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Summary 

The lower and upper independent, domination and irredundant numbers of the graph 

G = (V, E) are denoted by i ( G) , f3 ( G), 'Y ( G), r ( G), ir ( G) and IR ( G) respectively. 

These six numbers are called the domination parameters. For each of these parame­

ters n:, we define six types of criticality. The graph G is n:-critical (n:+ -critical) ifthe 

removal of any vertex of G causes n: (G) to decrease (increase), G is n:-edge-critical 

(n:+-edge-critical) ifthe addition of any missing edge causes n: (G) to decrease (in­

crease), and G is Ir-ER-critical (n:- -ER-critical) if the removal of any edge causes 

n: (G) to increase (decrease). For all the above-mentioned parameters n: there exist 

graphs which are n:-critical, n:-edge-critical and n:-ER-critical. However, there do not 

exist any n:+-critical graphs for n: E {ir,"f,i,/3,IR}, no n:+-edge-critical graphs for 

n: E {ir,"f,i,/3} andnon:--ER-criticalgraphsforn: E {'Y,/3,r,IR}. Graphs which 

are "I-critical, i-critical, "I-edge-critical and i-edge-critical are well studied in the liter­

ature. In this thesis we explore the remaining types of criticality. 

We commence with the determination of the domination parameters of some well­

known classes of graphs. Each class of graphs we consider will turn out to contain a 

subclass consisting of graphs that are critical according to one or more of the defin­

itions above. We present characterisations of "I-critical, i-critical, "I-edge-critical and 

i-edge-critical graphs, as well as ofn:-ER-critical graphs for n: E {/3,r,IR}. These 

characterisations are useful in deciding which graphs in a specific class are critical. 

Our main results concern n:-critical and n:-edge-critical graphs for n: E {/3, r, IR}. We 

show that the only /3-critical graphs are the edgeless graphs and that a graph is IR­

critical if and only if it is r-critical, and proceed to investigate the r-critical graphs 

which are not /3-critical. We characterise /3-edge-critical and r-edge-critical graphs 

and show that the classes of IR-edge-critical and r-edge-critical graphs coincide. We 

11 



also exhibit classes of r+ -critical, r+ -edge-critical and i- -ER-critical graphs. 

Key terms: domination, independence, irredundance, vertex-critical graphs, edge­

critical graphs, edge-removal-critical graphs. 
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Chapter 1 

Introduction 

This chapter contains the basic definitions and notations needed in this thesis, in­

cluding some basic results on independence, domination and irredundance and their 

related parameters ir, "/, i, /3, rand IR. For each of these parameters we define six 

notions of criticality and determine for which of them there exist graphs that are crit­

ical. Finally, we briefly discuss existing results on criticality and outline the scope 

and main results of this thesis. For all undefined graph-theoretical terms we refer the 

reader to [16] . 

1.1 Independence, domination and irredundance 

A graph G is an ordered pair (Va, Ea) where Va is a finite set of vertices and Ea 

is a set of two-element subsets of Va, called the edges of G. We will often denote an 

edge { u, v} by uv. If uv E Ea, we say that u and v are adjacent, or that they are 

neighbours in G. The open neighbourhood of a vertex v, denoted by Na(v), is the set 

{u E Valuv E Ea} and the closed neighbourhood Na[v] is the set Na(v) U { v }. The 

degree ofv E Va is the cardinality INa(v)I of Na(v) and is denoted by dega(v). The 

minimum degree o(G) and the maximum degree ~(G) is, respectively, the minimum 

and the maximum of the degrees of the vertices of G. A vertex of d,egree 0 is an isolated 

vertex and a vertex of degree IVal-1 is a universal vertex of G, i.e. an isolated vertex 

is adjacent to no vertices of G and a universal vertex is adjacent to every vertex of 

G other than itself. If o(G) = ~(G) = r, then G is called an r-regular graph. An 
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Chapter 1 Introduction 

edgeless graph andacompletegraph arer-regulargraphswithr = Oandr = IVal-1, 

respectively. 

Whenever the graph G is clear from the context, the sets Va, Ea, Na(v) and Na [v] 

will often be denoted by V, E, N(v) and N[v] and the numbers dega(v), 15(G) and 

D.( G) by deg( v ), 15 and D. respectively. This applies throughout this thesis, i.e. the 

subscript G may be dropped and a parameter K(G) may become K ifthere is no ambi­

guity. 

Two graphs G and Hare isomorphic ifthere exists a bijection¢;: Va ---"' VH such 

that u and v are adjacent in G if and only if¢;( u) and ¢;( v) are adjacent in H. Clearly 

this is an equivalence relation on graphs and we will write G ~ H if G and H are 

isomorphic. A copy of G is a graph isomorphic to G. A graph His a subgraph of the 

graph G if VH <; Va and EH c;;; Ea. A graph that is isomorphic to a subgraph of G 

will also be called a subgraph ofG. The subgraph G (S) of G induced by a vertex-set 

S of G has vertex-set S and edge-set { uv E Ea I u, v E S}. 

Two graphs G and H are disjoint if Va and VH are disjoint. The union G U H of 

G and H has VauH = Va U VH and EauH = Ea U EH. The disjoint union of G and 

H is the union of disjoint copies of G and H. The disjoint union of n copies of G will 

be denoted by nG. 

A graph G is connected if for any partition {Vi, 112} of Va, there exist v1 E Vi and 

v2 E 112 such that v1v2 E Ea; otherwise G is disconnected. A component of G is a 

maximal connected subgraph of G. 

Suppose G is disconnected and let {Vi, 112} be a partition of Va such that no vertices 

of Vi are adjacent to any vertices of 112. Clearly G is the disjoint union of the induced 

subgraphs G (V1) and G (112) of G. Each of these subgraphs, if disconnected, can 

in turn be written as the disjoint union of two induced subgraphs. This procedure 

terminates in the decomposition of G into its components. 
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Section I. I Independence, domination and irredundance 

An automorphism of a graph G is an isomorphism of G onto itself. G is vertex­

transitive if, for any two vertices u and v, there is an automorphism <'!> of G such 

that <'!> ( u) = v. G is edge-transitive if, for any two edges u1 v1 and u 2v2, there is an 

automorphism <'!> of G such that !!> ( { u1 , v1}) = { u2 , v2}. 

The complement G of the graph G has VG = Ve and uv E E"G if and only if 

uv ¢Ee. 

Theclosedneighbourhoodofaset S <;;;Ve, denoted by Ne [S],isthesetLJ.Es Ne[s] 

and the open neighbourhood Ne(S) is the set Ne[SJ - S. Clearly Ne[{v }] = Ne[v] 

andNe({v}) = Ne(v). If S,T <;;;Ve, then Sdominates Tin GifT <;;; Ne[S] andif 

v E Ne[S], then we say that S dominates v. If S <;;; Ve and s E S, thens is an iso­

lated vertex of Sin G if Ne(s) n S = 0, i.e. sis an isolated vertex of the graph G (S). 

S <;;;Ve is an independent set of G if Ne(s) n S = 0 for every s ES, i.e. no two ver­

tices in Sare adjacent in G. Note, however, that Ne(S) = UsES Ne(s) only if Sis 

an independent set of G. Observe further that independence is a hereditary property, 

i.e. every subset of an independent set is independent. Consequently, an independent 

set S of G is maximal independent if and only if SU { v} is not independent for every 

v E Ve - S. The independence number (3(G) and the lower independence number 

i( G) are the largest and the smallest number of vertices in a maximal independent set 

of G, respectively. 

S <;;; Ve is a dominating set of G if S dominates Ve, i.e. every vertex of Ve - Sis 

adjacent to at least one vertex of S. Domination is clearly a super-hereditary property, 

i.e. every superset of a dominating set is dominating. It follows that a dominating set 

S of G is minimal dominating if and only if S - { s} is not dominating for every s E S. 

The domination number 1( G) and the upper domination number r( G) are the smallest 

and the largest number of vertices in a minimal dominating set of G, respectively. 

If S <;;; Ve and s E S, then the private neighbourhood of s relative to S, denoted by 
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Chapter 1 Introduction 

PNa(s, S), is the set Na[s] - Na[S - {s }]. The vertices of PNa(s, S) are called the 

private neighbours of s relative to S. If PNa(s, S) = 0, thens is a redundant vertex 

of S, otherwise it is an irredundant vertex of S. Note thats E PNa(s, S) if and only if 

sis an isolated vertex of S. Thus, ifs is an isolated vertex of S, then it is an irredundant 

vertex of Sand ifs is anon-isolated vertex of S, then PNa(s, S) <;:; Va - S. We often 

refer to the vertices of PNa (s, S) - Sas the external private neighbours of s relative 

to S. 

S <;:; Va is an irredundant set of G if PNa(s, S) # 0 for every s E S, i.e. every 

non-isolated vertex of S has an external private neighbour. Note that independent sets 

are irredundant. As in the case of independence, irredundance is a hereditary property 

and therefore an irredundant set S of G is maximal irredundant if and only if SU { v} 

is not irredundant for every v E Va - S. The irredundance number IR( G) and the 

lower irredundance number ir(G) are the largest and the smallest number of vertices 

in a maximal irredundant set of G, respectively. 

Suppose S is an independent set of G and v E V - S. Then S U { v} is not inde­

pendent if and only if S dominates v. Therefore 

Proposition 1.1 (Berge [ 4] ) Sis a maximal independent set of G if and only if Sis 

an independent dominating set of G. 

Because of the existence of Proposition 1.1, the lower independence number i is 

also called the independent domination number. Suppose S is a dominating set of G 

ands ES. Then S - {s} is not dominating if and only if PN(s, S) # 0. Therefore 

Proposition 1.2 (Cockayne and Hedetniemi [9] } S is a minimal dominating set of 

G if and only if S is an irredundant dominating set of G. · 

We present a characterisation of maximal irredundance after the following lemma. 
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Section 1.1 Independence, domination and irredundance 

Lemma 1.3 Suppose S <;; V, s E Sand v E V - S. Then 

(i) PN(v, SU {v}) = N[v] - N[S]; hence vis a redundant vertex of SU { v} if and 

only if N[v] <;; N[S]. 

(ii) PN(s,SU {v}) = PN(s,S)-N[v] ;hence sisaredundantvertexof SU {v} if 
and only if PN(s,S) <;; N[v]. 

If P N ( s, S) <;; N [v], we often say that v annihilates s relative to S. 

Proposition 1.4 Suppose Sis an irredundant set of G and R = V - N[S]. Then S 

is maximal irredundant if and only if for every v E N[R] there exists an Sv E S such 

that PN(sv,S) <;; N[v]. 

Proof. Notethatv rf- N[R] ifand only if N[v] <;; N[S]. Therefore, by Lemma 1.3 (i), 

Sis maximal irredundant ifand only iffor every v E N[R] there exists an Bv ES such 

that Sv is a redundant vertex of SU { v}. Lemma 1.3 (ii) now completes the proof. • 

Proposition 1.5 (Berge [SJ ) If Sis a maximal independent set of G, then Sis a 

minimal dominating set of G. 

Proof. Note that any independent set of G is irredundant. The proof now follows from 

Propositions 1.1 and 1.2. • 

Proposition 1.6 (Cockayne, Hedetniemi and Miller [I OJ ) If S is a minimal domi­

nating set of G, then S is a maximal irredundant set of G. 

Proof. By Proposition 1.2, S is an irredundant dominating set of G. The proof now 

follows from Proposition 1.4 since R = V - N[S] = 0. • 

A consequence of Propositions 1.5 and 1.6 is the following well-known string of 

inequalities, first mentioned in [I OJ . 
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Chapter I Introduction 

Proposition 1. 7 For any graph G, 

ir( G) :e; 'Y( G) :e; i( G) :e; /3( G) :e; r( G) :e; IR( G). 

These six parameters will be called the domination parameters; ir, 'Y and i will be 

called the lower domination parameters, while /], r and IR will be called the upper 

domination parameters. By a Jr-set of G we mean a vertex-set of G realising 7r (G), 

eg. a /]-set of G is a maximal independent set X of G with [X[ = f3 (G). 

In the following observations, G and Hare arbitrary disjoint graphs. 

Each of the six domination parameters 7r mentioned above has the properties 

Pl 7r(GuH)=7r(G)+7r(H). 

P2 1 :e; 7r (G) :e; [Va[. 

P3 7r (G) = [Va[ if and only if G is edgeless. 

Each lower domination parameter 7r has the property 

P4 7r ( G) = 1 if and only if G has a universal vertex. 

Each upper domination parameter 7r has the property 

PS 7r ( G) = 1 if and only if G is complete. 

Suppose G has k components Ci, C2 , ••• , Ck. Pl implies that for any domination 

parameter 7r, 

k 

7r (G) = L 7r (Ci). 
i=l 

Let Kn denote the complete graph on n vertices. Then Kn is the edgeless graph on 

n vertices. P3 implies that 7r (Kn) = n and P4, PS imply that 7r (Kn) = 1 for all 

domination parameters. 
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Section 1.2 Criticality 

1.2 Criticality 

When studying a particular graph parameter it is worthwhile to investigate those graphs 

that are in some sense critical with respect to the parameter, the reason being that 

knowledge of the structure of such graphs often results in a deeper insight into the 

parameter Also, considerations of criticality play an important role in induction argu­

ments, and these abound in graph theory. 

For each of the six domination parameters 7r, we define six types of criticality. The 

graph G is 

Cl 7r-critical if7r(G - v) < 7r(G) for all v E Va. 

C2 7r+ -critical if 7r ( G - v) > 7r ( G) for all v E Va. 

C3 7r-edge -critical if 7r ( G + uv) < 7r ( G) for all uv E Ea. 

C4 7r+ -edge-critical if 7r ( G + uv) > 7r ( G) for all uv E Ea· 

CS 7r-ER -critical if 7r ( G - uv) > 7r ( G) for all uv E Ea. 

C6 7r--ER-critical if7r(G-uv) < 7r(G) foralluv E Ea. 

For any domination parameter 7r, all edgeless graphs with more than one vertex 

are both 7r-critical and 7r-edge-critical. If 7r is an upper parameter, then all complete 

graphs with more than one vertex are 7r-ER-critical and if 7r is a lower parameter, then 

all stars K1,n ( n 2". 1) are 7r-ER-critical. This establishes the existence of 7r-critical, 7r­

edge-critical and 7r-ER-critical graphs for all domination parameters 7r. The following 

three propositions show that there exist no 7r+ -critical graphs for 7r E { ir, "Y, i, /3, IR}, 

no 7r+ -edge-critical graphs for 7r E {fr, "Y, i, /3} and no 7r- -ER-critical graphs for 7r E 

{"Y, /3, f,IR}. 
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Chapter I Introduction 

Proposition 1.8 (Topp, [24] ) For al!Ji graph G, 

(a) (3 (G - v) :":: (3 (G)for all v E Va. 

(b) IR (G - v) _::;IR (G)forall v E Va 

(c) / (G + uv) :":: / (G)forall uv E EcJ. 
(d) (3 (G + uv) ::; (3 (G)for all uv E E0 
(e) 1(G-uv):.'.".1(G)foralluvEEa. 

(f) (3 (G - uv) :.'.". (3 (G)for all uv E Ea. 

Proof. (a) A (3-set S of G - vis independent in G; hence (3 ( G - v) = ISi :":: (3 (G). 

(b) An IR-set S of G - vis irredundant in G; hence IR (G - v) = ISi :":: IR (G). 

(c) A 1-set S of G dominates G + uv; hence/ (G + uv) :":: ISi = 1(G). 

(d) A (3-set S ofG + uv is independent in G; hence (3 (G + uv) = ISi ::0 (3 (G). 

