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Summary

The lower and upper independent, domination and irredundant numbers of the graph
G = (V, E) aredenoted by i (G) , 3(G), ¥ (G), T (G), ir (G) and I B (G respectively.
These six numbers are called the domination parameters, For each of these parame-
ters 7, we define six types of criticality. The graph  is w-critical (7 -critical }if the
removal of any vertex of 7 causes 7 {G) to decrease (increase), (G is w-edge-critical
(n*-edge-critical ) if the addition of any missing edge causes 7 ((7) to decrease (in-
crease), and (7 is m-ER-critical (n~-ER-~critical ) if the removal of any edge causes
7 ((F) to increase (decrease). For all the above-mentioned parameters = there exist
graphs which are w-critical, w-edge-critical and m-ER-critical. However, there do not
exist any w¥-critical graphs for # € {ir,~,{, 3, IR}, no «*-edge-critical graphs for
7w € {ir,v,1{,3} and no =~ -ER-critical graphs for 7 € {~v,3,[", fX}. Graphs which
are y-critical, 7-critical, y-edge-critical and i-edge-cntical are well studied in the liter-
ature. In this thesis we explore the remaining types of cnticality.

We commence with the determination of the domination parameters of some well-
known classes of graphs. Each class of graphs we consider will turn out to contain a
subclass consisting of graphs that are critical according to one or more of the defin-
itions above. We present characterisations of ~y-critical, i-critical, y-edge-critical and
i-edge-critical graphs, as well as of m-ER-critical graphs for m € {3,I', It}. These
characterisations are useful in deciding which graphs in a specific class are critical.
Qur main results concern 7-critical and w-edge-critical graphs for = € {3,I", IR}. We
show that the only 3-critical graphs are the edgeless graphs and that a graph 1s I R-
cntical if and only if it is I-cntical, and proceed to investigate the I'-critical graphs
which are not F-critical. We charactenise 3-edge-critical and I'-edge-critical graphs
and show that the classes of 7 [t-edge-critical and I-edge-critical graphs coincide, We

il



also exhibit classes of I"*-critical, [ -edge-critical and 7~ -ER-critical graphs.

Key terms: domination, independence, irredundance, vertex-critical graphs, edge-

crtical graphs, edge-removal-critical graphs.
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Chapter 1
Introduction

This chapter contains the basic definitions and notations needed in this thesis, in-
cluding some basic results on independence, domination and irredundance and their
related parameters ir, vy, i, 3, I and /R. For each of these parameters we define six
notions of criticality and determine for which of them there exist graphs that are cot-
ical. Finally, we briefly discuss existing results on cnticality and outline the scope
and main results of this thesis. For all undefined graph-theoretical terms we refer the
reader 1o [16] .

1.1 Independence, domination and irredundance

A graph G is an ordered pair (V;, Eg) where V;; is a finite set of verfices and E;
is a set of two-element subsets of V;, called the edges of G. We wall ofien denote an
edge {u,v} by wv. If uv € Eg, we say that u and v are adjacent, or that they are
neighbours in G. The open neighbourhood of a vertex v, denoted by Ng(v), is the set
{u € Vgluv € Eg} and the closed neighbourhood Ng[v] is the set Ng(v) U {v}. The
degree of v € Vp is the cardinality | Ng(v}] of Nz{(v} and is denoted by deg;(v). The
minimum degree 6(G) and the maximum degree A((G) is, respectively, the minimum
and the maximum of the degrees of the vertices of G. A vertex of degree 0 is an isolated
vertex and a vertex of degree [Vz| — 11s a universal vertex of (5, i.e. anisolated vertex
is adjacent to no vertices of G and a universal vertex is adjacent to every vertex of
(i other than iiself. If §(G) = A(G) = r, then G is called an r—regular graph. An
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edgelesy graph and a complete graph arer-regular graphs withr = Dand r = |Vg|-1,
respectively.

Whenever the graph G is clear from the context, the sets Vi, Eg, Ng(v) and Ng [v]
will often be denoted by V, £, N(v) and N{v] and the numbers deg, (v}, 5(G) and
A(() by deg(v), & and A respectively. This applies throughout this thesis, i.e. the
subscript G may be dropped and a parameter #(G) may become 7 if there is no ambi-
guity.

