appeared in the market place.

Although, all these developments have greatly improved the software

development process, modern technologies and the greater complexities of

software systems have encouraged the need for more support of the software

development process. During the last decade an increasing number of researchers

have been looking at the role of end users in the development process in trying

to find ways of improvement (Kyng, 1988). The end users are not professional

designers, and, therefore, the standard set of tools and techniques for systems

development does not allow them to play an active and creative role. Modern

technologies, such as distributed systems and network facilities have given advent

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 8

to the possibilities of distributed software development. Related to the aspects

of user involvement and distributed software development, is the aspect of group

activity which forms a major part of the software development process.

Computer-based tools in support of this have not, as yet, been integrated into the

development process.

1.3.2 Computer Supported Cooperative Work

CSCW has now acquired considerable momentum. It has engaged the interest of

researchers in both academic and commercial environments, gained the

attentions of commercial think-tanks, systems houses and service providers, and

raised spirits among potential users, or "victims". In this section, a brief overview

of groupware tools for computer supported cooperative work will be given. In

Chapter 2, specific groupware tools for use in CSCW will be discussed in greater

detail.

Much of the research in cooperative work develops or examines software that is

explicitly designed to support information sharing, such as electronic mail

(Malone et al., 1987; Borenstein and Thyberg, 1988), group-oriented decision

tools (Stefik et al., 1987), and project management tools (Sathi et al., 1986).

Recently, there has been much research done in computer applications for

facilitating collaboration among multiple distributed users. Multi-user applications

support multiple users performing a related task in a distributed context (Graham

& Urnes, 1992). Examples of multi-user applications include groupware systems

which provide computer support to group activities.

Computers are now commonplace in work environments and are influencing the

way people interact. Examples of computer-supported interaction mechanisms

include electronic mail, newsgroups, and distributed file systems. All support non­

interactive styles of communication. So-called "talk" problems are more

interactive but are generally restricted to two users and allow very simple forms

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 9

of interaction, such as the exchange of messages in different windows. There has

been a growing interest in providing collaboration tools to support more closely

coupled interactions among a group of people, such as where more than one

person are involved in interactive sessions (e.g. group editing) on computers that

are connected through a network. A group editor allows several people to jointly

edit a shared document in a distributed environment. Researchers have identified

the potential for major improvements in organisational productivity made

possible through the use of computers to link people into task-oriented teams

(Bullen & Bennett, 1990).

A number of group software products, usually labelled "groupware" have

appeared in the market place. Groupware tools exist for sending messages

(electronic mail), indicating moods, editing collaboratively, giving slide shows, and

monitoring the group. Some of the problems of the groupwork tools for

computer supported cooperative work have been addressed. Many new

groupware products have appeared in recent years of which only the important

types are mentioned. Specific groupware products will be discussed in more detail

in Chapter 2.

New technologies include multi-user drawing tools to enable informal

communication between people who are geographically dispersed, similar to the

use of a whiteboard (Brinck & Gomez, 1992). Much work has also been done in

the development of multi-user applications to be used along with video

communications systems. Computer support has been developed to enable

cooperative work in three-dimensional computer-aided design (Shu, 1992).

The merging of computer and communications technology and the development

of network-based windowing systems has seen the development of real-time

cooperative systems. These systems provide multi-user interfaces to enable

application sharing across a number of workstations. The approach followed by

the majority of these systems has been to extend existing windowing technology

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 10

to replicate output on a number of displays (Bentley et al., 1992). It has been

successfully applied within shared window or desktop conferencing systems.

Recent real-time cooperative systems have considered the development of

architectures supporting multi-user applications with more control over the user

interface. Awareness and coordination facilities of shared workspaces allow users

to move smoothly between close and loose collaboration, and to assign and

coordinate work dynamically. Groupware environments exist which allow

unsophisticated computer users to create their own cooperative work applications

using a set of simple, but powerful, building blocks (Lai & Malone, 1988).

There have been efforts to design systems to facilitate the capture of early

software development deliberations. Examples of other CSCW systems to support

software development are:

• Office systems which include electronic mail, calendar, and scheduling

functions (for project management).

• Multimedia personal communication tools for communication in the early

phases of the software development process (Root, 1988).

• Drawing surfaces which allow analysts or designers to share screen images,

and use drawing surfaces (Bly, 1988).

Other examples of attempts to incorporate CSCW in software development exist,

but that will form a discussion point in Chapters 3 and 4 of the dissertation.

1.4 Proposed Solution

The investigation presented in the dissertation proposes that CSCW should be

incorporated in the software development process to provide computer-based

solutions to the problems that arise when people cooperate in groups during the

software development process.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 11

A few essential issues guided the research. The most important issue is that

software development involves substantial integrated and cooperative elements.

The end user should participate closely in the software development process,

especially in the analysis cycle, to ensure that the end product meets the original

requirements set. Tools and techniques should exist for them to play an active

and creative role in the software development process.

The users and software developers involved in a specific software development

project may be widely separated geographically. This has particular implications

for the way the software system should be developed. The software development

methodology should reflect these elements of cooperation (across functional

areas or within the organisational hierarchy) and demands some form of

participatory approach (Green et al., 1991). This leads to the belief that CSCW

should be incorporated in the software development process, especially in the

analysis cycle where cooperation is a vital factor.

1.4.1 Scope of the Investigation

The research is concerned with both the process of cooperation and with

computer systems to support that process. The focus is on the shared intellectual

activity as required in the software development process, in which groups of users

and software professionals work together to build a large, complex structure of

ideas which should be transformed to form the software system. It is assumed

that these groups are geographically distributed, interacting with one-another

using communications networks.

CSCW concepts which are concerned with support of aspects in the software

development process will be addressed in the dissertation. The aim is to provide

a team of analysts with a medium in which all aspects of their work may be

computer mediated and supported. This includes the traditional documents such

as requirements and specifications, and other important aspects, such as

CHAPTER 1 - STATEMENT OF TIIE AREA OF INVESTIGATION

I'

1HE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 12

interviews with users, scenarios, reviews, early notes and sketches, constraints, and

development meetings. Groupware tools should also exist to support quality

assurance (validation and verification), and project management (project

scheduling, project monitoring, management meetings).

The scope of the study is provided with clear boundaries when considering the

hypothesis, the assumptions, and the constraints of the study.

(i) llypotheses

The investigation is based on the hypothesis that it is possible to provide

computer-based support for the cooperative elements of the software

development process. CSCW should be incorporated into the software

development process to provide computer-based solutions to the problems

that arise when people cooperate in groups.

In support of the hypothesis, a conceptual model will be used throughout

the dissertation to illustrate important aspects of the CSCW paradigm.

Initially, a general conceptualisation of the CSCW paradigm is established,

as illustrated in Figure 1.1.

The model depicted m Figure 1.1 comprises the following main

components:

• CSCW, the computer supported cooperative work paradigm

including groupware and other components that are necessary for

the computer-based support provided to participants engaged in

group activity.

• Cooperative Agents, which allow the participants in the groupware

communications to organise their work, to communicate and to

CHAPTER 1 - STATEMENT OF 1HE AREA OF INVESTIGATION

1HE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Cooperative
Agents

Figure 1.1 General Conceptualtsation of the CSCW paradigm

13

ensure that the communications and cooperative work are

performed in a coherent and consistent way.

• Shared services, which allow the participants to access common

resources and to share common information.

Further instantiations of the conceptual model, depicting primitives of the

CHAP1ER 1 - STA1EMENT OF 1HE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 14

CSCW paradigm, will be done as more insight is gained in following

chapters.

Other principles pertaining to the subject under investigation are also

fundamental. These include:

• Sound software engineering principles, a methodological approach,

and the application of project management techniques can

guarantee the success of a software product.

• The requirements engineering performed during the analysis cycle

is crucial to the success of a software system under development

because all the work of the other cycles will be based on the

deliverables of the analysis cycle.

(ii) Assumptions

The object-oriented paradigm is followed in describing the software

development process. The software development process model for this

investigation is the revised spiral model proposed by Du Plessis and Van

der Walt (1992).

The revised spiral model is used because it is believed that the spiral

model alleviates many of the problems of traditional software

development process models, and secondly because it has been revised

specifically to cater for object-oriented development.

(iii) Constraints

The constraints of the investigation include the following:

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 15

• The scope of the research has boundaries to meet the

requirements for a partial dissertation.

• CSCW is interdisciplinary. CSCW can be placed on the boundaries

of computer science, sociology, organisational and management

studies, perhaps even anthropology, and human computer

interfacing (HCI) concerns which already place it on the

boundaries of psychology, linguistics and ergonomics. The

dissertation will only touch the relevant aspects from these

different disciplines which are necessary for the study.

• The software development cycles of the revised spiral model are

studied within the parameters of the OISEE project in the

Department of Computer Science and Information Systems at

UNI SA.

Several relevant issues are addressed but fall outside the scope of the

investigation. They include:

• Project management of a software development project.

• Quality assurance and verification of the software product.

• Prototyping of a proposed software system.

• Distributed software development and networking architectures.

1.4.2 Method of Investigation

The state of the art of CSCW as it may be applied during software development

was examined. This was done by means of a literature study during which issues

were analytically explored and relevant issues identified. An attempt was made

to conceptualise the problem, and establish a CSCW framework for software

development.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 16

(i) Literature Study

An extensive literature study was conducted, which included the use of

CD-ROM technology. The references were analytically reviewed,

interpreted and classified for significance in terms of the hypotheses and

aims of the investigation. The following keywords were used in the search

for literature on the subject of the research:

• Computer Supported Cooperative Work

• Groupwork

• Groupware

• Software Engineering

• Requirements Engineering

• Object Orientation

(ii) Conceptualisation

A synthesis is made of ideas concerning computer-based support for the

groupwork during software development. A conceptual model is

formulated as a proposed solution to the problem of supporting

cooperative work during software development.

1.5 Structure of the Dissertation

The dissertation consists of six chapters.

Chapter 1 serves as a general introduction to the rest of the dissertation. The

relevant research of the investigation is identified. A motivation for investigating

the area of research is given. The particular aspects that will be considered are

mentioned. A possible solution is proposed for dealing with the problems of

cooperation during the software development process.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 17

In Chapter 2 an overview of computer supported cooperative work is given. The

origins of CSCW are discussed and the important issues of work in groups are

analysed. The nature of CSCW and some ongoing debates concerning it are

examined. The main CSCW technologies are surveyed and classified. The

requirements for CSCW are discussed in terms of general, specific, and

architectural requirements. The meta primitives of the CSCW paradigm are

derived from the main components and dimensions of CSCW. The conceptual

model of CSCW meta primitives is constructed.

Chapter 3 discusses the software development process, the software development

life cycle, software process models, methodological aspects, and tools to support

the process. The information system building blocks form the basis for

determining the possible role that CSCW may play during software development.

Particular attention is given to topics such as the object oriented paradigm, and

the roles of participants in the software development process. The issues

surrounding cooperation and group activity during software development are

investigated. Finally, an attempt is made to describe the use of CSCW during

software development.

Chapter 4 provides an overview of CSCW technology that may be applied during

software development. The discussion will focus on CSCW tools which may

support specific group activities during software development.

Chapter 5 is devoted to the establishment of a CSCW conceptual model for

software development. A meta model of cooperative software development

consolidates important aspects of groupwork during the software development

process. The CSCW conceptual model for software development is constructed

and finally a framework for software development within a CSCW Environment

is established.

CHAPTER 1 - STATEMENT OF THE AREA OF INVESTIGATION

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 18

The contribution of the research is summarised in Chapter 6. The original

hypothesis are validated in the light of the research results. Areas for further

investigation are proposed.

f'HAPTFR 1 - STATFMFNT OF THF AREA OF INVESTIGATION

CHAPTER2

Computer Supported Cooperative Work in Perspective

CONTENTS

2.1 Introduction

2.2 Origins of CSCW

2.3 The Nature of CSCW

2.3.1 Human and Social Factors

2.3.2 Technology Factors

2.3.3 Changing practices

2.4 Definition of CSCW

2.5 CSCW Technology

2.5.1 CSCW Products

2.5.2 Classification of CSCW Systems

2.6 Requirements for CSCW

2.6.1 General Requirements

2.6.2 Specific CSCW Requirements

2.6.3 Architecture Requirements

2.7 Main Components of CSCW

2. 7.1 The Support of Groups

2.7.2 Categories of CSCW Technology

2.7.3 Dimensions of the CSCW Field

2.8 CSCW Meta Primitives

2.9 Summary and Conclusions

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 20

2.1 Introduction

Workgroup computing, collaborative computing, groupware, computer-based

support, coordination-technology, cooperative work support, are all terms that

have stirred a wide interest in recent years. The area of Computer Supported

Cooperative Work, or CSCW, appears to have established itself as a research

field in its own right over the last few years, judging from the wealth of

conferences and papers devoted to the topic. Despite the interest, confusion

concerning the very nature of the field continues to surface (Schmidt & Bannon,

1992). Differences of opinion exist, for example, as to what is or is not a CSCW

system, and the relationship between CSCW and what has been termed

groupware.

What precisely is meant by the term CSCW? Does it denote a new approach to

problems of harnessing information technology to human needs? Where does

this new field originate from, and where is it going? In this chapter, an attempt

is made to answer these questions by providing a conceptualisation of CSCW,

firmly anchored in a framework and meta model that pays attention to the

requirements for computer support of cooperative work. The aim is to construct

a conceptual model of the field that allows those active within CSCW to have

some common reference point, and some understanding of the important aspects

of the field.

This chapter is organised as follows. Firstly, a brief historical account of the field

is given. A number of factors that may have contributed to the emergence of

CSCW are then presented. Further detail is provided regarding the numerous

attempts to delineate the core concerns of this field culminating in a definition

of CSCW. CSCW technology is discussed in terms of existing CSCW products

and a classification of CSCW systems. The requirements of CSCW are then

explored. Finally, the main components and meta primitives of CSCW are

identified.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 21

2.2 Origins of CSC'w

The birth of the term Computer Supported Cooperative Work (now commonly

abbreviated to CSCW) is attributed to Irene Greif and Paul Cashman who

organised an interdisciplinary workshop on the development of computer systems

that would support people in their work activities (Greif, 1988). It brought

together participants from different disciplines and environments, such as office

information systems, hypertext, distributed information systems, and computer­

mediated communication.

The first open conference, with the title Computer Supported Cooperative Work

was organised in 1986 in Austin, Texas. Around 300 people from a variety of

backgrounds, including artificial intelligence, human-computer interaction, office

information systems, computer science, psychology and anthropology attended the

conference. Interest in the field has continued to grow and an even larger

conference on the topic was held later in Portland, Oregon. At this conference

there was an interesting shift in focus towards concern with the nature of the

software development process. A number of papers, especially several

Scandinavian contributions, addressed the issue of user involvement in the early

phases of software development as a prerequisite for quality software

development.

Despite the fact that both the boundaries of the field and its focus were still

somewhat unclear, the enthusiasm for the topic has continued over the years. The

first European conference on the topic was held in 1989, followed by yearly

alternate conferences in North America and Europe. There has also been a

number of other CSCW-related conferences and workshops on topics such as

group decision support systems, multi-user systems, and collaboration technology.

Many journals in the areas of human-computer interaction, decision support,

office systems, and software engineering now include CSCW in their research

areas. New journals with a more specific focus on CSCW have appeared. Many

CHAPTER 2 - CSCW IN PERSPECTIVE

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 22

edited papers and monographs on the subject were published in recent years

(Bannon & Schmidt, 1992).

A broadly accepted framework for the study of CSCW systems classifies the type

of work according to its temporal and geographical distribution (Ellis, Gibbs &

Rein, 1991). In the two-dimensional space, four types of cooperative working can

be identified as shown in Figure 2.1. These working types correspond to four

different meeting types, or scenarios, in which the cooperative work is supported

by computers.

'

synchronous
geographical distributed
distribution meetings

faoe-to-face
meetings

'fully'
distributed

asynchronous
log on

temporal distribution

Figure 2.1 CSCW Scenarios (Viller, 1991)

It is clear that the area of CSCW has become accepted as a legitimate sphere of

academic research and development activity, with a growing number of interested

researchers and many software manufacturers. But what caused the emergence

of an apparently "new" set of issues in the field of information technology,

development, and use? To what extent were existing approaches unable to fulfil

the needs of computer-based support for cooperative activities? Ongoing

developments in technology, approaches to work, and people's needs in the work

place have contributed to a concern for a technology that suited the actual work

practices of people. These issues are examined in the next section.

CHAPTER 2 - CSCW IN PERSPECTIVE

1HE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 23

2.3 The Nature of CSCW

Bannon (1993) believes that a number of changes which occurred in the field of

information systems practice, in the environment of organisations, in technology,

and in people's expectations concerning computer-based support of their work

activities have contributed to the emergence of the CSCW theme. The changes

can be structured under human and organisational changes creating demands for

more appropriate technologies to support work practices.

2.3.1 Human and Social Factors

The organisational environment, people's expectations, and the inclination to be

social are addressed.

(i) The Organisational Environment

The increasingly complex and turbulent environment in which

organisations operate has stimulated a need for better ways of organising

and coodinating work activities. Organisations have requirements for

closer integration, up-to-date information, and access to information
11anytime, anywhere11

• In the domain of production systems computer­

integrated manufacturing (CIM), just-in-time (JIT) methods, and various

other techniques to reduce stock inventory have made a contribution to

productivity and profitability. Computers are connected both intra an

inter-organisationally. Organisation strategists believe that organisations

should make networking a reality. CSCW requires a networking

environment to support group interactions over local and wide areas.

CSCW encourages collaboration and coordination via flexible information

systems that are accessible in the office, at home, on the factory floor, and

even when travelling.

CHAPTER 2 - CSCW IN PERSPECTIVE

nrn CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 24

(ii) People's Expectations

More and more work is being mediated by computer systems, and workers

in a group need to share and jointly manipulate information. Software and

hardware vendors are expected to support greater inter-connection

between computers, and applications th 1t would allow for sharing, multi­

user access to facilities, and greater integration of applications. There is

a need for augmenting interaction by using the computer to help

coordinate activities and support joint problem-solving. Shared

workspaces, as well as shared tools may be provided where people may

dynamically create objects and modify them. Computer users themselves

demand more flexible and tailorable user interfaces and additional

functionality that would allow them to accomplish their work more

efficiently and effectively (Bannon, 1993). Although, a lot of research has

been done in the area of human computer interfaces (HCI) that have

contributed to better interfaces, problems remain regarding

incompatibilities between systems, and the inability of systems to support

groups of users. These concerns are explicitly addressed in the CSCW

research community, thus attracting the attention of user representatives

who wish to have more useful and effective tools for group-based work

activities.

At another level, people are becoming more skilled in using modern

technology, and wish to exert this influence when work practices are to be

changed by new technology. A number of software developers also wish

to support the software development process with better tools for group

activities. They see CSCW as a possible avenue for greater cooperation

among the participants, through the development of better computer­

based tools for the cooperative analysis and design work process (Bodker

et al., 1988).

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 25

(iii) Social aspects

A certain amount of dissatisfaction has set in among researchers in human

computer interfacing (HCI) as a result of disappointment with the

relevance of many HCI studies to actual design and work practice

(Th:Jmas & Kellogg, 1989). Anything beyond the human-computer dyad

was neglected, and there was a total failure to take into account the

situated nature of everyday activity and the social complexity of work

(Suchman, 1989). Academic research groups who are concerned with the

use of more qualitative methods and field study techniques, have shown

interest in CSCW. CSCW would allow them to make HCI work more

ecologically3 valid. Sociologists and anthropologists also have been able

to find CSCW valuable in their empirical studies of work settings. The

focus in CSCW on the requirements of the work, and the need to study

the work domain closely, have lead to the importance of field studies.

2.3.2 Technology Factors

(i) New Software Markets

Commercial software developers have shown interest in CSCW as a

possible growth area for new software applications in terms of supporting

group activities rather than individual activities. These software

applications include groupware. Although, some early groupware products,

such as shared calendaring systems have enjoyed limited success, software

developers are still optimistic. It has been noted by Greif (1988) among

others, that in the long run it may not make sense to differentiate a

segment of the software product market in terms of groupware, as all

software will be groupware. Any particular software application will have

3 Ecology is the study of the interaction of people with their environment (Oxford Dictionary, 1982)

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 26

the required features to support group work when it is needed. For the

moment, however, there is a marketing interest for software supporting

group work in both real-time and non-real-time settings.

(ii) Technological Developments

Significant developments within the technological arena have made

infrastructural computer networking possible. The isolated personal

computer (PC) is becoming less popular in organisations. Various forms

of local area networking (LAN) and wide area networking (WAN) allow

for shared resources m organisations. Networks and technical

developments in the areas of interoperability, security, transparency, and

distributed systems support greater connectivity between people, locally,

regionally, and globally. These elements are of importance in the CSCW

arena.

2.3.3 Changing practices

Information systems researchers have accepted the need to understand more fully

the practices of people at work, in order to build more appropriate supportive

technology. The earlier goal of "automating the office" has been discarded on

both theoretical and practical grounds. Information flow diagrams of office

activities do not specify how work is actually accomplished, and they cannot serve

as an adequate base for capturing or automating office activities. Instead of

considering a office as a place where people perform a set of well-structured

tasks according to prescribed procedures, it is viewed as a social community

where work is accomplished through the locally situated activities and interactions

of office members. The shift in emphasis for office information systems can be

seen in the change in terminology from "automating" the office to "supporting"

office workers. Computer systems are seen as support systems for the human

workers, rather than as replacements for them. It is being recognised that in most

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 27

work situations the accomplishment of work involves multiple individuals,

together with their computer-based tools, and that many inefficiencies in work

practice stem from inadequate computer-based support for the smooth

interleaving and coordination of tasks across people and machines (Bannon,

1993). Many information systems researchers see the need for further

understanding of work place practices as a key aspect of improving the quality

of information systems development.

The next section attempts to identify the viewpoints, characteristics and

boundaries of CSCW and to find a definition for it amidst the confusion that

currently exists.

2.4 Definition of CSCW

Despite interest in the new field there is a lack of consensus about the term

CSCW and the corresponding research field (Wilson, 1991). This may be

illustrated by considering the .different viewpoints of CSCW (Bannon, 1993):

• CSCW as simp'ly a loose agglomeration of cooperating and at times

competing communities

At the most simple level, it can be argued that CSCW is simply an

"umbrella" term for an idea that is concerned with people, computers, and

cooperation in some form. This vagueness allows people from different

disciplines, with partially overlapping concerns as to the current state of

technology and the understanding of use contexts, to come together and

discuss issues of mutual interest. CSCW in this view is an area where

different groups vie for the attention of participants, rather than a

coherent focussed field.

• CSCW as a paradigm shift

Hughes et al. (1991) stresses that CSCW should be considered not as a

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 28

specialised subdiscipline but as a paradigm shift in the perspective from

which computer support systems are designed. The emphasis is on "the

turn to the social" with the realisation that much work on people­

technology systems has systematically avoided issues concerning the social

organisation of work and the consequent implications for the design of

appropriate support technology.

• CSCW as software for groups

A view commonly found among information technology and business

consultants, and even among software developers and researchers is that

computer support of "groups" or teams is the hallmark of the field. This

has given rise to the term groupware for computer products marketed in

this area (Johansen, 1988). This view has been criticised, because the

focus may fall on small teams or homogeneous groups with convivial work

relations, thus ignoring situations in everyday organisational life where

issues such as politics and power play an important role. Other criticisms

stem from difficulties of enumerating properties of "groups" as found in

the work place, and the relevance of many group studies undertaken in

laboratory and workplace situations.

• CSCW as technological support of cooperative work forms

Here the emphasis is on understanding cooperative work as a distinctive

form of work (Schmidt, 1991), and on appropriate technology to support

these cooperative work forms. In this view, cooperative work does not

imply any notion of shared goals or conviviality, but rather people

engaged in work processes related as to content. The distinction between

cooperative work and individual work, and the functionalist perspective,

neglecting subjective factors of cooperation, are criticised.

• CSCW as participative design

The proponents or practitioners of participative design focus on

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 29

developing alternatives to traditional systems development, alternative

ways of doing design, of involving users, etcetera. The Scandinavian school

of systems developers in the CSCW community has influenced some

people to equate CSCW with participative design. This may lead to

confusion because, although various forms of user involvement are

important to the development of successful CSCW systems, use of such

techniques does not automatically signify any focus on cooperative work.

Participative design researchers are in many cases not interested in

computer support for design practices.

The variety of views on the nature of the CSCW field is the subject of debate

and the definition of the field, its core concerns and its boundaries, is best viewed

as contested terrain, even more so as the field struggles to find a unique identity.

The concepts of groupware and groupware systems have greatly influenced the

realisation of the specialised field of CSCW. Groupware can be defined as the

electronic (computer-based) components supporting participants engaged in

group activity. Joosten et al. (1993) considers groupware to be a collection of

tools to facilitate the cooperation within an organisation, whereas a groupware

system is defined as a computer-based system that supports groups of people

engaged in a common task (or goal) and that provides an interface to a shared

environment. According to Hughes et al. (1991), most practitioners acknowledge

three semi-articulated characteristics of CSCW. Firstly, it involves locations where

two or more people interact with each other through a computer. Secondly, it

falls within a particular class of system to service such settings, for example

groupware. Thirdly, CSCW is interdisciplinary. As already mentioned in Chapter

1, CSCW can be placed on the boundaries of computer science, sociology,

organisational and management studies, perhaps even anthropology, and human

computer interfacing (HCI) concerns which also place it on the boundaries of

psychology, linguistics and ergonomics. The dissertation will only touch the

relevant aspects from the different disciplines which are necessary for the study.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 30

In 1988, Irene Greif defined CSCW as an identifiable research field which

focusses on the role of the computer in group work. A basic definition is "CSCW

looks at how groups work and seeks to discover how technology (especially

computers) can help them work." (Ellis et al., 1991). Although this may intuitively

sound acceptable, it is based on a naive view of groups without any clarification,

as if it has some clear, widely accepted meaning (Kuutti, 1991).

Besides these intuitive efforts there have been some other attempts, mostly based

on distinguishable external features of the work to be supported, or design

metaphors, such as tools, shared material, and communication medium. (Kuutti,

1991). Recent authors, e.g. Bannon & Schmidt (1991), Lyytinen (1990) and

Suchman (1989) has made some attempts to overcome the vagueness of the term

CSCW. Bannon & Schmidt (1991) has made a radical departure from the use of

the external features of cooperative work or design metaphors as starting points

for a definition. Their view is as follows: "Cooperative work is constituted of work

processes that are related as to content, that is, processes pertaining to the

production of a particular product or service". Lyytinen (1990) uses structuration

theory to analyse work and the role of CSCW applications. Structuration theory

perceives the work process as a social structure, constructed continuously by

"human agents" and possessing a detailed internal structure. Lyytinen's definition

is similar to that of Bannon and Schmidt and puts special emphasis on the

formation of social structures in interactions and thus on the role of CSCW

applications both as a medium and an outcome in the formation of the work

process. Suchman (1989) emphasises fundamental aspects of work: that practice

is always fundamentally social and that it is always mediated by artifacts (some

computer-based).

The question is: Would it be possible to find a common denominator for the

different definitions and still maintain an acceptable delineation of the research

field? The definition of CSCW as "work by multiple active subjects sharing a

common object and supported by information technology" obviously covers a

CHAPTER 2 - CSCW IN PERSPECTIVE

TI-IE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 31

great part of recent research and draws clear bo•.mdaries around the object of it

(Kuutti, 1991). In the definition, the active subjects distinguish CSCW from

traditional information systems, where predetermination of work sequences by

the system is the normal case. A common object of work is different from a

shared goal (criticised as being too restrictive) or shared material (criticised as

being too loose). According to Kuutti (1991), negotiators may have opposite

goals, but a common object, a problem space. Database users may share

material, but the objects of their work may not be similar. In conclusion, a

community which shares a common object of work is always delineated in

practice, whatever the contributions of the different participants may be.

Besides the definition, additional needs expressed by researchers should be

fulfilled by basic CSCW research. Bannon and Schmidt (1991), Lyytinen (1990)

and Suchman (1989) all agree that:

i) Work is mediated by artifacts and the basic unit should cover this

aspect.

ii) The basic unit should allow considerations of social and cultural

aspects of a work situation.

iii) Work and the means for it are continuously reconstructed,

therefore transformation and development aspects should be

considered.

iv) The basic unit of research should have a detailed internal structure

(Lyyttinen, 1991).

v) The topics of control and conflicts should be considered in the

basic unit of research (Kling, 1991).

