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Abstract 

We consider a number of temporal logics, some interval-based and some instant-based, 
and the choices that have to be made if we need to construct a computational frame­
work for such a logic. We consider the axiomatisation of the accessibility relations of 
the underlying temporal structures when we are using a modal language as well as 
the formulation of axioms for distinguishing concepts like actions, events, processes 
and so on for systems using first-order languages. Finally, we briefly discuss the fields 
of application of temporal logics and list a number of fields that looks promising for 
further research. 
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Chapter 1 

A range of knowledge 

representation languages 

1.1 Introduction 

The study of the nature of time has kept many scholars occupied over the last two thousand 

years. Greek philosophers like Aristotle and Diodorus Chronus, medieval Arabic logicians 

and Latin scholars in the Middle Ages were mainly interested in the formal representation 

of different tenses in natural language. In the late nineteen-fifties and early nineteen-sixties 

a number of publications on tense logic by Arthur Prior (e.g. [Pri57]) instigated a renewed 

interest in the subject especially when the possibility .of the use of temporal logic for the 

representation of time in computer applications was realised. 

Temporal logic has a wide variety of fields of application. It is used for example in natural 

language understanding, planning, databases, program verification, concurrent program­

ming, expert systems and robotics. A great deal of work has been done in the development 

of temporal logics over the last thirty to forty years. To get an idea of the variety of these, 

we are going to consider a few of the well-known temporal logics that formed the bases for 

the development of other logics. 

To make it easier for the reader, the same notation will be used throughout the text for the 

presentation of different logics even though this may differ from the notation used in the 

original articles. Since we are going to look at temporal logics using non-modal first-order 

languages as the object language as well as temporal logics that use propositional modal 

languages as the object language, we recapitulate the basic ideas of propositional logic as 

well as of first-order logic and modal logic in the subsequent sections. The main sources 

used for writing this chapter were [Lab98], [Ham88] and [Gol92]. 
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1.2 Propositionallanguages 

The sentences of propositional languages are built up of atoms, also called atomic sentences, 

that express basic facts like 'The sun is shining' and 'The table is red'. An alphabet for a 

propositional language may conveniently be taken to consist of the following symbols: 

• a set <I> containing one or more atoms p, q, ... 

• the punctuation symbols'(' and')' 

• the connectives -, (negation) and--+ (the conditional). 

A propositional language P is a set of sentences. What constitutes a sentence? Well, c.p is 

a sentence if and only if one of the following holds: 

• c.p is an atom 

• c.p is of the form -,'ljJ or ('1/J--+ x), where 'ljJ and x are sentences. 

It is often convenient to form an extended language P* with the introduction of other 

connectives by the following abbreviations: 

(disjunction) 

(conjunction) 

(biconditional) 

abbreviates ( -,'ljJ --+ x) 

abbreviates -,( 'ljJ --+ -,X) 

abbreviates ('1/J--+ x) 1\ (x--+ '1/J). 

Exrunple 1 Sentences and nonsentences in a propositional language. 

Let <I>= {p, q, r, s }. The following are sentences in the extended language P* (where paren­

theses are used with pedantic strictness, although in the remainder of the dissertation we 

shall often omit them when no confusion would result): 

p, -,p, (p--+ q), ((p V -,q) --+ (s 1\ r)). 

But (p ~ 1\ -,p) is not a sentence in P*. 

How does one attach meaning to the sentences in a propositional language? In other words, 

how should the sentences be interpreted? 

A valuation of P* is an allocation of a truth value from the set { T,F } to each of the atoms 

in <I>. Such a valuation results in the association of a truth value with every sentence in P* 

in accordance with the following rules: 



• <p E <I> is true iff the truth value Twas allocated to it by the valuation 

• •<p is true iff <p is false 

• (<p ~ 1/J) is true iff <pis false or 1/J is true, or both. 

One can regard a valuation as a representation of one possible state of some system of 

interest or one possible world that the sentences of P* are intended to talk about. Let S be 

the set of all possible valuations of P*. If <p is true in s E S, we say that s satisfies <p, or 

that sis a model of <p, denoted by s If- <p 1 . Mod(t.p) denotes the collection of all models of 

'P· 

Any subset of S is called a frame. If a sentence <p is true in all valuations that are elements 

of a frame :F, we say that <p is globally true or globally satisfied over the frame :F. This is 

denoted by :F If- t.p. This in turn also means that, for all s E :F, s is a model of <p, so :F is a 

subset of the collection of all models of <p, i.e. :F ~ Mod(t.p). 

A sentence is globally true over S if it is true in every possible valuation. Such a sentence 

is called a tautology, whereas a sentence that is false in every possible valuation is called a 

contradiction. 

Example 2 Global truth. 

Let <I>= {p,q}. Then S = {so,s1,s2,s3}, i.e. there are four possible valuations. Each 

valuation Si can be represented by a sequence vw, where v is the truth value associated 

with p and w the truth value associated with q. Then S = {FF, FI', TF, TT}. 

The proposition p is globally true over the frame :Fo = {TT, T F} but not over the frame 

:F1 = {T F, FT}. So :Fo If- p but :F1 .W: p. 

The sentence p V •p is a tautology since it is globally true over S and the sentence p 1\ •P 

is a contradiction since it is false in all four possible valuations. 

A frame :F represents knowledge about the system under consideration. More specifically, 

since a frame is formed by excluding members of S, it represents knowledge of states that 

cannot occur. Such knowledge can sometimes be expressed by a set of sentences E. We say 

that a set of sentences E axiomatises :F, and speak of E as a set of axioms for :F, if and 

only if Mod(E) = :F. 

1 Most of the older books use I= to denote a model as well as for semantic consequence which will 

be discussed shortly. 



Remark: The axiomatisation of which we speak here and in the chapters to follow has 

a semantic connotation. The term 'axiomatisation' is often used with a proof-theoretic 

(syntactic) connotation in contexts that involve simulating semantic consequence relations 

by means of effective procedures constructed with the aid of inference rules. This proof­

theoretic connotation will not be relevant to our aims. 

Example 3 Axiomatising a frame. 

Suppose <P = {p, q}. The set of possible states is S = { F F, FT, T F, TT}. Let p and q express 

the notions of a light being on and the temperature being 40 °C respectively. Suppose we 

want to consider only those states in which exactly one of the atoms is true, i.e. we are 

interested in the frame :F = {T F, FT}. Then this frame can be axiomatised by the sentence 

The first disjunct asserts that p is true and q is false, so the state T F is included in the 

class of models of the axiom. The second disjunct asserts that p is false and q is true, and 

this includes the state FT in the class of models. The states F F and TT are both excluded 

(in the sense that they falsify the sentence and thus do not belong to the class of models): 

if p is true then q cannot be true, so TT is excluded, and if p is false then q cannot be false 

so FF is excluded. Thus the sentence is globally true over the frame :F = {TF,FT}, and 

is true in no other valuation. 

There are frames which are not axiomatisable, i.e. for which no set E of sentences can be 

found such that the frame is precisely Mod(E). We will use an example to illustrate this. 

Example 4 Non-axiomatisable frames. 

Let LA be the propositional language with infinitely many atoms po, PI, ... Then the set S 

of all valuations has uncountably many members which may be indexed by the elements 

of the cardinal number 2No : S = {s.ai,B E 2N°}. We assume that this indexing is done in 

such a way that so is the valuation which makes every atom true. Let Q = S- {so} be the 

frame that results from excluding s0 • Now it is not difficult to show that every set E of 

sentences globally true over g will also be globally true overS, so that Mod(E) =f. Q. Brink 

& Heidema [BH89] prove this by contradiction, using the following argument: 

Let E be a set of sentences over LA, and let Mod(E) = {s E Sl for every a E E, s E Mod( a)}. 

We want to show that the frame g is not axiomatisable, even by an infinite set of axioms. 



Assume there exists a set of sentences E that axiomatises g. Then every valuation in g must 

make every sentence in E true, and every valuation outside g must make some sentence 

in E false. There is only one valuation outside g, namely so, so there is some sentence 

a in E which is false in so but true in every other valuation. The sentence a is built 

up out of finitely many atoms. Let n be a number big enough so that the atoms in a 

are among Po,Pl, ... ,pn and consider the valuation s'Y which makes these atoms true and 

all other atoms false. So s'Y associates the value T with Pi iff i :::; n, in other words, 

s'Y(po) = T, ... , s'Y(Pn) = T, s'Y(Pn+l) = F, . .. 

Now s'Y must make a false, because so makes a false and the two valuations give the same 

values to the atoms in a. But s'Y lives in g, and we assumed that all the valuations in g 
satisfied a. So we have an absurdity- a is both satisfied and not satisfied by s'Y. 

So, by reductio ad absurdum, we can claim that our initial assumption was invalid, i.e. there 

does not exist a set of sentences axiomatising g. 

Labuschagne [Lab98] discusses the significance of this result: a frame g represents our 

unverbalised knowledge about a system. If we succeed in axiomatising g, then the axioms 

can be regarded as a verbalisation in the relevant formal propositional language of our 

previously unverbalised knowledge. The fact that such axiomatisations do not always exist 

just means that sometimes we have knowledge about a system that, while expressible in 

the metalanguage, cannot be expressed completely in the propositional object language. 

A schema is a representation of the set of all sentences sharing some syntactic form. As an 

example, consider the language described in Example 3. If ( 'P 1\ •'1/J) V ( ''P 1\ '1/J) is regarded 

as a schema in which the metalinguistic variables 'P and '1/J stand for arbitrary sentences in 

the language, then (p 1\ •q) V ( •p 1\ q) is an instance of this schema. 

We say that a sentence 'Pis a semantic consequence of the sentence a, denoted by a f= 'f', 

if 'P is globally true over Mod(a). In a similar way the notation E f= 'P means that the 

sentence 'Pis globally true over Mod(E). 

Propositional languages such as those described above are not suited for the representation 

of sentences of which the truth value varies over time. In the following chapters we are 

going to look at some systems that use first-order languages as well as others that use 

propositional modal languages for this purpose. 
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1.3 First-order languages 

The languages of first-order logic are similar to those of propositional logic but each is based 

on an alphabet A which consists of the following symbols: 

• a set X of variables xo,x1, ... 

• a set C consisting of zero, one, or more constants a, b, ... 

• the connectives ..., and --? 

• the punctuation symbols '(' and')' 

• a set FUN consisting of zero, one, or more elements of the form (!, n), where f is a 

function symbol having arity n associated with it 

• a set PRED consisting of one or more elements of the form (A, n), where A is a 

predicate symbol having arity n associated with it 

• the universal quantifier V. 

A term t over an alphabet is defined recursively as follows: 

• if t E X, then t is a term 

• if t E C, then t is a term 

• if(!, n) E FUN, and t17 ... , tn are terms, then f(ti, ... , tn) is a term. 

If (A, n) E PRED and t17 ... , tn are terms, then A(t1, ... , tn) is an atomic formula. We 

define the set <P as the set of all atomic formulas. 

A wff (i.e. a well-formed formula) over such an alphabet is a string conforming to the 

following criteria: 

• if r.p E <P, then r.p is a wff 

• if r.p and 1/J are wffs, then •r.p and ( r.p --? 1/J) are wffs 

• if r.p is a wff and x E X, then Vx( r.p) is a wff. 

The set C of all wffs over the alphabet A is called the first-order language over A. 

We can form an extended language £* by the introduction of the connectives /\, V and f--7 

by the usual abbreviations, and by the addition of the existential quantifier 3, which is the 

dual of V in the following sense: 

3x(r.p) abbreviates •Vx(•r.p). 

Strings of the form VxVyVz are abbreviated to Vx, y, z. 

6 



Example 5 Atomic formulas are transparent., 

In all logic languages the primitive entities, i.e. atoms, are analogues of simple English 

sentences like 'Jenny is pretty'. In propositional languages, atoms are indivisible and no at­

tention is given to any internal structure they may have. In a first-order language, however, 

atomic formulas are built up from simpler things. To illustrate this informally, we give a 

natural language example. The sentence 'Jenny is pretty' may be considered as consisting 

of two separate parts, namely a predicate symbol and a constant. 'Jenny' would be the con­

stant of the sentence and 'Is pretty' would be the unary predicate symbol. A more complex 

sentence like 'Jenny is dancing with John' would consist of three distinct parts, namely the 

binary predicate symbol 'Is dancing with' and the two constants 'Jenny' and 'John'. 

Formal analogues of these sentences in a first-order language exhibit the structure more 

clearly. If, in an alphabet A, the constant 'a' is thought of as representing the girl Jenny, 

and the predicate symbol 'A1' as representing the property of being pretty, then A1(a) is 

an atomic wff expressing the information that Jenny is pretty. 

Similarly, the information that Jenny is dancing with John may be expressed by a wff of 

the form A2(a, b), where A2 is a binary predicate symbol and a and bare constants. 

How do we attach meaning to sentences in a first-order language? This is done by means 

of an interpretation I= (D, i) of£* that consists of a non-empty set D called the universe 

of discourse or the domain, and a meaning function i which maps certain symbols of£* to 

entities constructed from the domain. The function i must be such that: 

i(a) ED, for all a E C 

i(f,n): nn ~ D, for all (f,n) E FUN 

i(A, n) ~ Dn, for all (A, n) E PRED. 

Given an interpretation I = (D, i), we define a variable assignment v for I as a function 

that maps each variable in£* to an element in the domain. So v(x) ED, for all x EX. 

Let I = (D, i) be an interpretation of£* and let v be a variable assignment for I. The 

denotation of an arbitrary term t in £* is calculated recursively in the following way: 

• if t EX, then t denotes v(t) 

• if t E C, then t denotes i(t) 

• if t has the form f(tt, ... , tn) for (!, n) E FUN, then t denotes i(f)(di, ... , dn) where 

dj is the element in D denoted by ti. 
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The valuation s corresponding to I in the context of v associates a truth value from the set 

{ T,F} with the atomic formulas in£* in the following way: 

• A(ti. ... , tn) E q, is assigned the value T iff (di. ... , dn) E i(A), where dj is the 

element in D denoted by tj. 

Truth values can now be associated with all wffs in the language: For any wff <p E £*, and 

for any variable assignment v for I, we say that I satisfies <p in the context of v, denoted 

by (I, v) If- <p, iff one of the following cases applies: 

• <p = A(tt, ... , tn) E q, and (di. ... , dn) E i(A), where dj is the element in D denoted 

by tj 

• <p = -,'ljJ and (I, v) JlL 1/J 

• <p = (1/J- x) and (I, v) JlL 1/J or (I, v) If- x or both 

• <p = Vx('¢) and (I, v') If-'¢ for every variable assignment v' that differs from vat most 

on the variable x. 

In a first-order language, the scope of a quantifier is defined as the shortest wff immediately 

following the quantifier, e.g. if we consider the wff Vx(<p), <p will be the scope of Vx. 

Occurrences of x in Vx or in the scope of Vx are bound. If all occurrences of variables in 

a wff <p are bound, then <p is a sentence. If an occurrence of a variable is not bound, it 

is said to be free. If a sentence <p is satisfied by an interpretation I in the context of a 

variable assignment v, then <p will be satisfied by I in the context of all possible variable 

assignments. We say I satisfies <p, or I is a model of <p, and denote this by I If- <p. 

Example 6 A model of a sentence. 

Let £o be a first-order language with PRED ={(AI. 1), (A2, 1)}, C = {a,b, c} and FUN= 

0. Let Io = (D, i) be an interpretation of .CO, where D = {1, 2, 3}, i(a) = 1, i(b) = 2, 

i(c) = 3, i(At) = {1, 3} and i(A2) = {2}. 

Is Io a model of the sentence <p = 3x(A1(x))? Let v be any variable assignment in Io. I0 

satisfies 3x(At(x)) in the context of v iff there is at least one variable assignment v', differing 

from v at most on x, such that Io satisfies At(x) in the context of v'. (Remember that 3 

abbreviates -,'1/-,). Let v' be the same as v except that v'(x) = 3. Then v'(x) E i(A1 ) = {1, 3}. 

So Io satisfies At(x) in the context of v' and therefore I0 satisfies 3x(At(x)) in the context 

of v. Since v was arbitrary, we can claim that Io is a model of 3x(A1(x)). 

8 



Let S be the class of all interpretations of £*. A frame is any subset of S. If a sentence 

'P is true in all elements of a frame :F ~ S, we say that 'P is globally true over :F, denoted 

by :F If-- rp. This also means that, for all s E :F, s is a model of rp, so :F is a subset of the 

collection of all models of rp, denoted by Mod(rp) ~:F. 

We say that a set :E of sentences axiomatises :F if and only if Mod(E) =:F. A sentence 'P 

is a semantic consequence of the sentence a, denoted by a f= rp, if 'P is globally true over 

Mod(a). In a similar way, :E f= 'P means that the sentence 'Pis globally true over Mod(E). 

As is the case in propositional languages, there are frames which are not axiomatisable, i.e. 

for which no set :E of sentences can be found such that the frame is precisely Mod(E). 

Example 7 Axiomatising a frame. 

Suppose we want to axiomatise the class of all interpretations whose domains contain only 

one element. This can be achieved by the axiom 

"i/x,y(x = y). 

In the discussion given above, all the variables in our language were of the same sort so 

we can speak of an unsorted first-order language. Most of the languages we are going to 

consider, however, contain variables that are of different sorts. Let's look at how many­

sorted first-order languages differ from unsorted first-order languages. 

1.3.1 Many-sorted languages 

The application field for these languages comprises those systems in which the objects are of 

different sorts, for example agents, temperatures and time instants. Since we are primarily 

interested in temporal logics, most of the predicate symbols in the languages we are going 

to consider have an argument representing time. 

Example 8 Objects of different sorts. 

Suppose the sentence A2(a, b) expresses the information that Jenny is dancing with John. 

If we consider this sentence over a period of time, it may have different truth values at 

different times. The concept of time may be introduced by adopting a ternary predicate 

symbol admitting a new argument, say, A~(a, b, t). We now have two different sorts of 

variables - one sort representing persons or agents and the other representing time. 

Q 



Let TP be any finite set, say {1, ... , k} . The alphabet A of a k-sorted language, based on 

the set TP of sorts, comprises the following symbols: 

• a set X = X 1 U · · · U Xk of variables, where each Xi 1s a countably infinite set 

containing all the variables of sort i 

• a set c = cl u ... u ck of constants, where each ci (which may be empty) contains 

all the constants of sort i 

• a set FUN consisting of zero, one or more elements of the form (!, n), where f is a 

function symbol having arity n associated with it. Each f also has an (n + 1)-tuple 

of sorts (Tt, ... , Tn, Tn+I) associated with it, called the sort off 

• a set PRED consisting of one or more elements of the form (A, n), where A is a 

predicate symbol having arity n associated with it. Each A also has an n-tuple of 

sorts (T1, ... , Tn) associated with it, called the sort of A 

• the connectives --, and -+ 

• the punctuation symbols '(' and')' 

• the quantifier V. 

The set TMi of terms of sort i is defined as follows: 

• if X E xi, then X E TMi 

• if c E Ci, then c E TMi 

• iff is an n-ary function with the sort (T1, ... , Tn, i) associated with it, and t1, ... , tn 

are terms of sort T1, ... , Tn respectively, then j(t1, ... , tn) E TMi. 

The set <I> of atomic formulas over A is the set of all strings of the form A(t1, ... , tn) where 

A is an n-ary predicate symbol with the sort (T1, ... , Tn) associated with it, and t1, ... , tn 

are terms of sort T1, ... , Tn respectively. 

We say that cp is a wff over the k-sorted alphabet A iff one of the following holds: 

• cpE<I> 

• cp = •1/J, where 1/J is a wff over A 

• cp = (1/J-+ x), where 1/J and X are wffs 

• cp = Vx('¢), where x is a variable of any sort and 1/J is a wff over A. 
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The set of all wffs over the alphabet A constitutes the k-sorted language .Ck. 

It may again be convenient to form the extended language £~ by introducing the connectives 

1\, V and f--+ 1 as well as the quantifier 3, by the usual abbreviations. 

An interpretation I= (D, i) of£~ consists of some domain D = D1 U· · ·UDk, and a meaning 

function i that maps certain symbols in £~ to entities constructed from the domain. The 

function i must be defined in such a way that: 

i(a) E Dj, for all a E Cj 

i(f, n) : Dr1 X··· X Dr,.. -+ Dr,..+ 11 for all(!, n) E FUN, where (T1, ... , Tn, Tn+l) 

is the sort associated with f 
i(A, n) ~ Dr1 X · · · X Drn, for all (A, n) E PRED, where (T1, ... , Tn) is the sort 

associated with A. 

Given an interpretation I = (D, i), we define a variable assignment v for I as a function 

that associates each variable in £~ with an element in the subdomain of the corresponding 

sort. This means that for all x E Xj, v(x) E Dj. 

Let I = (D, i) be an interpretation of £"k and let v be a variable assignment for I. The 

denotation of an arbitrary term t in £~ is calculated in the same way as for first-order 

languages. The concepts of a valuation, a model, a frame and global truth of a sentence 

over an interpretation and over a frame are defined as before. This also applies to the 

concepts of axioms and semantic consequences. 

Example 9 Truth values of sentences in a many-sorted language. 

Let T P = {agent, time} be the set of sorts in a 2-sorted language £2. Let C = C agent U Ctime, 

where Cagent = { ao, a1} of sort agent and Ctime = {to, t1, t2} of sort time, and let PRED = 

{(Ab3)} of sort (agent, agent, time). So (A1,3) is a ternary predicate symbol of which the 

first two arguments are of sort agent and the third argument is of sort time. 

Let Io = (D, i) be an interpretation of £2 such that D = Dagent U Dtime, where Dagent = 

{Jenny, John} and Dtime = {1130, 1200, 1230}. Let i(AI) ={(Jenny, John, 1200)}, i(ao) = 

Jenny, i(al) = John, i(to) = 1130, i(t1) = 1200 and i(t2) = 1230. 

(i) Does Io satisfy A1 (ao, a1, to)? The denotation of the predicate symbol A1 is given by 

i(A1) so A1 denotes the singleton set {(Jenny, John, 1200)}. The denotations of the three 

constants ao, a1 and to are given by i(a0 ), i(a1) and i(t0 ) respectively, so ao denotes Jenny, a1 

denotes John and to denotes 1130. But (Jenny, John, 1130) ct i(A1), so Io ~ A1 (ao, a1, to). 

This means that I0 does not satisfy A1(ao, a1, to). 

11 



(ii) Does Io satisfy A1(ao, a1, t1)? Since i(t1) = 1200 and (Jenny, John, 1200) E i(AI), it 

follows that Io If- A1(ao, a1, t1). So Io satisfies A1(ao, a~, t1). 

Suppose A1 was included in the alphabet in order to symbolise the relation of one person 

dancing with another at a specific point in time. Then we can say that, using the interpre­

tation Io, the sentence A1(ao, a1, t1) represents the English sentence 'Jenny is dancing with 

John at 12h00'. 

1.4 Propositional modal languages 

The languages for propositional modal logic are similar to languages for propositional logic 

with the addition of modal operators. Typically, such a language with one modal operator 

is a set of sentences built up in the context of the following syntax: 

The alphabet A consists of the following symbols: 

• a set <I> containing one or more atoms p, q, ... 

• the punctuation symbols'(' and')' 

• the connectives ..., and ~ 

• the modal operator 0 (called Box). 

The propositional modal language £, over A is the set of sentences over A, where r.p is a 

sentence over A iff one of the following holds: 

• r.p E <I> 

• r.p = -.a, where a is a sentence over A 

• r.p = (a ~ '1/J), where a and '1/J are sentences over A 

• r.p = Oa, where a is a sentence over A. 

The connectives V, 1\ and ~ can be introduced as before. The modal operator 0 (called 

Diamond) is the dual of 0 in the following sense: 

Or.p abbreviates -.0-.r.p. 

12 



Example 10 Sentences in a modal language. 

Let £o be a propositional modal language and let <I>= {p, q}. 

The following, if we ignore the omission of inessential parentheses, are examples of sentences 

in £o: 

p 1\ q, -.q--+ Op, O(p V -.p), 0-.Dp--+ Oq. 

But pO and Oq --+ 0 are not sentences in £o. 

Modal languages are typically equipped with a possible world semantics. An interpretation 

for a modal language is defined in terms of a structure, which is a pair :F = (S, R), where 

S is a set, the members of which are called possible worlds, and R is a binary relation on 

S, R ~ S x S. R is known as the accessibility relation. If (s, t) E R, then we say that t is 

accessible from s in R. 

We are specifically going to look at temporal logics, so in this context, structures are referred 

to as temporal structures. A temporal structure is typically defined as a pair T = (T, <), 

where T is a set, the elements of which are called time points, and < is a transitive relation. 

An alternative to a set T of time points is to use a set of intervals, or even both, in the time 

structure. 

A model is defined by equipping a structure with a valuation. More precisely, a model M 

based on the structure :F = (S, R), is a triple (S, R, V), where Vis a valuation function such 

that V : <I> --+ 28 2 • Informally, V is a function that associates, with each atomic sentence 

r.p E <I>, the possible worlds s E S at which r.p is true. With the help of V, it is possible to 

define what it means to assert that M satisfies a sentence r.p at s, i.e. r.p is true at sin the 

model M, abbreviated toM lf-8 r.p. The definition proceeds recursively on the format of r.p. 

For arbitrary sentences a, '1/J E £* we can say that M If-8 r.p iff one of the following holds: 

• r.p E <I> and s E V(r.p) 

• r.p = -.'1/J and M .II" 8 '1/J 

• r.p = a --+ '1/J and M .II" 8 a or M If-8 '1/J or both 

• r.p = 0'1/J and M If-8 1 r.p for all s' E S such that sRs'. 

2This approach to semantics is frequently referred to as Kripke semantics although it was dis­

covered independently several times, first by Tarski, then by Kanger and Prior, and only thereafter 

almost simultaneously by Kripke and Hintikka (BS84]. 
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Example 11 Truth in a model. 

Let <I> = {p, q}. 

Let M1 = (S, R, V) where S = {s, t, u}, R = {(s, t), (t, u)}, V(p) = {s, u}, and V(q) = 

{t, u}. 

By way of illustration, we can determine the truth values of the sentences (p ~ -.q), Op 

and OOp. 

(i) Is (p ~ -.q) true at s in M1? M1 ll-- 8 (p ~ -.q) iff M1 W:s p or M1 11--s -.q, or both. 

Consider the first condition: s E V(p) so M1 ll-- 8 p. Thus the first condition is false. 

Let's look at the second condition. M 1 lf- 8 -.q can be written as M1 W:s q and s tt. V(q) so 

the second condition is true. This means that M1 lf-8 (p ~ -.q) is true, i.e. (p ~ -.q) is 

true at sin M1. 

(ii) Is Op true at t in M1? M1 lh Op abbreviates M1 lf-t -.0-.p, and M1 W:t 0-.p iff it 

is not the case that M1 lf- 8 , -.p for all s' E S such that tRs'. From the definition of R, we 

know that u is accessible from t, and u E V(p), so M 1 lf-u p. It follows that M1 lf-t Op, i.e. 

Op is true at tin M 1. 

(iii) Is OOp true at sin M1? M1lf-8 OOp iff M1ll-8 ' Op for all s' E S such that sRs'. The 

world tis the only one accessible from s, and M 1 1f-t Op iff M1 lf-s p for all s E S such that 

tSs. Well, u is the only world accessible from t and u E V(p), so M1 11-u p. This means that 

M1 lh Op and consequently that M 1 lf-8 OOp. So OOp is true at sin M1. 

A sentence r.p is globally true over a model M = (S, R, V), denoted by M II- r.p, iff r.p is true 

at all worlds in M, i.e. M lf-8 r.p for all s E S. 

If :F = (S, R) is a structure, let the frame of :F be C:F = {(S, R, V)IV is any valuation}. A 

sentence r.p is globally true over a frame C:F, denoted by C:F If- r.p, iff it is globally true over 

each ME C:F. 

If JC is any class of structures, let the frame of JC be CJC = U {C:FI:F E JC}. So M = (S, R, V) E 

CJC iff there is some structure :F = (S, R) E JC such that M E C:F. A sentence r.p is globally 

true over a frame CJC, denoted by C/C If- r.p, iff it is globally true over each ME CJC. 