(e)A1-setS ofG- uv dominatesG; hence1(G) ::0ISi=1(G- uv). 

(f) A (3-set S of G is independent in G - uv; hence (3 ( G) = I SI ::0 (3 ( G - uv). • 

The following proposition implies that there are no 7r+ -critical graphs if 7r is a lower 

parameter. We first prove a lemma. 

Lemma 1.9 For any graph G and v E Va, if Sis a maximal irredundant set of G 

and an irredundant set of G - v, then Sis a maximal irredundant set of G - v. 

Proof. Consider any x E Va-v - S. Then x E Va - S artd since S is a maximal 

irredundant set of G, SU { x} is not an irredundant set of G ; hence SU { x} is not an 

irredundant set of G - v. The result follows since Sis an irredundant set of G - v . 

• 

8 



Section 1.2 Criticality 

Proposition 1.10 Let 7r be a lower domination parameter. For any graph G with 

more than one vertex, 7r(G - v) :<::: 7r(G)for at least one v E Va. 

Proof. If G has an isolated vertex v, then clearly 7r( G - v) = 7r( G) - 1. So assume G 

has no isolated vertices; hence 7r(C) < IVal-

(i) Let S be a 1-set of G and v E Va - S. Since S is a dominating set of G - v, it 

follows that 1(C - v) :<::: ISi = 1(C). 

(ii) Let S be an i-set of G and v E Va - S. Since Sis an independent dominating set 

of G - v, it follows that i(G - v) :S: ISi = i(G). 

(iii) Let S be an ir-set of G. If S is a dominating set of G, then S is a 1-set of G; 

hence by (i), ir(G - v) :S: 1(C - v) :S: 1(G) = ir(G) for some v E Va. If S 

is not a dominating set of G, let v E Va - Na [SJ. Then S is an irredundant set of 

G - v. It follows from Lemma 1.9 that Sis a maximal irredundant set of G - v; hence 

ir(G - v) :<::: ISi = ir(G). • 

The next proposition implies that there are no 7r+ -edge-critical graphs if 7r is a lower 

parameter. We first prove a lemma. 

Lemma 1.11 ir ( G) = I ( C) if and only if there exists an ir-set S of G and an 

x E Va such that S U { x} is a dominating set of G. 

Proof. If ir ( G) = 1 ( C), then any 1-set S of G is an ir-set of G (by Proposition 1.6) 

and for any x E Va, SU { x} is clearly a dominating set of G. 

Now suppose Sis an ir-set of G and Su { x} is a dominating set of G. If x E S, 

then Sis a dominating set of G; hence I (G) :S: ISi = ir (G). If x E Va - S, then 

S U { x} is dominating but not irredundant in G, that is, S U { x} is a dominating but 

not minimal dominating set of G. It follows that 

1(G) < ISi + 1, 
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Chapter I Introduction 

hence 

1(G)::.:: ISi =ir(G). 

In both cases it follows from Proposition 1.7 that ir ( G) = / (G). • 

Proposition 1.12 Let Jr be a lower domination parameter. For any graph G which 

is not complete, Jr ( G + uv) ::.; Jr ( G) for at least one uv E E0 . 

Proof. If G has a universal vertex, then clearly Jr ( G + uv) = Jr ( G) = 1 for all 

uv E E0 and if G is edgeless, then 7r(G + uv) = Jr (G) - 1 for all uv E E75. So 

assume that G has no universal vertices and at least one edge. 

(i) Let S be an i-set of G. By the assumption above, there exists uv E E75 with 

u E Ve - S. Since Sis an independent dominating set of G + uv, it follows from 

Proposition 1.1 that 
• 

i(G+uv)::.; ISi =i(G). 

(ii) For Jr = I the statement follows from Proposition 1.8 ( c). 

(iii) LetS be an ir-set of G. If ir(G) = 1(G), then it follows from Propositions 1. 7 and 

1.8 (c)thatir(G+uv)::.; ir(G) foralluv E E0 . Soassumethatir(G) < 1(G). 

By Lemma 1.11 there exists uv E E75 with u,v E Ve - Ne [S]. It follows from 

Proposition 1.4 that Sis a maximal irredundant set of G + uv; hence 

ir(G +uv)::.; ISi = ir(G). • 

The following proposition shows that there are no Jr- -ER-critical graphs if Jr is an 

upper parameter. 

Proposition 1.13 Let Jr be an upper domination parameter. For any graph G with 

at least one edge, Jr (G - uv) z Jr (G)for at least one uv E E0 . 

Proof. (i) For Jr = /]the statement follows from Proposition 1.8 (£). 
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Section 1.3 Outline 

(ii) Let S be a f-set of G. If Sis independent, then 

r(G) = ISi:::: f3(G):::: f3(G-uv):::: r(G-uv) 

for all uv E Ea (by Proposition 1.8 (f)). If S is not independent, then there exists 

uv E Ea with u, v E S. Since Sis a dominating irredundant set of G - uv, 

r (G) = ISi :::: r (G - uv). 

(iii) Let S be an IR-set of G. If Sis independent, then 

IR (G) = ISi :S f3 (G) :S f3 (G -uv) :SIR (G - uv) 

for all uv E Ea. If S is not independent, then there exists uv E Ea with u, v E S. 

Since Sis an irredundant set of G - uv, 

IR(G) = ISi :S IR(G- uv). • 

The types of criticality for which the existence or not remains to be decided are 

r+ -criticality, r+ - and IR+ -edge-criticality, and ir- - and i- -ER-criticality. 

Observe that Property Pl (see Section 1.1) implies that a graph is 7!"-critical (7r-ER­

critical, 7!"- -ER-critical, respectively) if and only if each of its components is either 

7r-critical (7r-ER-critical, 7!"- -ER-critical) or isomorphic to K1. A graph is 7!"+ -critical 

if and only if each of its components is 7!"+ -critical 

1.3 Outline 

Graphs which are ')'-critical were first studied by Brigham, Chinn and Dutton [8] in 

1988 and ')'-edge-critical graphs by Sumner and Blitch [21] in 1983. Further work 

appears in about 20 papers. These include [12, 13, 14, 15, 19, 20, 22, 23, 27, 28] . 

In 1994 Ao [2] extended this to a theory of i-critical and i-edge-critical graphs and 
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Chapter 1 Introduction 

made a thorough comparison of these four notions of criticality. In 1979 Walikar and 

Acharya [25] gave a characterisation of 1-ER-critical graphs, which was extended by 

Ao [2] to i-ER-critical graphs: 

Theorem 1.14 [2] A graph is i-ER-critical if and only if each of its components is a 
star. 

These are the only forms of domination criticality that have been studied. The pur­

pose of this thesis is to explore the remaining ones, especially those that involve the 

three upper parameters_ 

In Chapter 2 we present some well-known bounds for the lower domination parame­

ters and proceed to determine the domination parameters of some classes of graphs. 

Each class of graphs we consider will tum out to contain a subclass that consists of 

graphs that are critical according to one or more of the definitions in Section 1.2. 

Chapter 3 deals with vertex-critical graphs. In Section 3 .1 we list the subclasses of 

the graphs in Chapter 2 that are well-known to be 1-critical or i-critical. We present 

a characterisation of 1- and i-critical graphs in terms of so-called "singular isolated 

vertices" and find a new class of i-critical graphs. In Section 3.2 we show that the 

only ,6-critical graphs are the edgeless graphs and that a graph is IR-critical if and 

only if it is f-critical. We proceed to investigate the f-critical graphs which are not 

,6-critical. In Section 3 .3 we exhibit a class of r+ -critical graphs. 

The development of Chapter 4 is analogous to that of Chapter 3 and deals with 

edge-critical graphs. In Section 4.1 we find characterisations of 1-edge- and i-edge­

critical graphs in terms of the existence of 1-sets and i-sets with certain properties and 

then determine which of the graphs of Cha'pter'2 are 1-edge- or i-edge-critical. In 

Section 4.2 we characterise ,6-edge- and r-edge-critical graphs and show that a graph 

is IR-edge-critical if and only ifit is f-edge-critical. In Section 4.3 we present a class 

of graphs that are r+ -edge-critical. The existence or not of IR+ -edge-critical graphs 

12 



Section 1.3 Outline 

remains unresolved. 

Chapter 5 deals with ER-critical graphs. In Section 5.1 we present characterisations 

of Jr-ER-critical graphs for 1f an upper parameter and then determine which of the 

graphs of Section 2.2 are Jr-ER-critical. In Section 5.2 we find necessary conditions 

for a connected graph to be fr-ER-critical and characterise the connected 2-ir-ER­

critical graphs. In Section 5.3 we exhibit three classes of i- -ER-critical graphs. The 

existence or not of ir- -ER-critical graphs also remains unresolved. 

Chapter 6 contains a brief list of open problems. 

13 



Chapter2 

Preliminaries 

In this chapter we present some well-known bounds for the lower domination pa­

rameters and determine the domination parameters of some classes of graphs. The 

bounds are useful, either in their direct applications or because the constructions in 

their proofs provide insight into the relevant types of sets. The classes of graphs we 

consider will prove to contain subclasses which are critical according to one or more 

of the definitions in Section 1.2. 

2.1 Some useful bounds for domination 

parameters 

The following inequality was obtained independently by Allan and Laskar in [I] and 

by Bollobas and Cockayne in [6] . 

Proposition 2.1 [!, 6] For any graph, I::; 2ir - 1. 

Proof. Let S be an ir-set of G and construct T by choosing one private neighbour for 

each non-isolated vertex of S. Clearly, ITI :S ISi and, by Proposition 1.4, every vertex 

not dominated by Sis dominated by T. Therefore SU Tis a dominating set of G. 

However, SU T is not a minimal dominating set of G, since it properly contains the 

maximal irredundant set S. Hence 

1(G) < ISi + ITI :S 2 ISi = 2ir(G) 

14 
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and thus 

'°Y ~ 2ir - 1. • 

The next three results give lower bounds for '°Y and ir in terms of the maximum 

degree Li.. We use the following notation in their proofs: If S is an irredundant set 

of the graph G, then Z and Y denote the isolated and the non-isolated vertices of S, 

respectively, and C, Band R denote the sets of vertices ofV - Swhich are adjacent 

to at least two vertices, exactly one vertex and no vertices of S, respectively, i.e. 

R =V-N[S], 

B = (u PN(s,s))-s and 
sES 

C =N(S)-B. 

Clearly, Z, Y, C, B and R form a partition of V and R 

dominating set of G. 

0 if and only if S is a 

Proposition 2.2 (Walikar, Sampathkumar and Acharya [26] )For any n-vertex graph 

G, 
n 'V>-­

'-Li.+1· 

Proof. Consider a '"Y-set S of G. Each vertex of S dominates at most Li.+ 1 vertices of 

G and the bound follows. • 

The next two results by Bollobas and Cockayne, and Cockayne and Mynhardt, re­

spectively, are presented here with simplified proofs. 

Theorem 2.3 (Bollobas and Cockayne [7]) For any n-vertex graph G with Li. ~ 2, 

. n 
ir ~ 2Ll. - 1 · 

15 
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Proof. Consider an iT-set S of G. Each vertex of Z dominates at most t. vertices of 

V - Sand each vertex ofY dominates at most t. - 1 vertices of V - S. Therefore 

IN[S]I:::; (t.. + 1) IZI + t.. IYI; 

hence 

n - IRI:::; (t.. + 1) IZI + t.. IYI. (2.1) 

Each vertex of R annihilates at least one vertex of Y. Therefore, if Ty denotes the 

number of vertices of R that annihilate y E Y, then 

For each y E Y and w E PN(y, S), note that w is adjacent toy and to Ty vertices of 

R. Thus 

L Ty :::; (t.. - 1) IYI 
yEY 

and it follows that 

IRI:::; (t.. - 1) IYI. (2.2) 

From (2.1) and (2.2), 

n :::; (t.. + 1) IZI + (2t.. -1) IYI 
< (2t.. - 1) ISi smce t. 2:: 2. 

Hence 

. n 
iT = ISi 2:: 2t..-1· • 

16 
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Theorem 2.4 (Cockayne and Mynhardt [ll]) For any n-vertex graph G with ti. :::>: 

2, 

. 2n 
ir>-. - 3ti. 

Proof. Consider an ir-set S of G and let l be the number of edges between S and C. 

Since every vertex of C sends at least two edges to S, l :::>: 2 ICI. Since the vertices of 

S send at most ti. JZI +(ti. - 1) IYI - IBI edges to C, 

l :::; ti. IZI +(ti. - 1) IYI - IBI. 

Hence 

IBI + 2101 :::; fi. JZI +(ti. - 1) IYI. (2.3) 

Each vertex of R annihilates at least one vertex ofY. Therefore, if ry is the number 

of vertices of R that annihilate y E Y, then 

Let Y1 = {y E YJry > O} and Y2 = {y E YJry = O}. Then !YI = IY1l + IY2J. For 

each y E Y1 and w E P N (y, S), note that w is adjacent to y and to r y vertices of R. 

This implies that 

1 + ry :S: deg(w) :S: ti., 

hence 

L ry:::; (ti. - l)IYJJ 
yEY1 

It follows that 

IRI :S: L ry + L ry :S: (ti. - l)JY1l + 0. (2.4) 
yEY1 yEY2 

17 
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Let 

E1 LJ PN(y,S), 
yEY1 

E2 - LJ PN(y,S) and 
yEY2 

F B - (E1 U E2). 

Each vertex of E1 annihilates at least one vertex ofY. Therefore, if ky is the number 

of vertices of E1 that annihilate y E Y, then 

For each y E Yi and w E PN(y, S), since w is adjacent toy, to ry vertices of Rand 

to ky - 1 or ky vertices of E1, depending on whether w annihilates y or not, it follows 

that 

and hence 

L ky:::; ~IY1I - IRI. 
yEY1 

For each y E Y2 and w E P N(y, S), since w is adjacent toy and to ky vertices of E1, 

it follows that 

1 + ky :::; deg(w) :::; ~, 

hence 

L ky:::; (~ - l)IY2I. 
yEY2 

18 
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It now follows that 

Furthermore, IE21:::; (A - l)IY21 and IFI:::; AIZI. Therefore 

From (2.3), (2.4) and (2.5) it follows that 

Hence 

2n < 2IZI + 2IYI + LllZI + (Ll - l)IYI 

+(il- l)IY1I + AIZI + L1IY1I + (2.:l - 2)IY2I 

- (2.:l + 2)IZI + 3LllY1I + (3.:l -1)1Y2I 

< 3AISI since A 2': 2. 

. 2n 
ir = ISi 2': 3.:l. • 

(2.5) 

2.2 Domination parameters of some well-known 

classes of graphs 

The complete multipartite graph Kn,,n,, .. .,n= is the complement of the disjoint union 

Kn, UKn2 U ... UKn=· That is, the vertex-set of Kn,,n,, .. .,n= has partition {Vi, V2, .. ., Vm} 

with IVil = n; for 1 :::; i:::; m and uv is an edge of Kn,,n,, .. .,n= if and only ifu and v do 

not belong to the same partite set. If m = 2, then this graph is known as the complete 

bipartite graph and K 1,n is called the star on n + 1 vertices. 
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Proposition 2.5 lj G = Kn,,n,, ... ,n= with m ::'.". 2, then 

ir = { 2 if n; > ljor 1 S: i S: m 
I 1 otherwise 

i - min {n; I 1 S: i :S: m}, 

/3 = r JR - max{n;I lS:iS:m}. 