Now that CSCW is defined it is apt to investigate the main CSCW technologies.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 32

2.5 CSCW Technology

CSCW product development is still in its very early stages. Few products built on

pure CSCW principles currently exist, though there are many other products

which may support the group working process in one way or another. While there

is considerable overlap between CSCW and existing groupware products, CSCW

has an altogether new kind of software and a new kind of user-to-user

relationship (Nolle, 1993). For example, E-mail is analogous to an interoffice mail

exchange, while CSCW will resemble face-to-face or phone conversations. The

"shared workspace" concept of groupware remains, but in CSCW applications, the

computer workspace (the files and applications being shared) is maintained in

real-time as much as possible. In this section CSCW product categories will be

discussed and the important CSCW systems classified.

2.5.1 CSCW Products

A number of CSCW products which support the group working process in one

way or another have appeared. Product categories include (Wilson, 1991):

• Message systems

• Computer conferencing systems

• Procedure processing systems

• Calendar systems

• Shared filing systems

• Co-authoring systems

• Screen sharing systems

• Group decision support systems (GDSS)

• Advanced meeting rooms

• Team development and management tools

Message systems include electronic mail systems, some of which provide facilities

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 33

to label messages. The labelling may include the classifications such as question,

answer, and promise, and enables the system to track conversations and to

prompt users to provide appropriate responses. As an example the abstract

architecture of Active Mail (Goldberg et al., 1992) which underlies the electronic

mail idea is illustrated. The Active Mail configuration consists of agents,

interconnected via two-ported bidirectional communication channels. There are

two types of agents: users and applications. A configuration of Active Mail is given

in Figure 2.2.

An Active Mail Configuration
......... ... ~2···· ······IJ····~

.. J\R"2•• •• • • •• • • • ·m~ 1 <

Legend of Active Mail Components

CSW An Application D A User's port to an application

A User An Application's port to a user

•• ••• •••• • •••• A Channel An Application's port to an application

Figure 2.2 An Active Mail Configuration (Goldberg et al., 1992)

The conversation agent depicted in Figure 2.3, supports an ongoing asynchronous

conversation among a dynamically changing group of users. The conversation

agent maintains a conversation log and when the agent receives a contribution

from a participant, it appends the data to the log and sends a message containing

the contribution and the name of the contributor to all participants. When new

CHAPTER 2 - CSCW IN PERSPECTIVE

1BE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 34

participants join the conversation a copy of the current conversation log is made

available to them.

An Active Mail Conversation Agent

M1 - Message (Contents)
M2 •Append to Log

(User, Contents
:< << : ..••..••...•. : •. :•.•1:······ .<.· .. ·. ~,: .· ·. ·.· ... ·.·. ·... -
·;;~.) .. +· -··

........
.
.

"'1'" •• · .. , .. ·.· . ·> ·.

·.·.·1·····.·.

M 1 ,;-' ·.·.·.·.·

:f
?!ii I ~---. >

.. ·.·.·.·.·.·.·.·v.·

\.,

Figure 2.3 Active Mail Conversation (Goldberg, 1992)

, ,

Computer con[erencing systems are for example bulletin board systems in which

messages are not sent to other users but to a "conference" which has members.

In starting a conference, members are shown all the new material that has been

produced since their last meeting. Figure 2.4 illustrates the basic process structure

in a conference. The diagram shows how the con[erence managers handle

communication among machines. Matching processes within a tree represent

application peers, and matching trees are conversations. The following terms are

important (Crowley et al., 1990):

• A conference is two or more identical collections of application processes

which are all in synchronised execution states. Each collection belongs to

one specific conferee.

CHAPTER 2 - CSCW IN PERSPECTIVE

Figure 2.4

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

* ' ---Conference! Managers- ---

~~----)---:
' '
: 4 :
' '
' '
' '
' ' L-..--- --- _J

Conve(:satiort
------Convetsation------'
1--- ---i-

Host A
--Application Peers- -

Host B

* The Conference Managers handle communication among machines

The Process Strncture in a Conference (Crowley et al., 1990)

35

• The conference manager is a special application process that comprises the

conference management and communications functions. A single

conference manager represents each conferee.

• Application peers are all the copies of a specific application process.

• A conversation is a single top-level set of application peers initiated by the

conference manager, as well as all sets of application peers the top-level

set creates.

• The floor identifies the active user in a conversation, the conferee

currently providing events to the conference. Every conversation has

exactly one floor. Floor control is a mechanism and policy under which

users exchange possession of the floor.

• Software is conference-aware if it takes special action when it detects that

it is running in a conference.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 36

Procedure processing systems are systems which support the routing, input

requirements and status reporting of electronic form-based processes.

Calendar systems are systems which allow individuals to share their diaries, and

provide automated support for the arrangement of meetings. Figure 2.5 illustrates

the Active Mail meeting scheduler.

,
I

I
I

I

,,
I

,

An Active Mail Meeting Scheduler

'

,. ,; ,; "'
' ' ' ' '' . -.. ~ ... ~ c-c 7e ... ~ ... -~ ... ~ ...

. :bn~•t~ c~$!\d$r~A~nr : :fotuser a> ·. · · · · · · · · · · ·
·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.

···:·:·:···········~-·····
I

I

Figure 2.5 A Meeting Scheduler (Goldberg et al., 1992)

/'
...

,'

Shared filing systems are systems which enable individuals to create and access

information in a shared database. Some systems enable links to be made between

information held in the file (often referred to as hypertext systems).

Co-authoring systems are systems which support some or all aspects of joint

creation of documents. Examples are idea generation, outlining, peer review and

version control.

CHAPTER 2 - CSCW IN PERSPECTIVE

IBE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 37

Group decision support systems (GDSS) are systems which help groups to solve

unstructured problems. Some GDSS systems are designed to be used in face-to­

face meetings while others for use when participants are in different locations.

Screen sharing systems are systems which enable people usmg their own

workstations to see the contents of other peoples' screens. Some products

provide facilities to view and control other screens and to transfer files from one

screen to another. More sophisticated systems provide integrated voice

communication and additional facilities for specific activities such as voting or co­

authoring. As an example three typical display arrangements of media spaces are

illustrated in Figure 2.6 (Ishii et al., 1992). Media spaces represent computer­

controlled video environments.

In (a), a display providing a live video image of the partner's face is alongside a

display for shared work. The ARKola simulation (Gaver et al., 1991), in the IIIF

environment, and some modes of CAVECAT (Mantei et al., 1991) adopted this

arrangement.

In (b) the displays are repositioned to resemble the situation of interacting across

a table. VzdeoDraw (Tang & Minneman, 1991) and Commune (Bly & Minneman,

1990) experiments adopted this arrangement.

In (c), the live video images and the shared workspaces are incorporated into

different windows of a single screen. TeamWorkStation (Ishii, 1990), PMTC

(Tanigawa et al., 1991), MERMAID (Watabe, 1990) and some CAVECAT nodes

employ this desktop-video technology.

Team development and management tools provide facilities such as the analysis

of group inter-activity based on individual responses to questionaires.

Management tools specifically include project planning and project monitoring

facilities.

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 38

(a} ~I Inter-Persona. 'nter+'e~sona1 Q
•. ~ Soac~ Spar,e ~

HI~ldJ]IN
SHARED WORKSPACE

(bl
1nter-Persona1 inter-Persona;

~Spa~ so:e i
.. -mJJ1•-
~ ~

SHARED WORKSPACE

(C) ;nter~Persona1 ./'----..
Soace -

I q][f~
SHARED WORKSPACE

Figure 2.6 Typical Screen Arrangements in Media Space (Ishii et al., 1992)

Advanced meeting rooms are systems which incorporate a range of technology to

improve the effectiveness of face-to-face meetings. Of particular significance is

the ability to project a computer screen onto the meeting room wall screen. In
/

this way information, graphics, and presentation material are displayed to

meeting participants. Work accomplished during meetings is displayed as it is

input. More sophisticated systems provide a computer for each participant and

a range of meeting support software. Figure 2. 7 gives an example of the possible

monitor arrangements that could be utilised in a meeting.

CHAPTER 2 - CSCW IN PERSPECTIVE

Figure 2.7

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Electronic
Blackboard M nitors

All monitors oriented toward front of meeting
room and located to the side of the user's work area.

39

Monitor Orientations and Placements possible in the Layout of an Oval Conference
Table as in Capture Lab (Mantei., 1988)

2.5.2 Classification of CSCW systems

CSCW systems are primarily concerned with supporting a number of cooperating

users. The nature of this cooperation can be distinguished by the way in which

group members interact. Interaction or cooperation may be either synchronous

or asynchronous (Rodden & Blair, 1991). Synchronous interaction requires the

presence of all cooperating users while asynchronous cooperation occurs over a

longer time period and does not require the simultaneous interaction of all users.

Figure 2.8 shows how a number of classes of CSCW systems fit into this division.

Also, cooperative systems can be considered as being either remote or co-located

(Rodden & Blair, 1991). In this classification the division between remote and co­

located is as much a logical as a physical one and is concerned with the

accessibility of users to each other rather than their physical proximity.

CHAPTER 2 - CSCW IN PERSPECTIVE

TilE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Synchronous
Systems

Conferencing
Systems

Asynchronous
Systems

Figure 2.8 Forms of Cooperation in CSCW Systems (Rodden & Blair, 1991)

40

Figure 2.9 shows a range of CSCW systems in terms of their geographical nature.

The four geographical divisions are:

i) Co-located

Purely co-located systems require the local presence (in one room) of all

users. This class of system normally takes the form of a meeting room

with a large projected computer screen and a number of personal

computers linked by a local area network (Kraemer, 1988).

ii) Virtually co-located

These systems are similar to co-located systems but do not have the

requirement that participants need to be in one room. This is often

achieved by the use of multimedia technology in which real-time audio

and video links are maintained. Systems in this class include real-time

multimedia conferencing systems such as those developed for MMConf

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 41

(Crowley, 1990) and Mermaid (Watabe, 1990).

iii) Locatly remote

These are systems which provide high-bandwidth (for remote purposes)

real-time accessibility between users often using shared screen techniques.

Examples of such systems are argumentation and co-authoring systems

such as CoAuthor (Hahn, 1991) and gJBIS (Conklin, 1987) and real-time

conferencing facilities such as RTCAL (Sarin, 1985).

iv) Remote

These systems are those that assume the existence of only minimal

accessibility between users. They include message systems which assume

only the simplest of communication systems and computer conferencing

systems which assume only rudimentary "dial-in" mechanisms.

I
Co-Located

1 Systems
Virtually

Co-Located

Conferencing
Systems

Locally
Remote

I
Remote

1 Systems

Figure 2.9 Geographical Nature in CSCW Systems (Rodden & Blair, 1991)

Synchronous systems require highly cooperative distributed systems while

asynchronous systems tend to be more autonomous in nature. Asynchronous

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 42

cooperative systems need only the facilities provided by electronic mail systems

while synchronous systems test the facilities provided by the most cooperative of

distributed operating systems. Most distributed systems are found at the lower

end of the spectrum of synchronous systems and this may account for the lack of

highly interactive synchronous cooperative systems. Figure 2.10 illustrates the two

views of cooperative systems.

Required
Service

Available
Service

Asynchronous
systems

I I

Mixed
systems

Synchronous
systems

I 11 11 I

e-mail '--re_s_o-ur-ce~ distributed
systems sharing operating

systems systems

Increased User
Cooperation

Increased Machine
Cooperation

Figure 2.10 Comparison of Models of Cooperation (Rodden & Blair, 1991)

-

It has been recognised that CSCW systems either fall within systems based on the

principle of information exchange, or within systems based on information

sharing. Systems based on the principle of information exchange are often called

structured or active message systems and assume an asynchronous and remote

mode of cooperation. The assumption underlying these systems is that members

of a group cooperate primarily by exchanging messages. Systems based on the

principle of information sharing consider how users share information and

develop mechanisms to support sharing. In this form of cooperative system, users

interact through a shared information space, as shown in Figure 2.11. This model

of interaction is often augmented by the use of direct user-to-user

communication, normally provided by either electronic message systems or by a

video or audio link.

CHAPTER 2 - CSCW IN PERSPECTIVE

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 43

Extemal Input Shared Information Space Local Representations Cooperating Users

Figure 2.11 Interaction in Shared Information Systems (Bentley et al., 1992)

A simple classification of the representation and control of cooperation in message

based cooperative systems yields three major classes of system:

i) Speech act or conversation based systems

Speech act systems are based on speech act theory, and apply a linguistic

approach to computer-supported cooperation. It has been primarily

applied by Winograd and Flores (1986) to form the basis of several

computer systems including the Coordinator system (Winograd, 1987) and

the CHAOS project (De Cindio, 1986). In this class of system cooperation

is represented and controlled using some form of network structure

detailing the patterns of message exchange.

ii) Office procedure systems

These systems attempt to describe tasks performed within an office in

terms of the combined effect of a number of subtasks or procedures

(ranging from well defined to less well defined tasks). Research has

concentrated on finding a unifying language which allows the specification

CHAPIBR 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 44

of office procedures and a description of their interaction. Artificial

intelligence (AI) technology and AI based planners have been used in

systems such as POLYMER (Croft, 1988) to execute actions and

coordinate interaction often handling uncertainty and exceptions. Systems

which also fall within this class are AMIGO (Danielson, 1986) and

COSMOS (Wilbur, 1988). In this class of system procedural languages are

used to describe and control cooperation by defining roles and activities.

iii) Semi-Jonna! active message systems

These systems follow a philosophy of semi-automation, automating parts

of the system which are suitable for automation while leaving other parts

of the system manual in nature. Examples include Object Lens (Malone,

1988) and the Strudel project (Sheperd, 1990). In this class of systems

mechanisms are provided for automatic message handling and the

concepts of roles and autonomous agents are supported.

Table 2.1 lists a range of research projects using message based techniques and

the form of control adopted by these systems.

Message based systems have used the available message handling standards. For

example, the work on COSMOS and AMIGO has taken place within the

framework of OSI standards such as X-400 (CCITI, 1987) and X-500 (Prinz,

1991). The message standards have provided a technical infrastructure which

enabled the exchange of structured information. Figure 2.12 shows the

representation and control of information within the system as a layer on top of

the message standard being exploited.

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 45

Table 2.1 Message Based Systems and their Fomz of Control (De Meer et al., 1992)

Research Project Control Model Representation

Coordinator Formal - Network
Speech Act

Object Lens Semi-Formal Production
Rules

Chaos Formal - Network
Speech Act

Domino Formal - Script Based
Procedural System

Cosmos Formal - Script Based
Augmented System

Amigo Formal - Script Based
Augmented System

Strudel Semi-Formal Production
Rules

CSCWSystem

Cooperation Model

(Procedure Based
or

Network Based

Seven Layers

~;;:J
Layer 7:

of the OS Application
standards

Figure 2.12 The Role of Standards in Message Based Systems (De Meer et al., 1992)

Systems based on information sharing have emerged depending on two principal

characteristics of the shared information space. These characteristics are:

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 46

i) The form of interaction with the shared information space

The user may interact with the shared space either asynchronously over

a long time period or synchronously in a real-time manner.

ii) The type of information represented in the information space

Many forms of information may be represented in the shared information

space. Usually, this information has been textual, but with the advent of

modem workstation capabilities a variety of media representations are

possible.

Systems based on information sharing has led to the emergence of a number of

distinct forms of system, as shown in Table 2.2.

The form of interaction

Type of ASYNCHRONOUS SYNCHRONOUS
information

TEXTUAL Traditional Real-time
Conferencing Conferencing
Systems Systems

MULTIMEDIA Multimedia Multimedia Desktop
Information Conferencing
Systems Systems

Table 2.2 The Classes of Conferencing Systems (De Meer et al., 1992)

One of the most important aspects of CSCW, is to control interaction. Two major

forms of control are prevalent in CSCW systems, namely explicit and implicit

control. In systems which provide explicit control, users may both view and tailor

group interaction and cooperation. Systems exhibiting implicit control provide no

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 47

techniques for representing or coordinating group interaction. These systems

dictate cooperation by the styles of interaction they allow. Control mechanisms

for message based systems exploit explicit control, while cooperative systems

based on shared surfaces mainly exhibit implicit control over cooperation. In

shared space systems there are three major forms of implicit control:

i) Traditional conferencing systems

These systems provide basic control mechanisms which are minimal and

fixed within applications. Information is grouped into defined conference

topics and conference moderators control the addition of information to

these topics.

ii) Floor control systems

In modern real-time conferencing systems, the control is based on the

floor control mechanism embedded in the conferencing application.

Normally, a floor control token is passed beteen users to distinguish who

has write access to the shared conference space at any given time.

iii) Peer-group meeting or control free systems

Peer meeting systems such as the Colab system (Stefik, 1987) do not

provide any control mechanisms and rely on the meeting participants to

formulate their own meeting protocols. All the users have equal priorities

and status, and may amend and use the shared space freely. The system

does not keep track of the nature and form of group work being

undertaken and provide limited support for these work processes.

There are four basic approaches followed for real-time shared workspace as

illustrated in Figure 2.13. Unlike their message based counterparts, systems based

on sharing do not comply to definite communication and distribution standards

as yet. Recently, a CCITT standard for traditional computer conferencing has

been investigated.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Diagram

Examples

Sif9e-user·AP In a shared
wiOOow or compul8r

• aharad window aylllm
OPE (Suzu88), Rapport~.
VConl [lm86j, Dialogo ll.auw908J

• shared halllware system
CajUeLab [Mant88, Halo89J

Special IJllPOSfl
multi-user-AP

• group editcr
Cognolar (Foat86J,
Grow(EJll90J

[""ffi~;;;j 3lngJe 11181'

I)Gr;::DIK~+r=
. ftlUll1ll

. . . . : ahered

~_.__.,....__,__.,· llWpeee

ClOll1"X =
112

• OYW!ay by video syntleseis
r ... woikStlllon [lshii9JJ

• OYllday by spedal
system arclitedure
Vldedlraw [Tang90)

• Media Space
[Stul88, Han90J

Figure 2.13 Four Approaches for Real-time Shared Workspace Design (Ishii, 1990)

2.6 Requirements for CSCW

48

In addition to the requirements of single-user applications, multi-user applications

as found in the CSCW domain make several new demands. The most obvious is

a need to control the degree of sharing and nonsharing among users. Since multi­

user applications are generally network-based, an architecture must help manage

this network connectivity.

The identification of requirements for a CSCW application environment provides

the starting point for the development of open CSCW systems (Navarro et al.,

1993). The requirements represented here are by no means complete but are

intended to illustrate requirements which are characteristic and distinctive of

CSCW systems and will directly impact future distributed systems. A distinction

is made between general requirements and specific CSCW requirements. The

general requirements are also applicable to open distributed systems, but are of

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 49

particular importance as basic requirements of CSCW.

2.6.1 General Requirements

CSCW systems share similar demands to existing applications which have already

influenced the development of open systems. However, the manner in which

these needs are met, is of importance to CSCW. Coborra (1988) has summarised

general requirements of work group support system, which include:

• To standardise tasks, thus reducing task uncertainty.

• To standardise interfaces between execution of subtasks, thus streamlining

coordination.

• To facilitate reporting and monitoring of performance.

• To encourage communication through creation of new channels or

improvement of existing ones, thus reducing hierarchical barriers and

allowing new ideas to flow more easily.

The requirements that should be addressed by multi-user applications may also

be considered as general requirements and should be adapted to suit CSCW.

Patterson et al. (1990) describe the following multi-user application requirements:

• Provide flexible control over the dimensions of sharing

The essence of multi-user applications is sharing and the control of

sharing. Concerning the dimensions of sharing, a distinction should be

made between data objects and view objects. Data objects are underlying

objects and correspond to the abstract information comprising the

application, but without an indication of how this information should be

displayed. View objects are interaction objects and contain the information

about how to display and interact with an underlying object.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 50

The requirement can now be discussed m terms of the three dimensions

of sharing. The first is the sharing of the underlying objects. There should

be ways to control how interaction objects become attached to or detached

from underlying objects, which in turn controls whether the underlying

objects are shared or not.

The second dimension is the sharing of the presentation or view provided

by the interaction objects. The application should have the ability to

handle situations where the underlying objects are the same, but the view

on these objects are individualised (different views to different users).

Alternatively, in some situations the underlying information, as well as the

view are shared.

The final dimension of sharing is the sharing of the input authorisations

or access provided by the interaction objects. In some situations a user

might have a literal copy of another user's view, but should be prevented

from interacting with the information in any way. Alternatively, equal

access should be possible, but in such a case control measures should be

enforced in some or other way.

• Provide robust session management

In order to better understand what is needed, a few definitions are

necessary. A session is the duration of an application process from its first

invocation to its termination. Joining a session is the act of connecting a

user's display resources to the session. Dropping a session is the act of

disconnecting a user's display resources from the session.

The typical mechanisms of starting and stopping single-user applications

are inadequate for multi-user applications. Whereas single-user

applications join a user as soon as they start and drop the users as soon

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 51

as they end, multi-user applications must support a richer regime. A

session may be started by someone on behalf of others without the

participation of that individual in the actual session. Users should be able

to join as they can and drop as necessary without halting the session.

Additionally, sessions may or may not be terminated by the departure of

the last user. Multi-user applications should know from inherent

communication software how to communicate with its users. These aspects

of session management are necessary for multi-user applications to be

readily accessible to their users.

• Maximise the joint probability of successful execution

The joint probability that several users will be able to join the application

should be maximised. This may be difficult when the community of users

is open or very heterogeneous. Operating systems may differ; terminals

may vary: and communication protocols may not be standardised. An

architecture for multi-user applications should attempt to minimise the

restrictions that it places on a user's environment. At a minimum it is

necessary to adopt a common protocol for establishing communication

paths and a common protocol for controlling user terminals, but these

common protocols should be as widely available as possible.

The general requirements of information sharing and communication are

discussed in more detail as they are essential for cooperative working in an open

distributed environment.

i) Support for information sharing

Sharing of information is essential in cooperative working. Patterns of sharing

should be adopted within the environment for effective cooperation to take place.

The environment needs to provide a set of services which would encourage the

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 52

cooperative sharing of information (Navarro et al, 1993). These services include:

• Services for access and exchange of information between the different

applications running on different platforms and used by different users.

• Maintaining a knowledge of people, resources and ongoing activities, for

ex::imple by the integration and use of standard information repositories

such as the X.500 directory service.

• Mechanisms for modelling the organisational context m which the

cooperation takes place and which are based on the appropriate access

control mechanisms.

• Services that provide awareness of the ongomg actions m a shared

information space. The user should be better informed about the current

status of the cooperative work.

According to Navarro et al. (1993), a number of standard initiatives have

examined the role of information within group work. Researchers have examined

the relevance of the X.500 directory service to CSCW systems. More recently,

working groups have investigated standards to allow the sharing of conference

structures across groups. The issues of access control, locking and transactions

are central to the needs of CSCW applications and yet are missing within current

standards initiatives.

ii) Support for communication

Communication plays a vital role in cooperation, and it is important that this role

is reflected within a CSCW environment (Navarro et al, 1993). A CSCW

environment will need to provide a range of communication services which should

include:

• Support for a wide range of media, including telefax and where applicable

paper communication.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 53

• The provision of many different forms of communication, including both

real-time and asynchronous communication.

• Support for interchange of cooperation across communication media.

Specific requirements in terms of communication in a cooperative environment are

mentioned in Reder and Schwab (1990). A CSCW environment should:

• Support remote access to communication and information technologies

Extensive travel, complex schedules and tendencies to work from home

which some workgroups exhibit, raise a need for facile remote access to

office-based communication and information technologies to support work

continuity across environments.

• Support channel switching

The frequent switching over time among channels as individuals work

together on a given task has serious implications for the design of

supportive technologies. In addition to the synchronous integration of

multimedia for advanced workstations, capabilities should be developed

for transposing communication from one medium to another and/or

integrating multimedia events across time (i.e. asynchronous integration).

• Support individual multitasking

Existing calendar or scheduling tools assist individuals to manage their

time, but they do not assist workgroups to manage members' time. New

constructs and constraints need to be represented in order for software to

be useful for such purposes.

Traditionally, communication support for CSCW has been provided by

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 54

asynchronous OSI communication standards such as X.400, but they do not allow

a sufficiently diverse range of communication styles for many CSCW systems

(Navarro et al., 1993). Accordingly, most CSCW systems adopt and augment the

basic services. Communication standards have merely provided a technical

infrastructure for the exchange of structured information. The representation and

control of cooperation within the system has generally been a layer on top of the

message standard being exploited, often within a closed application.

2.6.2 Specific CSCW Requirements

CSCW as an application domain needs a unique set of requirements for the

developers of open systems support. The requirements emphasise the need to

support a wide range of work practices. CSCW systems should incorporate some

concept of activity (Navarro et al, 1993). Here, an activity is interpreted as a

cooperative process of interactions between people. CSCW systems should

provide means to describe activity-specific dependencies and interrelationships

applied to various applications in a flexible manner to allow for the evolution of

new working styles. New concepts which arise within CSCW makes tailorability

essential and extend the set of transparencies (easily understood, obvious pretext)

of importance to open systems. These requirements are now reviewed.

i) Support for activities

CSCW systems have a strong relationship with the various organisational activities

which they support. A CSCW environment should provide mechanisms for

representing the various relationships between these activities. Additionally, the

environment needs to provide a set of services to allow the management of the

different activities within the environment. The services include:

• Managing the membership of activities.

• Sharing resources between activities.

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 55

• Scheduling activities and monitoring the progress of activities.

• Mechanisms for negotiating the responsibility for activities.

• Mechanisms for negotiating the division of competence within activities.

• Coordination of activities.

These services should be provided in a neutral way to allow a wide range of

CSCW applications to be supported by the environment.

ii) Support for tailorability

Cooperative working is essentially a dynamic activity, and thus CSCW

applications need to be tailorable. This has two important consequences. Firstly,

the environment needs to provide a set of services similar to a developers toolkit

to enable this tailorability. Secondly, and more importantly, is that the traditional

division between users and developers becomes less clear, with users attaining

similar powers and status as systems developers. The limits and bounds of

tailorability and possible notations, languages or services to support this

tailorability will be an important research area for future CSCW developers.

iii) Support for transparency

Cooperative activities are generally carried out by a distributed group of people

who are located at possibly different places, employed at different organisations,

working at different times, using different user-group interfaces, having slightly

different goals, having different understandings of the activities, language,

competence and culture. The CSCW environment should provide some degree of

transparency to facilitate the cooperation of people from different coordinates.

Complexity should be reduced by hiding some dimensions that are unnecessary

for the cooperative activity. According to Navarro et al. (1993), significant

dimensions include: organisational (organisational awareness), temporal

(integration of synchronous and asynchronous), linguistic, cultural and physical

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 56

units (distributed working).

A number of different forms of transparency are important to CSCW systems.

• Transparency of organisation means that activities need not be dealing with

the complexity of the possibly different organisations involved.

Interorganisational connections should hide the complexity of different

organisational and inter-organisational (free market or other) policies.

Widely distributed CSCW systems should provide means for the

establishment of virtual organisations which exist only by the definition of

shared electronic workspaces and high-speed communication links.

• Transparency of time deals with the mode of work, namely synchronous or

asynchronous. Transparency here implies that interaction will be

independent of the mode we are using.

• Transparency of view means that the functioning of applications should not

be influenced by the way users view data. This transparency is not

applicable in WYSIWYG activities.

• Transparency of activify means that a set of objects cooperating in one

activity should not necessarily be aware of other unrelated objects present

in the distributed environment. The unrelated objects may be located in

a different location or in the same location but participating in other

activities. In this way activities are not disturbed by other unrelated

activities.

iv) Support for technology transformations

Currently, there is a tremendous technology transformation in the key domains

of information processing and computer communications (Karmouch, 1993).

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 57

These technology transformations include:

• The emergence of high-speed networks with powerful workstations and

new storage technology (repositories) imposes a new way of information

processing, and provides opportunities for applications that were not

possible with previous technologies.

• Distributed system configurations where several powerful workstations

share resources at several sites by communicating through LANs are now

common practice. Other configurations may cover wider areas such as

LAN interconnection through MANs and even W ANs, allowing

communications between geographically dispersed users.

• Multimedia has enabled the direct manipulation of new types of

information such as video, voice and image, all integrated in a single

entity. It requires faster networks to be transmitted, high performance

processing, and multimedia storage systems or repositories.

• Optical fibre technology is perceived to overcome the limitations of

current networking technology in providing high-speed networks, thus

permitting the transfer of large amounts of multimedia information over

a single channel in an integrated and synchronised manner.