Two graphs G and H are isomorphic if there exists a bijection ¢ : Vi — Vy such
that u and © are adjacent in G if and only if ¢(u) and ¢(v) are adjacent in H, Clearly
this is an equivalence relation on graphs and we will write G = H if ¢ and H are
isomorphic. A copy of G is a graph isomorphic to G. A graph H is a subgraph of the
graph G if Vg C Vi and Ey C Eg. A graph that is isomorphic to a subgraph of G
will also be called a subgraph of G. The subgraph G {S) of G induced by a vertex-set
S of G has vertex-set 5 and edge-set {uv € Eg | u,v € 5}

Two graphs G and H are disjfoint if V; and V5 are disjoint. The wnion G U H of
(7 and H has Vguy == Ve U Vy and Equy = BEg U E'y. The disfoint union of G and
H is the union of disjoint copies of G and H. The disjoint union of n copies of G will
be denoted by nG.

A graph G is connected if for any partition {1, V, } of Vi, there exist v, € V; and
vg € V), such that vyvy € Ey, otherwise (5 18 disconnected. A component of G 15 a
maximal connected subgraph of (7. |

Suppose G is disconnected and tet {17, 13} be a partition of Viz such that no vertices
of ¥} are adjacent to any vertices of V3. Clearly G is the disjoint union of the induced
subgraphs G {V}) and G (V,) of G. Each of these subgraphs, if disconnected, can
in turn be writien as the disjoint union of two induced subgraphs. This procedure

terminates in the decomposition of (7 into its components.

8



Section 1.1 Independence, domination and irredundance

An gutomorphism of a graph G is an isomorphism of G onto itself. G is vertex-
fransitive if, for any two vertices « and v, there is an autemorphism & of G such
that & (u) = v. G is edge-transitive if, for any two edges w1y and vy, there is an
automorphism & of G such that @ ({u),11}) = {ug, v}

The complement GG of the graph G has Vi; = Vg and wo € Eg if and only if
uv & Eg.

The closed neighbourhood of a set § C Vi, denoted by Ng [S], istheset| ), 5 Nels]
and the open neighbourhood Ng(S) is the set Ng[S] — S. Clearly Nz[{v}] = Ng[v]
and Ng({v}) = Ng(v). £S,T" C Vg, then S dominates T'in G if T C Ng[S] and if
v € Ng[S], then we say that S dominares v. If S C Vz and s € S, then s is an fso-
lated vertex of S in Gif Ng(s)N.S = B, i.e. sisanisolated vertex of the graph G ().
S € Vi is an independent set of G if N (s) (]S = @ forevery s € S, 1.e. no two ver-
tices in S are adjacent in G. Note, however, that Ng(5) = | J,. s NVs(s) only if S is
an independent set of . Observe further that independence 1s a hereditary property,
i.e. every subset of an independent set is independent. Consequently, an independent
set S of (G is maximal independent if and only if S U {2} is not independent for every
v € Viz — 8. The independence prumber 3(GG) and the lower independence number
i((7) are the largest and the smallest number of vertices in a maximal independent set
of (7, respectively.

S C Vi is adominating set of G if § dominates V{;, i.e. every vertex of Vz; — 5 is
adjacent to at least one vertex of §. Domination is clearly a super-hereditary property,
i.e. every superset of a dominating set is dominating. It follows that a dominating set
S of (7 is minimal dominating if and only if 5 — {s} is not dominating forevery s € S.
The domination mumber (G ) and the upper domination number I'((7) are the smallest
and the largest number of vertices in 2 minimal dominating set of (7, respectively.

If S C Vz and s € S, then the private neighbourhood of s relative to S, denoted by
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PNg(s,5), is the set Ng[s] — Ng[S — {s}]. The vertices of PNg(s, S) are called the
private neighbours of s relutive to S. If PN (s, 8) = 0, then s is a redundant vertex
of 5, otherwise it is an irredundant vertex of 5. Notethat s € PNg(s,.5) if and only if
sis anisolated vertex of S, Thus, if 5 is an isolated vertex of S, then 1t is an irredundant
vertex of 5 and if s is a non-isolated vertex of S, then PNg (s, S) C Vg — S. We often
refer to the vertices of PN (s, S) — S as the external private neighbours of s relative
o S.

S C V; is an irredundant set of G if PNg(s,S) 5 @ for every 3 € S, i.e. every
non-isolated vertex of 5 has an extermal private neighbour Note that independent sets
are irredundant. As in the case of independence, irredundance is a hereditary property
and therefore an irredundant set S of G i3 maximal imredundant if and only if S U {v}
is not irredundant for every v € Vi — S. The irredundance number I R((z) and the
lower irredundance number iv((3) are the largest and the smallest number of vertices
in a maximal irredundant set of G, respectively.

Suppose S is an independent set of 7 and v € V — 5. Then S U {v} is not inde-
pendent if and only if S dominates +. Therefore
Proposition 1.1 (Berge [4]) S is a maximad independent set of G if and only if S is
an independent dominating set of G.

