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Abstract

We consider a number of temporal logics, some interval-based and some instant-based,
and the choices that have to be made if we need to construct a computational frame-
work for such a logic. We consider the axiomatisation of the accessibility relations of
the underlying temporal structures when we are using a modal language as well as
the formulation of axioms for distinguishing concepts like actions, events, processes
and so on for systems using first-order languages. Finally, we briefly discuss the fields
of application of temporal logics and list a number of fields that looks promising for
further research.
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Chapter 1

A range of knowledge

representation languages

1.1 Introduction

The study of the nature of time has kept many scholars occupied over the last two thousand
years. Greek philosophers like Aristotle and Diodorus Chronus, medieval Arabic logicians
and Latin scholars in the Middle Ages were mainly interested in the formal representation
of different tenses in natural language. In the late nineteen-fifties and early nineteen-sixties
a number of publications on tense logic by Arthur Prior (e.g. [Pri57]) instigated a renewed
interest in the subject especially when the possibility .of the use of temporal logic for the

representation of time in computer applications was realised.

Temporal logic has a wide variety of fields of application. It is used for example in natural
language understanding, planning, databases, program verification, concurrent program-
ming, expert systems and robotics. A great deal of work has been done in the development
of temporal logics over the last thirty to forty years. To get an idea of the variety of these,
we are going to consider a few of the well-known temporal logics that formed the bases for

the development of other logics.

To make it easier for the reader, the same notation will be used throughout the text for the
presentation of different logics even though this may differ from the notation used in the
original articles. Since we are going to look at temporal logics using non-modal first-order
languages as the object language as well as temporal logics that use propositional modal
languages as the object language, we recapitulate the basic ideas of propositional logic as
well as of first-order logic and modal logic in the subsequent sections. The main sources
used for writing this chapter were [Lab98], [Ham88] and [Gol92).



1.2 Propositional languages

The sentences of propositional languages are built up of atorns, also called atomic sentences,
that express basic facts like ‘The sun is shining’ and ‘The table is red’. An alphabet for a

propositional language may conveniently be taken to consist of the following symbols:
e a set ® containing one or more atoms p, g, ...
e the punctuation symbols ‘(’ and ‘)’
e the connectives - (negation) and — (the conditional).

A propositional language P is a set of sentences. What constitutes a sentence? Well, ¢ is

a sentence if and only if one of the following holds:
® o is an atom
e y is of the form — or (¥ — x), where v and x are sentences.

It is often convenient to form an extended language P* with the introduction of other

connectives by the following abbreviations:
(¥Vx) (disjunction)  abbreviates (—~¢ — x)
(WAx) (conjunction)  abbreviates —(y — —x)
(¥ +» x) (biconditional) abbreviates (¥ — x)A (x — ¥).

Example 1 Sentences and nonsentences in a propositional language.

Let ® = {p, q,r, s}. The following are sentences in the extended language P* (where paren-
theses are used with pedantic strictness, although in the remainder of the dissertation we

shall often omit them when no confusion would result):

P, P (p_’Q)J ((pV—1q)—> (SAT))'

But (p < A-p) is not a sentence in P*.

How does one attach meaning to the sentences in a propositional language? In other words,

how should the sentences be interpreted?

A valuation of P* is an allocation of a truth value from the set { T,F' } to each of the atoms
in ®. Such a valuation results in the association of a truth value with every sentence in P*

in accordance with the following rules:



e ¢ € ® is true iff the truth value T was allocated to it by the valuation
e —yp is true iff ¢ is false

e (¢ — 1) is true iff ¢ is false or v is true, or both.

One can regard a valuation as a representation of one possible state of some system of
interest or one possible world that the sentences of P* are intended to talk about. Let S be
the set of all possible valuations of P*. If ¢ is true in s € S, we say that s satisfies ¢, or
that s is a model of ¢, denoted by s I ¢ 1. Mod(yp) denotes the collection of all models of

®.
Any subset of S is called a frame. If a sentence ¢ is true in all valuations that are elements
of a frame F, we say that ¢ is globally true or globally satisfied over the frame F. This is

denoted by F I ¢. This in turn also means that, for all s € F, s is a model of ¢, so F is a
subset of the collection of all models of ¢, i.e. F C Mod(yp).

A sentence is globally true over S if it is true in every possible valuation. Such a sentence
is called a tautology, whereas a sentence that is false in every possible valuation is called a

contradiction.

Example 2 Global truth.

Let ® = {p,q}. Then S = {so, 51,59, 53}, i.e. there are four possible valuations. Each
valuation s; can be represented by a sequence vw, where v is the truth value associated
with p and w the truth value associated with ¢. Then S = {FF, FT,TF,TT}.

The proposition p is globally true over the frame Fo = {T'T,TF} but not over the frame
F1={TF,FT}. So Fo I+ p but F; ¥ p.

The sentence p V —p is a tautology since it is globally true over S and the sentence p A —p

is a contradiction since it is false in all four possible valuations.

A frame F represents knowledge about the system under consideration. More specifically,
since a frame is formed by excluding members of S, it represents knowledge of states that
cannot occur. Such knowledge can sometimes be expressed by a set of sentences . We say
that a set of sentences ¥ aziomatises F, and speak of ¥ as a set of axioms for F, if and
only if Mod(X) = F.

Most of the older books use |= to denote a model as well as for semantic consequence which will
be discussed shortly.



Remark: The axiomatisation of which we speak here and in the chapters to follow has
a semantic connotation. The term ‘axiomatisation’ is often used with a proof-theoretic
(syntactic) connotation in contexts that involve simulating semantic consequence relations
by means of effective procedures constructed with the aid of inference rules. This proof-

theoretic connotation will not be relevant to our aims.

Example 3 Aziomatising a frame.

Suppose ® = {p, q}. The set of possible states is S = {F'F, FT,TF,TT}. Let p and q express
the notions of a light being on and the temperature being 40 °C respectively. Suppose we
want to consider only those states in which exactly one of the atoms is true, i.e. we are

interested in the frame F = {TF, F'T'}. Then this frame can be axiomatised by the sentence

(pA-g)V(-pAq).
The first disjunct asserts that p is true and q is false, so the state TF is included in the
class of models of the axiom. The second disjunct asserts that p is false and g is true, and
this includes the state F'T in the class of models. The states F'/F' and TT are both excluded
(in the sense that they falsify the sentence and thus do not belong to the class of models):
if p is true then ¢ cannot be true, so T'T is excluded, and if p is false then g cannot be false
so FF is excluded. Thus the sentence is globally true over the frame F = {TF, FT'}, and

is true in no other valuation.

There are frames which are not axiomatisable, i.e. for which no set ¥ of sentences can be

found such that the frame is precisely Mod(¥). We will use an example to illustrate this.
Example 4 Non-aziomatisable frames.

Let £4 be the propositional language with infinitely many atoms pg, p1, ... Then the set S
of all valuations has uncountably many members which may be indexed by the elements
of the cardinal number 2% : § = {s3|3 € 280}. We assume that this indexing is done in
such a way that sg is the valuation which makes every atom true. Let G = S — {sg} be the
frame that results from excluding sg. Now it is not difficult to show that every set ¥ of
sentences globally true over G will also be globally true over S, so that Mod(X) # G. Brink
& Heidema [BH89] prove this by contradiction, using the following argument:

Let X be a set of sentences over L4, and let Mod(X) = {s € S| for every a € X, s € Mod(c)}.

We want to show that the frame G is not axiomatisable, even by an infinite set of axioms.



Assume there exists a set of sentences X that axiomatises G. Then every valuation in G must
make every sentence in % true, and every valuation outside G must make some sentence
in ¥ false. There is only one valuation outside G, namely sqg, so there is some sentence
o in ¥ which is false in sg but true in every other valuation. The sentence a is built
up out of finitely many atoms. Let n be a number big enough so that the atoms in o
are among po,py, - -.,Pn and consider the valuation s, which makes these atoms true and
all other atoms false. So s, associates the value T' with p; iff « < n, in other words,

s.,(po) =T,..., s'y(pn) =T, S'y(pn+1) =F,...

Now s, must make o false, because sg makes o false and the two valuations give the same
values to the atoms in a. But s, lives in G, and we assumed that all the valuations in G

satisfied a. So we have an absurdity - a is both satisfied and not satisfied by s,.

So, by reductio ad absurdum, we can claim that our initial assumption was invalid, i.e. there

does not exist a set of sentences axiomatising G.

Labuschagne [Lab98] discusses the significance of this result: a frame G represents our
unverbalised knowledge about a system. If we succeed in axiomatising G, then the axioms
can be regarded as a verbalisation in the relevant formal propositional language of our
previously unverbalised knowledge. The fact that such axiomatisations do not always exist
just means that sometimes we have knowledge about a system that, while expressible in

the metalanguage, cannot be expressed completely in the propositional object language.

A schema is a representation of the set of all sentences sharing some syntactic form. As an
example, consider the language described in Example 3. If (o A =) V (=@ A ) is regarded
as a schema in which the metalinguistic variables ¢ and % stand for arbitrary sentences in

the language, then (p A =q) V (=p A q) is an instance of this schema.

We say that a sentence ¢ is a semantic consequence of the sentence o, denoted by o = ¢,
if ¢ is globally true over Mod(a). In a similar way the notation ¥ = ¢ means that the
sentence ¢ is globally true over Mod(X).

Propositional languages such as those described above are not suited for the representation
of sentences of which the truth value varies over time. In the following chapters we are
going to look at some systems that use first-order languages as well as others that use

propositional modal languages for this purpose.



1.3 First-order languages

The languages of first-order logic are similar to those of propositional logic but each is based

on an alphabet A which consists of the following symbols:
e a set X of variables zg,xy,...
e a set C consisting of zero, one, or more constants a, b, ...

the connectives = and —

the punctuation symbols ‘(" and ‘)’

a set FUN consisting of zero, one, or more elements of the form (f,n), where f is a

function symbol having arity n associated with it

a set PRED consisting of one or more elements of the form (A,n), where A is a

predicate symbol having arity n associated with it
e the universal quantifier v,
A term t over an alphabet is defined recursively as follows:
e ift € X, then t is a term
e if t € C, then t is a term
e if (f,n) € FUN, and t;,...,t, are terms, then f(t,...,t,) is a term.

If (A,n) € PRED and ty,...,t, are terms, then A(t1,...,%ts) is an atomic formula. We

define the set ® as the set of all atomic formulas.

A wff (i.e. a well-formed formula) over such an alphabet is a string conforming to the

following criteria:
o if p € ®, then ¢ is a wff
o if p and ¢ are wffs, then —~p and (p — 1) are wffs

o if pis a wffand z € X, then Vz(p) is a wff.

The set £ of all wffs over the alphabet A is called the first-order language over A.

We can form an extended language £* by the introduction of the connectives A,V and
by the usual abbreviations, and by the addition of the eristential quantifier 3, which is the

dual of ¥ in the following sense:
3z(p) abbreviates —Vz(—p).

Strings of the form VzVyVz are abbreviated to Vz, v, z.



- Example 5 Atomic formulas are transparent..

In all logic languages the primitive entities, i.e. atoms, are analogues of simple English
sentences like ‘Jenny is pretty’. In propositional languages, atoms are indivisible and no at-
tention is given to any internal structure they may have. In a first-order language, however,
atomic formulas are built up from simpler things. To illustrate this informally, we give a
natural language example. The sentence ‘Jenny is pretty’ may be considered as consisting
of two separate parts, namely a predicate symbol and a constant. ‘Jenny’ would be the con-
stant of the sentence and ‘Is pretty’ would be the unary predicate symbol. A more complex
sentence like ‘Jenny is dancing with John’ would consist of three distinct parts, namely the

binary predicate symbol ‘Is dancing with’ and the two constants ‘Jenny’ and ‘John’.

Formal analogues of these sentences in a first-order language exhibit the structure more
clearly. If, in an alphabet .A, the constant ‘a’ is thought of as representing the girl Jenny,
and the predicate symbol ‘A4;’ as representing the property of being pretty, then Ay(a) is

an atomic wff expressing the information that Jenny is pretty.

Similarly, the information that Jenny is dancing with John may be expressed by a wff of

the form As(a,b), where A is a binary predicate symbol and a and b are constants.

How do we attach meaning to sentences in a first-order language? This is done by means
of an interpretation I = (D,i) of £L* that consists of a non-empty set D called the universe
of discourse or the domain, and a meaning function ¢ which maps certain symbols of £* to

entities constructed from the domain. The function ¢ must be such that:

i(a) € D, foralla e C
i(f,n) : D* = D, for all (f,n) € FUN
i(A,n) C D", for all (4,n) € PRED.

Given an interpretation I = (D, 1), we define a variable assignment v for I as a function

that maps each variable in £* to an element in the domain. So v(z) € D, for all z € X.

Let I = (D,1) be an interpretation of £* and let v be a variable assignment for I. The

denotation of an arbitrary term ¢ in £* is calculated recursively in the following way:
e if £ € X, then ¢ denotes v(2)
e if t € C, then t denotes i(t)

e if ¢t has the form f(t4,...,t,) for (f,n) € FUN, then t denotes i(f)(d1,...,dn) where
d; is the element in D denoted by t;.



The valuation s corresponding to Iin the context of v associates a truth value from the set

{T,F } with the atomic formulas in £* in the following way:

e A(ty,...,tn) € ® is assigned the value T iff (di,...,dn) € i(A), where d; is the
element in D denoted by t;.

Truth values can now be associated with all wffs in the language: For any wff ¢ € L*, and
for any variable assignment v for I, we say that I satisfies ¢ in the context of v, denoted

by (I,v) IF p, iff one of the following cases applies:

e o= A(t,...,tn) € ® and (d1,...,dn) € i(A), where d; is the element in D denoted
by t;

o p=—and (I,v) ¥y
o p= (¢ > x) and (I,v) ¥ ¢ or (I,v) IF x or both

e o =VYz(y) and (I,v') IF ¢ for every variable assignment v’ that differs from v at most

on the variable z.

In a first-order language, the scope of a quantifier is defined as the shortest wff immediately
following the quantifier, e.g. if we consider the wff Vz(yp), v will be the scope of Vz.
Occurrences of z in Yz or in the scope of Yz are bound. If all occurrences of variables in
a wff ¢ are bound, then y is a sentence. If an occurrence of a variable is not bound, it
is said to be free. If a sentence ¢ is satisfied by an interpretation I in the context of a
variable assignment v, then ¢ will be satisfied by I in the context of all possible variable
assignments. We say I satisfies ¢, or I is a mode!l of ¢, and denote this by I IF ¢.

Example 6 A model of a sentence.

Let Lo be a first-order language with PRED = {(A,,1),(A2,1)}, C = {a,b,c} and FUN =
0. Let Iy = (D,%) be an interpretation of Ly, where D = {1,2,3}, i(a) = 1, i(b) = 2,
i(c) = 3, i(4;) = {1,3} and i(43) = {2}.

Is In a model of the sentence ¢ = Jz(A;(z))? Let v be any variable assignment in Iy. Ip
satisfies 3z(A;(z)) in the context of v iff there is at least one variable assignment v/, differing
from v at most on z, such that I satisfies A1(z) in the context of v'. (Remember that 3
abbreviates =¥—). Let v’ be the same as v except that v/(z) = 3. Then v'(z) € i(4,) = {1,3}.
So I satisfies A;(z) in the context of v’ and therefore Iy satisfies 3z(A;(z)) in the context

of v. Since v was arbitrary, we can claim that I is a model of 3z(A4,(z)).




Let S be the class of all interpretations of £*. A frame is any subset of S. If a sentence
¢ is true in all elements of a frame F C S, we say that ¢ is globally true over F, denoted
by F IF ¢. This also means that, for all s € F, s is a model of ¢, so F is a subset of the
collection of all models of ¢, denoted by Mod(yp) 2 F.

We say that a set ¥ of sentences aziomatises F if and only if Mod(3) = F. A sentence ¢
is a semantic consequence of the sentence o, denoted by a = ¢, if ¢ is globally true over

Mod(a). In a similar way, 3 |= ¢ means that the sentence ¢ is globally true over Mod(X).

As is the case in propositional languages, there are frames which are not axiomatisable, i.e.

for which no set ¥ of sentences can be found such that the frame is precisely Mod(X).
Example 7 Aziomatising a frame.

Suppose we want to axiomatise the class of all interpretations whose domains contain only

one element. This can be achieved by the axiom

vz, y(x = y).

In the discussion given above, all the variables in our language were of the same sort so
we can speak of an unsorted first-order language. Most of the languages we are going to
consider, however, contain variables that are of different sorts. Let’s look at how many-

sorted first-order languages differ from unsorted first-order languages.

1.3.1 Many-sorted languages

The application field for these languages comprises those systems in which the objects are of
different sorts, for example agents, temperatures and time instants. Since we are primarily
interested in temporal logics, most of the predicate symbols in the languages we are going

to consider have an argument representing time.
Example 8 Objects of different sorts.

Suppose the sentence Az(a,b) expresses the information that Jenny is dancing with John.
If we consider this sentence over a period of time, it may have different truth values at
different times. The concept of time may be introduced by adopting a ternary predicate
symbol admitting a new argument, say, A5(a,b,t). We now have two different sorts of

variables - one sort representing persons or agents and the other representing time.




Let TP be any finite set, say {1,...,k} . The alphabet A of a k-sorted language, based on

the set TP of sorts, comprises the following symbols:

e aset X = X;U---U X of variables, where each X; is a countably infinite set

containing all the variables of sort z

e aset C = CyU---UC of constants, where each C; (which may be empty) contains

all the constants of sort 2

e a set FUN consisting of zero, one or more elements of the form (f,7n), where f is a
function symbol having arity n associated with it. Each f also has an (n + 1)-tuple
of sorts (T1,...,Tn, Tnt1) associated with it, called the sort of f

e a set PRED consisting of one or more elements of the form (A,n), where A is a
predicate symbol having arity n associated with it. Each A also has an n-tuple of
sorts (T1,...,T5) associated with it, called the sort of A

e the connectives — and —
e the punctuation symbols ‘(’ and ‘)’

e the quantifier V.

The set TM* of terms of sort i is defined as follows:
e if z € X;, then z € TM?
e ifce (i, thenc € TM?

e if f is an n-ary function with the sort (71, ..., Tn, 1) associated with it, and ¢,...,%

are terms of sort 11,...,T, respectively, then f(t1,... ,tn) € TM:.

The set ¢ of atomic formulas over A is the set of all strings of the form A(¢4,...,t,) where
A is an n-ary predicate symbol with the sort (T1,...,Tn) associated with it, and ¢;,...,¢n

are terms of sort 11,...,T, respectively.

We say that ¢ is a wff over the k-sorted alphabet A iff one of the following holds:
e pED
e ¢ = ), where ¥ is a wff over A
e o= (1 — X), where ¥ and x are wffs

e ¢ = Vz(y), where z is a variable of any sort and 4 is a wff over A.
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The set of all wffs over the alphabet A bonstitutes the k-sorted language L.

It may again be convenient to form the extended language £; by introducing the connectives

A,V and «, as well as the quantifier 3, by the usual abbreviations.

An interpretation I = (D, i) of E,":voonsists of some domain D = DjU- - -U Dy, and a meaning
~ function i that maps certain symbols in £} to entities constructed from the domain. The

function 7 must be defined in such a way that:

i(a) € Dj, for all a € C;

i(f,n): Dpy x --- x Dr,, = Dr, ., for all (f,n) € FUN, where (T1,...,Tn, Tn41)
is the sort associated with f

i(A,n) C Dy X -+ X Dr,,, for all (A,n) € PRED, where (T,...,Ty) is the sort

assoclated with A.

+11

Given an interpretation I = (D, ), we define a variable assignment v for I as a function
that associates each variable in £} with an element in the subdomain of the corresponding

sort. This means that for all z € X}, v(z) € D;.

Let I = (D,%) be an interpretation of £} and let v be a variable assignment for I. The
denotation of an arbitrary term ¢ in £} is calculated in the same way as for first-order
languages. The concepts of a valuation, a model, a frame and global truth of a sentence
over an interpretation and over a frame are defined as before. This also applies to the

concepts of axioms and semantic consequences.
Example 8 Truth values of sentences in a many-sorted language.