Given a class JC of structures (typically those in which the accessibility relation has some 

desired set of properties), we are usually interested in whether JC can be axiomatised, i.e. 

whether it is possible to find a set E of sentences that are globally true over the frame of JC 

and no other frame. 
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1.4.1 Multimodallanguages 

The modal languages discussed in the previous section have only one modal operator, namely 

D. The alphabet for a multimodal language is similar to the alphabet for a modal lan­

guage with only one modal operator but instead of having only one, we have several modal 

operators. If there are n modal operators, these can be denoted by [1], [2], ... , [n], where 

the operator [i] is similar to the D operator. The dual operator (i), which is similar to 0, 

abbreviates •[i]•. 

The set of sentences is defined in a way similar to a propositional modal language with only 

one operator. 

Example 12 Sentences and nonsentences in a multimodal language. 

Let LM be a multimodal language with <I> = {p, q} and with the modal operators [1], [2] 

and [3]. The following will be sentences in CM: 

[1](p ~ q), [3]p v (2) q, ·[2](p 1\ [1]p). 

But (4]p and (1]r are not sentences in CM, because there is no modal operator (4], and 

r rJ_ <I>. 

Given a language with modal operators (1], ... , [n], a structure is defined as a tuple :F = 

(8, Rb ... , Rn) where S is a set of possible worlds and we have a collection of n binary 

relations R;, ~ S x S, one for each (i]. A model M = (S, Rb ... Rn, V) on :F is given by a 

valuation function V : <I> ~ 28 as before. 

The truth value in M of atoms and sentences of the form •r.p and ( r.p ~ 'ljJ), at a world 

s E S, can be defined as before. The truth value of a sentence of the form (i]r.p is defined 

in terms of the accessibility relation R;,. We say that (i]r.p is true at s in M, denoted by 

M 11-8 (i]r.p, iff M lh r.p for all t E S such that sR;,t. 

Example 13 The truth of sentences in a multimodal language. 

Let LM be a multimodallanguage with <I>= {p, q} and with the modal operators (1] and 

(2]. Let M1 = (S,R1,R2, V) where 

S = {ti. t2, ta} 

R1 is the relation < = {(tb t2), (tb ta), (t2, ta)} 

R2 is the relation> = {(t2,t1), (ta, t1), (ta, t2)} 
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V(p) = {t1} 

V(q) = {ti. t2}. 

The truth value of a sentence of the form [i]<p in M 1 at the world s E S, denoted by 

M1 11- 8 [i]<p, is defined as follows: 

• M1 11- 8 [l]cp iff M1 lf-8 , cp for all s' E S, such that s < s' 

• M1 11-8 [2]cp iff M1 lf-8 , cp for all s' E S, such that s > s'. 

Now we can determine the truth value of the sentences [l]p and (2) p: 

(i) Is [l]p true at t2 in M1? M1 lf-t2 [l]p iff M1 if-t, p for all t' E S such that t2 < t'. Well, 

t3 E S is the only world such that t2 < t3, and t3 rJ. V(p). So M1 ~t3 p. It follows that 

M1 ~t2 [l]p, so [l]p is not true at t2 in M1. 

(ii) Is (2) p true at t2 in M1? M1 lf-t2 (2) p iff there exists at least one t' E S such that 

t2 > t' and M1 11-t' p. (Remember that (2) abbreviates -,[2]-,.) We know that t2 > t1 and 

that t1 E V(p), so M1 lf-t1 p. This means that M1 ll-t2 (2) p, so (2) pis true at t2 in M1. 

As before, a sentence <p is globally true over a model M = (S, R1, ... , Rn,, V) iff M 11-8 <p 

for all s E S, and <pis globally true over a frame C:F iff it is globally true over each M E C:F, 

where :F = (S, R1, ... , Rn) is a structure, and C:F is the frame of :F. If K is any class of 

structures and C/C is the frame of K, then a sentence <p is globally true over CIC iff it is 

globally true over each ME CJC. 

Given interesting properties that the accessibility relations R1, ... , Rn may possess, one 

may form the class K of all structures of which the relations have these properties and 

enquire whether this class is axiomatisable in the sense that a set E of sentences can be 

found which are globally true over all and only the frame of K. An example that will play 

an important role in later chapters is the following: consider a language with two modal 

operators [1] and [2]. Consider the property that links R1 and R2 as mutual converses, i.e. 

(x, y) E R1 iff (y, x) E R2. Let K be the class of all structures (S, R1, R2) such that R1 and 

R2 are mutually converse. Can K be axiomatised? We defer the answer to Chapter 3. 

1.5 Further chapters 

In this chapter, we have given a brief outline of object languages that may be used in 

temporal logic. In the next chapter, we briefly look at the choices that have to be made if 

we need to construct a computational framework for such a logic. 
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We look at a number of different temporal logics in Chapters 3 to 6. What we are mainly 

interested in is the axiomatisation of these logics and in this respect two main aspects are 

considered. Firstly we consider the axiomatisation of the underlying temporal structures. 

When we are using a first-order language, the axiomatisation of the temporal structure 

does not usually pose a problem because we have a number of standard axioms for the 

definition of properties of relationships between time points or intervals. Some of these are 

given in section 2.3.1. When we are using a modal language, however, this is not the case. 

The semantics of the modal operators has to be taken into account. In Chapters 3 and 

4, our emphasis is on the axiomatisation of the accessibility relations within the temporal 

structures for the relevant modal languages: for point-based systems in Chapter 3 and for 

interval-based systems in Chapter 4. 

The second aspect we consider is the formulation of axioms for distinguishing concepts like 

actions, events, processes and so on. We do this for systems using first-order languages. 

Chapter 5 deals with point structures and Chapter 6 with interval structures. 

In Chapter 7 we briefly discuss the fields of application of temporal logics and list a number 

of fields that looks promising for further research. 
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Chapter 2 

A brief survey of computational 

frameworks 

In order to establish a computational framework for reasoning about time and change, we 

need to establish an adequate basis for representing the objects to be reasoned about. This 

means that defining a temporal logic that will suit our requirements requires a number of 

important decisions to be made. These decisions depend to a large extent on the intended 

application. In this chapter we list the most important issues that have to be resolved and 

the various options that are available. 

2.1 Dynamic approach vs temporal approach 

We distinguish between two ways of handling time: the dynamic or change-based approach, 

and the temporal or time-based approach. In the change-based approach1 , we concentrate 

on entities, called change-indicators, that signify a change having taken place [SG88]. The 

system is described in terms of different states or events. Time is determined by events, 

and properties of time must be defined by investigating the properties of events [Vil94]. An 

example of this approach is the Situation Calculus, discussed in Chapter 5. 

Although, in Lin's opinion [Lin91], the change-based approach is more interesting because 

it is based on the human perception of time, it has a number of limitations of which the 

following are notable: 

• Actions do not have any duration. 

1Galton [Gal95] refers to this as a time-dependent approach. With this approach, we use a 

relational theory of time [Vil94] 
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• The result of an action is immediate. We cannot distinguish actions that have delayed 

effects and assertions that are true for a time period only and then become false 

because of natural death or termination. 

• Simultaneous actions, such as concurrent or overlapping actions, cannot be expressed. 

• Continuous processes are not expressible. 

In the time-based approach2 , time is given an autonomous status. So we have only one 

fundamental kind of change and that is the passage of time. This is a constant change 

unaffected by anything else. With this approach, a temporal structure is defined as primitive 

in the language we are using, and assertions are either true or false at points (or intervals) 

in this structure [SG88]. A set of structures, representing the various kinds of change that 

can occur in time, is then superimposed on the temporal structure. This approach dates 

back to Prior's tense logic which will be discussed in Chapter 3. 

2.2 The object language 

One of the most important decisions that has to be made is the choice of object language. 

We consider the two options non-modal first-order languages and modal languages. 

In an unsorted first-order language, time is simply introduced as one or more (or even none) 

additional arguments to a predicate symbol. In such systems time is not accorded a special 

status so we cannot say as much about the temporal aspects of an assertion as we may 

wish to [SG88]. Therefore, we will not discuss the use of these languages further. Many­

sorted first-order languages prevail in AI applications. In such a system, we separate the 

temporal and nontemporal components of an assertion [SG88]. Examples of systems using 

many-sorted first-order languages are discussed in Chapters 5 and 6. 

The second option is the use of modal languages. Examples of systems using modal languages 

are discussed in Chapters 3 and 4. 

The highly-developed theorem-proving techniques of first-order languages are frequently 

mentioned in their favour. However, relatively simple sentences in English may have unde­

sirably complex representations in a first-order language. The following example used by 

Gabbay [GHR94] illustrates this: 

2 Galton [Gal95] uses the term time-independent, while Lin [Lin91] talks about using an absolute 

theory of time 
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Example 14 A complex first-order sentence. 

Consider the following simple English sentence: 

Since M became Prime Minister, the pound has steadily been going down, and in fact it will 

continue to go down for as long as she remains Prime Minister. 

Let VP(t, x) express the idea that the value of the pound is x at time t, and PM(t, M) 

the idea that M is the Prime Minister at time t. Let now represent a time point that is 

regarded as the present moment (or the moment the sentence is spoken). The following 

first-order language sentence is a representation of the English sentence: 

3t(t <now---+ [PM(t, M) 

!\3s(s < t !\ Vu(s < u < t---+ -,PM(u, M))) 

1\Vu(t < u <now---+ PM(u, M)) 

1\Vu, v, x, y((t < u < v S now!\ VP(u, x) !\ VP(v, y))---+ x > y)]) 

1\Vs(s > now---+ [Vu(now < u < s---+ PM(u, M)) 

---+ Vu,v,x,y((now S u < v < s!\ VP(u,x) !\ VP(v,y))---+ x > y)]) 

Suppose we have a modal language containing the connectives Sand U, such that S(A, B) 

means that B has been continuously true since A was true, and U(A,B) means that B 

will continuously be true until A is true. The English sentence can be written in such a 

language as 

S(•PM(m), PM(m) !\ PoundGoingDown) !\ PM(m) 

1\U(·PM(m), PM(m) !\ PoundGoingDown) 

where PoundGoingDown means that 'if the value of the pound is x now, and if its value 

was y the day before, then y > x'. 

A modal language, on the other hand, sometimes may lack expressiveness. Van Benthem 

[VB91] identifies a number of properties of the order relation of a time structure, such as 

irrefiexivity and antisymmetry, that cannot be expressed in the modal language defined by 

him. This is discussed in Chapter 4. 

We briefly look at typical applications of each of these languages in Chapter 7. 

2.3 The temporal structure 

Important decisions also have to be made about temporal representation. The first of these 

concerns the primitive elements in the temporal structure. The two contenders are points 

20 



and intervals. Secondly we need to define a relation (or more often more than one relation) 

between primitive elements. When points are chosen as the primitive elements, we typically 

use the relation '<' (earlier-than) and its counterpart '>' (later-than). When intervals are 

chosen as the primitive elements, a wider variety of relations may be used, ranging from 

analogs of '<' to relations that take into account the possibility of intervals to overlap. 

Systems in which points constitute the primitive elements are treated in Chapters 3 and 5; 

those taking intervals as primitive are discussed in Chapters 4 and 6. 

Historically, the first temporal logics were point-based. If we choose points as primitive, 

we have to make provision for deriving a representation of intervals in the system. We 

distinguish between the following two ways of representing intervals: 

• Consider an interval to be a pair of time points [Sho88]. Suppose t1 ::; t2, then the 

interval with starting point t1 and endpoint t2 may be represented by the ordered 

pair (t1, t2). Nothing is said about the points between t1 and t2. 

• Consider an interval to be a convex set of points. An open interval is thus defined 

as (t1, t2) = {t E T: t1 < t < t2} for a temporal structure F = (T, <). Should these 

intervals be closed, open or half-open? This depends on whether we want to consider 

the starting point and the end point as part of the interval. This may lead to the 

so-called dividing instant problem [VB91]: 

Suppose we choose open intervals. Let the assertion p be true over the interval 

(t1, t2) and false over the interval (t2, t3). What is the truth value of p at t2? It 

is neither obvious that it should be true nor obvious that it should be false. 

Suppose we choose closed intervals. Let, again, p be true over [t1, t2] and false 

over [t2, t3]. What is the truth value of pat t2? It would seem to inherit truth 

from the first interval and falsity from the second. 

- This problem is frequently solved by using half-open intervals. So, if p is true 

over (h, t2] and false over (t2, t3], p will be true at t2. This offers a solution 

which is, perhaps, somewhat superficial. 

More recent temporal logics have tended to take intervals as basic [Nil98]. In [All84], Allen 

reasons that intervals should be defined as primitive in the language since 'it appears that 

we can always decompose times into subparts. Thus the formal notion of a time point which 

would not be decomposable is not useful.' 

Allen's time structure is frequently used for approaches that take intervals as primitive. In 

this structure, there is a single time line and any two intervals on the time line are related 
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by one of 13 mutually exclusive relations. Each of these interval-interval relations may be 

represented by a symbol in the relevant language. We will discuss two of these systems 

in detail, namely the system proposed by Shoham in Chapter 4, and Allen's system in 

Chapter 6. Figure 2.1 shows twelve of the thirteen different relations (excluding equals). 

As is apparent, there are six relations having six inverses. The dotted line indicates the 

interval i and the solid line the interval j. 

Relation Inverse 

i is beforej 
~------------------; 

jis after i 
j 

imeetsj I 

r------------------1 
I !,-----------

jismetbyi 

1 

i overlaps} ' ' 
I I .---.-. -------------. j is overlapped by i 

i startsj ' ' 1· ·---- -·-----·---·-I 
j is started by i 

i occurs duringj I I 

1------------------! 
}contains i 

i finishes} j is fmished by i 

Figure 2.1: Allen's interval-interval relations 

If intervals are chosen as primitive, we should provide a means of representing points, i.e. 

durationless intervals, in the system. To make provision for the representation of time 

points Allen, for example, allows for the existence of point intervals (or what Allen calls 

zero-width intervals) at both ends of an interval. This effectively provides each interval with 

a beginning point and an end point. 

2.3.1 Properties of relations 

Consider a point-based temporal structure (T, <).Usually, a system uses either a linear or a 

branching time structure [Gal87]. Linear time is suitable for deterministic systems, whereas 

branching time is suitable for systems where more than one future, or more than one past, 

is possible, i.e. the future or past is indeterministic. 
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c 

a 
(a) 

t, 

(b) 

Figure 2.2: (a) Branching time, (b) Linear time 

A linear time structure would be suitable when we want to consider a system where there 

is only one actual future and one actual past. Fig 2.2(b) is a representation of linear time. 

If we choose any two time points t1 and t2 , the two points must be comparable. For the 

relation <, this means that exactly one of three possible relationships must hold between 

them: 

tl < t2 

t2 < tl 
tl = t2. 

So in Fig 2.2(b), t1 < t2. 

A forward branching (or left-linear) time structure would typically be used in a planning 

system to determine the outcome of different possible futures, whereas a backward branching 

(right-linear) time structure may be used to represent different possible pasts (e.g. in 

medical diagnosis). Fig 2.2(a) represents the concept of branching time, or the property 

of left-linearity (forward branching time) in this particular case. We have one past and 

different possible futures. If one looks at the figure, it is clear that a < b and a < j, but b 

and f are not comparable. 

Two other possibilities are parallel time and circular time structures. A parallel time struc­

ture could be regarded as a model of the different subjective time-scales of different people. 

It might be difficult to imagine the idea of circular time, but the associated logic could be 

useful in reasoning about repetitive processes, such as the 'endless repetition of cycles' of 

a traffic light (Gal87]. However, one suspects that a temporal approach is less suitable for 

such an application than a dynamic (change-based) approach would be. 
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In a temporal structure (T, <) the relation < may, depending on its properties, allow dif­

ferent notions of nearness and hence different topologies. Whether topological aspects are 

of importance will depend on the application. 

Which other properties might the order relation in the chosen time structure have? The 

following illustrate a few of the available options: 

• Is time discrete or dense? If dense, is it continuous (like the real numbers), or not 

(like the rationals) [Gal95]? If time is discrete, we can talk about the next moment 

and the previous moment, two concepts that are widely used in computer science. 

• Is time bounded or unbounded (serial, infinite, successive) in none, one or both direc­

tions [SG88]? 

• Is the time structure convex (i.e. there are no gaps) or not? 

A number of useful properties, together with their definitions, are listed below ([Gol92], 

[Ven95]). We frequently refer to these properties in subsequent chapters. Other less impor­

tant properties are given as the need arises. The properties contained in the first group are 

formulations of relationships between time points, or between intervals that do not overlap. 

(In the context of intervals, the symbol < is used to express the idea that one interval 

precedes another, so x < y means that interval x is 'earlier' than interval y, and they do 

not overlap: interval x ends before y starts.) 

Transitivity 

Reflexivity 

Irreflexivi ty 

Symmetry 

Antisymmetry 

Asymmetry 

Euclideanness 

Partial functionality 

Confluency 

Right-seriality 

(Successor) 

Left-seriality 

(Predecessor) 

Vx, y, z((xRy 1\ yRz) ~ xRz) 

Vx(xRx) 

Vx-.(xRx) 

Vx, y(xRy ~ yRx) 

Vx, y((xRy 1\ yRx) ~ x = y) 

Vx, y(xRy ~ •(yRx)) 

Vx, y, z((xRy 1\ xRz) ~ yRz) 

Vx, y, z((xRy 1\ xRz) ~ y = z) 

Vy, z(3x(xRy 1\ xRz) ~ 3u(yRu 1\ zRu)) 

Vx3y(xRy) 

Vx3y(yRx) 
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Seriality Vx(3y(xRy) 1\ 3z(zRx)) 

(Infinity, unboundedness) 

Linearity Vx, y(x < y V x = y V y < x) 

Right-linearity 

(Backward branching) 

Left-linearity 

(Forward branching) 

Density 

Discreteness 

Vx, y, z((x < y 1\ x < z) ~ (y < z V y = z V z < y)) 

Vx, y, z((y < x 1\ z < x) ~ (y < z V y = z V z < y)) 

Vx,y(x < y ~ 3z(x < z 1\z < y)) 

Vx,y(x < y ~ 3z(x < z 1\ z :S y 1\ -,::Ju(x < u/\u < z))) 

A relation is said to be functional if it is both partially functional and right-serial. It is 

a partial ordering if it is reflexive, transitive and antisymmetric and it is an equivalence 

relation if it is reflexive, transitive and symmetric. A strict partial ordering is transitive and 

irreflexive. A linear partial ordering is a total ordering. 

The second group of properties contains formulations of relationships between intervals 

that may overlap ([VB91], [Ven95]). We use the symbol s;;; to indicate interval inclusion, 

i.e. x s;;; y means that interval x is a subinterval of interval y. Properties of relations on 

overlapping intervals may include the following: 

Monotonicity 

Conjunctivity 

Disjunctivity 

Linearity 

Freedom 

Convexity 

Left-linearity 

Directedness 

Duration monotonicity 

Vx,y(x < y ~ Vz(z s;;; x ~ z < y)) 

Vx,y(x < y ~ Vz(z s;;; y ~ x < z)) 

Vx,y(3u(u s;;; x 1\u s;;; y) ~ 3z(z s;;; x 1\ z s;;; y/\ 

(Vv(v s;;; x 1\ v s;;; y) ~ v s;;; z))) 

Vx, y(3u(x s;;; u 1\ y s;;; u) ~ 3z(x s;;; z 1\ y s;;; z/\ 

(Vv(x s;;; v 1\ y s;;; v) ~ z s;;; v))) 

Vx, y(x < y Vy < x V 3u(u s;;; x 1\ us;;; y)) 

Vx, y(Vz(z s;;; x ~ 3u(u s;;; z 1\ us;;; y)) ~ x s;;; y) 

Vx,y,z((x < y 1\y < z) ~ Vu((x s;;; u/\ z s;;; u) ~ y s;;; u)) 

Vx, y, z((x < z 1\ y < z) ~ (x < y Vy < xV 

3u( u s;;; x 1\ u s;;; y))) 

Vx, y3z(x s;;; z 1\ y s;;; z) 

Vx,y,z((x < z 1\y < z) ~ 3v(v < z 1\x s;;; v 1\y s;;; vi\ 

Vu((x s;;; u 1\ y s;;; u) ~ v s;;; u))) 

Vx, y, z((z < x 1\ z < y) ~ 3v(z < v 1\ x s;;; v 1\ y s;;; vi\ 

Vu((x s;;; u 1\ y s;;; u) ~ v ~ u))) 

Conjunctivity expresses the idea that, if two intervals x and y overlap, then there exists a 

largest interval z representing the overlap. Disjunctivity expresses the idea that, if there 

exists an interval z of which two intervals x and y are subintervals, then there exists a 
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smallest interval containing both x andy. Duration monotonicity makes sense only when 

disjunctivity and conjunctivity are satisfied and it implies both these properties [Haj96] 

2.4 Facts, actions and events 

The language we adopt should enable us to describe what holds or occurs in time. In 

particular, we need to talk about facts, actions and events. There are several different 

classifications of such notions some of which are discussed further in Chapters 5 and 6. An 

example of such a classification is given below [VB91]: 

The class of states (also called facts or properties): These are static (permanent, 

invariant) in nature and represent a reality which is true or false at a particular 

instant or over a time interval. These primitives also have the property that 

they are hereditary, i.e. if a state is true over an interval, this truth value is 

inherited by all its subintervals. For example, if the assertion 'Julie lives in 

Durban' is true over an interval, it is true over all the subintervals. The essence 

of a state is that it cannot change its truth value by itself: a state change can 

only be caused by some 'event' or 'action'. 

The class of activities: These are also hereditary but dynamic in nature (some 

activity is involved). An example is the sentence 'Ben is swimming', which holds 

over all the subintervals. Activities are usually done for their own sake. 

- The class of events (achievements or actions or performances): These are also 

dynamic in nature but not hereditary. They occur and (most of the time) 

cause changes in states. An event takes place over an interval of time, i.e. it 

does not occur instantaneously. Consider the assertion 'the robot executed the 

Navigate procedure from start to finish' as an example. If it takes the robot 

half an hour to execute the Navigate procedure, the assertion does not hold for 

any proper subinterval of that half hour interval; it only holds over exactly the 

interval constituting one half hour. The duration of an event is generally short 

in comparison with the duration of a fact. Changes caused by events are sudden 

and discrete. They may represent actions consciously performed by a living 

agent. An achievement (or accomplishment) may be the result of an activity or 

process. 

Now that we have an idea of some of the important issues that need to be resolved in 

formulating a suitable temporal logic for a particular application, we show how this is done 
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in a number of temporal logics; firstly we consider systems using a modal language and 

then systems using a many-sorted first-order language. 
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Chapter 3 

Modal approaches with instants 

3.1 Priorean tense logic 

Prior is regarded by many as the founding father of modern temporal logic [OH95]. He 

formulated a tense logic for natural language understanding based on the principle of having 

a current time instant, the present, from which one can consider the past and the future 

([Pri57], [Pri67] and [Pri68]). Prior uses the term 'tense logic', reflecting the use in natural 

language of verb modifications to indicate temporal reference. Today the term 'temporal 

logic' is generally used when referring to the logic of time, reflecting the recognition that 

many other syntactic devices may be used to encode temporal information, such as temporal 

connectives and temporal adverbials. In this chapter, however, we talk about instant tense 

logic, a term used by Van Benthem who extended Prior's logic to an interval tense logic, 

discussed in the next chapter. We are primarily interested in the representation of time, 

so our emphasis is on the set of axioms used to characterise the properties of the time 

structures. We also look at a number of variations and extensions of this logic. 

3.2 Past, present and future 

The alphabet for instant tense logic consists of the following elements: 

• a set CI> of one or more atoms p, q, ... 

• the connectives ..., and --+ 

• the punctuation symbols'(' and')' 

• the modal operators [F] and [P], where [F] is read 'always in the future' and [P] is 

read 'always in the past'. 
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The duals (F), read 'at least once in the future', and (P), read 'at least once in the past' 

of the modal operators [ F] and [ P], are defined in the usual way: 

(F) c.p =def 

(P) c.p =def 

A graphical interpretation of the four modal operators is given in Figure 3.1. 

now 

[F]<p 
-------- ql --------

now 

[P]<p 
-------q~ 

now 

<F><p 

now 

<P><p 

Figure 3.1: A graphical interpretation of Prior's modal operators. 

The traditional literature on temporal logic uses G instead if [F], H instead of [P], F instead 

of (F) and P instead of (P). Our notation is based on that of Goldblatt [Gol92]. 

The set of sentences g of this language is, as one would expect, the smallest set such that 

• <P ~ Q, and 

• if c.p, '1/J E Q, then •c.p, r.p---+ '1/J, [F]c.p, [P]c.p E Q. 

The connectives A, V and~ are introduced by the usual abbreviations. 

The language of instant tense logic, being multimodal, should be based on structures of 

the form (T, Rp, Rp ). T is a set of time points or instants. The accessibility relations RF 

and Rp on Tare intended to capture the notions of later and earlier: if (x, y) E Rp we 

say 'y is in the future of, or is later than x' and if (x, y) E Rp we say 'y is in the past of, 

or is earlier than x'. Clearly the intention is that [ F] and [ P] should express properties of 

the same time-ordering, and thus that Rp and Rp should be converses, i.e. (x, y) E RF iff 

(y,x) E Rp. We thus restrict our attention to structures (T,RF,RP) in which RF and Rp 

are interdefinable, which permits a simplification: we may take our structures to be pairs 

(T, R), where R is understood to be the accessibility relation RF of [F]. Moreover, it is 
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usual to require that R be some sort of ordering on T, or at least be transitive, and so we 

will henceforth use the symbol '<' for R (and '>' for its converse). 

The reader will recall from Chapter 1 that a valuation V : <P --+ 2T associates with each 

p E <P a set of instants t E T, and these are taken to be the instants (or possible worlds) at 

which pis true. Let M = (T, <, V) be a model based on the time structure :F = (T, <). A 

sentence c.p is true relative to M at time point t, denoted by M 11-t cp, iff one of the following 

holds: 

• c.p E <P and t E V(cp) 

• c.p = •1/J and M .W:t 1/J 

• c.p = 1/J--+ X and M .W:t 1/J or M 11-t X 

• c.p = [F]'I/J and M lf-t, 1/J for all t' E T such that t < t' 

• c.p = [P]'I/J and M lf-t, 1/J for all t' E T such that t > t'. 

Remark: [Fj represents the strict future; if M lf-t[Fj'lj; then it need not be the case that 

M lf-t 1/J. Similarly, [PJ represents the strict past. 

A sentence c.p is globally true over a model M iff M 11-t c.p for all t E T. A sentence c.p is 

globally true over the frame C:r based on the structure :F = (T, <) iff it is globally true over 

each M E C:r, where C:r = {(T, <, V)IV is arbitrary}. A sentence c.p is globally true over 

the frame CIC of the class JC of structures, iff it is globally true over each M E C/C, where 

CIC = U {C:ri:F E JC}. 

The following examples illustrate the range of temporal forms that a language of instant 

tense logic is capable of expressing [VB95]: 

(P) [Pjcp 

(F) c.p 1\ (F) 1/J 

(F) ( c.p 1\ 1/J) 

[Fj ( c.p --+ 1/J) 

[ F]( c.p --+ (F) 1/J) 

There was a time at which c.p had always been the case 

c.p will be the case and so will 1/J 

c.p and 1/J will be the case simultaneously 

c.p will always 'guarantee' 1/J 

c.p will always 'enable' 1/J to become true afterwards. 

3.2.1 Axiomatisation 

Let C be a class of models. An important question is whether C is axiomatisable, i.e. whether 

there exists a set E of sentences such that the members of C are precisely the models globally 

satisfying the sentences of E. In Chapter 1 we saw that there are non-axiomatisable frames. 

In the case of modal (and thus temporal) logic, the rich semantic structure permits the 
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notion of axiomatisation to be construed in more than one way. It is convenient to restrict 

attention to classes which are frames so we only consider the axiomatisation of frames in 

this dissertation. Fortunately, the classes in which one might be interested often may be 

seen as frames based on some class of structures. By way of illustration, recall that the 

models of interest in temporal logic are generally those whose accessibility relations are, at 

the very least, mutually converse. Take C to be class of all models such that (x, y) E RF 

iff (y, x) E Rp, where RF is the accessibility relation corresponding to [F] and Rp the 

accessibility relation corresponding to [P]. (We temporarily suspend the more intuitive 

notation that uses '<', as the discussion applies to multimodallogics in general.) 