Because of the existence of Proposition 1.1, the lower independence number 1 s
also called the independent domination number. Suppose S is a dominating set of G
and s £ S. Then S — {s} is not dominating if and only if PN(s,S) # 0. Therefore

Proposition 1.2 (Cockayne and Hedetniemi [9] ) S is a minimal dominating set of

G ifand only if S is an irredundant dominating set of G.- ...

We present a characterisation of maximal irredundance after the following lemma.
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Lemma 1.3 Suppose SCV,s€Sand v €V — S, Then
(i) PN(v,SU {v}) = Nv] — N[5]; hence v is a redundant vertex of S U {v} ifand
only if Nl} € N[S].
{il} PN(s,SU{v}) = PN(s,8)— N[} hence s is a redundant vertex of S\J {v} if
and onfy if PN(3,5) C NJu].

If PN (s,5) C N [v], we often say that v annihilates s relative to S.

Proposition 1.4 Suppose S is an irredundant set of G and R =V — N|[5]. Then S
is maximal irvedundant if and only if for every v € N[R) there exists an s, € S such
that PN (s, 8) C Nv].

Proof. Note that v ¢ N[R] if and enly if N[v] C N[S]. Therefore, by Lemma 1.3 (i),
S is maximal irredundant if and only if for every v € N|[R) there exists an s, € S such

that s, is a redundant vertex of S U {v}. Lemma 1.3 (11} now completes the proof. W
Proposition 1.5 (Berge [5]) If S is a maximal independent set of G, then S isa

minimal dominating set of (.

Proof. Note that any independent set of G is irredundant. The proot now follows from

Propositions 1.1 and 1.2. W

Proposition 1.6 (Cockayne, Hedetniemi and Miller [10] ) If S is a minimal domnti-
nating set of G, then S is a maximal irredundant set of G.

Proof. By Proposition 1.2, S is an irredundant dominating set of G. The proof now
follows from Proposition 1.4 since B ==V — N[S] = (. W

A consequence of Propositions 1.5 and 1.6 is the following wefl-known string of

inequalities, first mentioned in [10] .
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Propesition 1.7 For any graph (3,
ir(G) < 7(C) < i(G) < B(G) < T(G) < IR(G).

These six parameters will be called the domination parameters; ir, v and 1 will be
called the lower domination parameters, while 3, T and IR will be called the upper
domination parameters. By a w-set of G we mean a vertex-set of & realising # (G),
eg. a [-set of (7 is a maximal independent set X of G with | X] = 5 (G).

In the following observations, & and H are arbitrary disjoint graphs.

Each of the six domination parameters ™ mentioned above has the properties
Pl n{GUH)=x(G)+x(H).

P2 1<7(G) < Vgl

P3 = (G) = {Vg|if and only if G is edgeless.

Each lower domination parameter 7 has the property

P4 7 (G) = 1ifand only if G has a universal vertex.

Each uypper domination parameter 7 has the property

P5 w(G) = 1ifand only if G is complete.

Suppose (7 has k components C, {5, ..., Cx. P1 implies that for any domination

parameter 7,
k

T(G) =3 7(C).

=1
Let K, denote the complete graph on 7 vertices. Then K, is the edgeless graph on
n vertices. P3 implies that m (K,,) = n and P4, PS imply that 7 (K,) = 1 for all

domination parameters.
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1.2 Criticality

When studying a particular graph parameter it is worthwhile to investigate those graphs
that are in some sense criiical with respect to the parameter, the reason being that
knowledge of the structure of such graphs often results in a deeper insight into the
parameter Also, considerations of criticality play an important role in induction argu-
ments, and these abound in graph theory.

For each of the six domination parameters 7, we define six types of criticality. The

graph (@ is

C1  m—critical if 7 (G —v) < 7(G) forallve Vg

C2 wtecritical if 7 (G —v) > 7 (G) forall v € V.

C3  m-edge-critical if m(G + uv) < 7 (G) forall ww € Bg.
C4  wt-edge-critical it % (G +uv) > 7 (G) forall wv € .
C5 7w-ER -critical if 7 (G — wy) > 7w (G) forall ww € Fy.
C6 n~-ER critical if w (G —ww) < 7 (G) for all uv € Eg.