Let TP = {agent, time} be the set of sorts in a 2-sorted language La. Let C' = CggentU Ctime,
where Cggent = {ag, a1} of sort agent and Chime = {to, t1,2} of sort time, and let PRED =
{(A1,3)} of sort (agent, agent, time). So (A;3) is a ternary predicate symbol of which the

first two arguments are of sort agent and the third argument is of sort time.

Let Iy = (D,i) be an interpretation of £y such that D = Dggent U Diime, Where Dggent =
{Jenny, John} and Dyme = {1130, 1200, 1230}. Let i(A;) = {(Jenny, John, 1200}, i(ao) =
Jenny, i(ay) = John, i(to) = 1130, i(t;) = 1200 and i(ty) = 1230.

(1) Does I satisfy Aj(ap,a1,tp)? The denotation of the predicate symbol A; is given by
~ i(A1) so Ay denotes the singleton set {(Jenny, John, 1200)}. The denotations of the three
constants ag,a; and tg are given by i(ao),(a;) and i(tg) respectively, so ag denotes Jenny, a;
denotes John and fg denotes 1130. But (Jenny, John, 1130) ¢ (A1), so Ig ¥ Ai(ao, a1,1tp).
This means that Iy does not satisfy A;(ag, a1, tp).

11



(ii) Does Ig satisfy A)(ap,a1,t1)? Since i(¢;) = 1200 and (Jenny, John, 1200) € i(A,), it
follows that I I+ A)(ag,a),t1). So Iy satisfies A;(ag,a1,t1).

Suppose A; was included in the alphabet in order to symbolise the relation of one person
dancing with another at a specific point in time. Then we can say that, using the interpre-
tation Iy, the sentence A;(ag, a1, t1) represents the English sentence ‘Jenny is dancing with
John at 12h00’.

1.4 Propositional modal languages

The languages for propositional modal logic are similar to languages for propositional logic
with the addition of modal operators. Typically, such a language with one modal operator

is a set of sentences built up in the context of the following syntax:
The alphabet .A consists of the following symbols:

e a set ® containing one or more atoms p, q, . ..

e the punctuation symbols ‘(’ and ¢)’

e the connectives - and —

e the modal operator O (called Boz).

The propositional modal language £ over A is the set of sentences over A, where ¢ is a

sentence over A iff one of the following holds:
e ped
® ¢ = -, where a is a sentence over A
e ¢ = (a — ), where a and 1 are sentences over A

e p = Da, where a is a sentence over A.

The connectives V,A and < can be introduced as before. The modal operator O (called

Diamond) is the dual of O in the following sense:

Oy abbreviates ~O—y.

12



Example 10 Sentences in a modal language.

Let Lo be a propositional modal language and let ® = {p, q}.

The following, if we ignore the omission of inessential parentheses, are examples of sentences
in Lo: k

pAg, ~q— Op, O(pV —p), O-0Op — Dg.

But pO and &g — O are not sentences in Lg.

Modal languages are typically equipped with a possible world semantics. An interpretation
for a modal language is defined in terms of a structure, which is a pair F = (S, R), where
S is a set, the members of which are called possible woﬂds, and R is a binary relation on
S, RC SxS. Ris known as the accessibility relation. If (s,t) € R, then we say that ¢ is

accessible from s in R.

We are specifically going to look at temporal logics, so in this context, structures are referred
to as temporal structures. A temporal structure is typically defined as a pair 7 = (T, <),
where T is a set, the elements of which are called time points, and < is a transitive relation.
An alternative to a set T of time points is to use a set of intervals, or even both, in the time

structure.

A model is defined by equipping a structure with a valuation. More precisely, a model M
based on the structure F = (S, R), is a triple (S, R, V), where V is a valuation function such
that V : ® — 25 2, Informally, V is a function that associates, with each atomic sentence
¢ € @, the possible worlds s € S at which ¢ is true. With the help of V, it is possible to
define what it means to assert that M satisfies a sentence ¢ at s, i.e. ¢ is true at s in the
model M, abbreviated to M I, ¢. The definition proceeds recursively on the format of .
- For arbitrary sentences a, € L* we can say that M I, ¢ iff one of the following holds:

e p€®and s € V(yp)
e =1 and MK,y
o p=a— 1Y and M¥F,; aor M+, 1 or both

e =0y and Mgy ¢ for all s € S such that sRs'.

2This approach to semantics is frequently referred to as Kripke semantics although it was dis-
covered independently several times, first by Tarski, then by Kanger and Prior, and only thereafter
almost simultaneously by Kripke and Hintikka [BS84].
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Example 11 Truth in a model.

Let ® = {p, q}.
Let My = (S,R,V) where S = {s,t,u}, R = {(s,t), (¢, )}, V(p) = {s,u}, and V(q) =
{t,u}. '

By way of illustration, we can determine the truth values of the sentences (p — —g), Op
and O0Op.

(i) Is (p — —q) true at s in M1? M, Iy (p — —q) iff My ¥, p or My |-, g, or both.
Consider the first condition: s € V(p) so M; Ik, p. Thus the first condition is false.

Let’s look at the second condition. M Ik, ~q can be written as M; ¥, ¢ and s ¢ V(q) so
the second condition is true. This means that M; Ik, (p — —gq) is true, i.e. (p — —q) is

true at s in Mj.

(ii) Is Op true at t in M;? M Ik Op abbreviates M; Ik =O-p, and M, ¥, O-p iff it
is not the case that M Iy —p for all s € S such that tRs’. From the definition of R, we
know that u is accessible from %, and « € V(p), so M Ik, p. It follows that M Ik Op, i.e.
Op is true at t in M.

(iii) Is OOp true at s in M;? M; I+, OOp iff M kg Op for all s’ € S such that sRs’. The
world ¢ is the only one accessible from s, and M, Ik Op iff M, IF; p for all § € S such that
t55. Well, u is the only world accessible from ¢ and » € V(p), so M Ik, p. This means that
M ik Op and consequently that M; Ik, OOp. So OOp is true at s in M;.

A sentence ¢ is globally true over a model M = (S, R, V), denoted by M IF o, iff ¢ is true
at all worlds in M, i.e. Mk, ¢ for all s € S.

If F = (S, R) is a structure, let the frume of F be Cr = {(S, R, V)|V is any valuation}. A
sentence ¢ is globally true over a frame Cx, denoted by Cr I ¢, iff it is globally true over
each M € Cr.

If K is any class of structures, let the frame of X be Cx = U {Cr|F € K}.So M = (5,R,V) €
Cx iff there is some structure F = (S, R) € K such that M € Cr. A sentence ¢ is globally
true over a frame Cx, denoted by Cx I+ o, iff it is globally true over each M € C.

Given a class K of structures (typically those in which the accessibility relation has some
desired set of properties), we are usually interested in whether K can be axiomatised, i.e.
whether it is possible to find a set T of sentences that are globally true over the frame of K

and no other frame.
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1.4.1 Multimodal languages

The modal languages discussed in the previous section have only one modal operator, namely
O. The alphabet for a multimodal language is similar to the alphabet for a modal lan-
guage with only one modal operator but instead of having only one, we have several modal
operators. If there are n modal operators, these can be denoted by [1],[2],.. ., [n], where
the operator [i] is similar to the O operator. The dual operator (i), which is similar to <,

abbreviates —[i]-.
The set of sentences is defined in a way similar to a propositional modal language with only

one operator.

Example 12 Sentences and nonsentences in a multimodal language.

Let Ly be a multimodal language with ® = {p, ¢} and with the modal operators (1], [2]
and [3]. The following will be sentences in Lys:
[U(p—q), BlpV (2)g, -[2pA1]p).

But [4]p and [1|r are not sentences in Ly, because there is no modal operator [4], and
r¢ .

Given a language with modal operators [1],...,[n], a structure is defined as a tuple F =
(S5, Ry,...,Ry,) where S is a set of possible worlds and we have a collection of n binary
relations R; C S x S, one for each [i]. A model M = (S, Ry,...R,,V) on F is given by a

valuation function V : ® — 25 as before.

The truth value in M of atoms and sentences of the form —¢ and (¢ — ), at a world
s € S, can be defined as before. The truth value of a sentence of the form [i]e is defined
in terms of the accessibility relation R;. We say that [i|¢ is true at s in M, denoted by
M kg (i), iff M Ik @ for all t € S such that sR;t.

Exaniple 13 The truth of sentences in a multimodal language.
Let Ly be a multimodal language with ® = {p, ¢} and with the modal operators 1] and

[2]. Let My = (S, R1,Ra,V) where

5= {t1>t21t3}
R, is the relation < = {(t1, t2), (t1,%3), (£2,t3)}
Ry is the relation > = {(to,t1), (t3,%1), (¢3,2)}
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V(p) = {t1}

V(g) = {t1,t2}.
The truth value of a sentence of the form [i]y in M; at the world s € S, denoted by
M Ik, [i]e, is defined as follows:

o Mylk (1) iff My kg @ for all 8’ € S, such that s < &'

o Myl 2] ff My kg o for all s’ € S, such that s > 5.

Now we can determine the truth value of the sentences [1]p and (2) p:

(i) Is [1]p true at ty in M1? My by, [1]p iff My iy p for all ¢ € S such that tp < t'. Well,
ts € S is the only world such that ¢ty < t3, and t3 & V(p). So M; W, p. It follows that
- M Wy, [1]p, so [1]p is not true at ¢ty in Mj.

(ii) Is (2) p true at ty in M7 My by, (2) p iff there exists at least one ¢ € S such that
t, > t' and M IFy p. (Remember that (2) abbreviates —[2]-.) We know that t3 > ¢; and
that t; € V(p), so My Ik, p. This means that Mj Ik, (2) p, so (2) p is true at ¢z in Mj.

As before, a sentence ¢ is globally true over a model M = (S, Ry,..., R, V) iff M, ¢
for all s € S, and ¢ is globally true over a frame Cyr iff it is globally true over each M € Cp,
where F = (S, Ry,..., Ry) is a structure, and Cr is the frame of F. If K is any class of
structures and Cx is the frame of K, then a sentence ¢ is globally true over Cx iff it is

globally true over each M € C -

Given interesting properties that the accessibility relations Rj,...,R; may possess, one
may form the class K of all structures of which the relations have these properties and
enquire whether this class is axiomatisable in the sense that a set ¥ of sentences can be
found which are globally true over all and only the frame of K. An example that will play
an important role in later chapters is the following: consider a language with two modal
operators [1] and [2]. Consider the property that links R; and Ry as mutual converses, i.e.
(z,y) € Ry iff (y,z) € Ry. Let K be the class of all structures (S, R1, Rp) such that Ry and

R, are mutually converse. Can K be axiomatised? We defer the answer to Chapter 3.

1.5 Further chapters

In this chapter, we have given a brief outline of object languages that may be used in
temporal logic. In the next chapter, we briefly look at the choices that have to be made if

we need to construct a computational framework for such a logic.
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We look at a number of different temporal logics in Chapters 3 to 6. What we are mainly
interested in is the axiomatisation of these logics and in this respect two main aspects are
considered. Firstly we consider the axiomatisation of the underlying temporal structures.
When we are using a first-order language, the axiomatisation of the temporal structure
does not usually pose a problem because we have a number of standard axioms for the
definition of properties of relationships between time points or intervals. Some of these are
given in section 2.3.1. When we are using a modal language, however, this is not the case.
The semantics of the modal operators has to be taken into account. In Chapters 3 and
4, our emphasis is on the axiomatisation of the accessibility relations within the temporal

structures for the relevant modal languages: for point-based systems in Chapter 3 and for

interval-based systems in Chapter 4.

The second aspect we consider is the formulation of axioms for distinguishing concepts like
actions, events, processes and so on. We do this for systems using first-order languages.

Chapter & deals with point structures and Chapter 6 with interval structures.

In Chapter 7 we briefly discuss the fields of application of temporal logics and list a number

of fields that looks promising for further research.
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Chapter 2

A brief survey of computational

frameworks

In order to establish a computational framework for reasoning about time and change, we
need to establish an adequate basis for representing the objects to be reasoned about. This
means that defining a temporal logic that will suit our requirements requires a number of
important decisions to be made. These decisions depend to a large extent on the intended
application. In this chapter we list the most important issues that have to be resolved and

the various options that are available.

2.1 Dynamic approach vs temporal approach

We distinguish between two ways of handling time: the dynamic or change-based approach,
and the temporal or time-based approach. In the change-based approach®, we concentrate
on entities, called change-indicators, that signify a change having taken place [SGSS]. The
system is described in terms of different states or events. Time is determined by events,
and properties of time must be defined by investigating the properties of events [Vil94]. An

example of this approach is the Situation Calculus, discussed in Chapter 5.

Although, in Lin’s opinion [Lin91], the change-based approach is more interesting because
it is based on the human perception of time, it has a number of limitations of which the

following are notable:

e Actions do not have any duration.

1Galton [Gal95] refers to this as a time-dependent approach. With this approach, we use a
relational theory of time [Vil94)
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s The result of an action is immediate. We cannot distinguish actions that have delayed
effects and assertions that are true for a time period only and then become false

because of natural death or termination.
e Simultaneous actions, such as concurrent or overlapping actions, cannot be expressed.

o Continuous processes are not expressible,

In the time-based approach?, time is given an autonomous status. So we have only one
fundamental kind of change and that is the passage of time. This is a constant change
unaffected by anything else. With this approach, a temporal structure is defined as primitive
in the language we are using, and assertions are either true or false at points (or intervals)
in this structure [SG88]. A set of structures, representing the various kinds of change that
can occur in time, is then superimposed on the temporal structure. This approach dates

back to Prior’s tense logic which will be discussed in Chapter 3.

2.2 The object language

One of the most important decisions that has to be made is the choice of object language.

We consider the two options non-modal first-order languages and modal languages.

In an unsorted first-order language, time is simply introduced as one or more (or even none)
additional arguments to a predicate symbol. In such systems time is not accorded a special
status so we cannot say as much about the temporal aspects of an assertion as we may
wish to [SG88]. Therefore, we will not discuss the use of these languages further. Many-
sorted first-order languages prevail in Al applications. In such a system, we separate the
temporal and nontemporal components of an assertion [SG88]. Examples of systems using

many-sorted first-order languages are discussed in Chapters 5 and 6.

The second option is the use of modal languages. Examples of systems using modal languages
are discussed in Chapters 3 and 4.

The highly-developed theorem-proving techniques of first-order languages are frequently
mentioned in their favour. However, relatively simple sentences in English may have unde-
sirably complex representations in a first-order language. The following example used by
Gabbay [GHR94] illustrates this:

2Galton [Gal95] uses the term time-independent, while Lin [Lin91] talks about using an absolute
~ theory of time
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Example 14 A complez first-order sentence.

Consider the following simple English sentence:

Since M became Prime Minister, the pound has steadily been going down, and in fact it will

continue to go down for as long as she remains Prime Minister.

Let VP(t,z) express the idea that the value of the pound is z at time ¢, and PM(t, M)
the idea that M is the Prime Minister at time ¢. Let now represent a time point that is
regarded as the present moment (or the moment the sentence is spoken). The following

first-order language sentence is a representation of the English sentence:

3t < now — [PM(t, M)
Ads(s <tAVu(s <u<t— —~PM(u,M)))
AYu(t < u < now — PM(u, M))
AV, v, T, 9((t <u <v < now A VP(u,z) A VP(u,y)) - = >y)])
AVs(s > now — [Vu(now < u < s —» PM(u, M))
— Yu,v, 7, y((now <u <v < sA VP(u,z) A VP(v,y)) — z > y)])

Suppose we have a modal language containing the connectives S and U, such that S(4, B)
means that B has been continuously true since A was true, and U(A, B) means that B
will continuously be true until A is true. The English sentence can be written in such a
language as
S(=PM(m), PM(m) A PoundGoingDoun) A PM (m)

AU (-~PM(m), PM(m) A Pound GoingDoun)

where PoundGoingDoun means that ‘if the value of the pound is £ now, and if its value

was y the day before, then y > z’.

A modal language, on the other hand, sometimes may lack expressiveness’. Van Benthem
[VB91] identifies a number of properties of the order relation of a time structure, such as
irreflexivity and antisymmetry, that cannot be expressed in the modal language defined by
him. This is discussed in Chapter 4.

We briefly look at typical applications of each of these languages in Chapter 7.

2.3 The temporal structure

Important decisions also have to be made about temporal representation. The first of these

concerns the primitive elements in the temporal structure. The two contenders are points
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and intervals. Secondly we need to define a relation (or more often more than one relation)
between primitive elements. When points are chosen as the primitive elements, we typically
use the relation ‘<’ (earlier-than) and its counterpart ‘>’ (later-than). When intervals are
chosen as the primitive elements, a wider variety of relations may be used, ranging from
analogs of ‘<’ to relations that take into account the possibility of intervals to overlap.
Systems in which points constitute the primitive elements are treated in Chapters 3 and 5;

those taking intervals as primitive are discussed in Chapters 4 and 6.

Historically, the first temporal logics were point-based. If we choose peints as primitive,
we have to make provision for deriving a representation of intervals in the system. We

distinguish between the following two ways of representing intervals:

» Consider an interval to be a pair of time points [Sho88]. Suppose t; < t3, then the
interval with starting point f; and endpoint t; may be represented by the ordered

pair (23, t;). Nothing is said about the points between t; and t5.

» Consider an interval to be a conver set of points. An open interval is thus defined
as (t1,t9) = {t € T : t; <t < ta} for a temporal structure F = (T, <). Should these
intervals be closed, open or half-open? This depends on whether we want to consider
the starting point and the end point as part of the interval. This may lead to the
so-called dividing instant problem [VB91]:

— Suppose we choose open intervals. Let the assertion p be true over the interval
(t1,t2) and false over the interval (t3,?3). What is the truth value of p at £37 It

is neither obvious that it should be true nor obvious that it should be false.

— Suppose we choose closed intervals. Let, again, p be true over [t;,t2] and false
over [tg,t3]. What is the truth value of p at 3?7 It would seem to inherit truth

from the first interval and falsity from the second.

~ This problem is frequently solved by using half-open intervals. So, if p is true
over (t1,2] and false over (t2,%3], p will be true at ¢3. This offers a solution

which is, perhaps, somewhat superficial.

More recent temporal logics have tended to take intervals as basic [Nil98]. In [All84], Allen
reasons that intervals should be defined as primitive in the language since ‘it appears that
we can always decompose times into subparts. Thus the formal notion of a time point which

would not be decomposable is not useful.’

Allen’s time structure is frequently used for approaches that take intervals as primitive. In

this structure, there is a single time line and any two intervals on the time line are related
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by one of 13 mutually exclusive relations. Each of these interval-interval relations may be
representéd by a symbol in the relevant language. We will discuss two of these systems
in detail, namely the system proposed by Shoham in Chapter 4, and Allen’s system in
Chapter 6. Figure 2.1 shows twelve of the thirteen different relations (excluding equals).
As is apparent, there are six relations having six inverses. The dotted line indicates the

interval z and the solid line the interval 7.

Relation ) i Inverse
: i
i ;
| . |

i is before ' 1 { ] Jisafer i
prer s '
' J
t | T ————
i |
i j
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i !

i
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i i
| |
; e

i starts j e : J is started by i
i i
; i

i occurs during j i ¢ J contains §
e ;
: |
] )

i finishes f e R 718 finished by i
i ]

Figure 2.1: Allen’s interval-interval relations

If intervals are chosen as primitive, we should provide a means of representing points, i.e.
durationless intervals, in the system. To make provision for the representation of time
points Allen, for example, allows for the existence of point intervals (or what Allen calls
zero-width intervals) at both ends of an interval. This effectively provides each interval with
a beginning point and an end point.