Proposition 1 The class of models C is the frame CJC of the class x:; of structures of the 

form :F = (T, RF, Rp ), where RF and Rp are converses. 

Pick any Mo = (T, RF, Rp, V) E C. Then (x, y) E RF iff (y, x) E Rp, which means that 

RF and Rp are converses. Let :F = (T,RF,Rp). Then :FE x:; and therefore MoE CJC. 

Conversely, pick an arbitrary Mo E CJC. Then MoE C:F for some structure :F = (T, RF, Rp) 

where RF and Rp are converses, so (x,y) E RF iff (y,x) E Rp and thus MoE C. 

CJC is axiomatisable in a sense which takes into account the view of CJC as the union of 

frames based on structures. More particularly, CJC may be axiomatised by the following two 

schemas in the sense made explicit by Proposition 2. 

TL.Ol cp-+ [F] (P) cp. 

(If cp is true now, then it is always going to be the case (for all points in the future) that cp 

was true at some point in the past.) 

TL.02 cp-+ [P] (F) cp. 

(If cp is true now, then it has always been the case (for all points in the past) that cp will be 

true at some point in the future.) 

Proposition 2 Let x:; be the class of structures :F = (T, RF, Rp). 

1. IJ, in each structure :FE K, RF and Rp are mutually converse, then every model in CJC 

globally satisfies every instance u of each of axiom schemas TL.Ol and TL.02. 

2. If the frame CJC of x:; globally satisfies axiom schemas TL.Ol and TL.02, then, for every 

:F E K, RF and Rp are converses. 
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1. Let Mo = (T, RF, Rp, V) be an arbitrary model in CIC. Assume that, in each structure 

:FE JC, RF and Rp are mutual converses. We have to show that Mo globally satisfies every 

instance u of each of the two axiom schemas TL.OJ and TL.02. 

Let to E T be an arbitrary time point and suppose Mo lf-t0 rp. We show that Mo lh0 

(F] (P) rp. 

Suppose Mo W:t0 [F] (P) rp. This means that it is not the case that Mo lh (P) rp for all t E T 

such that toRFt. Let t' be an arbitrary time point such that toRFt' and Mo W:t' (P) rp. Then 

there does not exist a t" E T such that t' Rpt11 and Mo lf-t, rp. But recall that toRFt' iff 

t' Rpto, and we know that Mo If-to rp. So there does exist a t" E T, i.e. t" = to, such that 

t' Rpt" and Mo lf-t, rp, thus Mo lh• (P) rp. This is a contradiction so Mo lh (P) rp for all 

t E T such that toRFt. Thus Mo If-to [F] (P) rp. It follows that Mo globally satisfies every 

instance u of the schema TL.OJ, and, since Mo was chosen arbitrarily, that CIC globally 

satisfies every instance of the schema TL.Ol. 

It can be shown in a similar way that CIC globally satisfies every instance u of the schema 

TL.02. 

2a. Assume that the frame CIC of JC globally satisfies the axiom schema TL.OJ. We have to 

show that, for every :FE JC, it is the case that for all t, t' E T, if (t, t') E RF then (t', t) E Rp. 

Pick an arbitrary :Fo = (T, RF, Rp) E JC and suppose that there is some pair (to, t1) E RF 

such that (tb to) rt Rp. Let MoE CF0 be the model such that V(p) ={to} for every atom 

p. Thus Mo If-to p for arbitrary p. From TL.OJ, this means that Mo lf-t0 [F] (P) p, i.e. 

Mo lh (P) p for all t E T such that toR Ft. Thus, for every t E T such that toRFt, there 

exists a t' E T such that tRpt1 and Mo lf-t• p, and thus that t' E V(p). Then it must be 

the case that t' =to and consequently, that, for every t such that toRFt, we have tRpto. In 

particular, since toRFti, we have t1Rpto, contradicting our earlier assumption. It follows 

that for all (t, t') E T if (t, t') E RF then (t', t) E Rp. 

2b. It can be shown in a similar fashion that, if the frame CIC of JC globally satisfies the 

axiom schema TL.02, then for all t, t' E T, if (t, t') E Rp then (t', t) E RF. From 2a and 2b 

it follows that RF and Rp are mutually converse. 

Remark: In this particular case direct proofs can also be given. 

For the purpose of tense logic, all the frames of interest to us will be subclasses of the frame 

CJC axiomatised by TL.OJ and TL.02. Consequently we shall revert to using temporal 

structures of the form (T, <),where RF is a synonym for< and Rp for the converse >. 



If we want to impose particular properties on the accessibility relation(s) of some frame of 

interest, the set E of sentences axiomatising the frame should inclu(!~ axiom schemas that 

are formulations of these properties. As we have seen in Proposition 2, the axiom schemas 

must be formulated in such a way that, if an accessibility relation R has a certain property, 

then all instances of the corresponding axiom schema will be globally true in the union of all 

frames Cy:, such that R is an accessibility relation of :F. We say that a time structure, and 

hence that a frame, has a property in the sense that the relevant accessibility relation has 

this property. For example, if the accessibility relation is linear, we can talk about linear 

structures and linear frames. 

We can also say that a schema a characterises a class JC of structures if, for every :F E JC, 

and for no other :F, it holds that a is globally satisfied in Cy: 1 . We say that a property 

is definable in a relevant language, if it is possible to formulate a schema in that language 

that characterises the class of structures having that property. Let us look at the way the 

underlying temporal structures of Priorean tense logic can be axiomatised. 

Informally, axioms TL.Ol and TL.02, together with axioms TL.03 to TL.06 defined below, 

are used to express the idea that 'if one of the determinations past, present and future 

can ever be applied to [an event] N, then one of them has always been and always will be 

applicable, though of course not always the same one' [McT08]. The underlying principle 

is that, once a 'tense' is associated with a sentence at time t, then it is possible to associate 

some 'tense' with that particular sentence for all points t' in the time structure, for which 

a relationship exists between t and t' [VB91]. 

TL.03 (P) r.p - (Pj ( (P) r.p V r.p V (F) r.p) (Left-linearity of > 2) 

TL.04 (P) r.p - (F] (P) r.p (Transitivity of >) 

TL.05 (F) r.p - [P] (F) r.p (Transitivity of <) 

TL.06 (F) r.p - (F]( (P) r.p V r.p V (F) r.p) (Right-linearity of<). 

Note that we have two distinct axioms for linearity, namely left-linearity and right-linearity. 

The reason for this is that linearity, as stated by the first-order sentence Vt, t'(t < t' V 

t = t' V t' < t), cannot be formulated in tense logic (see (VB75], (Gol75] and [VB95J for 

further discussion). By using the combination of left- and right-linearity, however, a form of 

linearity, sometimes referred to as quasi-linearity [Haj96], can be described. Quasi-linearity 

differs from linearity by admitting parallel time lines, but simulates linearity within each 

1 We regard the term characterisation as a synonym for axiomatisation as is sometimes done in 

the literature (VenOO]. 
2taking into account that < and > are converses 
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time line. So, if we choose any t, t' E T and< is both left- and right-linear, we can claim 

that t < t' or t' < t or t = t', as long as t and t' do not belong to two time lines running in 

parallel [Haj96J. 

Let us see how TL.06 enforces right-linearity of the time structure: 

Proposition 3 1. Let JC be the class of structures :F = (T, <) such that < is right-linear 

for every :F E /C. Then the frame CIC of JC globally satisfies all instances of the axiom schema 

(F) r,p ~ [F]((P) <p V <p V (F) r,p). 

2. If the frame CIC of a class JC of structures globally satisfies the axiom schema TL.06, 

then, for every :F = (T, <)E JC, < is right-linear. 

1. Let CIC be the class of models of the form M = (T, <, V) in which < is right-linear, as 

expressed by the first-order sentence Vt, t', t" ( (t < t" 1\ t < t') ~ (t' < t" V t' = t" V t" < t') ). 

We want to show that all instances of the axiom schema (F) <p ~ [F]( (P) <p V <p V (F) r,p) 

are globally true in CIC. 

Let Mo = (T, <, V) E C/C be an arbitrary model. Pick any to E T and suppose Mo lh0 

(F) <p, so there exists a t E T such that to < t and Mo li-t <p. We have to show that 

Mo lh0 [F]( (P) <p V r,p V (F) r,p). 

Suppose Mo ~to [F]( (P) r,pV<pV (F) r,p), i.e. it is not the case that Mo lf-t' ( (P) <pV<pV (F) r,p) 

for all t! E T such that to < t'. This means that it is not the case that (Mo lf-t, (P) <p or 

Mo lf-t' <p or Mo lf-t, (F) r,p) for all t' E T such that to< t'. So Mo ~t' (P) <p and Mo ~t' <p 

and Mo ~t' (F) <p for some t' E T such that to < t'. But we know that < is right-linear, 

and this means that, since to < t and t0 < t', we have (t < t' or t = t' or t' < t). We also 

know that Mo lh <p. So we can claim that, if t < t' (thus t' > t), it will be the case that 

Mo lf-t' (P) <p, if t = t', we have Mo lf-t, r,p, and if t' < t it follows that Mo lf-t, (F) <p. This 

contradicts our earlier assumption, so Mo lf-t' ( (P) <p V <p V (F) r,p) for all t' E T such that 

to < t', and consequently Mo lh0 [F]( (P) <p V <p V (F) r,p). But to was chosen arbitrarily, and 

so was Mo. Thus TL.06 is globally true in CJC. 

2. Let CJC be the frame of JC, where JC is any class of structures :F = (T, <). Assume that 

all instances of the axiom schema (F) <p ~ [F]( (P) <p V <p V (F) r,p) are globally true in CJC. 

We want to show that, for every :FE JC, the accessibility relation < is right-linear. 

Pick an arbitrary :Fo = (T, <) E JC and suppose there exists a to, t1, t2 E T such that to < t1 

and to < t2 but (t1 f:. t2 and t1 =/= t2 and t2 f:. t1). Let Mo E C:F0 be the model such that 

V(p) = {ti} for every atom p. So Mo lh1 p for arbitrary p, and since to < t1, we have 

Mo lh0 (F)p. 
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From the schema it follows that Mo If-to (F]((P)pVpV(F)p), i.e. Mo 1f-t ((P)pVpV(F)p) 

for all t E T such that to < t. This means that, for all t E T such that to < t, Mo lh (P) p 

or Mo lf-t p or Mo lf-t (F) p. So, for every t E T such that to < t, (there exists a t" E T 

such that t > t" (thus t" < t) and Mo Jf-t, p) or (Mo lf-t p) or (there exists a i E T such 

that t <land Mo lf-i p). But V(p) = {t1}. From our choice of V it follows that, for every 

t E T such that to < t, there exists a t" E T such that t" < t and t" E V(p) (so t1 < t), 

or t E V(p) (so t = t1), or there exists a l E T such that t < land l E V(p) (so t < t1). 

In particular, since to < t2, we have t1 < t2 or t1 = t2 or t2 < t1. But this contradicts our 

earlier assumption, so it follows that the accessibility relation < is right-linear inK. 

Axioms TL.07to TL.09, given below, formulate an idea expressed by Findlay (as reported 

by (HK80]): 'Every event taking place in time, will become past' (VB91]. 

TL. 07 (P) 'P --t (F) (P) 'P 

TL.OB 'P --t (F) (P) 'P 

TL.09 (F) 'P --t (F) (P) 'P 

Suppose Mo lf-t <p for some sentence <pin an arbitrary model Mo = (T, <, V). These axioms 

express the idea that, whatever the 'tense' of the sentence <p at time t, there exists a point 

t' such that t < t' (so t' is in the future) where Mo lf-t, (P) <p, i.e. where it holds that <p 

was true at some point in the past. Note that TL.OB expresses the idea that such a future 

point exists, so right succession (unboundedness), as expressed by the first-order sentence 

VEJt'(t < t'), is implied. The following two first-order sentences express properties of < 

axiomatised by TL.07 and TL.09 respectively: 

\It, t'(t' < t --t 3t"(t < t" 1\ t' < t")), 

\It, t'(t < t' --t 3t"(t < t" 1\ t' < t")). 

The Priorean idea 'What will be the case, will be the case in between (its occurrence and 

the present)' can be expressed by TL.JO and TL.ll: 

TL.JO (F) <p --t (F) (F) 'P (Density of<) 

If t is our present reference point and we know that <p will be true at some time in the 

future, at t' say, we may wish to be able to claim that there exists a point t" between t and 

t' such that M lf-t" (F) <p forM = (T, <, V). This means that the accessibility relation 

must be dense, as expressed by the first-order sentence \It, t' ( t < t' --t 3t11 
( t < t" 1\ t" < t')). 

TL.ll (F) (F) 'P --t (F) 'P (Transitivity of<) 
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Note that TL.05 and TL.11 are different but equivalent axiom schemas for transitivity of 

<. TL.05 involves two different modal operators wheras TL.11 involves only one. 

We take a closer look at TL.11: 

Proposition 4 1. Let K be the class of structures :F = (T, <), such that < is transitive 

in every :FE K, and let CJC be the frame of K. Then every M E CJC globally satisfies all 

instances of the axiom schema (F) (F) r.p - (F) r.p. 

2. If the frame CJC of some class K of structures globally satisfies the axiom schema TL.ll, 

then, for every :F = (T, <)E K, < is transitive. 

1. Assume that < is transitive in every :F E K. We have to show that CJC globally satisfies 

all instances of the axiom schema (F) (F) r.p- (F) r.p. 

Pick any Mo = (T, <, V) E CJC and pick an arbitrary to E T. Suppose Mo ll-t0 (F) (F) r.p. 

Then there exists at' E T such that t0 < t' and Mo lf-t, (F) r.p, i.e. there exists at" E T such 

that t' < t" and Mo lf-t" r.p. We have to show that Mo 11-to (F) r.p. But this is immediate: 

by transitivity, to < t". It follows that Mo globally satisfies all instances of the schema and 

consequently, that CJC globally satisfies all instances of the schema. 

2. Assume that the frame CJC of K globally satisfies the schema (F) (F) r.p- (F) r.p. We have 

to show that <is transitive for every :F = (T, <)E K. 

Pick an arbitrary :Fo E K and suppose there exists a to, t1, t2 E T such that to < t1 and 

t1 < t2 but to I. t2. Let MoE C:F0 be the model such that V(p) = {t2} for all atoms p. So 

Mo ll-t2 p for arbitrary p. But t1 < t2 so Mo lf-t1 (F) p. We also have to < t1 so Mo lf-t0 

(F) (F) p. Using the schema, we can claim that it must be the case that Mo lf-t0 (F) p. 

So there exists a l E T, such that to < land M II-i p, which means that l E V(p). But 

V(p) = {t2}. This means that l = t2, so to < t2, which contradicts our earlier assumption. 

Thus, for all t, t', t" E T, if t < t' and t' < t", it follows that t < t". Thus < is transitive for 

every :F = (T, <) E K. 

Remark: It is instructive to note that, if we take C to be the class of models globally 

satisfying all instances of the axiom schema (F) (F) r.p - (F) r.p rather than coupling the 

axiomatisation to a frame, then the accessibility relations are not necessarily all transitive. 

We can use the following example to illustrate: 



Example 15 The existence of rogue models. 

Let <P = {p}. 

Let Mo = (T, RF, V), with T = {tt, t2}, RF = {(tt, t2), .(t2, t1)} and V1 (p) = { t1, t2}. 

Although it is clear that RF is not transitive, we are going to show that Mo globally satisfies 

all instances of the schema (F) (F) cp -----* (F) cp. If we can show that Mo .W: (F) (F) cp or 

Mo II- (F) cp, it follows that Mo II- (F) (F) cp -----* (F) cp. 

From our choice of V} we know that Mo lh1 p and Mo lh2 p. From our choice of RF it 

follows that Mo lh2 (F) p and Mo ll-t1 (F) p, so Mo II- (F) p which means that Mo 11-

(F) (F) p -----* (F) p. So Mo globally satisfies the axiom schema for arbitrary cp E <P (in this 

case <P = {p} ). It remains to show that Mo globally satisfies the axiom schema for an 

arbitrary sentence cp, which easily follows by structural induction on the formation of cp. So 

Mo II- (F) (F) cp -----* (F) cp. 

It follows that all instances of the schema are globally satisfied in Mo even though RF is 

not transitive. 

It is important to note that we cannot generalise this to the frame C:F where :F = (T, RF ). 

Let M1 = (T, RF, V2) E C:F with V2(p) = { t1}. We show that M1 .W: (F) (F) cp-----* (F) cp for 

arbitrary cp. 

From our choice of V2 we have M1 lh1 p. From our choice of RF it follows that M1 lh2 

(F) p and also that M1 lh1 (F) (F) p. But it is not the case that M1 ll-t1 (F) p. Thus 

M1 .W:t1 (F) (F) p -----* (F) p. So it is not the case that all instances of the axiom schema 

(F) (F) cp-----* (F) cp are globally satisfied by M1. 

Now that we have an idea of how properties of the time structure for instant tense logic 

can be formulated, we look at a number of variations and extensions of this logic. 

3.3 Variations and extensions of instant tense logic 

There exists a wide variety of logics based on the principles of Priorean tense logic. The 

alphabets of these languages are similar to that of Priorean tense logic with the exception 

of the modal operators. In some cases the existing alphabet is extended by adding new 

modal operators to enhance the expressive power. In other systems, like the one defined by 

Kamp [Kam68] which we look at in the next section, entirely different modal operators are 

used. We discuss a few of the variations briefly. 
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3.3.1 Since and Until 

It is not possible to represent the present perfect tense in the language of Priorean tense 

logic [VB91]. In an attempt to overcome this limitation, Kamp [Kam68] suggests the use 

of two new binary modal operators Sand U, where Sis read 'since' and U is read 'until' . 

So, if c.p and '1/J are sentences in the language, then c.pS'IjJ is read 'cp has been true since an 

instant in the past where '1/J was true', and c.pU'IjJ is read 'cp will be true until some instant 

in the future where '1/J is true'. 

A graphical representation of Sand U is given in Fig 3.2. If c.pU'IjJ holds at t then it means 

that c.p holds until some instant t' in the future at which '1/J holds, and if c.pS'IjJ holds at time 

t then it means that c.p has been true since some instant t' in the past at which '1/J was true. 

1/1 
(a) q;Ulj! --------~-r----_-_-_q; --------+-1 -

I' 

(b) 

t' 

Figure 3.2: A graphical representation of S (since) and U (until). 

The modal operators (F), (P), [F] and [P] of Priorean tense logic can all be defined in 

terms of S and U. The converse is not true: U cannot be defined in terms of [F], [P], (F) 

and (P) [GHR94]. 

As before, a model is a triple M = (T, <, V), with the accessibility relation< corresponding 

to the modal operator U, and its converse > corresponding to S. A sentence c.p is true relative 

toM at timet, denoted by M lf-t c.p, iff one of the following holds: 

• c.p E <P and t E V(c.p) 

• c.p = -,'ljJ and M J.l'!t '1/J 

• c.p = '1/J --+ X and M J.l'!t '1/J or M lh X 

• c.p = '1/JSx and there exists at' E T such that t > t' and M lf-t, x, and M 11-t" '1/J for 

every t" E T such that t > t" > t' 
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• <p = '1/JUx and there exists at' E T such that t < t' and M 1f-t' x, and M 1f-t" 'If; for 

every t" E T such that t < t" < t'. 

The modal operators (F), (P), [F] and [P], can be now defined in terms of Sand U in the 

following way [Bur82]: 

[P]c.p =def •(TS•c.p) 'c.p has always been true' 

[Fjc.p =def •(TU•c.p) 'c.p is always going to be true' 

(P) 'P -def TSc.p 'c.p was true at some instant in the past' 

(F) 'P =def TUc.p 'c.p will be true at some instant in the future' 

where T =def pV •p (Tautology, i.e. true at every instant), 

and j_ =def p 1\ •P (Contradiction, i.e. false at every instant). 

How do we know that the modal operators that we have defined in terms of S and U 

correspond semantically to the modal operators of Priorean tense logic? We show that it 

does for [P]. It can be done in a similar way for the other modal operators. 

Proposition 5 The definition of[P] in terms of Sis semantically equivalent to the Priorean 

definition of [P]. 

Suppose [P] is defined in the following way: 

[P]c.p =def •(TS•c.p). 

Let :Fo be an arbitrary structure of the form (T, <). Pick an arbitrary Mo E C;:0 , and an 

arbitrary toE T. Suppose Mo lh0 [P]c.p. We have to show that Mo 1f-t' c.p for all t' E T such 

that t0 > t'. 

By definition, Mo If-to [P]c.p means that Mo lh0 •(TS•c.p), i.e. Mo~to TS•c.p. So, it is not 

the case that (there exists at' E T such that t0 > t' and Mo 1f-t' •<p, and Mo Jf-t, T for all 

t" E T such that to > t" > t'). But we know that Mo lh T for all t E T. It follows that it 

is not the case that there exists at' E T such that to > t' and Mo ~t' c.p. So Mo 1f-t' <p for 

all t' E T such that to > t'. The converse is similar. 

Burgess [Bur82] also defines the following variations of the new modal operators: 

[F]'c.p =def c.pUT meaning 'c.p is uninterruptedly going to be true for some time' 

[P]'c.p =def c.pST meaning 'c.p has uninterruptedly been true for some time' 

(F)' <p =def •( •<pUT) meaning 'c.p will be true, arbitrarily soon' 

(P)' <p =def •( •<pST) meaning 'c.p has been true, arbitrarily recently' 

39 



What are the 'meanings' of the modal operators [P]', [F]', (P)' and (F)'? As an example, 

we will show how we arrived at the meaning of (F)' 'P· It can be shown for the other modal 

operators in a similar fashion. 

Example 16 The 'meaning' of the modal operator (F)'. 

We defined (F)' as follows: 

We want to show that this means that <p will be true arbitrarily soon. 

Let :F0 be an arbitrary structure of the form (T, <). Choose an arbitrary model MoE C:F0 

and an arbitrary to E T. Suppose Mo lh0 (F)' 'P· By definition, this means that Mo W:t0 

(-,<pUT), i.e. it is not the case that (there exists at' E T such that to< t' and Mo lf-t' T, 

and Mo W:t" <p for all t" E T such that t0 < t" < t'). But we know that Mo lh T for all 

t E T. This means that it is not the case that Mo W:t" <p for all t" E T such that to < t" < t'. 

So, for every possible choice of t' > to, there exists a l E T such that to < l < t' and 

Mo 11-t <p. Even if we choose t' close to to, we can find at even closer to to where <p holds. 

This means that <p will hold arbitrarily soon. 

Burgess gives an axiomatisation for the class of linear structures, as well as for the class of 

dense and discrete structures [Bur82]. The axioms are given in pairs; each axiom in a pair 

forming the mirror image of the other member of the pair (the mirror image of a sentence 

<p being the result of replacing each U in the sentence by S and vice versa, and replacing 

each [ F] by [ P] and vice versa). 

BU.Ola [F](<p -1/J)- (xU<p- xU'I/J) 

BU.Olb [P]('P -1/J)- (xS<p- xS'I/J) 

BU.02a [F](<p -1/J)- (<pUx -1/JUx) 

BU.02b [P]('P -1/J)- (<pSx -1/JSx) 

BU.03a (X A <pU'I/J) - <pU('I/J A <pSx) 

BU.03b (X A <pS'I/J)- <pS('I/J A <pUX) 

BU.04a (<pU'Ij; A -,(xU'I/J))- <pU(<p A -,X) 

BU.04b (<pS'Ij; A -,(xS'I/J))- <pS(<p A -,X) 

BU.05a <pU'Ij;- ('P A <pU'I/J)U'I/J 

BU.05b <pS'Ij;- ('P A <pS'Ij;)S'Ij; 

BU. 06a <pU ( <p A <pU 1/J) - <pU 1/J 



BU.06b c.pS(c.p A c.pS'I/J)- c.pS'IjJ 

BU.07a (c.pU'IjJ A xU()- ((c.p A x)U('I/J A() V (c.p A x)U('I/J Ax) V (c.p /\ x)U(c.p A()) 

BU.07b (c.pS'IjJ A xS()- ((c.p /\ x)S('I/J A() V (c.p A x)S('I/J Ax) V (c.p A x)S(c.p A()) 

Another variation of the language based on Sand U is discussed in (GHR94]. Two modal 

operators, S' and U', called Stavi connectives, are introduced with the following intuitions: 

'lj;U' c.p is true 'now' iff there is a gap in the future such that 

• '1/J is true until this gap; 

• c.p is true from the gap into the future for some uninterrupted stretch of time; 

• in the future of the gap, '1/J is false arbitrarily close to the gap. 

S' is the mirror image of U'. So 'lj;S' c.p is true 'now' iff there is a gap in the past such that 

• '1/J was true since this gap; 

• c.p was true for some uninterrupted stretch of time from the past of the gap right up 

until the gap; 

• in the past of the gap, '1/J is false arbitrarily close to the gap. 

3.3.2 Next and Previous 

In a system based on a structure :F = (T, <) in which the accessibility relation< is discrete, 

we may want to address the point immediately preceding the current time point, as well as 

a point immediately succeeding the current time point. (Such systems are frequently used 

in temporal logics of programs [Haj96].) The notion of such a next and a previous point can 

be introduced by adding two new modal operators o, read 'at the next instant', and *• read 

'at the previous instant', to the alphabet of Priorean tense logic (see [GHR94], [May83] and 

[AM85] for examples). 

In such a system, a model is a triple M = (T, <, V), with the accessibility relation < 

corresponding to [F] and o, and its converse, >,corresponding to [P] and*· A sentence c.p 

is true relative toM at time point t, denoted by M lf-tc.p, iff one of the following holds: 

• c.p E <I> and t E V ( c.p) 

• c.p = •'1/J and M W: t '1/J 

• c.p = '1/J- X and M W:t '1/J or M lf-t X 
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• <p = [F]~ and M lf-t, ~for all t' E T such that t < t' 

• <p = [P]~ and M lf-t, ~for all t' E T such that t > t' 

• <p = o~ and M lf-t' ~.for some t' E T such that t < t', and it is not the case that 

there exists a t" E T such that t < t" < t' 

• <p = *~ and M lf-t' ~ where t' E T such that t > t', and it is not the case that there 

exists a t" E T such that t > t" > t'. 

The following two axioms describe the relationships between the primitive and the new oper­

ators: NP.Ol defines the relationship between o and [F], and NP.02 defines the relationship 

between* and [P]. 

NP.Ol [F]<p ~ o<p 1\ o[F]<p. (<p will always be true in the future iff <p is true at the next 

instant and at the next instant it is also true that <p will always hold in the future.) 

NP.02 [P]<p ~ *1.{)1\*[P]<p. (<p has always been true in the past iff <p was true at the previous 

instant and at the previous instant it is also true that <p has always been true in the past.) 

3.3.3 Progressive tense 

The representation of the 'progressive' tense in English can be approximated by a modal 

operator n, which enables one to describe what happens between two distinct time points. 

This operator, whose semantics involves both the accessibility relation < and its converse 

>,enables us to express an English sentence containing a verb such as 'being' in a language 

based on this alphabet. 

We say that the sentence <p = TI ~is true in a model M = (T, <, V) at timet, denoted by 

M lh TI ~. iff there exists t', t" E T such that t > t' and t < t", and M lf-t <p for all t E T 

such that l > t' and l < t". 

A complete axiomatisation of this temporal logic for linear structures can be found in 

[She89]. 

3.3.4 Difference 

Priorean tense logic can also be strengthened by the introduction of a modal operator that 

expresses the notion of 'truth in another world than the current one', i.e. truth at a different 

time (for examples see [Gor89], [Koy89] and [Sai88]). 

The idea is to introduce a new modal operator to express the notion that a sentence <p is 

true in a model at a time point different from the current one. 
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To do this, we take-< as an accessibility relation associated with a new modal operator (D) 

read 'at a different time', and we say that M lf-t (D) 'ljJ iff there exists some t' E T such that 

t-< t' and M lf-t, 'lj;. If we add the following set of axioms to the logic, then -< is 'as near to 

real inequality as possible' [VB95]. 