CSCW should make valuable use of new technology directions to satisfy the

requirements of diverse cooperating groups.

v) Support for advanced networking facilities

The aim of CSCW is to provide integrated support to groups in terms of three

key variable conditions of work: face-to-face group activity, activity at different

times (caused by both time zone differences and the passage of time), and

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 58

activity at different geographical locations. Networks are the key to this ambition,

but if they are to provide this support effectively they must match the design

standards of CSCW systems in general. CSCW has contributed a broad set of

requirements in the network design area (Wilson, 1991). These networking

requirements include:

• The use of voice, image and video in documents, databases and electronic

mail systems.

• Multi-party desktop videoconferencing linked to studio based

videoconferencing systems.

• Intelligent agents which roam the networks on behalf of their user(s)

searching for information and carrying out tasks.

• Network resources which enable groups to establish themselves and work

within the network environment. These resources should support aspects

of group work, provide shared working space and storage, and support

user interfaces which represent the shared group environment.

These and other advanced network facilities should be considered in conjunction

with the changing and growing usage of networks. People will be expected to

work in teams in dual, but integrated worlds: the real physical world, and an

electronic world underpinned by networks.

vi) Support for different media

New technologies are being used for developing integrated networks capable of

providing the level of service required by different media (Karmouch, 1993). At

this moment, the challenge is to define a model and communications architecture

for multimedia cooperative applications. Applications operating in a distributed

cooperative environment greatly complicate the system's design and architecture

when compared to single-user applications, where the system is designed to serve

one user at a time (even if it operates in a distributed environment). Multimedia

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 59

cooperative applications have several related factors: group cooperation strategies

and paradigms, computer communications, a multi-user interface, and shared

services such as multimedia databases. The requirements for multimedia

cooperative applications may be categorised into four classes: storage and

processing, common functionality, cooperative aspects and communications

(Karmouch, 1993). The four classes of requirements are summarised as follows:

• Storage and processmg: multimedia information is a composition of

different kinds of complex objects such as text, graphics, image, voice,

audio and video. Each type of information requires appropriate tools for

acquisition, processing, transfer and storage. The different types of

information may have semantic and temporal links between them and

require a uniform and homogeneous representation architecture within

one generic object called a multimedia document. Efficient support of

multimedia documents is a primary requirement, since they play a major

role as an information vehicle.

• Common functionality: In a cooperative environment the functions that are

common to all applications should be extracted from a class of

applications. The remaining functions (local to specific applications)

should be left to the applications themselves. Thus, common functions

should be provided by a unique entity shared by the class of applications.

• Cooperative aspects: Firstly, cooperative rules (group organisation, time

and space considerations) must be defined between the users to achieve

a common task or goal. Secondly, facilities and protocols need to be

defined between the applications (e.g. propagation of changes, floor

negotiation, role attributions, synchronisation). Thirdly, interfaces to a

shared environment (shared space) are needed to provide the same

(visual) view to the users. Fourth, access to shared databases

(repositories) must be provided to the group for decision support.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 60

• Communications: group communications by nature take place among

geographically distributed users. Thus, communications over networks are

crucial, and the requirements for handling the transfer of multimedia

documents and data control in a cooperative environment are complex

and diverse. Among these are the requirements for multicasting (multiple

media transmission), appropriate bit rates for each type of medium,

synchronisation of single- and multimedia and time constraints (real-time

communications, acceptable user feedback). These are requirements

beyond the basic requirements for much faster networks capable of

transporting data in the hundreds of Mbit/s range, and the use of

protocols providing a variety of functions to meet expected multimedia

services such as error-free transmission, and time transparency.

2.6.3 Architecture Requirements

The requirements identified in the previous section are used to guide the design

of a generic distributed multimedia CSCW environment. Navarro et al. (1993),

in their MOCCA project, have identified a number of perspectives from which

to view the environment. Each perspective offers an abstract view of specific

environment functionality. Formally, the perspectives can be refined to a set of

corresponding model~ which collectively specify the environment. Adopting an

object-oriented paradigm, the environment consists of a set of objects

representing people, applications, organisations, resources and relationships

between these objects. Each object may appear in several models, viewed

differently in each. Applications and their resources (documents, messages) are

integrated into the environment by so called object adaptors. The different

MOCCA viewpoints are illustrated in Figure 2.14.

The distributed architecture considers how the models can be used to specify

components of an open distributed platform. The organisation viewpoint considers

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Organisation

'
Distributed

Architecture

i
Rooms metaphor

Figure 2.14 MOCCA Viewpoints on CSCW (Nava"o et al., 1993)

Information

/f

Communication

61

the organisational context required for CSCW in terms of a set of resources. The

information viewpoint examines the definition of shared information, relationships

between information objects, and the global naming of information. The

communication viewpoint groups together mechanisms of interaction dealing with

the information resources. The rooms metaphor provides the user's conceptual

map of the global environment and addresses the issues of location, navigation

and social interaction. Starting from each viewpoint, a model that describes the

objects as they appear in that viewpoint can be defined. The emphasis now is on

the architecture viewpoint.

In the general architecture a set of cooperative support functions are

decomposed into a set of loosely connected managers which provide appropriate

portions of cooperative support. Active support within the environment is

provided by the domain manager, the activity manager, the security manager, the

information manager, and the communications manager. The general architecture

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 62

is presented in Figure 2.15. The managers are able to abstract over the services

provided by existing OSI and open distributed processing (ODP) platforms. Two

of the managers are aimed at supporting the manipulation and storage of

information. Most cooperation involves the sharing of information. Subsequently,

a central repository, an information store, for shared information plays a

significant role in a cooperative environment. This is augmented (within a

cooperative environment) by the provision of an organisational database which

allows organisational information to be shared.

OSl/ODP Computational Platform

Figure 2.15 Basic CSCW Architecture (Navarro et al.,1993)

The domain manager provides the function of visibility. Objects are classified into

domains to reduce the number of visible objects to those of interest. Domains are

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 63

also a unit of policy: different policies will be associated with different domains.

Domains are also a unit of cooperation: cooperative activities take place in a

domain (or a set of domains). Thus, domains reflect how the cooperative space

is structured. Network support would, for example be included in the domain

manager.

The activity manager allows activities generated or supported within an

application to be registered outside the application in the CSCW environment.

Other applications interested in a specific activity can also register their interest

in the status of the activity with the activity manager. For example, an application

may wish to announce that it is involved in the development of a production plan

for a bridge. To do so an application would make an activity entry in the activity

manager. This entry may describe the purpose of the activity, the state of the

activity, the participants, and the resources allocated.

The information store provides common storage services to the objects in the

CSCW environment. Information elements, structures, rules and complex objects

should be stored. Requirements for concurrent access and quality (accuracy,

reliability, consistency, availability, persistence) will be diverse, ranging from

critical long-term data to short-term state information data. A key function of the

information store is to enable inter-operability among different objects by sharing

a common service access point and information representation. The service will

be used by the managers mentioned as well as the application related objects.

The organisational database contains information about the organisation in which

the environment resides. It represents an organisation in terms of the resources

used within it, the employees working for it, the roles they play, organisational

relationships, and the organisational procedures and policy exploited within the

organisation. The information will often map onto underlying structures and

services such as those provided by X.500. Finally, the organisational database

allows organisational roles and policy to be stored and accessed by a number of

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 64

different cooperative systems.

An important concern m inter-organisational distributed cooperative

environments is security. The secudty manager groups all functions related to

security. Security is concerned with ensuring that the resources of the system are

available to those who are allowed to use and/or access them, and are not

available to others. Organisations are responsible for describing a security policy

which allows measures to be taken against possible threats to the security of the

distributed system (unauthorised disclosure, contamination, misuse of resources,

denial of service).

An information manager controls the acquisition, processing, transfer and storage

of multimedia objects such as text, graphics, image, voice, audio, and video.

The communications manager controls the group communications which by nature

takes place among geographically distributed users. Communications over the

networks are crucial, and the transfer of multimedia documents and data control

are important issues. The functions of the communications manager include

multicasting, appropriate bit rates for each type of media, synchronisation and

time control, and the use of protocols providing a variety of features to meet

expected multimedia services.

2.7 Main Components of Computer Supported Cooperative Work

CSCW research and reference material contain a bewildering array of diverse

technologies, applications and concerns. According to Wilson (1991), there are

two major concerns: the support of human groups, and the technology which can

be used for that purpose. Of particular importance, is the dimensions of the

CSCW field (Olson et al., 1993).

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 65

2.7.1 The Support of Groups

Major topics associated with the support of groups (Wilson, 1991) include:

• Individual human characteristics such as conversation patterns and the

making of commitments.

• Organisational aspects such as the culture and structure of organisations.

• Group work design issues such as user involvement in the work design

process, rapid prototyping and usability testing.

• Group work dynamics aspects such as group decision making and the

cooperative or collaboration process.

2.7.2 Categories of CSCW Technology

Classes of CSCW systems were previously mentioned in Section 2.5.1., but the

intention here is to identify the main categories of technology for supporting

group work (Wilson, 1991), which include:

• Communication mechanisms enabling people at different locations to see,

hear, and send messages to each other, for example electronic mail and

video conferencing.

• Shared work space facilities enabling people to view and work on the same

electronic space at the same time. An example is remote screen sharing.

• Shared information facilities enabling people to view and work on a shared

set of information, for example multi-user databases.

• Group activity support facilities to augment specific group work processes,

for example the co-authoring of documents, and idea generation.

2.7.3 Dimensions of the CSCW Field

The dimensions of the CSCW field should be considered to obtain the total

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 66

picture of what CSCW entails. This would be vital in working towards identifying

the meta primitives of CSCW. The group work situation, the players and their

tasks, and the technology and media used for supporting them should be

characterised (Olson et al., 1993).

(i) The global characterisation of the group work situation

CSCW covers a wide spectrum of situations in which groups perform their work.

Johansen (1988) characterised the different sets of situations by separating the

dimensions of time and location of work, noting whether they are the same or

different, as shown in Figure 2.16 (an instantiation of Figure 2.1).

SAME

~ Face-to-face
~ meetings

Tele- and
video­
conferencing

Figure 2.16 Time and Location of Work (Olson, 1993)

DIFFERENT

Project
rooms,
shift work

E-mail.
annotated
drafts

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 67

In the case of face-to-face meetings and informal project work, work may be

done in the same place at the same time. Electronic meeting rooms such as Colab

are intended to support this type of work (Olson et al., 1993). Group work also

occurs in different places but at the same time. Systems in this category focus on

remote work and attempt to help individuals communicate effectively with a

different set of channels and tools than those used in traditional face-to-face

work. Video and audio teleconferencing systems fall in this category. The third

common situation is work that is neither in same place nor same time. The

situation is supported through email, conferencing, and group authoring tools. In

addition to the transfer of work objects and comments, this kind of work requires

the overhead of coordinating people. The fourth situation, work that takes place

in the same place but at different times, is less common. It is seen in shift work

in hospitals and factories, and in project rooms, places where all the material for

a project resides, but individuals in the team come and go.

This characterisation helps separate the major modes of group work. With in­

room technology, which supports each person's ability to jot down ideas as they

occur and can display one or more person's work, two changes are apparent.

Work gets done in the meeting. There also is a smooth swing from silent, parallel

thought and development of ideas, to a focussed, one-at-a-time viewing of each

person's ideas which may be shared. According to Olson et al (1993), technology

thus has the power to blend synchronous and asynchronous work in new ways.

(ii) The tasks of groups

Social psychologists have investigated aspects concerning the nature of group

work for a number of years, and a taxonomy of kinds of group work has

emerged. McGrath (1984) has categorised eight types of work, as shown in Table

2.3. In the original formulation, the list was drawn in a circle with adjacent type

sharing some features in common. The result is referred to as the task

circumplex.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE C.SCW PARADIGM FOR SOFTWARE DEVELOPMENT

Table 2.3 Task types (McGrath, 1984)

Planning tasks
Creative tasks
Intellectual tasks
Decision-making tasks
Cognitive conflict tasks
Mixed-motive tasks
Contests/battles
Performances

(problem solving, generating plans)
(generating ideas)
(solving problems with a correct answer)
(solving for preference)
(conflict of view)
(conflicts of motive/interest)
(conflicts of power)
(psychomotor tasks)

68

According to Olson et al. (1993), the taxomony specifies whether the work

involves cooperation or conflict, whether it involves conceptual work or motoric

actions (as in sport), and which phase of development the work is in, whether the

work involves generating, choosing, negotiating, or executing. This is not the only

task typology possible. Steiner (1976) has examined in more detail how tasks

require information from group members to be combined in order to identify

how technology might support activity. However, neither of the typologies

consider the kinds of tasks groups engage in when they are trying to learn, to

coordinate, or to get to know each other better.

It is important for researchers in CSCW to adopt some categorisation. In

understanding the details of the tasks people are engaged in, the difficulties and

obstacles they encounter in achieving their goals, and the techniques that they

successfully use, better systems may be developed to support the work.

(iii) The technology and media

A variety of media have been used to support group work, and each medium

presents different aspects of interaction. The primary differences have to do with

whether the technology supports communication about the work, or whether it

represents the work itself. Video connectivity supports conversation, including

gestures and, sometimes eye contact, as well as artifacts (e.g., a model of a new

CHAPTER 2 - C.SCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 69

landscape). On the other hand, a real-time shared editor supports the work itself,

providing to all participants text, outlines, and diagrams for both viewing and

changing. Bulletin boards and email blend these roles, supporting both the work

and the conversation about the work. This may cause problems in understanding

what a particular message means.

It is difficult to dimensionalise the space of CSCW technologies, and attempts are

just beginning to appear (Ellis et al., 1991; Malone and Crowston, 1990; Olson

et al., 1990). These efforts are still preliminary, and there is no widely accepted

framework. It is, however, a very promising area of work, moving beyond the

early point systems of technology towards general theories of cooperation and

coordination that are needed for understanding how technology may fit into

human social, organisational, and cultural practices. This is the key to developing

effective tools in the future. Some researchers have characterised the aspects of

media that affect communication. Firstly, the features of communication that help

people to understand each other, called "grounding", are identified. These

features are co-presence, visibility, audibility, cotemporality (receipt as it is

produced), simultaneity (ability to send and receive simultaneously), sequentiality,

reviewability, and revisability. In Table 2.4 various technology media are

evaluated for support of these features. The features may assist or disrupt a

person's ability to understand others and to move work forward. The analysis is

the foundation for evaluating the effects of degradation that technology

sometimes causes on the quality of work that the group delivers.

(iv) The group members

Besides the considerations associated with the support of groups mentioned in

Section 2. 7.1., groups differ in both the characteristics of the participating

individuals and how they interact with each other, and in their style and pattern

of management. How can groups be characterised in order to both discover

appropriate technology support and generalise the findings of the success of one

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT

Table 2.4 Seven media and their associated constraints

MEDIUM

Face-to-face

Telephone

Video teleconference

Terminal teleconference

Answering machines

Electronic mail

Letters

kind of technology from one group to the next?

CONSTRAINTS

Copresence, visibility,
audibility, cotemporality,
simultaneity, sequentiality

Audibility, cotemporality,
simultaneity, sequentiality

Visibility, audibility,
cotemporality, simultaneity,
sequentiality

Cotemporality, sequentiality,
reviewability

Audibility, reviewability

Reviewability, revisability

Reviewability, revisability

70

The individuals who comprise the group have various expertise and talents,

attitudes, and personality characteristics. Equally important are features of the

individuals' interactions with each other: how long they have known and worked

with each other and what process they have adopted to manage themselves.

These two factors are known as cohesiveness and structure, and both of these

vary as a function of the size of the group.

Old studies on group interaction and the proper division and exercise of

leadership and participation roles, which were done before the availability of

computer-mediated communication should be renewed and exploited as sources

and suggestions for identifying needed functionality for CSCW (Olson et al.,

1993). It is important to consider how the characteristics of individuals and group

structure relate to the embedded structure in technology. A group with a pattern

of democratic, cohesive, but free-for-all behaviour in unsupported work settings

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 71

might react poorly to a technology that has embedded in it an autocratic method.

(v) Integrating the dimensions

The above considerations are just a first attempt at understanding the dimensions

on which computer supported cooperative work varies. Determining what type

of group technology will be successful depends on specifying the four dimensions.

The relationships that hold among them are the core of future research issues.

The components and dimensions introduced up to now will be used in the next

section to specify the CSCW meta primitives.

2.8 CSCW Meta Primitives

The purpose of this section is to identify the CSCW meta primitives and to

construct a meta model based on these primitives. The word meta refers to a

very high level of abstraction, and in terms of perspective it refers to a global or

general perspective. A model may help to establish a common frame of reference

showing explicit structure, and may serve as a communication means when

dealing with complex problems. Meta models are models of modelling approaches

(Joosten et al., 1993; Du Plessis, 1992).

Before constructing an object meta model of the CSCW meta primitives, two

important examples of meta models that have relevance in CSCW will be

illustrated. Firstly, the group process will be modelled in Figure 2.17. The second

example models the concept of activity in CSCW as shown in Figure 2.20 and

Figure 2.21.

According to Joosten et al. (1993), one of the reasons that many CSCW projects

fail is that technology is developed with little consideration for the problems in

the group process that are to be solved. In the literature it is hard to find models

of working groups that are based on solid research. One validated framework

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 72

proposed by Gladstein (1984) is given in Figure 2.17, and may be considered to

be a meta model for the group process. The purpose of the framework is to

determine which variables are most predictive of group effectiveness. Each box

in Figure 2.17 represents a set of variables that have been correlated to find

predictive relations. The discussion of the full detail of Gladstein's framework is

beyond the scope of this dissertation. However, it is assumed that the seven sets

of variables depicted in the figure clearly describe an intended contribution to

group work.

INPUTS PROCESS OUTPUTS

I Group oomposition

~I _G_r_o-up--s-t-ru_ct_u-re~r-- .,

j_. Group process~ Group effectiveness

Resources available ~

1 -

Organizational ~

structure -

. Figure 2.17 Gladstein 's framework for group perfonnance (Gladstein, 1984)

In Gladstein's framework, an organigram describes organisational structure.

Organigrams are modelling techniques to illustrate the hierarchical structure of

an organisation. Figure 2.18 is an example organigram. There are three graphical

notation elements in an organigram: a rectangle, a diamond, and forks that

connect them. Rectangles and diamonds describe groups of people in an

organisation. Rectangles represent line-departments (involved in primary process

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 73

of an organisation), while diamonds represent staff-departments (secondary

support for business processes in line-departments). The tree structure, as

illustrated in Figure 2.18 describes the syntax of an organisation, while the

semantics are described in the form of a tuple (L,S). L and S are finite disjoint

sets of line-departments and staff-departments.

production

I
private I catering I

Loaves &
Cakes Ltd

warehouse

raw product

Figure 2.18 Example of an Organigram (Gladstein, 1984)

sales

I I
marketing accounting shop

In the framework of Gladstein, process interaction diagrams (PID) describe the

group process. Process interaction diagrams are another example of modelling

techniques for group processes and are useful in describing workflow processes.

Figure 2.19 is an illustrative example of a process interaction diagram.

Two graphical notations are used: circles and arrows. A circle represents a

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 74

~in
products

delivery ..,..

return

~\
control "---~ products

Figure 2.19 Example of a Process Interaction Diagram (Joosten, 1993)

process and an arrow represents an interaction (a stream of events). The

meaning of an interaction should be seen in the context of time, and the

processes are considered to work in parallel. The syntax and semantics of the

PID model can be described in the form of mathematical set theory.

Other models, such as the logistic model and Petri nets (Joosten, 1993) are also

useful for illustrating CSCW concepts.

A second model suggests that the concept of activi~ from Activity Theory might

be useful for defining the basic research unit in the CSCW area. Broadly defined,

activity theory is a philosophical framework for studying different forms of human

praxis as development processes, with both individual and social levels interlinked

(Kuutti, 1991). The solution offered by activity theory is that there is a need for

a concept to be a minimal meaningful context for individual actions. The

activities in which humans participate are the basic units of development and

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 75

human life, and thus form a foundation for the study of all contextuality.

Activities have the following properties (Kuutti, 1991):

• An activity has a material object. Activities can be distinguished according

to their objects. The transformation of an object towards some desired

state or in some direction motivate~ the existence of an activity.

• An activity is a collective phenomenon, a collection of individual actions.

• An activity has an active subject, who understands the motive of the

activity. The subject may be individual or collective.

• An activity exists in a material environment and transforms it.

• An activity is an historically developing phenomenon.

• Contradictions are the force behind the development of an activity.

• An activity is recognised through conscious and purposeful actions by

participants.

• The relationships within an activity are culturally mediated.

Engestrom (1987) has made an attempt to establish a simple structural model of

the concept of activity and culturally mediated relationships within it, as

illustrated in Figure 2.20.

Tool

~""'Object

Figure 2.20 Structure of an individual, mediated Action in an Activity (Engestrom, 1991)

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 76

Cultural mediation is dealt with by replacing binary relationships with mediated

relationships. The model illustrates that the central relationship between the

subject and the object of an activity is mediated by a tool into which the historical

development of the relationship between the subject and object is condensed.

However, the simple structure is not adequate for consideration of the systemic

relations between an individual and his environment. Thus, a third main

component, namely community (those who share the same object or activity) is

added. Two new relationships are formed: subject-community and community­

object. Figure 2.21 represents the basic structure of an activity and may be

considered as an activity meta model. In this model, the systemic model contains

three mutual relationships between subject, object and community. The

relationship between subject and object is mediated by tools, that between subject

and community is mediated by rules, and that between object and community is

mediated by the division of labour.

Figure 2.21 Basic Structure of an Activity (Kuuttii, 1991)

Division of
labour

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 77

How well does the concept of work activity suit the needs of CSCW research in

analysing work settings? The concept of work activity fits exactly with the

definition of the work to be supported and may span from the individual to

organisation-wide level, and even broader. It is possible to study formal

organisational units as activities to the extent that a community of active objects

sharing the same object can be found. In most traditional hierarchical

organisations only the managers of the organisational units are active subjects,

thus the activities found at the traditional organisation level are mostly

managerial ones. However, the concept of activity makes it easy to cross any

departmental, organisational or geographical border, but only inclusion of active

subjects sharing an object is relevant.

The concept of work activity also suits the additional needs which should be

fulfilled by the basic unit of research as mentioned in Section 2.4, the definition

of CSCW:

• Mediation of work by artifacts is a fundamental feature of work activities.

The concept of a mediating artifact, such as a tool or instrument, is rich

and also includes signs, symbols, models and theories.

• The need for the existence of socially constructed meanings and cultural

aspects is supported by the concept of work activity. Mechanisms allow

cultural features to be brought into every activity by the corresponding

artifacts. Apart from the tool artifact immediately used in transforming the

work object, there are two other groups of socially constructed artifacts,

namely rules and division of labour.

• Work reconstruction and the associated transformation and development

issues are supported, because the concept of an activity has been applied

to the study of developmental processes. The reconstruction of various

artifacts is a basic feature of activities.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 78

• The concept of work activity has a rich internal structure to help

structuring the work settings to be studied.

• The concept of activity considers the issues of control and conflict. The

concept of activity contains two different channels of control: hierarchical

power structures embedded in the division of labour, and control through

norms and values embedded in rules. There is also a mechanism to deal

with conflicts. The conflicts are regarded as surface symptoms of

contradictions. Conflicts influence the development dynamics of activities.

The meta primitives of the CSCW paradigm are now derived from the definition

of CSCW, the main components and dimensions of CSCW, and the models

illustrated in this section. The primitives constitute the basic modelling elements

of a specific paradigm.

By virtue of the first part of its name, the "CS" part of the name CSCW, the

professed objective of CSCW is to support via computers a specific category of

work, namely cooperative work. The term computer support conveys a

commitment to focus on the actual needs and requirements of people engaged

in cooperative work. In analysing the word computer support, the attention is

immediately focussed on support in the form of hardware and software. In the

context of CSCW, the computer support is achieved by means of hardware which

typically consists of basic hardware components, as well as groupware technology.

Basic hardware components include network facilities, processors, peripherals

such as printers and terminals, and other hardware components which may be

necessary to provide basic computer support to anyone who uses a computer for

work purposes. Architectural components which form part of the basic hardware

include the information store, organisational database, and the information and

communication servers. Groupware technology, on the other hand, includes

hardware technology that should be added to the basic hardware components for

the support of people who work in groups to attain specific goals in their work.

CHAPTER 2 - CSCW IN PERSPECTIVE

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 79

Groupware technology includes video conferencing capabilities (e.g. video and

audio equipment), multimedia components, electronic whiteboard components,

and other CSCW technology as discussed in Section 2.5.1. The architectural

components which may be added are the CSCW managers (information, domain,

activity, security, and multimedia managers).

Software may be classified as system software, application software, middleware, and

groupware in the CSCW realm. The system software includes the operating

system software, utility software, and other system software that are necessary for

a computer to function. Customised software systems and software packages

which are used for specific applications are referred to as application software.

The general functions performed in the CSCW environment are referred to as

services. The principle is to provide as many such services as possible via

sharable servers. Collectively, the systems providing these services are called

middleware. The most important services include (Brodie and Ceri, 1992):

• Data/object/knowledge/information managers (DBMS, OODBMS, KBMS,

file systems, distributed object management).

• Presentation services/user environment (windows, forms).

• Communication infrastructures (peer-to-peer messagmg, queued

messaging, X-400, mail).

• Security services (authentication, encryption, access control).

• Reliability services (transaction manager, recovery manager, log manager).

• Advanced/distributed operating system services (resource allocation).

• Naming services (global name directory and management).

• Library services.

• Control services Qob and request scheduling, brokering).

• Distributed computing/programming services.

• Interoperability services (information and language translation, data

interchange, information/object migration, copy management, transparency

services).

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 80

• Network services.

• General services (sorting, mathematics, data conversion).

• Repository services.

Groupware software refers to software that is applied for the support of group

activity. The groupware provides various shared services for fulfilling the needs of

people working in groups. As already mentioned in Section 2. 7.2, the shared

services are categorised as:

• Communication mechanisms.

• Shared workspace facilities.

• Shared information facilities.

• Group activity support facilities.

The meta primitives for the computer support aspect may now be derived. The

previous discussion highlighted the important elements that are related to the

computer support aspect, and it is therefore, logically assumed that they should

form meta primitives. The computer support meta primitives are:

A Software

A.1 System software

A.2 Application software

A.3 Middleware

A.4 Groupware

A.4.1 Shared services

B. Hardware

B.1 Basic hardware

B.2 Groupware technology

Turning now to the second pair of characters in CSCW, "CW" or cooperative

work, a specific category or aspect of human work with certain fundamental

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 81

characteristics common to all cooperative work arrangements is covered. There

are many forms of cooperative work, and other terms used are collaborative

work, collective work, and group work. Work is, of course, always social in the

sense that the object and the subject, the ends and the means, the motives and

the needs, the implements and the competencies, are socially mediated (Schmidt

& Bannon, 1992). However, people engage in cooperative work when they are

mutuarty dependent in their work and therefore are required to cooperate in

order to get the work done. The term cooperative work should be taken as the

general and neutral designation of multiple persons working together to produce

a product or service. In terms of cooperative work, the application domain and

the participants involved in group activity are important elements. The

participants also fulfil different roles (e.g. manager, secretary, and chairman) in

the group. For example, in the group situation when developing software a

specific person may play the role of either domain specialist, project leader,

analyst, or designer. The level of work element refers to the organisational level

in which a participant performs cooperative work. The organisational level and

job particulars are attributes of the level of work primitive. The highest level is

the universal level, then the world"/y level, and then the atomic level, the lowest

level. The application domain element refers to the specific application supported

by CSCW. The variety of application types include manufacturing applications,

production control applications, broadcasting applications, and health care

applications. The nature of cooperative work taking place within the application

domain is also of importance. These include projects, meetings, committees, and

task forces. Different types of work refers to either managerial, creative, physical

or technical work. The specific work performed, the location of the work, and the

temporal characteristics of the work are attributes of the type of work.