Proof. The only independent sets of G are the partite sets Vi, V2, .. ., Vm. This estab­

lishes i = min{n; I 1 S: i S: m} and /3 = max{n; I l S: i S: m}. Ifn; = 1, then G 

has a universal vertex; hence ir = I = 1. If n; > 1 for 1 :S: i S: m, then the only 

non-independent irredundant sets of G are obtained by choosing one vertex from each 

of any two partite sets. Therefore ir = / = 2 and f3 = r = IR ( = max { n;} ). • 

The product G1 x G2 of two graphs G1 and G 2 has vertex-set Va, x Va, and two 

vertices { u1, u2} and { v1, v2} are adjacent in G1 x G2 if and only if u 1 = v1 and 

u2v2 E Ea,, or u2 = v2 and u1v1 E Ea,. 

Let 

V = { V;;li = 1, 2, .. ., m and j = 1, 2, ... , n} 

and 

E = {{v;j,Vkt}lv;;,Vkt EV, i = k and j ol l, or j = l andi ol k} 

be the vertex and edge sets of the graph Km x Kn, respectively. Furthermore, let 

X; = {v;kJk = 1, 2, ... , n} 

foreachi = 1,2, ... ,mand 

Y; = {vk;lk = 1, 2, ... , m} 

for each j = 1, 2, ... , n. Note that (X;) se Kn for each i = 1, 2, ... , m and (Y;) se Km 

for each j = 1, 2, ... , n. See Figure 2.1, p. 21, but note that not all edges of Km x Kn 
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[ ) 

v ll v 12 v In 

) 

v 21 V22 

) 

l 

v mn 

Figure 2.1 

are shown. 

Theorem 2.6 Let G = Km x Kn for n 2'. m 2'. 2. Then 

ir(G) = 1(G) = i(G) = /3(G) = m, 

r(G) = n 

and 

if m '.".: 4 
IR(G) 

if m 2'. 4. 

Proof. Consider any maximal independent set S of G. Since Sis independent, IX; n SI '.".: 

1 for all i = 1, 2, ... , m. Therefore 

m 

ISi = ::LIX;n SI'.".: m. 
i=l 

Since S is dominating, Xi n S '# 0 for all i = 1, 2, ... , m or Y; n S '# 0 for all 
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j = 1, 2, ... , n. Therefore 

m 

ISi = L IX; n SI 2': m. 
i=l 

or 
n 

ISi = L IY,· n SI 2': n 2': m. 
j=l 

It follows that I SI = m for every maximal independent set S of G ; hence 

i(G) = (J(G) = m. 

Consider any minimal dominating set S of G. Again, since Sis dominating, X; n 

S =F 0 for all i or Yj n S =F 0 for all j. If X; n S =F 0 for all i, then choose xi E X; n S 

for each i. Since {xi, x2 , ••• , Xm} is a dominating subset of the minimal dominating set 

S, it follows that S = {xi, x2, ... , xm}; hence ISi = m. Similarly, if Yin S =F 0 for all 

j, then ISi = n. It follows that ISi E {m, n} for every minimal dominating set S of 

G. Furthermore, Y1 and X 1 are minimal dominating sets with cardinalities m and n, 

respectively; hence 

7(G) = m and r(G) = n. 

To complete the proof, we show that n :::; ISi :::; m + n - 4 for any maximal 

irredundant set S of G that is not dominating, and that there exists one with cardinality 

m +n- 4 if m 2': 4. To be more precise, we show that for each c E {n, n + 1, ... , m + 
n - 4} there exists a non-dominating maximal irredundant set with cardinality c. 

Consider any maximal irredundant set S of G that is not dominating. Assume with­

out loss of generality that Xm n S = 0 and Yn n S = 0, i.e. the vertex Vmn is not 

dominated by S. 

If IX; n SI :::; 1 for all i, let T = s u { Vm1}- Since Yn n s = 0 and Vm1 1- Yn, we 

see that V;n E PN(v;;, T) for every v;i ET. Therefore Tis an irredundant superset 
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of the maximal irredundant set S, which is impossible. Hence ~ssume, without loss of 

generality, that IXm-1 n SI > 1 and, similarly, that IYn-l n SI > 1. 

Let r be the number of sets X; for which IX; n SI = 1 and s the number of sets Yj 

for which IYf n SI = 1. It follows that r ::; m - 2 ands ::; n - 2. Assume without 

loss of generality that 

IX;nSI - 1 for all i=l,2, ... ,r 

IX;nSI i 1 for all i=r+l, ... ,m 

IYf n SI 1 for all j = 1,2, ... , s 

IYf n SI i 1 for all j = s + l, ... ,n. 

Since sis irredundant, IX; n SI = 1 or IY,· n SI = 1 for·every V;j E S. Therefore 

m 8 u (X; n S) c:;:; LJ(Yj n S). 
i=r+I j=l 

These unions are disjoint, so 

m 8 

ISi - r = L IX; n SI ::; L IYf n SI = s. 
i=r+l j=l 

Hence 

ISi ::; r + s::; (m - 2) + (n - 2) = m + n - 4. 

Furthermore, suppose Yk n S = 0 for k # n. Then vm1;·is not dominated by S and 

therefore V(m-l)k annihilates some V;j ES. If IYf n SI = 1, then Vmj E PN(v;j, S); 

thus Vmj is adjacent to v(m-l)k and so j = k, which is impossible since Yk n S = 0. 

Consequently, IX; n SI = 1 and it follows that V;n E p N ( Vij, S). This implies that Vin 

is adjacent to V(m-l)k; hence i = m - 1, which is impossible since IXm-l n SI > 1. 
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Figure 2.2 
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It now follows that IYj n SI > 1 for all j = s + 1, .. ., n - 1 and therefore 

n 

s n-1 

- L IYj n SI + L IYj n SI + IYn n SI 
j=l j=B+l 

> s+2(n-s-1)+0 

2n-s-2 

> n smce s :S n - 2. 

For each k E {O, 1, .. ., m - 4}, let 

See Figure 2.2, p. 24 for S0 and Sm-4 and note that k is the number of isolated ver­

tices of S., (Black dots denote the vertices of the set, grey dots the external private 

neighbours and white squares the vertices not dominated by the set. This notation is 

used in all the figures in this section.) For each k E {O, 1,. .. , m - 4}, Skis a maxi­

mal irredundant set which is not dominating and ISk I = m + n - 4 - k. Therefore the 

non-dominating maximal irredundant sets have cardinalities n, n + 1, ... , m + n - 4 . 

• 
Theorem 2.7 Let G = Km x Knfor n :;::: m :;::: 2. Then 

fr(G) =1(G) =min{3,m}, 

i(G) = m, 

f3(G) = f(G) = IR(G) = n. 

Proof. The only maximal independent sets of G are X; for i = 1, 2, .. ., m and Yj for 

j = 1, 2, .. ., n; hence i(G) = m and f3(G) = n. 

We now consider the maximal irredundant sets of G that are not independent. Sup­

pose Sis such a set and assume without loss of generality that S contains the adjacent 
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0 
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0 0 0 0 0 

0 0 0 0 0 0 0 0 

{v,,,v,,} 

0 0 

0 0 0 

0 0 0 

0 0 0 0 0 0 0 0 0 

Figure 2.3 

vertices vu and v22 . See Figure 2.3, p. 26. 

If m = n = 2, then neither v11 nor v22 has private neighbours, contradicting the 

irredundance of S. Therefore n :::>: 3. If m = 2 and n = 3, then {vu, v22} is a maximal 

irredundant set ; hence S = {vu, v22} and thus ISi = 2. 

Suppose now that m 2': 3 or n :::>: 4. Then {vu, v22 } is not maximal irredundant 

and therefore is a proper subset of S. Consider s E S - {vu, v22}. There are three 

possibilities: 

Case 1: s E N(v11 ) n N(v22 ). Assume without loss of generality thats = v33 . Then 
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{vu,v22,V33} is minimal dominating; hence S = {vu,v22,v33} and ISi = 3. 

Case 2: sis not dominated by {vu, v22}. Assume without loss of generality that 

s = V12. Then {vu, v22 , v12 } is minimal dominating; consequently S = {vu, v22 , v12} 

and ISi = 3. 

Case 3: s is adjacent to exactly one vertex of { v11 , v22 }. Assume without loss of gen­

erality that s = ~3· Then {vu, v22 , v23} is irredundant and v21 is the only vertex not 

dominated by {vu, v22 , v23}. Now v21 ailllihilates v22 and v23 . The only vertices ad­

jacent to v21 that annihilate no vertex of {vu, v22 , v23 } are v14 , v15 , ••• , v1n. Therefore, 

without loss of generality, S must contain v14 also. Now { v11 , v22 , v23 , v14} is minimal 

dominating; hence S = {v11,v22,V23,v14} and ISi = 4. • 

We define the circulant Cn(a1,a2, ... ,a1)with0 < a 1 < a2 < ... ,a1 < nby 

specifying the vertex and edge sets, where the arithmetic is performed modulo n: 

V ={1,2, ... ,n} 

E = {{i,i + j} Ii= 1,2, ... ,nandj = a1,a2, ... ,a1}. 

Consider the circulant G = Cn (1, 2, ... , r) for n 2 3 and 1 ~ r ~ l n/2J. Note that G 

is the cycle Cn if r = 1 and the complete graph Kn if r = l n/2 J. Also, if r = n/2, 

then t. = 2r - 1 and ifr < n/2, then t. = 2r. 

Foreachi E V,N[i] = {i-r, ... ,i-1,i,i+l, ... ,i+r}. LetLN(i) = {i-

r, ... , i - l} and RN(i) = {i + 1, ... , i + r} and call these sets the left and the right 

neighbourhoods of i respectively. Clearly, N(i) = LN(i) U RN(i) and the union is 

disjoint except when r = n/2, in which case LN(i) n RN(i) = {i - r} = {i + r }. 

Theorem 2.8 lf G = Cn (1, 2, ... , r) for some n 2 3 and 1 ~ r ~ ln/2 J, then 

ir(G) = 1(G) = i(G) = f n/(2r + l)l 

and 

IR(G) = f(G) = (3(G) = ln/(r + l)J. 
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Proof. If r = l n/2 J, then G = Kn; hence all the domination parameters equal 1 = 

I n/(2r + l)l = l n/(r + 1 )J. Assume henceforth that r < l n/2 J. Then L'.. = 2r and 

foreveryv EV, LN(v) nRN(v) = 0. 

We first prove thatir(G) = 1(G) = i(G) and IR(G) = r(G) = (3(G) by showing 

that, for every maximal irredundant set S of G, there exists a minimal dominating set 

T with ITI = ISi, and for every minimal dominating set S, there exists a maximal 

independent set T with ITI = ISi. 

Suppose Sis an irredundant set of G and consider any two adjacent vertices x and y 

of S with y E RN(x). Clearly, PN(x, S) c:;; LN(x) and PN(y, S) c:;; RN(y); hence 

no other vertex of Sis adjacent to x or y. It follows that L'..( (S)) :S 1 and that 

I - { i E Sli is an isolated vertex of S} 

X {x E SIPN(x,S) c:;; LN(x)} and 

Y {y E SIPN(y, S) c:;; RN(y)} 

are mutually disjoint sets with IXI = IYI, I U X and I U Y independent and S = 

IUXUY. Let 

Z = {x+r+ llx EX} 

and 

W = {y - r - lly E Y}. 

For adjacent vertices x E X and y E Y, x + r + 1 E P N(y, S) and y - r - 1 E 

PN(x,S). ThereforeZnS = WnS = ZnW = 0, IUZ,XUZ, IUW and YUW 

are independent sets and IWI = IXI = IYI = IZI. Furthermore, N[x]UN[y]isasubset 

of each of the setsN[x]UN[x+r+l], N[y-r-l]UN[y] and N[y-r-l]UN[x+r+l]. 

Therefore N[S] is a subset of each of the sets N[I U XU Z], N[I U W UY] and 

N[JUWUZ]. 
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Suppose S is minimal dominating but not independent and let T = I U X U Z or 

I U WU Y. It is now clear that Tis an independent dominating set with ITI = ISi. 

Suppose S is maximal irredundant but not dominating and let T = I U W U Z. It 

is clear that ITI = ISi and since x E PN(y- r- l, T) and y E PN(x + r + 1, T) for 

every adjacent pair x E X and y E Y, Tis an irredundant set. It remains to be proved 

that T is dominating. 

If v E N[S], then v E N[T]. If v tf. N[S], then there exist adjacent vertices 

x EX and y E Y such that PN(x,S) ~ N(v) or PN(y,S) ~ N(v). Therefore 

y-r- l E N(v) or x+r+ 1 E N(v); hence vis dominated by W or Zand it follows 

that T is a dominating set. 

To complete the proof, weshowthat1(G) = ln/(2r + l)l and;:3(G) = Ln/(r + l)j. 

By Proposition 2.2, 1(G) 2 ln/(2r + l)l Let 

S = {(2r + 1), 2(2r + 1), ... , I n/(2r + l)l (2r + 1)}. 

Then Sis a dominating set and the only possible non-isolated vertices of S are 

ln/(2r+l)l(2r+l) and (2r+l). 

These vertices have r and 3r + 1 as private neighbours respectively. Therefore Sis a 

minimal dominating set of G and it follows that 1(G) :::; I n/(2r + l)l. 

Suppose Sis a/3- setofG. Letlbethenumberofedges between Sand V-S. Since 

Sis independent, each s E S sends 2r edges to V - S; hence l = 2rlSI. Consider 

any v E V - S. Since S is independent, LN ( v) and RN ( v) each contains at most one 

vertex of S; hence vis adjacent to at most two vertices of S. Therefore l:::; 2IV - SI. 

It follows that 

2rlSI < 2IV - SI 

.. (r + l)ISI < IVI 
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(r + 1)/3 :S: n 

(3 < Ln/(r + l)J. 

Finally, 

S = {(r + 1), 2(r + 1), ... , Ln/(r + l)J (r + l)} 

is an independent set with ISi = Ln/(r + l)J and we have thus proved that (3 = 

Ln/(r + l)j. • 

ConsiderthecirculantG = Cn(l,3,5,. .. ,2r-l) forl :s; r :s; (n-1)/2. For 

each v EV, 

N [v] = {v - 2r + l,v - 2r + 3, ... ,v - l,v,v + 1, ... ,v + 2r - 3, v + 2r - 1}. 

Let 

LN (v) = { v - 2r + 1, v - 2r + 3, .. ., v - 1} 

and 

RN (v) = {v + 1, .. ., v + 2r - 3, v + 2r - l}. 

Since r :s; ( n - 1) /2, both LN ( v) and RN ( v) has cardinality r and neither contains 

v. Therefore N (v) = LN (v) URN (v). 

Ifn is odd, then LN (v) n RN (v) = 0; hence fl= 2r. In this case, each r E 

{1, 2, 3, ... , (n - 1) /2} gives a different graph G. If r = 1, then G = Cn and if 

r = (n - 1) /2, then G =Kn. 

If n is even, then we assumer :s; ( n + 2) / 4, for 

Cn (1, 3, ... , 2r - 1) = Cn (1, 3, .. ., 2 L(n + 2) /4J - 1) 

whenever r > (n + 2) /4. If r < (n + 2) /4, then LN (v) n RN (v) = 0; hence 

fl= 2r. Ifr = (n + 2) /4, then LN (v) n RN (v) = {v - 2r + 1=v+2r -1}; 
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hence Ll. = 2r - 1. 

Suppose n = E:=1n, is a partition of n such that each n; is odd and ni 2: 2r + 1. 