DF.01 (D)-, (D) ''P--+ 'P 

DF.02 (D) (D) 'P--+ ((D) 'P V cp) 

DF.03 (F) 'P--+ ((D) 'P V cp) 

DF. 04 (F) 'P --+ (D) 'P 

(Symmetry of -<) 

(Pseudo-transitivity of -<) 

Vt, t'((t < t')--+ (t-< t' V t = t')) 

(Irrefiexivity of -<) 

3.3.5 Branching time structures 

We might need a time structure where time is not linear but forward branching. In such a 

structure the accessibility relation is left-linear which means that a time point has only one 

past but different possible futures. A branching structure may be achieved by using double 

modalities as suggested by Mays [May83]. 

The alphabet used by Mays consists of the following elements: 

• the set <P of one or more atoms p, q, ... 

• the connectives -, and --+ 

• the punctuation symbols'(' and')' 

• the modal operator [P] read 'always in the past' 

• the 'double' modal operators [AG] and (EG), where [AG] is read 'for every always 

in the future' and (EG) is read 'for some always in the future'. 

Additional modal operators are defined in terms of [AG], (EG) and [P], in the following 

way: 

(AG) 'P =aef 

[EG]cp =aef 

(P) 'P =aef 

•[AG]•cp 

• (EG) ''P 

•[P]•cp 

For some eventually in the future 

For every eventually in the future 

Sometime past 

Let Elt(t, B) express the notion that t E B. A bmnch can be defined in a first-order 

language as any subset B s;;;; T such that, 

Vt,t'((Elt(t,B) 1\ Elt(t',B))--+ (t < t' Vt = t' Vt' < t)) and 

Vt(Vt'(Elt(t', B)--+ ((t < t' V t = t' V t' < t)--+ Elt(t, B)))). 



The first sentence formulates the idea that there exists a linear relationship between any 

two points on the same branch. The second is a formulation of the converse: for all t E T, 

and for every point t' E T that is an element of some branch B, if there exists a linear 

relationship between t and t', then t is also an element of B. 

In a model M = (T, <, V), we now have the accessibility relation< corresponding to [AG] 

and (EG), and its converse, >,corresponding to [P]. A sentence cp is true relative toM at 

time t, denoted by M lh cp, iff one of the following holds: 

• cp E <I> and t E V(cp) 

• cp = ..,¢ and M W:t 'ljJ 

• cp = ( '1/J - x) and M W:t 1/J or M lh x 

• cp = [AG]¢ and, for every branch B containing t, M lf-t' 'ljJ for every t' E B such that 

t < t' 

• cp = (EG) '1/J and there exists a branch B containing t where M lf-t' 'ljJ for every t' E B 

such that t < t' 

• cp = [P]¢ and M 1f-t' 'ljJ for every t' E T such that t > t'. 

The number of modal operators in the alphabet is relatively large and Mays does not provide 

an axiomatisation for the relevant frame. However, time can be assumed to be discrete since 

Mays also defines a modal operator denoting the set of next time points, namely [AX] read 

'at every next instant', and one for the previous time point, namely L read 'at the previous 

instant' (time is left-linear). 

The modal operator (AX), read 'at some next instant', can again be defined in terms of 

its dual [AX] in the usual way: 

The semantics for the new operators can be defined as follows: 

M 1f-t [AX]cp iff M lf-t, cp for every t' E T such that t < t', and, for every such t', it is not 

the case that there exists a t" E T such that t < t" < t'. 

M lh L cp iff M lf-t, cp for some t' E T such that t' < t and it is not the case that there 

exists a t" E T such that t' < t" < t. 

Other examples of branching-time modal languages can be found in [Sti92] and [Zan91]. 



3.3.6 Metric tense logic 

An interesting variation suggested by Prior is that of metric tense logic. In addition to the 

relation between time points, the distance between two distinct points is also taken into 

consideration. It is, of course, necessary to adjust the time structure to cater for this new 

aspect. We define a distance structure C = (C, 0, +) for representing the distance between 

points, where C is a set of distances, 0 represents the zero distance and + is a binary 

operator on elements of C. The alphabets for these languages are similar to the alphabet 

for Priorean tense logic but, instead of [F] and [P], we have the two modal operators (also 

called metric operators) [F]n and [P]n, where [F]n is read 'for all instants at a distance n 

into the future' and [P]n is read 'for all instants at a distance n in the past'. 

We define the duals of these in the usual way: 

(F)n r.p =def •[F]n•'P 

(P)n r.p =def •[P]n•'P 

A time structure is now a tuple :F = (T, C, <, 6) where T is a set of time points, < is an 

accessibility relation, C is a distance structure as defined above, and 6 : T x T -+ C is a 

binary function expressing the distance between two time points. A model is an ordered 

tuple M = (T, C, <, 6, V) with the accessibility relation < corresponding to the operator 

[F]n, and the accessibility relation > (the converse of<) corresponding to [P]n· A sentence 

r.p is true relative toM at time point t, denoted by M lf-t r.p, iff one of the following holds: 

• r.p E <I> and t E V(r.p) 

• r.p = •1/J and M ~ t 1/J 

• r.p = 1/J -+ X and M ~ t 1/J or M I h X 

• r.p = [F]n1/J and M lf-t' 1/J for every t' E T such that t < t' and 6(t, t') = n E C 

• r.p = [P]n1/J and M lf-t' 1/J for every t' E T such that t > t' and 6(t, t') = n E C. 

The duals (F)n and (P)n are defined as usual. Hajnicz [Haj96] suggests that the frame of 

interest is that characterised by the following set of axioms: 

MTL.OJ (F)0 r.p-+ r.p 

MTL.02 (F)n (r.p-+ 1/J)-+ ((F)n r.p-+ (F)n 1/J) 

MTL.03 (F)n (F)m r.p-+ (F)(n+m) r.p 

MTL.04 (F)n (P)m r.p-+ (F)(n-m) r.p form< n 

MTL.05 (F)n (P)m r.p-+ (P)(m-n) r.p for n < m 



MTL.06 (P)0 <p---+ <p 

MTL.07 (P)n ('P---+ '1/J)---+ ((P)n 'P---+ (P)n '1/J) 

MTL.08 (P)n (P)m <p---+ (P)(n+m) 'P 

MTL.09 (P)n (F)m <p---+ (P)(n-m) <p form< n 

MTL.JO (P)n (F)m <p---+ (F)(m-n) <p for n < m 

We note that, if the time structure is infinite and linear then [F]n = (F)n and [P]n = (P)n 

because, if we choose any t E T, there is exactly one time point t' E T such that t < t' and 

8(t, t') = n, and there is exactly one time point t" E T such that t > t" and 8(t, t") = n. 

This means that, in such a structure, we can restrict the modal operators to (F)n and (P)n. 

We can also add the following two axiom schemas to express the idea that, if there exists 

an instant at a distance n into the future (MTL.11) where •<p, then there does not exist an 

instant at a distance n into the future where <p. MTL.12 is relevant for the past. 

MTL.11 (F)n •<p---+ • (F)n 'P 

MTL.12 (P)n •<p---+ • (P)n 'P 

The logic discussed in this section and the original Priorean tense logic can be connected 

by taking the operators [F] and [P] as primitive and then adding [F]n and [P]n by suitable 

definitions. The following two axioms can be added to the union of the two axiomatisations 

to express the relationship between (F)n and (F), and between (P)n and (P) respectively: 

MTL.13 (F)n <p---+ (F) <p, for n > 0 

MTL.14 (P)n <p---+ (P) <p, for n > 0. 

3.3. 7 Near past, near future, far past, far future 

Rescher & Urquhart [RU71] define an alternative modal language based on a metric time 

structure. 

The alphabet for this logic consists of the following elements: 

• the set <I> of one or more atoms p, q, ... 

• the connectives -, and ---+ 

• the punctuation symbols'(' and')' 

• the modal (or metric) operators [F] 0
, [F]*, [P] 0 and [P]*. 
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(
0 and * should not be confused with the modal operators o (next) and * (previous) of 

section 3.3.2.) The duals of these operators can be defined in the usual way: 

(F)o r.p -def •[F] 0 •r.p 

(F)* r.p =def •[F]*•r.p 

(P)
0 

r.p =def •[P] 0 •r.p 

(P)* r.p =def •[P]*•r.p 

The semantics is based on a structure similar to the time structure used for the metric 

tense logic discussed in section 3.3.6, namely :F = (T, C, <, 8), where the distance structure 

C = (C, 0, +) is defined as before. Two arbitrary constants c, d E C must be chosen 

which play an essential role that will become clear in a moment. A model is a tuple 

M = (T, C, c, d, <, 8, V) where the accessibility relation < corresponds to the operators 

[F] 0 and [F]*, and its converse,>, corresponds to the operators [P] 0 and [P]*. A sentence 

r.p is true relative toM at timet, denoted by M 11-t r.p, iff one of the following holds: 

• r.p E <P and t E V(r.p) 

• r.p = •'1/J and M W: t '1/J 

• r.p = '1/J ~ X and M W:t '1/J or M 11-t X 

• r.p = [F] 0 '1/J and M lf-t, '1/J for every t' E T such that t < t' and 8(t, t') < c 

• r.p = [F]*'I/J and M 1f-t' '1/J for every t' E T such that t < t' and 8(t, t') > d 

• r.p = [P] 0 '1/J and M 1f-t' '1/J for every t' E T such that t > t' and 8(t, t') < c 

• r.p = [P]*'I/J and M lf-t, '1/J for every t' E T such that t > t' and 8(t, t') >d. 

Note that, if c < d, and there is some t' E T such that t < t' and M lf-t,r.p, but c < 8(t, t') < 
d, then neither (F) 0 r.p nor (F)* r.p will be satisfied. A similar problem could arise if d <c. 

If d < 8(t, t') < c, then both (F) 0 r.p and (F)* r.p may be satisfied. To avoid any ambiguities 

this might cause, the best choice seems to be to choose c = d. 

3.4 Summary 

In this chapter we considered various modal propositional languages with semantics described 

in terms of time structures based on time points (or instants). In the next chapter, we dis­

cuss modal propositional languages in which the possible worlds represent time intervals. 

L17 



Chapter 4 

Modal approaches with intervals 

4.1 From instants to intervals 

When reasoning about program specifications and verification, as well as in some areas of AI, 

it is sometimes more convenient to consider the truth value of sentences over intervals rather 

than time points. This is particularly relevant if we want to express the relationship between 

the truth value of a sentence over an interval and its truth value over some subinterval. 

In this chapter, we discuss the axiomatisation of time structures for modal logics based 

on intervals rather than points. Firstly, we consider extended tense logic, a modal logic 

suggested by Van Benthem that uses the principles of Priorean tense logic but with intervals 

as primitive [VB91]. Then we look at Halpern & Shoham's logic that has time points as 

primitive but where sentences are interpreted over intervals [HS91], and lastly we briefly 

discuss a spatial representation of relationships between intervals suggested by Venema 

[Ven88]. 

4.2 Extended tense logic 

Extended tense logic, also called interval tense logic, uses a modal language and a time 

structure with intervals as primitive ([VB91] and [Haj96]). The alphabet consists of the 

following elements: 

• a set <I> containing one or more atoms p, q, ... 

• the punctuation symbols'(' and')' 

• the connectives -, and -+ 



• the modal operators [F], read 'always in the future', [P], read 'always in the past', 

and D, read 'for all subintervals'. 

The duals (F), read 'sometime in the future', (P), read 'sometime in the past', and<>, read 

'for some subinterval', are defined in terms of [F], [P] and D as before: for any sentence <p, 

(F) <p =def --,[Fj--,rp 

(P) 'P =def --,[pj--,rp 

<>rp =def --,0--,r,p. 

The set of well-formed formulae and the connectives/\, V and~ are defined in the usual 

way. The semantics of the logic is based on a time structure :F =(I,<,~) where I is a set, 

the elements of which are called intervals, with the accessibility relation < corresponding 

to [F], its converse, >,corresponding to [P], and the accessibility relation~' also known as 

the inclusion relation, corresponding to D. Two of the relationships that may exist between 

distinct intervals i and j are relevant: i < j expresses the notion that interval i precedes 

interval j (there is no overlap), and i ~ j expresses the idea that interval i is a subinterval 

of interval j. 

The valuation V: ci> ~ 21 associates, with each p E ci>, the set of intervals i E I over which. 

pis true. A model is an ordered tuple M = (I,<,~' V) and we say that a sentence <pis 

true relative to M over an interval i, denoted by M lh <p, iff one of the following cases 

applies: 

• <p E ci> and i E V ( <p) 

• <p = --,'lj; and M J.f'i '1/J 

• <p = '1/J ~X and M J.f'i '¢or M lh X 

• <p = [F]'¢ and M lf-j '¢for all j such that i < j 

• <p = [P]'¢ and M If-j '¢ for all j such that i > j 

• <p = D'¢ and M If-j '¢ for all j such that j ~ i. 

The sentence <pis globally true over a model Miff M lh <p for all i E I. Global truth of a 

sentence over a frame is defined as before. 
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4.2.1 Axiomatisation 

In [VB91] Van Benthem points out how properties of a temporal structure suitable for 

an intended application can be formulated. These axioms are based on a reformation of 

those suggested by Humberstone [Hum79]. We discuss the formulation of a number of these 

axioms. 

The following two schemas axiomatise the class of structures in which < and > are converses: 

ITL.OJ r.p--+ [F] (P) r.p 

ITL.02 r.p--+ (P] (F) r.p 

Axioms ITL.03 and ITL.04 serve to define certain constraints on~: 

ITL.03 Dr.p --+ DDr.p 

ITL.04 Dr.p --+ r.p 

(Transitivity of ~) 

(Reflexivity of ~) 

The two accessibility relations < and ~ are not completely independent. This means that 

for a number of properties we have to take the interaction between < and ~, or between > 

and~. into account [VB91]. 

ITL.05 (F) r.p--+ D (F) r.p 

ITL.06 (P) r.p--+ D (P) r.p 

(Right-monotonicity of<,~. 

i.e. Vx, y(x < y--+ Vz(z ~ y--+ x < z))) 

(Left-monotonicity of>,~. 

i.e. Vx, y(y > x--+ Vz(z ~ x--+ y > z))) 

The following three axioms can be included for properties of<. 

ITL.07 [F]r.p--+ [F][F]r.p 

ITL.OB [F]r.p--+ (F) r.p 

ITL.09 [P]r.p--+ (P) r.p 

(Transitivity of<) 

(Right-unboundedness of<, 

i.e. Vx3y(x < y)) 

(Left-unboundedness of>, 

i.e. Vx3y(x > y)). 

As was the case with instant tense logic, we again have the problem that there are some 

properties of < and of the interaction between < and ~ for which it is not possible to 

formulate a schema in the language that characterises the class of structures with that 

property. These include convexity, freedom and disjunctivity (refer to Section 2.3.1). Van 

Benthem partially solves this problem by using axioms, or sometimes axiom pairs, to imply, 

in an indirect way, some of the required properties. This is done, for example, for convexity 

of the time structure, i.e. the notion that stretches of time are uninterrupted; there are no 

gaps [VB84]. We say that a structure is convex in the sense that < and ~ are such that 
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Vx, y, z((x < y 1\ y < z) ~ Vu((x ~ u 1\ z ~ u) ~ y ~ u)). Van Benthem formulates the 

following pair of axioms to imply a fon:n of convexity: 

ITL.JO <>(F) (D<p 1\ ¢) ~ ({F) <p V <>¢),which can be expressed as 

Vi,j((j ~ i) ~ Vk((j < k) ~ ((k ~ i) V 3l((l ~ k) 1\ (i < l))))), and 

ITL.11 <> (P) (D<p 1\ 1/J) ~ ( (P) <p V <>¢ ), which can be expressed as 

Vi,j((j ~ i) ~ Vk((k < j) ~ ((k ~ i) V 3l((l ~ k) 1\ (l < i))))). 

The combination of the two schemas imply convexity of the structure in an indirect way: by 

formulating a pair of related axioms, we can enforce a form of convexity on the relationships 

among intervals. This is shown in the next proposition. 

Proposition 6 1. Let JC be the class of structures F =(I,<,~) where < and~ are such 

that 

Vi,j((j ~ i) ~ Vk((j < k) ~ ((k ~ i) V 3l((l ~ k) 1\ (i < l))))] and 

Vi,j((j ~ i) ~ Vk((k <j) ~ ((k ~ i) V 3l((l ~ k) 1\ (l < i))))]. 
Then the frame CIC of JC globally satisfies all instances of both axiom schema ITL.lO and 

ITL.ll. 

2. If JC is a class of structures F = (I,<,~) such that the frame CIC of JC globally satisfies 

all instances ofiTL.lO and ITL.ll, then for every F =(I,<,~) E IC, < and~ satisfy 

Vi,j((j ~ i) ~ Vk((j < k) ~ ((k ~ i) V 3l((l ~ k) 1\ (i < l))))] and 

Vi,j((j ~ i) ~ Vk((k < j) ~ ((k ~ i) V 3l((l ~ k) 1\ (l < i))))]. 

la. Let Fo =(I,<,~) E JC be a structure in which <and~ are such that 

Vi,j((j ~ i) ~ Vk((j < k) ~ ((k ~ i) V 3l((l ~ k) 1\ (i < l))))). 

We have to show that all instances of ITL.J 0 are globally satisfied in C/C. 

Let Mo be an arbitrary model based on Fo and pick an arbitrary i' E I. 

Suppose Mo lf-i' <>(F) (D<p 1\ ¢), i.e. there exists a j' such that j' ~ i' and Mo lf-i' 

(F) (D<p/\1/J). This means that there exists a k' such that j' < k' and Mo lf-k' (D<p/\1/J), i.e. 

Mo lf-k' 1/J and, for alll' such that l' ~ k', we have Mo lh' <p. (Figure 4.1 gives a graphical 

representation of the different possibilities.) We have to show that Mo lf-i' ((F) <p V <>¢). 

Suppose Mo W:i' ((F) <pV <>¢),i.e. Mo W:i' (F) <p and Mo W:i' <>¢. So it is not the case that 

there exists an m such that i' < m and Mo lf-m <p, and it is also not the case that there 

exists ann such that n ~ i' and Mo 11-n 1/J. 

We know that< and~ are such that 

Vi,j((j ~ i) ~ Vk((j < k) ~ ((k ~ i) V 3l((l ~ k) 1\ (i < l))))). 
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Figure 4.1: A number of possible relationships exists between i' and k', where j' ~ i' 

and j' < k': (a) Interval k' ends before i' ends, (b) k' ends at the same time as i', (c) 

k' overlaps i' at the end, (d) k' starts where i' ends, and (e) k' starts after i' ends. 

Now j' ~ i', so, for all k such that j' < k, we have k ~ i', or there exists an l such that 

l ~ k and i' < l. In particular, k' ~ i', or there exists an l such that l ~ k' and i' < l. 

Suppose k' ~ i'. We know that Mo lf-k' '1/J, so there exists an n such that n ~ i' and 

Mo lf-n '1/J, i.e. Mo lf-i' 0'1/J which contradicts our earlier assumption. 

Suppose k' i i'. Then there exists an l such that l ~ k' and i' < l. We know that Mo lf-l' r.p 

for all l' ~ k', so, in particular, Mo lh r.p. This means that there exists an m such that 

i' < m and Mo lf-m r.p, i.e. Mo lf-i, (F) r.p which is also a contracliction. It follows that 

Mo If-i' ((F) r.p V 0'1/J) and consequently, that all instances of ITL.l 0 are globally satisfied 

in CJC. 

lb. We can show in a similar way that, if< and~ are such that 

Vi,j((j ~ i)---+ Vk((k < j)---+ ((k ~ i) V 3l((l ~ k) /\ (l < i))))), 

then all instances of ITL.ll are globally satisfied in CJC. 

2a. Suppose the frame CJC of JC globally satisfies ITL.JO. We have to show that, for every 

:F = (I,<,~) E JC, < and ~ are such that 

Vi,j[(j ~ i)---+ Vk((j < k)---+ ((k ~ i) V 3l((l ~ k) /\ (i < l))))]. 
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Pick an arbitrary :FoE K and suppose there exists an io, i1, i2 E I such that io ~ i1 and 

io < i2, but i2 %. i1 and there does not exist a k such that k ~ i2 and i1 < k. Let Mo be 

the model such that V(p) ={iii~ i2} for some p E <I>, and V(q) = {i2} for some q E <I>. 

This means that Mo lf--i2 Dp for some p E <I>, and Mo lh2 q for some q E <I>, i.e. Mo lf--i2 

Op 1\ q. Since io < i2, we have Mo lh0 (F) (Op 1\ q). It also holds that io ~ i1, so Mo lh1 

<>(F) (Op 1\ q). 

From ITL.10 it follows that Mo lf--i1 ((F) p V <>q), i.e. Mo lf--i1 (F) p or Mo lf--i1 <>q. So 

there exists a k E I such that i1 < k and Mo lf--k p, (so k ~ i2 from our choice of V(p)), 

or there exists a k ~ i1 such that Mo lf--k q, (so k = i2 from our choice of V(q)). It follows 

that either i2 ~ i1, or there exists a k such that i1 < k and k ~ i2. This contradicts our 

earlier assumption. It follows that, for all :F = (I,<,~) E K, < and ~ are such that 

\fi,j[(j ~ i)- \fk((j < k)- ((k ~ i) v :ll((l ~ k) 1\ (i < l))))]. 

2b. It can be shown in a similar way that, if all instances of ITL.11 (which is the dual of 

ITL.10 for the converse > of <) are globally satisfied in the frame CJC of K, then for all 

:F =(I,<,~) E K, <and~ are such that 

\fi,j[(j ~ i)- \fk((k < j)- ((k ~ i) v :ll((l ~ k) 1\ (l < i))))]. 

Van Benthem uses the axiom pair ITL.12 and ITL.13for indirectly introducing the property 

of neighbourhood, i.e. every interval that has an interval preceding it, also has a nearest 

neighbouring interval preceding it, and every interval that has an interval succeeding it, 

also a nearest neighbouring interval succeeding it. Thus < is such that 

\fx, y(x < y--+ :lz(x < z 1\ \fu-.(x < u 1\ u < z))) and 

\fx, y(y < x--+ :lz(z < x 1\ \fu•(z < u 1\ u < x))). 

ITL.12 (cp 1\ 0'1/J)--+ (F) [P]( (F) cp V <>'1/1) 

ITL.13 (cp 1\ 0'1/J)--+ (P) [F]( (P) cp V <>'1/1) 

Directedness stipulates that, for every pair of intervals x andy, there exists an interval con­

taining both x andy. This can be expressed in the metalanguage as \fx, y:lz(x ~ z 1\ y ~ z). 

A form of directedness can be introduced by the following axiom pair: 

ITL.14 ((F) cp 1\ (F) '1/1) --+ (F) ( <>cp 1\ <>'1/1) 

ITL.15 ( (P) cp 1\ (P} '1/1)--+ (P) (<>cp 1\ <>'1/1) 

It could be preferable for the structure to be dense, i.e. between any pair of intervals that 

does not overlap, we can fit in another one, i.e. \fx, y(x < y--+ :lz(x < z 1\ z < y)). The 

following schema can be used to formulate a form of density indirectly: 
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ITL.16 O'P ~ 0 (F) 'P 

If the interval inclusion relation ~ is transitive, then the McKinsey schema, i.e. OO'P ~ 

00'{), is a formulation of the property of atomicity, i.e. the existence of atomic intervals. 

This means that~ is such that 

Vi3j(j ~ i 1\ Vk(k ~ j ~ k = j)). 

Linearity of < modulo ~ can be introduced by the inclusion of a pair of axioms defining 

left-linearity and right-linearity respectively. 

ITL.17 ((F) ( 'P 1\ 0'1/J) 1\ (F) (x 1\ Oa)) ~ ((F) ( 'lj; 1\ a) V (F) ( 'P 1\ (F) x) V (F) (x 1\ (F) 'P)) 

i.e. Vi,j, k((i < j 1\ i < k) ~ (k < j V j < k V 3l(i < ll\ (l ~ j 1\ l ~ k)))) 

ITL.18 ( (P) ( 'P 1\ 0'1/J) 1\ (P) (x 1\ Oa)) ~ ( (P) ( 'lj; 1\ a) V (P) ( 'P 1\ (P) x) V (P) (x 1\ (P) 'P)) 

i.e. Vi,j,k((j < i 1\ k < i) ~ (k < j V j < k V 3l(l < i 1\ (l ~ j 1\ l ~ k)))). 

4.2.2 Axiomatisation for superperiods 

It may also be convenient to express the relationship between the truth of a sentence 'P over 

an interval i and the truth of 'P over an interval j of which i is a subinterval. The interval 

j is called a superperiod of i. In [VB95],Van Benthem discusses the use of a modal operator 

oup, read 'over all superperiods'. Hajnicz [Haj96] proposes the extension of the alphabet 

for extended tense logic by adding such a modal operator, namely~. corresponding to the 

accessibility relation :2 which is the converse of~. so (i,j) E :2 iff (j, i) E ~ . This gives a 

language based on this alphabet greater expressive power [Haj96]. The dual of~. which we 

denote by ®, read 'for some superperiod', is defined as usual: 

®'{) =def ..., ~ ...,'P· 

What about the truth value of sentences of the form ~'lj;? If 'Pis a sentence of the form ~'1/J, 

we say that 'Pis true relative to the model M =(I,<,~. V) over the interval i, denoted by 

M lf-i ~'1/J, iff M lf-j 'lj; for every j E I such that i ~ j. 

The following axiom pair expresses the notion that ~ and :2 are mutually converse: 

SPTL.OJ 'P ~ o ® 'P 

SPTL.02 'P ~ ~O<p. 

With the addition of ~. some axioms are formulated in a way slightly different from the 

way they were formulated in the previous section. As an illustration, we give the axioms 

for left-linearity and right-linearity [Haj96]: 

SPTL.03 (P) <p ~ [P]( (P) 'P V 0 ® 'P V (F) 'P) 

SPTL.04 (F) <p ~ [F]( (P) 'P V 0 ® 'P V (F) 'P) 
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4.3 A modal language using Allen's interval-interval 

relations 

There are areas in AI, such as qualitative physics and automatic planning, where we need 

to represent continuous change over a period of time. Halpern & Shoham [HS91] introduce 

a modal logic suitable for applications like these. A time structure is used with time points 

as primitive and, although the modal operators describe relationships between intervals, 

the semantics is formulated in terms of relationships between time points. 

The alphabet of the language consists of the following elements: 

• a set ci> containing one or more atoms p, q, ... 

• the punctuation symbols'(' and')' 

• the connectives --+ and -, 

• the modal operators (A) , read 'for some abutting interval', (B) , read 'for some initial 

interval', (E), read 'for some terminal interval', (A), read 'for some interval of which 

the current one is an abutting interval', (fJ), read 'for some interval of which the 

current one is an initial interval', and (E) , read 'for some interval of which the 

current one is a terminal interval'. 

The modal operators correspond to some of the interval-interval relations defined by Allen 

as discussed in Chapter 2 (see Figure 4.2). When considering the truth of a sentence over 

an interval (t, t'), we say that (t, t') is the current interval 1 . An abutting interval is an 

interval that starts at the same time point at which the current one ends. By initial interval 

we mean an interval beginning at the same time as the current one but ending before it, 

and by terminal interval we mean an interval beginning after the current one but ending at 

the same time. 

The set of sentences is defined in the usual way and the connectives V, A and ~ are defined 

in terms of --+ and -, as before. 

Both (B) and (E) are defined for strict subintervals only, i.e. an interval cannot be a 

beginning or end subinterval of itself. The duals [A], read 'for all abutting intervals', [B], 

read 'for all initial intervals', [E], read 'for all terminal intervals', [A], read 'for all intervals 

of which the current one is an abutting interval', [B], read 'for all intervals of which the 

1This concept is sometimes referred to as tempoml indexicality. 
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Figure 4.2: Halpern & Shoham's interval-interval relations 

current one is an initial interval', and [E], read 'for all intervals of which the current one is 

a terminal interval', are defined in the usual way, e.g. [A]c,o =def --,(A) •c,o. 