2.3.1 Properties of relations

Consider a point-based tempofal structure (T, <). Usually, a system uses either a linear or a
branching time structure [Gal87]. Linear time is suitable for deterministic systems, whereas
branching time is suitable for systems where more than one future, or more than one past,

is possible, i.e. the future or past is indeterministic.
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(a)

®) I T

Figure 2.2: (a) Branching time, (b) Linear time

A linear time structure would be suitable when we want to consider a system where there
is only one actual future and one actual past. Fig 2.2(b) is a representation of linear time.
If we choose any two time points ¢; and t3, the two points must be comparable. For the
relation <, this means that exactly one of three possible relationships must hold between

them:

11 <ty
g <1y

i1 = tg.
So in Fig 2.2(b), t1 < t».

A forward branching (or left-linear) time structure would typically be used in a planning
system to determine the outcome of different possible futures, whereas a backward branching
(right-linear) time structure may be used to represent different possible pasts (e.g. in
medical diagnosis). Fig 2.2(a) represents the concept of branching time, or the property
of left-linearity (forward branching time) in this particular case. We have one past and
different possible futures. If one looks at the figure, it is clear that a < b and a < f, but b

and f are not comparable.

Two other possibilities are parallel time and circular time structures. A parallel time struc-
ture could be regarded as a model of the different subjective time-scales of different people.
It might be difficult to imagine the idea of circular time, but the associated logic could be
useful in reasoning about repetitive processes, such as the ‘endless repetition of cycles’ of
a traffic light [Gal87]. However, one suspects that a temporal approach is less suitable for

such an application than a dynamic (change-based) approach would be.

23



In a temporal structure (T, <) the relation < may, depending on its properties, allow dif-
ferent notions of nearness and hence different topologies. Whether topological aspects are

of importance will depend on the application.

Which other properties might the order relation in the chosen time structure have? The

following illustrate a few of the available options:

o Is time discrete or dense? If dense, is it continuous (like the real numbers), or not
(like the rationals) [Gal95]? If time is discrete, we can talk about the next moment

and the previous moment, two concepts that are widely used in computer science.

o Is time bounded or unbounded (serial, infinite, successive) in none, one or both direc-
tions [SG88]?

e Is the time structure convez (i.e. there are no gaps) or not?

A number of useful properties, together with their definitions, are listed below ([Gol92],
[Ven95]). We frequently refer to these properties in subsequent chapters. Other less impor-
tant properties are given as the need arises. The properties contained in the first group are
formulations of relationships between time points, or between intervals that do not overlap.
(In the context of intervals, the symbol < is used to express the idea that one interval
precedes another, so £ < y means that interval z is ‘earlier’ than interval y, and they do

not overlap: interval = ends before y starts.)

Transitivity Vz,y, z((zRy A yRz) — zRz)
Reflexivity Vz(zRx)

Irreflexivity Vr—(zRz)

Symmetry Vz,y(zRy — yRz)
Antisymmetry Vz,y((zRy AyRz) -z =1y)
Asymmetry Vz,y(zRy — —~(yRx))
Euclideanness Vz,y, 2((xRy A cRz) — yRz)
Partial functionality Vz,y,z((zRy AzRz) -y = 2)
Confluency Yy, z(3z(z Ry A Rz) — Ju(yRu A zRu))
Right-seriality ' Vzy(zRy)

(Successor) ;

Left-seriality Vz3y(yRz)

(Predecessor)
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Seriality Vz(3y(zRy) A 3z(2Rx))
(Infinity, unboundedness)

Linearity Vz,y(zr <yVz=yVy<z)

Right-linearity Vz,y,z((x <yAz <2) > (y<z2Vy=2Vz<y))
(Backward branching)

Left-linearity Vz,y,z((y<zAz<z)—> (y<zVy=2zVz<y))
(Forward branching)

Density Vz,y(z <y — Fz(z < 2 A2 < y))

Discreteness Vz,ylz <y — Jz(z <zAz<yA-Ju(z <uAu<z)))

A relation is said to be functional if it is both partially functional and right-serial. It is
a partial ordering if it is reflexive, transitive and antisymmetric and it is an equivalence
relation if it is reflexive, transitive and symmetric. A strict partial ordering is transitive and

irreflexive. A linear partial ordering is a total ordering.

The second group of properties contains formulations of relationships between intervals
that may overlap ([VB91], [Ven95]). We use the symbol C to indicate interval inclusion,
1.e. £ C y means that interval z is a subinterval of interval y. Properties of relations on

overlapping intervals may include the following;:

Monotonicity Ve,y(zr <y —Vz2(z Cz — 2 <y))
Vz,y(z <y —Vz(zCy— z <z))
Conjunctivity Vr,y(Fu(u CzAuCy)— 3z2(2 CxAz2CyA
(Mu(v CzAvCy) > v C2)))
Disjunctivity Vr,y(Ju(z CuAyCu)— 3z(z C2Ay C zA
(Vo(z CvAy Cv) - 2 C )
Linearity Ve,y(r <yVy<zVIu(uCzAuCy))
Freedom Ve, y(Vz(2 Cz > u(uCzAuCy)) —z Cy)
Convexity Ve,y,2((z < yAy <z) > Vu((z CunzCu) >y Cu))
Left-linearity Ve, y,2((z < zAy<2)—> (z <yVy<zV

Ju(u CzAuCy)))
Directedness Ve,y3z(z CzAy C 2)
Duration monotonicity Vz,y,2((z <zAy<z) > Fw(v<zAzCvAy CuA
Vu((z CuAy Cu) = v Cu)))
Vz,y,2((z <zAz<y)—> w(z<vAz CvAy CuA
Vu((z CuAy Cu) - v Cu)))

Conjunctivity expresses the idea that, if two intervals z and y overlap, then there exists a
largest interval z representing the overlap. Disjunctivity expresses the idea that, if there

exists an interval z of which two intervals z and y are subintervals, then there exists a
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smallest interval containing both = and y. Duration monofonicity makes sense only when

disjunctivity and conjunctivity are satisfied and it implies both these properties [Haj96]

2.4 Facts, actions and events

The language we adopt should enable us to describe what holds or occurs in time. In
particular, we need to talk about facts, actions and events. There are several different
classifications of such notions some of which are discussed further in Chapters 5 and 6. An

example of such a classification is given below [VB91}:

— The class of states (also called facts or properties): These are static (permanent,
invariant) in nature and represent a reality which is true or false at a particular
instant or over a time interval. These primitives also have the property that
they are hereditary, i.e. if a state is true over an interval, this truth value is
inherited by all its subintervals. For example, if the assertion ‘Julie lives in
Durban’ is true over an interval, it is true over all the subintervals. The essence
of a state is that it cannot change its truth value by itself: a state change can

only be caused by some ‘event’ or ‘action’.

— The class of activities: These are also hereditary but dynamic in nature (some
activity is involved). An example is the sentence ‘Ben is swimming’, which holds

over all the subintervals. Activities are usually done for their own sake.

— The class of events (achievements or actions or performances): These are also
dynamic in nature but not hereditary. They occur and (most of the time)
cause changes in states. An event takes place over an interval of time, i.e. it
does not occur instantaneously. Consider the assertion ‘the robot executed the
Navigate procedure from start to finish’ as an example. If it takes the robot
half an hour to execute the Navigate procedure, the assertion does not hold for
any proper subinterval of that half hour interval; it only holds over exactly the
interval constituting one half hour. The duration of an event is generally short
in comparison with the duration of a fact. Changes caused by events are sudden
and discrete. They may represent actions consciously performed by a living
agent. An achievement (or accomplishment) may be the result of an activity or

process.

Now that we have an idea of some of the important issues that need to be resolved in

formulating a suitable temporal logic for a particular application, we show how this is done
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in a number of temporal logics; firstly we consider systems using a modal language and

then systems using a many-sorted first-order language.
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Chapter 3

Modal approaches with instants

3.1 Priorean tense logic

Prior is regarded by many as the founding father of modern temporal logic [OH95]. He
formulated a tense logic for natural language understanding based on the principle of having
a current time instant, the present, from which one can consider the past and the future
([Pri57], [Pri67] and [Pri68]). Prior uses the term ‘tense logic’, reflecting the use in natural
language of verb modifications to indicate temporal reference. Today the term ‘temporal
logic’ is generally used when referring to the logic of time, reflecting the recognition that
many other syntactic devices may be used to encode temporal information, such as temporal
connectives and temporal adverbials. In this chapter, however, we talk about instant tense
logic, a term used by Van Benthem who extended Prior’s logic to an interval tense logic,
discussed in the next chapter. We are primarily interested in the representation of time,
so our emphasis is on the set of axioms used to characterise the properties of the time

structures. We also look at a number of variations and extensions of this logic.

3.2 Past, present and future

The alphabet for instant tense logic consists of the following elements:

a set ® of one or more atoms p,q,...

the connectives -~ and —

the punctuation symbols ‘(’ and ©)’

the modal operators {F] and [P], where [F] is read ‘always in the future’ and [P] is
read ‘always in the past’.
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The duals (F), read ‘at least once in the future’, and (P), read ‘at least once in the past’

of the modal operators [F] and [P], are defined in the usual way:
(F)¢ =qef —[Fl
(P)p =aey [Pl
A graphical interpretation of the four modal operators is given in Figure 3.1.

nm:' _______ (P ________
[Flo
____________ now
[Ple ? i
now ¢
<F>(p } I
now

Figure 3.1: A graphical interpretation of Prior's modal operators.

The traditional literature on temporal logic uses G instead if [F], H instead of [P], F instead
of (F) and P instead of (P). Our notation is based on that of Goldblatt [Gol92].

The set of sentences G of this language is, as one would expect, the smallest set such that

e PC G, and

e if p,% € G, then ~p, ¢ — ¥, [Flp, [Plp €G.

The connectives A, V and < are introduced by the usual abbreviations.

- The language of instant tense logic, being multimodal, should be based on structures of
the form (T, Rp, Rp). T is a set of time points or instants. The accessibility relations Rp
and Rp on T are intended to capture the notions of later and earlier: if (z,y) € Rp we
say ‘y is in the future of, or is later than z’ and if (x,y) € Rp we say ‘y is in the past of,
or is earlier than z’. Clearly the intention is that [F] and [P] should express properties of
the same time-ordering, and thus that Rr and Rp should be converses, i.e. (z,y) € Rp iff
(y,z) € Rp. We thus restrict our attention to structures (T, Rr, Rp) in which Rr and Rp
are interdefinable, which permits a simplification: we may take our structures to be pairs

(T, R), where R is understood to be the accessibility relation Rp of [F]. Moreover, it is
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usual to require that R be some sort of ordering on T, or at least be transitive, and so we

will henceforth use the symbol ‘<’ for R (and ‘>’ for its converse).

The reader will recall from Chapter 1 that a valuation V : ® — 27T associates with each
p € ® a set of instants ¢ € T, and these are taken to be the instants (or possible worlds) at
which p is true. Let M = (T, <, V) be a model based on the time structure F = (T, <). A
sentence ¢ is true relative to M at time point ¢, denoted by M ik ¢, iff one of the following
holds:

e pec®andteV(yp)
e =ﬂ1,bandM“‘c¢'
.‘Pz'('b—»xandMu‘t’l,borM”‘tX

e ¢ =[F|y and M Ik o for all ¢’ € T such that t < ¢/

¢ = [P]y¥ and M Iy ¢ for all ¢’ € T such that ¢ > t'.

Remark: [F] represents the strict future; if M IF[F]vy then it need not be the case that
M k¢ 9. Similarly, [P] represents the strict past.

A sentence ¢ is globally true over a model M iff M IF; ¢ for all t € T. A sentence g is
globally true over the frame Cr based on the structure F = (T', <) iff it is globally true over
each M € Cx, where Cxr = {(T, <, V)|V is arbitrary}. A sentence ¢ is globally true over
the frame Cx of the class K of structures, iff it is globally true over each M € Cx, where
’ Cr = U{C}'}}— € K}

The following examples illustrate the range of temporal forms that a language of instant

tense logic is capable of expressing [VB95]:

(P)[Ple There was a time at which ¢ had always been the case
(F)@A(F)® ¢ will be the case and so will ¢

(F) (e AY) ¢ and ¥ will be the case simultaneously

[Fl(¢ — ¥) ¢ will always ‘guarantee’ ¢

[Fl(¢ = (F)9) ¢ will always ‘enable’ 3 to become true afterwards.

3.2.1 Axiomatisation

Let C be a class of models. An important question is whether C is axiomatisable, i.e. whether
there exists a set X of sentences such that the members of C are precisely the models globally
satisfying the sentences of X. In Chapter 1 we saw that there are non-axiomatisable frames.

In the case of modal (and thus temporal) logic, the rich semantic structure permits the

30



notion of axiomatisation to be construed in more than one way. It is convenient to restrict
attention to classes which are frames so we only consider the axiomatisation of frames in
this dissertation. Fortunately, the classes in which one might be interested often may be
seen as frames based on some class of structures. By way of illustration, recall that the
models of interest in temporal logic are generally those whose accessibility relations are, at
the very least, mutually converse. Take C to be class of all models such that (z,y) € Rr
iff (y,z) € Rp, where RF is the accessibility relation corresponding to [F|] and Rp the
accessibility relation corresponding to [P]. (We temporarily suspend the more intuitive

notation that uses ’<’, as the discussion applies to multimodal logics in general.)

Praposition 1 The class of models C is the frame Cx of the class K of structures of the

form F = (T, Rp, Rp), where Rp and Rp are converses.

Pick any Mg = (T, Rr,Rp,V) € C. Then (z,y) € Rr iff (y,z) € Rp, which means that
Rp and Rp are converses. Let F = (T, Rp, Rp). Then F € K and therefore M€ Cx.

Conversely, pick an arbitrary Mg € Cx. Then M€ C s for some structure F = (T, Rp, Rp)
where Rp and Rp are converses, so (z,y) € Rp iff (y,z) € Rp and thus Mg €C.

Cx is axiomatisable in a sense which takes into account the view of Cx as the union of
frames based on structures. More particularly, Cx may be axiomatised by the following two
schemas in the sense made explicit by Proposition 2.

TL.01 ¢ — [F](P)e.

(If ¢ is true now, then it is always going to be the case (for all points in the future) that ¢

was true at some point in the past.)
TL.02 ¢ — [P](F)y.

(If ¢ is true now, then it has always been the case (for all points in the past) that ¢ will be

true at some point in the future.)

Proposition 2 Let K be the class of structures F = (T, R, Rp).

1. If, in each structure F € K, Rr and Rp are mutually converse, then e't)ery model in Cx
globally satisfies every instance o of each of aziom schemas TL.01 and TL.02.

2. If the frame Cx of K globally satisfies aziom schemas TL.01 and TL.02, then, for every
F €K, Rr and Rp are converses. |



1. Let Mo = (T,Rp, Rp,V) be an arbitrary model in Cx. Assume that, in each structure
F € K, Rr and Rp are mutual converses. We have to show that My globally satisfies every
instance ¢ of each of the two axiom schemas TL.0f and TL.02.

Let t9p € T be an arbitrary time point and suppose Mp I, @. We show that Mo Ik,
[F](P)e.

Suppose Mg ¥, [F] (P) ¢. This means that it is not the case that Mg I, (P)p forallt € T
such that tgRpt. Let t’ be an arbitrary time point such that toRpt’ and Mp ¥y (P) . Then
there does not exist a t” € T such that ¢ Rpt" and Mo Ik ¢. But recall that tgRpt’ iff
t'Rpty, and we know that Mg IFy, . So there does exist a t" € T, i.e. t" = 1o, such that
t'Rpt" and Mg Ik @, thus Mg IFy {P) ¢. This is a contradiction so Mg I+, (P) ¢ for all
t € T such that toRrt. Thus Mg Ik, [F] (P) ¢. It follows that My globally satisfies every
instance o of the schema TL.0!, and, since Mo was chosen arbitrarily, that Cx globally

satisfies every instance of the schema TL.0!.

It can be shown in a similar way that Cx globally satisfies every instance o of the schema
TL.02.

2a. Assume that the frame Cx of K globally satisfies the axiom schema TL.01. We have to
show that, for every F € K, it is the case that for all ¢,¢' € T, if (t,t') € Rg then (¢',t) € Rp.

Pick an arbitrary Fo = (T, Rr, Rp) € K and suppose that there is some pair (to,t1) € Rp
such that (t1,t0) € Rp. Let Mp € Cx, be the model such that V(p) = {to} for every atom
p. Thus Mg Ik p for arbitrary p. From TL.0, this means that Mg Ik, [F](P)p, ie.
Moy Ik (P)p for all t € T such that toRpt. Thus, for every t € T such that tpRpt, there
exists a t' € T such that tRpt' and My IFy p, and thus that ¢ € V(p). Then it must be
the case that t' = ¢y and consequently, that, for every ¢ such that toRpt, we have tRpto. In
particular, since {9 Rpt;, we have ¢; Rpty, contradicting our earlier assumption. It follows
that for all (¢,t') € T if (¢,t') € Rr then (t',t) € Rp.

2b. It can be shown in a similar fashion that, if the frame Cx of X globally satisfies the
axiom schema TL.02, then for all ¢, ¢’ € T, if (t,t') € Rp then (¢',t) € Rr. From 2a and 2b

it follows that Rr and Rp are mutually converse.

Remark: In this pa.rticular case direct proofs can also be given.

For the purpose of tense logic, all the frames of interest to us will be subclasses of the frame
Cx axiomatised by TL.0! and TL.02. Consequently we shall revert to using temporal

structures of the form (T, <), where RF is a synonym for < and Rp for the converse > .
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If we want to impose particular properties on the accessibility relation(s) of some frame of
interest, the set ¥ of sentences axiomatising the frame should incluce axiom schemas that
are formulations of these properties. As we have seen in Proposition 2, the axiom schemas
must be formulated in such a way that, if an accessibility relation R has a certain property,
then all instances of the corresponding axiom schema will be globally true in the union of all
frames Cr, such that R is an accessibility relation of F. We say that a time structure, and
hence that a frame, has a property in the sense that the relevant accessibility relation has
this property. For example, if the accessibility relation is linear, we can talk about linear

structures and linear frames.

We can also say that a schema a characterises a class K of structures if, for every F € K,
and for no other F, it holds that a is globally satisfied in Cx !. We say that a property
is definable in a relevant language, if it is possible to formulate a schema in that language
that characterises the class of structures having that property. Let us look at the way the

underlying temporal structures of Priorean tense logic can be axiomatised.

Informally, axioms TL.01 and TL.02, together with axioms TL.038 to TL.06 defined below,
are used to express the idea that ‘if one of the determinations past, present and future
can ever be applied to [an eveht] N, then one of them has always been and always will be
applicable, though of course not always the same one’ [McT08]. The underlying principle
is that, once a ‘tense’ is associated with a sentence at time £, then it is possible to associate
some ‘tense’ with that particular sentence for all points ¢’ in the time structure, for which
a relationship exists between t and ¢ [VB91].

TL.03 (P)p — [P]({P)pV @V (F) p) (Left-linearity of > 2)
TL.04 {P)p — [F](P)yp (Transitivity of >)
TL.05 (F)p — [P]{F)¢ (Transitivity of <)
TL.06 (F)p — [FI((P)pV e V{(F)p) (Right-linearity of <).

Note that we have two distinct axioms for linearity, namely left-linearity and right-linearity.
The reason for this is that linearity, as stated by the first-order sentence V¢, t'(t < t' v
t =1t Vvt <t), cannot be formulated in tense logic (see [VBTS5], [Gol75] and [VB95] for
further discilssion). By using the combination of left- and right-linearity, however, a form of
linearity, sometimes referred to as quasi-linearity [Haj96|, can be described. Quasi-linearity

differs from linearity by admitting parallel time lines, but simulates linearity within each

1We regard the term characterisation as a synonym for axiomatisation as is sometimes done in
the literature [Ven99].

%taking into account that < and > are converses
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time line. So, if we choose any t,#' € T and < is both left- and right-linear, we can claim

that t <t'ort’ <tort=1*, as long as t and t' do not belong to two time lines running in
parallel [Haj96].

Let us see how TL.06 enforces right-linearity of the time structure:

Proposition 3 1. Let K be the class of structures F = (T, <) such that < is right-linear
for every F € K. Then the frame Cx of K globally satisfies all instances of the axiom schema
(FYp = [FI(PYp VoV (F)p).