For any domination parameter -, all edgeless graphs with more than one vertex
are both w-critical and m-edge-critical. If 7 is an upper parameter, then all complete
graphs with more than one vertex are m-ER-critical and if 7 is a lower parameter, then
all stars K ,, (n > 1) are m-ER-critical. This establishes the existence of x-critical, =~
edge-critical and 7-ER-crifical graphs for all domination parameters 7. The following
three propositions show that there exist no n+-critical graphs for 7 € {ir, 7,4, 4, IR},
no mt-edge-critical graphs for m € {ir, v, %, 3} and no m~-ER-critical graphs forr €
{r.2.T,IR}.
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Proposition 1.8 (Topp, [24] ) For any graph G,
() B(G—v) < 3(G)forall vels.

by IR(G—v) <IR(G)forall ve Vg

(©) (G +w) <v(G)forall wv c Eg.

(dy (G +w)<B(G)forall uve Fz

(e) ( - uv) 2 7(G)

&) B(G~uv) > 3(G)forall uv € Eg.

Proof. (a) A 3-set S of G — v isindependentin G; hence 3 (G — v) = |S] £ 5(G).
(b) An /R-set S of G — v is irredundant in G; hence IR (G — v) = |5] < IR (G).
(c) A v-set S of G dominates G + uv; hence v (G + uv) < |5 = +(G

(d) A g-set S of G+ v is independent in 7; hence 3 (G + uv) = {S5| < F(G).

(e) A y-set § of G — uw dominates G; hence v (G) < 5| = v {G — uv).

(D) A (-set S of G is independent in G — uv; hence 3 (G} = |81 < F{G —uw). W

Jorall wve Fg,

The following proposition implies that there are no 7+ -critical graphsif 7 is a lower

parameter. We first prove a lemma.

Lemma 1.9 For any graph G and v € Vg, if S is a maximal irredundant set of G
and an irredundant set of G — v, then S is a maximal irredundont set of G - v.

Proof. Considerany x € V7., — 5. Then z € V; — § and since 5 is a maximal
irredundant set of G, S U {x} is not an irredundant set of G ; hence S U {z} is not an
irredundant set of (& — v. The result follows since S is an irredundant set of G — v,
[ |
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Proposition 1.10 Zet m be a lower domination parameter For any graph G with

more than one vertex, (G — v) < W(G) Jor at least one v € V.

Proof. If G has an isolated vertex v, then clearly 7(G — v) = 7(G) — 1. 8o assume G

has no isolated vertices; hence n(G) < [V5|.

(i) Let Sbea~-setof G and v € Vi — S. Since S is a dominating set of G — v, it
follows that (G — v) < |8| = 4(G).

(1)) Let 5 be an i-set of G and v € Vz ~— §. Since S is an independent dominating set
of G — u, it follows that i(G — v) < || = i(Q).

(iii) Let S be an ir-set of G. If S is a dominating set of G, then S is a «y-set of 7
hence by (i), ir(G — v) < ¥(G — v) < ¥(@) = ir(G) for some v € Vg If S
is not a dominating set of G, let v € Vi — Ng[5]. Then S is an irredundant set of
G — 1. It follows from Lemma 1.9 that S is a maximal irredundant set of G — v; hence
ir(G—v) < |S|=ir(G). A

The next proposition implies that there are no w+-edge-critical graphs if 7 is a lower

parameter We first prove a lemma.

Lemma 1.11 ir (G) = (G) if and only if there exists an ir-set S of G and an
T € Vg such that 5 U {z} is a dominating set of G.

Proof. If ir ((7) = v (G), then any y-set S of G is an ir-set of G (by Proposition 1.6)
and for any = € Vi, S U {z} is clearly a dominating set of G.

Now suppose S is an ir-set of G and S U {z} is a dominating setof G. If z € 5,
then S is a dominating set of (7; hence v (G) < |5] = ir (G). fz € V; — &, then
S U {z} is dominating but not irredundant in G, that is, 5 U {z} is a dominating but

not minimal dominating set of G. It follows that

7{G) < |51+ 1,
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hence
(@) 2|5 =ir(G).
In both cases it follows from Proposition 1.7 that ir (G) = v(G). =
Proposition 1.12 Let 7 be a lower domination parameter For any graph G which

is not complete, ® (G + wv) < w (G) for at least one uv € Eg.

Proof. If (7 has a universal vertex, then clearly 7 (G'+w) = x(G) = 1 for all
uv € Fz and if G is edgeless, then 7(G + uv) = 7(C) — 1 forall v € Ex So

assume that G has no umiversal vertices and at least one edge.

(i) Let S be an i-set of . By the assumption above, there exists uv € Ep with
u € Vi; — 5. Since § is an independent dominating set of &' + ww, it follows from

Proposition 1.1 that

H{G +uw) < |5 =1(G).
(i) For w = -y the statement follows from Proposition 1.8 (c).