For the purpose of Halpern & Shoham's system, a temporal structure is taken to be a pair 

:F = (T, ~), where T is a set the elements of which are called time points and ~ is an 

accessibility relation on T. An interval, denoted by (t1, t2), is defined as a set of points 

{t: t1 ~ t ~ t2}. We say that t1 < t2 iff t1 ~ t2 and t2 i t1. 

Sentences are interpreted over intervals. Let M = (T, ~' V) be an arbitrary model based 

on :F, where V is a function that associates each p E cp with the set of intervals over which 

it is true. A sentence c,o is said to be true relative toM over an interval (t, t'), denoted by 

M If- (t,t'} c,o, iff one of the following cases applies: 

• c,o E cp and (t,t') E V(c,o) 

• c,o = •1./J and M W: (t,t'} 1./J 

• c,o = 1./J ~ X and M W: (t,t'} 1./J or M If- (t,t'} X 

• c,o = (A) 1./J and there exists at" such that t' < t" and M lf-(t',t"} 1./J 

• c,o = (B) 1./J and there exists at" such that t ~ t" and t" < t' and M If- (t,t") 1./J 

• c,o = (E) 1./J and there exists a t" such that t < t" and t'' ~ t' and M If- (t",t'} 1./J 
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• cp = (A) '1/J and there exists at" such that t" < t and M 11-(t",t) '1/J 

• cp = (B) '1/J and there exists at" such that t' < t" and M II- (t,t") '1/J 

• cp = (E) '1/J and there exists a t" such that t" < t and M II- (t" ,t') '1/J 

A sentence cp is said to be globally true (or globally satisfied) over a model Miff M 11-(t,t')'P 

for all intervals (t, t') such that t, t' E T. Global truth of a sentence over a frame is defined 

as before. 

The system allows point intervals (t, t). A point interval cannot have any subintervals, i.e. 

for any point interval (s, s), there does not exist a time point t between s and s to form 

a subinterval (s,t) or (t,s). For point intervals of the form (s,s), [B]c.p will therefore be 

vacuously true. This means that [B] j_ holds for point intervals only. This principle is used 

to define the following pair of modal operators, one for the beginning point and another for 

the end point of an interval: 

[[BP]]c.p =def ( cp 1\ [B] ..L) V (B) ( cp 1\ [B] ..L) 

[[EP]]cp =de/ (cp 1\ [B] ..L) V (E) (c.p 1\ [B] ..L) 

where [[BP]] cp expresses the notion that cp holds at the beginning point of the current 

interval, and [[EP]] cp expresses the notion that cp holds at the end point of the current 

interval. The definition of the beginning point operator stipulates that cp is true at the 

beginning point of the current interval iff it either is the case that ( cp is true over the 

current interval which has no beginning subintervals, i.e. the current interval itself is a 

beginning point) or (there exists a subinterval, which is a beginning point of the current 

interval, at which cp is true). The modal operators [[BP]] and [[EP]] are duals of themselves, 

i.e. [[BP]]c.p =def •[[BP]]•c.p and [[EP]]c.p =def •([EP]]•c.p : for an arbitrary interval there 

exists only one beginning point and one end point. 

A number of more complex modal operators can be defined in terms of those primitive in 

the language. With the addition of these operators, we have a one-to-one correspondence 

between the set of modal operators for this language and Allen's set of interval-interval 

relations (excluding equality) as discussed in Chapter 2. Figure 4.3 gives a graphical repre­

sentation of the new operators. The dotted line shows the current interval in each case. 
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Figure 4.3: A graphical representation of the more complex modal operators defined 

by Halpern and Shoham. 

These operators are defined as follows: For a sentence c.p, 

(L) c.p =def (A) (A) c.p There exists some later interval, i.e. an interval beginning 

after the current one ends (not abutting it) over which c.p 

holds. 

(D) c.p =def (B) (E) c.p There exists an interval during the current one 

(starting later than but ending before the current 

one ends) over which c.p holds. 

(O)c.p =def (E) (fJ) c.p There exists an interval that overlaps with the 

current one at the end (beginning after and ending 

after the current one) over which c.p holds. 

(L) c.p =def (A) (A)c.p There exists an interval earlier than the current one 

(not abutting it) over which c.p holds. 

(iJ)c.p =def (fJ) (E) c.p There exists an interval that overlaps with the 

current one at both ends (beginning before and 

ending after the current one) over which c.p holds. 

(O)c.p =def (B) (E) c.p There exists an interval that overlaps with the 

current one at the beginning (beginning earlier and 

ending earlier than the current one) over which c.p holds. 



Do these modal operators we have defined in terms of the primitive ones really achieve their 

intended meaning by these definitions? Let us have a closer look at (D), using the given 

semantics, as an example. 

Example 17 The 'meaning' of (D). 

Let Mo = (T, ~' V) be an arbitrary model and let (t, t') be an arbitrary interval, with 

t, t' E T. Suppose Mo lf--(t,t') (D) c.p. We want to show that this means that there exists an 

interval beginning later than the current interval, and ending before it, over which c.p holds. 

If Mo If- (t,t') (D) c.p then Mo If- (t,t') (B) (E) c.p, by definition. This means that there exists a 

t" E T such that t ~ t" and t" < t', and Mo If- (t,t") (E) c.p, i.e. there exists a t"' E T such 

that t < t111 and t"' ~ t!', and Mo If- (t"',t") c.p. So there exists a t", t"' E T such that t < t111 

and t" < t', and Mo lf-(t"',t") c.p. In other words, there exists an interval beginning later than 

the current interval and ending before it, over which c.p holds. 

Halpern & Shoham [HS91] define the following formulae which can be used in order to 

express properties like discreteness, denseness and linearity of the time structure in the 

object language: 

lengthO =def [B] ..1. 

(Point intervals have length = 0.) 

length! =def (B) T 1\ [B] [B] ..1. 

(If an interval has length = 1, then that interval 

contains a beginning interval, and all beginning intervals 

are point intervals. So it only contains a beginning point.) 

The accessibility relation ~ in a time structure :F = (T, ~) is discrete if it is such that 

Vx, y(x < y--+ 3z(x < z 1\ z ~ y 1\ •3u(x < u 1\ u < z))) and 

Vx, y(y < x--+ 3z(y ~ z 1\ z < x 1\ •3u(z < u 1\ u < x))). 

This property is introduced by Halpern & Shoham by means of the following definition: 

discrete =def lengthO V length! V ( (B)lengthl 1\ (E)lengthl). 

How does this correspond to discreteness? Suppose M If-- discrete. Then M If-- (s,t) discrete 

for every interval (s, t). Now exactly one of the following three possible conditions holds: 

1. Mo lf--(s,t)lengthO: This means that (s, t) is a point interval, so sf. t (s = t) and thus 

there does not exist any time point r E T such that s < r < t. 
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2. Mo lf-(s,t)lengthl: The only subinterval that (s, t) can contain is a beginning point 

interval (s, s). This means that the only subintervals that (s, t) can contain are (s, s) 

and (t, t). So there does not exist an r E T such that s < r and r < t. (We will 

see later (axiom VEN.07) that, if an interval contains a beginning point, then it also 

contains an end point.) 

3. Mo lf-(s,t) (B)lengthl A (E)lengthl. Within (s, t), there exists a beginning interval 

with lengthl, i.e. an interval (s, r) such that s < r < t, but for which there does not 

exist an r' such that s < r' < r. It is also the case that there exists an end interval 

with lengthl, i.e. an interval (u, t) such that s < u < t, but for which there does not 

exist a u' such that u < u' < t. 

It follows that discreteness of :::; is ensured. 

In contrast to this, density of :::;, i.e. Vx, y(x < y ----+ 3z(x < z A z < y)), can be defined as 

follows: 

dense =def ..., lengthl. 

From the definition of lengthl, it follows that, if an interval (s, t) is of lengthl, then s < t 
and there does not exist any point r between s and t. If density is defined as above, it 

means that there does not exist an interval (s, t) of which we can say that there does not 

exist a point r between s and t. So, for every interval (s, t), it follows that there exists an 

r, such that s < r < t. 

The accessibility relation :::; is unbounded (infinite) if Vx(3y(x < y) A 3z(z < x)). Halpern 

& Shoham define this property in terms of abutting intervals: 

unbounded =def (A) T A (A) T 

This means that, for an arbitrary interval, it is always the case that there exists an interval 

of which the current interval is an abutting interval, and there exists an abutting interval 

(succeeding the current one). The time structure is unbounded in both directions. Right­

unboundedness and left-unboundedness can alternatively be defined as follows: 

Right-unbounded =def (A) T 

Left-unbounded =def (A) T 

Finally, the property of linearity of :::; is introduced as follows: 

linear =def ((A) <p----+ [A] (<p V (B) <p V (13) <p)) A ((A) <p----+ [A] (<p V (E) <p V (E) <p)) 

We want to ascertain whether this definition characterises the class JC of quasi-linear struc­

tures, i.e. structures in which the accessibility :::-elation :::; is both right-linear and left-linear: 
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Vx, y, z(x < y Ax< z ~ (y < z Vy = z V z < y)) and 

Vx, y, z(y < x A z < x ~ (y < z V y = z V z < y)). 

Proposition 7 1. Let K, be the class of time structures of the form F = (T, :::;) such that 

:::; is both right-linear and left-linear in every F E K, and let CIC be the frame of K. Then 

every M E C/C globally satisfies all instances of the axiom schema 

((A) <p ~ [A](<p v (B) <p v (.B) <p)) A ((A) <p ~ [A] (<p v (E) <p v (E) <p)). 

2. If the frame CIC of the class K, of structures globally satisfies the axiom schema 

((A) <p ~ [A](<p v (B) <p v (.B) <p)) A ((A) <p ~ [A] (<p v (E) <p v (E) <p)) 

then, for every F = (T, :::;)E K, :::; is both right-linear and left-linear. 

la. Let K, be the class of structures of the form F = (T, :::;) such that :::; is right-linear. 

Pick an arbitrary Fo = (T, :::;) E K, and an arbitrary Mo E CFo· We have to show that 

Mo 11-(t,t') (A) <p ~[A] (<p V (B) <p V (.B) <p) for all (t, t') such that t, t' E T. 

Pick an arbitrary (to, t1) with to, t1 E T. Suppose Mo .W:(to,t1) (A) <p ~ [A] (<p V (B) <p V 

(.B) <p), i.e. if there exists a t2 E T such that t1 < t2 and Mo ll-(tJ,t2 ) <p, then Mo .W:(to,t1 ) 

[A] (<p V (B) <p V (.B) <p). So there exists a t3 E T such that t1 < t3 and (Mo .W:(t1 ,t3 ) <p and 

Mo .W:(t1.ta) (B) <p and Mo .W:(t1 ,ta) (.B) <p). But :::; is right-linear and we have t1 < t2 and 

t1 < t3, so t2 < t3 or t2 = t3 or t3 < t2. If t2 = t3 then Mo ll-(t1,ta) <p : a contradiction. 

We know that Mo 11-(t1 .t2) <p, so if t2 < t3, then Mo ll-(t1 ,ta) (B) <p, also a contradiction. 

Furthermore, ift3 < t2, thenMo ll-(t1 ,ta) (.B) <p. This also contradicts our earlier assumption, 

so Mo II- (to,t1 ) [A] ( <p V (B) <p V (B) <p). Thus Mo II- (to,ti) ((A) <p ~ [A] ( <p V (B) <p V (B) <p) ). 

lb. We can show in a similar fashion that, if :::; is left-linear then Mo 11-(to.ti) (A) <p ~ 

[A] (<p v (E) <f' v (E) <p). 

It follows that, if:::; is both right-linear and left-linear, then Mo 11-(t,t') ((A) <p ~ [A] (<p V 

(B) <p V (fJ) <p)) A ((A) <p ~ [A] (<p V (E) <p V (E) <p)) for all intervals (t, t'), where t, t' E T. 

2a. Suppose all instances of the schema ((A)<p ~ [A](<pV (B)<pV (B)<p)) A ((A)<p ~ 

[A] (<p V (E) <p V (E) <p)) are globally satisfied in the frame CIC of the class K, of structures 

of the form F = (T, :::;). We have to show that, for every FE K, :::; is both right-linear and 

left-linear. 

Firstly, we show that, if all instances of (A) <p ~ [A] (<pV (B) <pV (fJ) <p) are globally satisfied 

in the frame C~e, then, for every FE K, :::; is right-linear. 

Pick an arbitrary Fo = (T, :::;) E K, and suppose we have to, it, t2, t3 E T such that to< t1, 

t1 < t2 and t1 < t3, but t2 =/= t3 and t2 f:. t3 and t3 f:. t2, i.e. :::; is not right-linear. Let 

Mo = (T, :::;, V) be the model such that V(p) = { (t1, t2)} for all p E ci>. We know that 

Mo II- (tt .t2) p for arbitrary p, so Mo II- (to,ti) (A) p. 
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From the schema it follows that Mo lf-(to,tJ) [A] (pV (B) pV (.B) p). So for an arbitrary t' E T 

such that t1 < t', it follows that Mo lf-(t1 ,t') p or Mo lf-(t11t') (B) p or Mo lf-(t11t') (.B) p. In 

particular, for (t1, t3), we have Mo lf-(t11ta) p or Mo lf-(t1,ta) (B) p or Mo lf-(tda) (.B) p. So 

Mo If-(t1.ta) p which means that t3 = t2 from our choice of V, or there exists a t" such that 

t1 ~ t" < t3 and Mo If- (t11t") p, so t" = t2, or there exists a t'" such that t1 < t3 < t"' and 

Mo lf-(t1.t'") p, sot"'= t2. It follows that t2 = t3 or t2 < t3 or t3 < t2, which contradicts our 

earlier assumption. So, for every FE JC, ~ is right-linear. 

2b. We can show in a similar way that, if (A)<p ~[A] (<pV (E)<pV (E)<p) is globally 

satisfied in the frame CJC, then, for every F = (T, ~)E JC, ~ is left-linear. 

It follows that, if all instances of the schema ((A) <p ~[A] (<p V (B) <p V (.B) <p)) /\ ((A) <p ~ 

[A] (<pV(E) <pV(E) <p)) are globally satisfied in the frame CJC, then, for every F = (T, ~)E JC, 

~ is both right-linear and left-linear. 

Venema [Ven88] shows that the two modal operators (A) and (A) can be defined in terms 

of other modal operators as follows: 

(A) <p =de/ [[EPJ] (.B) <p 

(A) <p =def [[BP]] (E) <p 

For an interval i to meet an interval j, they share one atomic interval which forms the end 

point of i and the beginning point of j. Since a point interval cannot meet and cannot be 

met by any other point interval, Hajnicz [Haj96] prefers the following alternative definitions: 

[A]<p =def [E] ([B) <p V (E) T) 

[A] <p =def [B] ([E) <p v (B) T) 

Proposition 8 The Hajnicz definitions of [A] and [A] given above correspond to those of 

Halpern & Shoham. 

(a) Hajnicz [Haj96] defines [A] as follows: 

[A]<p =def [E] ([.B) <p V (E) T) 

We have to show that this corresponds to Halpern & Shoham's definition of [A]. 

Consider an arbitrary model Mo = (T, ~' V) and an arbitrary interval (t0, t1) where to, t1 E 

T. Suppose Mo lf-(to,t1 ) [A]<p, i.e. Mo lf-(to,t1 ) [E] ([.B) <p V (E) T). This means that, for all 

terminal intervals (t', t1) of (to, t1), it must be the case that either Mo lf-(t',t1 ) [.B) <p or 
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Mo lf-(t',ti} (E) T. Choose an arbitrary (t3, h), such that (t3, t1) is a terminal interval of 

(to, t1). 

Suppose Mo ~(ta,t1 ) (E) T. This means that (t3, t1) is an end point, i.e. (t3, t1) = (tb t1). 

It is also the case that Mo lf-(ta,tl} [.B] r.p, so Mo lf-(t1 ,t1) [.B] r.p, i.e. Mo lf-(t1.t"} r.p for all 

intervals (tb t") where t1 < t". So Mo lf-(to,t1 ) [A] r.p as per Halpern & Shoham's definition. 

Now suppose Mo ~(ta.tl} [.B] r.p. Then Mo lf-(tah} (E) T, which means that (t3, t1) contains 

another end interval and is thus not relevant. 

(b) Hajnicz defines [A] as follows: 

[A] r.p -def [B] ( [E] r.p v (B) T) 

It can be shown in a similar way that Mo If- (t,t'} [B] ( [ E] r.p V (B) T) means that, for all 

intervals (t", t), we have Mo If- (t" ,t} r.p, so Mo If- (t,t'} [A] r.p as per Halpern & Shoham's 

definition. 

Halpern & Shoham do not give an axiomatisation for their system so we present one sug­

gested by Venema [Ven88]. 

4.3.1 Axiomatisation 

Venema ([Ven88] and [Ven90]) maintains that Halpern & Shoham's system can be inter­

preted using one of two possible models. Firstly, we can use a model based on the time 

structure discussed in the previous section, i.e. points are primitive but sentences are inter­

preted over intervals. Secondly we can use a model based on a time structure with intervals 

as primitive. 

Points as primitive 

The following axioms express relationships between the modal operators (B) and (.B) and 

between (E) and (E): 

VEN.Ola 'P-+ [B] (.B) 'P 

VEN.Olb r.p-+ [E] (E) r.p 

VEN.02a 'P-+ [.B](B) 'P 

VEN.02b r.p -+ [E){ E) r.p 
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VEN.Ol and VEN.02 are formulated to express the relationship between (B) and (.B), and 

between (E) and (E) respectively. As an example, we show the relationship between [B] 

and (.B) from VEN.Ola. Suppose M lf-(t,t') <p. From VEN.Ola this means that M lf-(t,t') 

[B] (B)rp. So M lf-(t,t") (B)rp for all t" such that t" < t', from which it follows that there 

exists a l (i.e. t') such that t" < land M If- (t,t) <p. 

We want to show that a similar relationship exists between (A) and (A.) (if we use the 

Hajnicz definitions of [A] and [A.] given previously). 

Proposition 9 Let [A.] and [A] be defined as by Hajnicz: 

[A.] 'P =def [B] ( [E) <p v (B) T) 

[A]rp =def [E] ((.B) <p V (E) T) 

Let K be the class of time structures of the form :F = (T, :S) such that every C:F E CK 

globally satisfies all instances of the schemas VEN.Ol and VEN.02 where CK is the frame of 

K. Then every M E CK globally satisfies all instances of the schemas <p - [A.] (A) <p and 

'P- [A] (A.) 'P· 

1. Let [A.] <p and [A]rp be defined as above. We have to show that all instances of the 

schema <p- (A.] (A) <pare globally satisfied in the frame CK. 

Well, (A.) <p =def [B] ((E) <p V (B) T), so (A.) (A) <p = [B] ((E) (A) <p V (B) T). 

Using previous definitions and axioms, we firstly derive the following equality which is used 

in the proof: 

[B] ((E) (A) <p v (B) T) ~ [B] ((E) (• [A]•rp) v (B) T) 

~ [B] ((E) (• [E] ((B) ''P V (E) T)) V (B) T) 

~ [B] ((E) (• [E]•(• (.B) •<p 1\.., (E) T)) v (B) T) 

~ [B] ((E) ((E) ((.B) <p 1\.., (E).., l_)) v (B) T) 

~ [B]((E] ((E)((B)rpA[E] l_))v(B)T) 

~ [B] ((E) ((E) ((.B) <p 1\ [B] l_)) V (B) T) 

(from VEN.07 which follows) 

Choose an arbitrary Mo E CK and an arbitrary (tt, t2) E T. Suppose Mo lf-(tt.t2) <p. We 

have to show that Mo lf-(t1 ,t2 ) [A.] (A) <p. 

By VEN.Ola we have Mo lf-(tth) [B] (.B) <p. This means that Mo lf-(tt.t') (.B) <p for every 

t' E T such that lt :::; t' < t2. For any such t', we now have two possibilities: t1 < t' or 

t1 = t'. Let's look at each of these in turn. 



Suppose t1 < t'. We know that Mo lf-(t1 ,t1 ) T, so we can claim that Mo 11-(h,t') (B) T. 

Suppose t1 = t'. Since (t~, t1) is a point interval, Mo lf-(t1 ,t1 ) [B] ..L, so Mo lf-(t1 ,t1 ) 

[.E] (E) [B]..L (by VEN.02b ). It is also the case that Mo lf-(t1 ,t1 ) (B) cp, so Mo lf-(t~.t 1 ) 

[.E) (E) (B) cp (again by VEN.02b ). This means that Mo lf-(t~,t1 ) [.E) (E) (B) c.pA[E] (E) [B]..L, 

so Mo lf-(t~,t 1 ) [.E) ((E) ((B) cpA [B]..L)). 

It follows that, for every t' E T such that t1 :S t' < t2 we have Mo 11-(t~.t') (B) T or 

Mo 11-(t~.t') [.E) ((E) ((B) cpA [B]..L)), and consequently, that Mo lf-(t1 ,t') [.E) ((E) ((B) cpA 

(B]..L))V(B) T. From this we can claim that Mo lf-(tJ.t2) [B]((E]( (E) ((B) cpA [B] ..L)) V (B) T). 

From the equality shown earlier, it follows that Mo lf-(t~.t2 ) [A] (A) c.p. 

2. We can show, in a similar fashion, that all instances of the schema cp--+ [A] (A) cp are 

globally satisfied in c/C. 

Axioms VEN.03 and VEN.04 formulate transitive relationships between initial intervals, 

and between intervals that share an initial interval, respectively. 

VEN.03 (B) (B) cp--+ (B) cp 

VEN.04 (B) (B) cp--+ (B) cp 

VEN. 05 and VEN. 06 express the notion that each interval is either a beginning/ end point 

itself or contains one. 

VEN.05 (B) (B] ..LV (B] ..L 

VEN.06 (E) (E] ..LV [E] ..L 

Axiom VEN.07 expresses the idea that an interval contains a beginning point iff it contains 

an end point. 

VEN.07 [B] ..L+-+ [E] ..L 

VEN.OB, VEN.09and VEN.lOexpress the relationships between (B) and (E), between (B) 

and (.E), and between (B) and (.E) respectively. 

VEN.OB (B) (E) cp +-+ (E) (B) cp 

VEN.09 (B) (.E) cp--+ (.E) (B) cp 

VEN.lO (B) (.E) cp--+ (.E) (B) cp 

Axioms VEN.11 and VEN.12 express the idea that there exists a linear relationship between 

any two initial intervals of an interval (a form ofleft-linearity), as well as between any two 

terminal intervals of an interval (a form of right-linearity). 

VEN.ll ((B) cpA (B) 'ljJ) --+ ((B) (c.p A (B) 'ljJ) V (B) (cpA 'ljJ) V (B) ((B) cpA 'ljJ)) 

VEN.12 ((E) r.p A (E) 'ljJ) --+ ((E) (cpA (E) 'ljJ) V (E) (cpA 'ljJ) V (E) ({E) cpA 'ljJ)) 



Intervals as primitive 

In the second possibility pointed out by Venema [Ven88] we use a temporal structure 

with intervals rather than points as primitive. This way we get a direct correspondence 

between the modal operators and Allen's interval-interval relations. A time structure 

:F = (J, II, CB, CE) is used, where J is a set, the elements of which are called intervals, 

II is a relation,expressing the notion of 'meet of intervals' in J, and CB and CE are rela­

tions expressing the idea of initial and a terminal inclusion respectively, of intervals in J. 

So j CB i means that j is an initial interval of i and j CE i means that j is a terminal 

interval of i. 

A model is an ordered tuple M = (J, II, CB, CE, V), where Vis a valuation: <P -4 2J that 

associates each c.p E <P with the set of intervals over which it is true. A sentence c.p is true 

relative to M over an interval i E J, denoted by M lhc.p, iff one of the following cases 

applies: 

• c.p E <P and i E V ( c.p) 

• c.p = •'l/J and M lt'i 'ljJ 

• c.p =[A]¢ and M 11-j 'ljJ for all j such that illi 

• c.p = [B]'lj; and M II-j 'ljJ for all j such that j CB i 

• c.p = [E]'l/J and M 11-j 'ljJ for all j such that j CE i 

• c.p =[A]¢ and M 11-j 'ljJ for all j such that illi 

• c.p = [B]'l/J and M II-j 'ljJ for all j such that i CB j 

• c.p = [E]¢ and M 11-j 'ljJ for all j such that iCE j, 

where the modal operators are read as before. 

The duals of the modal operators are also defined as in the previous section. 

This system can be simplified by using the II accessibility relation only. We use a time 

structure :F = (J, II) similar to the one used by Allen & Hayes in [AH89]. J is a set, the 

elements of which are called intervals, and II again expresses the notion of two intervals 

meeting. The relations CB and CE can be defined in terms of II as follows: 

j CB i =def 3k, l, m((klli A illm) A (klli A illl A lllm)) 

j CE i =def 3k, l, m((klli A illm) A (kill A liJj AjJim)) 
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The language uses the same alphabet as the language discussed in the previous section 

with the exclusion of (A] and [.A]. The semantics is defined as follows: A sentence r.p is true 

relative to a model M = (J, II, V} over the interval i, denoted by M lf-ir.p, iff one of the 

following cases applies: 

• r.p E <I> and i E V(r.p) 

• r.p = •'1/J and M W: i '1/J 

• r.p = [B]'!f; and M lf-j 'lj; for every j E J such that there exists a k, l, m E J where 

(klli 1\ illm} 1\ (klli /\jill 1\ lllm} 

• r.p = (E]'!f; and M lf-j '1/J for every j E J such that there exists a k, l, m E J where 

(klli 1\ illm} 1\ (kill 1\ llli 1\ illm} 

• r.p = [B]'!f; and M lf-j '1/J for every j E J such that there exists a k, l, m E J where 

(klli 1\ illl 1\ lllm} 1\ (klli 1\ illm} 

• r.p = [E]'!f; and M lf-j '1/J for every j E J such that there exists a k, l, m E J where 

(kill 1\ llli 1\ illm} 1\ (klli 1\ illm). 

4.3.2 A spatial representation of the interval structure 

Venema (Ven90] also presents a different angle to viewing relationships between intervals 

where we get a spatial representation of the interval structure within the 'northwestern 

halfplane' of :F X :Fin which an interval (s, t) is represented by the point (s, t) as depicted 

in Figure 4.4. 

Venema shows that it is possible to construct an isomorphism between the interval structure 

:F = (T, :::;) and :F 2NW = {(x, y) E F 21x :::; y}. A set of modal operators, which are the 

spatial versions of the Halpern-Shoham modal operators, are used to indicate the position 

of a point, or a set of points, relative to the position of the current point: 
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y 

X Q 

x=y (,.,J,T 
s,s) 

The intetval <s,t > is identified 
with the point (s,t). The point 
(s,s) is the beginning point and 
(t,t) is the end point of <s,t >. 

Figure 4.4: Mapping intervals to points on a plane. 

Or.p =def (B) 'P 

Or.p =def (E) 'P 

r.p holds at a point right below the current one. 

(The first coordinate is the same but the second 

coordinate of the current point is greater.) 

r.p holds at a point right above the current one. 

(The first coordinate is the same but the second 

coordinate of the current point is smaller.) 

Somewhere at a point to the right of the current one, <p holds. 

(The second coordinate is the same but the first 

coordinate of the current point is smaller.) 

Somewhere at a point to the left of the current one, r.p holds. 

(The second coordinate is the same but the first 

coordinate of the current point is greater.) 

Or.p =def Or.p V Or.p <p holds at a point with the same longitude and a different 

latitude as the current one. 

(The first coordinate is the same but the secohd coordinate 

differs.) 

Or.p =def Or.p V Or.p r.p holds at a point with the same latitude and a different 

longitude as the current one. 

{The second coordinate is the same but the first coordinate 

differs.) 