Let VG = u7=1 N; be a partition of VG such that each N; consists of n; consecutive 

vertices of VG. This is illustrated in Figure 2.4 with G = C19 (1, 3) and the partitions 

5 + 5 + 9, 5 + 7 + 7 and 19, of 19. 

For each i, if 

N, = { v + 1, v + 2, v + 3, .. ., v + n;}, 

let 

Si = { v + r + 1, v + r + 3, v + r + 5 ,. . ., v + ni - r} . 

Then S; <::;; N; and [S,[ = (n; - 2r + 1) /2. It is not difficult to check that S = u~=1 Si 

is an independent dominating set of G. We call San independent dominating set of G 

induced by the partition n = E~=1n; and we say that n; contributes (ni - 2r + 1) /2 

vertices to S. Now 

k 

[S[ = L(n;- 2r+ 1)/2 = [n- (2r- l)k] /2. 
i=l 

Theorem 2.9 Let G = Cn (1, 3,. . ., 2r - 1), where 1 ::; r ::; (n - 1) /2, and let 

n = (2r + 1) m + qfor some integer m and where 0::; q::; 2r. Then 

(J(G) { n/2 if n is even 
-

(n + 1) /2 - r if n is odd 

i(G) { m+q/2 if q is even 
-

m+r+ (q-1) /2 if q is odd 

Proof. Consider any independent set S of G. Clearly [S[ ::; n/2 and if [S[ = n/2, 

then the only independent dominating sets of Gare {2,4, .. ., n} and {1, 3,. . ., n - 1}. 
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C,,(1,3) C,,(1,3) 
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Figure 2.4 
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Figure 2.5 
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Assume now that ISi < n/2. Then S has a partition S = Uf=1Si such that each 

Si (1 ::::; i ::::; k) has the form 

Si= {v + 2, v + 4, ... ,v + 2s;} 

with si = I Sil, v E Va and { v, v + 2si + 2} <;;; Va - S. See Figure 2.5, p. 32. Since 

vis not dominated by Si, it must be dominated by the rightmost vertex of Si-1. which 

is v - 2r + 1. Therefore 

{v - 2r + 2, ... , v - r + 1, v - r + 2, ... , v + 1} <;;;Ve - S. 

Similarly, v + 2si + 2 is dominated by the leftmost vertex v + 2si + 2r + 1 of Si+i; 

hence 

{ v + 2s; + 1, ... , v + 2si + r, v + 2si + r + 1, ... , v + 2s; + 2r} <;;; Ve - S. 

Let 

Ni= {v - r + 2, ... ,v + 2s; + r} 

and n; = IN; I. Then Va = Uf=1 N; is a partition of Va and ni = 2r + 2s; - 1. It is 

now clear that n = I;7=1 ni is a partition of n into k odd numbers n; :::>: 2r + 1 and that 

S is induced by this partition of n. 

Thus, the only independent dominating sets of G are those induced by the parti­

tions n = I;r=1n; ofn into k odd numbers n; :::>: 2r + 1, and also {2,4, ... ,n} and 

{l, 3, ... , n - 1} ifn is even. It follows that the cardinalities of the independent domi-
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nating sets of G are 

{[n - (2r - 1) k] /2 I k E {O, 2, ... , m}} if n and q are both even, 

{[n - (2r -1) k] /21kE{O,2, ... , m -1}} ifn is even and q is odd, 

{[n-(2r-l)k]/2 I k E {1,3,. .. ,m}} ifnisoddandqiseven, 

{[n - (2r -1) k] /21kE{1,3, ... , m -1}} ifn and q are both odd. 

Notethatn- (2r - 1) m = 2m+q and n- (2r - 1) (m - 1) = 2m+ 2r-1 +q. The 

theorem now follows by evaluating the least and the greatest elements of these sets. • 

Theorem 2.10 Let G = Cn (1,3, ... , 2r - 1), where 1 ~ r ~ (n-1) /2, and let 

n = (2r + 1) m + qfor some integer m andwhere 0 ~ q ~ 2r. 

(a) If q = 0, then 1(G) = m. 

(b) If q = 2, then 1(G) = m+ 1. 

(c) If q is odd, then 1(G) = m + 1. 

Proof. Supposer= (n + 2) /4. Then .6. = 2r - 1 and r ~ 2. By Proposition 2.2, 

/ :'.". n/ (.6. + 1) = (4r - 2) /2r = 2 -1/r. 

Since G has no universal vertices, / ( G) f 1 and thus/ ( G) = 2. 

Assume henceforth that r f (n + 2) /4. Then .6. = 2r. By Proposition 2.2, 

1(G) :'.". n/(.6. + 1) = m+q/ (2r + 1). 

If q = 0, then/ (G) :'.". m. By Theorem 2.9, i (G) = m. Therefore 

m ~ r (G) ~ i (G) = m 

and (a) holds. Similarly, if q = 2, then 

and thus (b) also holds. 

34 



Section 2.2 Domination parameters of some well-known classes of graphs 

Now suppose that q is odd. For 1 ::::; j ::::; m - 1, let 

Nj = {(j - 1) (2r + 1) + 1, (j -1) (2r + 1) + 2, .. .,j (2r + 1)} 

and 

Nm= { (m - 1) (2r + 1) + 1, (m - 1) (2r + 1) + 2, ... , n}. 

Then 

INJI = 2r + 1for1::::; j::::; m -1, 

INml = 2r + 1 + q 

and V = U~1 NJ is a partition of V. For 1 ::::; j ::::; m, let Sj = j (2r + 1) - rand 

let S = { s1 , s2 , .. ., sm, Sm+ q}. This is illustrated in Figure 2.6, p. 35 with G = 

C18 (1, 3). Clearly S is a minimal dominating set of G with sm and sm + q the only 

non-isolated vertices. It follows that 

1' (G) ::::; ISJ = m + 1 

By Proposition 2.2, 1' (G) :2: m + 1 and hence 1' (G) = m + 1. This proves (c). • 
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18 = 5 + 5 + 8 

Figure 2.6 
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Chapter 3 

Vertex-Critical Graphs 

In this chapter we discuss 7r-critical and 7r+ -critical graphs_ We have seen that the 

edgeless graphs Kn, n ::'.'. 2 are n-7r-critical and that there exists no 7r+-critical graphs 

for 7r E {ir,ry,i,,6,IR}. Also, recall that a graph is 7r-critical (7r+-critical, respec­

tively) if and only if each of its components is either 7r-critical or K 1 (7r+ -critical, 

respectively). 

3.1 Lower domination parameter critical graphs: 

vertex removal 

Graphs that are ry-critical were first studied by Brigham, Chinn and Dutton in [8] , 

where they showed that the only 2-ry-critical graphs are nK2, n ::'.'. 1. They presented 

some properties of ry-critical graphs and a method of constructing them, and concluded 

their study with the following questions: 

(!) IfG is ry-critical, is IVI ::'.'. (8+1) b- 1) + l? 

(2) IfG is ry-critical and IVI = (t:. + 1) ("Y-1) + 1, is G regular? 

(3) Is i = ry for all ry-critical graphs? 

(4) Letdbe the diameterofthery-critical graph G. Is it always truethatd :-::; 2 b - l)? 

These questions were answered by Fulman, Hanson and MacGillivray in [15] . 

They proved that(2) and (4) are true, but presented C17 \1, 3, 5, 7) as a counter-example 

to(!) and (3). 
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Graphs that are i-critical were studied by Ao in [2] , in which she obtained results 

analogous to those in [8] and [15] . For example, she showed that the graphs nK2, 

n ::'.'. 1, are also the only 2-i-critical graphs. This result can be generalised to 

Proposition 3.1 For n: a lower parameter, the only 2-n:-critical graphs are nK2, n ::'.'. 

1. 

Proof. Let G = nK2 , n 2 1. That n: (G) = 2 and n: (G - v) = 1 for every v E Va is 

clear if n = 1 and follows from Proposition 2.5 if n 2 2. Suppose now that n: ( G) = 2 

and n: (G - v) = 1 for every v E Va. Then, for every vE Va, there exists f(v) E Va 

which is adjacent to all vertices of Va except v. Clearly, f (! ( v)) = v for all v E Va 

and therefore G '.:::' nK2 for some n 2 1. • 

Various classes of i-critical or l'-critical graphs are exhibited in [2] . These include 

the graphs 

G2 K3 x K3, 

G3 Cn (1,2,3, .. .,r) withn = m(2r+ 1) + 1andm,r::'.'.1, 

G4 Cn (1, 3, 5, .. ., 2r - 1) with n = 4r + 1 and r ::'.'. 2, 

Gs mKn with m ::'.'. 2 and n ::'.'. 3, 

and 

G7 which is illustrated in Figure 3.1, p. 38. 

The graphs G1, G2, G3 and G4 are i-critical and l'-critical; Gi, G2 and G3 satisfy 

l' = i = n, l' = i = 3 and l' = i = m + 1 respectively, while l' (G4 ) = 3 and 

i ( G4 ) = r + 1. The graphs Gs and G6 are examples of graphs which are i-critical but 
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Figure 3.1 

not 1-critical and G7 is an example of a graph which is 1-critical but not i-critical. Note 

that/ (Gs)= 2 and i (Gs)= n, / (G6) = 3 andi (G6) = mand/ (G1) = i (G1) = 3. 

The proofs can be found in [2] . Observe that the statements for G2 and G6 are true 

also for K3 x Kn with n ?. 3 and for Km x Kn with n ?. m ?. 4 respectively. 

In Theorem 3 .4 we give a new class of i-critical graphs. We begin by giving a char­

acterisation of 1- and i-critical graphs in terms of so-called "singular isolated vertices". 

Consider a graph G and let v E S c;; Va. We say that vis a singular isolated vertex of 

S if P Na (v, S) = { v }, i.e. vis an isolated vertex of S which has no external private 

neighbours. 

The following result implies that if 7r E { /, i}, then G is 7r-critical if and only if 

every vertex of G is a singular isolated vertex of some 7r-set of G. Proposition 3.2(a) 

is well-known and appears in [2, 8, 25] . 

Proposition 3.2 Let 7f E {1,i}. For any n-vertexgraph Gwith n?. 2, 

(a) 7r(G-v)?.7r(G)-lforallvEVa; 

(b) 7r ( G - v) = 7r ( G) - 1 if and only if v is a singular isolated vertex of some 7r-set 
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ojG. 

Proof. Forn = i, letv E Va and consider an i-set S ofG-v. Then Sis an independent 

set of G and S U { v} is a dominating set of G. If S dominates v, i.e. if v is not an 

isolated vertex of (SU { v} ), then Sis an independent dominating set of G; hence 

i (G) :S ISi = i (G - v). 

If S does not dominate v, i.e. if vis a singular isolated vertex of SU { v }, then Su { v} 

is an independent dominating set of G; hence 

i (G) :S ISi + 1 = i (G - v) + 1. 

Furthermore, if i ( G) = i ( G - v) + 1, then S U { v} is an i-set of G. This establishes 

(a) and necessity in (b). For sufficiency in (b), suppose vis a singular isolated vertex 

of the i-set T of G. Since T - { v} is an independent dominating set of G - v, 

i (G - v) :S ITI -1 = i (G) - 1 :Si (G - v); 

hence i ( G - v) = i ( G) - 1. 

For 7r =')',let v E Va and consider a ')'-set S of G-v. Since SU{ v} is a dominating 

setofG, 

')'(G) :S ISJ + 1=')'(G-v)+1. 

Furthermore, if 'Y ( G) = 'Y ( G - v) + 1, then S U { v} is a ')'-Set of G and since S is a 

dominating set of G - v which does not dominate v, v is a singular isolated vertex of 

S U { v}. This establishes (a) and necessity in (b ). For sufficiency in (b ), suppose v is 

a singular isolated vertex of the ')'-Set T of G. Since T - { v} is a dominating set of 

G-v, 

')' (G - v) :S ITI - 1 = ')' (G) - 1 :S ')' (G - v); 
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thus'Y(G-v) = 'Y(G)-1. • 

Corollary 3.3 Let 7r E { 'Y, i}. Then 

(a) G is 7r-critical if and only if 7f ( G - v) = 7r (G) - lfor all v E V0 . 

(b) G is 7r -critical if and only if every vertex of G is a singular isolated vertex of 

some 1f-set of G. 

( c) If a vertex-transitive graph G has a 1f-set which contains a singular isolated ver­

tex, then G is 7r-critical. 

Observe thatthe statements concerning the graphs G1 to G6 above now follow easily 

from Corollary 3.3 and the results in Section 2.2. 

Theorem 3.4 Let G = Cn (1, 3, ... , 2r - 1), where 1 ::; r :S (n - 1) /2 and let 

n = (2r + 1) m+ q, where 0 ::; q ::; 2r. Then G is i-critical if and only if q ¢ {O, 2}. 

Proof. Suppose first that q is odd. If m = 1, then it follows from Theorem 2.9 that 

i (G) = r + (q + 1) /2 = n/2. 

Therefore S = { 2, 4, ... , n} is an i-set of G. Since every vertex of S is a singular 

isolated vertex, it follows from Corollary 3.3(c) that Gisi-critical. 

Assume henceforth that m :;:: 2 and consider the partition 

n = (2r+ 1) (m-2) + (4r+ 2+q) 

of n into m - 1 odd numbers. Let S be an independent dominating set induced by this 

partition of n. Since 

ISi = [n- (2r-1) (m-1)]/2 = m+ (q+ 2r -1)/2, 

Sis an i-set of G. Furthermore, (4r + 2 + q) contributes (2r + 3 + q) /2 vertices to 

S, and since (2r + 3 + q) /2 :;:: (2r + 4) /2 :;:: 3, S has at least one singular isolated 

vertex. In fact, it is not difficult to see that of these (2r + 3 + q) /2 vertices, only the 
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18=5+13 

Figure 3.2 

two extreme ones are not singular isolated vertices of S. This is illustrated in Figure 

3 .2, p. 41 with C18 (1, 3); the singular isolated vertices are denoted by squares. It now 

follows from Corollary 3.3(c) that Gisi-critical. 

Suppose next that q is even, q ¢ {O, 2} and consider the partition 

n = (2r + 1) (m -1) + (2r + 1 + q) 

of n into m odd numbers. Let S be an independent dominating set induced by this 

partition of n. Since 

ISi = [n - (2r - 1) m] /2 = m + q/2, 

Sis an i-set of G. Furthermore, 2r + 1 + q contributes 1 + q/2 vertices to S. Since 

q ¢ {O, 2}, 1 + q/2 ::'.': 3. With an argument similar to the one above it now follows 

42 



Section 3 .2 Upper domination parameter critical graphs: vertex removal 

that Zr + 1 + q contributes at least one singular isolated vertex ro S. Therefore G is 

i-critical by Corollary 3.3(c). See Figure 2.4, p. 31: 19 = 5 + 5 + 9 induces an i-set 

of Cm (1, 3) with singular isolated vertices; 19 = 5 + 7 + 7 also induces an i-set, but 

it has no singular isolated vertices. 

Finally, suppose q = 0 or q = Z. Then any i-set S of G is induced by respectively 

n =(Zr+ l)m orn =(Zr+ l)(m-1) +(Zr +3). Since (Zr+ 1) and (Zr+3) 

contribute respectively I and 2 vertices to S, S has no singular isolated vertices, and 

by Corollary 3 .3(b ), G is not i-critical. • 

Since ir :e; / :e; i, it follows that if G is i-critical and / = i, then G is 1-critical, 

and if G is /-critical and ir =/,then G is ir-critical. The /-critical graphs G1 to G 4 

above all have ir = I and are therefore also ir-critical. It remains an open problem 

to find ir-critical graphs which are not 1-critical and 1-critical graphs which are not 

ir-critical. 