(ii1) Let S be an ir-set of G. If ir(G) = -y(G), thenit follows from Propositions 1.7 and
1.8 (c) that ir (G +wv) < ir (GQ) for all uv € Fg. So assume that ir (G) < v (G).
By Lemma 1.11 there exists uv € Ez with u,v € Vg — Ng [S]. It follows from
Proposition 1.4 that S is a maximal iredundant set of (& + uv; hence
ir(G+w)<|Sl=or(G). W
The following proposition shows that there are no 7~ -ER-critical graphs if 7 is an
upper parameter.

Proposition 1.13 Ler 7 be an upper domination parameter For any graph G with
at least one edge, m (G — wv) 2 « () for at least one uwv € Eg.

Proof. (i) For = f the statement follows from Proposition 1.8 (f).

10
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(ii) Let S be aI'-set of G. If § is independent, then

I(G) =15] < A(G) < B(G —ue) ST (G —wv)

for all uv € Eg (by Proposition 1.8 {f)). If S is not independent, then there exists

uv € K with w,v € §. Since S is a dominating irmedundant set of G — uv,
I'G) =15 «T(G—uv).
{1i) Let S be an I [t-set of G. If § is independent, then
IR(G) = 15| < 8(G) < 8(G — w) < TR(G ~ w)

for all uv € Eg. If § is not independent, then there exists uv € Eg withu,v € 5.

Since S5 is an irredundant set of G — uw,
IR(G)=|8| < IR(G—wv). W

The types of criticality for which the existence or not remains to be decided are
Tt -criticality, I't- and 1 R*-edge-criticality, and ir~ - and ¢~ -ER-criticality.

Observe that Property P1 (see Section 1.1) implies that a graph is m-crtical {(w-ER-
critical, 7~ -ER-critical, respectively) if and only if each of its components is either
m-critical (m-ER-critical, 7 -ER-critical) or isomorphic to K. A graph is nt -critical
if and only if each of its components is 7 -critical.

1.3 Outline

Graphs which are y-critical were first studied by Brigham, Chinn and Dutton [8] in
1988 and ~y-edge-critical graphs by Sumner and Blitch [21]) in 1983. Further work
appears in about 20 papers. These include [12, 13, 14, 15, 19, 20, 22, 23, 27, 28] .
In 1994 Ao [2] extended this to a theory of i-critical and i-edge-critical graphs and

11
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made a thorough comparison of these four notions of criticality. In 1979 Wahkar and
Acharya [25] gave a characterisation of y~ER-cnitical graphs, which was extended by
Ao [2] toi-ER-critical graphs:

Theorem 1.14 [2] A graph is i-ER-critical if and only if each of its componenis is a
Stay

These are the only forms of domination criticality that have been studied. The pur-
pose of this thesis is to explore the remaining ones, especially those that involve the
three upper parameters.

In Chapter 2 we present some well-known bounds for the lower domination parame-
ters and proceed to determine the domination parameters of some classes of graphs.
Each class of graphs we consider will tum out to contain a subclass that consists of
graphs that are critical according to one or more of the definitions in Section 1.2.

Chapter 3 deals with vertex-critical graphs. In Section 3.1 we list the subclasses of
the graphs in Chapter 2 that are well-known to be -y-critical or ¢-critical. We present
a characterisation of y- and i-critical graphs in terms of so-called “singular isolated
vertices” and find a new class of i-critical graphs. In Section 3.2 we show that the
only J-critical graphs are the edgeless graphs and that a graph is {#-critical if and
only if it is ['-critical. We proceed to investigate the I'-critical graphs which are not
G-critical. In Section 3.3 we exhibit a class of I'*~critical graphs.

The development of Chapter 4 is analogous to that of Chapter 3 and deals with
edge-critical graphs. In Section 4.1 we find characterisations of -y-edge- and i-edge-
critical graphs in terms of the existence of y-sets and é-sets with certain properties and
then determine which of the graphs of Chapter'2 are y-edge- or i-edge-critical. In
Section 4.2 we characterise (J-edge- and I'-edge-critical gfaplis’ and show that a graph
is I R-edge-critical if and only if it is I"-edge-critical. In Section 4.3 we present a class
of graphs that are I'*-edge-critical. The existence or not of I R*-edge-critical graphs

12
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remains unresolved.

Chapter 5 deals with ER-critical graphs. In Section 5.1 we present characterisations
of w-ER-critical graphs for 7 an upper parameter and then determine which of the
graphs of Section 2.2 are =-ER-cnitical. In Section 5.2 we find necessary conditions
for a connected graph to be ir-ER-critical and characterise the connected 2-ir-ER-
critical graphs. In Section 5.3 we exhibit three classes of :~-ER-critical graphs. The
existence or not of ir~-ER-cntical graphs also remains unresolved.