2. If the frame Cx of a class K of structures globally satisfies the aziom schema TL.06,
then, for every F = (T, <)€ K, < is right-linear.

1. Let Cx be the class of models of the form M = (T, <, V) in which < is right-linear, as
expressed by the first-order sentence V¢, t',t"((t <t At <t') » (' <t"Vt' =t'Vvt' <¥)).
We want to show that all instances of the axiom schema (F) ¢ — [F]((P)¢ V ¢ V (F) )
are globally true in Cy.

Let Mg = (T, <,V) € Cx be an arbitrary model. Pick any to € T and suppose My Ik,
(F) ¢, so there exists a t € T such that tg < ¢t and Mg IF; ¢. We have to show that
Mo ki [FI(P) o VoV (F) ).

Suppose Mg ¥y, [F]({(P) ¢V @V (F) ), i.e. it is not the case that Mg lky ({P) VeV (F) @)
for all ¢ € T such that tg < t’. This means that it is not the case that (Mg ke (P) ¢ or
Mo by @ or Mol (F) @) for all ¢ € T such that tg < t'. So Mg Wy (P)y and Moy ¢
and Mg ¥y (F) ¢ for some t' € T such that tp < t’. But we know that < is right-linear,
and this means that, since tg < t and tg < t/, we have (t <t or ¢t =1t or t' < t). We also
know that Mg IF; . So we can claim that, if £ < ' (thus ¢’ > t), it will be the case that
Mo by (P) o, if t =t', we have Mg Iy ¢, and if t < ¢ it follows that Mg Iy (F) . This
‘contradicts our earlier assumption, so Mg IFy ((P)¢ V ¢V (F)¢) for all ' € T such that
to < t', and consequently Mg IF¢, [F]({(P) ¢V ¢V (F) ). But ty was chosen arbitrarily, and
so was Mp. Thus TL.06 is globally true in Cx.

2. Let Cx be the frame of K, where K is any class of structures F = (T, <). Assume that
all instances of the axiom schema (F) ¢ — [F]({P) ¢ V ¢ V {F) ) are globally true in Cx.
We want to show that, for every F € K, the accessibility relation < is right-linear.

Pick an arbitrary Fo = (T, <) € K and suppose there exists a to, t1,ta € T such that tg < t;
and tg < t3 but (f1 £ t9 and ty # ty and 3 £ t1). Let My € Cx, be the model such that
V(p) = {t1} for every atom p. So My IF4, p for arbitrary p, and since ty < t;, we have
Mo k¢ (F)p.
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From the schema it follows that Mg Ik, [F]((P)pVpV{F)p), i.e. Mgl ({(P)pVpV (F)p)
for all t € T such that ¢y < t. This means that, for all ¢ € T such that o < t, Mgl (P)p
or Mg Ik, p or Mg I, (F) p. So, for every t € T such that tg < ¢, (there exists a t € T
such that ¢ > ¢ (thus t/ < t) and My Ik p) or (Mg Ik p) or (there exists a £ € T such
that ¢ < ¢ and Mo IF; p). But V(p) = {t1}. From our choice of V it follows that, for every
t € T such that g < t, there exists a t/ € T such that t” <t and t’ € V(p) (so ty < t),
ort € V(p) (sot =t), or there exists at € T such that t <% and t € V(p) (so t < #1).
In particular, since tg9 < tg, we have t; < tg or ¢; = t3 or tp < t;. But this contradicts our

earlier assumption, so it follows that the accessibility relation < is right-linear in X.

Axioms TL.07 to TL.09, given below, formulate an idea expressed by Findlay (as reported
by [HK80]): ‘Every event taking place in time, will become past’ [VB91].

TL.OT (P)p — (F)(P)p
TL.08 ¢ — (F)(P)y
TL.09 (F)p — (F)(P)y

Suppose M I, ¢ for some sentence ¢ in an arbitrary model Mg = (T, <, V). These axioms
express the idea that, whatever the ‘tense’ of the sentence ¢ at time t, there exists a point
t' such that t < t' (so t’ is in the future) where Mp Iy (P) ¢, i.e. where it holds that ¢
was true at some point in the past. Note that TL.08 expresses the idea that such a future
point exists, so right succession (unboundedness), as expressed by the first-order sentence
Vt3t'(t < t'), is implied. The following two first-order sentences express properties of <
axiomatised by TL.07 and TL.09 respectively:

Yt Ut <t — '@ <t" AL < 1)),
Vi, t(t <t — F'(t <t" At < t")).

The Priorean idea ‘What will be the case, will be the case in between (its occurrence and

the present)’ can be expressed by TL.10 and TL.11:
TL.10 (F)p — (F)(F)y (Density of <)

If ¢ is our present reference point and we know that ¢ will be true at some time in the
future, at t' say, we may wish to be able to claim that there exists a point t” between ¢ and
t' such that M Ik (F) ¢ for M = (T, <,V). This means that the accessibility relation
must, be dense, as expressed by the first-order sentence Vt, ¢’ <t/ =3¢t <t" At <t)).

TL.11 (F)(F)p — (F)¢ (Transitivity of <)
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Note that TL.05 and TL.11 are different but equivalent axiom schemas for transitivity of

<. TL.05 involves two different modal operators wheras TL.11 involves only one.

We take a closer look at TL.11:

Proposition 4 1. Let K be the class of structures F = (T, <), such that < is transitive
in every F € K, and let Cx be the frame of K. Then every M € Cx globally satisfies all
instances of the aziom schema (F) (F)p — (F) p.

2. If the frame Cx of some class K of structures globally satisfies the ariom schema TL.11,
then, for every F = (T, <)€ K, < is transitive.

1. Assume that < is transitive in every F € K. We have to show that Cx globally satisfies
all instances of the axiom schema (F) (F) ¢ — (F) ¢.

Pick any My = (T, <,V) € Cx and pick an arbitrary tg € T. Suppose Mg lk¢, (F) (F) o.
Then there exists a t’ € T such that tq < t' and Mg Iy (F) p, i.e. there exists a t” € T such
that ¢/ < ¢’ and Mg Ik . We have to show that Mg Ik, (F) ¢. But this is immediate:
by transitivity, tg < t”. It follows that My globally satisfies all instances of the schema and
consequently, that Cx globally satisfies all instances of the schema.

2. Assume that the frame C¢ of K globally satisfies the schema (F) (F) ¢ — (F) p. We have
to show that < is transitive for every F = (T, <)€ K.

Pick an arbitrary Fp € K and suppose there exists a tg,f1,t3 € T such that tg < ¢t; and
t1 <ty but tg £ t3. Let My € Cr, be the model such that V(p) = {t3} for all atoms p. So
Moy ke, p for arbitrary p. But {1 < ¢3 so Mg Ik, (F)p. We also have #p < t1 so Mp Ik,
(F) (F)p. Using the schema, we can claim that it must be the case that Mg Ik, (F)p.
So there exists a £ € T, such that t5 < ¢ and M Iz p, which means that { € V(p). But
V(p) = {t3}. This means that = #3, so tg < tp, which contradicts our earlier assumption.
Thus, for all ¢,¢/,#' € T, if t <t and # < #", it follows that ¢ < ¢t”. Thus < is transitive for
every F = (T, <) e K.

Remark: It is instructive to note that, if we take C to be the class of models globally
satisfying all instances of the axiom schema (F) (F)y — (F) rather than coupling the
axiomatisation to a frame, then the accessibility relations are not necessarily all transitive.

We can use the following example to illustrate:
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Example 15 The existence of rogué models.

Let & = {p}.

Let Mo = (T,Rp,V), with T = {t1,t2}, Rr = {(t1,t2),(t2,%1)} and Vi(p) = {t1,t2}.
Although it is clear that Ry is not transitive, we are going to show that My globally satisfies
all instances of the schema (F) (F)¢ — (F)¢. If we can show that Mg ¥ (F) (F) ¢ or
Mo lF (F) @, it follows that Mg I- (F) (F) @ — (F) ¢.

From our choice of V; we know that Mg I, p and Mg Ik, p. From our choice of R it
follows that Mg Iy, (F)p and Mg Iy, (F)p, so Mg IF (F)p which means that Mg I
(FY(F)p — (F)p. So Mg globally satisfies the axiom schema for arbitrary ¢ € ® (in this
case & = {p}). It remains to show that My globally satisfies the axiom schema for an
arbitrary sentence ¢, which easily follows by structural induction on the formation of ¢. So
Mol (F) (F)p — (F) p.

It follows that all instances of the schema are globally satisfied in Mg even though R is

not transitive.

It is important to note that we cannot generalise this to the frame Cr where F = (T, Rp).
Let My = (T, Rr, Va) € Cr with Vy(p) = {t1}. We show that M; ¥ (F) (F)p — (F) ¢ for
arbitrary .

From our choice of V, we have M; Ik, p. From our choice of Ry it follows that Mj Iy,
(F)p and also that My Ik, (F)(F)p. But it is not the case that M; Ik, (F)p. Thus
My Wy, (FY(F)p — (F)p. So it is not the case that all instances of the axiom schema
(F) (F)p — (F) ¢ are globally satisfied by Mj.

Now that we have an idea of how properties of the time structure for instant tense logic

can be formulated, we look at a number of variations and extensions of this logic.

3.3 Variations and extensions of instant tense logic

There exists a wide variety of logics based on the principles of Priorean tense logic. The
alphabets of these languages are similar to that of Priorean tense logic with the exception
of the modal operators. In some cases the existing alphabet is extended by adding new
modal operators to enhance the expressive power. In other systems, like the one defined by
Kamp [Kam68] which we look at in the next section, entirely different modal operators are

used. We discuss a few of the variations briefly.
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3.3.1 Since and Until

It is not possible to represent the present perfect tense in the language of Priorean tense
logic [VB91]. In an attempt to overcome this limitation, Kamp [Kam68| suggests the use
of two new binary modal operators S and U, where S is read ‘since’ and U is read ‘until’ .
So, if ¢ and % are sentences in the language, then ¢Svy is read ‘p has been true since an
instant in the past where 1 was true’, and U1 is read ‘@ will be true until some instant

in the future where v is true’.

A graphical representation of S and U is given in Fig 3.2. If U1 holds at ¢ then it means
that ¢ holds until some instant ¢ in the future at which ¢ holds, and if ¢S¥ holds at time

t then it means that ¢ has been true since some instant ¢’ in the past at which ¥ was true.

@ Uy 1 L

S g -———1

Figure 3.2: A graphical representation of S (since) and U (until).

The modal operators (F), (P),[F] and [P] of Priorean tense logic can all be defined in
terms of S and U. The converse is not true: U cannot be defined in terms of [F}, [P], (F)
and (P) [GHRY4].

As before, a model is a triple M = (T, <, V'), with the accessibility relation < corresponding
to the modal operator U, and its converse > corresponding to S. A sentence ¢ is true relative
to M at time t, denoted by M I, ¢, iff one of the following holds:

pedandteV(p)

P = andMH‘tdi

o p=1— x and MW, Y or Ml x

¢ = ¥Sx and there exists a t' € T such that ¢ > ¢’ and M IFy x, and M Il ¢ for
every t' € T such that t > t" > ¢/
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o ¢ = 9pUx and there exists a t' € T such that £t < t' and M Iy x, and M Ik 9 for
every t’ € T such that t < t" < ¢'.

The modal operators (£, (P),[F| and [P], can be now defined in terms of S and U in the
following way [Bur82):

[Ple =dey —(TS-¢) ‘¢ has always been true’
[Fle =4ey —(TU=yp) ‘p is always going to be true’

(PYp =qer TSp ‘p was true at some instant in the past’
(FYe =45 TUp ‘v will be true at some instant in the future’
where T =45 pV-p (Tautology, i.e. true at every instant),
and L =g4ef pA-p (Contradiction, i.e. false at every instant).

How do we know that the modal operators that we have defined in terms of S and U
correspond semantically to the modal operators of Priorean tense logic? We show that it

does for [P]. It can be done in a similar way for the other modal operators.

Proposition 5 The definition of [P) in terms of S is semantically equivalent to the Priorean
definition of [P).

Suppose [P)] is defined in the following way:
(Pl Zdger ~(TS—p).
Let Fp be an arbitrary structure of the form (T, <). Pick an arbitrary My € Cx,, and an

arbitrary tg € T. Suppose My Ik, [Plp. We have to show that Mg IFy ¢ for all ¢’ € T such
that g > t'.

By definition, Mg I, [P]¢ means that Mg I, ~(TS—p), i.e. Mo Wi, TS—yp. So, it is not
the case that (there exists a t' € T such that tg > t' and Mg Iky —p, and Mg Ik T for all
t" € T such that o > t"” > t'). But we know that Mg I T for all ¢t € T. It follows that it
is not the case that there exists a t' € T such that tg > t' and Mg ¥y ¢. So Mg Iy ¢ for
all ' € T such that %9 > t'. The converse is similar.

Burgess [Bur82] also defines the following variations of the new modal operators:
[F)'¥ =des pUT meaning ‘p is uninterruptedly going to be true for some time’
[P) ¥ =4er ST meaning ‘p has uninterruptedly been true for some time’

(FY ¢ =4es ~(—U T) meaning ‘¢ will be true, arbitrarily soon’

(PY ¢ =4ef ~(—ST) meaning ‘p has been true, arbitrarily recently’
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What are the ‘meanings’ of the modal operators [P], [F),{P)’ and (F)'? As an example,
we will stow how we arrived at the meaning of (F)’ . It can be shown for the other modal

operators in a similar fashion.

Example 16 The ‘meaning’ of the modal operator (F) .

We defined (F) as follows:
(F)' ¢ Zaer ~(—UT).
We want to show that this means that ¢ will be true arbitrarily soon.

Let Fo be an arbitrary structure of the form (T, <). Choose an arbitrary model My € Cx,
and an arbitrary ¢g € T. Suppose My Ik, (F) . By definition, this means that Mg ¥y,
(—@UT), i.e. it is not the case that (there exists a t' € T such that {5 < t' and Mg lFy T,
and My ¥y o for all € T such that ty < t/ < t'). But we know that Mg I, T for all
t € T. This means that it is not the case that Mg ¢  for all t” € T such that tp <t < t'.
So, for every possible choice of t' > #p, there exists a £ € T such that tp < § < ¢ and
Ma Ik; . Even if we choose t' close to tp, we can find a £ even closer to 2 where ¢ holds.

This means that ¢ will hold arbitrarily soon.

Burgess gives an axiomatisation for the class of linear structures, as well as for the class of
dense and discrete structures [Bur82]. The axioms are given in pairs; each axiom in a pair
forming the mirror image of the other member of the pair (the mirror image of a sentence
¢ being the result of replacing each U in the sentence by S and vice versa, and replacing
each [F] by [P] and vice versa).

BU.O0la [Fl(¢ = ¢) = (xUp — xU)
BU.01b [Pl(¢ = ¢) = (xS — xSv¥)
BU.02a [F)(¢ — %) — (eUx — YUX)
BU.02b [P)(¢ — ) — (¢Sx — ¥Sx)
BU.03a (x A pUy) — tpU(d) A pSx)
BU.03b (x A ¢S¥) — oS(¥ A eUx)
BU.04a (Us A=(xU%)) = oU(p Ax)
BU.04b (pS% A ~(x5%)) = S(e A —x)
BU.05a Uy — (p A pUy)U%

BU.05b oS¢ — (¢ A oSyY)Sy

BU.O6a oU(p A pU%) — Uy
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BU.06b ¢S(p A pSY) — oSy
BU.07Ta (U AxUC) = (¢ AX)YUWAQ V(e AU AX)V (p AX)U(p AC))
BU.OT (pSv¥AxSC) = (e AX)SWAQ V(e AX)SWAX)V (P AX)S(pAC)

Another variation of the language based on S and U is discussed in [GHR94]. Two moda.l

operators, S' and U’, called Stavi connectives, are introduced with the following intuitions:
YU’ is true ‘now’ iff there is a gap in the future such that

s ) is true until this gap;

® o is true from the gap into the future for some uninterrupted stretch of time;

e in the future of the gap, ¥ is false arbitrarily close to the gap.
S’ is the mirror image of U’. So 15’y is true ‘now’ iff there is a gap in the past such that

® ) was true since this gap;

e o was true for some uninterrupted stretch of time from the past of the gap right up

until the gap;

e in the past of the gap, ¢ is false arbitrarily close to the gap.

3.3.2 Next and Previous

In a system based on a structure F = (T, <) in which the accessibility relation < is discrete,
we may want to address the point immediately preceding the current time point, as well as
a point immediately succeeding the current time point. (Such systems are frequently used
in temporal logics of programs [Haj96].) The notion of such a next and a previous point can
be introduced by adding two new modal operators o, read ‘at the next instant’, and *, read
‘at the previous instant’, to the alphabet of Priorean tense logic (see [GHR94], [May83| and
[AMB85] for examples).

In such a system, a model is a triple M = (T, <,V), with the accessibility relation <
corresponding to [F] and o, and its converse, >, corresponding to [P] and *. A sentence

is true relative to M at time point ¢, denoted by M Ik, iff one of the following holds:

s pedandteV(p)
o p=-w) and MW, Y

o o= — x and M WKy or Mk, x
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o ¢ =[F|y and M ity v for all # € T such that t < t'
* p= [P}l,b and Mty forallt € T such‘that t>t

e o = oty and M by ¢, for some t' € T such that t < t/, and it is not the case that
there exists a t/ € T such that t < t" < ¢/

¢ = #1p and M IFy ¢ where t' € T such that t > ¢/, and it is not the case that there
exists a t” € T such that t >t > ¢'.

The following two axioms describe the relationships between the primitive and the new oper-
ators: NP.0I defines the relationship between o and [F], and NP.02 defines the relationship

between * and [P].

NP.0! [Flp < op Ao|[F|p. (¢ will always be true in the future iff ¢ is true at the next

instant and at the next instant it is also true that ¢ will always hold in the future.)

NP.02 [Plp « xpAx[P|p. (¢ has always been true in the past iff ¢ was true at the previous

instant and at the previous instant it is also true that ¢ has always been true in the past.)

3.3.3 Progressive tense

The representation of the ‘progressive’ tense in English can be approximated by a modal
operator [], which enables one to describe what happens between two distinct time points.
This operator, whose semantics involves both the accessibility relation < and its converse
>, enables us to express an English sentence containing a verb such as ‘being’ in a language

based on this alphabet.

We say that the sentence ¢ = [] % is true in a model M = (T, <, V) at time ¢, denoted by
M ik T4, iff there exists t/,t" € T such that t > t' and t <t’, and M I; pforallt € T
such that £ > ¢’ and 7 < t".

A complete axiomatisation of this temporal logic for linear structures can be found in

[Sheg9].

3.3.4 Difference

Priorean tense logic can also be strengthened by the introduction of a modal operator that
expresses the notion of ‘truth in another world than the current one’, i.e. truth at a different
time (for examples see [Gor89], [Koy89] and [Sai88]).

The idea is to introduce a new modal operator to express the notion that a sentence ¢ is

true in a model at a time point different from the current one.
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To do this, we take < as an accessibility relation associated with a new modal operator (D)
read ‘at a different time’, and we say that M I, (D) ¢ iff there exists some ¢’ € T such that
t <t and M Iy 3. If we add the following set of axioms to the logic, then < is ‘as near to
real inequality as possible’ [VB93].

DF.01 (D)= (D)—p — ¢ (Symmetry of <)

DF.02 (DY(D)y — (D)@ V ) (Pseudo-transitivity of <)
DF.03 (FYp = ((D)p V@) vi,t'((t<t) > (@t <t'Vi=t))
DF.0 (F)p— (D)¢ (Irreflexivity of <)

3.3.5 Branching time structures

We might need a time structure where time is not linear but forward branching. In such a
structure the accessibility relation is left-linear which means that a time point has only one
past but different possible futures. A branching structure may be achieved by using double
modalities as suggested by Mays [May83].