The meta primitives for the cooperative work aspect may now be derived. The

previous discussion highlighted the important elements that are related to

cooperative work and as before they will form the meta primitives. The

cooperative work meta primitives are:

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

C. Participants

C.1 Roles

C.2 Level of work

D. Application domain

D.1 Nature of cooperative work

D.1.1 Types of work

82

An object model illustrating these meta primitives and their relationships is

represented in Figure 2.22. An object is defined as a concept, abstraction, or

thing with crisp boundaries and meaning for the problem at hand. An object

model captures the static structure of a system by showing the objects in the

system and their relationhips. Most object models, including those proposed by

Rumbaugh et al. (1991), Booch (1994), Coad & Yourdon (1991), and Jacobson

(1992), capture the attributes and operations that characterise each class of

objects. For the purpose of this discussion, the attributes and operations are not

important and are not incorporated in the CSCW object model.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT

Software

System
Software

A.1

A

Application
Software

A.2

Middle­
ware

A.3

Provides

Shared
Services

A.4.1

NOTATION (Rumbaugh .et al., N91}

cscw I

Group­
ware

A.4

Basic
Hard­
ware

B.1

Cooperative
Work

has

I Participant~

fulfi

Group­
ware
Techno­
logy

B.2

Level of
Work

C.2

Nature of
Coopera­
tive Work

D.1

Types
of

Work
D.1.1

Optional-to-one association Aggregation ("a-part-of") relationship

One-to-many associations Generalization ("ls-a") relatlonshlp

Figure 2.22 The CSCW Object Model

CHAPTER 2 - CSCW IN PERSPECTIVE

83

THE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 84

2.9 Summary and Conclusions

This chapter has outlined a number of important issues in the field of CSCW

which come to the fore as a result of taking seriously the concept of cooperative

work and its computer support. Initially, the nature of CSCW and some of the

ongoing debates concerning it were examined. The main CSCW technologies

were surveyed. At the very least, the field of CSCW has assisted in the process

of re-examining a number of "fictions" concerning how people use tools and

perform their work. It has, amongst other things, focused attention on how

people work together in different settings, and the need for better integration

across applications. Requirements that future systems for cooperative working

will have to meet were examined. The meta primitives of the CSCW paradigm

were derived from the main components and dimensions of CSCW. The general

conceptual model as abstracted in Figure 1.1 of Chapter 1, can now be

instantiated with the meta primitives of CSCW. This first instantiation of the

conceptual model is illustrated in Figure 2.23.

While debate about exactly what is "new" in the field continue, there is no doubt

that the area of CSCW has succeeded in attracting and holding an interesting

interdisciplinary community over the last few years, from both technical and

social disciplines. The task that lies ahead is whether these different interests and

research traditions can be moulded together in order to produce software systems

that truly support cooperative work. Having studied the nature of CSCW, the

CSCW technologies, and determining the meta primitives of CSCW, one may

conclude that the CSCW paradigm has potential to motivate the development of

groupware systems that support the cooperative nature of software development.

CHAPTER 2 - CSCW IN PERSPECTIVE

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

COMPUTER
SUPPORT

I
I

Figure 2.23 Conceptual Model of CSCW Meta Primitives

COOPERATIVE
WORK

CHAPTER 2 - CSCW IN PERSPECTIVE

85

CHAPTER 3
Cooperative Aspects of the Software Development Process

CONTENTS

3.1 Introduction

3.2 Abstraction and Structure in Software Development

3.3 Software Process Models

3.4 Information System Building Blocks

3.4.1 Building Block - PEOPLE

3.4.2 Building Block - DATA

3.4.3 Building Block - ACTIVITIES

3.4.4 Building Block - NETWORKS

3.4.5 Building Block - TECHNOLOGY

3.5 Building Process of Information Systems

3.5.1 Cycle 1 - Feasibility

3.5.2 Cycle 2 - Analysis

3.5.3 Cycle 3 - Design

3.5.4 Cycle 4 - Implementation

3.6 CSCW in Software Development

3.7 Requirements of CSCW in Software Projects

3.8 Summary & Conclusions

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 87

3.1. Introduction

Organisations around the world depend more and more on software in the very

basics of their operations. Moreover, the quality of the software product and the

quality of business service are increasingly linked. Software quality is dependent

on the way the software development process is conducted. Software

development, being notoriously difficult to manage, should be an engineering

discipline. One of the characteristics of established engineering disciplines is that

they embody a structured, methodological approach to developing and

maintaining artifacts (McDermid & Rook, 1991). McDermid (1991) gives the

following definition which may not cover all facets of software engineering, but

captures the essential spirit and breadth of the notion of software engineering:

"Software engineenng is the science and art of specifying, designing,

implementing and evolving - with economy, timeliness and elegance -

programs, documentation and operating procedures whereby computers can

be made useful to man."

The goal of software engineering is to produce a high quality software product

and to follow a high quality development process (Conger, 1994). In addition to

a quality product, quality of process is desirable. Closely related to software

engineering principles, are the concepts of abstraction and structure for mastering

the complexities of large-scale software systems.

In addition to the aim of developing software according to software engineering

principles, other factors should also be taken into account when developing large­

scale software systems. An information system is developed by means of an

arrangement of people, activities, data, networks, and technology which form the

building blocks of information systems. The building blocks are arranged and

integrated to accomplish the purpose of supporting the day-to-day operations in

a business, as well as the problem-solving and decision-making needs of business

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 88

managers. Software development is a people-intensive process during which

developers and users collaborate to create a new information system. The crux

for management is to deal with software development by a team. For technical

activities, automated support has been provided in the form of tools which

facilitate activities undertaken by a single designer or programmer. Integrated

project support environments are particularly relevant from a managerial point

of view as they provide a framework for dealing with teams, rather than just

providing the functionality required by individuals. CSCW seems to have the right

qualities for satisfying the need of management to deal with the group activities

during software development.

The aim of this chapter is to address the cooperative aspects of the software

development process in terms of group activity during the process, the roles of

people in these groups, and existing computer-based tools to support the process.

Different perspectives of the software development process are considered. These

perspectives are of importance for investigating the possibility of CSCW during

software development.

3.2 Abstraction and Structure in Software Development

Two key intellectual weapons for mastering the difficulties of large-scale software

systems are structuring and abstraction (McDermid, 1991). Structuring enables the

decomposition of systems into components, or views, and to understand the

system a little at a time, yet still understand how the components or views relate

one to another. Abstraction provides a way of drawing away from the details of

the system and, again this aids comprehension. The major advance in software

engineering over the last two decades is in automation - the provision of

computer-based tools to assist the development of large-scale software systems.

However, the tools are not effective if they are not based on appropriate

abstractions and ways of structuring systems and their development process.

Structuring and abstraction are key intellectual weapons providing ways of

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFfWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 89

handling complexity, and are relevant in the technical and managerial domains.

This also has implications for CSCW systems. Abstraction and structuring are

important in the computer-based support that should be provided to people

involved in group activity. The CSCW systems should be structured to provide

the relevant views of the system to specific group members, preventing confusion

in the use of the system. The functions provided by the CSCW system should be

abstracted to be similar to the groupwork activity that is performed without

computer-based support. This is important, because in a survey performed by

Bullen and Bennett (1990) it was found that only CSCW tools that corresponded

to the non-electronic activities were used by people involved in group activity.

Management in software development primarily involves planning, decision

making including allocation of resources, progress monitoring and estimation. All

of these areas depend on having an appropriate model of the software

development process and this, in turn, depends on having appropriate structuring

and abstractions. The ability to provide appropriate abstractions and structuring

for the software process is almost synonymous with the establishment of life cycle

models (McDermid, 1991). By common usage, life cycle models (LCMs) are

abstract descriptions of the structured development and modification process,

typically showing the main stages in producing and maintaining executable

software. The earliest software development life cycle (SDLC) model is the so­

called Waterfall model which gave a simple abstraction of the software. The

Waterfall model has a number of severe limitations, for example it does not

adequately show iteration. There have been many attempts to enhance the

Waterfall model, but in recent years the trend has been towards the development

of much more sophisticated models. The main advance has been the realisation

that it has been appropriate to structure, or model the software process

differently from a managerial as opposed to a technical point of view. This

resulted in separate, but related, abstractions dealing with the technical

development activities including iteration, and the management processes which

seek to control the technical development activities. Most notably, Boehm's

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 90

(1988) spiral model identifies different management activities such as planning,

risk assessment and control. The ability to structure the software development

process into phases and to structure the work through a breakdown structure,

provides the basis for good project control. Software development methodologies

complement the software development life cycle. They provide comprehensive

and detailed support for the entire software development life cycle by:

• incorporating step-by-step tasks for each phase or cycle,

• specifying individual and group roles to be played in each task,

• prescribing quality standards and required deliverables for each task,

• providing development techniques to be used for each task, and

• technology in the form of tools to support the development process.

In the context of software cost estimation, the monitoring of progress in software

projects is important, and in risk management appropriate abstractions should be

used. While the notions of abstraction and structuring are important they do not

address all management issues (McDermid, 1991). It is of paramount importance

to have good communications within the project team and between the team

members and the project manager. Similarly, managers should have good

interpersonal skills. These do not really derive from any notion of abstraction and

structuring. Communication and cooperation form the basis of a controllable

project and the ability to control projects will advance by finding better forms of

structuring for projects and better abstractions from the details of projects. This,

of course, has implications for CSCW systems that are used to support the

software development process. A strong management perspective should form

part of these systems.

In the technical domain, most of the improvements in technology for developing

large-scale software systems have depended on finding improved abstractions or

improved structuring techniques for writing or specifying programs. Also of

major significance here is software development methodologies. The so-called

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 91

structured techniques have evolved from their early, rather simple, beginnings into

a large array of techniques and methods. These methods cover the design of

databases (including the normalisation of data structures), the structured

development of programs from high-level designs, and real-time systems

development using models based on the notion of state machines. Abstraction is

enhanced by the object-oriented approach. Hierarchical composition or

decomposition enables users of the object-oriented approach to control the level

of abstraction at which they model the system under development. Within the

context of system and software specification the mathematically-based formal

methods which, while being abstract, enable more facets of the software to be

specified than is possible with structured techniques. The object-oriented

approach has also greatly improved software specification. Two more trends

worth noting are the trend to focus on the earlier stages of software development,

e.g. requirements analysis and design, and the general belief that tools play an

important role in software engineering. Computer-based tools have emerged

which support teams working on a project rather than individuals (McDermid,

1991). Groupware tools and CSCW systems, such as integrated project

management tools and message systems, to support certain group activities during

software development have emerged, but a need exists for more sophisticated

CSCW systems to support the software development process.

Models of the software development process on which this investigation is based,

are discussed in the next section.

3.3 Software Process Models

A software process model can be defined as a descriptive representation of the

software process. The software process is conducted according to a development

framework or software process architecture, and includes the set of technical and

management activities that are applied during the production of software (Du

Plessis & Van der Walt, 1992). The software process model should represent

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 92

attributes of a range of particular software processes and be sufficiently specific

to allow reasoning about them (Dowson & Wileden, 1985). The main function

of a software process model, from a project management point of view, is to

establish the order in which a project performs its main stages and to establish

the transition criteria for proceeding from one main stage to another.

The Object-oriented Information Systems Engineering Environment (OISEE)

project, within which this study is conducted, is formulated in terms of a general

framework of reference models that structures the technological foundation of

information systems engineering into separate concerns. The following reference

models were proposed for the project (Du Plessis, 1992):

• The Development Process Reference Model

• The Quality Assurance Reference Model

• The Technology Reference Model

• The Target System Reference Model.

This study is mainly concerned with the Development Process Reference Model, but

the possible incorporation of CSCW into the software development process may

also concern the Technology Reference Model. This will only be determined in

Chapter 4 of this study. The Development Process Reference Model addresses the

information system development life cycle, according to the following aspects:

• The Management Aspect

• The Life Cycle Aspect

• The Methods Aspect.

Although these aspects were formulated in the original documentation about the

OISEE project, the feasibility of incorporating a cooperative aspect will be

investigated. Humphrey's (1989) three-level software process model is adopted

for the management aspect. The model consists of three levels of abstraction, a

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 93

universal level, a worldly level, and an atomic level. The universal level presents

a global view of a software project for senior management. Structure is given to

this view by means of a software development life cycle (SDLC) framework

which guides the project. On the worldo/ level, the sequence of development tasks

and work steps of the cycles of the SDLC is prescribed. On the atomic level, the

orderly and prescriptive manner of performing the tasks of the wordly level is

defined in detail for junior management. The DesignNet Model is the

representation scheme for presenting tasks or activities, deliverables, and status

reporting on all levels of the three-level model (Du Plessis & Van der Walt,

1992). Information is conveyed regarding the schedule, the work-breakdown

structure, manpower allocation, costing and current status of the project. All

participants involved in the management of a project share information and may

communicate across project levels. This, of course, has implications for CSCW

systems supporting the management aspect of software development. Figure 3.1

illustrates the universal level of the development process model in DesignNet

notation depicting the cycles of software development and the important

deliverables. (The representation scheme is derived from AND/OR graphs and

Petri nets).

Project
Managemen

Cycle
Successful

Develop­
ment Team

Cycle
Successful

Cycle
Successful

Cycle
successful

Figure 3.1 Universal Level of the Development Process Model (Du Plessis & Van der Walt, 1992)

CHAPIBR 3 - COOPERATIVE ASPECTS OF TIIE SOFTWARE DEVELOPMENT PROCESS

IBE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 94

Considering the life-cycle aspect, the spiral model (Boehm, 1986) was adopted for

the OISEE project. This cyclic model is essentially a meta-model of the software

development process and is used as a framework for Humprey's three-level

model as illustrated in Figure 3.2.

Issue
Formulation

Rev1"w

Analysis Cycle

Analysis and
Evaluation

of Alternatives

' Development
'

' '
'

' '

1

--- Mo~el - I Analy~e - Eval.uat~ o .bject - D~~lop~~n~-
Log1cal System using Oriented Plannin
View Alternatives Risk Analysis Analysis g

- ·-
. --. --

-·

- . _ - · - - · De~;iopment Planning Phase
·- ~ - -- -·- - .

Detailed COCOMO
Estimation

Universal
Level

Worldly
Level

Atomic
Level

Figure 3.2 The three levels of software development modeling (Du Plessis & Van der Walt, 1992)

The radial dimension in Figure 3.2 represents the cumulative cost incurred in

accomplishing the steps to date. The angular dimension represents the progress

made in completing each cycle of the spiral. Following the commitment to go

ahead, each cycle of the spiral begins in the top left-hand quadrant. The major

CHAPTER 3 - COOPERATIVE ASPECT'S OF IBE SOFIWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 95

review to complete each full cycle is an important feature of the spiral model. It

is shown as the left-hand axis in Figure 3.2, and involves all participants

concerned with the product. The review covers all of the products developed

during the previous cycle and the resources required to carry them out. The

objective is to ensure that all concerned parties are mutually committed to the

plan for the next cycle which may include a partition of the product into

increments for successive development, or components to be developed by

separate organisations, teams or individuals. Thus, the review and commitment

step may range from an individual walkthrough of the design of a single

programmer's component, to a major requirements review involving developer,

user, customer and maintenance organisations. The most significant emphasis of

the diagram of the spiral model is on decision making to ensure management of

all aspects of risk (McDermid, 1991). Planning, decision making, and determining,

evaluating and resolving alternatives for detailed plans are not a simple linear

progression but must be iterated for risk management planning in each cycle as

necessary. If the project gets the go-ahead after a risk evaluation, the next cycle

of the spiral model is started. Otherwise, the development stops and an

evaluation of the entire project is done.

The spiral model may be useful in the choice of any appropriate mixture of

specification-oriented, (automatic) transformation-oriented, simulation-oriented,

prototype-oriented, incremental, or other approach to software development

(McDermid, 1991). The appropriate strategy is chosen by considering the relative

magnitude of the program risks, and the relative effectiveness of the various

techniques in resolving the risks. For the purpose of this investigation, object­

oriented development is incorporated into the model, and therefore a revised

spiral model as proposed by Du Plessis and Van der Walt (1992) is adopted. For

the purposes of this investigation, the revised spiral model is extended to include

group or cooperative activity, as shown in Figure 3.3. This is an initial step for

exploring cooperative activities during the software development process.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Issue
Formulation

Cycles
1. FEASIBILITY CYCLE
2. ANALYSIS CYCLE
3. DESIGN CYCLE
4. IMPLEMENTATION CYCLE

Presence of group activity

u::.1110 !:v<'llun!e

Analysis and
Evaluation

of Alternatives

Risk· S·1a1i:>1J1rl-~

Group/Cooperative Activity
© interviews, meetings, feasibility study
@ interviews, requirements definition , technical

reviews, prototyping, documentation
@modelling , prototyping, interviews, reviews,

documentation
@ final testing, refining , system integration,

system testing, installation , demonstrations,
post-audit

Figure 3.3 Revised Spiral Model for Cooperative Object-oriented Development

In the revised spiral model, the four cycles of software development are:

• Cycle 1 - Feasibility.

• Cycle 2 - Analysis.

• Cycle 3 - Design.

• Cycle 4 - Implementation.

CHAPTER 3 - COOPERATIVE ASPECTS OF TI-IE SOFTWARE DEVELOPMENT PROCESS

96

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 97

As shown m the model in Figure 3.3., each cycle is characterised by four

quadrants:

• Issue Formulation (determine objectives, alternatives, constraints).

• Analysis and Evaluation of Alternatives (identify, resolve risks).

• Development (develop, verify next-level product).

• Review I Planning (plan next phases).

The methods aspect is addressed choosing a set of object-oriented methods to

guide the technical development process and the corresponding management

tasks.

Considering the incorporation of the cooperative aspect, it is important to realise .
. that software development is a group effort, involving participants with different

responsibilities and skills. As already mentioned, the management, as well as the

technical domains of software development need computer-based support for

specific group activities. A CSCW system with the purpose of supporting group

activity during software development in all its dimensions seems to be the

solution. A framework proposing groupware technology for different group

activities during software development will be proposed in Chapter 5.

The basic information systems building blocks will be discussed in the next section

in order to establish a rationale for the roles that people play during software

development and the technology support during the process.

3.4 Information System Building Blocks

A five-component model of an information system is presented, which is the basis

of the systems development approach followed in this discussion. With this

emphasis it is necessary to understand information systems in terms of five

"building blocks" (Jordan & Machesky, 1990). The purpose of the discussion of

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

1HE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 99

• -People

• -Data

-Activities

-Networks

0 -Technology

Figure 3.4 The Five-Component Model of an lnfonnation System

3.4.1 Building Block - PEOPLE

The first and most vital component of the system model is people. The overriding

philosophy in the development of software should be that the system is for

people by people. The people involved in an information system assume many

different roles, but all the players in the information systems game share one

thing in common, they are classified as information workers by the U.S.

Department of Labor (Whitten et al., 1994). The term information worker is used

for people whose jobs involve the creation, collection, processing, distribution,

and use of information. The roles that people play can be classified into four

categories: system owners, system users, system designers or developers, and

system builders. The roles will be discussed in the context of the model in Figure

3.5 which is colour-coded according to the colours specified in Figure 3.4.

The system owners are also known as the information system's sponsors and chief

advocates responsible for budgeting the money and time to develop and support

the information system. They also make the final decision concerning the

acceptance of the information system. From the model in Figure 3.5 it is clear

CHAPTER 3 - COOPERATIVE ASPEt OF THE SOFIWARE DEVELOPMENT PROCESS

I

1HE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 100

0 -Technology Base

Figure 3.5 The People Building Block of Information Systems

that the system owners are the furthest removed from the technology base being

least interested in the technical details of the system. They are, however, aware

of the costs of technology which should be offset by equivalent benefits to the

business.

The system users are the people who use and directly benefit from the

information system. Their tasks include the capturing, entering, validating,

responding to, and storing of data and information on a regular basis. At the start

of a software development project it is the system users' responsibility to define:

• the problems to be solved

• the opportunities to be exploited

• the requirements to be fulfilled

• the constraints to be imposed by or for the information system.

CHAPTER 3 - COOPERATIVE ASPECTS OF 1HE SOFIWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 101

The users play an important role in the design of the user interface, the display

screens and the reports of the system. They are less concerned with costs and

benefits than system owners and more concerned with the business requirements

of the information system. From the model in Figure 3.5 it is clear that system

users are still relatively removed from the technology base. It is, therefore,

important that system developers (e.g. analysts) keep discussions with users at the

business detail level as opposed to the technical detail level.

The next category in the role-oriented model in Figure 3.5 is system designers.

They are alternatively called systems analysts. They translate the user's business

requirements and constraints into technical (computer-based) solutions. This

includes the design of inputs, outputs, screens, networks, programs, computer

files, and databases. From the model it is clear that system designers move closer

to the technology base because they should consider technology alternatives and

design systems within the constraints of those choices. According to Whitten et

al. (1994), the systems analyst is the principle system designer of most multi-user

information systems. Designers also include other hardware and software

specialists, such as database analysts, network analysts, microcomputer specialists

who provide additional expertise to the software development process.

The system builders are responsible for the eventual construction of a multi-user

information system which meets the requirements as set out in the design

specifications. Although, the applications programmer is a classic example, other

technical specialists such as database programmers, network administrators, and

system programmers may be involved. From the model in Figure 3.5 it is clear

that the system builders are located nearest to the technology base.

The roles and responsibilities of people involved in systems development, as

perceived by Jordan and Machesky (1990) are summarised in Table 3.1.

In many software development efforts, the user is a member of the development

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 102

Table 3.1 Information Systems Role Summary (Jordan & Machesky, 1990)

ROLE

User

Programmer

Analyst

End-user consultant

Project manager

Trainer

Database analyst

Fourth generation language
consultant

Communication specialist

Office automation specialist

RESPONSIBILITY

Contributes to requirements determination,
alternatives evaluation, and project management.
Also may document procedures and train other
users.

Codes, tests, documents, and maintains software.

Elicits help from users in order to determine
requirements and evaluate alternatives; specifies
design and oversees implementation.

Advises users about any aspect of the development
process and managing the process so that end
users can successfully develop their own systems.

Plans, monitors, coordinates, and manages the
development process.

Trains information systems staff or users on any
aspect of the development process and managing
the process; most frequent training is on
development tools.

Advises users and information systems staff about
technical and detailed data storage design issues,
including maintaining standards for integrated
systems. (Also called database administrator or
database specialist.)

Trains and advises users and information systems
staff about fourth generation tools.

Develops, coordinates, and maintains
telecommunication systems accessed by many
users.

Develops, coordinates, and maintains office
automation systems; important responsibilities
include evaluating alternatives and end user
consulting.

team. This team approach to software development gains the user's commitment

to the system. Placing the user on the development team to share development

responsibilities with the analyst may speed up delivery of a system. Early user

involvement improves the system's chances of success. The team composition

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE C.SCW PARADIGM FOR SOFTWARE DEVELOPMENT 103

varies with the size and nature of the system.

3.4.2 Building Block - DATA

Data is the central component of an information system. Although, the terms

data and information are used interchangeably, there is a distinction (Jordan &

Machesky, 1990). Data is a collection of raw facts in isolation, while information

is data that has been manipulated to be useful. The different people in the model

of Figure 3.6 view data differently.

0 -Technology Base

Figure 3.6 The Data Bui.ding Block of lnfonnation Systems

The system owner views data as business resources. These are things that are

essential to the system's purpose or goal, or things that must be controlled in

order to achieve business objectives. Business resources that are of importance

to system owners are tangible things (such as vehicles and products), roles (such

as customers and employees), events (such as orders and sales), and places (such

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 104

as sales offices).

The system user's view of data is in terms of data requirements, which are a

representation of user's data. The data requirements, namely entities, attributes,

and rules are expressed in a form that is independent of the physical

implementation of it.

The system designer's view of data consists of data structures, database schemas,

file organisations, record layouts, index files and other technical details. The

system builder's view of data is implementation oriented, with the responsibility

to write data programs and implement computer files and databases.

3.4.3 Building Block - ACTIVITIES

Activities are the work performed by people and machines for the business. They

define the functionality of an information system and two main types of activities

are identified (Whitten et al., 1994). Business activities are the day-to-day

processes that support the purpose, mission, goals and objectives of the business.

Information system activities are processes that support business activities by

providing information processing, and improving upon and enhancing the

business activities. Many of the activities involve cooperation between different

people who view activities differently, as shown in Figure 3. 7.

System owners are usually interested in the big picture and view information

systems in terms of groups of activities called functions. Functions in this context

are ongoing activities that support the business. Business system functions include

sales, service, manufacturing, shipping, and accounting. Information system

functions such as data processing, decision support, and office automation support

these ongoing business functions. Information systems provide different levels of

support for different business functions and different users, as illustrated in

Figure 3.8.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFfWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 105

0 -Technology Base

Figure 3. 7 The Activity Building Block of Information Systems

The system users view activities in terms of distinct business processes. Business

processes are distinct activities that have inputs, outputs, and specific methods

and step-by-step procedures that underlie these procedures. These processes can

be implemented by people, macliines, or computers.

Similarly to the data building block, the system designer's view of activities is

constrained by the specific technology used. The designer's view of activities are

more technical in terms of computer processes. Computer processes are business

processes that should be implemented on the computer. They may automate the

business process or simply support it. Computer program specifications such as

program structure charts, data flow diagrams, and record layout charts are used

to describe the designer's view of the computer processes.

System builders view activities in terms of application programs using precise

CHAPTER 3 - COOPERATIVE ASPECTS OF TIIE SOFIWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 106

computer programming languages that describe inputs, outputs, and logic.

Application programs are language-based, machine readable instruction of how

a computer process is supposed to accomplish its task.

DSS EIS Strategic Level

Expert Systems Senior Management

MIS Tactical Level

Middle Management

Transaction Operational Level
Processing

Systems Professional, Technical
Office Workers

DSS - Decision Support Systems

MIS - Management Information Systems

EIS - Executive Information Systems

Figure 3.8 Infonnation System Types in support of Business Functions

3.4.4 Building Block - NETWORKS

Networks are the distribution structure of people, data, activities, and technology

(the other building blocks) to business locations, and the movement of data

between those locations. The intent of networking is to provide cooperative

working between systems, computers, and people. Although, the term network has

a technical meaning to most computer professionals, different respresentations

are suited to different people. Different people's views of information systems

networks are summarised in Figure 3.9.

To the system owner, networking is a geographical, and not a technical issue. The

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 107

0-rechnology Base

Figure 3.9 The Networks Building Block of Information Systems

geography of a system in this sense is the geographic locations in which the

business chooses to operate. A modern trend in many organisations is to

strategically seek to integrate their information systems into the businesses of

their suppliers and customers at geographically dispersed locations. Some

executive managers have also tested another geographic location, that of the

cottage office in which employees are allowed to work out of a home office with

access to organisational databases and communication tools.

System users view networks in terms of business networks. A business network

defines detailed working locations, particular resources available at each location,

and business communications requirements between the locations. The location

specific resources are equipped in terms of the building blocks people, data, and

activities.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 108

Again, the system designer's view of networks is constrained by the limitations of

specific technology. The emphasis is on a computer network that can support the

business network. A computer network is a technical structure that interconnects

computers and peripherals in order to share technical resources and exchange

data. The system designer's view of networks is technical and computer networks

should be created to implement distributed information systems in which data

and processes have been divided into subsets that are technically distributed to,

or duplicated in multiple locations. The system designer's view is expressed in

terms of technology locations and the people (technical), data (the design of data

files and databases), and activities (software) and computer-based technology

needed at those locations. The system designer should also determine the type

of physical connection between locations, for example terminals connected to a

mainframe using modems, and minicomputers connected to a mainframe via a

network operating system.

System builders use telecommunication languages and standards to write network

programs. Network programs are machine-readable specifications of computer

communications parameters which include node actresses, protocols, line speeds,

flow controls, and other complex technical parameters. Examples include CICS,

and Novell Netware/386.

3.4.5 Building Block - TECHNOLOGY

The technology building block forms the centre of the model in Figure 3.5.

Collectively these technologies are called information technology which refers to

the merger of computer technology with telecommunications technology.

Information technology includes computers, peripherals, networks, fax machines,

intelligent printers, telephones and other technology that supports either business

communications or information processing.

The data building block of information systems is implemented in terms of data

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFIWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 109

technology which includes all hardware and software for the capturing, storing,

and managing of the data resource (repositories, databases). The data technology

includes the software for data storage, manipulation, and management, which in

turn includes file management systems such as ISAM and VSAM, database

management systems such as DB2 and dBASE, and spreadsheets such as Excel

and Lotus 1-2-3.

The activities building block of information systems is implemented in terms of

processing technology which includes all hardware and software for the support of

business and information system activities. The processing technology includes

computers, their input/output peripherals (printer, mice, scanners, and optical

mark readers), and application programs. Additionally, processing technology

includes operating systems and other systems software, and any machine or

device that contains a computer processor.

The networks building block of information systems is implemented in terms of

communications technology, also called networking or telecommunications

technology. It includes the hardware and software necessary for interconnecting

data and process technology at different locations. Examples of the networking

technology are:

• Technology to connect office terminals at a single site to a host

computer at the same site.

• Local and wide area networks of personal computers.

• Telecommunications networks that link large computers and

possibly networks at one site to large computers and networks at

another site.

Technical specialists should support system owners, users, designers and builders

in the maintenance of technology. These technical specialists sell, configure,

repair, and maintain information technology.