Chapter 6 contains a brief list of open problems.

13



Chapter 2
Preliminaries

In this chapter we present some well-known bounds for the lower domination pa-
rameters and determine the domination parameters of some classes of graphs. The
bounds are useful, either in their direct applications or because the constructions in
their proofs provide insight into the relevant types of sets. The classes of graphs we
consider will prove to contain subclasses which are critical according to one or more

of the definitions in Section 1.2.

2.1 Some useful bounds for domination

parameters

The following inequality was obtained independently by Allan and Laskar in [1] and
by Bollobas and Cockayne in [6] .

Proposition 2.1 [1, 6] For any graph, + < 2ir — 1.

Proof. Let S be an ir-set of G and construct T' by choosing one private neighbour for
each non-isolated vertex of S. Clearly, [T} < [S| and, by Proposition 1.4, every vertex
not dominated by S is dominated by T'. Therefore S LU T is a dominating set of (5.
However, S U T is not a minimal dominating set of G, since it properly contains the

maximal irredundant set 5. Hence

@) <51 +[T| < 2{5] = 2ir(G)

14



Section 2.1 Some vseful bounds for domination parameters

and thus
Yy<2ir—-1. N

The next three resvlts give lower bounds for 4 and # in terms of the maximum
degree A. We use the following notation in their proofs: If S is an irredundant set
of the graph G, then Z and Y denote the isolated and the non-isolated vertices of .S,
respectively, and ¢, B and 1t denote the sets of vertices of V" — S which are adjacent

to at least two vertices, exactly one vertex and no vertices of .9, respectively, i.e.

R =V -N[9],

B = (U PN(S,S)) — S and

Fishy
¢ =N(S)-B.
Clearly, Z, Y, C, B and R form a partition of V and B = ¢ if and only if S is a

dominating set of G,

Proposition 2.2 (Walikar, Sampathkumar and Acharya [25] ) For any n-veriex graph
G,

n
B
7= AT
Proof. Consider a y-set S of G. Each vertex of S dominates at most A + 1 vertices of
& and the bound follows. W

The next two results by Bollobas and Cockayne, and Cockayne and Mynhardt, re-

spectively, are presented here with simplified proofs.

Theorem 2.3 (Bollobas and Cockayne [7] } For any n-vertex graph G with A > 2,

ir >

n
2A -1

15
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Proof. Consider an ir-set 5 of G. Each veriex of Z dominates at most A vertices of

V' — & and each vertex of Y dominates at most A — 1 vertices of V' — 5. Therefore
VSl < {(A+1)]zl+aY];

hence
n— |/ < (A+1)IZ|+A}Y]. (2.1)

Each vertex of H annihilates at least one vertex of Y. Therefore, if r, denotes the
number of vertices of K that annihilate € Y, then
|R! < Z‘T‘y .
yey
For each y € Y and w € PN{y, S), note that w is adjacent to  and to r, vertices of
B Thus

S ry<(A-1) Y]
yeY
and it follows that
IR| < (A-1)|Y]. (2.2)

From (2.1) and (2.2),

n < (A+D)|Z)+ @AY
< (2A—~1)|S| since A2

Hence

ir = 15| = -

. 1
T2A -1

16
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Theorem 2.4 (Cockayne and Mynhardt [11] ) For any n-vertex graph G with A >
2,
ir > 33}-.
— 3A
Proof. Consider an ir-set S of G and let I be the number of edges between S and C.
Since every vertex of C' sends at least two edges to S, I > 2|C]. Since the vertices of
Ssendatmost A Z} + (A —1)|Y| — | B| edges to C,

< A2+ (A~ 1)|Y| 18],
Hence
Bl +2]C) <AZI+ (A -1)}Y]. (2.3)

Each vertex of R annihilates at least one vertex of Y. Therefore, if r, is the number

of vertices of 1{ that annihilate y € Y, then

|A| < E""y :

yeY
LetYy = {y € Ylr, > 0} and Ys = {y € Y|r, = 0}. Then |Y| = || + |Y2]. For
each 7 € Y7 and w € PN (y,S), note that w is adjacent to i and to ry vertices of Ii.
This implies that

147, < deg(w) < A,

hence

Z ry & (A~ 1Y,

¥eY]

It follows that

RIS D ) m<(@=-1nl+o (2.4)

1N £1 (Mg

17
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Let

By = U PN(y,S),

yeEY:

By = UPN(y,S) and
yely

F o= B—(ElL]Eg).

Each vertex of E; annihilates at least one vertex of Y. Therefore, if &, 1s the number

of vertices of F/; that annihilate y € Y, then

1Bl <) k.