We use the same definitions for (D), (b), (0), (0), (L) and (L) as in section 4.3. We 

can now equate the 12 possible positions of one interval with respect to another with the 

equivalence classes as shown in Figure 4.5. For example, (0) r.p means that r.p holds at some 
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point (s', t') somewhere in the block North-West of the current point. So s < s' and t < t', 
but s' < t, thus this block represents the intervals (s', t') that overlaps the current interval 

(s, t) at the end. In contrast to this, (L) r.p means that r.p holds at some point (s', t') in the 

area where we have a greater latitude and a greater longitude than the current point. So 

t < s' which means that this area represents the set of intervals later than (s, t), i.e. that 

starts after (s, t) ends. 

4.4 

-
D 

-
0 

-
L 

"' I 
L 

B 0 

Current point 

"" I 
I L 

A 

Figure 4.5: A spatial representation of the interval-interval relations. 

Summary 

In this chapter and the previous one, we considered the way the underlying time structure 

of a modal logic can be axiomatised. In the next two chapters we look at systems using first­

order languages . Defining properties for the time structures of these systems are usually 

straight-forward because standard schemas can be used, so we rather concentrate on the 

way schemas are used to axiomatise the characteristics of actions and other occurrences. 



Chapter 5 

First-order approaches with 

instants 

In the previous two chapters, the emphasis was on the representation of tenses in modal 

languages. In each case, there was a class of interpretations that were relevant, and we 

sought schemas that axiomatised this class. Conventional modal logics do not provide for 

the representation of actions and their effects [PR95]. In the ensuing two chapters, we want 

to look in more detail at the representation of concepts such as actions, events, facts and 

processes that occur in a system of interest. As James Allen put it: 'What do we know 

when we know an occurrence has occurred?' [All84]. 

Two of the early formalisms capable of expressing the effects of actions were Situation 

Calculus defined by McCarthy & Hayes [MH69J and McDermott's temporal logic [McD82]. 

We first give a short discussion of Situation Calculus and identify its limitations, then 

we consider Extended Situation Calculus as an example of a formalism that attempts to 

eliminate some of these limitations, and finally we discuss McDermott's approach. 

Situation Calculi, like the other many-sorted languages we discuss in this chapter, are 

reified languages. What do we understand by the verb 'reify'? Let us illustrate this with 

the following example: 

Example 18 The reification of a property. 

Suppose that we want to talk about the sleeping habits of agents using a first-order language. 

An obvious first attempt would involve equipping the language with a unary predicate 

symbol Sleeps and constants such as, say, Tony so that the fact of an agent's somnolence 

may be conveyed by a sentence like Sleeps(Tony). In an interpretation of the language, 

70 



there will be an object in the universe of discourse serving as denotation for Tony, but no 

object that corresponds to the fact expressed by Sleeps(Tony). 

Reification is the trick of using a slightly more sophisticated language equipped with terms 

that represent facts such as the agent being asleep, so that in an interpretation, the universe 

of discourse would indeed contain an object corresponding to the fact. What previously was 

abstract- the sentence Sleeps(Tony)- has been replaced by something sufficiently concrete 

to correspond to an element of the universe of discourse. 

5.1 Situation Calculus 

Situation Calculus was defined by McCarthy and Hayes in 1969 [MH69]. Situation Calculi 

are many-sorted languages in which situation terms represent states of some system of 

interest. It is a change-based rather than temporal approach, i.e. the system is assumed to 

persist in one state until an action occurs that changes it to a new state [Sho87]. 

For our purposes, a Situation Calculus is a many-sorted language such that: 

• the set of sorts on which the alphabet is based includes at least the sorts situation, 

action and fact 1 

• the set of function symbols includes at least the binary function symbol Result with 

sort (situation, action, situation) 

• the set of predicate symbols includes at least the binary predicate symbol Holds with 

sort (fact, situation). 

The following example illustrates the way a Situation Calculus is used to represent knowl­

edge about a system and to show how we can represent the effect that a specific action or 

event2 has on the system. 

Example 19 Defining a Situation Calculus. 

Consider the simple system of an air-conditioning unit in a car. There is a switch for the 

air-conditioner and a starter for the car engine. The air-conditioner can either be on or 

1Some authors use the term fluent. This is a relic of McCarthy's original ungainly terminology. 
2In Situation Calculus no distinction is made between actions and events. In the discussion 

of Situation Calculus as well as Extended Situation Calculus, which will be described in the next 

section, we will use the term action exclusively to avoid confusion. 
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off, and the engine can either be off or running. If the engine is running and we switch it 

off, the engine will be off, and conversely. The same applies to the air-conditioner. This 

means that we have four actions that can have an effect on the state of the system as we 

have described it and these are the actions of switching on or off either the engine or the 

air-conditioner. For simplicity, we rule out the possibilities of the engine not starting due 

to some mechanical problem or the air-conditioner malfunctioning, and so on. 

To represent our knowledge of the engine/air-conditioning system, we choose a Situation 

Calculus the alphabet of which is based on the set of sorts TP = {situation, action, fact, 

unit}, and which contains the following symbols: 

• a set S = {So, ... , 83} of constants of sort situation 

• a set U = {Uo, UI} of constants of sort unit 

• a set SV of variables so, s1 , ... of sort situation 

• a set AV of variables ao, a1, ... of sort action 

• a set PV of variables po, PI, ... of sort fact 

• a set UV of variables uo, u1, ... of sort unit 

• the set FUN = {(Result, 2), (SwitchOn,l), (SwitchOjj,l), ( On,l), ( OjJ,l)} with the 

following associated sort tuples: 

Result is of sort (situation, action, situation) 

SwitchOn is of sort (unit, action) 

SwitchOJJ is of sort (unit, action) 

On is of sort (unit, fact) 

Off is of sort (unit, fact) 

• the set PRED contains only one element, namely (Holds, 2), with the sort (fact, 

situation) associated with it. 

The usual first-order semantics applies to Situation Calculi. By way of illustration, we 

define the following interpretation Io = (D, i). The domain D = Dsit U Dact U Dtact U Dunit 

and these snbdomains of Dare defined as the following sets of strings: 
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• Dsit = {8_0, ... , 8_3} 

• Dact = {8witch0nEng, SwitchOffEng, SwitchOnAC, SwitchOffAC} 

• Dtact = {EngRunning, EngOff, ACOn, ACOff} 

• Dunit ={Engine, AC}. 

The meaning function i is defined as follows: 

• i(So) = 8_0, the initial situation 

• i(8j) =B_j, for j = 1, 2, 3 

• i(Uo) = Engine, i(U1) = AC 

• i(Switch0n,1) is a function of sort (unit, action) and consists of the following ordered 

pairs: 

(Engine, SwitchOnEng) 

(A C, SwitchOnA C) 

• i ( SwitchOff, 1) is also a function of sort (unit, action) and consists of the following 

ordered pairs: 

(Engine, SwitchOffEng) 

(AC, SwitchOffAC) 

• i( On,1) is a function of sort (unit, fact) and consists of the following ordered pairs: 

(Engine, EngRunning) 

(AC, ACOn) 

• i(Off, 1) is a function of sort (unit, fact) and consists of the following ordered pairs: 

(Engine, EngOff) 

(AC, ACOff) 

• i(Result, 2) is a function of sort (situation, action, situation) and consists of the 

following ordered pairs: 

- ((8_0, SwitchOnEng), 8_2) 
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- ((8_0, SwitchOffEng), S_O) 

((S_O, SwitchOnAC), 8_1) 

((8_0, SwitchOffAC),S_O) 

((8_1, SwitchOnEng),S_3) 

- ((B-1, SwitchOffEng), 8_1) 

- ((8_1, SwitchOnAC), 8_1) 

((B-1, SwitchOffAC), S_O) 

((8_2, SwitchOnEng), 8_2) 

((8_2, SwitchOffEng), S_O) 

((B-2, SwitchOnAC), 8_3) 

((8_2, SwitchOffAC), 8_2) 

((B-3, SwitchOnEng), 8_3) 

((8_3, SwitchOffEng), 8_1) 

((8_3, SwitchOnAC), 8_3) 

((S-3, SwitchOffAC), 8_2) 

• i(Holds, 2) = {(EngOJJ, S_O), (ACOff, 8_0), (Eng0ff,S_1), (A COn, 8_1), 

(EngRunning,S_2), (ACOff, 8_2), (EngRunning, 8_3), (A COn, 8_3)} 

Starting with the initial situation, we can construct a tree, called a situation tree, the 

branches of which consist of all possible sequences of situations. Each situation in a branch 

is the result of some action occurring in the previous situation. Each such sequence is 

called a path. Figure 5.1 shows the situation tree for the example discussed above. From 

the figure, it is clear that there are at least two possible paths from the initial situation 

So. One having 82 as the next situation in the path and the other having 81 as the next 

situation. Again, from 82 there are two possible paths, one leading to So and the other 

leading to 83, and so on. 

Although Situation Calculus provides a means for representing actions and outcomes of 

actions, several criticisms have been levelled at it: 

• Consider actions such as 'The car engine was running for 20 minutes' and 'I spent 

the whole day driving around town'. These actions would have to be modelled, if at 

all, by an action such as skip which does not change the situation. However, there is 

then no way to express the differing durations of these non-active actions [All84]. 
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Figure 5.1: The situation tree for Example 19. 

• It is not possible to express actions that occur simultaneously and may interact with 

each other, e.g. if action A moves block Cone unit to the left and at the same time 

action B moves block Cone unit to the right, perhaps block C should not move at all 

since the simultaneous occurrence of actions A and B results in each action cancelling 

the effect of the other ([All84] and [SG88]). 

• When the same state of a system can recur at different times, the situations represent­

ing that state at the different times 3 would be equivalent insofar as the same facts 

would hold. The language offers no convenient way to make explicit the difference in 

times, and thus no convenient way to represent actions within a time structure. 

• We have no way to describe how the world actually evolves [PR95]. 

• In most formulations of Situation Calculi, situations need to be named explicitly in 

terms of a sequence of actions following the initial state. As a result, it is not possible 

to represent such a sequence if we do not have complete information [KS94]. 

• Time is discrete, so it is not possible to describe continuous processes such as water 

flowing into a container [SM87]. 

• The frame problem is the best-known of a class of problems that may arise in applying 

3 McCarthy & Hayes [MH69] define a situation as a snapshot of the world at an instant in time. 
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change-based Situation Calculus [Mil93] and has been pointed out as a limitation of 

this approach, and indeed of the use of logic as a knowledge representation language 

[HM86]. These objections have been refuted by demonstrating that the frame prob­

lem, and related problems, may be avoided in a variety of ways, most notably by the 

use of nonmonotonic semantics [Lif87]. 

5.1.1 Extended Situation Calculus 

McCarthy & Hayes suggest in [MH69] that the expressive power of modal logic can be 

gained using a first-order language by identifying each possible world of the relevant modal 

language with a situation in a suitable Situation Calculus. Pinto & Reiter built their 

Extended Situation Calculus on this principle by identifying the time structure (a set of 

possible worlds together with an accessibility relation) with a fixed infinite branch of states 

in the associated situation tree. In this way, the ontology of Situation Calculus is extended 

to provide for the representation of time, and thus for representing the occurrence of actions 

with no duration as well as of actions with some duration. 

In principle, the notion of time is formalised within Extended Situation Calculus by identi­

fying the time line, which may be thought of as the set of non-negative rational numbers4 

with the usual ordering, with a connected path in the situation tree. We introduce a sort 

time, to be interpreted as a time line. Situations will be associated with points on the time 

line by functions to be represented by the symbols Start and End. 

The alphabet for an Extended Situation Calculus, or ESC, based on a set of sorts TP = 

{situation, action, fact, unit, time}, is similar to the alphabet for a Situation Calculus with 

the addition of a number of new predicate symbols and a number of new function symbols. 

In the spirit of [PR95], we use, instead of the function symbol Result, the function symbol 

Do of sort (action, situation, situation). Additionally, we have a binary predicate symbol 

'=' of sort (t, t) for each t E TP, a binary predicate symbol '-<' of sort (time, time) and 

another symbol'<' of sort (situation, situation). Additional function and predicate symbols 

will be introduced later. 

Pinto & Reiter [PR95] also make use of a predicate variable to formulate an induction axiom 

'lta[(a(So) 1\ 'Its, a(a(s) ~a( Do( a, s)))) ~ \ls(a(s))]. 

4Pinto & Reiter suggest using the real numbers. However, situations are built up from a starting 

point using functions like Do or Result, so there can only be countably many. This means that the 

rationals (countably infinite) are enough. 
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This axiom states that, for all properties a, the following must hold: if the initial situation 

has the property, and it is the case that, for all situations s and all actions a, if s has the 

property, then the situation resulting from performing action a in s also has the property, 

then it follows that all situations will have the property. 

The predicate symbol '=' of sort ( t, t) is interpreted as the identity relation on the relevant 

subdomain. The predicate symbol '<' of sort (situation, situation) is used to indicate the 

relative positions of situations in a branch of the situation tree. If s1 < s2, it means that s1 

precedes s2; s1 is a predecessor of s2, and s2 is a successor of s1. We let s1 ~ s2 abbreviate 

(s1 < s2) V (s1 = s2). 

Pinto & Reiter propose the following basic axioms: 

This axiom is intended to express the notion that there is no situation s that can be 

interpolated between a situation s2 and the situation Do( a, s2) that results from performing 

action a in s2. If Do( a, s2) = s3, we say that s3 is an immediate successor of s2 and that s2 

is an immediate predecessor of s3. 

The occurrence of two different actions in two situations that may or may not differ, cannot 

have the same immediate successor as a result. 

If situation s2 is a successor of situation s1, then s2 cannot be a predecessor of s1. The idea 

is to produce a tree of situations by ruling out cycles. 

The following is a list of consequences of the axioms listed above (Proofs of these are given 

in [PR95].): 

• 'rfs(So ~ s) (The initial situation is a predecessor of all situations other than itself.) 

• 'rfs-,(s <So). (The initial situation has no predecessor.) 

• 'rfs•(s < s). (A situation cannot be a predecessor or a successor of itself.) 

• 'rfs[(s =I= So)- 3a,s'(s = Do(a,s'))]. (For all situations s other than So, sis the result 

of some action a occurring in some situation s'.) 

• 'rfa, s(s < Do(a, s)). (A situation is a predecessor of its immediate successors.) 
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• 'lta1, a2, s1, s2((Do(a1, s1) < Do(a2, s2)) ~ s1 < s2). (If an immediate successor of 

some situation s1 is a predecessor of an immediate successor of some situat:C~n s2, 

then s 1 is a predecessor of s2.) 

• 'Ita, s1, s2((Do(a, s1) ~ s2) ~ s1 < s2). (If an immediate successor of a situation s1 is 

either a predecessor of some situation s2 or s2 itself, then SJ is a predecessor of s2.) 

• 'Ita, s17 s2((Do(a, s1) =Do( a, s2)) ~ s1 = s2). (If the same action is performed in two 

different situations, it is not possible for the two immediate successor situations to be 

the same.) 

To represent the effect of actions on the states of the system of interest, i.e. to represent 

change in such a system, effect axioms may be introduced. These have the following general 

form: 

ESC.04 (Poss(A, s) 1\ cPA,F(s)) ~ Holds(F, Do( A, s)) 

where A and F are constants of sort action and fact respectively, Poss is a binary predi­

cate symbol of sort (action, situation) which expresses the idea that all preconditions for 

performing action A in situations have been met, and cPA,F(s) may express any additional 

information about relevant relationships between action A and fact F. 

One of the limitations of Situation Calculus was that it has no mechanism for distinguishing 

hypothetical courses of history from how the world actually evolves. This problem is ad­

dressed by Extended Situation Calculus with the introduction of a predicate symbol Actual 

of sort (situation), which can be used to describe the actual sequence of situations. This 

sequence can be identified with a unique branch in the situation tree. The following set of 

axioms describes the behaviour of Actual: 

ESC.05 Actual(So). 

In all interpretations, the initial situation is always part of the actual sequence. 

ESC.06 'Ita, s(Actual(Do(a, s)) ~ (Actual(s) 1\ Poss(a, s))). 

If the result of performing some action a in some situation s is in the actual sequence, then 

situations is also in the actual sequence, and it is possible to perform action a in situation 

s. 

An actual situation has at most one actual immediate successor. 
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Does this also mean that each actual situation has at most one actual immediate predeces­

sor? Assume Actual(s). Supposes= Do(a11 s1) and s = Do(a2, s2). We wish to infer that 

a1 = a2 and s1 = s2. If Do(a1, s1) = Do(a2, s2), then, by ESC.02, a1 = a2. Hence from the 

consequences of ESC.Ol to ESC.03, it follows that s1 = s2. So s has at most one predeces­

sor. Need this predecessor be actual? Indeed, by virtue of the following consequences of 

the axioms: 

• Vs1.s2((s2 ~ s1) ~ (Actual(si) ~ Actual(s2))). (If s2 is a predecessor of s1 and s1 is 

actual, then s2 will also be actual: all actual situations lie on the same path.) 

• Vs1, s2((Actual(s1) t\ Actual(s2)) ~ ((s1 < s2) V (s1 = s2) V (s2 < s1))). (Actual 

situations are totally ordered.) 

From the first consequence, it follows directly that each actual situation has at most one 

actual immediate predecessor. 

The sequence of actual situations is called the actual path. This path completely describes 

the world in a way that parallels the time line. At this stage, we might ask how an association 

between a time structure and the actual path can be introduced. For the purpose of this 

association, we add to the alphabet two function symbols: Start of sort (situation, time) and 

End of sort (situation, action, time). The intention is that Start(s) and End(s, a) indicate 

the time span of situations. Since the truth of atoms of the form Holds(!, s) is unaffected 

by the introduction of the new function symbols, no fact can change its truth value during 

the time span of a situation. The association between situations and times allows us to 

stipulate an association between actions and times also: actions occur at the end time of 

situations. 

The following axioms determine the behaviour of the Start and End functions: 

ESC. OS Vs, a(End(s, a)= Start(Do(a, s))). 

The end time of a situation is equal to the start time of its immediate successor. 

ESC.09 Va, s(Start(s)-< End(s, a)). 

The start time of a situation is earlier than its end time, i.e. all situations have duration. 

ESC.JO Start(So) = 0. 

The start time of the initial situation is equal to the initial time. 
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From the above, it follows that 

The start time of a situation is earlier than the start time of all its successors and later than 

the start time of all its predecessors. 

It is convenient to make explicit the idea of occurrences. The occurrence of an action can be 

expressed by introducing a binary predicate symbol Occurs of sort (action, situation), e.g. 

Occurs(SwitchOn, S) may represent the notion that the action of switching on something, 

occurs in situationS. Occurrences are defined in terms of the actual path as follows: 

Occurs( a, s) ~Actual( Do( a, s)). 

We can say that action a occurs in situation s iff the situation resulting from Do( a, s) is in 

the actual path. 

To link occurrences to times, we introduce a binary predicate symbol OccursT of type 

(action, time) which may be defined as follows: 

Occur57(a, t) ~ :Js( Occurs(a, s) 1\ (Start( Do( a, s)) = t)). 

This means that action a occurs at time t iff the following holds: action a occurs in some 

actual situation s of which the immediate successor starts at t. (Remember that an action 

only occurs at the end time of a situation and t is also the end time of s.) 

A relation between facts and time points can also be expressed by introducing a binary 

predicate symbol Hold57 of sort (fact, time} such that 

HoldST(p, t) ~ :Js(During(t, s) 1\ Holds(p, s)) 

where 

During(t,s) ~ (Actual(s) 1\ (Start(s)-< t) 1\ \fa(Occurs(a,s)-+ (t ~ End(s,a)))). 

During( t, s), which is of sort (time, situation), holds iff the time point t falls within the time 

span of situation s: if s is actual and starts earlier than t, and all actions that occur in s 

occur later than t, then t falls within the time span of s. This means that Holds7 (p, t) is 

true, i.e. the fact p is true at time t, iff there is some actual situation s such that p is true 

ins, and t falls within the time span of s. 

It follows directly that, if a fact holds in a situation, it holds for the complete time span of 

that situation: 
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The occurrence of actions between two actual situations can be defined in the following 

way: 

OccursBet(a, SI, s2) ~ 3s((sl < s < s2) 1\ Occurs( a, s)). 

Action a occurs between situations 8 1 and 8 2 iff action a occurs in some situation 8, which 

has s1 as a predecessor and 82 as a successor. 

Up to now, all actions were regarded as being instantaneous, 1.e. of having no duration. 

How can an action that has duration, i.e. that occurs over a period of time, be modelled? 

This can be accomplished in a manner similar to the way temporal intervals are modelled 

in point-based time structures: by the introduction of two instantaneous action constants 

called Start-action and End-action respectively. We can use an example to illustrate this. 

Example 20 Actions that have duration. 

Think of the action of dancing that occurs over a period of time. We can introduce two 

instantaneous action constants, StartDancing and EndDancing, together with the fact Is­

Dancing, where IsDancing expresses the notion of the action of dancing being in progress. 

The relationship between this fact and the corresponding instantaneous start-end actions, 

can be expressed by the following effect axioms: 

ESC.JJ Poss(StartDancing, 8) ~ Holds(IsDancing, Do(StartDancing, 8)). 

If it is possible for the action StartDancing to occur in situation 8, then the fact IsDancing 

holds in the immediate successor of 8 resulting from StartDancing. This means that the 

action of dancing starts at the end of situation 8 and continues in its immediate successor. 

ESC.12 Poss(EndDancing, s) ~ •Holds(IsDancing, Do(EndDancing, 8)). 

If it is possible for the action EndDancing to occur in situation 8, then the action of danc­

ing cannot occur in its immediate successor resulting from StartDancing. So the action of 

dancing comes to an end at the end of situations. 

The introduction of start-end axioms makes it possible to model a restricted form of con­

currency. Actions with duration can occur concurrently as long as their starting and ending 

points do not coincide: an instantaneous action occurs at the end of a situation and there 

can only be one actual successor. This restriction can be eliminated by allowing for con­

current actions in the languages of Situation Calculi. A number of such models have been 

developed, a list of which is given in (PR95]. 
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Pinto & Reiter (PR95] show how the following applications may be implemented using the 

axioms defined above: 

• explanation of observations that might be used for diagnostic reasoning. 'If the car 

was parked in the street last night and it is not there this morning, it might have 

been stolen or towed away' 

• the expression of behavioral constraints that may be required to formulate constraints 

for agent-oriented programming. 'Never cross the street against the red light' 

• the expression of the occurrence of external events over which an agent does not have 

any control. 'The agent boards the bus if he arrives at the bus stop before the last 

bus leaves' 

• if the branching structure of Situation Calculus is preserved, a variety of hypotheti­

cal queries may be expressed and answered, although counterfactuals cannot be ex­

pressed: the use of only one actual path excludes the existence of hypothetical actual 

paths 

• relations between events in a chain of events may be expressed using causal relation­

ships. 'Shooting a loaded gun causes a noise to occur'. 

Pinto & Reiter also show that a variation of instant tense logic discussed in Chapter 3 (that 

of Goldblatt [Gol92]) can be embedded in the ESC with the result that the ESC is at least 

as expressive as modal temporal logics. Moreover, by embedding the essential features of 

modal temporal logic within the ESC without losing the action-based ontology of Situation 

Calculus, the ESC is more expressive: conventional modal temporal logics do not provide 

for the representation of actions and their effects. However, Extended Situation Calculus 

has limitations of its own: 

• ESC.OJ given by Pinto & Reiter is formulated in both directions but this does not 

allow for actions that have no effect. It is often useful, e.g. in modelling a busy-wait 

situation in Computer Science, to be able to include actions that have no effect, i.e. 

so-called skip actions. If s1 = s2, then it ought not to follow that s 1 < Do( skip, s2), 

contradicting one of the consequences of axioms ESC. OJ to ESC.03which states that 

a situation cannot be a successor or a predecessor of itself. 

• consider a simple system like the engine/air-conditioning system of example 19. The 

same state of the system may recur at different times, and a given state may be 

reached via different routes. For example, suppose both the air-conditioner and the 
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engine are off in the initial situation. If we first switch on the air-conditioner and 

then switch on the engine, ti",e system will be in the state where the air-conditioner is 

on and the engine is running. The system will be in this same state if we first switch 

on the engine and then the air-conditioner. This state is represented in the language 

by different situation terms, and there is no direct way to express the idea that these 

different situation terms are in fact equivalent in that they represent the same state 

of the system. 

Although the ESC was not introduced primarily to allow for the representation of events 

instead of actions, Pinto & Reiter claim that 'the expanded ontology for Situation Calculus 

provides the essential features of the Event Calculus of Kowalski & Sergot [KS86] which 

in turn appears to be a variant of Allen's temporallogic.'[PR95]. We will not discuss the 

Event Calculus here, but rather consider the temporal logic for actions and events proposed 

by Allen, in the next chapter. 

5.2 McDermott's system 

The first-order temporal logic proposed by McDermott [McD82] is, like Situation Calculus, 

an attempt to capture the openness of the future since more than one thing can happen 

starting at a given instant, so there could be many possible futures. He also identifies 'an 

adequate treatment of continuous change as one of the key requirements for a system to 

be able to reason about time realistically.' [Gal90]. His system provides ways to name and 

prove things about facts, events, plans, and world histories. 

McDermott pays particular attention to what he views as important problems of temporal 

representation and refers to as causality, flow (continuous change), and plans. In sections 

5.2.3, 5.2.4 and 5.2.5 we briefly describe his treatment of these concepts. A many-sorted 

first-order language is used. Note that we have little to say on semantic issues, as McDermott 

does not explicitly discuss interpretations of the language. Shoham & Goyal [SG88] suggest 

an interpretation which we look at in the next chapter. 

A system of interest is described in terms of a set of states. A state is, like a situation, an 

instantaneous snapshot of the universe. States are partially ordered by the relation ~ . If 

s1 ~ s2, it means that s1 either precedes s2, or is identical to s2. The properties of ~ may 

be expressed by axioms such as the following: 

MD. OJ '11's1, s2((s1 ~ s2 A s2 ~ s1) f-+ (s1 = s2)) (Anti-symmetry) 

MD.02 '11's1, s2((s1 < s2)---+ 3s(sl < s < s2)) (Density) 
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The notion of an interval is introduced as a totally ordered, convex set of states. An interval 

is denoted by an ordered pair (s1, s2], where s1 is the state in which the interval starts and 

s2 the state in which it ends. All intervals are assumed to be closed. 

The set of states, ordered by ~' is intended to represent all the possible ways in which the 

system might evolve over time. In order to permit distinctions in respect of the rate of 

evolution, a separate time structure is needed, together with a coupling between the set of 

states and the time structure. 

The time structure is a pair (T, ~) where Tis the set of real numbers and ~ is the usual 

ordering. Thus, time is linear and continuous. A scale can be attached to the time line by 

assuming that there are objects, called scales, which occupy some constant amount of time. 

If hour is such a scale, ( 5 * hour) is a length of time equal to 5 times the size of hour. 

We can use a function d to associate an instant t E T, known as a date, with each state, 

reflecting the time of occurrence of that state. So the date function dis an order-preserving 

function from states to time points. Since the set of states is partially ordered, many 

different sets of states may map onto the time line, each constituting a possible history of 

the system, and so the future is called open, or indeterminate. 

The order that exists between two states also holds between the dates associated with them. 

The notion of a chronicle is used to represent a complete possible history of the universe; a 

way events might happen. A chronicle c is a totally ordered set of states for which the date­

function establishes a bijective correspondence with the time line. This can be formalised 

by the following two axioms (Elt(s, c) means that states is an element of the set c): 

The states in a chronicle are totally ordered. 

MD.05b Vc(Vt3s(Elt(s, c) A d(s) = t)) 

For every chronicle it holds that, for every instant in the time structure, there exists a state 

that is part of that chronicle. 

MD. 05b expresses the surjectivity of the date-function restricted to a chronicle c; injectivity 

follows from the requirement that the date-function be order-preserving. 

An immediate consequence of MD. 05 is the following: 

(Elt(sb c) A Elt(s2, c))--+ Vs(s1 < s < s2 --+ Elt(s, c)) (a chronicle is convex). 
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Every state is in some chronicle. Futhermore, if the ordering on states compares two states, 

then there exists some chronicle c that contains both these states: 

It follows, by convexity, that every state between 8 1 and 82 is in the same chronicle. 

Chronicles branch only into the future, so all the states in the system are arranged to form 

a chronicle tree. 