CHAPTER 3 - COOPERATIVE ASPECTS OF TIIE SOFIWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 110

Given this fundamental understanding of the building blocks of information

systems and its relation to the meta primitives of CSCW, as discussed in Chapter

2, it is clear that CSCW has a role to play in software development. The building

blocks of information systems already form a platform from which CSCW systems

may be built to support software development. In the next section, the process

of building information systems are briefly examined with the emphasis on the

roles of people, group activity and technology support.

3.5 Building Process of Information Systems

A disciplined approach must be followed in the building process of an

information system. The software development approach followed in this section

is based upon the revised spiral model for cooperative object-oriented

development, represented in Figure 3.3. Each of the cycles is briefly discussed

with the emphasis on group activity and existing technology support. The detailed

nature of the technical tasks of object-oriented development are not addressed

here. The work in each quadrant of the specific cycle follows the generic format

of the spiral model.

3.5.1 Cycle 1 - Feasibility

The main purpose of the feasibility cycle is to formulate the problem statement

and to determine the feasibility of developing a software system to solve the

problem. The cycle is started as a result of a need for a software system, or an

enhancement of an existing system.

i) Generic Tasks

Issue Formulation - a problem statement is formulated, which includes the scope

of the system, the objectives, and the system constraints.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 111

Problem Analysis and Evaluation - alternative solutions are proposed and the

different system configurations are evaluated. A risk analysis is performed to

ensure that on account of the available information on the software project and

resources it is still worthwhile to continue with the study.

Development - a feasibility study is conducted involving a cost benefit analysis.

Review I Planning - a technical feasibility evaluation and an analysis of the legal

implications of the project.

The deliverable is a project proposal which should be accepted and authorised

by management before the Analysis Cycle is started.

ii) Group Activity

Group activity takes place during the Feasibility cycle. The cycle is driven by the

cooperation of the system owners. It, therefore, addresses PEOPLE, DATA,

ACTIVITIES, and NETWORKS from the system owners' perspectives. The

system owners initiate the development process by expressing a need for a

software system. Facts and opinions of the system owners and system users are

used to formulate the problem statement. With the help of systems management

and/or consultants the scope of the system is determined, a cost-benefit analysis

performed and the system proposal compiled. The group activity is mainly

conducted in the form of meetings and interviews with participants as discussed

above. The feasibility study is mainly a group effort.

iii) Technology Support

Computer-based support is provided for the cost-benefit analysis and planning

could be performed with the aid of project scheduling tools. Group activity in the

form of meetings should be supported by meeting support tools and possibly

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 112

video conferencing tools which will be discussed in the next chapter.

3.5.2 Cycle 2 - Analysis

The main purpose of the analysis cycle is to study the current business and

information system and to define the user requirements and priorities for a new

information system. Following an object-oriented approach the cycle begins with

an identification of the main abstractions of the problem space taking the user

requirements into consideration.

i) Generic Tasks

Issue Formulation - object diagrams representing class hierarchies provide an

initial logical view of the proposed software system. The dynamic and functional

views of the software system, and ease of accommodating change are also

considered.

Problem Ana"lysis and Evaluation - alternative logical architectures are proposed

in collaboration with the user by means of rapid prototyping techniques. From

a project management perspective the risks involved in proceeding with a chosen

alternative are evaluated. This determines the development strategy for the rest

of the life cycle.

Development - Object Oriented Analysis (OOA) is performed according to a

specific method. The user requirements are specified formally in a requirements

specification which is the deliverable of this cycle and which forms the basis of

the contract between the client and the software developer.

Review I Planning - a review is conducted to evaluate deliverables and to

determine the status of the software project. A decision is made whether to

continue with the project. If the decision is to go ahead a Software Project

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 113

Management Plan (SPMP) is drawn up which contains the managerial and

technical functions, activities and tasks to be performed, resource and budget

requirements estimations, and a development schedule.

ii) Group Activity

Group activity is eminent during the Analysis cycle. The cycle is driven by the

cooperation of the system users. It, therefore, addresses PEOPLE, DATA,

ACTIVITIES, and NETWORKS from the system users' perspectives. Facts by

the system users are used to study and analyse the current system. With the help

of systems management and/or consultants, the requirements and priorities are

defined . The group activity is mainly conducted in the form of meetings between

the system owners, system users and systems management, system analysts or

consultants to finalise the requirements. The system analysts play the key role

during this cycle. They work together in modelling the system by presenting

diagrams which describe data requirements, process requirements, and

geographic requirements. Another approach to translating and validating

requirements is prototyping in which a small-scale, representative or work model

of the users' requirements is built. The analyst team work together to construct

such a prototype. The users may then react to the prototype to help the analysts

refine or add to the requirements. The preparation of the Requirements

Specification document is also a group effort, involving editing and reviewing

activities. A list of the group activities during this phase includes:

• Requirements definition

• Interviews and meetings

• Technical reviews

• Verification of requirements

• Prototyping

• Preparation of the specification document.

CHAPTER 3 - COOPERATIVE ASPECTS OF TIIE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 114

iii) Technology Support

Computer-based support is provided in the form of upper-case tools to assist

systems analysts in the modelling process. Project scheduling tools would again

be used to review the planning of the software project. Group activity in the form

of meetings should be supported by meeting support tools and possibly video

conferencing tools which will be discussed in the next chapter. Analysts use

powerful prototyping tools such as 4GLs to quickly build computer-based

prototypes. The requirements specification is added to the repository within

which the project information is stored.

3.5.3 Cycle 3 - Design

The main purpose of the design cycle is to evaluate design alternatives and to

specify a detailed computer-based solution.

i) Generic Tasks

Issue Formulation - the physical views of the system are modelled and system

analysts begin addressing technology issues and details. Candidate design

solutions are identified.

Problem Ana"lysis and Evaluation - the design alternatives are evaluated according

to technical, operational, economic and schedule feasibility criteria. The risks of

each alternative are determined using risk analysis techniques. A specific solution

strategy which satisfies the user constraints and the optimisation criteria is

documented in a system design document or system proposal.

Development - Object Oriented Design (OOD) is performed according to a

specific method. The final deliverable is a technical design statement which is

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

IBE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 115

generally divided into two parts: general design and detailed design. The general

design serves as an outline of the overall design while the detailed design focusses

on the detailed specifications for components in the outline. In the object­

oriented approach these components include the classes of objects, the data

attributes inherent in each class, the methods of each object and functions which

may be called by methods. Most detailed designs employ some combination of

systems modelling and prototyping. Design-by-prototyping allows system designers

to quickly obtain scaled-down but working versions of a system or subsystem.

Incremetal prototyping may be used as part of the iterative and evolutionary

strategy of OOD.

Review I Planning - The prototypes will typically go through a series of iterations

and user reviews until they evolve into an acceptable design. The middle

management monitors the progress on the development of the classes of the

logical system by means of formal and informal design reviews with the

development team. More specifically, the progress is measured by logging the

classes in the logical design and the modules in the physical design that are

completed and functioning correctly. The stability of the main interfaces indicates

the progress towards the final product. Middle and junior management plans the

subsystem integration and system implementation as the modules and classes are

completed. There may be a need to re-iterate the Analysis cycle resulting in a

revision of the development strategy. A software project is rarely cancelled in the

design phase, unless it is hopelessly over budget or behind schedule.

ii) Group Activity

Group activity is prominent during the Design cycle. The cycle is driven by the

cooperation of various system designers, including the systems analyst. Therefore,

PEOPLE, DATA, ACTIVITIES, and NETWORKS are involved from the system

designers' perspectives. Candidate design solutions are proposed as design ideas

and opinions by various sources such as systems analysts and designers, other

CHAPTER 3 - COOPERATIVE ASPECTS OF IBE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 116

information systems managers and staff, technical consultants, system users or

system vendors. System managers may, however, limit choices by approving

technology architectures. The group activity is mainly conducted in the form of

meetings between the system analysts, system designers, system users and systems

management to evaluate candidate design alternatives. The system analysts and

designers play the key roles during this cycle. They work together in physically

modelling the system or prototyping the system. The user reviews are group

activities involving the systems analysts, designers and the users. The final design

review will also involve management. A list of the group activities during this

phase includes:

• Modelling the system with the help of design methods

(Functional designs, Class and method designs (in 00),

Human computer interface design, design of database)

• Interviews and meetings

• Technical reviews

• Verification of designs

• Prototyping

• Preparation of the Design document.

iii) Technology Support

Computer-based support is provided in the form of upper-case tools to assist

systems analysts and designers in the physical design of the software system.

Project scheduling tools would again be used to review the planning of the

software project. Group activity in the form of meetings should be supported by

meeting support tools and possibly video conferencing tools which will be

discussed in the next chapter. System designers use powerful prototyping tools

such as 4GLs to quickly build computer-based prototypes. The ideal is to support

the review group activity with computer-based tools. The design specifications are

added to the repository within which the project information is stored.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 117

3.5.4 Cycle 4 - Implementation

The main purpose of the implementation cycle is the construction of the new

system and the delivery of that system into production. The Implementation cycle

is usually performed only once.

i) Generic Tasks

Issue Formulation - Various strategies for subsystem integration and integration

testing are established. Installation plans for the hardware of the final system are

determined. A training programme for new users of the system is established.

Problem Ana"lysis and Evaluation - the risks involved in the different subsystem

strategies are analysed. The integration tests are also evaluated to ensure that

they are adequate. The software packaging is reviewed and the hardware

installation layout analysed. Evaluation of the contents of the training programme

is reviewed to ensure that it covers all aspects of the system.

Development - if the new application calls for new or modified networks or

databases, they must normally be implemented prior to writing the computer

programs. If prototypes were developed in the design phases, they might be

expanded into the final working system. The building and testing of programs is

frequently the most time-consuming and tedious phase of the life cycle.

Thereafter, subsystem integration is performed and tested. Finally, the new

system is installed and tested and delivered into operation.

Review I Planning - System tests ensure that the application programs written in

isolation work properly when they are integrated into the total system. If

programs do not work properly when combined with other related programs, the

programmer must often return to the build/test phase. The subsystem integration

may also reveal incompatibilities between subsystem interfaces requiring that the

CHAPTER 3 - COOPERATIVE ASPECTS OF TIIE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 118

Design cycle be revisited. Some time after the new system is placed into

production, a post-audit may be conducted to evaluate the new information

system.

ii) Group Activity

Group activity is prominent during the Implementation cycle. The cycle is driven

by the cooperation of various system developers (builders), including the

programmers. The DATA, ACTIVITIES, and NETWORKS building blocks of

the system are addressed. During the optional phase of building and testing

networks and databases the key facilitators are various system designers, not

programmers. Computer networks are usually implemented by the same

networking designers who designed them, while databases are usually

implemented by the database specialists who designed them. The complexity of

these activities make it suitable for group activity. The structures of databases as

well as networks are usually finalised in design meetings. The application

programmers build and test the programs. Individuals, usually build specific

programs and initially test them, but final testing, refining, system integration and

system testing are group activities involving system designers, system builders, and

sometimes the system users. Systems analysts must be available to clarify

requirements and design specifications. The systems analysts facilitate the delivery

of the new system into operation involving other system professionals, system

users, and system owners. These group activities may be conducted in the form

of demonstrations. The post-audit is also a group activity and may take place in

the form of a meeting.

iii) Technology Support

Group activity in the form of meetings should be supported by meeting support

tools and possibly video conferencing tools which will be discussed in the next

chapter. System builders may use powerful tools such as 4GLs (like Focus, SAS,

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOF1WARE DEVELOPMENT 119

and CSP) to improve productivity in building computer-based application

programs. Also, design specifications could be input to an automatic code

generator. Programming environments, such as those found in modern packages

(like TurboPascal) consist of tools to quickly construct programs, and tools to

perform debugging and testing of programs. Also worth mentioning, is distributed

software development where development may take place in environments where

developers of the system are in geographically dispersed locations and where

groups may all partake in program reviews, editing and testing activities in this

distributed environment.

The building process of information systems demonstrates the importance of

good teamwork in group activity and the need for improved support for group

activity, specifically during the software development process. Computer supported

cooperative work (CSCW) seems to have the right qualities for satisfying the need

of both management and the project team to deal with the group activities during

software development. This aspect will be investigated in the following sections.

3.6 CSCW in Software Development

In the previous section the nature of software development was investigated and

in conclusion it was found that CSCW may play an important role in the software

development process. Large-scale development of software systems requires the

cooperation of many developers and frequently development activities may occur

concurrently. The goal of cooperation is to enhance, not restrict, developer

productivity, while ensuring that concurrent development activities do not clash

with one another (Harrison et al., 1990). A key aspect of such cooperation is

ensuring that the developing artifact remains consistent in the face of concurrent

modifications.

The increasing size of and limited time for the development of software is the

basis for growing importance of distributed development teams (Hahn et al.,

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOF1WARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 120

1990). A major challenge is the support of (possibly large) teams of software

developers who may be geographically dispersed. The support of this type of

group activity may increase synergy and paralellism making the software

development process more productive. The issues of group activity, concurrent

development, distributed development, and technological support for group

activities motivate the use of CSCW in software development.

Within the area of cooperation the work of software development teams

constitutes a natural and important application. The shift in emphasis that seems

to be implied by the emerging paradigm of computer supported cooperative work

for this application is twofold (Hahn, 1990):

• Software development by teams, though being constrained by technical

requirements, is recognised as a social process comprising the formal or

informal interactions of the members of the team (group work) within an

organisational setting.

• Social processes (work procedures) in task-oriented groups underlie

particular conditions for negotiations, commitments, and responsibilities that

are essential for smoothly accommodating dynamic changes of the project

environment.

In discussing teamwork support, it is useful to distinguish between different levels

of support and different scales of cooperation (Jarke et al., 1992). In terms of

support levels, connectivity (the ability to technically exchange data),

interoperability (the ability to exchange semantically meaningful information), and

cooperation (the ability to enhance individual work by contributing towards a

common goal) are relevant. In terms of cooperation, it is appropriate to

distinguish between collaboration, communication and coordination. According to

Ellis et al. (1991), collaboration refers to joint work on a common object,

whereas communication refers to the exchange of pieces of information

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 121

(messages or development objects). Collaboration and communication tools

augment human ability for cooperation in small groups by breaking barriers that

have existed in traditional real-time and asynchronous group work (Jarke et al.,

1992). On the other hand, coordination structures (and sometimes limits) the flow

of communication and the way of collaboration in a typically larger group, to

overcome overloading.

As already mentioned, software development is a complex process and, therefore,

any computer support has to be as flexible as the development process itself. In

establishing computer support for software development, some important

characteristics of the process should be considered (Marmolin et al., 1991).

Firstly, software development is an iterative process in which each activity is

characterised by a mixture of analytic, structured, linear, creative, chaotic and

nonlinear behaviour. The behaviour depends on the development phase, the state

of the problem, and the size and skills of the development team. The bottom-up

approach seems to be dominant in small research oriented development tasks,

when the problem is ill-defined, the design teams are small and prototyping is

used (Marmolin et al, 1991). Although support for processes is important, both

analytic and creative software development activities should be supported.

Secondly, the earlier stages of software development are characterised by

intuitive information gathering processes rather than by formal analytic processes.

Concrete representations play an important role in understanding and evaluating

development ideas. Thus, the support given has to focus on informal cooperation.

According to Marmolin et al. (1991), tools for idea generation (story board

facilities) and facilities for observing other systems, and tools for visualising and

describing ideas are often more valuable than analytic tools.

Thirdly, the view held by Curtis et al. (1988) is adopted in which good

development is characterised by the ability to integrate knowledge into a unified

view and transform it into computational structures. Support is necessary for

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFIWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 122

integration of knowledge by learning and development from a common frame of

reference.

Finally, software development is regarded as cooperative work. Thus, support for

collaboration, coordination and communication are necessary. Curtis et al. (1988)

refer to the need for informal and formal cooperative tools for recordkeeping of

ideas and development concepts, change facilitation, information sharing, and

project management. Support for cooperation, which is essential in software

development, has to be very effective and so easy to use that it does not interfere

with the development activities themselves.

The cooperative tasks in a distributed software development environment can be

classified as either conference tasks, co-working tasks, information exchange

tasks, or management tasks (Marmolin et al., 1991). A conference task is a

discussion exchange of experience and knowledge between two or more team

members. These discussions may take the form of negotiations, idea generation,

problem solving, and briefings. The task could be asynchronous or synchronous,

formal or informal and have social and communicative characteristics. It could

be supported by electronic conference systems and mail systems. A co-working

task is any activity concerned with the cooperative production of a document or

other kind of product in a synchronous or asynchronous way. This task could be

supported by distributed applications including co-editors, co-authoring and

annotating systems. An information exchange task is an activity concerned with the

exchange of documents and other information between two or more team

members. It could be supported by shared databases, hypertext libraries, record

keeping tools and other forms of group memories. The management task is an

activity for coordinating and supervising of cooperation within a team. It includes

planning and scheduling tools which may be supported by PERT and GANTT

tools.

The classification of the generic cooperative tasks can be used as a basis for the

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 123

establishment of support for the cooperative development environment. Next, the

requirements of CSCW in software development projects will be examined.

3.7 Requirements of CSCW in Software Projects

Based on the examination of the software development process and cooperative

or group work, the following set of general functional requirements of CSCW in

a distributed software development environment are relevant (Marmolin et al.,

1991):

• Support informal cooperation. This is a most important requirement of a

distributed software development environment that is also hard to fulfil.

This requirement implies that the environment should support

communication of social behaviour patterns, establishment and

development of personal relations, and drop in meetings.

Moreover, interactions of groups require support beyond the formal level

of technical communication lines such as e-mail and electronic

conferencing systems (Hahn et al., 1990). The social protocols that

underlie group communication have to be accounted for in terms of

human strategies and policies for argument exchange, contract assignment

and decision making.

Support is needed beyond basic multi-user facilities which are used to

partition teams with standard schemes of concurrency control. The

support of group interactions should account for human cooperative

techniques such as negotiations, and commitments.

• Support sharing and record keeping of software development information.

Research has shown the need for supporting sharing and record keeping

of important development information, especially in larger teams or

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 124

groups. Thus the environment should support record keeping and sharing

of requirement, design and implementation information, development

deliverables, development ideas, commitments and work plans.

• Support sharing of background knowledge. This requirement refers to

important preconditions for cooperation. These include the need for a

common frame of reference, for sharing application domain knowledge

and for exchanging knowledge about similar systems and other solutions

to the development problem.

Tools need content-oriented specification of knowledge beyond language

facilities. According to Hahn et al. (1990), proper tool support and

properly controlled tool integration should consider domain knowledge of

the underlying project, working procedures and languages used for

support specification, design and implementation.

• Support presentations of ideas. Concrete representations are very important

in software development. Therefore the distributed software development

environment should support different ways of presenting and visualising

ideas for other team or group members. Examples are visualisation tools

and story board or white board facilities.

• Support strategies reducing the need for co-working. Efficient tools for

reducing the "collaborative load" may be more important than tools to

support co-working. Division and integration of work, encapsulation and

sequential processing should be supported.

• Support co-working. There will always be a need for co-working.

Asynchronous co-working in particular should be supported by annotating

and reviewing systems. The support of synchronous co-working are not as

important, except for support of interface design together with users at

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 125

other locations.

• Support management activities. Management should be supported in terms

of planning, monitoring, reviewing and control of software development

projects. An example of a management tool is electronic calendars which

have been proved not to be very useful (Bullen & Bennett, 1990).

Although the main concern is with distributed software development

environments, it is not assumed that groupware should be a substitute for all

face-to-face meetings. Generally, complex cooperative work involves a continuing

need for face-to-face meetings. This is especially applicable in initiating and

planning of the cooperative work. It is believed that well designed distributed

software development environments may both reduce the need for face-to-face

meetings and provide new and more effective ways of cooperation.

3.8 Summary and Conclusions

This chapter has investigated how the CSCW paradigm could be incorporated

into the software development process. The nature of software development was

analysed in terms of the building blocks and the building process of information

systems. This investigation was motivated by the fact that software development

is almost always carried out by groups and that technology support is essential for

a quality, on-time and within budget software project. Finally, specific

requirements for computer-based support of the cooperative work during

software development were examined.

CHAPTER 3 - COOPERATIVE ASPECTS OF THE SOFTWARE DEVELOPMENT PROCESS

CHAPTER 4
Software Development within a CSCW Environment

CONTENTS

4.1 Introduction

4.2 CSCW Technology for Software Development

4.2.1 CSCW Support for Project Management

4.2.2 CSCW Support for Collaborative Software Development

4.2.2.1 CSCW Tools for the Analysis & Design Cycles

4.2.2.2 CSCW Tools for the Implementation Cycle

4.3 CSCW Software Development Environments

4.3.1 Generic Facilities

4.3.2 Cooperative Models for Software Development

4.4 Summary

4.1. Introduction

_ There are numerous examples of both commercial products and research

prototypes for most of the major categories of CSCW technologies. Groupware,

is the generally accepted term for the technology that is used to support

groupwork. However, some of the technology marketed as groupware is meant

for small configurations, and other technology not generally classified as

groupware is available and capable of supporting large infrastructures. Darnton

(1995) proposes the use of the term Co-op Ware Technology to mean the study

and application of technology in support of cooperative or collaborative working,

and the term technology-supported collaborative work to mean the study and use

of artefacts to support collaborative work.

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 127

Many isolated tools are already available to support software development

processes. These include tools for modelling during analysis and design, resource

management, project control, or hypertext facilities for project documentation.

However, these tools tend to have limitations in terms of a sound coverage of the

knowledge of the software domain, and a centralised view of project planning.

They provide island solutions incapable of being integrated. Recently, tools have

appeared that take a less centralised viewpoint of software projects and at the

same time account for the human factor inherent in work procedures. Initially,

software development environments incorporating CSCW tools were perceived

as a forum of communication. Notions from speech act theory and other, more

ad-hoc conversational models were considered to be the basis of tools such as

typed messaging or conferencing systems (Hahn et al., 1990). However, a pure

conversation perspective is inadequate, neglecting technical aspects of software

development.

With so many CSCW technologies available, there is now a trend in CSCW

research towards integration along numerous dimensions (Sohlenkamp &

Chwelos, 1994). What is needed is an integrated project support environment

(IPSE) consisting of multi-user tools suitable for computer-aided group work in

software projects. The requirements of CSCW in software projects that were

determined in the previous chapter are used to establish an environment for

cooperative distributed software development which may form the foundation for

integrated project support environments.

This chapter will first explore CSCW technology for software development. The

discussion will focus on CSCW tools which may support specific group activities

during software development. Some of the CSCW tools are multi-purpose and

may support various group activities for different applications. However, the

discussion also includes CSCW tools that were specifically developed for the

support of group activities in the application domain of software development.

The generic facilities and architectural components of CSCW software

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 128

development environments are then discussed.

4.2 CSCW Technology for Software Development

It was stated in Chapter 3 that the study is conducted within the OISEE project,

and that the study is mainly concerned with the Development Process Reference

Model of the project. The Development Process Reference Model addresses the

information system development life cycle according to the management aspect,

the life cycle aspect, and the methods aspect. Therefore, both managerial and

technical elements should form part of an integrated software development

environment. In the investigation of the software development process in Chapter

3, it was found that groupwork formed an integral part of project management,

as well as the technical software development activities. CSCW technology for

software development should include tools supporting the group activities of

project management and collaborative software development. In this section a

survey of CSCW technology within different categories will be provided. In this

way the Technology Reference Model of the OISEE project is also addressed.

4.2.1 CSCW Technology for Project Management

Project management is an essential part of software development. Generally, it

sets clear objectives, provides adequate resources for the project, and controls the

project team and work done during the course of the project. More specifically,

project management is concerned with planning, monitoring and controlling a

project. It includes two important tasks. One is the breakdown of the whole

project into a number of well-defined management entities to which resources

should be allocated. The entities should be organised in the most suitable

manner and monitored to ensure that the proposed goal is being achieved.

Project management must also coordinate all project tasks and must be closely

integrated with the problem-solving process. Methods are applied to plan, control

and monitor each software development phase or cycle.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 129

Starting from the application of project management models originally developed

for economic domains, software engineers soon recognised the need for

automated tool support in managing the software development process. The

original project management tools did not consider the social dimension of

software group work. !Star (M. Dowson, 1987) addressed this problem by

allowing formal task fulfilment relations to be created among a contractor and

a client. The contracts are kept as formal objects in a contract database and the

implementation (programming code) is evaluated by semi-automated devices. The

various roles people play in project management and their relationships in terms

of formal communication protocols have been investigated inMONSTR that later

became the XCP protocol for general cooperative procedures (Sluizer &

Cashman, 1984). However, these approaches provide only syntactic rules and

associated mechanisms to manage team work. This has led to the incorporation

of conceptual modelling languages. Although, being more explicit about basic

semantic relationships of software project management, these approaches tend

to concentrate on traditional notions of project management (such as deliverables

and milestones) neglecting social factors such as conflict negotiation and work

plan revision.

The importance of social criteria for the communication processes in project

teams has been considered in systems which integrate formal speech act notions

into the protocol mechanisms of a project management support system

(Kedzierski, 1984). The CHAOS system (De Cindio et al., 1986) additionally

incorporates technical aspects of project management. The Coordinator system

(Winograd et al., 1988) includes group-specific social factors (contracting,

argument exchange, multi-agent problem solving) in a comprehensive formal

model that is based on the semantics of its application domain (software

development and maintenance). The exchange of arguments within an

information system has first been considered in SYNVIEW (Lowe, 1985) and was

then adopted in ArgNoter (Stefik et al, 1987). These approaches are completely

informal, but the gIBIS protocol (Conklin & Begeman, 1988) allows limited

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 130

formal control through a state transition network which specifies legal patterns

of argument exchange.

This section will further explore examples of useful CSCW tools for project

management.

(i) Tools supporting Reviews and Monitoring Task Achievement

Monitoring task achievement relates to the quality evaluation of the product

(modules, programs, subsystems, or whole systems) delivered. Obviously the

resulting product should meet the initial requirements. An example of a CSCW

tool fulfilling this purpose is the review of a contract deliverable based on

semantic and contractual analysis. This tool forms part of the Conex system

(Hahn et al., 1990) which was developed for the purpose of project management.

A standardised test bed is used for program evaluation and depending on the

result of this step the deliverable is either declared completed or rejected.

(ii) Tools supporting Variant and Version Management

In terms of project management, the current state of the project is always

important. The current state of the project is monitored in order to determine its

status and to make important decisions. Variant and version management CSCW

tools usually provide an explicit representation of the transformation steps among

versions on the design and implementation level in terms of decisions made. This

enables management, and members of the project team to perceive the logical

dependencies that underlie changes to specific modules or a group of modules.

The CoNex prototype (Hahn et al., 1990) provides an example of a variant and

version management tool in Figure 4.1.

The alternative version of the design object Emp PerPro _Des results from

different requirements mapping decisions. The change in the design may cause

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 131

a different implementation of Emp PerPro _Imp and require additional efforts

from the project team .

I .
. . bro~sl~g . , .. d;spl~y . •., . •. ~dltlng , ~~els ..

System •·1

~ (UPDATE CONFIGURATION)

SCALE FACTOR : 0.75 0.5

MESSAGE AREA :

~················

gi en glen

lnltlalDesMap R&vlsedDeaMap

ma ped

Figure 4.1 Two Versions of a System and the Argumentation involved (Hahn et al., 1990)

This specific tool may also be used during project review meetings. The

argumentation is shown in the form of screen task debates. In the figure, the

shaded oval blobs point to modules that have undergone change and shows the

associated argumentation. The argumentation indicates that the user objected

(opposed) to the original design, whereas the designer, while satisfied on the

CHAPTER 4 - SOFTWARE DEVELOPMENT WITIIIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 132

conceptual level, opposes the argument on account of workoverhead. The

argumentation that documents the change in design may be reviewed to make a

decision concerning the correct way of handling a modification to the system.

(iii) Automated Decision Support Tools

The variant and version management tool introduced one particular application

of the groupwork model of CoNex. It illustrated negotiation in terms of argument

exchange among multiple agents. The functioning of the tool was then extended

to include the integration of automatic decision support techniques into the

interactive design of a project work plan. Given the data by the decision aid tool

the analyst and the project team decides on the implementation of the revision.

One could also conceive more sophisticated tools such as optimisation procedures

and simulation programs to be plugged into this stage. Generally, the results

generated by these decision devices lead to task debates. The tool may also

include the facility to do task contracting, i.e. the assignment of tasks to people.

The contract dialogue is connected to the formal specifications of the task to be

done. It is recommended that a strict formal protocol (conversations that may be

adapted dynamically, but controlled and documented formally) be followed when

members of the project team are engaged in argumentation or contract dialogues.

Both kinds of dialogues are multi-agent interactions where several members of

the project team may get involved.