3.2 Upper domination parameter critical graphs: 

vertex removal 

In this section we show that the only ,6-critical graphs are the edgeless graphs and that 

a graph is IR-critical if and only if it is r-critical. We then investigate the f-critical 

graphs which are not ,6-critical. 

Proposition 3.5 The graph G is ,6-critical if and only if G is edgeless with more 

than one vertex. 

Proof. We know that edgeless graphs with more than one vertex are ,6-critical. Suppose 

G has at least one edge and let S be a ,6-set of G. Then there exists a vertex v E VG-S. 

Now, SisanindependentsetofG-v,hence,6(G) = ISi :e; ,6(G-v). It follows that 

G is not ,6-critical. • 
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Consider a graph G with n vertices. A partition {S, T} of Va is called a one-to­

one perfect matching, abbreviated to 1 - 1 p.m., of G if each s E S is adjacent to 

exactly one t E T, and each t E T is adjacent to exactly one s E S. If G has a 1 - 1 

p.m. {S, T}, then clearly G has an even number of vertices. Furthermore, Sis an 

irredundant dominating set of G (every vertex of S has a unique private neighbour in 

T); hence f(G) :;:: n/2. 

Proposition 3.6 If a graph G with n vertices has a 1 - 1 p.m., then r( G) = n/2 

and the class of r-sets of G is the same as the class of IR-sets of G. 

Proof. Let { S, T} be a 1 - 1 p.m. of G. Consider any IR-set B of G and let W = 

Va - B. Define the sets 

L2 - {stEEalsESnB,tETnB}, 

Li {st E Eals Es n B, t ET n W; ors Es n W, t ET n B} 

and 

Lo= {stEEalsESnW,tETnW}. 

Then IL2I + IL1I + ILol = n/2 and IBI = 2 IL2I + IL1I· Furthermore, each vertex 

incident with an edge of L2 is a non-isolated vertex of B and therefore has a private 

neighbour in W and, since the vertices incident with edges of L1 are dominated by 

vertices of B, this private neighbour is incident with an edge of L0 . Therefore I L2 I ::; 

I Loi and hence 

It follows that 

n/2:::: r(G):::: IR(G) = IBI:::: n/2 

44 



Section 3-2 Upper domination parameter critical graphs: vertex removal 

and therefore 

r(G) =I R(G) = IBI = n/2. 

Since IBI = n/2, it follows that IL2 1 = I Loi- This implies that each vertex incident 

with an edge of L0 is the private neighbour of some vertex incident with an edge of 

L2 ; hence B is a dominating set. 

We have proved that every IR-set of G is a dominating set of G and that r( G) = 

I R(G). It follows that Bis a r-set of G if and only if Bis an IR-set of G. • 

Theorem 3.7 If G is a connected graph with n vertices, then the following state­

ments are equivalent. 

(a) G is r-critical. 

(b) n > 2 andforevery f-set S of G and T =Va - S, {S, T} isa 1- lp.m. of G. 

(c) r(G) =n/2andno r-set SofGhasanyisolatedvertices. 

( d) G is IR-critical. 

Proof. We first prove that (b) and (c) are equivalent and then use this equivalence to 

prove (a)=? (b) =? (d) =?(a). 

(b) =? (c): Consider any r-set S ofG and let T =Va - S. By (b), {S, T} is a 1 - 1 

p.m. of G and by Proposition 3.6, r(G) = n/2. Supposes is an isolated vertex of 

S and let t be the vertex of T adjacent to s. Since G is connected and n > 2, it 

follows that t is adjacent to some u E T. Let R = (T - { t}) U { s}. Then R is a 

dominating set of G, while s is an isolated vertex of R and each r E R - { s} has a 

private neighbour (relative to R) in S. Therefore R is a minimal dominating set of G 

and, since IRI = ISi = r(G), it follows that Risa r-set of G. This contradicts (b), 

since the vertices s and u of R are both adjacent to t and t <t R. We conclude that S 

has no isolated vertices. 

(c) =? (b): Consider any r-set S of G and let T = Va - S. Since S has no isolated 

vertices, each s E S has at least one private neighbour in T and since r(G) = n/2, 
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it follows that JSJ = [T[ and therefore each t E Tis the unique private neighbour of 

some s E S. It follows that { S, T} is a 1 - 1 p.m. of G. 

(a) =>- (b ): Consider any r-set S of G and let T = Va - S. For every t E T, the set S 

is a dominating set of G - t and since r(G - t) < r(G), Sis not an irredundant set of 

G - t; hence t is the unique private neighbour of some non-isolated vertex s E S. Let 

S' = { s E S[ s has a unique private neighbour t ET with respect to S}. 

Then S - S' consists of all the isolated vertices of (S). By the above, these vertices are 

isolated in G and since G is connected, it follows that S = S'. Therefore each s E S 

has a unique private neighbour in T. Consequently, { S, T} is a 1 - 1 p.m. of G. 

(b) =>- ( d): Suppose to the contrary that v E Va and that Sis an irredundant set of G-v 

such that [S[ ::'.'. IR(G). Since Sis an irredundant set of G, we have that [S[ :SI R(G) 

and necessarily Sis an IR-set of G. By (b) and Proposition 3.6, Sis a f-set of G. 

Therefore, by (b) and (c), {S, T} with T =Va - Sis a 1-1 p.m. ofG and S has no 

isolated vertices. Note that v E T and lets E S be adjacent to v. Since vis the unique 

private neighbour in G of s and since sis not isolated in S, we see thats is a redundant 

vertex of Sin G - v. This is impossible since Sis an irredundant set of G - v. 

(d) =>-(a): We first prove that r(G) = IR(G). Let S be an IR-set of G. For each 

v E Va - S, IR(G - v) < IR(G); hence Sis not irredundant in G - v from which it 

follows that S dominates v. Therefore Sis an irredundant dominating set of G so that 

[S[ s f(G) and thus r(G) = IR(G). Now, for each v E Va, 

f(G - v) :S IR(G - v) < IR(G) = f(G); 

consequently, G is r-critical. • 

In Theorem 3.7 (c) it is necessary to require that r(G) = n/2: The graph in Fig­

ure 3.3, p. 46 has only the two f-sets {1, 2, 3} and {4, 5, 6} and neither has isolated 
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1 3 

4 

Figure 3.3 

vertices, but the graph does not have a 1 - 1 p.m. 

Corollary 3.8 If G is a f-critical graph with n vertices, k of which are isolated, 

then each component of G is either K 1 or it has a 1 - 1 p.m. with more than two 

vertices; hence r(G) = n;k + k. 

Corollary 3.9 The graph G is f-critical if and only if it is IR-critical. 

Corollary 3.10 If a connected graph G with n vertices is r -critical, then it has a 

l- lp.m., while o(G) 2': 2and (3(G) < n/2. 

Proof. By Theorem 3.7 (b), Ghas a 1-1 p.m. {S, T}. By Theorem 3.7 (c), since both 

Sand Tare r-sets of G, neither has any isolated vertices. It follows that o(G) 2': 2. 

The fact that (3(G) < n/2 follows directly from Theorem 3.7 (c). • 

The converse of Corollary 3.10 does not hold: The connected graph in Figure 3.4, 

p. 47 has a 1 - 1 p.m. (Figure 3.4 (a)) with 16 vertices, (3 = 7 and o = 3, but it is not 

f-critical since it has a f-set (the dark vertices in Figure 3.4 (b)) with isolated vertices. 

The following two propositions give sufficient conditions, in terms of o( G), for a 

connected graph G with a 1 - 1 p.m. to be f-critical. We first prove a lemma. 
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(a) (b) 

Figure 3.4 

Lemma 3.11 Suppose G is a graph with a 1 - 1 p.m. If a r-set of G has isolated 

vertices, then it has at least 2(c5(G) - 1) isolated vertices. 

Proof. If 8( G) = 1, then the statement is trivial. Assume therefore that o( G) :;::: 2. 

Consider a 1 - 1 p.m. { S, T} of G and a r-set B of G that has isolated vertices. Let 

W = Va - B and let k and l denote the numbers of isolated and non-isolated vertices 

of B respectively. By Proposition 3.6, k + l = r(G) = n/2. 

Suppose all k isolated vertices of Bare in S. Since {S, T} is a 1 - 1 p.m., each 

isolated vertex of Bin Sn B sends one edge to T n Wand at least o(G) - 1 edges 

to S n W, and the neighbours in T U W of distinct vertices in S n B are all distinct. 

Therefore Sn B dominates at least k + o(G) - 1 vertices of W. Since each of the l 

non-isolated vertices of B needs a private neighbour in W, it follows that 

1w1 ::::: z + k + o(G) - l; 
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hence 

n/2 ::'.:: n/2 + 8(G) - 1, 

from which it immediately follows that 8(G) ~ 1. This contradicts our assumption. 

Therefore T and (similarly) S both contain isolated vertices of B. 

Let x E Sandy E T be isolated vertices of B. Since { S, T} is a 1 - 1 p.m., x sends 

one edge to T n W and at least 8( G) - 1 edges to S U W. Similarly, y sends at least 

8(G) -1 edgestoTn W. Therefore {x,y} dominates at least 2(8(G)-1) vertices 

ofW. Since each of the l non-isolated vertices of B needs a private neighbour in W, 

it follows that 

k + l = !WI 2 l + 2 (8(G) - 1); 

hence 

k 2 2 (8(G) - 1). • 

Proposition 3.12 Let G be a connected graph with n vertices, a 1 - 1 p.m. and 

8(G) 2 ln/4J + 2. Then G is I'-critical. 

Proof. By Proposition 3.6, I'(G) = n/2 If G is not r-critical, then it follows from 

Theorem 3.7 that G has a f-set B with isolated vertices. Hence, by Lemma 3.11, B 

has at least 

2(8(G)-1) 22(ln/4J+1) > n/2 

isolated vertices, which is impossible since !Bl = n/2. • 

Corollary 3.13 Jf G is a connected graph withal - lp.m. and 8(G) 2 l n/4J + 2, 

then (3(G) < r(G). 

The result in Proposition 3.12 can be improved slightly if we know beforehand that 

(3(G) < r(G): 
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H: 

(a) (b) 

Figure 3.5 

Proposition 3.14 Let G be a connected graph with n > 2 vertices, a 1 - 1 p.m. and 

8(G):;::: ln/4J + 1. lf (3(G) < n/2, then Gis f-critical. 

Proof. By Proposition 3.6, r(G) = n/2. Suppose G is not f-critical. By Theorem 

3.7, G has a f-set B with isolated vertices. Hence, by Lemma 3.11, B has at least 

2 (8(G) - 1) :;::: 2 ( l n/4 J) :;::: n/2 - 1 isolated vertices. Therefore B is independent; 

hence (3(G) = n/2. • 

This last result is the best possible, in the sense that if 8(G) < ln/4J + 1 and 

(3(G) < n/2 then it does not necessarily follow that G is r-critical: The connected 

graphHinFigure3.5,p. 49has8(H) = ln/4J and(3(G) < n/2andtheblackvertices 

in Figure 3.5 (a) form one part of a 1-1 p.m. of H. However, His not f-critical since 

the black vertices in Figure 3.5 (b) form a r-set of H with isolated vertices. 

Also, in Proposition 3.14 it is necessary to require that G has at least one 1-1 p.m.: 

The connected graph Kin Figure 3.6, p. 50 has 8(K) = ln/4J + 1 and (3(K) < n/2, 

but it is not r-critical since the black vertices form a r-set of K with isolated vertices. 

(Note that K does not have a 1 - 1 p.m.) 
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K: 

Figure 3.6 

Proposition 3.15 If G is a connected r-regular graph with (3( G) < I'( G) = n/2, 

then G is r -critical. 

Proof. Suppose to the contrary that G is not f-critical. By Theorem 3. 7 (c), G has a f­

set S such that (S) has isolated vertices. Since (3(G) < n/2, (S) also has non-isolated 

vertices. Let K ol 0 and L ol 0 be the sets of isolated and non-isolated vertices of (S) 

respectively. Let L' = UsEL P N( s, S) and K' = (Va - S) - L'. Clearly { K, L} and 

{K', L'} are partitions of Sand Va - S respectively. 

Let q be the number of edges between K and K'. Since G is r-regular and since 

K sends all its edges to K', q = r JKJ. Suppose K' does not send all its edges to 

K. Then q < r JK'I and therefore JKI < JK'J. Since r(G) = n/2, JKI + JLI = 

JK'J + JL'J. Therefore ILi > JL'J, which is impossible since every vertex of Lhasa 

private neighbour in L'. It follows that K' sends all its edges to K. Therefore KUK' 

sends no edges to LU L'. This contradicts the assumption that G is connected. • 

Proposition 3.16 Let G be a graph on n vertices with a 1 - 1 p.m. { S, T} such that 
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(S) and (T) are connected r-regular graphs with 

(3 ( (S)) + (3 ( (T)) < n/2. 

Then G is r -critical. 

Proof. Clearly, G is a connected r-regular graph and r(G) = n/2 by Proposition 3.6. 

Consider a (3-set B of G. Then B n S and B n T are independent sets of (S) and 

(T) respectively; hence 

f3(G) IBI =IE n SI+ IE nTI 

< (3 ( (S)) + (3 ( (T)) 

< n/2. 

It follows from Proposition 3.15 that G is r-critical. • 

We illustrate the usefulness of Proposition 3 .16 with some examples: 

(i) In the proposition, let ( S) and (T) be complete graphs; then 

(J((S)) + (J((T)) = 1+1=2. 

If n 2': 6, it follows that (3 ( (S)) + (3 ( (T)) < n/2; hence G is r-critical. If n = 2 or 4, 

then G is not r-critical, i.e. P2 and C4 are not r-critical. 

(ii) Again in the proposition, let (S) and (T) be cycles. By Theorem 2.8, 

(J((S)) +(3((T)) = ln/4J + ln/4J. 

If n is not divisible by 4, it follows that (3 ( (S)) + (3 ( (T)) < n/2; hence G is r-critical. 

If n is divisible by 4, then G is not r-critical. (It is easy to construct an independent 

set of G with n/2 vertices.) 
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Figure 3.7 

(iii) Figure 3.7 shows that the dodecahedron has a 1 - 1 p.m. { S, T} with \S) = C10 

(indicated by the black vertices) and (T) = 205 . By Theorem 2.8, 

/3 ( \S)) + /3 ( (T)) = 5 + 2 + 2 = 9 < 10 = n/2. 

It follows from Proposition 3.16 that the dodecahedron is f-critical. 

We conclude this section with a method for constructing f-critical graphs that need 

not be regular and for which L n/4J - 8 (see Propositions 3.12 and 3.14) may be made 

arbitrarily large. 

Begin with four empty vertex-sets Vi, \12, Vi, V4 and an empty edge-set. Increase 

the number of vertices and edges by applying Rl and R2 any number of times: 

Rl Adda cycle C4r(r 2: 1) with consecutive vertices in Vi, \12, Vi, V4, V1 , .... 

R2 Add P2 with its two vertices in Vi and Vi or in V2 and 1,'4. 

This construction ensures that our graph has two 1 - 1 perfect matchings, namely 

{Vi U V2, Vi U V4} and {V2 U Vi, V4 U Vi}. For each i E {1, 2, 3, 4}, join all vertices 

in V; so that (V;) is complete and ensure that the graph is connected with at least 10 
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vertices and that IVil 2: 2 for each i E {1, 2, 3, 4} by applying RI and R2 enough times 

and Rl at least once. Graphs so constructed are r-critical : 

Proposition 3.17 Suppose G is a connected graph with n 2: 10 vertices and two 

distinct 1 - 1 perfect matchings {A, E} and { C, D} such that each of the subgraphs 

(A n C), (An D), (E n C) and (E n D) of G is a complete graph with more than 

one vertex. Then G is r -critical. 