The alphabet used by Mays consists of the following elements:
e the set ® of one or more atoms p, q,...
e the connectives - and —

e the punctuation symbols ‘(’ and )’

the modal operator [P] read ‘always in the past’

the ‘double’ modal operators [AG] and (EG), where [AG] is read ‘for every always

in the future’ and (EG) is read ‘for some always in the future’.

Additional modal operators are defined in terms of [AG], (EG) and [P], in the following

way: ;

(AG)¢ =dey ~[AG]m¢p  For some eventually in the future

[EGly =4y - (EG)-yp For every eventually in the future

(PYe  =der [Pl Sometime past
Let Elt(t, B) express the notion that t € B. A branch can be defined in a first-order
language as any subset B C T such that,

vt,t'((Elt(t, B) A Elt(f ,B)) —» (t <t Vt=1t'Vt < t)) and
VE(VE(EL(E,B) — (t <t Vi=1V{ <t) — Elt(t, B)))).

43



The first sentence formulates the idea that there exists a linear relationship between any
two points on the same branch. The second is a formulation of the converse: for all t € T,
and for every point t' € T that is an element of some branch B, if there exists a linear

relationship between t and #', then ¢t is also an element of B.

In a model M = (T, <, V), we now have the accessibility relation < corresponding to [AG]
and (EG), and its converse, >, corresponding to [P]. A sentence  is true relative to M at
time t, denoted by M Ik, ¢, iff one of the following holds:

e pedandte V(ip)

e o= —pand M W¥; ¢

p= (Y —x) and MW ¥ or Ml x

¢ = [AG]y and, for every branch B containing t, M Iy 1 for every t' € B such that
t<t

¢ = (EG) ¢ and there exists a branch B containing t where M Il ¢ for every t' € B
such that t < ¢

o o= [P]y and M Ik ¢ for every ¢ € T such that ¢t > ¢'.

The number of modal operators in the alphabet is relatively large and Mays does not provide
an axiomatisation for the relevant frame. However, time can be assumed to be discrete since
Mays also defines a modal operator denoting the set of next time points, namely [AX] read
‘at every next instant’, and one for the previous time point, namely L read ‘at the previous

instant’ (time is left-linear).

The modal operator {AX), read ‘at some next instant’, can again be defined in terms of
its dual [AX] in the usual way:

(AX) ¢ =ges ~[AX]~p
The semantics for the new operators can be defined as follows:

Mk [AX]p if M Iy o for every t' € T such that ¢t < ¢/, and, for every such ¢, it is not
the case that there exists a t” € T such that t <t < ¢/,

Mk Lo iff M by o for some t' € T such that ¢ < tand it is not the case that there
exists a t” € T such that <t <t

Other examples of branching-time modal languages can be found in [StiQQ] and [Zan91].
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3.3.6 Metric tense logic

An interesting variation suggested by Prior is that of metric tense logic. In addition to the
relation between time points, the distance between two distinct points is also taken into
consideration. It is, of course, necessary to adjust the time structure to cater for this new
aspect. We define a distance structure C = (C, 0, +) for representing the distance between
points, where C is a set of distances, 0 represents the zero distance and + is a binary
operator on elements of C. The alphabets for these languages are similar to the alphabet
for Priorean tense logic but, instead of [F] and [P], we have the two modal operators (also
called metric operators) [F|, and [P],, where [F], is read ‘for all instants at a distance n

into the future’ and [P, is read ‘for all instants at a distance » in the past’.
We define the duals of these in the usual way:

(F)p ¢ =def ~[Fla—e

(P)n ¢ Sdes ~[Plnp

A time structure is now a tuple F = (7,C, <,6) where T is a set of time points, < is an
accessibility relation, C is a distance structure as defined above, and § : T x T — C is a
binary function expressing the distance between two time points. A model is an ordered
tuple M = (T,C, <, 6,V) with the accessibility relation < corresponding to the operator
[F]n, and the accessibility relation > (the converse of <) corresponding to [P],. A sentence

@ is true relative to M at time point ¢, denoted by M I; ¢, iff one of the following holds:
e pe®andt e V(p)
e =y and M K ¢

o p=1 — x and MW¥, ¢ or Mk, x

¢ = [Floy and M by ¢ for every t' € T such that t <t and 6(t,t') =n € C

¢ = [Plny and M Iy ¢ for every ¢ € T such that t > t' and §(t,t') =n e C.

The duals (F),, and (P),, are defined as usual. Hajnicz [Haj96] suggests that the frame of

interest is that characterised by the following set of axioms:

MTL.0! (F)yo — ¢

MTL.02 (F),(p = ¥) = ((F)oo = (F), %)
n F) w— <F)(n+m)§0

)
)
MTL.03 (F)
MTL.0 (F)

)

(
11<P) ‘P"(F)(n-m)gaform<n
MTL.05 (F), (P)p¢ = (P)im_n) ¢ forn <m

n
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MTL.06 (P 0P =P

MTL.07 (P)n (¢ = 9) = ((Plne = (P)a¥)
n{Plm — (P)
2 Ve = (P)nomyp form <n
o AF)m e — (F)

We note that, if the time structure is infinite and linear then [F], = (F), and [P], = (P),,

because, if we choose any ¢ € T, there is exactly one time point ¢’ € T such that ¢t < ' and

(P {(n+m) ¥

MTL.09

(P)
(P)
MTL.08 (P)
(P)
(P)

MTL.10 (P (FYn-my® forn <m

6(t,t’) = n, and there is exactly one time point t” € T such that t > t” and 6(t,t") = n.

This means that, in such a structure, we can restrict the modal operators to (F), and (P),, .

We can also add the following two axiom schemas to express the idea that, if there exists
an instant at a distance n into the future (MTL.11) where -, then there does not exist an

instant at a distance n into the future where ¢. MTL.12 is relevant for the past.
MTL.11 (F), ~p — ~(F), ¢
MTL.12 <P)n ﬂ(p—>ﬂ<P)n(p

The logic discussed in this section and the original Priorean tense logic can be connected
by taking the operators [F| and [P] as primitive and then adding [F], and [P], by suitable
definitions. The following two axioms can be added to the union of the two axiomatisations

to express the relationship between (F), and (F), and between (P), and (P) respectively:
MTL.18 (F), ¢ — (F)p,forn>0
MTL.14 (P), ¢ — (P)y, for n> 0.

3.3.7 Near past, near future, far past, far future

Rescher & Urquhart [RU71] define an alternative modal language based on a metric time

structure.

The alphabet for this logic consists of the following elements:
o the set ® of one or more atoms p,q,...
o the connectives = and —
e the punctuation symbols ‘(’ and ‘)’

" e the modal (or metric) operators [F]°,[F]*,[P]° and [P]*.
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(° and * should not be confused with the modal operators o (next) and * (previous) of

section 3.3.2.) The duals of these operators can be defined in the usual way:

(F)° @ =der ~[F]°p
(F)" ¢ Zaeg —[F]*
(P)° ¢ =des ~[P]"~p
(P)* ¢ =ges —[P]*—p

The semantics is based on a structure similar to the time structure used for the metric
tense logic discussed in section 3.3.6, namely F = (T, C, <, §), where the distance structure
C = (C,0,+) is defined as before. Two arbitrary constants ¢,/ € C must be chosen
which play an essential role that will become clear in a moment. A model is a tuple
M = (T,C,e,d,<,6,V) where the accessibility relation < corresponds to the operators
[F]° and [F]*, and its converse, >, corresponds to the operators [P]° and [P]*. A sentence
@ is true relative to M at time ¢, denoted by M Ik, ¢, iff one of the following holds:

o pePandteV(p)
L} :—-wandMH‘“,/)

o p=1— x and MWK, or Ml x

@ = [F]°y and M Iy 9 for every ¢’ € T such that ¢ < ¢’ and §(¢,t') < ¢

o ¢ =[F|*y and M Ity 9 for every t' € T such that ¢ <t and 6(¢,t') > ¢

@ = [P]°y and M Ity 9 for every t' € T such that ¢t > ¢’ and §(¢,¢') < c

@ = [P]*y and M Ik 9 for every t' € T such that t > ¢’ and §(t,7) > .

Note that, if ¢ < ¢, and there is some t' € T such that ¢ < ¢ and M Iy, but ¢ < §(¢,t') <
c, then neither (F)° ¢ nor (F)* ¢ will be satisfied. A similar problem could arise if ¢ < c.
If ¢ < 8(t,t') < ¢, then both (F)° ¢ and (F)* ¢ may be satisfied. To avoid any ambiguities

this might cause, the best choice seems to be to choose ¢ = ¢'.

3.4 Summary

In this chapter we considered various modal propositional languages with semantics described
in terms of time structures based on time points (or instants). In the next chapter, we dis-

cuss modal propositional languages in which the possible worlds represent time intervals.
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Chapter 4

Modal approaches with intervals

4.1 From instants to intervals

When reasoning about program specifications and verification, as well as in some areas of Al,
it is sometimes more convenient to consider the truth value of sentences over intervals rather
than time points. This is particularly relevant if we want to express the relationship between
the truth value of a sentence over an interval and its truth value over some subinterval.
In this chapter, we discuss the axiomatisation of time structures for modal logics based
on intervals rather than points. Firstly, we consider ertended tense logic, a modal logic
suggested by Van Benthem that uses the principles of Priorean tense logic but with intervals
as primitive [VB91]. Then we look at Halpern & Shoham’s logic that has time points as
primitive but where sentences are interpreted over intervals [HS91], and lastly we briefly
discuss a spatial representation of relationships between intervals suggested by Venema

[Ven88].

4.2 Extended tense logic

Extended tense logic, also called interval tense logic, uses a modal language and a time
structure with intervals as primitive ([VB91] and [Haj96]). The alphabet consists of the

following elements:

e 3 set ® containing one or more atoms p, q, ...
e the punctuation symbols ‘(’ and ‘)’

o the connectives — and —
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o the modal operators [F], read ‘always in the future’, [P], read ‘always in the past’,

and O, read ‘for all subintervals’.

The duals (F'), read ‘sometime in the future’, (P), read ‘sometime in the past’, and <, read

‘for some subinterval’, are defined in terms of [F], [P] and O as before: for any sentence ¢,

(F) ¢ =def —[F]—¢
(P) ¢ =daet —[P]p
O(p Edef —1D—1<p.

The set of well-formed formulae and the connectives A, V and < are defined in the usual
way. The semantics of the logic is based on a time structure F = (I, <, C) where I is a set,
the elements of which are called intervals, with the accessibility relation < corresponding
to [F), its converse, >, corresponding to [P}, and the accessibility relation C, also known as
the inclusion relation, corresponding to O. Two of the relationships that may exist between
distinct intervals ¢ and j are relevant: i < j expresses the notion that interval ¢ precedes
interval j (there is no overlap), and i C j expresses the idea that interval 7 is a subinterval

of interval j.

The valuation V : ® — 27 associates, with each p € ®, the set of intervals i € I over which.
p is true. A model is an ordered tuple M = (I,<,C,V) and we say that a sentence ¢ is
true relative to M over an interval i, denoted by M IF; ¢, iff one of the following cases

applies:
e pcdandie V(ip)
e o=y and M ¥; ¢

e o=y —xand MW¥;yor MIF; x

¢ = [F] and M IF; 9 for all j such that i < j

¢ = [P]y and M I 9 for all j such that i > j
e ¢ =0y and M IF; 9 for all j such that j C .

The sentence ¢ is globally true over a model M iff M IF; ¢ for all i € I. Global truth of a

sentence over a frame is defined as before.
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4.2.1 Axiomatisation

In [VBY1] Van Benthem points out how properties of a temporal structure suitable for
an intended application can be formulated. These axioms are based on a reformation of
those suggested by Humberstone [Hum?79]. We discuss the formulation of a number of these

axioms.

The following two schemas axiomatise the class of structures in which < and > are converses:

ITL.0I ¢ — [F)(P)y
ITL.02 ¢ — [P|{F)y

Axioms ITL.0% and ITL.04 serve to define certain constraints on C:

ITL.08 Dy — OOy (Transitivity of C)
ITL.04 Op — (Reflexivity of Q)

The two accessibility relations < and C are not completely independent. This means that
for a number of properties we have to take the interaction between < and C, or between >
and C, into account [VB91].

ITL.05 (F)p — D{F)y (Right-monotonicity of <, C,
ie. Vr,y(z <y = Vz(z Cy — z < 2)))
ITL.06 (P)p —O(P)yp (Left-monotonicity of >, C,

ie Vz,y(y >z —=Vz(z Cz >y > 2)))

The following three axioms can be included for properties of <.

ITL.07 [Fl¢ — [F][Fle (Transitivity of <)

ITL.08 [Fle — (F)y (Right-unboundedness of <,
ie YzIy(z < y))

ITL.09 [Pl — (P)yp (Left-unboundedness of >,

ie. VzIy(z > y)).

As was the case with instant tense logic, we again have the problem that there are some
properties of < and of the interaction between < and C for which it is not possible to
formulate a schema in the language that characterises the class of structures with that
property. These include convexity, freedom and disjunctivity (refer to Section 2.3.1). Van
Benthem partially solves this problem by using axioms, or sometimes axiom pairs, to imply,
in an indirect way, some of the required properties. This is done, for example, for converity
of the time structure, i.e. the notion that stretches of time are uninterrupted; there are no

gaps [VB84]. We say that a structure is convex in the sense that < and C are such that
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Vr,y,2((r <y Ay <2) = Vu((x CuAz Cu) -y Cu)). Van Benthem formulates the

following pair of axioms to imply a foriz of convexity:

ITL.10 O (F) (Dp Ay) — ((F) ¢ V Oy), which can be expressed as

Vi, (G € 1) — VE(( < ) — ((k € i) VE((L € ) A G < 1))))), and
ITL.11 O (PY(Og Avy) — ((P) ¢ V Oy), which can be expressed as

Vi, (G € 5) — Yk((k < 3) = ((k 1)V 3 R AL <0)))).

The combination of the two schemas imply convexity of the structure in an indirect way: by
formulating a pair of related axioms, we can enforce a form of convexity on the relationships

among intervals. This is shown in the next proposition.

Proposition 6 1. Let K be the class of structures F = (I, <, C) where < and C are such
that

Vi, 3l(7 C2) = VE((F < k) = (k Ci)VIA(I Ck)A(E <)) and

Vi, 33 € 8) — Vk((k < ) = ((k C) VA C K) A (L <))

Then the frame Cx of K globally satisfies all instances of both aziom schema ITL.10 and
ITL.11.

2. IfK is a class of structures F = (I, <, C) such that the frame Cx of K globally satisfies
all instances of ITL.10 and ITL.11, then for every F = (I,<,C) € K, < and C satisfy

Vi, j[( Ci) = VE((j <k)—= (kC) V(I Ck)A( <)) and

Vi, (G C i) — V((k < ) = (k C)) VA CR) AL <))

la. Let Fo = (I,<,C) € K be a structure in which < and C are such that
Vi, j(G C i) — Vh(( < k) = ((k € i) V3 C k) AG < D))

We have to show that all instances of ITL.10 are globally satisfied in Cx.

Let Mg be an arbitrary model based on Fy and pick an arbitrary i’ € I.

Suppose Mg Iy O (F) (Op A 9), i.e. there exists a j such that 5/ C i’ and Mo Ik
(F) (Op A). This means that there exists a k' such that j° < k' and Mg kg (Dp AY), i.e.
Mg Ikgr 2 and, for all I such that I’ C ¥/, we have Mg IFp . (Figure 4.1 gives a graphical
representation of the different possibilities.) We have to show that Mg Ik ((F) ¢ V O9).

Suppose Mg Wy ((F) oV Op), i.e. Mg Wy (F)p and Mg Ky Otp. So it is not the case that
there exists an m such that ¢/ < m and My Il o, and it is also not the case that there
exists an n such that n C i’ and My I, 9.

We know that < and C are such that
Vi, §((j € 1) — Vk((G < k) = ((k S 8) VI S k) A G <1)))).
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{a}

(b)

(c)

d,
@ -

(e}

Figure 4.1: A number of possible relationships exists between ¢ and k', where j' C ¢
and j' < k': (a) Interval k' ends before i’ ends, (b) k' ends at the same time asi', (c)
k' overlaps i’ at the end, (d) k' starts where i’ ends, and (e) k' starts after i’ ends.

Now j' C ¢, so, for all k such that j* < k, we have k C 7/, or there exists an [ such that
I C k and ¢ < I. In particular, k' C 7/, or there exists an { such that [ C ¥/ and i’ < I.

Suppose k¥ C ¢. We know that Mgy Iy 1, so there exists an n such that n C i and
Mo ikn o, l.e. Mg iy Oy which contradicts our earlier assumption.

Suppose k' ¢ 7'. Then there exists an [ such that ! C k¥’ and i’ < I. We know that Mg Ik
for all I’ C ¥/, so, in particular, Mg Il ¢. This means that there exists an m such that
i < m and My Ik, @, i.e. Mo Iky (F) ¢ which is also a contradiction. It follows that
Mgy Ik ({F) ¢ V Oy) and consequently, that all instances of ITL.10 are globally satisfied
in Cg.
1b. We can show in a similar way that, if < and C are such that

Vi, j((j € 1) — Vk((k < j) — ((k C4) V([ S k) Al <2))))),
then all instances of I7TL.11 are globally satisfied in Cx.

2a. Suppose the frame Cx of K globally satisfies ITL.10. We have to show that, for every
F=(I,<,C)€ K, < and C are such that

i, 5((j i) — VE((F < k) = ((k S VUL C k) A< D))
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Pick an arbitrary JFo € K and suppose there exists an ig,41,i3 € I such that ip C i; and
19 < 19, but 19 ¢_ 73 and there does not exist a k such that & C i3 and 11 < k. Let My be
the model such that V(p) = {i|i C i3} for some p € ®, and V(q) = {i2} for some q € ®.

This means that Mg I+;, Op for some p € &, and Mg IF;, g for some g € ©, i.e. Mg ik,
Op A gq. Since ip < 12, we have Mg I, (F) (Op A q). It also holds that 2 C 71, so Mg IF;;
O(F)(BpAg).

From ITL.10 it follows that Mg Ik, ((F)pV <q), i.e. Mg Ik (F)p or Mg Ik, ©g. So
there exists a k € I such that i; < k and My I, p, (so k C i3 from our choice of V(p)),
or there exists a k£ C i1 such that My IFg g, (so k = i3 from our choice of V(gq)). It follows
that either i9 C i1, or there exists a k such that i1 < k and k C 5. This contradicts our
earlier assumption. It follows that, for all 7 = (I,<,C) € K, < and C are such that
Vi, jl(G S 4) - VE(G < k) = (k SO VL S k) A G <))

2b. It can be shown in a similar way that, if all instances of ITL.11 (which is the dual of
ITL.10 for the converse > of <) are globally satisfied in the frame Cx of K, then for all
F=(I,<,C) €K, <and C are such that

Vi,j[(F C1) = Vk((k<j) > (kC) VAU C k)AL <))

Van Benthem uses the axiom pair ITL.12 and ITL. 13 for indirectly introducing the property
of neighbourhood, i.e. every interval that has an interval preceding it, also has a nearest
neighbouring interval preceding it, and every interval that has an interval succeeding it,

also a nearest neighbouring interval succeeding it. Thus < is such that

Vr,y(z < y — Jz2(z < zAVu~(z <uAu<z))) and
Vr,y(y <z — J2{z <z AVu-(z <uAu<z1))).

ITL.12 (¢ ADy) — (F)[P]((F)pV Ov)
ITL.13 (p AO%) — (P)[FI((P)p Vv O%)

Directedness stipulates that, for every pair of intervals z and y, there exists an interval con-
taining both z and y. This can be expressed in the metalanguage as Vr,y32(x C 2 Ay C 2).
A form of directedness can be introduced by the following axiom pair:
T (FYp A (F)p) = (F) (Op A Op)

ITL.15 ((P) A (P)9) = (P) (Op A OY)

It could be preferable for the structure to be dense, i.e. between any pair of intervals that
does not overlap, we can fit in another one, i.e. Vz,y(z < y — J2(z < 2A z < y)). The

following schema can be used to formulate a form of density indirectly:
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ITL.16 Dp — O (F) g

If the interval inclusion relation C is transitive, then the McKinsey schema, i.e. OOp —
OOy, is a formulation of the property of atomicity, i.e. the existence of atomic intervals.