Much effort in computer supported cooperative work is oriented towards the

phenomenon of a group decision. Complex organisations are characterised by

distributed decision-making of interdependent work groups, such as in software

development teams,in manufacturing, and in marketing which all have unique

decision domains. These organisations require a sharing of perspectives among

distributed decision-makers if they are to coordinate activity and adapt to

changing circumstances. SPIDER is a software environment for enriching

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 133

communication among managers by improving their ability to represent and

exchange understandings of the situations and decisions they face (Boland et al.,

1992).

(iv) Toolkits for building Groupware

It is all too well to propose that software development should take place within

a CSCW environment, but how should such an environment be established? It

is the responsibility of an organisation, more specifically the project manager, to

establish the infrastructure, and to provide the necessary facilities (hardware and

software components) for a CSCW software development environment. Yet

construction of CSCW environments is fraught with difficulties. The groupware

developer is concerned with technical issues such as synchronisation, concurrency,

communication, and registration. The fundamental CSCW human factors for

effective groupwork should also be incorporated.

Groupware toolkits are now emerging that address some of these issues. The

toolkits may reduce the development effort, enable rapid prototyping, and

increase the product quality of multi-user applications. An example toolkit is

GROUPKIT (Roseman & Greenberg, 1992) which can be used for the

development of real-time computer conferencing applications for geographically

distributed or face-to-face meetings. The technical infrastructure of GROUPKJT

is based upon a replicated architecture and communications support, as

illustrated in Figure 4.2. Here, the objects owned by one user (rightmost Registrar

Client, Coordinator, and Conference) interact with objects owned by another user,

as well as the central Registrar. The small font text indicates the message passing

protocol.

Another example of a groupware toolkit for creating multi-user applications is

Weasel (Graham & Urnes, 1992). Weasel is based on the relational view model in

which user interfaces are specified as relations between program data structures

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 134

and views on a display. The programmer provides a central application program,

written in a traditional programming language, and a set of view specifications,

written in the declarative language, relational view language (RVL). From these

specifications the Weasel system creates a distributed implementation in which

network communication, concurrency, synchronisation, and customisation are

handled automatically.

Registrar

socket
prooess - - - - - - - _..,. connection

0 """"" ~-- object message ""!""' ._ passing

Conference

Figure 4.2 Communications infrastructure of GROUPKIT (Roseman & Greenberg, 1992)

ConversationBuilder (Kaplan et al., 1992), Coordinator (Winograd & Flores, 1987),

Chaos (DeCindio et al, 1988), and gIBIS (Conklin & Begeman, 1988) are

examples of support tools that are intended to provide flexible active support for

collaborative work activities. These active support tools have open architectures

CHAPTER 4 - SOFIWARE DEVELOPMENT WITIIIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 135

in which the kernel for the specification of activities and interconnections among

activities, and tools (groupware) can be integrated. New tools may be added, and

the flexible work support tools may change when the tasks that are supported

change.

(v) Message and Meeting Scheduler Systems

A vital part of project management is to effectively communicate with project

team members and to schedule meetings. A CSCW tool supporting these aspects

of project management is Active Mail (Goldberg et al., 1992), a framework for

implementing groupware designed to support more effective computer-mediated

interaction. Active Mail piggybacks on ordinary electronic mail retaining all the

features that have made it so successful. The messages in Active Mail are used

to establish persistent interactive connections among a group of users. Receivers

of Active Mail are able to interact with the sender, with future recipients, and

with remote, distributed multi-user applications. Groupware applications realised

within the Active Mail framework include a text conversation tool, a collaborative

writing facility, revision control management, an interactive meeting scheduler,

and some distributed multi-user interactive games.

According to Ephrati et al. (1994) two paradigms of meeting scheduling scenarios

may be distinguished: Open Scheduling Systems and Closed Scheduling Systems. In

open scheduling systems, one or more independent autonomous individuals try

to schedule a meeting. The individuals are completely in control of their own

time resources and have no obligation to meet one another. In closed scheduling

systems, such as in organisations, the meeting mechanism is imposed on members

of a group. The participants of any potential meeting have some obligation to

take part in a meeting. The constraints of the meeting are determined by the

system. A closed scheduling system should therefore maintain a consistent and

complete calendar of the organisation's members. Closed scheduling systems are

preferred and have three alternative approaches to the scheduling process,

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 136

namely calendar oriented scheduling (preferences specified over available time

slots), meetings oriented scheduling (preferences expressed per alternative specific

schedule), and schedule oriented scheduling (preferences specified over entire

schedules).

(vi) Tool.; supporting Awareness and Coordination in Shared Workspaces

Awareness of individual and group activities is critical to successful collaboration,

and more specifically to project management. The control, planning,

coordination, and monitoring of components of project management are closely

linked to the way CSCW is applied during software development. Awareness is

an understanding of the activities of others. This provides the context which

ensures that individual contributions are relevant to the group's activity as a

whole, and to evaluate individual actions with respect to group goals and

progress. Awareness is always required to coordinate group activities, whatever

the task domain. Awareness is commonly supported in CSCW systems by active,

information generation mechanisms separate from the shared workspace. Dourish

and Bellotti (1992) discuss the use of a shared editor which suggests that

awareness information provided and exploited passively through the shared

workspace, allows users to move smoothly between close and loose collaboration,

and to assign and coordinate work dynamically.

Existing CSCW systems vary in the mechanisms they provide to support

awareness. One mechanism, referred to as informational, provides explicit

facilities through which collaborators inform each other of their activities. For

example, software control systems such as RCS (Tichy, 1992) expect users to

provide text for an "edit log" which describes the nature of changes. Another

example is the integration of electronic mail with an authoring system as a

channel for sharing this information, as in Quilt (Fish et al., 1992). A second

mechanism, which is referred to as role restrictive, arises from the explicit support

for roles in collaborative systems. A role describes an individual's relationship to

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 137

shared work objects and to other participants, and is typically linked to a set of

operations which can be performed. Explicit role support reduces uncertainty

about the actions an individual might take, but only information about the

character of the activity, and not the content is provided. A third approach is to

provide shared feedback and results from individuals to the group at large

through a shared workspace (Dourish & Bellotti, 1992). The emphases of this

approach are on low overheads for the providers and recipients of awareness

information, the availability of information as and when needed as a context for

individual activities, and the avoidance of restrictive pre-structuring of group

activity.

The Milano project (De Michelis & Grasso, 1994) aims to integrate the main

components (namely a conversation handler, a workflow management system,

and an organisational handbook) in a system that supports its users to situate

themselves, at any time, within the work process in which they are active, with a

high degree of awareness. Workflow software provides the infrastructure to

design, execute and manage business processes in a network.

The DesignNet Model (represented in Figure 3.1) addresses the management

aspect of the OISEE project and may also be used as a tool for the purpose of

establishing awareness and coordination in software projects. In fact, the

DesignNet Model may form the starting point of all project management

activities taking place within a CSCW context.

(vii) Tools for Automatic Transcription of Formal Meetings

Given the importance of project meetings, it is essential to capture the spoken

contents of formal group meetings. Some research has been done in terms of

electronic meeting systems. There exist several CSCW tools in the form of

ubiquitous audio to support informal meetings, personal notes, and telephone

conversations. Many workstations are now equipped with a speaker and

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 138

microphone. An example CSCW tool is Xcapture (Hindus & Schmandt, 1992).

(viii) Tools for Issue Discussions, Event Calendars, Task Tracking

Telephones are well-networked and useful terminals. This makes telephones an

attractive platform for cooperative work applications such as event calendars,

issue discussions, question and answer gathering applications, and task tracking.

An example is HyperVoice, an application generator for telephone bulletin-board

applications (Resnick, 1992).

An approach supporting spatial workspace collaboration via a video-mediated

communication system may also be used for informal discussion. Spatial

workspace collaboration may be defined as collaboration in a three-dimensional

environment. An example of a video communication system is GestureCam

(Kuzuoka et al., 1994) in which a camera is mounted on an actuator with three

degrees of freedom. For the interface, the master-slave and touch-sensitive CRT

methods are used.

(ix) Vuieoconferencing Tools to support multi-party distributed Meetings

A meeting is traditionally a process in which people gather at the same time and

the same place to exchange views or information to solve problems. Software

project meetings take place regularly, and it is important that management,

possibly the users, and members who are required at the meeting, and

management attend these meetings. The following factors are important for

meeting support:

• Place - "face-to-face"

• Distance

• Shared space.

The ideal meeting is for all participants to sit around a table and discuss topics

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 139

in a meeting room in which they can see each other and in which the distance

between them is not very big. Eye contact and gestures are important in

meetings. Okada et al. (1994) proposes a multi-party videoconferencing system,

MAJIC, that projects life-size video images of participants onto a large curved

screen as if users in various locations are attending a meeting together and sitting

around a table. MAJIC supports multiple eye contact among the participants and

awareness of the participants' gaze, hence users can have discussions comparable

to face-to-face meetings.

4.2.2 CSCW Technology for Collaborative Software Development

Various tools supporting the methods and implementation aspects of software

development already exist, such as CASE tools, programming environments,

fourth generation languages, program generators, and software engineering

workbenches. However, the incorporation of CSCW in the software development

process require additional groupware or CSCW tools.

Ethnography has gained considerable prominence as a technique for

incorporating the nature of work in the development of CSCW systems. The

social context of work will also play an important role when CSCW becomes part

of the software development process. Two trends have strongly motivated the

rationale for ethnography in CSCW systems development (Hughes et al., CSCW

1994):

• The belief that the reason why many systems fail is due to the fact that

their design pays insufficient attention to the social context of work.

• A realisation that the emergence of low-cost technology and the

ubiquitous nature of networked and distributed computing pose new

problems for software development. New methods which analyse the

collaborative, hence social, character of work and its activities are

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 140

required.

Ethnography and its implications for CSCW is a study on its own, and is not

pursued further for the purposes of this study. This section will explore CSCW

tools which may support the cooperative work of software teams during software

developrr,ent.

4.2.2.1 CSCW Tools for the Analysis and Design Cycles

(i) Message Systems

Crucial to any collaborative work is the ability to communicate between

participants. Voice communication is probably the most efficient medium, but has

two drawbacks: it is intrusive (expected to react instantly to a vocal query), and

it is hard to store and manipulate. Mail programs (such as Unix mail) are often

used to communicate even in the same room. This is non-intrusive (an answer

can be delayed) and mail can be stored for later reference. Some mail systems

are very primitive as only two persons may be involved in communicating, and

mail is neither interactive nor reliable in terms of when the mail arrived and

when it has been read.

Standard communication tools like e-mail or e-talk lack a number of important

features such as supporting any number of users, working in real-time, and

supporting both text and graphics in messages. The Andrew message system

(Borenstein & Thyberg, 1988) has multi-media facilities and includes some

collaborative facilities, but it applies to a large area network and thus lacks close

interaction between users. Similarly, Information Lens (Malone et al., 1987)

supports asynchronous communication, but does not support the real-time

conferencing aspect of a talk system. The need is for powerful message systems

supporting real-time conversations.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 141

A support system for software development teams should provide embedded

communication facilities that are flexible enough to allow discussion at various

levels, from specific designs to more global issues. In recognition of the crucial

role discussions and rationale play in the development of complex systems,

computer systems have been built that attempt to capture design rationale.

Artifact-centered information spaces support communication during collaborative

work as well as individual work. Design decisions are supported within an

evolving information space centered around the artifact being designed. An

example is XNETWORK (Reeves & Shipman, 1992), a knowledge-based design

environment for computer network design that incorporates this artifact-based

communication as a method for easy addition of network designers'

understanding about the design task.

(ii) Shared Drawing Tools

The generation of design ideas in group discussion is a complex and dynamic

process. Usually, sketches are important for coordination during requirements

engineering and the initial stage of the design process. The group communication

for this purpose can be facilitated by computerised drawing tools which permit

simultaneous sketching by team members, sometimes in different locations.

Computerised drawing tools support the idea generation process in terms of the

fluent expression of ideas, and the ability to interact and build on existing

representations. These tools need to aid not only the drawing process but also

the management of design ideas during group interaction. There are five critical

factors that affect a group-based analysis and design process and that should be

considered in establishing requirements for shared drawing tools. These factors

are work allocation, design integration, design ownership, design recal~ and space

sharing (Lu & Mantei, 1991). The shared drawing tool features based on the

requirements supporting each of these factors are summarised in Table 4.1.

Examples of shared drawing tools are CaveDraw (Lu & Mantei, 1991), Commune

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 142

(Minneman & Bly, 1991), VzdeoWhiteboard (Tang & Minneman, 1991), and

Teamworkstation (Ishii, 1990). Most of these tools support the features mentioned

in the table above. Video Whiteboard, for example, provides a whiteboard sized

shared videospace allowing multiple designs to be viewed at the same time, but

the designs are immovable. CaveDraw includes line, rectangle, oval, polygon, text,

and freehand (pencil & marker) drawing tools. Users may select and erase

drawing segments and use different coloured markers to identify their own work.

Table 4.1 Shared Drawing Tool Features

Work

Allocation

REQUIREMENTS

Participants can select individual

segments of the analysis & design to

work on simultaneously.

SHARED DRAWING TOOL

FEATURES

Participants draw their analysis &

design ideas on shared transparent

layers. Drawings on the topmost layers

may appear in brighter colours to

distinguish between layers.

Participants are aware of the analysis The layers are superimposed on each

& design activities of others while other in order for a participant to see

working on their own segment. other drawing activities taking place

and who is viewing or working on

each layer.

Participants are able to select and

modify all previous analysis & design

ideas.

Participants can select, create and

hide the display of any layer on their

screen.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 143

Participants are able to compare and Participants are allowed to draw

Design consolidate modifications to different alternate analysis & design ideas on

Integration portions of the original analysis or different layers and superimpose the

design and still throw out undesirable layers or subsets of the layers in any

changes. order selected by the participants. The

saving of any of these combinations is

also allowed.

Participants are able to compare Same approach as above is followed.

different modifications to an analysis In addition, participants may work on

or design idea at the same time their own layer while other

without disturbing the original idea participants are performing a

or having to view multiple displays. comparison.

Participants are able to view both the Each participant is allowed to bring

overall analysis or design and its up a sublayer showing the connection

subunits in addition to the subunit of all subunits while working on one

they are working on. of the subunits in the previous layer.

Participants are able to declare any Participants are allowed to declare

Design portion of a sketch as private and work public or personal by selecting

Ownership not subject to deletion by others. public or personal tools respectively.

Work drawn with a personal set of

tools cannot be erased by others.

Participants are allowed to convert

their work from private to public and

vice versa through available editing

functions.

Participants can identify with no Each participant's work or ownership

additional interaction sequences who of an analysis or design is identifed by

is working on any specific analysis or a specific colour.

design sketch.

Participants are able to review prior Participants are allowed to directly

Design analysis or design ideas with select the viewed layers that capture

Recall minimum effort. prior analysis or design ideas with one

mouse click on the dimmed layers.

Layers may be selected through using

a pulldown menu.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 144

Participants are able to work in their Participants are allowed to generate

Space own space yet virtually share space as many layers of drawing surface as

Sharing with other participants. they need. They are also allowed to

select a personal set of layers to work

with while retaining elements common

with others.

Cavedraw differs from other shared drawing tools in its support of "transparent

layers". Participants may cut or copy any portion of a sketch on one layer to a

desired location on another layer. Figure 4.3 presents an example of the

overlapping layered approach in CaveDraw.

I~ Ale Edit Layer Show Wide View

ll
F'
Q

0
~

0
D
G
A

~

~

House-Outside Plan 1

Fl replace
-....._

' ' .. 01:
'

Workout·

.< fWlndow

' '
' ,.

I~ Ale Edit Layer Show Wide View

House-Outside Plan 2

F\re~l1'~'l---- ,--" ~ W!"d~
< l i J

.• .-:-·". --------· .. I_ __
~ Workout ! ! ! _j !

! ! l----~
Q I . I I

D t)--(-----'-1
(----. __ /,(II Garage ! G

A ~===i I
Window_/ ·:- 'L ,------ J'

Entry·" - '-

Figure 4.3 The transparent layers of the CaveDraw Tool (Lu & Mantei, 1991)

Another example of a shared drawing tool is Conversation Board (Brinck, CSCW

1992), a prototype multi-user drawing application built to be used by people who

are conversing over a distance using a phone or video phone system. The

Conversation Board is a structured graphics editor which includes drawing

features such as markers, lines, circles, rectangles, text, connectors, and images.

Users may draw simultaneously and telepointers make their gestures visible to

CHAPTER 4 - SOFTWARE DEVELOPMENT WITIIIN A CSCW ENVIRONMENT

TIIE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 145

each other. ClearBoard (Ishii et al., CSCW 1992) provides a shared drawing

medium that permits co-workers in two different locations to draw with colour

markers or with electronic pens and software tools while maintaining direct eye

contact and the ability to employ natural gestures. Figure 4.4 illustrates the

system architecture of ClearBoard. The architecture includes TeamPaint, a multi­

user computer-based paint editor running on networked computers, and digitiser

pens. A CRT-based rear projection display with a transparent digitiser sheet is

used to improve the screen clarity. The digitiser is mounted to the surface of a

flat panel display and the screen size is 80 cm x 60 cm.

CCDcamera

polarizing fil

computer
drawing with a
digitizer pen
and TeaiPaint

I

7""~]glass boar
projection scr
transparent digit

TeamPaint is running on
distributed Macintosh computers.

ayboard

Apple Talk network

Figure 4.4 System Architecture of ClearBoard (Ishii et al, 1992)

Other examples of shared drawing tools are VzdeoDraw (Tang & Minneman,

1990) and Team WorkStation (Ishii, 1990) in which hand gestures in a shared

workspace can be supported by shared video drawing media. Groupsketch

(Greenberg & Bohnet, 1992) allows small geographically-distributed groups to

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

TI-IE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 146

list, draw and gesture simultaneously in a communal work surface, supporting

interactions similar to those occurring in the face-to-face drawing process.

Conversation Board (Brinck & Gomez, 1992), a shared "whiteboard" allows

people to share artifacts like drawings, graphs, or photographs which are often

part of face-to-face meetings. Figure 4.5 illustrates a view of the Conversation

Board for one user and a miniature of the view of a second user. This example

shows how the system is used to brainstorm a description of the Rendezvous

system. The main window consists of a control region at the top and a canvas

where all the drawing occurs. There are several tool palettes available and the

main one is shown at the top right.

lSl ' Objects ~ EQJ

Q1 0 /
Black Circle Line

/ 11111 /
Blue Box Connect

e ~)) ~p
Sound Annotation

(IJ II
Text Text File Image

- """ ,,:::> .. / ... - .,.,,_
~ .:;. ..!t..
~ Ill fill

Te.t T..r."""

·······.·.·.·.·.·.·.·.·.·.•·.·.··· ::::::

Figure 4.5 A view of the screens of Conversation Board (Brinck & Gomez, 1992)

CHAPTER 4 - SOFfWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 147

(iii) Documentation Tools

Documentation forms an intergral part of the software development process and

is time-consuming. Documentation is hardly ever the responsibility of one

individual member of the project team. Normally, more than one member of the

software team works on the software project documentation and it may thus be

ideal as a group activity. Factors such as consistency, version management,

change control, cross referencing and graphical capabilities are important in the

documentation process.

Documents are created through a number of activities including brainstorming,

outlining, writing, editing, and reviewing. SASSE (Nastos & Baecker, 1992)

supports the different requirements of each of these activities, and smooth

transitions among the activities. In the case of SASSE, synchronous work is aided

by colour-coding of participants and their selections. The synchronous work is

also facilitated by views that enhance collaboration awareness and the use of

sound. On the other hand, asynchronous work is aided by automatically-generated

change descriptions and by writer-inserted annotations. Another example of a

documentation tool is Aspects (Naef et al., 1992), which allows two to sixteen

users on a network or modem link to work together on a document at the same

time and see each other's changes as they happen. The document contents may

include text, drawing, and bit-mapped painting.

DUPLEX (Pacull et al., 1994) is a groupware application designed to fulfil the

need of collaborative editing in a large-scale distributed environment.

Collaborative editing involves both writing activities and communication between

co-authors, and an environment or tools supporting it should consist of three

separate facilities:

• a collaborative editor enabling users to share and maintain the state of a

document written by several co-authors.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 148

• a direct communication facility helping co-authors exchange information

about the collaboration. The recipients of a message are selected by the

sender.

• a subject-based communication facility enabling users to distribute data on

specific subjects, such as modificatiom in a document.

These facilities express the means of interaction (synchronous or asynchronous)

between co-authors. Several systems, such as GROVE (Ellis et al., 1991) and

DistEdit (Knister & Prakash, 1990) incorporate a synchronous collaborative

editor. The DUPLEX environment incorporates a collaborative editor with

asynchronous interaction between users through a shared kernel which maintains

the document context. Document decomposition is used together with a

consistency criterion adapted to collaborative editing in order to limit conflicts

between authors and to enable recovery using subject-based or direct

communication. The decomposition enables users to specify the segments of the

document they are interested in and to apply concurrency control to their

segments.

(iv) Tools to support Problem Solving

Many software development collaborative tasks involve problem solving. A

number of CSCW technologies have emerged to support the problem solving

activities of groups. Problem solving has many stages ranging from problem

identification, idea generation, idea structuring, idea selection or decision making,

and implementation. One approach to supporting the many stages is to have a

suite of tools, each tailored to a specific stage. Examples are Arizona's Plexus

system (Nunamaker et al., 1992) and the SAMM system (Gallupe et al., 1992).

Idea generation is a critical component of many problem solving tasks. One way

is to allow/ brainstorming groups to use a computer-based tool that permits

simultaneous entry of ideas, yet still allows sharing of ideas among the group

CHAPTER 4 - SOFIWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 149

members (electronic brainstorming). Much research in this area has been done

at the University of Arizona. Their decision support system incorporates a

brainstorming tool that is based on Nominal Group Technique (NGT), a formal

method for giving interacting groups the advantages of a nominal group. The

NGT allows people to generate their ideas in parallel on paper, and then

exchange them with each other as a way of simulating the flow of ideas.

McGuffin and Olson (1992) proposed that ShrEdit, a shared text editor, be used

as a brainstorming tool where the computer displays of the group are embedded

in a special table and the group are facing each other in a reasonably normal

arrangement with normal sight lines for groupwork. The group are allowed to

talk and interact in any way they wanted.

Takemura & Kishino (1992) proposed a cooperative work environment using a

virtual workspace (created by virtual reality technology) where more than two

people can solve problems cooperatively, including design strategies and

implementation issues.

(v) Computer-aided Design Tools

Shu and Flowers (1992) proposed a system, Teledesign, that allows people to

simultaneously modify a common design in a graphically rich environment with

the purpose of examining groupware interface issues unique to three-dimensional

computer-aided design. Experiments with this system confirmed that a

simultaneous mode of edit access is preferred over a turn-taking mode for two­

person interactions. Also, independent points of view between designers

optimised parallel activity.

(vi) Pen-based Meeting Support Tools

We-Met (Window Environment-Meeting Enhancement Tool) (Wolf & Rhyne,

1992) is a prototype pen-based tool designed to support both the

CHAPTER 4 - SOFI'WARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 150

communication and information retrieval needs of small group meetings. We-Met

provides a shared drawing area in which several users can work at the same time.

4.2.2.2 CSCW Tools for the Implementation Cycle

(i) Editing Tools

Usually, each member of a project is responsible for one or several modules, split

among a number of files. At some point during development, one member may

need to use another member's module, for instance to test a program or system.

This often results in a need to access each other's files for modification. Some

modifications are only for the sake of testing (like adding trace instructions) and

need not be known by the file's owner. Other modifications change the behaviour

of a program (such as bug fixes, or small changes in functionality) and need to

be integrated by the file's owner, provided he/she agrees on the changes. The

first type of modification is temporary, while the latter is structural (Beaudouin­

Lafon, 1990).

With traditional tools, these modifications are usually handled by making a copy

for local modifications or by asking the file's owner to do it. The first solution

leads to many modified copies that may become hard to integrate and the second

solution may lead to small conflicts that impair the efficiency of the group. What

really is needed is software support in the development environment for the

shared editing of locally modified versions of files.

A number of systems exist that support multi-user editing of documents. Some

of them are real editors, while a number of others are based on hypertext

concepts. CES (Greif et al., 1986) and Grove (Ellis et al., 1988) are editors that

provide different levels of concurrency control, and both edit documents with a

simple structure. In CES the nodes of this structure correspond to the level of

concurrency in terms of the fact that a writer has a lock on a node. In Grove the

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 151

concurrency is at keystroke level as the changes are immediately visible to all

users. Mercury (Kaiser et al., 1987) does not allow concurrent access as each user

has write access to a given set of modules. When a module is changed, the users

who import it (Mercury knows the dependencies between the modules) are

notified of the changes so that they can update their modules accordingly. All

three systems lack a good version control system. According to Beaudouin-Lafon

(1990), hypertext systems have too flat a structure to efficiently support program

editing. Hypertext systems are not truly collaborative in the sense that one does

not see the changes that are being made to a hypertext frame by another

member, and changes may not be recorded when somebody else has changed the

frame in the meanwhile. Moreover, documents produced with such a system are

not structured, and it would therefore be difficult to recreate a program source

code from a set of frames. According to Beaudouin-Lafon (1990), version

management systems are not suitable for multi-user editing either, because

integration may be difficult.

(ii) Debugging

Although most of the editing, debugging and testing activities are individual,

locating an error (or bug) often involves several members of the project team.

Several people may be needed to identify a problem, or to uncover a bug in a

team member's module that he/she is unable to solve. Several people debugging

together usually sit down around the same workstation, struggling for the

keyboard and mouse to run the program. This process would be much improved

if each member could interact with the same program through his own

workstation.

This capability may be used as well to communicate a running program to a team

member once a bug in the module has been uncovered. Some error situations are

difficult or impossible to reproduce so the only solution often is to demonstrate

it at one specific workstation. It would be ideal if the program instead of the

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 152

programmer is moved. To some extent, shared windows may comply to the needs

of shared debugging and communication of a running program. Today's network

transparent window systems like the X Window System1 are a sound basis for

shared window capabilities. Another possibility is the building in of the shared

capabilities inside the application itself. Many constraints may be imposed by

window sharing like a fixed size for the saue window on different screens. This

is because the semantic models of window systems are not adapted to intelligent

window sharing. For instance, a window does not know its contents because

window systems use direct drawing. On the other hand, requiring applications to

support multi-user input and multi-view windows can be essential, unless a good

graphical library hides these aspects from the application.

(iii) Program Development and Testing

In modern software development projects, software developers may be widely

separated geographically while having significant amounts of computing power

on their individual desks. Geographically dispersed software developers which

form part of the same project team working on some system or subsystem, may

find it necessary to share programs (for reuse) or test programs over a network.

Computational email (the embedding of programs within electronic mail

messages) promises to alleviate the problem of remote installation at separately

administered sites, the problem of getting users to "buy in" to new applications,

and the problem of extemely heterogeneous user interaction environments

(Borenstein, 1992). The basic idea of computational email is very simple. Instead

of sending plain text, or even multimedia information in a mail message, a

computer program in a well-defined language is sent instead. Mail-reading

software at the recipient's end recognises (via a well-defined mechanism) that the

mail message is software which may be executed. Usually, when the recipient

The X Window System 1s a trademark of MIT (Massachussetts Institute of
Technology)

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 153

reads the mail message, the message may show some introductory text. This tool

may also be very useful in setting up meetings. The software executed may

engage the recipient in a question/answer dialogue and may request him to select

the dates and times most suitable to him for a meeting. The program might then

mail the answers back to a network server that collects similar answers from

participants, in order to find a meeting time suitable to all of them.

(iv) End user Programming

In the participatory development process, not only are the users involved in the

analysis and design cycles, but they become designers by giving them end-user

programming tools. Malone, Lai, and Fry (1992) describe a "radically tailorable"

tool which allow end users to create a wide range of different applications. Users

create applications by combining four kinds of building blocks: objects, views,

agents, and links.

(v) Building of Collaborative Applications

Application developers may employ the DistView toolkit (Prakash & Shim, 1994)

to convert existing object-oriented applications to collaboration-aware

applications with minimal effort or to create new collaboration-aware applications

from scratch. The building of multi-window applications are supported in which

users can share some of their application windows with other users while still

keeping other application windows private. DistView uses a replicated object

approach that ensures good interactive response times and keeps network

bandwidth requirements low.