Proof. By Proposition 3. 6, 

IAI = IEI = ICI = IDI = r(G) = n/2. 

Let IA n Cl = IE n DI = p and IA n DI = IE n Cl = q. Then p, q > 2 and 

p + q = n/2 2: 5. 

Suppose to the contrary that G is not r-critical. By Theorem 3. 7 ( c ), G has a r-set 

S that has isolated vertices. 

For any x E An C, since {A, E} is a 1 - 1 p.m. and (An C) is complete with 

more than one vertex, deg(x) 2: 2. A similar argument holds for An D, En C and 

En D; hence 8(G) 2: 2. It follows from Lemma 3.11 that S contains at least two 

isolated vertices x 1 and x 2 . 

Let X1 E X1 and X2 E X2 for Xi, X2 E {An c, An D, E n C, E n D}. Since 

(X1) and (X2) are complete graphs, Sn X1 = {x1}, Sn X2 = {x2} and X1 U X2 

does not contain private neighbours of non-isolated vertices of S. 

Since ISi = p + q ;::: 5, assume without loss of generality that IS n An DI 2: 2. 

Since (An D) is complete, SnAnD consists of non-isolated vertices of S, and AnD 

contains no private neighbours of vertices of S. Therefore all the private neighbours 

of the non-isolated vertices of S lie in 

y E {An C,E n C,E n D}- {X1,X2}. 
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Since (Y) is complete, S n Y = 0. It follows that x 1 and x 2 are the only isolated 

vertices of S and that An D contains all p + q - 2 non-isolated vertices of S ; hence 

q 2': p + q- 2. Therefore, since p 2': 2 and p + q ;::: 5, it is evident that p = 2 and q 2': 3. 

It follows that AnD is the set of non-isolated vertices of S, Y = B nc is the set of the 

private neighbours of the non-isolated vertices of Sand {X1, X 2 } ={An C, B nD}. 

Now, since {A, B} and { C, D} are 1 - 1 perfect matchings of G and each vertex 

in An Dis adjacent to precisely one vertex in B n C and vice versa, it follows that no 

vertex in (AnD) U (B n C) is adjacent to any vertex in (An C) U (B n C). Therefore 

G is disconnected. • 

Note that if we apply RI (with r = 1) in the construction only once and ensure 

!Vil= !Val= 2, then o = 2 while n/4 may be made arbitrarily large. 

3.3 r+ -critical graphs 

If f(G) = IR(G), then it follows from Propositions 1.7 and 1.8 that f(G - v) < 
IR (G - v) '.';'.IR (G) = r(G) for all v E Va. Therefore, of all the graphs considered 

in Section 2.2, only Km x Kn with m, n ;::: 5 are candidates for r+ -criticality. The 

following proposition states that they are indeed r+ -critical. \\e first prove a lemma. 

Lemma 3.18 If S is an IR-set of G which dominates all vertices of G except v E 

Va, then f(G - v) = IR(G). 

Proof. Sis a dominating set of G - v and, since v E Va - Na[S], it follows that Sis 

an irredundant set of G - v. Therefore I R(G) = ISi '.';'. r(G - v). Propositions 1.7 

and 1.8 imply that r(G - v) = IR(G - v) = IR(G). • 

Proposition 3.19 For any m, n 2': 5, the graph Km x Kn is r+ -critical. 

Proof. Let G = Km x Kn for n 2: m 2: 5 and consider any v E Va. Since G 

is vertex-transitive, assume without loss of generality that v = Vmn· Now, So in the 
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proof of Theorem 2_6 (see Figure 2.2, p. 24) is an IR-set of G that dominates all 

vertices of G except v_ Therefore, by Lemma 3.18 and Theorem 2.6, 

r(G - v) = IR(G) = m + n - 4 > n = f(G). • 

If G = Km x Kn with m, n :::>: 5, then there exists, for every v E Va, an IR-set of 

G that dominates all vertices of G except v. Is this a general property of r+ -critical 

graphs? (If this is so, then it will follow from Lemma 3 .18 that every r+ -critical 

graph G has the property that f( G - v) = IR( G) for each v E Va.) Are the graphs 

Km x Kn with m, n 2': 5 the only vertex-transitive r+-critical graphs? Are there r+ -

critical graphs that are not vertex-transitive? The results in the rest of this section may 

be useful in the investigation of these questions, which remain unanswered. 

Proposition 3.20 Suppose G is r+ -critical. For every v E Va and every f-set Sv 

of G - v, Sv is a maximal irredundant set of G that dominates all vertices of G except 

v. Furthennore, each w E Na[v] annihilates at least two vertices of Sv-

Proof. Since Sv is an irredundant set of G, Sv is not a dominating set of G, for other­

wise r(G - v) = ISvl:::: r(G). HenceSv dominates all verticesofGbutnotv. 

Consider any w E Na [v]. Since Sv U { w} is a dominating set of G, it follows that 

Sv U { w} is not an irredundant set of G, for otherwise 

r(G - v) + 1 = ISvl + 1 :::: r(G). 

It follows from Proposition 1.4 that Sv is a maximal irredundant set of G. Moreover, 

if w annihilates only one vertex x of Sv, then the set S = (Sv - { x}) U { w} is a 

dominating irredundant set of G; hence 

r(G - v) = ISvl = ISi :::: r(G}, - . 

which contradicts the fact that r(G - vj > r( G). Therefore each w E Na[v] annihi-
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!ates at least two vertices of S.. • 

Proposition 3.21 If G is r+ -critical, then 

(a) G has at least JVaJ maximal irredundant sets. 

(b) o(G) 2 3. 

(c) N(v) i N(u)for any two adjacent vertices u and v. 

(d) If N(v) <;;: N(u)fortwonon-adjacentvertices uand v, then deg(u) 2 deg(v)+2. 

Proof. (a) For any two distinct vertices u and v ofG, let Su and Sv be r-sets ofG - u 

and G - v, respectively. By Proposition 3.20, Su and Sv are maximal irredundant sets 

of G and since Su dominates v and Sv does not dominate v, the sets Su and Sv are 

distinct. 

(b) Let v E Va and consider a r-set Sv of G - v. Since v annihilates some vertex of 

Sv, we see that N(v) ol 0. Let w E N(v) and consider a r-set Sw of G - w. Since 

v annihilates at least two vertices of Sw, and since v is adjacent to w, it is clear that 

deg(v) 2 3. 

(c) Let u and v be two adjacent vertices. Consider a r-set Su of G - u. Since Su 

dominates v but not u, N(v) i N(u). 

( d) Suppose N ( v) <;;: N ( u) for two non-adjacent vertices u and v. Consider a r -

set Su of G - u. Since Su dominates v but not u and since N(v) <;;: N(u), vis an 

isolated vertex of Su. But u annihilates two non-isolated vertices of Su. Therefore 

deg(u) 2 deg(v) + 2 • 

Corollary 3.22 If G is r+ -critical and Ll(G) - o(G) ::; 1, then N(v) i N(u)jor 

any distinct vertices u and v of G. 
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Edge-Critical Graphs 

Recall that the edgeless graphs Kn, n 2". 2, are n-7r-edge-critical for all the domina­

tion parameters 7r and thatthere do not exist 7r+ -edge-critical graphsif1f E { ir, 1, i, ,B}. 

4.1 Lower domination parameter critical graphs: 

edge addition 

The study of 1-edge-critical graphs was initiated by Sumner and Blitch in [21], where 

they showed that G is 2-1-edge-critical if and only if G is the disjoint union of non­

trivial stars. They also obtained several properties of3-')'-edge-critical graphs. Hamil­

tonian properties of 3-')'-edge-critical graphs were studied in [27] and [28] and k-1-

edge-critical graphs with k 2". 4 were studied in [12] and [19]. For a recent survey on 

1-edge-critical graphs we refer the reader to [22] . 

Graphs that are i-edge-critical were studied by Ao in[2], ~h~re she obtained results 

analogous to those in [21]. For example, G is 2-i-edge-critical ifand only ifG is the 

disjoint union of non-trivial stars. Since !'( G) = 2 implies ir ( G) = 2, it is evident 

that the same characterisation holds for ir-edge-critical graphs. 

Considerable interest and subsequent papers concerning 1-edge-critical graphs were 

generated by the following two conjectures. 

Conjecture 1 [21] If G is k-')'-edge-critical, then 1 (G) = i (G). 

Conjecture 2 [27] lfG is 3-')'-edge-critical and 6 (G) 2". 2, then G is hamiltonian. 
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Fork 2: 4 Conjecture 1 was shown to be false by Ao, Cockayne, MacGillivray and 

Mynhardt [3] and this conjecture can therefore be reformulated as 

Conjecture 1' IfG is 3-')'-edge-critical, then 'Y(G) = i (G). 

This conjecture remains unsolved, although some progress has been made. It was 

shown in [21] that the conjecture holds for disconnected graphs, for graphs with o ::; 2 

and for graphs with diameter 3. The only other known result on this conjecture is one 

by Favaron, Tian and Zhang [13] . They first proved that fJ ::; o + 2 for any 3-')'-edge­

critical graph, and then showed that if equality holds, then i = 3. 

Conjecture 2 has recently been proved. The eventual solution is the result of a 

combined effort by five researchers and the proof, which is long, difficult and technical, 

is contained in the three papers [13, 14, 23] . The first contributions were made by 

Flandrin, Tian, Wei and Zhang in [14] . This includes the result that a 2-connected 

3-')'-edge-critical graph G of order n has c ( G) 2: n - 1, where c ( G) denotes the 

circumference of G. Using the results in [14] , Favaron, Tian and Zhang next proved in 

[13] that connected 3-')'-edge-critical graphs with o ;::: 2 and fJ ::; o+ 1 are hamiltonian. 

That Conjecture 2 also holds if fJ = o + 2 was finally proved by Tian, Wei and Zhang 

in [23] . 

For an exposition of all the work done on Conjectures 1 and 2 we refer the reader 

to the Master's dissertation by Moodley [17] . 

In the remainder of this section we present a characterisation of')'- and i-edge­

critical graphs in terms of the existence of ')'-sets and i-sets with certain properties, 

and determine which of the graphs in Section 2.2 are 11'-edge-critical for 1r a lower 

domination parameter. 
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Proposition 4.1 Let 7r E { 'Y, i}. For any non-complete graph G, 

(a) 7r (G + uv) ~ 'Y (G) - lfor all uv E Ea, 

(b) 7r (G + uv) = 7r (G) - 1 if and only if there exists a 7r-set T of G such that 

{ u, v} <:;; T and one of u and v is a singular isolated vertex of T. 

Proof. For 7r = i, let uv E Ee and consider an i-set S of G + uv. Then S is an 

independent set of G and S U { u} or S U { v} dominates G. If S dominates G, then 

Sis an independent dominating set of G; hence i (G) ~ ISi = i (G + uv). Suppose 

now that S does not dominate G and assume without loss of generality that S U { u} 

dominates G. Then u If. S, v E Sand u is a singular isolated vertex of SU { u} in G. 

It follows that S U { u} is an independent dominating set of G and thus 

i (G) ~ ISi + 1 = i (G + uv) + 1. 

Furthermore, if i ( G) = i ( G + uv) + 1, then SU { u} is an i-set of G. This establishes 

(a) and necessity in (b ). For sufficiency in (b ), suppose T is an i-set of G such that 

{ u, v} <:;; T and u is a singular isolated vertex of T. Since T - { u} is an independent 

dominating set of G + uv, 

i (G + uv) ~ ITI - 1 = i (G) - 1 ~ i (G + uv). 

It follows that i (G + uv) = i (G) - 1. 

For 7r = 'f, let uv E Ea and consider a 'Y-set S of G + uv. Then S U { u} or 

SU {v} dominates G; hence 'Y(G) ~ ISi + 1 = 'Y(G + uv) + 1. Furthermore, 

if 'Y ( G) = 'Y ( G + uv) + 1, then S does not dominate G. Assume without loss of 

generality that S U { u} dominates G. Then u If. S, v E S and u is a singular isolated 

vertex of SU {u} in G. This establishes (a) and necessity in (b). For sufficiency in 

(b ), suppose T is a 'Y-Set of G such that { u, v} <:;; T and u is a singular isolated vertex 
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ofT. Since T - { u} is a dominating set of G + uv, it follows that 

')' (G + uv) ::; ITI - 1 = 7(G) - 1 ::; ')' (G + uv) 

and therefore')' (G + uv) = ')' (G) - 1. • 

Corollary 4.2 Let 7r E { ')', i}. Then 

(a) G is Jr-edge-critical ifand only if 7r (G + uv) = 7r (G) - lfor all uv E E0 . 

(b) G is Jr-edge-critical if and only if for every uv E Ea, there exists a Jr-set T 

of G such that { u, v} <;;; T and one of u or v is a singular isolated vertex of T. 

We remark that by Corollary 4.2, if 7r E {7, i} and u and v are nonadjacent vertices 

in a k-7r-edge-critical graph G, then there exists a set S <;;; V ( G)- { u, v} of cardinality 

k - 2 such that S U { u} dominates G - v but not v, or S U { v} dominates G - u but 

not u. This was also observed in [2, 21] for i and')' respectively. 

Consider the graphs G1 to G6 of Section 3. I. G 1 and G 2 are i-edge-critical and 

')'-edge-critical. G5 and G6 are i-edge-critical but not 7-edge-critical. Detailed proofs 

of these statements appear in [2] . Alternative proofs can be found by considering the 

7- and i-sets of the graphs described in the proofs of Proposition 2.5 and Theorems 2.6 

and 2.7 and applying Corollary 4.2. 

If n > m, then Km x Kn is neither i-edge-critical nor 7-edge-critical (apply Coro!-
< ,. " 

lary 4.2(b) to u = v11 and v = v12). If m = 1, then G3 = ~(r_+_l.,.--) K-=-2; hence Ga is a 

disjoint union of stars. If m > 1, then G3 is neither i-edge-critical nor ')'-edge-critical 

(apply Corollary 4.2(b) to vertices u and v = u + 2r + 1). G 4 is neither i-edge-critical 

nor 7-edge-critical (apply Corollary 4.2(b) to vertices u and v = u + 2r). 

The 7-edge-critical graphs G1 and G2 have ir = ')' and are therefore also ir-edge­

critical. It remains an open problem to find ir-edge-critical graphs which are not ')'­

edge-critical, and 7-edge-critical graphs which are not ir-edge-critical (or to show that 

these classes of graphs coincide). 
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4.2 Upper domination parameter critical graphs: 

edge addition 

In this section we find characterisations of /3- and r-edge-critical graphs and show that 

a graph is IR-critical if and only if it is r-edge-critical. 

For any graph G and integer q 2". 0, let G + q denote the graph obtained by adding 

q universal vertices to V ( G), i.e., G + q"" G + Kq. 

Lemma 4.3 Suppose 7r is an upper parameter and q 2". O. Then G is 1!"-edge-critical 

if and only if G + q is 1!"-edge-critical. 

Proof. We make three observations. 

01. Ea+q =Ea 

02. If uv E Ea, then ( G + uv) + q = ( G + q) + uv. 

03. 7r (G + q) = 7r (G). 