This means that C is such that
Vidj(j CiAVk(k Cj—k=3)).
Linearity of < modulo C can be introduced by the inclusion of a pair of axioms defining
left-linearity and right-linearity respectively.
ITL.17 ((F) (¢ ADY) A (F) (x AQa)) = ((F) (@ Ae) V(F) (¢ A(F) x) V
le Vi,jk(G<jni<k)o(k<jVi<kVIA(E<IAIC]
ITL.18 ((P)(¢ ADY) A(P) (x ADa)) — ({(P) (¥ Aa) V(P) (¢ A (P)x) V
e Vi, j,k((j <ink<i)— (k<jVi<kVIAU<in(C]

4.2.2 Axiomatisation for superperiods

[t may also be convenient to express the relationship between the truth of a sentence ¢ over
an interval ¢ and the truth of ¢ over an interval j of which i is a subinterval. The interval
j is called a superperiod of i. In [VB95],Van Benthem discusses the use of a modal operator
O“P, read ‘over all superperiods’. Hajnicz [Haj96] proposes the extension of the alphabet
for extended tense logic by adding such a modal operator, namely X, corresponding to the
accessibility relation 2 which is the converse of C, so (i,7) € 2 iff (7,7) € C . This gives a
language based on this alphabet greater expressive power [Haj96]. The dual of K, which we

denote by ®, read ‘for some superperiod’, is defined as usual:

Qp =gef "W —p.
What about the truth value of sentences of the form X7 If ¢ is a sentence of the form X,

we say that @ is true relative to the model M = (I, <, C, V) over the interval ¢, denoted by
Mk By, iff M ;4 for every j € I such that 2 C j.

"The following axiom pair expresses the notion that C and 2 are mutually converse:

SPTL.01 ¢ —-0Q®¢
SPTL.02 ¢ — ROp.

With the addition of X, some axioms are formulated in a way slightly different from the
way they were formulated in the previous section. As an illustration, we give the axioms

for left-linearity and right-linearity [Haj96]:

SPTL.03 (P)p — [PI(P)pVO®pV (F)y) (Left-linearity)
SPTL.04 (Fyp — [FI(PYeVO®pV (F)y) (Right-linearity)
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4.3 A modal language using Allen’s interval-interval
relations

There are areas in Al, such as qualitative physics and automatic planning, where we need
to represent continuous change over a period of time. Halpern & Shoham [HS91] introduce
a modal logic suitable for applications like these. A time structure is used with time points
as primitive and, although the modal operators describe relationships between intervals,

the semantics is formulated in terms of relationships between time points.

The alphabet of the language consists of the following elements:

e a set © containing one or more atoms p, g, ...
e the punctuation symbols ‘(" and ‘)’
® the connectives — and ~

o the modal operators {A), read ‘for some abutting interval’, (B}, read ‘for some initial
interval’, (E), read ‘for some terminal interval’, </1> , read ‘for some interval of which
the current one is an abutting interval’, <5‘>, read ‘for some interval of which the
current one is an initial interval’, and <E>, read ‘for some interval of which the

current one is a terminal interval’.

The modal operators correspond to some of the interval-interval relations defined by Allen
as discussed in Chapter 2 (see Figure 4.2). When considering the truth of a sentence over
an interval (t,t'), we say that (¢,¢') is the current interval . An abutting interval is an
interval that starts at the same time point at which the current one ends. By initial interval
we mean an interval beginning at the same time as the current one but ending before it,
and by terminal interval we mean an interval beginning after the current one but ending at

the same time.

The set of sentences is defined in the usual way and the connectives V, A and « are defined

in terms of — and — as before.

Both (B) and (FE) are defined for strict subintervals only, i.e. an interval cannot be a
beginning or end subinterval of itself. The duals [A], read ‘for all abutting intervals’, [B],
read ‘for all initial intervals’, [E], read ‘for all terminal intervals’, [4], read ‘for all intervals

of which the current one is an abutting interval’, [B], read ‘for all intervals of which the

1This concept is sometimes referred to as temporal indexicality.
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<B>

<E>

Figure 4.2: Halpern & Shoham'’s interval-interval relations

current one is an initial interval’, and [E], read ‘for all intervals of which the current one is

a terminal interval’, are defined in the usual way, e.g. [A]p =qer — (A4) —p.

For the purpose of Halpern & Shoham’s system, a temporal structure is taken to be a pair
F = (T, <), where T is a set the elements of which are called time points and < is an
accessibility relation on 7. An interval, denoted by (t1,%s), is defined as a set of points
{t:t1 <t <t} We say that t; <ty iff t; <ty and ¢ £ ¢4,

Sentences are interpreted over intervals. Let M = (T, <, V) be an arbitrary model based
on F, where V' is a function that associates each p € & with the set of intervals over which
it is true. A sentence ¢ is said to be true relative to M over an interval (¢,t’'), denoted by

Mk @, iff one of the following cases applies:
e o € ® and (t,t') € V(p)
e p= -ty and M Wy 9
e p=1 — x and MW 1 or Ml x
® ¢ = (A) ¢ and there exists a t” such that ¢’ <t and M Ik ) 3
] kcp = (B) ¢ and there exists a t” such that t < ¢ and t’ < ¢’ and M H—<mu) Y

e ¢ = (E)1 and there exists a t” such that ¢ < ¢’ and t” <t' and M Ik gy ¥
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e ¢ = (A)1) and there exists a t” such that t” <t and M Iy ¥
o ¢ = (B)y and there exists a t” such that t' <t and M Fieamy ¥

e ¢ = (E)1 and there exists a t” such that t” < t and M I gy ¥

A sentence ¢ is said to be globally true (or globally satisfied) over a model M iff M Ik e
for all intervals (,t') such that t,#' € T. Global truth of a sentence over a frame is defined

as before.

The system allows point intervals (t,t). A point interval cannot have any subintervals, i.e.
for any point interval (s,s), there does not exist a time point t between s and s to form
a subinterval (s,t) or (t,s). For point intervals of the form (s,s), [B]e will therefore be
vacuously true. This means that [B] L holds for point intervals only. This principle is used
to define the following pair of modal Operators, one for the beginning point and another for

the end point of an interval:

((BPllp =ses (¢ A[B] L)V (B) (¢ A[B] L)
([EPll¢ =acr (¢ A[B] L) v (E) (p A [B] 1)

where [[BP]] ¢ expresses the notion that ¢ holds at the beginning point of the current
interval, and [[EP]]¢ expresses the notion that ¢ holds at the end point of the current
interval. The definition of the beginning point operator stipulates that ¢ is true at the
beginning point of the current interval iff it either is the case that (¢ is true over the
current interval which has no beginning subintervals, i.e. the current interval itself is a
beginning point) or {there exists a subinterval, which is a beginning point of the current
interval, at which ¢ is true). The modal operators [[B P]] and [[EP]] are duals of themselves,
ie. ([BP|lg =4es —[[BP]]-¢ and [[EP||p =gy —~[[EP]|]-¢ : for an arbitrary interval there

exists only one beginning point and one end point.

A number of more complex modal operators can be defined in terms of those primitive in
the language. With the addition of these operators, we have a one-to-one correspondence
between the set of modal operators for this language and Allen’s set of interval-interval
relations {excluding equality) as discussed in Chapter 2. Figure 4.3 gives a graphical repre-

sentation of the new operators. The dotted line shows the current interval in each case.
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Figure 4.3: A graphical representation of the more complex modal operators defined
by Halpern and Shoham.

These operators are defined as follows: For a sentence ¢,

()¢  =4ey (A)(A)p  There exists some later interval, i.e. an interval beginning
after the current one ends (not abutting it) over which ¢
holds.

(D) =aey (B)(E)p There exists an interval during the current one
(starting later than but ending before the current
one ends) over which ¢ holds.

(OYp =aer (E) <B ) ¢ There exists an interval that overlaps with the
current one at the end (beginning after and ending
after the current one) over which ¢ holds.

<E) ¢ Edes <A> </§> ¢ There exists an interval earlier than the current one
(not abutting it) over which ¢ holds.

<D> @ Sdef <E> <E’ > ¢ There exists an interval that overlaps with the
current one at both ends (beginning before and
ending after the current one) over which ¢ holds.

<6) ¢ =der (B) <E'> ¢ There exists an interval that overlaps with the
current one at the beginning (beginning earlier and

ending earlier than the current one) over which ¢ holds.
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Do these modal operators we have defined in terms of the primitive ones really achieve their
intended meaning by these definitions? Let us have a closer look at (D), using the given

semantics, as an example.

Example 17 The ‘meaning’ of (D).

Let Mg = (T,<,V) be an arbitrary model and let (¢,t') be an arbitrary interval, with
t,t' € T. Suppose My Ik 4y (D) . We want to show that this means that there exists an

interval beginning later than the current interval, and ending before it, over which ¢ holds.

If Moty (D)@ then My Iy (B) (E) p, by definition. This means that there exists a
t" € T such that ¢ < t” and ¢ < t', and Mo Ik vy (E) @, ice. there exists a t"" € T such
that ¢ < ¢ and t"" < t", and Mo IFem 4y . So there exists a t”,¢"" € T such that ¢ < ¢"
and t" < t', and Mo Ik (g pvy . In other words, there exists an interval beginning later than

the current interval and ending before it, over which ¢ holds.

Halpern & Shoham [HS91] define the following formulae which can be used in order to
express properties like discreteness, denseness and linearity of the time structure in the
object language:
length0 =4, ([B] L
(Point intervals have length = 0.)
lengthl =45 (B)TA[B][B] L
(If an interval has length = 1, then that interval
contains a beginning interval, and all beginning intervals

are point intervals. So it only contains a beginning point.)

The accessibility relation gy in a time structure F = (T, <) is discrete if it is such that

Vr,y(t <y — 3z(z < 2N 2 <y A -Fu(z <uAu < 2))) and
Vo,yly <z — Jz(y < zA 2 <z A =Fu(z <uAu < x))).

This property is introduced by Halpern & Shoham by means of the following definition:
discrete =geslengthO V lengthl V ((B)lengthl A (E)lengthl).
How does this correspond to discreteness? Suppose M I discrete. Then Mk discrete

for every interval (s,t) . Now exactly one of the following three possible conditions holds:

1. Mp k(s lengthO: This means that (s,t) is a point interval, so s £ ¢t (s = t) and thus

there does not exist any time point r € T' such that s < r < ¢.
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2. My I, lengthl: The only subinterval that (s,t) can contain is a beginning point
interval (s, s). This means that the only subintervals that (s, ?) can contain are (s,$)
and (t,t). So there does not exist an r € T such that s < r and r < t. (We will
see later (axiom VEN.07) that, if an interval contains a beginning point, then it also

contains an end point.)

3. My lFsy (B)lengthl A (E)lengthl. Within (s,t), there exists a beginning interval
with lengthl, i.e. an interval (s,r) such that s < 7 < t, but for which there does not
exist an 7’ such that s < ' < r. It is also the case that there exists an end interval
with lengthl, i.e. an interval (u,t) such that s <u < t, but for which there does not

exist a o' such that u < v < t.

It follows that discreteness of < is ensured.

In contrast to this, density of <, i.e. Vz,y(z < y — Jz(z < 2z Az < y)), can be defined as

follows:
dense =4, — lengthl.

From the definition of lengthl, it follows that, if an interval (s,t) is of lengthl, then s < ¢
and there does not exist any point r between s and ¢t. If density is defined as above, it
means that there does not exist an interval (s,t) of which we can say that there does not
exist a point r between s and t. So, for every interval (s,t), it follows that there exists an

T, such that s < r < ¢

The accessibility relation < is unbounded (infinite) if Vz(Jy(z < y) A 32(z < z)). Halpern
& Shoham define this property in terms of abutting intervals:

unbounded =45 (A) TA(AY T

This means that, for an arbitrary interval, it is always the case that there exists an interval
of which the current interval is an abutting interval, and there exists an abutting interval
(succeeding the current one). The time structure is unbounded in both directions. Right-
unboundedness and left-unboundedness can alternatively be defined as follows:
Right-unbounded =405 (A) T
Left-unbounded = =4.r (A> T
Finally, the property of linearity of < is introduced as follows:

linear =405 ((A) o — [A] (0 V (B V (BYe) A ({A) o — [A] (¢ V (E)p V (E)¢))

We want to ascertain whether this definition characterises the class K of quasi-linear struc-

tures, i.e. structures in which the accessibility relation < is both right-linear and left-linear:

60



VI, y,2(z <yAzx<z—(y<zVy=2zVz<y)) and
Vr,y,2(y <zAz<z—>{y<zVy=zVz<y)).

Proposition 7 1. Let K be the class of time structures of the form F = (T, <) such that
< is both right-linear and left-linear in every F € K and let Cx be the frame of K. Then
every M € Cx globally satisfies all instances of the aziomn schema

((A) ¢ — [Al (¢ V (B) oV (B) @) A ((A) o — [A] (p V (E) g V (E) ¥)).

2. If the frame Cx of the class K of structures globally satisfies the ariom schema

((Ayo — [Al (e V (B) oV (B) ) A ((A) ¢ — [A] (0 V (B) 0 V (E) ¥))

then, for every F = (T, L)€ K, < is both right-linear and left-linear.

la. Let K be the class of structures of the form F = (T, <) such that < is right-linear.
Pick an arbitrary Fy = (T, <) € K and an arbitrary My € Cx,. We have to show that
Mo Ik (A) o — [A] (9 V (B)p V (B) ) for all (t,t') such that t,t' € T.

Pick an arbitrary (to,?;) with to,t1 € T. Suppose Mo Ky 4y (A)e — [Al(p V(B)p V
<B> @), i.e. if there exists a ta € T such that t; < ¢3 and Mo Ik, 1) ¥, then Mo W44,
(Al (pV (B)p V <§> ¢). So there exists a t3 € T' such that ¢; < t3 and (Mo ¥, 1,) ¥ and
Mo Wiy, 1ay (B) @ and Mo Wy, 40y (B) @). But < is right-linear and we have ¢; < t; and
t1 < t3, soty < t3oriy =ty orty <ty If 3 = t3 then Mo Iy, 1) ¥ : & contradiction.
We know that Mg Ik, 1) @, so if t3 < ta, then Mo Ik, 1) (B) @, also a contradiction.
~Furthermore, if t3 < t2, then Mg Ik, t3) <B> . This also contradicts our earlier assumption,
50 Mo I (1,00) [A] (9 V (B) @ V (B) ¢). Thus Mo I (g, ({A) ¢ — [A] (9 V (B) ¢ V (B) ¢)).
1b. We can show in a similar fashion that, if < is left-linear then Mo IF (4, 1)) (/i) p —
[4] (pV (E)pV (E)¢).
It follows that, if < is both right-linear and left-linear, then Mo Ik 0y ((A) — [A] (¢ V
(BYV (B)Y@))A((Ayp — [A] (pV (E) ¢V (E) y)) for all intervals (¢,¢'), where t,t € T.
2a. Suppose all instances of the schema ((A)¢ — [A](p V (B)o V (B)¢)) A ((A)p —
[4] (e Vv (E)pV (E) ¢)) are globally satisfied in the frame Cx of the class K of structures

of the form F = (T, <). We have to show that, for every F € K, < is both right-linear and
“left-linear.

Firstly, we show that, if all instances of (4) ¢ — [A] (¢V (B) ¢V (B) ¢) are globally satisfied
in the frame Cx, then, for every F € K, < is right-linear.

Pick an arbitrary o = (T, <) € K and suppose we have io,tl,tg,tg € T such that tp < ¢4,
t1 <13 and t; < t3, but t3 # t3 and t; £ t3 and t3 £ 19, i.e. < is not right-linear. Let
Mg = (T, <,V) be the model such that V(p) = {(t1,t3)} for all p € &. We know that
Mo lkg; 1,y p for arbitrary p, so Mo Ik, 1y (A) p-
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From the schema it follows that Mg Ik, 4y [A] (pV(B) pV (B) p). So for an arbitrary t' € T’
such that t; < ¢/, it follows that Mo Ik, 1y p or Mo Ik, 4y (B) p or Ma Ik, 4y (B)p In
particular, for (t,13), we have Mg Ik, 1y p or Mo Ik, 1y (B) p or Mg Ik, 1) (B) p. So
Mo Ik, 15y p which means that t3 = t; from our choice of V, or there exists a t” such that
ty <t < t3 and Mo Ik, gy p, so t” = ty, or there exists a t' such that ¢; < t3 < t" and
Mo Ik, 4o P, SO t" = ty. It follows that ty = t3 or ta < t3 or t3 < tg, which contradicts our

earlier assumption. So, for every F € K, < is right-linear.

2b. We can show in a similar way that, if (Am> p — [A] (¢ V(E)pV <E_J> @) is globally
satisfied in the frame Cx, then, for every F = (T, <)€ K, < is left-linear.

It follows that, if all instances of the schema ((4) ¢ — [A] (¢ V (B) ¢ V (B) ¢)) A ((A) ¢ —
[A] (pV(E) ¢V(FE) p)) are globally satisfied in the frame Cx, then, for every F = (T, <)€ K,
< is both right-linear and left-linear.

Venema [Ven88} shows that the two modal operators (A) and (A) can be defined in terms

of other modal operators as follows:

(A) ¢ =4es [[EP]] <B> ¥
(A) ¢ =aer (1B (E) o

For an interval ¢ to meet an interval 7, they share one atomic interval which forms the end
point of i and the beginning point of j. Since a point interval cannot meet and cannot be

met by any other point interval, Hajnicz [Haj96] prefers the following alternative definitions:

[Ale =4e [E]([B] ¢ V(E) T)
[A) ¢ =aer [BI([E] eV (B) T)

Proposition 8 The Hagjnicz definitions of [A] and [A] given above correspond to those of
Halpern € Shoham.

(a) Hajnicz [Haj96] defines [A] as follows:

[Ale =aes [E1([B] ¢V (E) T)
- 'We have to show that this corresponds to Halpern & Shoham’s definition of [A].

Consider an arbitrary model Mg = (T, <, V) and an arbitrary interval (to,t;) where tg,t1 €
T. Suppose Mg IF .1,y [Alg, 6. Mo Ik ey [E] ([B] ¢V {E) T). This means that, for all
terminal intervals (',%;) of (fg,t1), it must be the case that either Mg IF(y 4, [B] @ or
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Mo Ik 4,y (E) T. Choose an arbitrary (t3,t;), such that (t3,11) is a terminal interval of
(t(])t'l)’

Suppose Mo ¥4, 1y (E) T. This means that (t3, %) is an end point, i.e. (3,21) = (t1,%1).
It is also the case that Mg Ik ) [B] ©, 50 Mo I 0 [B] @, i.e. Mok, ¢m o for all
intervals (t;,t") where t; < t”. So Mg Ik, 1y [A] ¢ as per Halpern & Shoham’s definition.
Now suppose Mg ¥ 4, 1,y [B] ¢. Then Mg Ik, 4,y (E) T, which means that (3, ;) contains

another end interval and is thus not relevant.

(b) Hajnicz defines [A] as follows:

[A] ¢ =aer [BI ([E] ¢V (B)T)
It can be shown in a similar way that Mg Ik [B] ([E] ¢ V (B) T) means that, for all

intervals (t”,t), we have Mg IFyungy @, 50 Mo I 4 [A] ¢ as per Halpern & Shoham’s
definition.

Halpern & Shoham do not give an axiomatisation for their system so we present one sug-
gested by Venema [Ven88|.

4.3.1 Axiomatisation

Venema ([Ven88] and [Ven90]) maintains that Halpern & Shoham’s system can be inter-
preted using one of two possible models. Firstly, we can use a model based on the time
structure discussed in the previous section, i.e. points are primitive but sentences are inter-
preted over intervals. Secondly we can use a model based on a time structure with intervals
as primitive.