(vi) Merging of Documents and Version Control

The need to merge different versions of an object is common in collaborative

computing. In the course of collaboratively producing a document or some other

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 154

artifact, people often find that they have created different versions. The objective

is to have one correct version. The set of revisions should then be taken from

one version and re-applied to the other version of the object. There is a need for

a tool that could possibly point out the differences between the versions, that

could perform the merge automatically, and respond appropriately to conflicting

changes. Existing merge tools are either limited being based on plain text files,

or are not adaptable to particular collaboration contexts. Munson and Dewan

(1994) have developed a flexible object merging framework that allows definition

of the merge policy based on the particular application and the context of the

collaborative activity. It supports automatic, semi-automatic, interactive merges,

semantics-determined merges, operates on objects with arbitrary structure and

semantics, and allows fine-grained specification of merge policies. Tools for

merging plain-text files include the UNIX dijf3 tool and the GINA collaborative

application framework (Berlage & Genau, 1993) which allows users to merge

revised versions by merging command histories.

4.3 A Software Development Environment supporting Cooperative Work

The idea of a Software Development Environment (SDE) as a comprehensive,

integrated set of tools supporting the complete software development process has

been the topic of research over the last number of years. Supporting the software

development process means to support the modelling techniques of the process,

and the development and maintenance of all kinds of documents including

requirements specifications, software design specifications, code listings, technical

documents, and manuals. The ultimate goal of a SDE is to improve the quality

of the final product, to support reuse in and across software projects and to free

developers from routine work (Peushel et al., 1991).

A major challenge for future SD Es is the support of (possibly large) teams of

software developers who may even be geographically distributed. Such distributed

software environments exist, but the available machine support is usually

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 155

restricted to local or wide area networks and corresponding low-level protocols

that only enable simple file transfer, rudimentary configuration management

support, and a mail system (Peushel et al, 1991). The need is for coordinating

access to shared information on different levels of granularities (e.g. from

complete systems of modules or documents down to procedure definitions in a

single module). There is also a need for dedicated message servers for conveying

information about project states, critical tasks to do, and getting feedback.

Examples of research projects which tackled the problem of team support are

MARVEL (Kaiser and Feiler, 1987), ARCADIA (Belz et al., 1988), ALF (Benali

et al., 1990), and MERLIN (Peushel, 1991). A further achievement of such an

environment is the computer-supported integration of development and

management activities. It is envisaged that the petri net-based DesignNet Model

of the OISEE project which presents the the development process model at three

levels, as previously illustrated in Figure 3.1, should be computer-supported for

the integration of development and management activities.

4.3.1 Generic Facilities

This section outlines the facilities that a software development environment must

provide in order to meet the goals of flexibility and active support. These generic

facilities were compiled by Kaplan et al. (1992) in a paper which reports on the

development of an open, flexible and active support environment for software

development based on the ConversationBuilder. The first set of activities is

concerned with users being able to work on and relate among arbitrary sets of

activities. These facilities are necessary to:

• Provide the ability to specify new kinds of activities to the system. The

specification of such situations are called protocols.

• Allow the user to have as many activities running simultaneously as is

useful.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 156

• Allow the user to relate activities to one another as is suitable, in order

to make an activity subordinate to another, or group of other activities.

• Be able to impose obligations on other users, or other contexts, from any

context, and be able to manipulate one's own obligations. This entails

handing the obligations over to others, changing their context, declaring

them complete and refusing offered obligations.

• Allow the user to switch among activities at will and as effortlessly as

possible.

The second set of facilities is concerned with helping the user to determine his

current position in the system, and the options available to him. These facilities

are to:

• Help users determine how they entered a particular context.

• Indicate the legal actions which may be performed in a given context.

• Perform any of the legal actions.

• Indicate to the user the obligations which must be met before a task is

complete.

• Enable the user to understand the relationships (if any) that exist among

the data that are present in the system.

• Enable the users to understand the relationships among all the contexts

in which they are involved.

• Allow members of a group to be aware of what other group members are

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 157

doing.

The third set of facilities is miscellaneous, but necessary. These facilities are to:

• Allow the construction of arbitrary networks (hypertext systems) of data,

in which both nodes and links can be typed, so that both shared and

private data of various types can be modelled in the system.

• Continue to provide traditional support facilities, such as compilation,

version control, editing and mailing.

• Allow the incorporation of new tools as required by users.

4.3.2 Cooperative Models for Software Development

Repositories are the central information servers for software development

environments. Early repositories generally provided the service of storing evolving

objects. However, there is evidence especially, in the software engineering

domain, that repository technology will soon be used to integrate whole

environments, even organisations (Jarke et al., 1992). Figure 4.6 illustrates these

environments which incorporate human agents, their local workplaces and tools,

and structured communication either directly by message-passing over the

network or indirectly by shared information in the repository. In such cases, the

repository matures to an active center of communication for complex cooperative

development processes.

With development in the area of computer communications, information

represented in different formats, such as voice, graphics, images and text can be

processed, stored, retrieved and distributed. In the area of communications, new

technologies are available for developing integrated networks capable of

providing the level of service required by different media.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 158

¢=Agents

¢= Workplaces

'···························1·····················i ¢= Network

¢= Repository

Figure 4.6 A typical Software Development Environment (Jarke et al., 1992)

The appearance of new technologies in the area of communication is motivated

by technology transformations in the following domains (Karmouch, 1993):

• The emergence of high-speed networks with powerful workstations and

new storage technology imposes a new way of processing information.

• Distributed system configurations are possible where several powerful

workstations share resources at different sites by communicating through

local area networks (LANs). Other configurations may cover wider areas

such as LAN interconnection through MANs (metropolitan area

networks) and wide area networks (WANs).

• Faster networks, high performance processing and storage systems directly

manipulate new types of information such as video, voice and image, all

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 159

integrated in a single entity (the so-called multimedia document).

• Optical fibre technology has overcome the limitations of current

networking technology in providing high speed networks, permitting the

transfer of large amounts of multimedia information over a single channel

in an integrated and synchronised manner.

The architecture that is proposed for computer-supported cooperative work in

software development should be able to fulfil the future needs of multimedia

distributed cooperative work. The architecture is adapted from an architecture

established by Brodie and Ceri (1992) for the new generation information systems

called Intelligent and Cooperative Information Systems (ICISs). These systems

provide forms of cooperation and intelligence. Intelligent and Cooperative

Information Systems will involve large numbers of heterogeneous, intelligent

agents distributed over large communication networks. The agents may be

humans, humans interacting with computers, humans working with computer

support, and computer systems performing tasks without human intervention.

Core technology (previously described as services provided by middleware in

Chapter 2) required to support the advanced features of ICISs include (Brodie

& Ceri, 1992):

• Development environment tools (UpperCASE, MiddleCASE,

LowerCASE, data management and access tools)

• Repository tools (DBMS, OODBMS, KBMS, file systems, distributed

object management, libraries).

• Presentation services/user environment (windows, forms).

• Communication infrastructures (RPC, peer-to-peer messaging, queued

messaging, X-400, mail).

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 160

• Environment management (security, control, resources, scheduling).

• Distributed Computing Environment Tools (network services,

communication services)

Ideally, these services should be transparently available to any information system

or IS development environment in the distributed computing environment.

Collectively, the systems providing these services are called middleware and the

principle is that as many services as possible should be available via sharable

servers. Figure 4. 7 gives an illustration of the layers of the corresponding

distributed architecture.

A multimedia configuration, as established by Karmouch (1993) for cooperative

applications is depicted in Figure 4.8. Three separate networks are used -

Ethernet for data, PBX for voice, and Broadband for video. When high speed

networks such as FDDI, DQDB and B-ISDN become commercially available, all

of the media may possibly be integrated into one network. An extension of the

workstation level is a separate TV monitor for displaying video. A videowindow

may also be integrated in the graphical screen, depending upon the image quality

required for an application. Servers may be classified to fall within two

categories: information servers and communication servers. Information servers

can be further classified into a database server and various storage servers.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT

\
\

\
I
\

System
Application (Tool)

System
Application (Tool)

AP ls

Middleware (Distributed Computing Services)

- User lnteriace - Asset Management
- Run Time Environment DCE - Computing Network Management

(Distributed Computing Environment) - Telecom. Network Management
- Software Development Environment - Control : Request Scheduling ...

(lower CASE) - Naming: ...
- Modelling Tools (Upper CASEl - Security
- Data Management and Access - Utilities

System Interfaces

OS
Network

Hardware

•• OS
Network

Hardware

Figure 4.7 Distributed Computing Architecture with Middleware (Brodie & Ceri, 1992)

CHAPTER 4 - SOFIWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

161

Voice
Server

TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT

Text and
Graphic
Server

Image
Server

Camera

Database
Server

t ernet

Cooperative
Server

Mail
Server

Directory
Server

Digita lly Controlled
Analog Video

VCR (PL/RR)

Analog Video Server

162

·-------------·

Figure 4.8 Multimedia Platform for Cooperative Applications (Karmouch, 1993)

4.4 Summary

Now, that a clear understanding of the CSCW technology suited to the software

development process has been obtained, the CSCW technology meta primitive

for software development that previously could not be specified in full may now

be incorporated in the CSCW software development conceptual model. The

CSCW conceptual model for software development will be the subject of Chapter

5.

CHAPTER 4 - SOFTWARE DEVELOPMENT WITHIN A CSCW ENVIRONMENT

CHAPTER 5
A CSCW Conceptual Model for Software Development

CONTENTS

5.1 Introduction

5.2 A Meta Model of Cooperative Software Development

5.2.1 A Groupwork Model for Task Cooperation

5.2.2 A Multi-Agent Conversation Model for Task-Oriented Negotiations

5.2.3 Software Process Data Model

5.2.4 Model Integration

5.3 CSCW Conceptual Model for Software Development

5.3.1 Computer Support Primitives for Software Development

5.3.2 Cooperative Work Primitives for Software Development

5.4 A Framework for Software Development within a CSCW Environment

5.5 Summary & Conclusions

5.1. Introduction

Within the context of cooperative support systems the software development

process constitutes a natural and important application. The paradigm of CSCW

for this particular application domain as it was perceived during the investigation

can only be defined when all the conceptual primitives comprising it are given

theoretical foundations. In the previous chapters, the two main conceptual

primitive classes, namely cooperative work and computer support were determined

for the software development process. The conceptual model representing the

CSCW paradigm for software development can now be completed.

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 164

This chapter will first consider the proper integration of conceptual components

in terms of an integrated model of groupwork in software projects. Having

established the integrated meta model for cooperative software development, the

formally related conceptual model may be constructed.

5.2 A Meta Model of Cooperative Software Development

A comprehensive model of the software development process should contain:

• Knowledge about the software engineering domain in the form of a

semantic specification.

• A group model representing the interactions within a task-oriented

problem solving team.

• A model of social activities that groups perform, representing interactions

in the form of argumentation debates, meetings and agreement on

contracts, and their monitoring.

The CoNex project has developed an approach to integrate different tasks

encountered in software projects using a conceptual modelling strategy (Hahn et

al.,1990). This strategy will be used to construct the meta model of cooperative

software development and consists of submodels, including:

• A conceptual model of software development processes representing explicit

logical dependencies between requirements, design and implementation

decisions.

• A conceptual model of groupwork suited to the needs and particulars of

software project work.

• A conceptual model of task-oriented debates with multiple agents. This

model makes explicit the reasons behind logical dependencies related to

requirements, designs, and implementation decisions, versions and

configurations.

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 165

• A conceptual model of task contracting and contract supervision

representing long lasting transactions in the project team by a semantic

model of project coordination.

The submodels are united m a meta model of the cooperative software

development process.

This section is organised as follows. The modelling of groupwork structures and

conversations, and software engineering is done. Then, the integration of these

submodels is presented. The object-oriented data model notation of Hahn et al.

(1990) will be used for the meta level of cooperation support.

5.2.1 A Groupwork Model for Task Cooperation

Task-oriented, multi-agent collaboration is considered when identifying the

requirements for a groupwork model for task cooperation:

• The dynamic assembly of teams of experts depends on the type of

problem (software development in general) to be solved and the required

skills involved, and the actual availability of individuals or material

resources.

• One individual may be associated with several teams simultaneously

according to different issues, obligations and levels of competence.

• Solutions to (sub)problems are devised and delivered in parallel.

• The rationale of a task to be solved consists of problem and task

definitions, feasibility constraints and approvals; nevertheless, these are all

subject to social negotiations.

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 166

• The definition and execution of tasks are plan guided.

• Facilities have to be devised to control incomplete and conflicting problem

solving solutions coming from individual team members.

Given these requirements the groupwork model is composed of the conceptual

entities and relations in Figure 5.1. The groupwork model is derived from two

perspectives, namely the organisational perspective and the project perspective.

ha_affiliation ta_atfiliation
equipped_ with

Human Agent 1....
1
Technlcal Agent

operated_ by

qualification
resources

Agent

manager
contractor

ISA I .
--- Conversation

~--~---~

Commitment Action

required

plan outcome

reference

Figure 5.1 Groupwork Model: Organisational and Project Perspective (Hahn et al., 1990)

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 167

Organisational Perspective: Groups consist of a number of Agents. From a

problem solving viewpoint an individual Agent of a group is characterised by a

competence level (qualification: AKBObject), which are available in the

Application Knowledge Base. Resources (in the form of technical equipment,

money and time) are assigned to an Agent. Two basic types of Agents are

distinguished, namely HumanAgents and TedznicalAgents. Each of them may be

considered either individually or as a group. Single persons dynamically form a

human group and various tools can be configured to a compound technical

group. The modelling of the agents includes relevant dependencies between the

subclasses. A TechnicalAgent can only be handled (operated _by) by a HumanAgent

with appropriate qualification. The availability (equipped_ with) of a

TechnicalAgent for a HumanAgent should also be shown.

Project Perspective: Various Resources are necessary in order to execute a project

task. Besides common economic resources, such as time, money, and technical

equipment, Agents should also be considered as resources to be managed.

Projects are performed through mutually reconciled Actions which should be

planned. The groupwork model contains various levels of granularity to specify,

to accept, and realise plans by means of activities. On the technical level, plans

are represented by PlanTransitions and the results manifested in the form of

PlanDeliverables. Plans are created and modified in the course of negotiations

(conversation). The focus is not on planning as such, but on various social policies

to agree upon plans (by contracting), to modify already settled plans as a result

of new evidence (by debating and argument exchange) and to monitor plan

execution. The actions within a plan and the execution of an action according to

a plan is based upon a social contract. The agents (manager, contractor) involved

agree upon the issue of negotiation in terms of what has to be done, how it

should be done, and when it has to be done. These task oriented negotiations are

subject to Conversation about actions. Specific applications of the group model,

for example software project management, require the domain knowledge to be

plugged in at the level of the application specific knowledge base.

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 168

5.2.2 A Multi-Agent Conversation Model for Task-Oriented Negotiations

The coordination of plans and actions is based on communication among agents.

Two qualitative techniques are used to control the interactions that task-oriented

groups often use to achieve or modify agreements:

• Conversation for action aims at direction of people. Messages are used to

assign plans to people, to make binding commitments for the achievement

of a project goal, to implement a plan in terms of the required activies,

and guarantee proper termination of task oriented activities.

• Conversation for negotiation aims at negotiation among people. This

communication mode entails opinions to be exchanged in terms of debates

for the determination and coordination of goals, and to agree upon an

activity to be done through argument exchange and final decision making.

The model is illustrated in Figure 5.2. AnAction_conversation is characterised by

the exchange of messages among several participants on particular topics inherited

from the Conversation object.

A sender and receiver component form part of messages stating the immediate

Agents involved in the conversation, and a characterisation of the issues

(concerns) dealt with.Action_conversations are special types of Actions and have

a particular specification for admitted sequences of conversation steps. Therefore,

in addition to covering the traditional view of realising work plans by task

oriented activities, plans also incorporate the discourse level for plan modification

and task assignment as an integral part of project activities. Several primitives of

the basic Message type exist within such a conversation plan including request,

counter, and repry. Loosely structured argumentation-based debates

(Possibility _Conversations) is a second major conversation type. In this case

messages are replaced by arguments. Possibility_ Conversation is a special kind of

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT

THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 169

action. An argumentation plan, thus, consists of a sequence of argument

primitives each one characterised by its contributor.