01 and 02 are obvious. We prove 03. Obviously, G and G + q are either both 

complete or both non-complete. In the first case 7r ( G) = 7r ( G + q) = 1. In the 

second case, Sis an independent (dominating, irredundant) set of G if and only if Sis 

an independent (dominating, irredundant) set of G + q. It follows that if Sis a 7r-set 

ofG, then 7r (G + q):::; ISi = 7r (G) and if Sis a 7r-set ofG + q, then 7r (G):::; ISi:::; 

7r (G + q); hence 7r (G + q) = 7r(G). 

It now follows from 01 and 03 that 7r (G + uv) < 7r (G) for all uv E E0 if and 

only if7r ((G + uv) + q) < 7r (G + q) for all uv E Ea+q· Applying 02 completes the 

proof of the lemma. • 

Proposition 4.4 The graph G is /3-edge-critical if and only if G = H + q, where 

His an edgeless graph with more than one vertex. 

Proof. Suppose G is /3-edge-critical and consider a /3-set S of G. Clearly H = (S) is 

an edgeless graph with more than one vertex. Let q = I Va - SI. For each u E Va - S 
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and v E Va-{u}, uv E Ea, for otherwise Sis an independent setofG+uv, in which 

case /3(G) = ISi S (3 (G + uv). It follows that G = H+ q. 

Conversely, if His edgeless with more than one vertex, then H is clearly /3-edge­

critical. It now follows from Lemma 4.3 that H + q is (3-edge-critical for any q :'.': 0 . 

Theorem 4.5 The following statements are equivalent for any graph G: 

(a) G is r-edge-critical. 

• 

(b) G = H + q, where (i) His an edgeless graph with more than one vertex, or 

(ii) the non-isolated vertices of H induce a graph M with at least six vertices and a 

1 - 1 perfect matching { S, T} such that ( S) and (T) are complete graphs. 

( c) G is IR-edge-critical. 

Proof. (a)=>- (b): Consider a f-set X of G and let Zand S be the sets of isolated and 

non-isolated vertices of X, respectively. Let T be the set of external private neighbours 

of vertices in X and let W be the set of vertices of Va - X that are adjacent to more 

than one vertex of X. Clearly, X = Z US and { Z, S, T, W} is a partition of Va. 

If uv E Ea and Xis an irredundant set of G + uv, then Xis a minimal dominating 

setofG +uv. Therefore r(G) = IXI s r(G +uv), which contradicts the r-edge­

criticality of G. Hence 

for all uv E Ea, Xis not an irredundant set of G + uv. (4.1) 

Furthermore, if (3 (G) = r (G), then G is /3-edge-critical and it follows from Propo­

sition 4.4 that G = H + q, where H is a graph satisfying (i). Henceforth, assume 

that 

(3(G) < r(G). (4.2) 

Suppose x EX and IP Na (x,X)I > 1. Letu EX -{x} andv E PNa (x,X). Then 

Xis an irredundant set ofG +uv, which contradicts (4.1). Therefore IP Na (x, X)I = 
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1 for all x E X. It follows that Z is the set of isolated vertices of H = (Z USU T) 

and that { S, T} is a 1 - 1 p.m. of M = (SU T). 

Suppose uv E Ea and { u, v} f: S or { u, v} f: T. Then X is an irredundant set of 

G + uv, which contradicts ( 4.1 ). Therefore (S) and (T) are complete graphs. 

Suppose ISi = 2 and lets ES, t ET withs and t nonadjacent. Then Z U { s, t} is 

an independent set of G. Therefore 

r(G) = IXI = IZu {s,t}I::; f3(G), 

which contradicts (4.2). Consequently ISi 2: 3 and so M has at least six vertices. 

Finally, supposeuv E E0 with u E Wand v E Va-{ u}. ThenX is an irredundant 

set ofG + uv, which contradicts (4.1). Therefore u is a universal vertex ofG. It thus 

follows that G = H + q with H satisfying (ii). 

(b) =>- (c ): In the case of (i) it is clear that His IR-edge-critical. Hence by Lemma 

4.3, H + q is IR-edge-critical. Now consider condition (ii) and let Z be the set of 

isolated vertices of H. Since SU Zand TU Z are JR-sets of H, 

IR(G)=ISl+IZl=ITl+IZI. 

Consider any uv E EH and let B be an JR-set of H + uv. 

Case 1: B n S =F 0 and B n T =F 0. Let s E B n S and t E B n T. Since (S) 

and (T) are complete graphs, B n S = { s} and B n T = { t }, for otherwise B is not 

irredundant in H + uv. Therefore Bf: {s, t} U Zand so 

IR(H +uv) = IBI::; 2+ IZI < ISi + IZI = IR(H). 

Case 2: B n S = 0 or B n T = 0. Assume without loss of generality that B n S = 0. 

Then Bf: TUZ. Since (T) is complete, TUZ isnotirredundantinH +uv. Therefore 

IR(H + uv) = IBI < ITI + IZI =IR (H). 
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~ z 

1 - 1 p.m. 

i i 
s T 

Figure 4.1 

This proves that His IR-critical and by Lemma 4.3, H + q is IR-edge-critical. 

(c) => (a): Let S be an IR-set of G and let s E S. If r E Va - Na [SJ, then 

sr E Ea and Sis irredundant in G + sr; hence IR (G) = ISi :S: IR (G + sr), which 

contradicts the IR-edge-criticality of G. Therefore S is a dominating irredundant set 

of G and thus r ( G) = IR ( G). It follows that for all uv E Ea, 

r (G + uv):::; IR(G +uv) < IR(G) = r(G). 

• 
Figure 4.1 shows the r-edge--critical graph G = H + q with IZI = ISi = ITI = 

IWl=3. 
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4.3 r+ - and IR+ -edge-critical graphs 

In this section we show that Km x Kn is r+ -edge-critical if m, n :'.:: 5. Whether there 

exist IR+ -edge-critical graphs or not remains an open problem. 

Proposition 4.6 For any m, n 2 5, the graph Km x Kn is r+ -edge-critical. 

Proof. Let G = Km x Kn where n :'.:: m 2 5 and consider any uv E Ea. Since G 

is edge-transitive, assume without loss of generality that u = v12 and v = Vmn· Now 

S0 in the proof of Theorem 2.6 (see Figure 2.2, p. 24) is a minimal dominating set of 

G +UV. Therefore r (G) = n < m + n - 4 = ISol ::: r (G + uv). • 

Although we have not found an JR+ -edge-critical graph, we show that for such a 

graph G, ifit exists, the upper irredundance number increases by exactly one whenever 

an edge is added to G. 

Proposition 4. 7 Suppose G is IR+ -edge-critical. For every uv E Ea and every 

IR-set S of G + uv, u ES or v ES. If u ES, then PNa+uv (u,S) = {v} and 

S - {u} is an IR-set of G. 

Proof. Sis not an irredundant set of G, for otherwise IR (G + uv) = ISi :SIR (G). 

It follows that u ES and PNa+uv (u, S) = { v }, or v ES and PNa+uv (v, S) = {u}. 

Furthermore, if u E S, then S - { u} is an irredundant set of G. Therefore 

IR ( G + UV) - 1 = I SI - 1 ::: IR ( G) < IR ( G + UV) 

and hence S - { u} is an IR-set of G. • 
• 1,' 

Corollary 4.8 If G is IR+ -edge-critical, then IR ( G + uv) = IR ( G) + 1 for each 

uv E Ea. 
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ER-Critical Graphs 

If 11" is an upper parameter, then Kn, n 2'. 2, is 11"-ER-critical and if 11" is a lower 

parameter, then K 1,n, n 2'. 1is11"-ER-critical. For 11" E {'Y, /3, I', IR} there do not 

exist 11"- -ER-critical graphs. Also recall that a graph is 11"-ER-critical (11"- -ER-critical, 

respectively) if and only if each of its components is either 11"-ER-critical or isomorphic 

to K 1 (11"- -ER-critical or isomorphic to Ki, respectively). 

5.1 Upper domination parameter critical graphs: 

edge removal 

Let 11" be an upper parameter. In this section we present a class of non-complete 11"-ER­

critical graphs. We first find a useful characterisation of /3-ER-critical graphs. 

Proposition 5.1 For any graph G with at least one edge, 

(a) f3 (G - uv) :::; f3 (G) + 1 for all uv E Ea; 

(b) f3 ( G - uv) = f3 ( G) + 1 if and only if there exists a /3-set T of G such that 

uETandvEPNa(u,T). 

Proof. Let uv E Ea and consider a /3-set S of G - uv. Since T = S - { v} is an 

independent set of G, 

f3(G-uv)-1 = ISl-1:::; ITI:::; f3(G) · 

Furthermore, if f3 ( G - uv) - 1 = f3 ( G), then T is a /3-set of G and since S is inde­

pendent in G - uv, v E PNa (u, T). This establishes (a) and necessity in (b). For 
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sufficiency in (b), suppose Tis a ,6-set of G such that u E T and v E PNe (u, T). 

Since TU { v} is an independent set of G - uv, 

,6(G)+1=ITI+1 5- ,6 (G- uv). 

It follows from (a) that ,6 (G - uv) = ,6 (G) + 1. • 

Corollary 5.2 (a) G is ,6-ER-critical if and only if ,6 ( G - uv) = ,6 ( G) + 1 for all 

uv E Ee. 

(b) G is ,6-ER-critical if and only if for every uv E Ee, there exists a ,6-set T of 

G such that u ET and v E PNe (u.T). 

Observe that it follows from Proposition 1. 7 that if G is ,6-ER-critical and ,6 = r, 
then G is I'-ER-critical, and if G is I'-ER-critical and r = IR, then G is IR-ER­

critical. 

Proposition 5.3 Let G = Cn (1, 2, .. ., r), where 1 5- r-5_ (n - 2) /2, and let n = 

(r + 1) m + qfor some integer m and where 0 5- q 5_ r. Then G is ,6-ER-critical if 

and only if q = r. 

Proof. Suppose q = rand consider any uv E Ee. Assume without loss of generality 

that u = r + 1 and v E LN (u) = {1, 2, .. ., r }. Let 

T={(r+l),2(r+l), .. .,m(r+l)}. 

Then Tis a ,6-set of G, and since n = (r + 1) m + r, v E PN (u, T). It follows from 

Corollary 5 .2 that G is ,6-ER-critical. 

Conversely, suppose that G is ,6-ER-critical. Let u = r + 1 and v = 1. Then uv E 

Ee. By Corollary 5.2 there exists a,6-set T ofG such thatu ET and v E PN (u, T). 

Since v E PN (u, T), none of the vertices of 

LN(v)={n-r+l, ... ,n-l,n} 
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are in T. Therefore, since T is an independent dominating set of G, n - r E T. It 

follows that n - r = (r + 1) m and hence q = r. • 

In order to find a characterisation of I'-ER-critical graphs, we need a definition and 

a lemma. 

Suppose uv E Ea. An irredundant set T of G is a uv-irredundant set if u E T or 

v ET, andifu ET, thenv E PNa (u,T) andeither 

(i) u is an isolated vertex ofT and PNa (t, T) % Na [v] for all t ET - { u}, or 

(ii) there exists ans E Na [v] -T such that PNa (t, T) % Na [v] for all t ET. 

Lemma 5.4 (a) If uv E Ea and S is an l'rredundant set of G - uv but not of G, 

then there exists a uv-irredundant set T of G with ITI = ISi - 1. Furthermore, if S 

dominates G - uv, then T dominates G. 

(b) If uv E Ea and Tis a uv-irredundant set of G, then there exists an irredundant 

set S of G - uv with ISi = ITI + 1. If T dominates G, then S dominates G - uv. 

Proof. (a) Clearly u E Sor v E S. Suppose first that { u, v} <;;: S. Then u or v is a 

singular isolated vertex of Sin G - uv; assume without loss of generality that vis one. 

Let T = S - {v }. Then Tis an irredundant set of G, u E T and v E PNa (u, T). 

Furthermore, if u is also a singular isolated vertex of Sin G - uv, then u is an isolated 

vertexofTandPNa(t,T) % Na[v]forallt E T-{u}. lfuisnotone,then 

PNa (t, T) %_Na [v] for all t ET. 

Suppose next that { u, v} % S and assume without loss. of generality that u E S 

and v rf. S. Then there exists ans E S - { u} such that PNa-uv (s, S) = {v }. Let 

T = S - {s }. Then Tis an irredundant set of G, u E T and v E PNa (u, T). Also, 

s E Na [v]-T andPNa (t,T) %_Na [v] for all t ET. 

In both cases it is clear that ITI = ISi - 1 and that T dominates G if S dominates 

G-uv. 
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(b) Assume without loss of generality that u E T. Suppose first that u is an isolated 

vertex ofT and PNa (t,T) i Na [v] for all t ET- {u}. Let S =TU {v}. Then 

PNa-uv (t,S) =I ©forallt E T-{u}anduandvareisolatedverticesofSinG-uv. 

Therefore Sis irredundant in G - uv. Clearly ISi = ITI + 1 and S dominates G - uv 

ifT dominates G. 

Suppose next that there exists ans E Na [v] -T such that PNa (t, T) i Na [v] 

for all t ET and let S =TU {s}. Then PNa-uv(t,S) =I 0 for all t ET and 

v E PNa-uv (s, S). This implies that S isirredundantinG-uv. Clearly ISi = ITl+L 

IfT dominates G, then T dominates all vertices of G - uv except v, ands dominates 

v; hence S dominates G - uv. • 

Proposition 5.5 Let Jr E {r, IR}. For aey graph G with at least one edge, 

(a) Jr (G - uv) ::; Jr (G) + lfor all uv E Ea. 

(b) 7r (G - uv) = 7r (G) + 1 if and only if there exists a 7r-set T of G such that T 

is uv-irredundant. 

Proof. For 7r = r, let uv E Ea and consider a r-set S of G - uv. Then Sis a 

dominating set of G. If S is an irredundant set of G, it follows that S is a minimal 

dominating set of G; hence r ( G - uv) = ISi ::; r ( G). Suppose now that S is not an 

irredundant set of G. By Lemma 5.4(a) there exists a dominating uv-irredundant set 

T ofGwith ITI = ISi -1. Therefore 

r(G-uv)- l = ISl-1 = ITI::; r(G). 

Furthermore, if r (G - uv) - 1 = r (G), then Tis a r-set of G. This establishes 

(a) and necessity in (b). For sufficiency in (b), suppose Tis a uv-irredundant r-set 

ofG. By Lemma 5.4(b) there exists an irredundant dominating set S ofG - uv with 

ISi = ITI + 1. Therefore 

r (G) + 1 = ITI + 1 = ISi ::; r (G - uv). 
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It follows from (a) that r (G - uv) = r (G) + 1. 

Foor= IR, letuv E EG and consider an IR-set S ofG-uv. The rest of the proof 

is similar to that for r; the only difference is that Sand T need not be dominating sets 

of G - uv and G respectively. • 

Corollary 5.6 Let 1r E {r, IR}. Then 

(a) G is 11"-ER-critical if and only if 1r (G - uv) = 1r (G) + lfor all uv E Ea 

(b) G is 11"-ER-critical if and only if for every uv E EG, there exists a uv-irredundant 

11"-set of G. 

With the aid of Corollaries 5.2 and 5.6 we are now able to determine which of the 

graphs of Section 2.2 are 1r-ER-critical. 

(i) G = Kn,,n,, ... ,n= with m 2 2. 

Consider any 1r-set T of G. If T is independent, then all vertices of T are singular 

isolated vertices. IfT is not independent, then T has two vertices and both are annihi­

lated by their private neighbours. It follows from Corollaries 5.2 and 5.6 that G is not 

1r-ER-critical. 

(ii) G = Km X Kn with n 2 m 2 2. 