Thus we have only one past but more than one possible future from a given state. This is 

depicted in Figure 5.2. The dotted line indicates one chronicle. It is clear that 82 and 83 

are in the same chronicle but that there is no relationship between 84 and 83, for example, 

since they are in different chronicles. The state 8 1 maps to t1 on the date line, 84 maps to 

t4 , and so on. 

Date line 

t, 

Figure 5.2 A chronicle tree 
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5.2.1 Representing facts 

A fact can be represented as a set of states, intuitively those in which it is true. The fact 

Always is the set of all possible states and the fact Never is the empty set. A fact holds in 

an interval if it holds in all the states comprising the interval. 

For the sake of clarity 5 , we will write True(s,p) instead of Elt(s,p), meaning p holds in 

state s. The connectives 'n', representing set intersection, 'U' representing set union, and 

'-',representing the complement of a set with respect to the set Always, can be introduced 

in the usual way: 

True(s, (p n q)) abbreviates True(s,p) 1\ True(s, q) 

True(s, (p U q)) abbreviates True(s,p) V True(s, q) 

True(s, -p) abbreviates --,Tr-u,e(s,p). 

Example 21 Defining a fact. 

To express the notion that object a is on object b, we can use a binary function On, such 

that On( a, b) represents the set of states in which a is on b. So On is a function from pairs 

of objects to sets of states of sort fact. This way of looking at facts is analogous to the 

logicians' trick of letting propositions denote sets of possible worlds (McD82]. 

The notion of a fact being true over a period of time is written as 

TT(s1, s2,p), 

which means that fact p holds over the interval (s1, s2], in other words, the interval (sll s2] 

is a subset of fact p. 

5.2.2 Representing events and processes 

McDermott attempts to define events in a way that includes both events that represent fact 

changes, like a block being moved from a to b, as well as events that are not fact changes, 

i.e. the large class of actions that are done for their own sake, like going for a walk 6 • We 

introduce the notion of an event as a set of intervals (thus a set of sets), intuitively those 

over which the event happens once, with no time 'left over' on either side. The occurrence 

of an event can be represented as 

5 Also called syntactic sugaring 
6Galton [Gal87] calls these atelic events . 
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which means that event e occurs over the interval [sl! s2] (therefore Elt([sl, s2], e) holds). 

There is no event Always since events cannot intuitively have infinite duration. The empty 

set Never represents an event that can never happen. Consequently, the set Never can be 

used to represent both a fact and an event. 

Certain facts and events are closely related. We say that the set consisting of all elements 

of intervals comprising an event e is the set over which e is in progress and write this as 

InProgress(s, e) meaning e is in progress ins. 

We want to restrict the set of facts to those that are well-behaved and to exclude the 

possibility of intermingling 7 [Gal90], i.e. a state of affairs where a proposition changes its 

truth value infinitely often in a finite period of time8 [Gal96]. McDermott formulates the 

following axiom for this purpose: 

MD.08 Vs,p(3so(TTopen(so, s,p) V TTopen(so, s, -,p)) 

1\\:fc(Elt(s, c) ~ 3sl(Elt(sb c) 1\ ( TTopen(s, s1,p) V TTopen(s, s11 -,p))))) 

where 

TTopen(s1, s2,p) ~ (s1 < s2 1\ \:fs(sl < s < s2 ~ TTue(s,p))) (p holds over the open 

interval ( s1, s2)). 

MD. 08 states that, for an arbitrary state and fact, there is an interval preceding the state 

during which the fact is always true or always false. There is also such an interval succeeding 

the state. This holds for every chronicle of which the state is an element (we have more 

than one possible future). 

The notion of a sequence or chain of abutting events can be written as Chain( ee, n, s1 , s2), 

i.e. there is a chain of length n of events from the set ee of events that reaches from s1 to 

s2. The following two axioms are used to formulate the properties of a chain: 

There are no events in the chain, so the start state is equal to the end state. 

MD.09b Chain( ee, (n + 1), s1, s2) ~ 3s, e(Elt(e, ee) 1\ Occurs(s, s2, e) 1\ Chain( ee, n, s1, s)) 

i.e. if ee is a chain of events of length ( n + 1) that starts in s1 and ends in s2, then there is 

some states between s1 and s2 and some event e such that e occurs over [s, s2], and there 

exists a chain of events of length n that starts in s 1 and ends in s. 

7This phenomenon is also known as a fuzz (a term used by Prior) or clustered variation. 
8 McDermott (McD82] uses the proposition 'the temperature in Cleveland is a rational number' 

to illustrate the idea. 
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The idea that we can reach a certain state, s say, in a chronicle c if we follow the chain of 

events starting at a state s1, can be expressed in the fell owing way: 

MD.JO Reachable(ee, c, SJ, s) ~ :Jn, s2(n ~ 01\ Elt(s2, c) 1\ Chain(ee, n, SJ, s2) 

1\(si ::::; s::::; s2)) 

5.2.3 Causality 

By causality McDermott means that 'one event always follows another event', and as illus­

tration he gives the following example: If x is a loaded gun, pulling its trigger is followed 

by its firing. In his attempt to reason about causes and effects, he argues that events can 

cause two kinds of things: other events, and facts. He treats these two cases separately. 

Firstly we consider the case where there exists a causal relationship between two different 

events. This is represented by 

Ecause(p, e1, e2, rf, i) 

which means that the occurrence of event e1 is always followed by the occurrence of e2, 

after a delay relative to the interval i, unless p becomes false before the delay is up. The 

following axiom is a formulation of this idea: 

MD.11 Ecause(p, e1, e2, rf, i)--+ ( Occurs(st, s2, e1) --+ Vc(Elt(s2, c)--+ :ls3(Elt(s3, c)/\ 

WithinDelay(s3, rf, i, SJ, s2) 1\ (•TT(s2, s3,p) V :ls4(Elt(s4, c) 1\ Occurs(s3, s4, e2)))]) 

where WithinDelay expresses the idea that state s3 occurs after s1, and possibly s2, with 

a delay of i. In the above, rf is a real number in (0, 1] that stipulates from which point 

through e1 the delay is to be measured. If rf= 0, the delay must be measured starting at 

s1; if rf= 1, the delay is to be measured starting at s2. The i is a real interval from the time 

structure. For example, if io = (10 sec,15 sec) then this indicates that the delay is at least 

10 seconds and at most 15 seconds. So Ecause (p, e1, e2, 0, io) means that the occurrence of 

e1 will cause the occurrence of e2 after a delay of at least 10 seconds and at most 15 seconds 

after e1 starts (rf = 0) unless p becomes false before 15 seconds have elapsed after the start 

of e1. The following holds for the notion of a delay: 

WithinDelay(s, rf, i, s1, s2) ~ Elt((d(s) - [d(si) + rf * (d(s2) - d(si))]), i) 

If an event is ever caused, then each of its occurrences is preceded (within a limited time 

interval) by an instance of one of its causes 9 . The following axiom formulates this idea: 

MD.12 Ecause(p, e1, e2, rf, i) --+ Vs3, s4[ Occurs(s3, s4, e2)--+ 

:Jp', e', s1, s2, rf', i'(Ecause(p', e', e2, rj', i') 1\ Occurs(s1, s2, e1
)/\ 

9McDermott calls this the Principle of Paranoia. 
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WithinDelay(sa, rf', i', s1, s2))] 

This principle enables us to infer that, if we know that an event e is the only cause for the 

occurrence of another event e', and e' occurs, then we know that e has occurred. 

Secondly, an event can also cause a fact. This form of causation is represented by 

Pcause(p, e, q, rf, i, r), 

which expresses the notion that event e is always followed by fact q, after a delay relative 

to the interval i, unless p becomes false before the delay is up. When q becomes true, it 

persists for a lifetime r. The concept of a lifetime is introduced because McDermott argues 

that certain facts will change their truth values autonomously (something dies) or we lose 

knowledge about its truth value after a period of time. He calls such a period the lifetime of 

a fact. The rules governing the causation of a fact by an event is contained in the following 

axiom: 

MD.13 Pcause(p, e, q, rf, i, r) ~ [Occurs(si, s2, e)~ Vc(Elt(s2, c)~ 

3sa(Elt(sa, c) 1\ WithinDelay(sa, rf, i, s1, s2) 1\ (-. True(sa,p) V Persist(sa, q, r))) )], 

where Persist(s, q, r) expresses the idea that the fact q remains true from state s for a 

lifetime r, i.e. until r has gone by or until q ceases to be true for some other reason. 

5.2.4 Continuous change 

In order to reason about continuous change, McDermott uses the term fluent (borrowed 

from McCarthy) for an object the value of which changes over time. All fluents have a 

range of numbers over which their values may vary. So V(s, v) represents the value of a 

fluent v in a given state s. 'The temperature in Clevelan<f is an example of a fluent that 

takes on different values in a temperature space [McD82]. 

Vtrans is defined as the fundamental event involving fluents: Vtrans(v,r1,r2) denotes the 

event consisting of all occasions on which the value of the fluent v changes from TI to r2. 

An increase in inflation, for example, is a Vtrans of the fluent Inflation from one value to 

another [McD82]. If the quantity involved is continuous, the following axiom is formulated 

to capture this property: 

MD.14 Continuous(v) ~ ( Occurs(si. s4, Vtrans(v, r1, r4)) ~ 

[Vr2,ra3s2,sa((si ~ s2 ~sa~ s4)/\ 

(( r1 ~ r2 ~ ra ~ r 4) ~ 

(Occurs(s2,sa, Vtrans(v,r2,ra)) 1\ Vs(s2 ~ s ~sa~ r2 ~ V(s,v) ~ ra)))/\ 

((r1 ~ r2 ~ ra ~ r4) ~ 

(Occurs(s2,sa, Vtrans(v,r2,ra)) 1\ Vs(s2 ~ s ~sa~ r2 ~ V(s,v) ~ ra)))]). 
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i.e. if v changes continuously from r 1 to r4 , and both r2 and r3 lie between them, then there 

exists a time interval in which v changes from r 2 to r 3 without going outside the bounds r2 

and r3. This means that it spends a certain period of time in every subinterval between r1 

and r4. (Note that the first of the innermost conjuncts applies when vis increasing in value 

and the second when v is decreasing.) 

McDermott also adopts an 'abstract model' for representing other forms of continuous 

change over an interval and for representing rates of change of noncontinuous quantities 

which will not be discussed here. 

5.2.5 Plans 

Central to McDermott's reasoning about plans is the concept of an action which is defined 

as an event the occurrence of which involves an agent. McDermott does not create an 

environment in which multiple agents can operate, so the action function only has one 

argument and that is the action itself; the agent is not specified. A function can be used to 

define the performance of an action: Do( a) represents the event of action a being performed. 

The system makes provision for actions that are straight-forward ('Put block A on block 

B') as well as for actions that are more complex, such as actions that express notions like 

prevention, allowing, proving, promising, etc. (e.g. 'Prevent e', where e is some event). 

Actions may be defined together with their preconditions, effects, and durations. 

A composition of actions performed in parallel can be represented by Par(eb ... , en) with 

the following axiom defining the resulting event: 

In McDermott's system, a plan is defined as a set of actions, often intended to carry out 

another action. Let Plan ( aa) represent the action corresponding to the plan consisting of 

performing all the actions in the set aa. The notion of a plan carried out in the minimal 

time span in which all of its elements are carried out, can be represented by the following 

axiom: 

MD.16 Occur8(si, 82,Do(Plan(aa))) ~ [Va(Elt(a, aa)- OccBetween(8I, 82, a)) 

l\3a, 8(Elt(a, aa) 1\ Occur8(8I, 8, a)) 1\ 3a, 8(Elt(a, aa) 1\ Occur8(8, 82, a))] 

where OccBetween(8I. 82, a) expresses the notion that action a is performed in some subin­

terval of the interval [81 , 8 2]. Axiom MD.16 stipulates that, if a plan is carried out, each of 

the actions comprising the plan is carried out; one of the actions starting in 81 and another 

one ending in 82. 
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The system proposed by McDermott also includes more complicated notions such as conflicts 

among actions done in the wrong order, and changing circumstances resulting in a possible 

forced change of plan. 

McDermott's formulation, which can also be regarded as a reified temporal logic [Rei87], 

was the first to provide a mechanism for making a comparison within the logic between two 

possible futures; one in which a specific action is performed and another in which it is not 

[Sho87]. In particular, he gave meaning to the notion of prevention. 

5.2.6 Some general comments on this system 

Despite the expressiveness of McDermott's system, there are a number of limitations: 

• One of the limitations, mentioned by McDermott, is that probabilities are not taken 

into account. This is particularly relevant in a planning system [McD82]. 

• Galton [Gal87] questions the propriety of identifying an event with a set of intervals. 

He argues that 'an event is what it is because of its internal characteristics', so one 

should not reject the internal characterisations of two different kinds of events in 

favour of one external characterisation. 

• Shoham [Sho87] maintains that the dichotomy of facts/events is unnecessary at some 

times and insufficient at others, and that McDermott gives the semantics of what 

may be regarded as the propositional theory but does not always give his sentences 

a clear meaning. 

• Ma & Knight [MK96] point out that McDermott's approach, which characterises in­

tervals as structures derived out of time points, may face the dividing instant problem. 

The approach used by Allen, one of the subjects of the next chapter, is compatible with Mc­

Dermott's approach; the differences arise because of the intended application, and because 

of a different set of underlying assumptions in the two temporal logics. 
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Chapter 6 

First-order approaches with 

intervals 

One of the most important contributions to the representation of actions and events, to­

gether with their effects and the conditions that have to hold before an action or event 

can occur, is that of James Allen. We discuss this in section 6.1. However, Allen does 

not present an adequate model theory for his system. In section 6.2 we discuss Shoham & 

Goyal's (SG88] proposal in this regard. 

6.1 Allen's theory of actions and events with time 

intervals 

In (All84], the emphasis falls on the way in which the meaning of English sentences concern­

ing actions and events can be expressed formally. If an event has taken place, we want to 

be able to represent the knowledge we have after the fact. For this purpose, it is necessary 

to represent both the effects of actions and events which are dynamic in nature ('James is 

painting the roof of the house') as well as the properties of an object ('The roof of the house 

is red') which are static in nature. 

As object language, Allen uses a many-sorted first-order language based on a set TP of 

sorts that contains at least the subset {interval, object, fact, event, process, action, agent, 

plan, goal}. 
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The time structure is based on a set I of linear convex time intervals 1 and the thirteen 

irreducible relations between intervals introduced in Chapter 2. Each of these rdations is 

represented by a binary predicate symbol in the alphabet. Suppose i and j are arbitrary 

time intervals in I. The relationship between i and j can be expressed by exactly one of 

the following atomic sentences [All84]: 

1. Before(i,j) is intended to express the idea that z is completely before j and the 

intervals do not overlap in any way. 

2. After( i, j) is intended to express that i is completely after j and they do not overlap 

in any way. 

3. Meets(i,j) that i is before j and there is no interval between them, i.e. j starts where 

i ends. 

4. MetBy(i,j) that i is after j and there is no interval between them, i.e. i starts where 

j ends. 

5. Overlaps(i,j) that i starts before j and they overlap. 

6. OverlappedBy(i,j) that j starts before i and they overlap. 

7. Starts(i,j) that i starts at the same time as j but ends before j. 

8. StartedBy( i, j) that i starts at the same time as j but ends after j. 

9. During(i,j) that j starts before i and ends after i. 

10. Contains(i,j) that i starts before j and ends after j. 

11. Finishes(i,j) that j starts before i but they end at the same time. 

12. FinishedBy(i,j) that i starts before j but they end at the same time. 

13. Equals(i,j) that i and j start and end at the same time. 

These relationships are depicted in Figure 6.1. 

1 'Convex intervals are those that do not have any gaps within them, have duration, and are not 

necessarily indivisible.' [Bou95] 

93 



Relation Inverse 

j 

Before(ij) After(j,i) 

Meets(ij) MetBy(j,i) 

Overlaps(ij) Over/appedBy(j, i) 

Starts(ij) StartedBy(j, i) 

During(ij) Contains(j, i) 

Finishes(ij) FinishedBy(j, i) 

Figure 6.1: Interval-interval relationships 

We choose the time structure for a specific application by the formulation of a set of axioms 

to describe the content of these relations. Transitivity plays a prominent role. Let rm and 

rn be interpretations of two of the predicate symbols used above. Given three intervals i, j 

and k, if irmj and jrnk, then we might want to know what the relationship between i and 

k could be. Allen [All83] summarises the set of all possible relationships that may exist 

between i and k. This is given in the table on page 95 (omitting'='). If rm holds between 

i and j, and rn holds between j and k, then the entry associated with (rm, rn) in the table 

lists all the possible relationships that may hold between i and k. 

To limit the size of the table to some extent, we use abbreviations to represent the relations. 

(Note the errors in the table on page 836 of [All83]: 'dur' should be 'd', and 'con' should 

be 'di'.) 

We introduce these properties into the system by the formulation of a set of transitivity 

axioms. Consider the entry associated with ('o', 'oi') as an example. With the symbols 

used in the table, we can express the meaning of this entry as follows: 

(i o j)A(j oi k) -t ((i o k)V(i oi k)V(i d k)V(i di k)V(i = k)). 
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jrnk < > d di 0 oi m mi • si f fi 

irmj 

'before' < no <o < < <o < <o < < <o < 

< info md md md md 

8 8 8 • 
'after' no > > oi > > oi > > oi > > oi > > > 
> info mid mid mid mid 

f f f f 

'during' < > d no <o > oi < > d > oi d <o 

d info md mid mid md 

• f f 8 

'contains' <o > oi o oi di 0 di oi di 0 di ol di di fi di di si di 

di m di di mi d fi 8i fi si 0 oi 

fi 8i di 

= 
'overlaps' < > oi 0 <o < o oi < oi 0 di d < 
0 di mi d m di 0 d di fi • 0 

si 8 fi m di 8i 0 0 m 

= 
'over- <o > oi > oi o oi > 0 > oi oi oi oi 

lapped-by' m di d midi d oi di d > di 

oi fi f si di mi fi f mi si 

= 
'meets' < > oi 0 < < 0 < f m m d < 
m midi d d fi • 

8i s 8 = 0 

'met-by' <o > oi > oi > • > d > mi mi 
mi m di d d si f 

fi f f = oi 

'starts' < > d <o <o oi < mi • s si d <m 
s mdi m d f = 0 

fi 

'started by ' <o > oi di 0 oi 0 mi s si si oi di 
8i m di d f difi di fi = 

H 

'finishes' < > d > oi 0 > oi m > d > oi f fft 
f midi d mi mi = 

si 8 

'finished-by' < > oi 0 di 0 ol m si oi 0 dl ffi H 

fi midi d di si dl = 
si 8 

In the language used by Allen, this property can be expressed by the following axiom: 

TR.01 Overlaps(i,j) 1\ OverlappedBy(j,k) -t (Overlaps(i,k) V OverlappedBy(i,k)V 

During(i, k) V Contains(i, k) V Equals(i, k)). 

We can express the transitivity of'<' in a similar way: 

TR.02 Before(i, j) 1\ Before(j, k) -t Before(i, k). 

Apart from During, Allen defines an alternative predicate symbol In so as to collapse the 

three 'during' relations denoted by During, Starts and Finishes, into one relation. 

In(i,j) ~ (During(i,j) V Starts(i,j) V Finishes(i,j)) 

means that i is a proper subinterval of j. In a similar way, we can define a new predicate 

symbol Con in order to collapse the three 'containment' relations, denoted by Contains, 

StartedBy and FinishedBy, into one. 

Con(i, j) ~( Contains(i,j)V StartedBy(i,j)V FinishedBy(i, j)). 
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Now that we know what the time structure of the system looks like, we can consider the 

way Allen expresses the static and dynamic aspects of systems. 

6.1.1 Static aspects 

As in Situation Calculus, a predicate symbol Holds of sort (fact, time) is used to represent 

static aspects of the world. Holds(p, t) is true if fact (or property) p holds over interval t. 

A set of axioms can be used to describe the properties of the Holds predicate symbol. The 

first axiom formulates the most important characteristic of static aspects of the system: if 

a fact holds over an interval, it holds over all subintervals of that interval (i.e. the Holds 

predicate symbol is hereditary [VB91]). 

H.Ol Holds(p,t) i-t Vt'(In(t',t) --t Holds(p,t')). 

A slightly stronger axiom can also be used from which the above-mentioned axiom is deriv­

able. 

H.02 Holds(p, t) i-t Vt'(In(t', t) --t 3s(In(s, t')AHolds(p, s )) ). 

Allen presumably introduces this axiom to exclude the possibility of intermingling 2 [Gal90]. 

The function symbols and, or, not, all and exists are used to abbreviate more complex 

logical expressions and are defined as follows: 

H.03 Holds( and(p, q), t) i-t (Holds(p, t) A Holds(q, t)). (Conjunction of two atomic 

sentences of the form Holds(p, t).) 

H.04 Holds(not(p), t) i-t Vt'(In(t', t) --t •Holds(p, t')). (Negation of the propositional 

term in an atomic sentence of the form Holds(p, t), also referred to as property negation 
3 [Gal90].) 

Note that Holds(not(p, t)) is not the same as •Holds(p, t). Using axiom H.04, if 

Holds(not(p), t) then Vt'(In(t', t) --t •Holds(p, t')), 

so, for every subinterval t' of t, p fails to hold over t'. Using the hereditary property of 

Holds, however, •Holds(p, t) means that it is not the case that for all subintervals t' oft, 

we have Holds(p, t'). So, if there exists just one subinterval oft, say t", where p fails to 

hold, it follows that •Holds(p, t). 

The function symbol or is defined in the following way: 

2This phenomenon is also known as a fuzz (a term used by Prior) or clustered variation. 
3 Also called strong negation [Sho88]. 
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H. OS Holds( or(p, q), t) +-tHolds( not(and(not(p),not(q)) ),t). (Disjunction.) 

From the definition of or given above, it can be shown that we can derive the following 

consequence (in fact, it can be shown that this consequence is equivalent to H. 05): 

Holds( or(p, q), t) +-t Vt' (In(t', t) --+ :3s(In(s, t') A (Holds(p, s )V Holds(q, s)))) 

The Holds predicate is sufficient for the expression of static aspects of the world. Aspects 

that are dynamic in nature can vary considerably. We look at the way Allen caters for this 

variety in the next section. 

6.1.2 Dynamic aspects 

In contrast to Situation Calculus and Extended Situation Calculus, Allen distinguishes 

between events, processes and actions. We discuss the way Allen's system handles the 

notions of an event and a process in this section and in the next section, which deals with 

causality, the notion of an action is considered. 

Events 

The predicate symbol Occurs is used to express the occurrence of an event. 

Occurs(e, t) 

is intended to express the notion that event e occurs over interval t. The characteristic 

property of an event is that, if it occurs over an interval t, it does not occur over any 

subinterval of t : 

0.01 ( Occurs(e, t)Aln(t', t))--+ -,Qccurs(e, t') 

Each occurrence of an event is called an instance of the event and such an instance can only 

be defined by specifying the unique interval over which it occurs. Different event classes 

can be defined by associating a set of necessary, or necessary and sufficient conditions, with 

each class. Such definitions are of the form 

Occurs(e, t) -+ Pt 

for necessary conditions and 

Occurs(e, t) +-t PtA Vt'(In(t', t) -+ •Pt') 

for necessary and sufficient conditions. For the sake of readability, we will only state the 

necessary conditions. Let us look at an example. 
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Example 22 Defining an event class. 

Terms representing the events that involve a person travelling from one town to another 

may be constructed with the help of the function symbol Travels of sort (agent, location, 

location, event). The sentence 

Occurs(Tmvels(a, x, y), t) 

expresses the notion that the event 'Agent a travels from town x to town y', takes place 

over interval t. 

If agent a travels from x to y over interval t, it means that over the interval immediately 

preceding t, a is at location x and in the interval immediately succeeding t, a is at location 

y. These are necessary (and in fact sufficient) conditions for the class of events involving a 

change of location of an agent and this can be expressed in the following way: 

Occurs(Tmvels(a, x, y), t) +-+ 

3t', t"(Holds(At(a, x), t')AHolds(At(a, y), t")AMeets(t', t)AMeets(t, t")) 

where At( a, x) expresses the notion that agent a is at location x. The converse direction 

stipulates that, for person a to change location, an instance of the travelling event class has 

to occur. 

Suppose we also have a class of event terms representing a person changing location by 

taking a flight from one town to another. The event term Flies( a, x, y), where Flies is a 

function symbol of sort (agent, location, location, event), expresses the idea of person 

a taking a flight from x to y. This class does not have the same necessary and sufficient 

conditions as the class of events involving a change of location: the conditions for change of 

location are also necessary for the class of events involving taking a flight, but not sufficient 

because there might now be different ways in which a person can travel from x to y. 

We can also represent events that are composites of other events. In order to express the 

notion of an event e repeated at least twice in an interval t, the following necessary and 

sufficient conditions can be defined: 

Occurs(Twice(e), t) +-+ 

3t~, t2(In(t1, t) A In(t2, t) A (t1 =F t2) A Occurs(e, t1) A Occurs(e, t2)) 

where Twice is a function symbol of sort (event, event). 

The notion of a class of events such that each event e in the class is a sequence of at least 

two events e1 and e2, where e2 occurs strictly after et, can be defined as follows: 
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Occurs(TwoSeq(e17 e2 ), t) t-t 3t17 t2(Starts(tb t) A Finishes(t2 , t) A After(t2 , h)A 

Occurs(e1 , t1) A Occurs(e2 , t2)). 

where TwoSeq is a function symbol of sort (event, event, event). 

The notion of a class of events that consists of events, each of which is the composite of two 

events e1 and e2 occurring simultaneously, can be defined as follows: 

Occurs(Composite(e17 e2), t) t-t ( Occurs(e17 t) A Occurs(e2 , t)) 

where Composite is a function symbol of sort (event, event, event). 

Processes 

A process, like an event, is dynamic in nature. The predicate symbol Occurring of sort 

(process, time) can be used to express the notion of process r occurring over interval t, 

written as Occurring(r, t). 

How do processes differ from events? A suggestion of Allen's is that the number of times an 

event takes place can be counted whereas this cannot be done for a process. Furthermore, an 

event usually involves some product or outcome [All84] which is not the case for a process. 

Processes can be regarded as something between events and properties: while a process may 

be said to occur over a subinterval of the interval over which it occurs (unlike an event), it is 

not the case that it necessarily occurs over all the subintervals (unlike a property). As with 

events, a class of related processes can be defined by specifying the necessary, or necessary 

and sufficient conditions, for elements of that class. 

Example 23 A process. 

Let's look at the travel example again. Suppose person a travels by car from x toy over the 

interval t, so the event Occurs( Travels( a, x, y), t) occurs over t, and suppose Drives( a) 

expresses the idea that agent a is travelling by car (not necessarily driving). The process 

Drives( a) will occur in at least one but probably most of the subintervals oft. If the interval 

grain size is small, or the travelling distance between x andy is great, some subintervals of 

t will be used for filling up the car or for getting something to eat and so on, so Drives( a) 

will not be true in those. If the grain size is large or the distance between x and y is small, 

it might be the case that Drives( a) occurs over all subintervals of t. 
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To define this formally: if a process is occurring over an interval t, it must be occurring over 

at least one subinterv~:~,l, but not necessarily all subintervals, oft. This property of processes 

can be expressed by the axiom 

0.02 Occurring(r, t) --+ 3t'(In(t', t)/\Occurring(r, t')) 

It might be necessary for some classes of processes to stipulate that the process does not 

only occur over at least one subinterval but over all subintervals. Let Falling( a) express the 

notion that object a is in the process of falling. The idea that the process of falling occurs 

over all subintervals of the interval over which the process takes place, can be expressed by 

the following axiom: 

0.03 Occurring( Falling( a), t) +-+\:It' (In(t', t) --+Occurring( Falling( a), t')) 

This is a good example for illustrating that an event can be a composite of an event and a 

process. Suppose we want to express the idea that object a falls from x toy. Let the term 

ChangePos(a, x, y) express the notion that the position of object a changes from x toy. 