Message

messages

Action_Convers

ants ISA
~~~~~~~~->,--~~~~~~-! 

i 
ISA 

Action Conversation 

\ ISA 

\ssibility _Convers 

t . t arguments 
conn or T 

I 
1 

I Argument I 

+Opie 

~~A_K_B~O_b_j_e_ct~~__'."'"r-----~~c_o_n_c_e_rn_s~~ 

Figure 5.2 Multi-agent Conversation model (Hahn et al., 1990) 

5.2.3 Software Process Data Model 

The software process data model introduces the software engineering domain. 

According to the substantial literature in the field (e.g. Du Plessis, 1992), the 

following requirements should be satisfied by such a model: 

• Recording of administrative aspects of software objects, m performing 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 170 

requirements analysis, design, implementation, and documentation. It also 

includes the recording of design decisions, including source management. 

• Recording of semantic aspects of software objects and design decisions, 

including the semantic dependencies created by design decisions. These 

include refinement decisions, mapping decisions, versioning decisions, and 

configuration decisions for reuse in maintenance. 

• Integrity control and partial rule-based automation of administrative and 

content-oriented actions. 

• Integration (i.e. administrative, semantic, and technical) of externally 

developed design tools. 

• The c;iefinition of supported languages, design methodologies, and tools 

should be extensible. 

There are also other requirements of less interest to this study. Figure 5.3 

illustrates the basic idea of a software process data model. Software development 

and maintenance is viewed as a process of tool-aided decisions that transform 

software objects into other objects. The derived objects are then considered to be 

justified by the underlying design decision. 

I 
j ustificatio11 

support_b~ Design Tool [ Design Object Design Decision 
I ~ from/to __J 

Figure 5.3 Software Process Data Model (Hahn et al., 1990) 

Design objects and design decisions have a reference to an uninterpreted 

information container which can be worked on by certain tools. The design 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 171 

objects and design decisions also come with a semantic description of the content 

of this container. Objects can be associated with triggers that activate directly the 

tools that support some decision applicable to the object. An instance of the 

model would define a certain software environment with its methodologies 

(decision classes), languages (object classe ') ), and tools. The execution of an 

actual software project would be modelled as an instantiation of this software 

environment model. A limitation of the model is that it does not cover the group 

work aspects of software engineering although the concept of design decision 

provides a good handle. The integration is achieved through design decisions in 

the form of argumentations and contracts. 

5.2.4 Model Integration 

Figure 5.4 illustrates the conceptual integration of the various submodels. The 

group model and the conversation models intersect in the Agent, the Action, and 

the AKBObject areas. In a cooperative model multiple Agents converse. The 

linking of Conversations to Actions provides a general protocol scheme for 

Actions. The integration does not provide any contents in terms of what people 

converse about and act upon. The AKBObject is open with respect to a particular 

interpretation of its domain. This changes when the model must serve a specific 

application domain. 

The application domain addressed by this study is the software development 

process. Requirements, designs, and implementations are formal objects of a 

software development knowledge base. The transformations from requirements to 

designs and from designs to implementations are formally controlled by mapping 

decisions specified by a conceptual software development model. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFIWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 172 

ha_ affiliation ta_ affiliation 
equipped_ with 

operated_by 

resources 

1 

justification support_b~ 

1 
DesignObject 1... ~ DesignDecisionl DesignTool 

from/to 

Figure 5.4 Model Integration - Groupwork in Software Projects (Hahn et al., 1990) 

5.3 CSCW Conceptual model for Software Development 

The conceptual model on which this study is based appeared in its original form 

in Figure 1.1 of Chapter 1. The conceptual model was then instantiated with the 

meta primitives of the CSCW paradigm derived from the main components and 

dimensions of CSCW in Figure 2.23 of Chapter 2. In Chapter 3 most of the 

software development primitives for the second instantiation of the conceptual 

model have been determined, except for the groupware technology primitive. The 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 

/ 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 173 

conceptual model could therefore not be completed. Chapter 4 had to fill the gap 

by an extensive discussion of CSCW technology. Now, that a clear understanding 

of the CSCW technology suited to the software development process has been 

obtained, the groupware technology meta primitive for software development 

may be incorporated in the CSCW software development conceptual model. 

5.3.1 Computer Support Primitives for Software Development 

The two main primitives of computer support for software development are 

software development hardware and software development software. In the CSCW 

realm, the software development hardware typically consists of basic hardware 

components which are required for development work, as well as groupware 

technology to support software development. The basic hardware includes 

hardware required for a software development environment, and data processing 

hardware. Data processing hardware refers to basic hardware components which 

would provide computer support to a data processing department, including: 

• Workstations in the form of micro computers or terminals 

•Network facilities, including network servers 

• Mainframes 

• Processors 

• Peripherals, including printers. 

Architectural components which form part of the basic hardware include the 

information store, organisational database or repository, and the information and 

communication servers. Software development environments generally require 

additional hardware components, such as: 

• Graphic screens, for the creation of graphical models 

• A mouse periphera~ for graphic capabilities 

• A colour graphics printer, for professional documentation. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 174 

The groupware technology supporting cooperative work during software 

development includes hardware technology that should be added to the basic 

hardware _components for the support of the group activities of software teams. 

In the software development application domain two main categories of 

groupware technology are distinguished, namely groupware support for project 

management and groupware support for collaborative software development. 

Groupware support for project management includes hardware components, such 

as: 

• Vuieo equipment 

• Audio equipment 

• Telephones 

• Telefaxes 

• Speakers 

• Microphones 

• Electronic whiteboards 

Section 4.2.1 of Chapter 4 provides examples of the use of the above groupware 

technology. Turning now to groupware support for collaborative software 

development, the following hardware components can be mentioned: 

• Electronic whiteboards 

• Vuieophones 

• Computer-based paint editor 

• Digitiser screens and digitiser pens 

• Shared video drawing media 

• Shared workspaces, such as editors, windows 

Sections 4.2.2.1 and 4.2.2.2 of Chapter 4 provides examples of the use of the 

above groupware technology. The architectural components which may be added 

are the CSCW managers (information, domain, activity, security, and multimedia 

managers) as shown in Figure 2.15 of Chapter 2. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 175 

Software development software may be classified as system software, application 

software, middleware, and groupware in the CSCW realm. The system software 

typically consists of operating system software, utility software, and network software. 

The application software refers to the software system in the process of 

development and can be either customised software systems or software packages. 

Middleware consists of general functions or services provided by sharable servers. 

The services include repository services, presentation services, security services, library 

services, and other services mentioned in section 2.8 and shown in Figure 4. 7. 

Middleware also include software development environment tools including 

UpperCASE, MiddleCASE, and LowerCASE. Other software development tools 

include program generators, programming environments, and fourth generation 

languages. 

Groupware software for the application domain of software development include 

tools from the general categories: 

• Communication mechanisms 

• Shared workspace facilities 

• Shared information facilities 

• Group activity support facilities. 

In Chapter 4 groupware technology for software development was discussed in 

terms of three categories: 

• CSCW tools for project management (section 4.2.1) 

• CSCW tools for the ana"lysis and design cycles (section 4.2.2.1) 

• CSCW tools for the implementation cycle (section 4.2.2.2). 

Many interesting applications of groupware software which may be suitable for 

the support of group activities during software development were discussed in the 

above sections. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 176 

5.3.2 Cooperative Work Primitives for Software Development 

The CSCW application domain is software development and software development 

participants perform cooperative work in this domain. Within the software 

development domain, the types of cooperative work may be either managerial, 

creative, or physical and technical. The nature of the cooperative work refers to 

the groupwork performed during project management, software analysis and 

design, and implementation. Table 5.1 summarises the specific work as an 

attribute of the type of work. The attributes are derived from the relevant parts 

in section 3.5 of Chapter 3 and section 4.2.2. 

PHYSICAL I TECHNICAL 
MANAGERIAL WORK CREATIVE WORK WORK 

PROJECT MANAGEMENT SOFTWARE ANALYSIS & IMPLEMENTATION 
COOPERATIVE WORK DESIGN COOPERATIVE WORK 

COOPERATIVE WORK 

Management meetings Software team meetings Demonstrations 
Scheduling Interviews - users Prototyping - shared 
Planning Documentation - shared edit workspace 
Project & post audit reviews Modelling - shared workspace Programming - shared 
Project demonstrations Prototyping workspace 
Documentation Shared testing 

Debugging 

Table 5.1 The Type and Nature of Cooperative Work 

It has been mentioned in Chapter 2 that a broadly accepted framework for the 

study of CSCW systems classifies the type of work according to the dimensions 

of time and location of work. Cooperative work in software development may for 

example take place at the same time and the same place as in face-to-face 

project meetings, or at different locations at the same time as in video 

conferencing or shared workspace applications, or at different places at different 

times as in electronic mail applications. The dimension of time is classified as 

synchronous or asynchronous, while the location is classified as remote or co­

located. 

The software development participants fulfil different roles within the context of 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 177 

cooperative work. In Chapter 3, the people building block of information systems 

indicate four main categories of participants in Figure 3.5, namely system owners, 

system users, system designers, and system builders. Table 3.1 provides a summary 

of the roles and responsibilities of participants in the software development 

process. 

The software development participants perform cooperative work on a specific 

level, either on a management or technical level. Management may take place on 

the universal level, the world"/y level, and the atomic level. In the software 

development application domain, the universal level refers to the upper 

management of the organisation in which or for which the software is developed, 

thus the system owner. The worldly level refers to middle management which 

includes the head of the DP department, and possibly the system users 

management. The project leader and some system users will manage the software 

project on the atomic level. The software development team consisting of system 

analysts, system designers, programmers, database administrators and possibly 

domain specialists performs operational or technical work. 

All the relevant primitives of the CSCW paradigm for software development have 

been derived. The completed second instantiation of the conceptual model is 

represented in Figure 5.5. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



w
 

>
 -~ 

a: 
w
~
 

a..a: 
0

0
 

8s: 

ffi~ 
r-o

 
::J a.. 
a.. a.. 
~
:
:
J
 

o
w

 
0 

T
H

E
 C

SC
W

 PA
R

A
D

IG
M

 F
O

R
 S

O
F

IW
A

R
E

 D
E

V
E

L
O

P
M

E
N

T
 

F
igure 5.5 

C
S

C
W

 C
onceptual M

odel for Softw
are D

evelopm
ent 

C
H

A
P

IB
R

 5 -
A

 C
SC

W
 C

O
N

C
E

P
T

U
A

L
 M

O
D

E
L

 F
O

R
 S

O
F

IW
A

R
E

 D
E

V
E

L
O

P
M

E
N

T
 

178 

...... 
c:: ~ -2 
~ Q

.) 

a ~
 
~ 

.:t::: 

&
 I 

a C
i) 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 179 

5.4 A Framework for Software Development within a CSCW Environment 

A summary of the research results is provided in the form of tables representing 

a framework for software development within a CSCW environment. 

Communication facilities (networks, e.g. LANs, WANs, MANs) are used by most 

of the CSCW tools. However, network facilities were classified as basic hardware 

facilities in the conceptual model, and therefore they will not be shown in the 

tables of the framework. The framework can be handy for future references on 

CSCW tools suited to the different cycles or stages of software development. The 

framework can also be extended as new CSCW tools for the application domain 

become available. 

The framework consists of three tables which address different group activities 

(nature of cooperative work) within project management or a specific 

development cycle. The roles of participants involved in a specific group activity, 

the CSCW tools (software tool) suitable for the group activity, and the 

corresponding groupware technology (hardware facilities) are described. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



TiiE CSCW PARADIGM FOR SOFfWARE DEVELOPMENT 180 

Nature of Cooperative Roles ct CSCWTools Groupware 
Work Participants (software) Technology 

• Project & post-audit Software managers • Semantic and •Graphical 
reviews Project leader contractual analysis capabilities 

• Monitoring status of Software team tool •Shared 
project (optional) • Variant and version workspaces 

Users management tool 

•Argumentation & Software managers • V ~riant and version •Graphical 
decision-making Project leader management tool capabilities 

Systems analyst • Decision aid tool •Shared 
• Optimisation workspaces 

tools 
• Simulation program 

• Construction of Software managers • Groupware toolkits •Graphical 
CSCW environments Project leader capabilities 

Systems analyst •Shared 
workspaces 

•Open 
architecture 

•Various 
groupware 

• Communication Software managers • Message systems • Video equipment 
•Scheduling Project leader • Meeting scheduler • Audio equipment 

systems •Telephone 
• Electronic mail • Video phone 
• Calendar systems •Telefax 
• Collaborative 

writing tool 

• Awareness & Software managers •Active information •Graphic 
coordination Project leader generation tools capabilities 

• Shared editors •Shared 
• Electronic mail workspaces 
• Authoring system l • Video phone 
• Edit log tools •Telephone 
• Conversation tools 
• Workflow 

management 
• DesignNet model 

• Video equipment 
• Group meetings Software managers • Transcription tools • Ubiquitous audio 

Project leader • Electronic meeting •Telephone 
Software team systems •Speaker 
(optional) • Video Conferencing • Whiteboard 

Users tool • Microphone 

• Discussions Software managers • Telephone bulletin- •Telephone 
• Event calendars Project leader board • Video equipment 
• Task tracking • Video-mediated •Camera 

communication •Actuator 

Table 5.2 CSCW support for Project Management 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



TI-IE CSCW PARADIGM FOR SOFIWARE DEVELOPMENT 181 

Nature of Roles of CSCWTools Groupware 
Cooperative Work Participants Technology 

• Communication Project leader • Message systems • Multimedia 
Software team • Electronic mail • Audio equipment 

• Mail programs •Telephone 
• Artifact-centered • Video phone 

information spaces •Graphic 
•Knowledge-based capabilities 

design environment •Shared 
workspaces 

•Modelling Project leader • Shared drawing •Graphic 
Systems analysts tools capabilities 

•Shared 
workspaces 

• Electronic pens 
• Digitiser pens 
• CRT-based rear 

projection display 
• Transparent 

digitiser sheet 
• Electronic 

whiteboard 

• Documentation Project leader • Documentation •Shared 
Systems analysts tool workspaces 

• Collaborative •Graphics 
writing tool capabilities 

• Collaborative 
editing tool 

• Problem solving Project leader • Electronic • Electronic 
Software team Brainstorming whiteboard 

• Shared text editor •Shared 
• Virtual workspace workspaces 

•Graphics 
capabilities 

• Video equipment 

• Collaborative Systems analysts • Computer-aided • Electronic 
Design Software team design tools whiteboard 

• Shared drawing •Shared 
tools workspaces 

•Graphics 
capabilities 

• Group meetings Users • Electronic meeting 
Software managers systems • Video equipment 
Project leader •Video • Ubiquitous audio 
Software analysts conferencing •Telephone 
Software team • Video-mediated •Speaker 

communication tool • Microphone 
• Shared drawing •Camera 

tools •Actuator 
•Pen-based • Electronic 

meeting support whiteboard 
• Electronic pen 

Table 5.3 CSCW support for the Analysis & Design Cycles 

CHAPTER 5 - A CSCW CONCEPTIJAL MODEL FOR SOFTWARE DEVELOPMENT 



TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 182 

Nature of Roles of CSCW Tools Groupware 
Cooperative Work Partl ci pants Technology 

•Editing Programmers • Shared editor tool • Video equipment 
Systems analysts • Hypertext systems • Video phone 

•Graphic 
capabilities 

•Shared 
workspaces 

•Debugging Project leader • Shared windows •Graphic 
Systems analysts •Network capabilities 
Programmers transparent window •Shared 

systems workspaces 

•Program Project leader • Computational •Graphic 
development & Systems analyst email capabilities 
testing Programmer • Shared windows •Shared 

•Network workspaces 
transparent window 
systems 

• Shared editing 

•End user End-users • End-user •Graphic 
programming Systems analyst programming tools capabilities 

•Shared 
workspaces 

• Construction of Project leader • Shared window •Shared 
collaborative Systems analysts systems workspaces 
applications Programmers • Replicated object •Graphic 

tools capabilities 

•Merging of Systems analysts • Merge tools •Shared 
documents and Programmers • Object merging workspaces 
version control framework •Graphic 

capabilities 

Table 5.4 CSCW support for the Implementation Cycle 

At the 1994 CSCW Conference it was reported that there are over 300 CSCW 

products available on the market. The above tables represent only examples of 

CSCW tools available to support the cooperative activities of software 

development. Some promising tools are still in a prototyping phase showing the 

potential of the rapid-growing field of CSCW. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 183 

5.4 Summary & Conclusions 

The conceptual model has been kept in its basic form, but went through an 

evolution process through the instantiation of the original primitives. The second 

instantiation illustrates the validity of applying CSCW in the software 

development process. The framework for software development within a CSCW 

environment can be useful for future references on CSCW tools suited to the 

different cycles or activities of software development. The framework can also be 

extended as new CSCW tools for the application domain become available. 

CHAPTER 5 - A CSCW CONCEPTUAL MODEL FOR SOFTWARE DEVELOPMENT 



CHAPTER 6 
Summary, Evaluation and Conclusions 

CONTENTS 

6.1 Introduction 

6.2 Summary of Investigation 

6.3 Evaluation & Conclusions 

6.4 Areas for further Investigation 

6.1. Introduction 

This chapter looks back on the investigation and relates the work done in each 

chapter for achieving the objectives of the study. A summary of the research 

results of the investigation is presented. The original hypothesis and assumptions 

are validated in the light of these results. Conclusions are drawn and the chapter 

concludes with proposed areas for further investigation. 

6.2 Summary of Investigation 

The investigation is based on the hypothesis that it is possible to provide 

computer-based support for the cooperative elements of the software 

development process. In support of the hypothesis, a conceptual model 

illustrating important aspects of the CSCW paradigm was constructed. The 

conceptual model formed an integral part of the study as it was used throughout 

the dissertation to illustrate research results concerning the main issues of the 



TI-IE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 185 

investigation. The relevant issues which have bearing on the investigation were 

identified and as a result the subject of each chapter was determined. A 

motivation for the area of investigation was constructed and a method of 

investigation was established to guide the investigation. The assumptions for the 

investigation were based on the suitability of the use of the object-oriented 

paradigm for software development and cooperative work, and the adoption of 

the revised spiral model proposed by Du Plessis and Van der Walt (1992). 

Keeping the constraints of the investigation in mind, a possible solution was 

proposed for dealing with the problems of supporting the cooperation and group 

activity of software teams during the software development process. 

A thorough investigation of the main study area, namely computer supported 

cooperative work, was done. The origins of CSCW were discussed and the 

important issues of groupwork analysed. The nature of CSCW and some ongoing 

debates concerning the research area were examined. The main CSCW 

technologies were su.rveyed and the requirements and main architectural 

components of a CSCW environment described. The meta primitives of the 

CSCW paradigm were derived and resulted in the first instantiation of the 

conceptual model. 

Another important aspect of the research was the roles of participants and the 

issues surrounding cooperation and group activity during software development. 

The possibility of incorporating CSCW explicitly into the software development 

process is postulated and eventually proven to be feasible. 

The computer-based support of the group activities during software development 

was explored to determine the CSCW technologies suited to different cycles and 

activities of the software development process. The generic facilities and 

architectural components of CSCW software development environments were 

then investigated. 

CHAPTER 6 - SUMMARY, EVALUATION AND CONCLUSIONS 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 186 

The crux of the investigation was to construct a conceptual model representing 

the CSCW paradigm for software development. The two main conceptual 

primitive classes, namely cooperative work and computer support were determined 

for the software development process. This, and the integrated meta model for 

cooperative software development have resulted in the establishment of the 

conceptual model representing the CSCW paradigm for software development. 

Finally, a framework for software development within a CSCW environment, 

based on the important conceptual primitives, was established. The framework 

could be useful for future reference regarding CSCW tools suited to the different 

cycles and activities of software development, and could also be extended as new 

CSCW tools for the application domain become available. 

6.3 Evaluation and Conclusions 

In evaluating the work done for this dissertation, the meaningfulness and 

contribution of the research results, especially for the software development 

process as a whole should be determined. As modern technology and applications 

are complex, it is unusual for an individual to attempt the development of a 

major project single-handedly. The software development process almost 

invariably involves cooperation that crosses group, professional, and subcultural 

boundaries. The complexity of the software development process itself demands 

that highly integrated groups of analysts, designers, and users perform their tasks 

in their respective roles. Nowadays, truly distributed applications seem natural in 

the face of a high ratio of computing power to available communication 

bandwidth. This also has implications for software development. The users and 

software developers involved in a specific software project may be widely 

separated geographically. The challenge is to deliver distributed solutions by 

means of cooperative development efforts. Therefore, the area of CSCW and 

advanced information technology, with its enormous capabilities for transmitting 

and storing information, would seem to hold considerable promise for the 

software development process. 

CHAPTER 6 - SUMMARY, EVALUATION AND CONCLUSIONS 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 187 

The main purpose of the investigation was to determine if CSCW could be 

incorporated into the software development process. For this purpose the CSCW 

conceptual model, which went through an evolution process with each 

instantiation of the primitives of the paradigm, may serve as a validation model. 

After the analysis of the software development process in Chapter 3, it was 

confirmed that cooperation formed an integral part of the process, and that 

because of the complexities caused by the intracacies of group activities, 

computer-based support is necessary to support groupwork by software teams. 

The building blocks of information systems and their relation to the meta 

primitives of CSCW motivate the role CSCW has to play in software 

development. The second instantiation of the CSCW conceptual model, in which 

all the CSCW primitives were detailed with software development attributes, 

illustrates the validity of applying CSCW in the software development process. 

6.4 Areas for further Investigation 

Concerning the study area of CSCW itself, there are many options for further 

investigation. The multi-disciplinary nature of CSCW makes it possible for 

researchers to pursue one of the following directions: 

• Group theory, in which the group process is studied (Gladstein, 1984) 

• Activity theory, a philosophical framework for studying different forms of 

human praxis as development processes, with both individual and social 

levels interlinked (Kuutti, 1991 ). 

• Ethnography, which is concerned with the "workaday" character of work 

in all its richness and variety (Darnton, 1995). 

• Managerial Cybernetics, which takes a broad perspective on CSCW when 

it emphasises collaborative work in an organisational context (Darnton, 

CHAPTER 6 - SUMMARY, EVALUATION AND CONCLUSIONS 



THE CSCW PARADIGM FOR SOFTWARE DEVELOPMENT 188 

1995). 

• Office systems, where the group activities of an office environment are 

supported by relevant CSCW technologies. 

• Workflow management, which provides the infrastructure to design, 

execute, and manage business processes on a network (Abbott & Sarin, 

1994). 

Concerning further branches of the investigation presented in this dissertation, 

the following may be worthwhile mentioning: 

• Empirical projects on the incorporation of CSCW into the cycles of 

software development should be conducted. The requirements engineering 

process in the analysis cycle would be a good candidate project. 

• Emerging groupware technologies hold considerable promise for the 

utilisation of CSCW in many different application domains. Suitable 

application domains should be explored. 

• The role of CSCW in distributed software development environments, 

particularly in respect of distributed applications, may be further 

investigated. 

Anybody with an interest in the complexities of the way in which people work 

and the variety of technologies to support groupwork will find interesting topics 

for further investigation. 

CHAPTER 6 - SUMMARY, EVALUATION AND CONCLUSIONS 



XVI 

REFERENCES 

Books: 

Booch, G. 1994. Object-oriented Analysis and Design. With Applications. Second Edition. 
Benjamin/Cummings Publishing Company, Inc. 

Coad, P., and Yourdon, E. 1991. Object-oriented Analysis. Second Edition. Yourdon Press. 

Conger, S. 1994. The New Software Engineering. Wadsworth Publishing Company. 

Couger, J.D., Colter, M.A., Knapp, R. W. 1982. Advanced System Development I Feasibility Techniques. John 
Wiley & Sons, Inc. 

Dahl, O.J., Dijkstra, E.W., Hoare, C. AR. 1972. Strnctured Programming. New York:Academic. 

De Marco, T. 1978. Strnctured Analysis and System Specification. New York:Yourdon Press. 

Forsyth, D.R. 1990. Group Dynamics. 2nd edn. Brooks/Cole Publishing Company, Pacifc Grive, CA 

Gane, C. and Sarson, T. 1979. Strnctured Systems Analysis: Tools and Techniques. Englewood Cliffs, 
NJ:Prentice-Hall, Inc. 

Greif, I. 1988. Computer-Supported Cooperative Work: A Book of Readings. San Mateo, California: Morgan 
Kaufmann Publishers. 

Humphrey, W. S. 1989. Managing the Software Process. Addison-Wesley. 

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. 1992. Object-Oriented Software Engineering. 
Addison-Wesley 

Johansen, R. 1988. Groupware: Computer Support for Business Teams. (The Free Press, New York). 

Jordan, E.W., Machesky, J.J., Matkowski, J.B. 1990. Systems Development. Requirements, Evaluation, Design 
and Implementation. PWS-KENT. Boston. 

McDermid, J. 1991. Software Engineer's Reference Book. Butterworth-Heinemann. 

McGrath, J.E. 1984. Groups: Interaction and Performance. Prentice-Hall, Inc., englewood Cliffs, NJ. 

Myers, G.J. 1978. Composite/Strnctured Design. New York, NY: Van Nostrand Reinhold. 

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. 1991. Object-Oriented Modeling and 
Design. Prentice-Hall International, Inc. 

Steiner, l.D., 1972. Group Process and Productivity. Academic Press. New York. 

Suchman, L. A 1987. Plans and situated Actions. Cambridge University Press. 



xvn 

Whitten, J.L. & Bentley, L.D. & Barlow, V.M. 1993. Systems Analysis and Design Methods. Derde uitgawe. 
Irwin 

Yourdon,E. and Constantine, L. 1979. Structured Design: Fundamentals of a Discipline of Computer Program 
and Systems Design. Englewood Cliffs, NJ:Prentice-Hall, Inc. 

Contributions in Books: 

Bannon, L., & Schmidt, K. 1991. CSCW: Four characters in search of a context in: J.M. Bowers & S.D. 
Benford (eds). Studies in Computer Supported Cooperative Work. 
North-Holland/Elsevier, Amsterdam. 

Steiner, LD. 1976. Task performing groups, in Contemporary Topics in Psychology., edited by J.W. Thibaut, 
J.T. Spence, and RC. Carson. General Learning Press, Morristown, NJ. 

Journal Articles: 

Abbott, K. R, & Sarin, S. K. 1994. Experiences with workflow management: Issues for the next generation. 
Proceedings of the Conference on Computer Supported Cooperative Work. October, 22-26, 1994. Chapel Hill. 
North Carolina. USA 

Bannon, L. J. 1993. CSCW: An initial exploration. Scandinavian Journal of Infomiation Systems. 5:3-24. 

Bannon, L., & Schmidt, K. 1992. Taking CSCW seriously: Supporting articulation work. Computer­
Supported-Cooperative Work (CSCW). Kluwer Academic Publishers, The Netherlands, 1:7-40. 4, 67-83. 

Belz, F.C., Clarke, L.A, Osterweil, L., Selby, R.W., Taylor, RN., Wileden, J.C., Wolf, AL., Young, M. 
1988. Foundations in the ARCADIA environment architecture, in [SDE88], 1-13. 

Benali, K., Boudjlida, N., Charoy, F., Derniame, F.-C., Godart, C., Griffiths, P., Gruhn, V., Jamart, P., 
Legait, A, Oldfield, D.E., Oquendo, F. 1990. The presentation of the ALF-Project, in eds. Madhavji, N., 
Schafer, W. and Weber, H., Proceedings of the First Conference on System Development Environments and 
Factories I, 75-90. 

Bentley, R, Rodden, T, Sawyer, P., Sommerville, I. 1992. An architecture for tailoring cooperative multi­
user displays. Proceedings of the Conference on Computer-Supported Cooperative Work. Toronto, Canada, 
Oct, Nov 1992, 187-194. 

Bly, S. A 1988. A use of drawing surfaces in different collaborative settings. Proceedings of the Conference 
on Computer-Supported Cooperative Work. Toronto, Canada, Oct, Nov 1992, 250-256. 

Bly, S.A., Minneman, S.L. Commune: A Shared Drawing Surface. Proceedings of COIS '90, ACM, New 
York, 1990, pp. 184-192. 

Bodker, S., Ehn, P., Knudsen, J., Kyng, M., Madsen, K 1988. Computer support for cooperative design. 
Proceedings of the Conference on Computer-Supported Cooperative Work. Portland, Oregon,September26-28, 



xviii 

377-394. 

Boehm, B. W. et al. June 1975. Structured Programming: A quantitative assessment. Computer, pp. 38-54. 

Boehm, B. W. 1988. A spiral model of software development and enhancement. IEEE Tutorial on Software 
Engi,neering Project Management. 

Borenstein, N. S. 1992. Computational Mail as network infrastructure for Computer-Supported 
Cooperative Work. Proceedings of the ACM 1992 Conference on Computer-Supported Cooperative Work. 
Toronto, Canada, Oct 31-Nov 4, 67-83. 

Borenstein, N. S., Thyberg, C.A 1988. Power, ease of use, and cooperative work in a practical multimedia 
system. International Journal of Man-Machine Studies. 

Brodie, M.L., & Ceri, S. 1992. On intelligent and cooperative information systems: A workshop summary. 
International Journal of Intelligent and Cooperative Information Systems. 1(2):249-289. 

Brinck, T. & Gomez, L.M. 1992. A collaborative medium for the support of conversational props. 
Proceedings of the Conference on Computer-Supported Cooperative Work. Toronto, Canada, Oct, Nov 1992, 
171-178. 

Bullen, C. V., & Bennett, J.L. 1990. Learning from experience with groupware. Proceedings of the Conference 
on Computer-Supported Cooperative Work. Los Angeles October 7-10, 291-302. 

Buxton, W. & Moran, T. EuroP ARC's Integrated Interactive Intermedia Facility (IIIF): Early experiences. 
Proceedings of the IFIP WG8.4 Conference on Multi-User Inteifaces and Applications. North-Holland, 
Amsterdam, 1990, pp. 11-34. 

Crowley, T, Milazzo, P., Baker, E., Forsdick, H., Tomlinson, R. 1990. MMConf: An infrastructure for 
building shared multimedia applications. Proceedings of the Conference on Computer-Supported Cooperative 
Work. Los Angeles October 7-10, 329-241. 

Darnton, G. 1995. Working together: a management summary of CSCW. Computing & Control Journal. 
February 1995, 37-40. 

Dowson, M, Wileden, J. 1995. IST AR and the contractual approach. Proceedings of the 9th International 
Conference on Software Engi,neering, IEEE Computer Society Press. 

Du Plessis, AL. 1992. CAISE: The opportunity and the challenge. Inaugural lecture. University of South 
Africa. 

Du Plessis, AL. & Van der Walt, E., Modeling the software development process, ISC02 Conference, 
Egypt, 1992. 

Ellis, C.A, Gibbs, S.J., & Rein, G.L. 1991. Groupware: Some issues and experiences. Communications of 
the ACM 34(1):38-58. 

Engestrom, Y. 1990. Activity theory and individual and social transformation. 2nd International Congress 
for Research on Activity Theory. Lahti, Finland, May 21-25. 

Gaver, W.W. 1991. Sound support for collaboration. Proceedings of the Second European Conference on 
Computer-Supported Cooperative Work. Amsterdam, The Netherlands, September 25-27, 293-308. 

Gladstein, D.L. 1984. Groups in context: A model of task group effectiveness. Administrative Science 
Quarterly. 29:499-517. 



XIX 

Goldberg, Y., Safran, M., Shapiro, E. 1992. Active Mail - A framework for implementing groupware. 
Proceedings of the Conference on Computer-Supported Cooperative Work. Portland, Oregon,September26-28, 
75-83. 

Gorry, G.A. 1988. Computer Support for Biomedical Work Groups. Proceedings of the Conference on 
Computer-Supported Cooperative Work. Portland, Oregon,September 26-28, 39-51. 

Graham, T. C. N., Urnes, T. 1992. Relational views as a r'lodel for automatic distributed implementation 
of multi-user applications. Proceedings of the ACM 1992 Conference on Computer Supported Cooperatuve 
Work. Toronto, Canada, November 1992, 59-66. 

Green E., Owen, J. Pain, D. 1991. Office systems development and gender: Implications for Computer­
Supported Cooperative Work. Proceedings of the Second European Conference on Computer-Supported 
Cooperative Work. Amsterdam, The Netherlands, September 25-27, 33-48. 

Greenbaum, J. 1988. In search of cooperation: An historical analysis of work organization and 
management strategies. Proceedings of the Conference on Computer-Supported Cooperative Work. Portland, 
Oregon,September 26-28, 102-114. 

Hahn, U., Jarke, M., Rose, T. 1990. Group work in software products. Multi-User Interfaces and 
Applications. Elsevier Science Publishers, p 83-101. 

Hughes, J., Randall, D., Shapiro, D. 1991. CSCW: Discipline or paradigm? A sociological perspective. 
Proceedings of the Second European Conference on CSCW, 1-16. 

Ishii, H., Kobayashi, M, Grudin, J. 1992. Clearboard: A Seamless Medium for Shred Drawing and 
Conversation with eye contact. Proceedings of CHI '92, ACM, New York, 1992, pp. 525-532. 

Ishii, H. TeamWorkStation: Towards a seamless shared workspace. Proceedings of CSCW '90. ACM, New 
York, 1990, pp. 13-26. 

Jacobson, I. 1987. Object-oriented development in an industrial environment. Proceedings of OOPSLA '87. 
SIGPLAN Notices, 22(12), p 183-91. 

Jarke, M., Maltzahn, C., Rose, T. 1992. Sharing processes: Team coordination in design repositories. 
International Journal of Intelligent and Cooperative Information Systems. 1(1):145-167. 

Joosten, S., and Brinkkemper, S. 1993. Modelling of working groups in Computer Supported Cooperative 
Work. Proceedings of the 18th International Conference on Information Technologi,es and Programming. 

Kaiser, G.E., and Feiler, P.H. 1987. An architecture for intelligent assistance in software development. 
Procedure of the 9th International Conference on Software Engi,neering. Monterey, California, p 180-188. 

Kaplan, S.M., Tolone, W.J. Carroll, AM., Bogia, D.P., Bignoli, C. 1992. Supporting collaborative software 
development with ConversationBuilder.Proceedings of the ACM 1992 Conference on Computer-Supported 
Cooperative Work. Toronto, Canada, Oct 31-Nov 4, 11-20. 

Karmouch, A. 1993. Multimedia distributed cooperative system. Computer Communications, 568-580. 

Kling, R. 1991. Cooperation and Control in Computer Supported Work Dept. Information and Computer 
Science. Univ. California, Irvine. 

Kuutti, K. 1991. The concept of activity as a basic unit of analysis for CSCW research. Proceedings of the 
Second European Conference on Computer-Supported Cooperative Work. September 25-27, Amsterdam, The 
Netherlands, 249-264. 



xx 

Kyng, M.. 1988. Designing for a dollar a day. Proceedings of the Conference on Computer-Supported 
Cooperative Work. Portland, Oregon,Septcmber 26-28, 178-188. 

Lai, K-Y, Malone, T.W. 1988. Object Lens: A spreadsheet for cooperative work. Proceedings of the 
Conference on Computer-Supported Cooperative Work. Portland, Oregon,September 26-28, 115-124. 

Lyytinen, K. 1990. Computer Supported Cooperative Work - issues and challenges. A structurational analysis. 
Manuscript. Univ. of Jyvaskyla, Dept. Computer Science. 

Malone, T.W., Benjamin, R.I., Yates, J.. 1987. Electronic markets and electronic hierarchies. 
Communication of the ACM, 30:357-370. 

Malone, T.W., and Crowston, K. 1990. What is coordination theory and how can it help design cooperative 
work systems. Proceedings of the Conference on Computer Supported Cooperative Work. Los Angels, October 
7-10, 357-370. 

Mantei, M., Baeker, R., Sellen, A. Buxton, W., Mulligan, T. 1991. Experiences in the use of a media space. 
Proceedings of the CHI '91, ACM, New York, 1991. 203-208. 

Marmolin, H., Sundblad, Y., Pehrson, B. 1991. An analysis of design and collaboration in a distributed 
environment, 147-162. 

Navarro, L., Prinz, W., Rodden, T. 1993. CSCW requires open systems. Computer Communications. May 
1993. 16(5):288-297. 

Nolle, T. 1993. Groupware: The next generation. Business Communications Review, 23(8):54-58. 

Olson, J.S., Card, S.K, Landauer, T.K., Olson, G.M., Malone, T, Leggett, J. 1993. Computer Supported 
Cooperative Work: Research issues for the 90s. Behaviour & Infomzation Technology. 12(2):115-129. 

Parnas, D.L. April 1975. The inluence of software structure on reliability in Proceedings 1975 Int, Conf. 
Reliable Software. pp. 358-362. 

Peuschel, B., Schafer, W., Wolf, S. 1991. A knowledge-based software development environment supporting 
cooperative work. International Journal of Software Engineering. 2(1):79-106. 

Rodden, T & Blair, G. 1991. CSCW and distributed systems: The problem of control. Proceedings of the 
Conference on Computer-Supported Cooperative Work. Portland, Oregon,September 26-28, 25-29. 

Root, R.W. 1988. Design of a Multi-media vehicle for social browsing. Proceedings of the Conference on 
Computer-Supported Cooperative Work. Portland, Oregon,September 26-28, 25-29. 

Sathi, A., Morton, T. E., Roth, S. F. 1986. Callisto: An intelligent project manegement system, AI Magazine. 
7, 5, 34-52. 

Schmidt, K. 1991. Riding a tiger, or Computer Supported Work. Proceedings of the Second European 
Conference on CSCW, 1-16. 

Schmidt, K., and Bannon, L. 1992. Taking CSCW Seriously: Supporting articulation work. Computer­
Supported Cooperative Work (CSCW). 1:7-40. 

Shu, L. & Flowers, W. 1992. Groupware experiences in three-dimensional computer-aided design. 
Proceedings of the Conference on Computer-Supported Cooperative Work. Toronto, Canada, Oct, Nov 1992, 
179-186. 



xxi 

Stefik, M., Foster, G., Lanning, S., Bobrow, D., Kahn, K., Suchman, L. 1987. Beyond the chalkboard: 
computer support for collaboration and problem solving in meetings, Communications of the ACM, 30:32-
47. 

Suchman, L. 1989. Notes on computer support for cooperative work. Working paper WP-12, Univ. Jyvakyla, 
Dept. Computer Science. 

Tang J.C., and Minneman, S.L. 1991. Video Whiteboard: Video Shadows to support remote collaboration. 
Proceedings of CHI'91, ACM, New York, 1991, 315-322. 

Tanigawa, H., Arikawa, T. Masaki, S. and Shimamura, K. 1991. Personal multi-media multipoint 
teleconference system. 

Thomas, J. C., & Kellogg. 1989. Minimising ecological gaps in interface design. IEEE Software, 6, 78-86. 

Watabe, K., Sakata, S., Maeno, K., Fukuoka, H. Ohmori, T. Distributed Multiparty Desktop Conferencing 
System: MERMAID. Proceedings of CSCW '90, ACM, New York, 1990, 27-38. 

Wilson, P. 1991. Computer Supported Cooperative Work (CSCW): origins, concepts and research 
initiatives. Computer Networks and ISDN Systems. 23:91-95. 



XXll 

CSCW Proceedings 

Proceedings of the Conference on Computer-Supported Cooperative Work. September 26-28, 1988. Portland, 
Oregon. ACM. 

Proceedings of the Conference on Computer-Supported Cooperative Work. October, 7-10, 1990. Los Angeles, 
CA. ACM. 

Proceedings of the Second European Conference on Computer-Supported Cooperative Work. September, 24-27, 
1991. The Trippenhuis Kloveniersburgwal 29, Amsterdam. Kluwer Academic Publishers. 

Proceedings of the Conference on Computer-Supported Cooperative Work. October, 7-10, 1990. Los Angeles, 
CA. ACM. 

Proceedings of the Conference on Computer-Supported Cooperative Work. October, 31 to November 4, 1992. 
Toronto, Canada. ACM. 

Proceedings of the Conference on Computer-Supported Cooperative Work. October, 22-26, 1994. Chapel Hill. 
North Caorlina. USA. ACM. 

** Note: This dissertation includes many references to CSCW tools and environments which are 
either mentioned or described within articles in the various Proceedings. The list is very 
long, and therefore, if a reference does not appear in the journal article list, it was taken 
from the Proceedings. 


	Button94: 
	Button95: 
	Button96: 
	Button97: 
	Button98: 
	Button99: 
	Button100: 
	Button101: 
	Button102: 
	Button103: 
	Button104: 
	Button105: 
	Button106: 
	Button107: 
	Button108: 
	Button109: 
	Button110: 
	Button111: 
	Button112: 
	Button113: 
	Button114: 
	Button115: 
	Button116: 
	Button117: 
	Button118: 
	Button119: 
	Button120: 
	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button9: 
	Button10: 
	Button11: 
	Button12: 
	Button13: 
	Button14: 
	Button15: 
	Button16: 
	Button17: 
	Button18: 
	Button19: 
	Button20: 
	Button21: 
	Button22: 
	Button23: 
	Button24: 
	Button25: 
	Button26: 
	Button27: 
	Button28: 
	Button29: 
	Button30: 