YyEY

For each y € Y7 and w € PN(y, §), since w is adjacent to , to ry vertices of K and
to k, — 1 or k, vertices of I, depending on whether w annihilates 3 or not, it follows
that

147, +k; —1< deg(w) <A
and hence

>k, <A - R

yeY;

Foreach ¢ € ¥, and w € PN (y, S), since w is adjacent to y and to k, veriices of E\,
1t follows that

1+ky < deg(w) < A4,
hence

Zky < ("—\ - 1)“'5'

¥EY

18
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It now follows that

%n’II < Zky+zky

vEY) yEY:

< AW - iR+ (8 - DT
Furthermore, {E3| < (A — 1){Ys) and | F| < A|Z|. Therefare
Bl + R < AlZ] + AlY3| + (24 ~ 2)|Y3). 2.5

From (2.3), (2.4) and (2.5) it follows that
2n < 2141+ 2|Y| + AlZ] + (A - 1)}Y]

+(A = 1)|Y3| + A|Z} + AlY;] + (24 - 2)|¥3]
= (2A+2)|Z] + 3A|YY| + (3A - 1)|Y5]

< 3A|S|] since A > 2.

Hence
2n

ir&[S!izwég—. |

2.2 Domination parameters of some well-known
classes of graphs

The complete multipartite graph K, v,,..n,, is the complement of the disjoint union
Ko UK, U. UK, . Thatis, the vertex-set of K,;, n,..__n,. haspartition {¥}, V2, .., V. }
with |V}| = n; for] < ¢ < mand vy is an edge of Ky, pny.,...n,, if and only if u and v do
not belong to the same partite set. If 'n = 2, then this graph is known as the complere

bipartite graph and K , is called the star on n + 1 vertices.

19
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Propesition 2.5 If (f = Ky, 0, With m 2> 2, then

. _ 2 ifnp>lforl<i<m
= 1 otherwise ’
i = min{n;|1<i<m},
B =T = IR = mex{n|1l<i<m}.

Proof, The only independent sets of G are the partite sets V4, V5, ..., Vin. This estab-
lishes i == min{n; | 1 <i<m}and f =max{n; |1 <1< m}. fn; =1, thenG
has a universal vertex; hence ir = v = 1. If n; > 1for 1 < ¢ < 7a, then the only
non-independent irredundant sets of /' are obtained by choosing one vertex from each

of any two partite sets. Therefore ir =4 =2and S =T = I H (== max{n;}). &

The product Gy x (74 of two graphs G, and (5 has vertex-set Vi, x Vg, and two
vertices {u1,us} and {v;,vs} are adjacent in Gy x Gy if and only if u; = v and
ugvp € Fg,, oruy = vy and uyv; € Eg) .

Let
Ve {uyli=1,2,...,mand j =1,2,..,n}
and
E = {{vij, v Huj,vm € V,i=kand j 5 [, or j = [ and i  k}
be the vertex and edge sets of the graph K, X K, respectively. Furthermore, let
X ={va|k =1,2,...,n}
toreachi=1,2,..,m and
Y =1{w;lk=1,2,...,m}
for each j = 1,2, ...,n. Note that (X;) & K, foreach: = 1,2,...,mnand (¥;} = K,

foreach 1 =1,2,...,n. See Figure 2.1, p. 21, but note that not all edges of K, < K,

20
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¥ 1 YE ¥ o)
Y1 Yz Vin
X, 3 @, e {3 3 {
Va1 Voo Yoy
(‘\ % " P o) Y :)
o N Nt A S Nl Ny
("\ Fan Fapet r FanY ™ f}
o~ At L \ 1 LA i,
Xy Cr O 9 O & O O
¥ ¥ v
ml m2 Frirl
Figure 2.1
are shown.

Theorem 2.6 Let G = K, x K, for n > m > 2. Then
ir(G) = +(G) = (G} = B(G) =m,

I(G) =n
and _
n if m<4
IR(F) =
m+n—4 if m>4.
Proof. Consider any maximal independentset S of (7. Since Sisindependent, | X; N S| <
1foralli=1,2,...,m. Therefore

ISlmifXgﬂSlgm.

g

Since S is dominating, X; NS # @ foralli = 1,2,...,morY; NS # @ for all

21
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i =1,2,...,n. Therefore
m
S| =3"1x;n8|>m.
=]
ar

1S|=)"[¥;n8 > n>m.