The event of falling can be defined as a composite of the event of changing position and the 

process of falling in the following way: 

Falls( a, x, y) +-+Composite( ChangePos(a, x, y),Falling(a)), 

where the definition of Composite is extended to include processes. It is clear that it is 

frequently the case the there exists a close relationship between events and processes. An 

event has to take place for one or more of the properties of an object to change and during 

the interval that the event occurs, the occurrence of some process may result in the event 

taking place. 

It is possible to define necessary and sufficient conditions for some processes, e.g. physical 

processes. However, there are many processes, especially those involving human activity, 

for which such definitions are not possible [All84]. 

In a language with the expressive power of Allen's, it is possible to represent metalinguistic 

notions that in less expressive languages are either not representable at all or else are 

conflated into one ambiguous sentence. Let us use an example to illustrate. 

Example 24 Expressiveness. 

Suppose we want to represent the following two English sentences that might erroneously 

be thought of as equivalent. 

1. There are a number of people who have been complaining constantly, for the past n 

years, about the postal service during the Christmas season. 
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2. Over the past n years, a number of people have complained about the postal service 

during the Christmas season. 

In the first instance, we actually want to say that the same people have complained every 

year for the past n years. In the second instance, we want to express the notion that a 

number of people have been complaining every year for the past n years, but not necessarily 

the same people from year to year. These two concepts can be expressed unambiguously by 

the following two sentences: Let Occurring( Complain( a), i) express the notion that person 

a has complained (at least once) during interval i (where i represents an interval of one 

year.) 

1. 3ii, ... , in(Meets(ii, i2) 1\ ... I\ Meets( in-!, in)/\ 

3at, ... , am( Occurring( Complain( a!), it) 1\ ... I\ Occurring( Complain( am), i1) 1\ ... I\ 

Occurring( Complain( a!), in) 1\ ... I\ Occurring( Complain( am), in))). 

2. 3it, ... , in(Meets(i!, i2) 1\ ... I\ Meets( in-!, in)/\ 

3at, ... , am1 (Occurring( Complain( a!), i1)/\ .. . /\Occurring( Complain(am1 ), i1))/\ .. . I\ 

3at, ... , amn (Occurring( Complain(a1 ), in) 1\ ... 1\ Occurring( Complain(amn), in))). 

6.1.3 Causality 

The notion of causality, i.e. one event causing another, can be expressed by introducing a 

predicate symbol Ecause of sort (event, time, event, time), such that 

Ecause( e, t, e', t') 

expresses the notion that the occurrence of event e over interval t causes the occurrence of 

event e' over interval t'. 

The causal relationship between events e and e', i.e. the idea that if e occurs and is a cause 

of e', then e' also occurs, can be expressed by the following axiom: 

0.04 Occurs(e, t) 1\ Ecause(e, t, e', t') --t Occurs(e', t') 

The notion that an event cannot cause other events prior to its own occurrence can be 

introduced as follows: 

0.05 Ecause(e, t, e', t') --t (In(t', t) V Before(t, t') V Meets(t, t') V Overlaps(t, t')V 

Equals(t, t')). 
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The Ecause relation, considered as a binary relation on pairs (e, t), is transitive and anti­

symmetric. Allen also claims that this relation is anti-reflexive. Intuitively, one feels that 

this should be the case since events do not typically cause themselves, but this does not 

follow from the axioms. Axiom 0.05 allows t and t' to be equal, so, if we do not stipulate 

that e =/= e', the relation might be reflexive. 

Actions 

Another important subclass of occurrences identified by Allen are those that involve an 

agent performing a specific action. Such an action is defined as an occurrence caused in a 

direct way by the agent. Such an action can either be a process ('James is dancing') or an 

event ('James switched on the light.'). 

Associated with this class, we introduce a new form of causality called agentive causality, 

which expresses the idea of an action by an agent being the direct cause of the occurrence 

of an event or a process. This can be expressed using the function symbol Acause of sort 

(agent, occurrence, action) such that 

Acause(a, o) 

expresses the notion of agent a causing occurrence o, where occurrence o can either be of 

sort event or of sort process. 

As in the case of events and processes, we can identify a related class of actions by specifying 

the necessary, or necessary and sufficient conditions, for each class. Actions which cause an 

event to occur are called performances, whereas actions which cause the occurrence of a 

process are called activities. 

Example 25 Defining an action class. 

Suppose we want to introduce an agent as the driver of a car involved in the driving process 

discussed in Example 24. We can accomplish this by using the function symbol DriveAction 

of sort (agent, agent, location, location, action). 

DriveAction(a, b, x, y) abbreviates Acause(a,Drives(b, x, y)) 

expressing the notion that agent b travels by car, which is driven by a, from x toy. 

'It is hypothesised that every action can be characterised as an agent Acause-ing an occur­

rence.' [All84] The following three axioms can be introduced for the occurrence of actions: 
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A.Ol Occurring(Acause(a, o), t) ---+ Occurring(o, t) 

If agent a causes the occurrence of o over interval t, then o occurs over t. 

Every action cis the association of a unique agent a with a unique occurrence o caused by 

a. The following axiom is an expression of this idea: 

A.02 \ic:3!a:3!o(c = Acause(a, o)) 

For the class of performances, we have a stronger version of A. 01 using the Occurs predicate 

symbol: 

A.03 Occurs(Acause(a, e), t)---+ Occurs(e, t), 

i.e. if agent a causes the occurrence of event e over t, then e occurs over t. Constructors for 

composite actions can be used to describe actions consisting of a sequence of actions, and 

to describe actions consisting of actions being performed simultaneously. 

Allen also proposes a way for representing actions that can be closely related, such as 

having two distinct actions where the one is performed in order to perform the other. This 

is relevant for planning. 

6.1.4 Beliefs and plans 

Allen's system makes provision for representing such notions as the beliefs and the intentions 

of an agent. These would be relevant in a planning model since they might play a role in the 

decisions the agent has to make. A sequential model of belief is used. In this model, a belief 

of an agent might be represented by a binary predicate symbol Believes of sort (agent, 

proposition). But where does time fit into this picture? Well, there are two relevant time 

indices to each belief: the time over which the belief is held, and the time over which the 

fact is believed to be true. ('I might believe today that it rained last weekend.') Thus the 

beliefs of an agent are atoms of the form Believes(a,p, tp, tb), where the predicate symbol 

Believes is of sort (agent, fact, time, time}, and the atom expresses the notion that agent 

a believes over tb, that p holds over time tp. 

The notion of a sequence of actions is particularly relevant m a planning model. One 

can think of a plan as a complex action, i.e. a set of decisions about performing or not 

performing an action. A plan occurs if all its decisions are carried out. The notion of an 

agent committing to a plan over a time interval is taken to mean that the agent believes 

it will act according to the plan. In order to represent this, we can introduce a predicate 

symbol ToDo of sort (action, time, plan}, such that 

To Do( c, t, l) 
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expresses the notion that plan l includes performing action cat timet. In contrast to this, 

the predicate symbol NotToDo of sort (action, time, plan) can be introduced, where 

NotToDo(c,t,l) 

expresses the notion that plan l includes not performing action c at time t. This is much 

stronger than--, ToDo(c, t, l), which merely states that plan l does not include action c. 

A desired goal is usually the reason for committing to a plan. The goal is not part of the 

plan but rather part of some desired world. This can be expressed by atoms of the form 

IsGoalOf(a,g, t9 , t), where the predicate symbol IsGoalOf of sort (agent, goal, time, 

time) is used to record that the desired world (at timet) of agent a contains goal g holding 

over time t9 • The notion of an agent committing to a plan can now be introduced using the 

predicate symbol Committed of sort (agent, plan, time), so that 

Committed( a, l, t1) 

expresses the notion that agent a is committed over the interval t1 to act in accordance 

with plan l. 

We can talk of plan l occurring if all its actions are carried out. In order to do this, the 

Occurs predicate symbol is extended to also accept terms of sort plan as argument: 

Occurs(l, t) t-t Vc, tc[( ToDo(c, tc, l) --t Occurs(c, tc))A 

Vc, tc(NotToDo(c, tc, l) --t (Vt'(In(t', tc) --t •Occurs(c, t'))))] 

Allen also describes ways in which a distinction can be made between actions that are 

performed intentionally and those that are performed accidentally. 

The event of an agent committing to a plan can be represented by the term 

Commit(a, l) 

where Commit is a function symbol of sort (agent, plan, event). The class of such events 

can be defined as follows: 

Occurs( Commit( a, l), t) t-t 

3t11 t2(Meets(t1, t) A Meets(t, t2) A •Committed(a, l, t 1 ) A Committed(a, l, t2)) 

We can also make provision for an agent changing his mind by defining the event class 

ChangeMind in the following way: 

Occurs( ChangeMind(a,p,tp), t) t-t 

3t11 t2(Meets(t1, t) A Meets(t, t2)ABelieves(a,p, tP, t 1) A Believes( a, not(p), tP, t2)) 

The framework as proposed by Allen can be used to study general problem-solving behaviour 

and for natural language understanding. Allen & Koomen have investigated the application 
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of this logic to plan-formation [Sad87]. The formalism has also been used for plan recognition 

and plan generation, as well as in a dialogue-un!"lerstanding system that was implemented 

in LISP ([Sad87] and [All84]). 

6.1.5 Refinements 

The system proposed by Allen is not without limitations. 

• Shoham [Sho88] points out that Allen's axiom H.02 is not natural and actually allows 

some weird models such as models in which time has the structure of the reals, but in 

which a property holds over an interval only if it holds over those subintervals whose 

end points are rational. 

• Galton suggests that Allen's property-negation does not always tally with our ordi­

nary idea of the negation of a property [Gal90]. The interval-based time structure, 

as it stands, is not adequate for reasoning correctly about continuous change. Galton 

identifies the source of this inadequacy as Allen's determination to base his theory on 

intervals rather than on instants. There are properties such as 'X is not at P' which 

cannot be substituted for pin H.02. If a moving body X passes through P, it will be 

at P, but only for an instant, not for an interval, so we must conclude that 'X is not 

at P' cannot be expressed in the form not(q), nor can it legitimately be substituted 

for pin H.02 [Gal90]. 

• Allen's system cannot distinguish between a body's being in a certain position for 

an instant, i.e. being true instantaneously, and its being at rest there, i.e. being 

true over an interval [Gal90]. Allen assumes that all facts (properties) can be treated 

similarly. Galton argues that one should at least distinguish between the following 

two kinds of facts: 

- states of position (These are states that can hold at isolated instants. If a state 

of position holds throughout an interval, then it must hold at the limits of that 

interval, e.g. a body being in a particular position, or moving at a particular 

speed or in a particular direction.) 

states of motion (These are states that cannot hold at isolated instants. If a 

state of motion holds at an instant, then it must hold throughout some interval 

within which that instant falls, e.g. a body's being at rest or in motion.). 

• Causality is handled in a rather simplistic way. To reflect the causal relationship 

between two events, one would normally expect to have a set of preconditions, similar 

to the set of preconditions we had for ESC. 04 in Extended Situation Calculus. 
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• No special formal semantics is provided for the temporal arguments. Haugh [Hau87] 

claims that, consequently, it does not ensure that absurd temporal consequences 

cannot be derived, or that all of the genuine temporal consequences will be derived. 

Various attempts have been made to expunge some of the limitations and to refine Allen's 

system: 

• Allen & Hayes [AH85J propose a system based on only one relation, namely Meets, 

that expresses the notion of two intervals meeting. This relation is formulated in 

such a way that the 12 relations that may hold between two distinct intervals are all 

definable in terms of the Meets relation. 

• In [AH85], Allen & Hayes show how instants can be constructed as certain special 

sets of intervals (each instant may be identified either with the set of intervals that 

contain it or with the set of intervals that are bounded by it). 

• Tsang [Tsa87] presents an alternative axiomatisation. His motivation is that Allen & 

Hayes' axiomatisation is not primitive enough to allow for extensions. 

• Sadri [Sad87] proposes modifications to Allen's logic to incorporate some features 

for default reasoning such as default equality of intervals, and default completion of 

partially described events (as in Event Calculus). 

• Galton's system attempts to treat instants and intervals on an equal footing. An 

instant is defined as the point where two intervals meet. Within such a temporal 

structure, it is possible to express the idea of a property's being true instantaneously 

as well as the idea of continuous change. He finds it unnecessary to introduce a 

category of processes separate from properties and events. The range of predicates 

assigning temporal locations to properties and occurrences is also diversified [Gal90J. 

• Allen & Ferguson [AF94] present a logic in which complex temporal relationships can 

be expressed and which is able to handle external events and simultaneous actions 

in a simple way. Their goal is the development of practical planning and natural 

language understanding systems. 

• Ma & Knight [MKP94] define a revised theory using both the ideas of Allen and 

those of Galton. Time intervals (positive duration) and time points (zero duration) 

are regarded as primitive, and the temporal relations between intervals are extended 

to address points as well. They also do not distinguish a category of processes separate 

from properties and events but subsume processes under properties. 
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• In (SC96], Song & Cohen present a strengthened system for temporal reasoning about 

plans. Among other applications, this system can be applied to the process of plan 

recognition through the analysis of natural language input. 

Allen does not define an adequate model theory for this system with the result that we 

do not have a clear interpretation of the system. In the next section, we look at a system 

proposed by Shoham & Goyal (SG88] that tries to rectify this. This system is particularly 

interesting since reification is done slightly differently to the way it is handled in Situation 

Calculus. 

6.2 Shoham's reified language 

In [SG88], Shoham & Goyal present a temporal logic for the propositional case as well as 

one for the first-order case. We discuss the first-order case, which uses a language similar 

to Allen's. 

Shoham & Goyal's language is best understood as being many-sorted, with an alphabet A 
based on the set TP = {time, object, relation, proposition} of sorts, and consisting of 

the following symbols: 

• a set TC of zero, one, or more constants of sort time 

• a set C of zero, one, or more constants of sort object 

• a set REL of pairs (r, n) where r is a constant of sort relation and n is the arity 

associated with r. Each r also has a sort tuple (object, ... , object) associated with 

it 

• a set TV of variables t0,tb ... of sort time 

• a set V of variables x0 , x 1, ••. of sort object 

• a set TFUN consisting of one or more elements of the form ( tf, n) where tf is a 

temporal function symbol having arity n associated with it. Each tf also has a 

sort (Tb ... , Tn, Tn+l) associated with it, where Tj = time for j = 1, ... , n + 1 

(typically, the members of TFUN would be arithmetic operators) 

• a set FUN consisting of one or more elements of the form (!, n) where f is a 

nontemporal function symbol having arity n associated with it. Each f also has 

a sort (Tb ... , Tn, Tn+l) associated with it, where Tj =I time is the sort of argu­

ment j off for j = 1, ... , n and Tn+l =I time is the resulting sort. In particular, 
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we have a function symbol en +I of sort (relation, object, ... ' object' proposition) 

which gives terms of the form en+l(r, trm~, ... , trmn) of sort proposition. We write 

en+l(r, trm1 , •• • , trmn) as r( trm1 , •• • , trmn) for short. Every n has a unique en+l 

associated with it 

• the set P RED of elements of the form (A, n) where A is a predicate symbol having 

arity n associated with it. Each A also has a sort (TI, ... , Tn) associated with it 

where Tj is the sort of argument j of A. P RED contains exactly three elements, 

namely(=, 2) and (:::;, 2), both of sort (time, time), and the element (True, 3) of 

sort (time, time, proposition) 

• the connectives -, and ~ 

• the quantifier V. 

The set of temporal terms is defined as follows: 

• if t E TC, then t is a temporal term 

• if t E TV, then t is a temporal term 

• if t1, ... , tn are temporal terms and tf is an n-ary temporal function symbol, then 

tf(ti, ... , tn) is a temporal term. 

The set of nontemporal terms is defined as follows: 

• if c E C, then c is a nontemporal term of sort object 

• if x E V, then x is a nontemporal term of sort object 

• if f is a nontemporal function symbol having arity n with associated sort tuple 

(T~, ... , Tn, Tn+l), and trm~, ... , trmn are nontemporal terms of the appropriate 

sorts, then f( trm~, . .. , trmn) is a nontemporal term of sort Tn+I· In particular, if r 

is a relation constant of arity n and if trm1 , •.• , trmn are terms of sort object, then 

en+l(r, trm~, ... 'trmn), abbreviated as r(trml, ... 'trmn), is a nontemporal term 

of sort proposition. 

If ta and 4 are temporal terms, and r( trm~, . .. , trmn) is a nontemporal term of sort 

proposition, then {ta = tb), (ta :::; tb) and True(ta, tb, r ( trm11 ••• , trmn)) are atomic wffs 

over A. Let 41 be the set of all atomic wffs over A. 

The set of well-formed formulae or wffs is the smallest set such that: 
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• if c.p E <I>; then c.p is a wff 

• if c.p and '1/J are wffs, then ( c.p -t '1/J) and •c.p are wffs 

• if c.p is a wff, and x E TV U V is a variable, then \fx( c.p) is a wff. 

The connectives A, +-t and V, as well as the existential quantifier 3, can be introduced by 

the usual abbreviations. The set of all wffs over the alphabet A constitutes the many-sorted 

language Cs. A sentence is a wff that contains no free variables. 

An interpretation is a pair I= (D, i) such that, for every sort T, D has a subdomain of 

that sort. Let the subdomain of sort time be Dtime = TW, the subdomain of sort object 

be Dobject = W, the subdomain of sort relation be Drelation = RL and the subdomain of 

sort proposition be Dproposition = PL. The meaning function i is defined as follows: 

• i(t) E Dtime = TW for all t E TC 

• i(c) E Dobject = W for all c E C 

• i(r) E Drelation = RL for all (r, n) E REL 

• i(tf) : TWn -t TW for all (tf, n) E TFUN 

• i(f) : TWX TWX Dr1 X··· X Drn -t Drn+l for all(!, n) E FUN. In particular, 

i(~n+I): TWx TWx RL x Wn -t PL 

• i ( =) is the identity relation on TW 

• i(~) £;;; TW x TW 

• i(True) £;;; TWx TWx PL. 

Thus the meaning of a nontemporal function may vary with time, e.g. a function symbol 

defining the president of the United States of America would be permitted to have different 

meanings at different times. 

A variable assignment v is defined as follows: 

• v(t) E Dume = TW for all t E TV 

• v(x) E Dobject = W for all x E V. 

The combination of the meaning function i and the variable assignment v induce a deno­

tation function m on arbitrary terms. Since nontemporal terms may have meanings that 

vary over time, the denotation function m should be time-dependent. This may be made 
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explicit either by defining a variety of denotation functions ffi(71 ,72 ) for all T1, T2 E TW, or 

by introducing the parameters T1, T2 E TW as arguments of m. We for0w the latter course. 

However, in many cases the denotation of a term is not time-dependent and in these cases 

we will simplify the notation by writing m(t) instead of m(T1, T2, t). Thus the denotation 

function m is defined as follows: 

• if t E TV, then m(t) = v(t) 

• if t E TC, then m(t) = i(t) 

• ift = tj(t1, ... , tn), for some (tf, n) E TFUN, then m(t) = i(tf)(m(ti), ... , m(tn)) 

• if t E C and T1, T2 E TW, then m(T1, T2 , t) = i(t) 

• if (t, n) E REL and T1, T2 E TW, then m(T1, T2 , t) = i(t) 

• if t = j(trm1, ... , trmn) for some (f, n) E FUN, and if TI, T2 E TW, then 

m(T1, T2, t) = i(f)(T1, T2 , m(T1, T2 , trm1), ... , m(T1, T2, trmn)). In particular, 

if t = ~n+l(r, trm1, ... , trmn) then m(T1, T2 , t) = i(~n+l )(T1, T2, m(T1, T2, r), 

m(T1, T2, trm1), ... , m(TI, T2, trmn)). 

Let ta and tb be temporal terms, trm1, ... , trmn terms of sort object, and r any relation 

constant. We say that a wff <pis satisfied in an interpretation I= (D, i), in the context of 

the variable assignment v, denoted by (I, v) If- <p, iff one of the following cases applies: 

. • cp =(ta = tb) and m(ta) = m(tb) 

• cp =(ta ::; tb) and (m(ta), m(tb)) E i(::=;) 

• cp = True(ta, tb, r(trm1, ... , trmn)) and 

[m(ta), m(tb), m(m(ta), m(tb), ~n+l(r, trm1, ... , trmn))] E i( True) 

• cp =(a-t¢) and (I, v) .W a or (I, v) If-¢, or both 

• cp = ( •a) and (I, v) .W a 

• cp ='v'x(a) and (I, v') If- a for every v' that differs from vat most on the variable x. 

The predicate symbol True is known as a 'truth'-predicate symbol and is similar to the 

Holds predicate used in the systems discussed in the preceding section in this chapter. 

True associates a propositional term with a time interval. 
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Shoham & Goyal [SG88] distinguish different kinds of propositional terms such as terms 

that are fact-like, terms that are event-like and so on, not by introducing them as separate 

objects, but rather by specifying how the truth of the term over one interval is related to 

its truth over other intervals. They give the following categorisation of propositional terms 

for the representation of 'facts, properties, events, and other animals' [SG88J: 

• A proposition is downward-hereditary if, whenever it holds over an interval, it also 

holds over all of its subintervals (possibly excluding its two end points) ('the robot 

travelled less than 2 miles'). This corresponds to Allen's characterisation of facts or 

properties, and it can be formulated by the axiom 

• A proposition is upward-hereditary if, whenever it holds over all proper subintervals of 

a nonpoint interval (except possibly its end points), it also holds over the interval itself 

('the robot travelled at a speed of two miles per hour'). This idea can be expressed 

by the axiom 

Vt1, t2((t1 < t2) !\ Vt3, t4[(t1 :S t3 :S t4 :S t2) !\ (tt # t3 V t4 # t2)!\ 

(ti # t4 !\ t3 # t2)---+ True(t3, t4, cp)]---+ True(tt, t2, cp)). 

• A proposition is point-downward-hereditary if, whenever it holds over an interval, it 

holds at all of its internal points. 

• A proposition is point-upward-hereditary if, whenever it holds at all internal points of 

some nonpoint interval, it also holds over the nonpoint interval itself. 

• A proposition is interval-downward-hereditary if, whenever it holds over an interval, 

it also holds over all of its nonpoint subintervals ('the robot travelled at a constant 

speed of 5mph' [Sho87]). 

• A proposition is interval-upward-hereditary if, whenever it holds over all nonpoint 

subintervals of some nonpoint interval, it also holds over the nonpoint interval itself 

('the robot was motionless' [Sho87]). 

• A proposition is liquid if it is both upward- and downward-hereditary ('the robot's 

arm was in the Grasping state'). These are propositional terms that are homogeneous. 

• A proposition is concatenable 4 if, whenever it holds over two consecutive intervals, 

it also holds over their union ('the robot travelled an even number of miles'). 

4Shoham & Goyal also use the term clay-like 
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• A proposition is gestalt if it never holds over two intervals, one of which properly 

contains the other ('exactly six minutes passed'). 

• A proposition is solid if it never holds over two properly overlapping intervals. This 

means that if the proposition is true over an interval, it is not true over any of the 

subintervals ('the robot executed the Navigate procedure from start to finish'). Allen's 

events correspond either to gestalt propositions, or to solid propositions, or to both 

[Sho88]. 

We could also give similar definitions for point-point-liquid propositional terms (coinciding 

with Allen's facts [Sho87]), interval-interval-liquid, point-interval-liquid and interval-point­

liquid propositional terms. 

Shoham & Goyal claim that this approach is richer and more flexible than either the prop­

erty/event/process trichotomy of Allen or the fact/event dichotomy of McDermott. The 

categorisation of propositional terms has the advantage that a distinction need only be 

made when necessary, e.g. if we want to introduce the notion of causation, 'x causes y' say, 

then x and y may be facts or events or in some other category. Furthermore, if we want to 

categorise temporal propositions, we can do this in as fine a grain as we need to. 

There has been some criticism of Shoham's system: 

• Reichgelt [Rei87] feels that the categorisation, although rather elegant, leads to less 

expressive power and less logical clarity which may lead to a possible confusion be­

tween things that need to be distinguished. 

• Bacchus et al. (BTK91] claim that the fact that the truth of a propositional term is 

expressed in terms of an interval (in this case, a pair of time points), is restrictive. 

They propose a system in which the terms of the language are partitioned into only 

two sorts, namely temporal and nontemporal, such that each atomic predicate symbol 

has a set of nontemporal arguments as well as any number of temporal arguments. 

They argue that this results in time being given a special syntactic and semantic status 

without having to resort to reification. They also show that this logic completely 

subsumes Shoham's logic. 

• Vila [Vil94] states that the True predicate symbol necessarily includes everything in 

the nontemporal part of an atomic sentence in its scope, to be interpreted under the 

same time points. It is thus not clear how a sentence like 'Jordi is dancing today with 

the girl that was wearing the red skirt yesterday' can be expressed. 
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Chapter 7 

Applications and related directions 

In this dissertation we described a number of temporal logics, some using first-order lan­

guages and others using propositional modal languages as object language. We also dis­

cussed the various options available for deciding on the characteristics of the underlying 

temporal structure of such a logic. It is clear from the literature that these issues are to a 

great extent determined by the intended application. 

7.1 Applications 

There are a host of different applications where temporal logic may be used. These include 

applications from for example theoretical computer science, linguistics, artificial intelligence 

and physics: 

• Natural language understanding/processing: The uses of the tense and aspect of a 

natural language need to be analysed to prepare it for the computer [GHR94]. Al­

len's system has been used for the representation of events, actions and interactions 

that arise in natural language dialogue and for speech recognition systems involving 

conversational agents [All98]. 

• Planning: We can treat planning as a form of reasoning about actions and plans in 

which time and modality play essential roles' [GHR94]. For example, we need the 

ability to look at different possible futures, i.e. for forward causal reasoning, 'what 

happens if I do this?', and to look at different possible pasts, i.e. for backward causal 

reasoning, 'what must I do to get that to happen?'. 

• Databases: In many applications like project management and operational control, 

for example, the history of data in a changing world is relevant. Temporal databases 

provide ways of dealing with historical data (e.g. [BT98], [GHR94]). 
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• Distributed systems: Temporal logic can be used for describing communication proto­

cols between stations and for describing the temporal conditions for turning stations 

on and off (see [GHR94] and [Gol92]). 

• Program specification and verification: Burstall first introduced the idea of using 

modal logic to reason about computer programs [RN95]. Temporal logics are widely 

used in the field of program specification and verification. Manna and Pnueli, for 

example, made major contributions with their research in this field (see, for example 

[MP81b] and [MP82] and [MP81a]).Temporallogic can be used for 

- describing the properties of programs and the way in which they change states 

with execution 

- proving the properties of programs 

- controlling the execution of programs 

proving the correctness of parallel programs, including both safety and liveness 

properties (see [Hai82], [GHR94] and [MP89]). 

• Expert systems: In an expert system, the reasoning capability is equal in importance 

to the database. Let us consider a medical expert system for example. Many of 

the relevant facts are time-dependent. For diagnosis, the medical history of the pa­

tient, both long-term and short-term, may be important. We may also use temporal 

terminology to accurately describe prognoses and courses of treatment [GHR94]. 

A number of executable temporal logics, for example Templog, Tempura, MetateM, and 

Tokio [F095], have been developed for the implementation of applications. 

7.2 Related directions 

Apart from the applications listed above, there are numerous related research fields based 

on the concepts discussed in this dissertation. We list a few of these that we hope to take 

a closer look at: 

• Distributed Temporal Logic. Temporal logics are well-suited for specifying temporal 

properties of concurrent systems. Distributed temporal logic is a high-level specifica­

tion technique that deals with distributed data and concurrent programs as well as 

with concurrent workflow and communication among different sites [ECSD98]. 
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• Graphical Interval Logic: Dillon et.al. [DKM+94] claim that the specifications of even 

moderate-sized concurrent systems are complex and that most people find standard 

temporal logics difficult to understand and use for this purpose. Graphical interval 

logic is a tool set developed for use by software engineers for formal specification and 

verification of concurrent software systems. It is an interval-based temporal logic that 

has an intuitive graphical representation. (See [MS88], [Ram93] and [RMSM+93].) 

• Agent-oriented programming. Temporal logic can be used as the basis for the formal 

description of dynamic agent behaviour in reactive systems. It has many advantages 

as a descriptive technique for agents, particularly in a multi-agent system [Fis94]. 
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