Points as primitive

The following axioms express relationships between the modal operators (B) and (B) and
between (E) and (E): '

VEN.Ola ¢ — [B](B)y
VEN.0Ib ¢ — [E](E)¢
VEN.0%a ¢ — [B] (B) ¢

VEN.02y © — [E](E)¢
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VEN.01 and VEN.02 are formulated to express the relationship between (B) and (B), and
between (F) and <E) respectively. As an example, we show the relationship between [B]
and (B) from VEN.0la. Suppose M Iy . From VEN.0la this means that M Ik
[B] (B) ¢. So M I tem (B) e for all t” such that ¢ < ¢/, from which it follows that there
exists a £ (i.e. ¥') such that ¢ < { and M ”_(t,f) P.

We want to show that a similar relationship exists between (A) and (A) (if we use the

Hajnicz definitions of [A] and [/1] given previously).

Proposition 9 Let [/1] and [A] be defined as by Hajnicz:

[A] ¢ =aes [B] ([E] oV (B) T)
[Alp =4es [E] ([B] ¢ V(E) T)

Let K be the class of time structures of the form F = (T,<) such that every Cr € Cx
globally satisfies all instances of the schemas VEN.O1 and VEN.02 where C is the frame of
K. Then every M € Cx globally satisfies all instances of the schemas ¢ — [A] (A) ¢ and

¢ — [A1{(A) ¢.

1. Let [A] ¢ and [A]p be defined as above. We have to show that all instances of the
schema ¢ — [A] (A) ¢ are globally satisfied in the frame Cx.

Well, [A] ¢ =ger [B] ([E] ¢V (B) T), so [A] (A)p = [B] ([E] (A) oV (B) T).

Using previous definitions and axioms, we firstly derive the following equality which is used

in the proof:

[BI ([E] (A) ¢ V(B)T) « [BI([E] (~[A]l—) V(B)T)
< [B]([E] (-[E]([B] ¢ V(E)T)) V(B) T)
o [B]([E] (- [E] (= [B] ¢ A= (E)T)) V(B)T)
< [BI([E] ((E) ((B)p A~(E)~ 1)) V(B)T)
< [B]([E] ((BE) ({(B) ¢ A |E] 1)) V(B) T)
< [B] ([E] (E) (B) ¢ A[B] L)) V(B)T)
(from VEN.07 which follows)

Choose an arbitrary Mo € Cx and an arbitrary (t1,t2) € T. Suppose Mg Ir(, 1y 0. We
~have to show that Mg Ik, 4 [A] (A) .

By VEN.Ola we have Mg I-g, 1y [B] (B) . This means that Mg Ik, 4y (B) p for every
t' € T such that t; < t' < t5. For any such #/, we now have two possibilities: #; < # or
t; = t'. Let’s look at each of these in turn.
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Suppose ¢ < t'. We know that Mg I, .y T, so we can claim that Mo I, » (B)T.

Suppose ) = t'. Since (t1,t1) is a point interval, Mo lFg, 4y [B] L, so Mo Iy, )
[E] (E) [B]L (by VEN.02). It is also the case that Mg Iy, ey (B) @, so Mo Ik, 1)
[E] (E) (B) ¢ (again by VEN.02b). This means that My Ik 21,60) [E] (E) (B) oA [E] (E) [B]L,
s0 Mo I, 0y [E] ((E) ((B) ¢ A[B]L)).

It follows that, for every t' € T such that t; < t' < ¢ we have My Ik, iy (B) T or
Mo kg, 0y [E] ((E) ((B) ¢ A [B]L)), and consequently, that Mg Ik, ¢ [E] ({E) ((B) A
[B]1))V(B) T. From this we can claim that Mg IF(4,t) [B]([E]((E) ((B) pA [B] L))V (B) T).
From the equality shown earlier, it follows that My Ik, 4, [A] (A) p.

2. We can show, in a similar fashion, that all instances of the schema ¢ — [A] (A) ¢ are

globally satisfied in Cx.

Axioms VEN.03 and VEN.04 formulate transitive relationships between initial intervals,

and between intervals that share an initial interval, respectively.

VEN.03 (B)(B)yp — (B)p

VEN.0 (B)(B)¢ — (B)y

VEN.05 and VEN.06 express the notion that each interval is either a beginning/end point

itself or contains one.
VEN.05 (B)[B] LV[B] 1L
VEN.06 (E)[E] LV[E] L

Axiom VEN.07 expresses the idea that an interval contains a beginning point iff it contains

an end point.

VEN.07 [B] L [E] L

VEN.08, VEN.09 and VEN. 10 express the relationships between (B) and (E), between (B)
and (E), and between (B) and (E) respectively.

VEN.08 (B)(E)p < (E)(B)y

VEN.09 (B) () — (E) (B)

VEN.10 (B)(E)¢ — (E)(B)yp

Axioms VEN.11 and VEN. 12 express the idea that there exists a linear relationship between

any two initial intervals of an interval (a form of left-linearity), as well as between any two '

terminal intervals of an interval (a form of right-linearity).
VEN.11 ((B)¢ A (B)%) — ((B) (¢ A (B)¥) V (B) (p A9) V (B) ((B) 9 A 9))
VEN.12 ((E)p A (E)¥) — ((E) (p A(E)Y) V (E) (¢ AY) V (E) (\E) A )
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Intervals as primitive

In the second possibility pointed out by Venema [Ven88] we use a temporal structure
with intervals rather than points as primitive. This way we get a direct correspondence
between the modal operators and Allen’s interval-interval relations. A time structure
F = (J,||,CB, Cg) is used, where J is a set, the elements of which are called intervals,
|| is a relation .expressing the notion of ‘meet of intervals’ in J, and Cp and Cg are rela-
tions expressing the idea of initial and a terminal inclusion respectively, of intervals in J.
So 7 Cp t means that j is an initial interval of i and 7 Cg ¢ means that 7 is a terminal

interval of 2.

A model is an ordered tuple M = (J,|},Cp, Cg,V), where V is a valuation: ® — 27 that
associates each ¢ € & with the set of intervals over which it is true. A sentence ¢ is true
relative to M over an interval ¢ € J, denoted by M IF;p, iff one of the following cases
applies:

e pe®andic V(p)

o =~ and MW; ¢

o p=1Y — x and MWK; Y or MIH x

o ¢ = [A]y and M IF; ¢ for all 7 such that 3||7

e ¢ =[B]y and M I; ¢ for all j such that j Cg i

¢ = [E]y and M IF; ¢ for all j such that j Cg 4

¢ = [A]y and M IF; 9 for all 5 such that j||i

¢ = [B]y and M IF; ¢ for all j such that i Cg j
e o =[E]y and M IF; 9 for all j such that i Cg 7,

where the modal operators are read as before.
The duals of the modal operators are also defined as in the previous section.

This system can be simplified by using the || accessibility relation only. We use a time
~structure F = (J,||) similar to the one used by Allen & Hayes in [AH89]. J is a set, the
elements of which are called intervals, and || again expresses the notion of two intervals

meeting. The relations Cp and Cg can be defined in terms of || as follows:

J Co i =aer 3k, L,m((kl|E Adllm) A (k|15 A FI1EATIm))
J Ce i =aef Ik, L, m((kl[e Adllm) A (k|lL A LT A 5lim))
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The language uses the same alphabet as the language discussed in the previous section
with the exclusion of [A] and [A]. The semantics is defined as follows: A sentence ¢ is true
relative to a model M = (J,||,V) over the interval i, denoted by M IF;p, iff one of the

following cases applies:
e pc®andie V(p)
e o=t and M WK;y

e o =19 — x and MW; ¢ or MIF; x

¢ = [Bly and M IF; ¢ for every j € J such that there exists a k,l,m € J where
(klls Adllm) A (|5 A FlIEA L |m)

¢ = [Ely and M IF; 9 for every j € J such that there exists a k,l,m € J where
(klje Adflm) A (RIEA LT A GlIm)

¢ = [B]Y and M IF; ¢ for every j € J such that there exists a k,I,m € J where
(klli AdllE ALlim) A (k17 A j]lm)

¢ = [E]Y and M IF; ¢ for every j € J such that there exists a k,l,m € J where
(Kl ALl Adllm) A (Kl A Gllm). '

4.3.2 A spatial representation of the interval structure

Venema [Ven90] also presents a different angle to viewing relationships between intervals
where we get a spatial representation of the interval structure within the ‘northwestern
halfplane’ of F x F in which an interval (s, t) is represented by the point (s,t) as depicted
in Figure 4.4.

Venema shows that it is possible to construct an isomorphism between the interval structure
F = (T,<) and F?¥¥ = {(z,y) € F2z < y}. A set of modal operators, which are the
spatial versions of the Halpern-Shoham modal operators, are used to indicate the position

of a point, or a set of points, relative to the position of the current point:
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The interval <s,¢> is identified
with the point (s,7). The point
(s,5) is the beginning point and
{t,1) is the end point of <s,t>.

Figure 4.4: Mapping intervals to points on a plane.

Oy =gy (B) ¢ ¢ holds at a point right below the current one.
(The first coordinate is the same but the second
coordinate of the current point is greater.)
O =gef <B) e ¢ holds at a point right above the current one.
(The first coordinate is the same but the second
coordinate of the current point is smaller.)
Op =Zges (E) Somewhere at a point to the right of the current one, ¢ holds.
(The second coordinate is the same but the first
coordinate of the current point is smaller.)
O Zgef <E) @ Somewhere at a point to the left of the current one, ¢ holds.
(The second coordinate is the same but the first
coordinate of the current point is greater.)
O =gef OV Op ¢ holds at a point with the same longitude and a different
latitude as the current one.
(The first coordinate is the same but the second coordinate
differs.) |
O =dey OV Op  p holds at a point with the same latitude and a different
' longitude as the current one.
(The second coordinate is the same but the first coordinate
differs.)

We use the same definitions for (D), (D), (O), (O), (L) and (L) as in section 4.3. We
can now equate the 12 possible positions of one interval with respect to another with the

equivalence classes as shown in Figure 4.5. For example, (O) ¢ means that ¢ holds at some
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point (s’,t') somewhere in the block North-West of the current point. So s < s’ and t < ¢,
but s’ < t, thus this block represents the intervals (s’,¢') that overlaps the current interval
(s,t) at the end. In contrast to this, {L) ¢ means that ¢ holds at some point (s',t') in the
area where we have a greater latitude and a greater longitude than the current point. So
t < s’ which means that this area represents the set of intervals later than (s,t), i.e. that

starts after (s, t) ends.

» ”~
| ]
— L b
D B o A L
| l
B} l’ Current point ‘L
D P
|
O 5
I
|
f—_i——i»
L

Figure 4.5: A spatial representation of the interval-interval relations.

4.4 Summary

In this chapter and the previous one, we considered the way the underlying time structure
of a modal logic can be axiomatised. In the next two chapters we look at systems using ﬁrst—
order languages . Defining properties for the time structures of these systems are usually
straight-forward because standard schemas can be used, so we rather concentrate on the

way schemas are used to axiomatise the characteristics of actions and other occurrences.
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Chapter 5

First-order approaches with

instants

In the previous two chapters, the emphasis was on the representation of tenses in modal
languages. In each case, there was a class of interpretations that were relevant, and we
sought schemas that axiomatised this class. Conventional modal logics do not provide for
the representation of actions and their effects [PR95]. In the ensuing two chapters, we want
to look in more detail at the representation of concepts such as actions, events, facts and
processes that occur in a system of interest. As James Allen put it: ‘What do we know

when we know an occurrence has occurred?’ [All84].

Two of the early formalisms capable of expressing the effects of actions were Situation
Calculus defined by McCarthy & Hayes [MH69] and McDermott’s temporal logic [McD82].
We first give a short discussion of Situation Calculus and identify its limitations, then
we consider Extended Situation Calculus as an example of a formalism that attempts to

eliminate some of these limitations, and finally we discuss McDermott’s approach.

Situation Calculi, like the other many-sorted languages we discuss in this chapter, are
reified languages. What do we understand by the verb ‘reify’? Let us illustrate this with

the following example:

Example 18 The reification of a property.

Suppose that we want to talk about the sleeping habits of agents using a first-order language.
An obvious first attempt would involve equipping the language with a unary predicate
symbol Sleeps and constants such as, say, Tony so that the fact of an agent’s somnolence

may be conveyed by a sentence like Sleeps(Tony). In an interpretation of the language,
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there will be an object in the universe of discourse serving as denotation for Tony, but no

object that corresponds to the fact expressed by Sleeps(Tony).

Reification is the trick of using a slightly more sophisticated language equipped with terms
that represent facts such as the agent being asleep, so that in an interpretation, the universe
of discourse would indeed contain an object corresponding to the fact. What previously was
abstract - the sentence Sleeps(Tony) - has been replaced by something sufficiently concrete

to correspond to an element of the universe of discourse.

5.1 Situation Calculus

Situation Calculus was defined by McCarthy and Hayes in 1969 [MH69)]. Situation Calculi
are many-sorted languages in which situation terms represent states of some system of
interest. It is a change-based rather than temporal approach, i.e. the system is assumed to

persist in one state until an action occurs that changes it to a new state [Sho87].

For our purposes, a Situation Calculus is a many-sorted language such that:

o the set of sorts on which the alphabet is based includes at least the sorts situation,

action and fact !

» the set of function symbols includes at least the binary function symbol Result with

sort (situation, action, situation)

» the set of predicate symbols includes at least the binary predicate symbol Holds with

sort (fact, situation).

The following example illustrates the way a Situation Calculus is used to represent knowl-
edge about a system and to show how we can represent the effect that a specific action or

event? has on the system.
Example 19 Defining a Situation Calculus.

Consider the simple system of an air-conditioning unit in a car. There is a switch for the

air-conditioner and a starter for the car engine. The air-conditioner can either be on or

1Some authors use the term fluent. This is a relic of McCarthy’s original ungainly terminology.
2In Situation Calculus no distinction is made between actions and events. In the discussion

of Situation Calculus as well as Extended Situation Calculus, which will be described in the next

section, we will use the term action exclusively to aveid confusion.

71



off, and the engine can either be off or running. If the engine is running and we switch it
off, the engine will be off, and conversely. The same applies to the air-conditioner. This
means that we have four actions that can have an effect on the state of the system as we
have described it and these are the actions of switching on or off either the engine or the
air-conditioner. For simplicity, we rule out the possibilities of the engine not starting due

to some mechanical problem or the air-conditioner malfunctioning, and so on.

To represent our knowledge of the engine/air-conditioning system, we choose a Situation
Calculus the alphabet of which is based on the set of sorts TP = {situation, action, fact,

unit}, and which contains the following symbols:

e aset S ={S,...,5} of constants of sort situation

a set U = {Up, U1} of constants of sort unit

a set SV of variables sq, s1,... of sort situation

a set AV of variables ag, ay, ... of sort action

a set PV of variables pg, p1,... of sort fact

a set UV of variables ug, u1, ... of sort unit

the set FUN = {(Result,2), (SwitchOn,1), (SwitchOff 1), (On,1), (Off,1)} with the

following associated sort tuples:

— Result is of sort (situation, action, situation)
— SwitchOn is of sort (unit, action)

— SwitchOff is of sort (unit, action)

— Onis of sort (unit, fact)

— Off is of sort (unit, fact)

e the set PRED contains only one element, namely (Holds, 2), with the sort (fact,

situation) associated with it.

The usual first-order semantics applies to Situation Calculi. By way of illustration, we
define the following interpretation Ip = (D, ). The domain D = Dy U Dgct U Dygee U Dynie
and these snbdomains of D are defined as the following sets of strings:
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® Dsit = {S..O, . .,S_3}

Dot = {SwitchOnEng, SwitchOffEng, SwitchOnAC, SwitchOffAC}
Dyyer = {EngRunning, EngOff, ACOn, ACOff}

Dynit = {Engine, AC}.

The meaning function ¢ is defined as follows:

i(So) = 5.0, the initial situation
i(S;) =S, for j=1,2,3
i(Uo) = Engine, i(U) = AC

i(SwitchOn,1) is a function of sort (unit, action) and consists of the following ordered

pairs:

— (Engine, SwitchOnEng)
— (AC, SwitchOnAC)

i(SwitchOff,1) is also a function of sort (unit, action) and consists of the following

ordered pairs:

— (Engine, SwitchOffEng)
~ (AC, SwitchOFAC)

i(On,1) is a function of sort (unit, fact) and consists of the following ordered pairs:

— (Engine, EngRunning)
— (AC, ACOn)

i(Off,1) is a function of sort (unit, fact) and consists of the following ordered pairs:

— (Engine, EngOff)
— (AC, ACOf)

1(Result, 2) is a function of sort (situation, action, situation) and consists of the

following ordered pairs:

~ ((S.0, SwitchOnEng), S2)
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~ ((5.0, SwitchOffEng), 5.0)
— ((5-0, SwitchOnAC), S-1)
 ~ ((5-0, SwitchOffAC),S .0)

),5-3)

— (521, SwitchOffEng), 5-1)

);5-1)
— ((8-1, SwitchOffAC), 5.0)

- ((S-1, SwitchOnEng
~ (5.1, SwitchOnAC

— ((5-2, SwitchOnEng), 5.2)
).5.0

— ((S2, SwitchOffEng )

— ((S-2, SwitchOnAC), 53)

),
~ ((5-2, SwitchOFFAC), 5.2)
— ((S-3, SwitchOnEng), S-3)
),S-1

— ((5-3, SwitchOffEng), S_1)

~ ((S.3, SwitchOnAC), 5_3)
~ ((5-3, SwitchOffAC), 5-2)

o i(Holds, 2) = {(EngOf, 5.0), (ACOf,5.0), (EngOff,S.1), (ACOn, 5.1),
(EngRunning,S2), (ACOff, 5-2), (EngRunning, S-3), (ACOn, S_3)}

-Starting with the initial situation, we can construct a tree, called a situation tree, the
branches of which consist of all possible sequences of situations. Each situation in a branch
is the result of some action occurring in the previous situation. Each such sequence is
called a path. Figure 5.1 shows the situation tree for the example discussed above. From
the figure, it is clear that there are at least two possible paths from the initial situation
So. One having S, as the next situation in the path and the other having S, as the next
situation. Again, from Sy there are two possible paths, one leading to Sp and the other

leading to Ss3, and so on.

Although Situation Calculus provides a means for representing actions and outcomes of

actions, several criticisms have been levelled at it:

e Consider actions such as ‘The car engine was running for 20 minutes’ and ‘I spent
the whole day driving around town’. These actions would have to be modelled, if at
all, by an action such as skip which does not change the situation. However, there is

then no way to express the differing durations of these non-active actions [All84].
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Figure 5.1: The situation tree for Example 19.

It is not possible to express actions that occur simultaneously and may interact with
each other, e.g. if action A moves block C one unit to the left and at the same time
action B moves block C one unit to the right, perhaps block C should not move at all
since the simultaneous occurrence of actions A and B results in each action cancelling
the effect of the other ([All84] and [SG88]).

When the same state of a system can recur at different times, the situations represent-
ing that state at the different times ® would be equivalent insofar as the same facts
would hold. The language offers no convenient way to make explicit the difference in

times, and thus no convenient way to represent actions within a time structure.
We have no way to describe how the world actually evolves [PR95].

In most formulations of Situation Calculi, situations need to be named explicitly in
terms of a sequence of actions following the initial state. As a result, it is not possible

to represent such a sequence if we do not have complete information [KS94].

Time is discrete, so it is not possible to describe continuous processes such as water

flowing into a container [SM87).

The frame problem is the best-known of a class of problems that may arise in applying

3McCarthy & Hayes [MH69] define a situation as a snapshot of the world at an instant in time.
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change-based Situation Calculus [Mil93] and has been pointed out as a limitation of
this approach, and indeed of the use of logic as a knowledge representation language
[HMS86]. These objections have been refuted by demonstrating that the frame prob-
lem, and related problems, may be avoided in a variety of ways, most notably by the

use of nonmonotonic semantics [Lif87].