There exists no /3-set T ofG with v11 ET and v21 E PN (v11 , T); hence G is not /3-

ER-critical (by Corollary 5.2). For 1r E {f,IR}, consider any non-independent 1!"-set 

T ofG. For any u ET and v E PN (u, T), PN (u, T) <;;; N [v]. (IfT is dominating, 

this is clear; if not, see So in Figure 2.2, p. 24.) Therefore G is not 1r-ER-critical (by 

Corollary 5 .6). 

(iii) G = Km X Kn for n 2 m 2 2. 
. 

If n = m = 2, then G is the 1r-ER-critical graph K 2 U K 2 . Suppose now that n ;:;: m 

if m = 2. lfT is an independent 1r-set of G, then all vertices ofT are singular isolated 
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vertices. IfT is a non-independent 7r-set of G, then m = 2, n = 4 and we may choose 

T = {v11 ,v22 ,v23,v14} (see Figure 2.3, p. 26), or m = n = 3 and we may assume 

T = {v11,V22,V33} orT = {v11 ,v22,v12}. In all these cases, every external private 

neighbour of any vertex in T annihilates some vertex ofT. It follows from Corollaries 

5.2 and 5.6 that G is not 'if-ER-critical. 

(iv) G = Cn (1,3, .. ., 2r -1), where 1 :<::: r :<::: (n - 2) /2. 

If n is odd and r = 1, then G is ,6-ER-critical by Proposition 5.3. Suppose that n is 

odd and r > 1. Recall that the only ,6-sets of G are the independent dominating sets 

of G induced by the partition n = n of n. It is now easy to check that, for any ,6-set T 

ofG and u ET, u + 1 ¢ PN (u, T). Hence G is not ,6-ER-critical in this case. lf n is 

even, then the only ,6-sets of Gare {2, 4, 6, .. ., n} and {l, 3, 5,. . ., n - 1 }. These sets 

have only singular isolated vertices; hence in this case G is not ,6-ER-critical either. 

5.2 Lower domination parameter critical graphs: 

edge removal 

Graphs that are ")'-ER-critical and i-ER-critical have been characterised by Walikar and 

Acharya [25] and Ao [2] respectively. 

Proposition 5. 7 [2, 25] Let 7r E { ")', i} . The graph G is 7r-ER-critical if and only if 

G is a disjoint union of stars. 

Proof. If G is a disjoint union of stars, then G is clearly 'if-ER-critical. Suppose G is 

i-ER-critical and consider an i-set S of Gand let uv E Ea. Since Sis independent in 

G, Sis independent in G - uv_ Therefore, if S dominates G - uv, then Sis a maximal 

independent set of G - uv; hence i (G - uv) :::; JSI = i (G). This contradicts the 

criticality of G. Therefore, for every uv E Ea, S does not dominate G - uv. It follows 
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that G is a disjoint union of stars. The proof for I is the same except that we do not 

require the set S to be independent. • 

Clearly disjoint unions of stars are also ir-ER-critical. The next proposition gives 

necessary conditions for a connected graph that is ir-ER-critical but not /-ER-critical. 

We will use the following notations in its proof: Suppose Sis an irredundant set of the 

graph G. Let C, B and R denote the sets of vertices of Va - S which are adjacent to 

at least two vertices, exactly one vertex and no vertices of S, i.e. 

R Va -Na [SJ, 

B ( u PN(s,s))- S and 
BES 

C Na(S)-B. 

For each s ES, let B (s) = PNa (s, S) - S, i.e. B (s) in the set of external private 

neighbours of s. Furthermore, let 

Let 

Lastly, let 

Z { z E SI z is an isolated vertex of S} , 

X - { x E SI x is annihilated by some r E R} and 

Y - S-(ZUX). 

X1 

X2 

Y1 

-

-

-

{xEXllB(x)l=l}, 

{xEXllB(x)l>l}, 

{yEYllB(y)l=l} and 

Y2 {y E YI IB(y)I > 1}. 

u B (x), E2 = U B (x), 
xEX1 . xEX2 
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E - Ei UE2 and 

F - F1 U F2. 

Proposition 5.8 Suppose G is a connected ir-ER-critical graph other than a star. 

Then every ir-set S of G has the following properties. 

(a) Every r E Rannihilatesexactlyone vertex a (r) of Sand Na (r) = B (a (r)). 

(b) Every v E E 2 annihilates exactly one vertex a ( v) of Sand a ( v) E Y2 . 

(c) If u and v are adjacent vertices of Va - (SUR), then u E E2 and v E 

B(a(u)),or v E E2 and uE B(a(v)). 

(d) If v E F 2 , then v annihilates no vertices of S. 

(e) Every vertex of Chas exactly two neighbours and each neighbour is annihi­

lated by a vertex of RU E. 

(f) (S) is a disjoint union of stars. Furthermore, ifs E S has more than one 

neighbour in S, then each of its neighbours is annihilated by a vertex of R U E. If s 

has one neighbour in S, then s or its neighbour is annihilated by a vertex of R U E. 

(g) Ifs E X 1 U Y1 , then s has only one neighbour in (S). 

Proof. Consider any ir-set Sof G. If uv E Ea and Sis a maximal irredundant set of 

G - uv, then ir (G - uv) ~ ISi = ir (G). This contradicts the criticality of G; hence 

for every uv E Ea, S is not a maximal irredundant set of G - uv. ( 5 .1) 

Letuv E Ea with {u,v} <;;;:Va - S. SincePNa-uv (s,S) = PNa(s,S) for all 

s ES, it follows from the irredundance of Sin Gthat Sis irredundantin G-uv. Note 

that Va-uv - Na-uv [SJ = Rand Na-uv [R] <;;;: Na [R] . By (5.1) and Proposition 1.4, 

there exists w E Na [R] such that w annihilates no vertices of Sin G - uv. 

Since S is a maximal irredundant set of G, w annihilates some Bw E S in G. It 

follows that w = u and v E PNa (sw, S), or w = v and u E PNa (sw, S). In both 

cases, sw is the only vertex of S annihilated by win G. We have proved: 
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For every uv E Ea with { u, v} <::;;; Va - S, u E Na [R] and there exists 

Su E S such that v E PNa (su, S) <::;;; Na [u] and Su is the only vertex 

of S annihilated by u, or v E Na [R] and there exists sv E S such that 

u E PNa (sv,S) <::;;;Na [v] andsv istheonlyvertexof S annihilatedbyv. 

(5.2) 

Let r E Rand v E Na (r). Then rv E Ea with {r,v} <::;;; Va - S. By (5.2), r 

annihilates exactly one vertex a (r) of Sand v E B (a (r)). This is true for every 

v E Na (r). Therefore Na (r) <::;;; B (a (r)) and hence Na (r) = B (a (r)). This 

completes the proof of(a). Note that (a) implies Na [R] =RUE. 

Letx E X 2 andv E B(x). SincePNa-xv(x,S) = B(x)-{v} =I ¢and 

PNa-xv (s,S) = PNa(s,S) =I¢ for alls ES- {x}, Sis an irredundant set of 

G - xv. Note that 

Va-xv - Na-xv [SJ =Ru {v} and RUE<::;;; Na-xv [RU {v }] . 

By (5.1), S is not maximal irredundant in G - xv. Therefore there exists a vertex 

u E Na-xv [RU { v }] such that u annihilates no vertices of S in G - xv. But since 

Sis maximal irredundant in G, every w E RUE annihilates some vertex of Sin G 

and hence in G - xv. Therefore u 'f. RUE and hence u E F. It follows from (5.2) 

that v annihilates exactly one vertex a ( v) of S and u E B (a ( v)) . Since u does not 

annihilate a (v), a (v) E Y2 . This completes the proof of(b). Furthermore, (5.2) and 

(b) clearly imply (c). 

Lety E Y2 andv E B(y).SincePNa-yv(y,S) = B(y)-{v} =I ¢and 

PNa-yv (s, S) = PNa (s, S) =I ¢>for all s E S - {y}, Sis an irredundant set of 

G - yv. Note that 

Va-yv - Na-yv [S] =RU {v} and, by (5.2), Na-yv [RU {v}] = RUEU {v}. 

Since S is maximal irredundant in G, every vertex of R U E annihilates some vertex 
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of Sin G and hence in G-yv. Therefore, by (5.1), v annihilates no vertices of S. This 

completes the proof of ( d). 

Let c E C and let u and v be distinct neighbours of c. By (5.2), { u, v} ~ S. Since 

PNa (s, S) ~ PNa-uc (s, S) for alls E S, it follows from the irredundance of Sin 

G that S is irredundant in G - uc. Note that 

Va-uc - Na-uc [S] = R and Na-uc [R] = RUE. 

By (5.1), there exists w E RUE such thatw annihilates no vertices of Sin G-uc. But 

w annihilates the vertex a (w) of Sin G. Thereforev =a (w) and Na (c) = {u, v }. A 

similar argumentwith G-vc shows thatu is also annihilated by some w E RUE. This 

completes the proof of (e). 

By (c) and (e), if z E Z, then (Na [z]) is a component of G. Therefore G is ei­

ther disconnected or a star This contradicts our assumptions about G and therefore 

Z = 0, i.e. S has no isolated vertices. Let u and v be adjacent vertices of S. Since 

PNa (s, S) ~ PNa-uv (s, S) for alls ES, it follows from the irredundance of Sin 

G that Sis irredundant in G - uv. Note that 

Va-uv - Na-uv [SJ= R and Na-uv[R] =RUE. 

By (5.1), there existsw E RUE such thatw annihilates no vertices of Sin G-uv. But 

w annihilates the vertex a ( w) of S in G. Therefore, either u is an endvertex of (S) 

and u = a(w), or vis an endvertex of (S) and v =a (w). This completes the proof 

of(f). 

Lets E X 1 U Yi and B (s) = {v}. Ifs has more than one neighbour in (S), then 

( S - { s}) U { v} is a maximal irredundant set of G - sv, and therefore ir ( G - sv) :::; 

ISi = ir ( G). This contradicts the criticality of G; hences has only one neighbour in 

(S) . This completes the proof of (g). • 
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c 

G: 

Figure 5.1 

With the aid of Proposition 5.8 we are now able to characterise the connected 2-ir­

ER-critical graphs. Define the graph Gas follows. The vertex-set of G has partition 

Va= R1 U R2 UC U {s1,s2,w1,w2}, 

where R1, R2 and Care non-empty, and si, s2, w1 and w2 are all distinct. The edge-set 

Ea of G is defined as follows. 

(i) Foreachc EC, {cs1,cs2} ~Ea. 

(ii) For each i = 1, 2 and each r E R;, rwi E Ea. 

(iii) {s1s2, s1w1, s2w2} ~Ea. 

An example of G is illustrated in Figure 5. 1. The class of all such graphs G will be 

denoted by Q. 
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Proposition 5.9 G is 2-ir-ER-critical if and only if G E Q. 

Proof. Suppose G is a connected 2-ir-ER-critical graph and let S = {81 , 8 2 } be an 

ir-set of G. By Proposition 5.8 (f), 8 18 2 E Ea and R # 0. Let R 1 and R 2 be the 

sets of vertices in R that annihilate 8 1 and 8 2 respectively and assume without loss of 

generality that R 1 # 0, i.e. 8 1 EX. We prove that 8 1 E X 1 . Suppose to the contrary 

that 81 E X 2 and let u E B (s1). By Proposition 5.8 (b), u annihilates 8 2 = a (u) E 

Y;. This is true for every u E B (s1); therefore v E B (82) annihilates 8 1 . But this 

contradicts Proposition 5.8 (d); hence 8 1 E X 1. Let B (s1) = {wi}. 

If R2 = 0, then { w1 , s 1 } is an independent dominating ir-set of G. This contradicts 

Proposition 5.8 (f) and thus R 2 # 0. With a proof similar to that in the case of 8 1 we 

now have that 8 2 E X 1. Let B (82) = {w2 }. 

If C = 0, then { w1 , w2} is an independent dominating ir-set of G; again a contra­

diction of Proposition 5.8 (f). Therefore C # 0. Note that Y, F, X 2 and E 2 are all 

empty sets and that Ei = {w1, w2}. 

It is now clear that the vertex-set of G corresponds to the description of the graphs 

in the class Q above. That all the edges of Gare given by (i), (ii) and (iii) follows from 

Proposition 5.8 (e), (a) and (c). Therefore GE Q. 

Conversely, it is not difficult to check that G E Q has ir ( G) = 2 and ir ( G - uv) = 

3 for each uv E Ea. • 

5.3 Graphs that are ir- - or i--ER-critical 

Recall that 7r- -ER-critical graphs can only exist if 7r E { ir, i}. In this section we ex­

hibit three classes of i- -ER-critical graphs. Whether there exist ir- -ER-critical graphs 

remains an open problem. 

Observe that if a graph Gisi--ER-critical, then it follows from Proposition 1.8(e) 
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that I' (G) < i (G). 

Lemma 5.10 Suppose I' ( G) < i ( G) and, for any uv E Ea, G has a !'-set S such 

that u and v are the only non-isolated vertices of S. lhen G is i--ER-critical. 

Proof. Since Sis an independent dominating set of G - uv, 

i(G-uv) :<::: ISi = ?(G) < i(G). • 

We begin by considering complete multipartite graphs. 

Proposition 5.11 Jf m 2". 2 and n; 2". 3for 1 :'::'. i :'::'. m, then Kni,n,, .. .,n= is i--ER­

critical. 

Proof. This follows directly from Proposition 2.5 and Lemma 5.9. • 

We now tum to the complement of the cartesian product of two graphs. 

Proposition 5.12 Jf m, n 2". 4, then Km x Kn is i- -ER-critical. 

Proof. Let G = Km x Kn with n 2". m :::0: 4. By Theorem 2.7, i (G) = m > 3 = 

I' (G). Consider any uv E Ea. Since G is edge-transitive, assume without loss of 

generality that u = v11 and v = v22 . The set { v11 , v12 , ~2} (see Figure 2.3, p. 26) is 

a !'-set of G with u and v the only non-isolated vertices. It follows from Lemma 5.10 

that Gisi- -ER-critical. • 

Finally, we show that some circulants are i- -ER-critical. 

Proposition 5.13 Let G = Cn (1, 3,. . ., 2r - 1), where 1 :'::'. r :'::'. (n - 1) /2 and 

let n = ( 2r + 1) m + q for 0 :'::'. q :'::'. 2r. Jf q is odd and q > 3 - 2r, then G is 

i- -ER-critical. 

Proof. By Theorems 2.9 and 2.10, 

I' (G) = m + 1 < m + r + (q - 1) /2 = i (G). 
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Let S be a 1-set of G induced by the partition 

n = (2r + 1) (m -1) + (2r + 1 + q) 

of n. Each term ( 2r + 1) contributes one isolated vertex to S and the term ( 2r + 1 + q) 

contributes two adjacent vertices to S. Lemma 5.10 and the edge-transitivity of G now 

complete the proof. • 
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Conclusion 

We conclude this thesis with a short list of open problems. 

1. Are there ir-critical graphs which are not ')'-critical, or ')'-critical graphs which are 

not ir-critical? 

2. Are there ir-edge-critical graphs which are not ')'-edge-critical, or ')'-edge-critical 

graphs which are not ir-edge-critical? 

3. Km x Kn with m, n ~ 5 are the only known r+ -critical graphs and also the only 

known r+ -edge-critical graphs. Are these the only r+ -critical or r+ -edge-critical 

graphs? (This would be very surprising.) Do these two types of criticality coincide? 

Do they imply vertex-transitivity? (This also seems unlikely.) 

4. Are there IR+ -edge-critical or ir- -ER-critical graphs? 
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