5.1.1 Extended Situation Calculus

McCarthy & Hayes suggest in [MH69] that the expressive power of modal logic can be
gained using a first-order language by identifying each possible world of the relevant modal
language with a situation in a suitable Situation Calculus. Pinto & Reiter built their
Extended Situation Calculus on this principle by identifying the time structure (a set of
possible worlds together with an accessibility relation) with a fixed infinite branch of states
in the associated situation tree. In this way, the ontology of Situation Calculus is extended
to provide for the representation of time, and thus for representing the occurrence of actions

with no duration as well as of actions with some duration.

In principle, the notion of time is formalised within Extended Situation Calculus by identi-
fying the time line, which may be thought of as the set of non-negative rational numbers?
with the usual ordering, with a connected path in the situation tree. We introduce a sort
time, to be interpreted as a time line. Situations will be associated with points on the time

line by functions to be represented by the symbols Start and End.

The alphabet for an Extended Situation Calculus, or ESC, based on a set of sorts TP =
{situation, action, fact, unit, time}, is similar to the alphabet for a Situation Calculus with
the addition of a number of new predicate symbols and a number of new function symbols.
In the spirit of [PR95], we use, instead of the function symbol Result, the function symbol
Do of sort (action, situation, situation). Additionally, we have a binary predicate symbol
‘=" of sort (¢,t) for each t € TP, a binary predicate symbol ‘<’ of sort (time, time) and
another symbol ‘<’ of sort (situation, situation). Additional function and predicate symbols

will be introduced later.

Pinto & Reiter [PR95] also make use of a predicate variable to formulate an induction ariom

Vo[(a(Sp) AVs,a(a(s) — a(Do(a, s)))) — Vs(a(s))].

4Pinto & Reiter suggest using the real numbers. However, situations are built up from a starting
point using functions like Do or Result, so there can only be countably many. This means that the

rationals (countably infinite) are enough.
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This axiom states that, for all properties a, the following must hold: if the initial situation
has the property, and it is the case that, for all situations s and all actions a, if s has the
property, then the situation resulting from performing action a in s also has the property,

then it follows that all situations will have the property.

The predicate symbol ‘=" of sort (¢,t) is interpreted as the identity relation on the relevant
subdomain. The predicate symbol ‘<’ of sort (situation, situation) is used to indicate the
relative positions of situations in a branch of the situation tree. If 51 < s9, it means that s;
precedes s9; §; is a predecessor of s9, and 39 is a successor of s;. We let 87 < s9 abbreviate

(81 < 52) \% (Sl = 82).
Pinto & Reiter propose the following basic axioms:
ESC.01 Ysy,89,a(s1 < Do(a,sp) «~ s1 < s9).

This axiom is intended to express the notion that there is no situation s that can be
interpolated between a situation s and the situation Do(a, s9) that results from performing
action a in s9. If Do(a, s9) = s3, we say that s3 is an immediate successor of 3o and that so

is an immediate predecessor of ss.
ESC.02 Vay,a, 1, 35((Do(ay, s1) = Do(as, s3)) — (a1 = a3))

The occurrence .of two different actions in two situations that may or may not differ, cannot

have the same immediate successor as a result.
ESC.08 V81,82((81 < 82) — "!(32 < sl))

If situation s9 is a successor of situation sy, then s; cannot be a predecessor of s;. The idea

is to produce a tree of situations by ruling out cycles.

The following is a list of consequences of the axioms listed above (Proofs of these are given
in [PR95].):

o Vs(Sp < s) (The initial situation is a predecessor of all situations other than itself.)

Vs—(s < Sg). (The initial situation has no predecessor.)

Vs—(s < s). (A situation cannot be a predecessor or a successor of itself.)

Vs[(s # So) — 3a,5'(s = Do(a, s"))]. (For all situations s other than Sp, s is the result

of some action a occurring in some situation s'.)

Vs1,52,83((s1 < 82 A s2 < s3) — 51 < 83). (The relation < is transitive.)

Va, s(s < Do(a, s)). (A situation is a predecessor of its immediate successors.)
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® Vai,ay,s1,52((Do(a1,s1) < Do(ag,s3)) — s1 < s2). (If an immediate successor of
some situation s; is a predecessor of an immediate successor of some situatinn sg,

then s; is a predecessor of s3.)

e Va, sy, s2((Do(a, s1) < s2) — 51 < s3). (If an immediate successor of a situation sy is

either a predecessor of some situation s, or sy itself, then s; is a predecessor of sj.)

® Va, s, s2((Do(a,s;) = Do(a,s3)) — s1 = s3). (If the same action is performed in two
different situations, it is not possible for the two immediate successor situations to be

the same.)

To represent the effect of actions on the states of the system of interest, i.e. to represent
change in such a system, ¢ffect axioms may be introduced. These have the following general

form:
ESC.04 (Poss(A,s) A4 r(s)) — Holds(F, Do(A,s))

where A and F' are constants of sort action and fact respectively, Poss is a binary predi-
cate symbol of sort (action, situation) which expresses the idea that all preconditions for
performing action A in situation s have been met, and ¢4 r(s) may express any additional

information about relevant relationships between action A and fact F.

One of the limitations of Situation Calculus was that it has no mechanism for distinguishing
hypothetical courses of history from how the world actually evolves. This problem is ad-
dressed by Extended Situation Calculus with the introduction of a predicate symbol Actual
of sort (situation), which can be used to describe the actual sequence of situations. This
sequence can be identified with a unique branch in the situation tree. The following set of

axioms describes the behaviour of Actual:

ESC.05 Actual(Sp).

In all interpretations, the initial situation is always part of the actual sequence.

ESC.06 Va,s(Actual(Do(a, s)) — (Actual(s) A Poss(a, s))).

If the result of performing some action a in some situation s is in the actual sequence, then
situation s is also in the actual sequence, and it is possible to perform action a in situation

S.

ESC.07 Vay,ag,s|[(Actual(Do(ay,s)) A Actual(Do(as, 8))) — (a1 = a)].

An actual situation has at most one actual immediate successor.
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Does this also mean that each actual situation has at most one actual immediate predeces-
sor? Assume Actual(s). Suppose s = Do(ay,s;) and s = Do(ag, s2). We wish to infer that
a1 = ay and s1 = $9. If Do(ay,s;) = Do(ag, s9), then, by ESC.02, a; = a3. Hence from the
consequences of ESC.0I to ESC.03, it follows that s; = s3. So s has at most one predeces-
sor. Need this predecessor be actual? Indeed, by virtue of the following consequences of

the axioms:

® Vsy,59((s2 < 51) — (Actual(s;) — Actual(sy))). (If s3 is a predecessor of s; and s, is

actual, then s5 will also be actual: all actual situations lie on the same path.)

o Vsy, so((Actual(s1) A Actual(sg)) — ((s1 < s2) V (51 = s2) V (s2 < s1))). (Actual
situations are totally ordered.)

From the first consequence, it follows directly that each actual situation has at most one

actual immediate predecessor.

The sequence of actual situations is called the actual path. This path completely describes
the world in a way that parallels the time line. At this stage, we might ask how an association
between a time structure and the actual path can be introduced. For the purpose of this
association, we add to the alphabet two function symbols: Start of sort (situation, time) and
End of sort (situation, action, time). The intention is that Start(s) and Fnd(s,a) indicate
the time span of situation s. Since the truth of atoms of the form Holds(f, s) is unaffected
by the introduction of the new function symbols, no fact can change its truth value during
the time span of a situation. The association between situations and times allows us to
stipulate an association between actions and times also: actions occur at the end time of

situations.

The following axioms determine the behaviour of the Start and End functions:

ESC.08 Vs,a(End(s,a) = Start(Do(a, s))).

The end time of a situation is equal to the start time of its immediate successor.

ESC.09 Va,s(Start(s) < End(s,a)).

The start time of a situation is earlier than its end time, i.e. all situations have duration.
ESC.10 Start{Sp) = 0.

The start time of the initial situation is equal to the initial time.
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From the above, it follows that
Vs1,59((s1 < s9) — (Start(s1) < Start(sq))).

The start time of a situation is earlier than the start time of all its successors and later than

the start time of all its predecessors.

It is convenient to make explicit the idea of occurrences. The occurrence of an action can be
expressed by introducing a binary predicate symbol Occurs of sort (action, situation), e.g.
Occurs(SwitchOn, S) may represent the notion that the action of switching on something,

occurs in situation S. Occurrences are defined in terms of the actual path as follows:
Occurs(a, s) < Actual(Do(a, s)).

We can say that action a occurs in situation s iff the situation resulting from Do(a, s) is in

the actual path.

To link occurrences to times, we introduce a binary predicate symbol Occursy of type
(action, time) which may be defined as follows:

Occursy(a,t) < 3s(Occurs(a, s) A (Start(Do(a, s)) =t)).

This means that action a occurs at time ¢ iff the following holds: action a occurs in some
actual situation s of which the immediate successor starts at ¢t. (Remember that an action

only occurs at the end time of a situation and ¢ is also the end time of s.)

A relation between facts and time points can also be expressed by introducing a binary
predicate symbol Holdsr of sort (fact, time) such that

Holdsr (p,t) — 3s(During(t, s) A Holds(p, s))
where
During(t, s) — (Actual(s) A (Start(s) < t) A Va(Occurs(a,s) — (t X End(s, a)))).

During(t, s), which is of sort (time, situation), holds iff the time point ¢ falls within the time
‘span of situation s: if s is actual and starts earlier than ¢, and all actions that occur in s
occur later than ¢, then ¢ falls within the time span of s. This means that Holdsr(p,t) is
true, i.e. the fact p is true at time ¢, iff there is sbme actual situation s such that p is true

in s, and ¢ falls within the time span of s.

It follows directly that, if a fact holds in a situation, it holds for the complete time span of

that situation:

Vp) s,tl,tg((During(tl,s) A During(t2a 8)) - (HOMST(P, tl) « HOtdST(pa t2)))
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The occurrence of actions between two actual situations can be defined in the following

way:

OccursBet(a, 51, s9) «— 3s((s1 < s < s2) A Occurs(a, s)).

Action a occurs between situations s; and sy iff action a occurs in some situation s, which

has s; as a predecessor and sy as a successor.

Up to now, all actions were regarded as being instantaneous, i.e. of having no duration.
How can an action that has duration, i.e. that occurs over a period of time, be modelled?
This can be accomplished in a manner similar to the way temporal intervals are modelled
in point-based time structures: by the introduction of two instantaneous action constants

called Start-action and End-action respectively. We can use an example to illustrate this.

Example 20 Actions that have duration.

Think of the action of dancing that occurs over a period of time. We can introduce two
instantaneous action constants, StartDancing and EndDancing, together with the fact Is-
Dancing, where IsDancing expresses the notion of the action of dancing being in progress.
The relationship between this fact and the corresponding instantaneous start-end actions,

can be expressed by the following effect axioms:
ESC.11 Poss(StartDancing, s) — Holds(IsDancing, Do(StartDancing, s)).

If it is possible for the action StartDancing to occur in situation s, then the fact IsDancing
holds in the immediate successor of s resulting from StartDancing. This means that the

action of dancing starts at the end of situation s and continues in its immediate SUCCESSOT.
ESC.12 Poss(EndDancing, s) — —Holds(IsDancing, Do(EndDancing, s)).

If it is possible for the action EndDancing to occur in situation s, then the action of danc-
ing cannot occur in its immediate successor resulting from StartDancing. So the action of

dancing comes to an end at the end of situation s.

The introduction of start-end axioms makes it possible to model a restricted form of con-
currency. Actions with duration can occur concurrently as long as their starting and ending
points do not coincide: an instantaneous action occurs at the end of a situation and there
can only be one actual successor. This restriction can be eliminated by allowing for con-
current actions in the languages of Situation Calculi. A number of such models have been
developed, a list of which is given in [PR95].
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Pinto & Reiter [PR95] show how the following applications may be implemented using the

axioms defined above:

e explanation of observations that might be used for diagnostic reasoning. ‘If the car
was parked in the street last night and it is not there this morning, it might have

been stolen or towed away’

e the expression of behavioral constraints that may be required to formulate constraints

for agent-oriented programming. ‘Never cross the street against the red light’

e the expression of the occurrence of external events over which an agent does not have
any control. ‘The agent boards the bus if he arrives at the bus stop before the last

bus leaves’

e if the branching structure of Situation Calculus is preserved, a variety of hypotheti-
cal queries may be expressed and answered, although counterfactuals cannot be ex-
pressed: the use of only one actual path excludes the existence of hypothetical actual
paths

» relations between events in a chain of events may be expressed using causal relation-

ships. ‘Shooting a loaded gun causes a noise to occur’.

Pinto & Reiter also show that a variation of instant tense logic discussed in Chapter 3 (that
of Goldblatt [Gol92]) can be embedded in the ESC with the result that the ESC is at least
as expressive as modal temporal logics. Moreover, by embedding the essential features of
modal temporal logic within the ESC without losing the action-based ontology of Situation
Calculus, the ESC is more expressive: conventional modal temporal logics do not provide
for the representation of actions and their effects. However, Extended Situation Calculus

has limitations of its own:

e ESC.01 given by Pinto & Reiter is formulated in both directions but this does not
allow for actions that have no effect. It is often useful, e.g. in modelling a busy-wait
situation in Computer Science, to be able to include actions that have no effect, i.e.
so-called skip actions. If s; = sy, then it ought not to follow that s; < Do(skip, s2),
contradicting one of the consequences of axioms ESC.01 to ESC.03 which states that

a situation cannot be a successor or a predecessor of itself.

e consider a simple system like the engine/air-conditioning system of example 19. The
same state of the system may recur at different times, and a given state may be

reached via different routes. For example, suppose both the air-conditioner and the
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engine are off in the initial situation. If we first switch on the air-conditioner and
then switch on the engine, 1l.e system will be in the state where the air-conditioner is
on and the engine is running. The system will be in this same state if we first switch
on the engine and then the air-conditioner. This state is represented in the language
by different situation terms, and there is no direct way to express the idea that these
different situation terms are in fact equivalent in that they represent the same state

of the system.,

Although the ESC was not introduced primarily to allow for the representation of events
instead of actions, Pinto & Reiter claim that ‘the expanded ontology for Situation Calculus
provides the essential features of the Event Calculus of Kowalski & Sergot [KS86] which
in turn appears to be a variant of Allen’s temporal logic.’[PR95]. We will not discuss the
Event Calculus here, but rather consider the temporal logic for actions and events proposed

by Allen, in the next chapter.

5.2 McDermott’s system

The first-order temporal logic proposed by McDermott [McD82] is, like Situation Calculus,
an attempt to capture the openness of the future since more than one thing can happen
starting at a given instant, so there could be many possible futures. He also identifies ‘an
adequate treatment of continuous change as one of the key requirements for a system to
be able to reason about time realistically.” [Gal90]. His system provides ways to name and

prove things about facts, events, plans, and world histories.

McDermott pays particular attention to what he views as important problems of temporal
representation and refers to as causality, flow (continuous change), and plans. In sections
5.2.3, 5.2.4 and 5.2.5 we briefly describe his treatment of these concepts. A many-sorted
first-order language is used. Note that we have little to say on semantic issues, as McDermott
does not ekplicitly discuss interpretations of the language. Shoham & Goyal [SG88] suggest

an interpretation which we look at in the next chapter.

A system of interest is described in terms of a set of states. A state is, like a situation, an
instantaneous snapshot of the universe. States are partially ordered by the relation <. If
51 < 89, it means that s; either precedes 83, or is identical to sa. The properties of < may

be expressed by axioms such as the following:
MD.0I Vsy,s2((s1 <s3As2 <s1) ¢ (51 =39)) (Anti-symmetry)

MD.02 Vs1,59((s1 < s2) — Js(s; < 8 < 83)) (Density)
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MD.03 Vsy,53,53((51 < 52 A sz < s3) — 51 < s3) (Transitivity).

The notion of an interval is introduced as a totally ordered, convex set of states. An interval
is denoted by an ordered pair [si, sg], where sy is the state in which the interval starts and

sy the state in which it ends. All intervels are assumed to be closed.

The set of states, ordered by <, is intended to represent all the possible ways in which the
system might evolve over time. In order to permit distinctions in respect of the rate of
evolution, a separate time structure is needed, together with a coupling between the set of

states and the time structure.

The time structure is a pair (T, <) where T is the set of real numbers and < is the usual
ordering. Thus, time is linear and continuous. A scale can be attached to the time line by
assuming that there are objects, called scales, which occupy some constant amount of time.

If hour is such a scale, (5 * hour) is a length of time equal to 5 times the size of hour.

We can use a function d to associate an instant ¢ € T', known as a date, with each state,
reflecting the time of occurrence of that state. So the date function d is an order-preserving
function from states to time points. Since the set of states is partially ordered, many
different sets of states may map onto the time line, each constituting a possible history of

the system, and so the future is called open, or indeterminate.
MD.0J (.5‘1 < 32) — (d(&]) < d(82))
The ofder that exists between two states also holds between the dates associated with them.

The notion of a chronicle is used to represent a complete possible history of the universe; a
way events might happen. A chronicle c is a totally ordered set of states for which the date-
function establishes a bijective correspondence with the time line. This can be formalised

by the following two axioms (Elf(s, c) means that state s is an element of the set c¢):
MD.05a Yc(Vsy, sa((Elt(s1,c) A Elt(sa,c)) — (s1 < s2V sy < 51V 81 = 83)))

The states in a chronicle are totally ordered.

MD.05b Ye(VtIs(El(s, c) Ad(s) = t))

For every chronicle it holds that, for every instant in the time structure, there exists a state
that is part of that chronicle.

MD.05b expresses the surjectivity of the date-function restricted to a chronicle ¢; injectivity

follows from the requirement that the date-function be order-preserving.
An immediate consequence of MD.05 is the following;:

(Elt(s1, c) A Elt(sy, c)) — Vs(s1 < s < s3 — Elt(s, c)) (a chronicle is convex).

84



Every state is in some chronicle. Futhermore, if the ordering on states compares two states,

then there exists some chronicle ¢ that contains both these states:
MD.06 (s; < s2) — 3c(Elt(s1,¢) A Elt(sz,c))
It follows, by convexity, that every state between s; and s is in the same chronicle.

Chronicles branch only into the future, so all the states in the system are arranged to form

a chronicle tree.
MD.07 (51 <s8A sy <s)— (s1 <sVsg <s;) (Left-linearity)

Thus we have only one past but more than one possible future from a given state. This is
depicted in Figure 5.2. The dotted line indicates one chronicle. It is clear that s; and s3
are in the same chronicle but that there is no relationship between s4 and sj3, for example,
since they are in different chronicles. The state s; maps to ¢; on the date line, s4 maps to

t4, and so on.

Date line

Figure 5.2 A chronicle tree
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5.2.1 Representing facts

A fact can be represented as a set of states, intuitively those in which it is true. The fact
Always is the set of all possible states and the fact Never is the empty set. A fact holds in

an interval if it holds in all the states comprising the interval.

For the sake of clarity ®, we will write True(s,p) instead of Elt(s,p), meaning p holds in
state s. The connectives ‘/Y’, representing set intersection, ‘J’ representing set union, and
‘—’, representing the complement of a set with respect to the set Always, can be introduced

in the usual way:
True(s,(p N q)) abbreviates True(s,p) A True(s, q)
True(s,(pU q)) abbreviates True(s,p) V True(s, q)

True(s, —p) abbreviates — True(s, p).

Example 21 Defining a fact.

To express the notion that object a is on object b, we can use a binary function On, such
that On(a,b) represents the set of states in which a is on b. So On is a function from pairs
of objects to sets of states of sort fact. This way of looking at facts is analogous to the

logicians’ trick of letting propositions denote sets of possible worlds [McD82].

The notion of a fact being true over a period of time is written as

Tﬂshsz,P),

which means that fact p holds over the interval [s;, s}, in other words, the interval [s;, sg]

is a subset of fact p.

5.2.2 Representing events and processes

McDermott attempts to define events in a way that includes both events that represent fact
changes, like a block being moved from a to b, as well as events that are not fact changes,
i.e. the large class of actions that are done for their own sake, like going for a walk é. We
introduce the notion of an event as a set of intervals (thus a set of sets), intuitively those
over whi