j=1

It follows that |.5| = ' for every maximal independent set S of (7 ; hence

Consider any minimal dominating set S of ;. Again, since S is dominating, X; N
S#Qforallior¥; NS # @ forall 5. If X; NS # @ forall £, then choose x; € X; NS
for eachs. Since {21, %3, ..., Zm } is a dominating subset of the minimal dominating set
S, itfollows that S = {4, Ty, ..., Tr, }; hence | 5] = m. Similarly, if ¥; N § # 0 for all
7, then | 5| = n. It follows that |S] € {m,n} for every minimal dominating set S of
(7. Furthermore, Y7 and X; are minimal dominating sets with cardinalities m and n,

respectively; hence
Y(G)=m and T(G)=n

To complete the proof, we show that n < |[S| < m + » — 4 for any maximal
irredundant set S of &G that 15 not dorminating, and that there exists one with cardinality
m+n—4ifm > 4. Tobe more precise, we show that foreachec € {n,n+1,.. . m+
n - 4} there exists a non-dominating maximal irredundant set with cardinality c.

Consider any maximal irredundant set S of (7 that is not dominating. Assume with-
out loss of generality that X, NS = $and ¥, NS = §, i.e. the vertex vy, is not
dominated by 5.

Fix;NnS| <1forallé letT = SU {vm}. Since Y, NS = Gand v, ¢ Y, we

see that vy, € PN (v;;, T') for every v; € T. Therefore T is an irredundant superset

22
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of the maximal irredundant set S, which is irnpossible. Hencg assume, without loss of
generality, that | X,, 1 N S| > 1 and, similarly, that |¥;,_, N S| > 1.

Let  be the number of sets X; for which |X; N S| = 1 and s the number of sets Y;
for which |Y; N 5] = 1. It follows that r < m — 2and s < n — 2. Assume without

loss of generality that

i

IX;0 89| forall 1=1,2,..,r
| X;nS| # 1 forall i=r+1,..,m
;NS = 1 forall §=1,2,..s

Y;nS # 1 forall j=s+1,..n

Since S is imedundant, |X; N S| =1 or [Y; N S| = 1 forevery v;; € S. Therefore
| xains)cJy;ns).
e =1
These unions are disjoint, so
iS|—r= 3" 1XnSt<Y [y;nS|=s
fr=r-l 7=l

Hence
IS|<r+s<(m-2Y+(n—2)=m+n-4.

Furthermore, suppose Y, N S = @ for k¥ # n. Then # s not dominated by 5 and
therefore v, 1y; annihilates some v;; € 5. If [¥Y; N S} = 1, then vy € PN(vy;, 5);
thus v, is adjacent to Um—1yx and so § = k, which is impossible since Y3 N S = .
Consequently, | X; N S| = 1 and it follows that v;,, € PN (235, S). Thisimplies that v,

is adjacent t0 v, 1y5; hence i = m — 1, which is impossible since | X,y N S| > 1.
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It now follows that |Y; N §] > 1forall j = s+ 1,...,n — 1 and therefore

5] = Y |vins|
J=1

& r3-1
= Y NS+ > YinSl+v,ns|
J=1 Jug1

.S—}-Z(n——s—l)-%-(]

IV

= 2dn—a—12

> n since s<n-—2.
Foreach k € {0,1,...,m — 4}, let

Sg = {11, V2, -+, Uka } U {U(k+1)(k+2); evey Wk 1) {(nm 1)} U {U{k+2)(k~+-1); “rey U{mwl){k+l}}‘

See Figure 2.2, p. 24 for Sy and S;,—4 and note that k is the number of isolated ver-
tices of Sx. (Black dots denote the vertices of the set, grey dots the extemal private
neighbours and white squares the vertices not dominated by the set. This notation is
used in all the figures in this section.) For each k € {Q,1,...,m — 4}, 5}, is a maxi-
mal irredundant set which is not dominating and S| = m +n — 4 — k. Therefore the
non-dominating maximal irredundant sets have cardinalities n,n+1,...,m+ n — 4.

Theorem 2.7 let G= Ky, x K, for n > m > 2. Then
ir(G) = 7(G) = min{3, m},
i{(G) = m,
HG) =T(G) = [R(G) = n.
Proof. The only maximal independent sets of G are X; fori = 1,2,...,m and Y; for
j=1,2,...,n; hence i(G) = m and 3(G) = n.
We now consider the maximal irredundant sets of G that are not independent. Sup-

pose S is such a set and assume without loss of generality that S contains the adjacent
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Figure 2.3

vertices vy, and vyg. See Figure 2.3, p. 26.

If m = n = 2, then neither u;; nor vy has private neighbours, contradicting the
trredundance of 5. Therefore n > 3. If m = 2 and = = 3, then {113, #2} is 2 maximal
irredundant set ; hence S = {r11,vs2} and thus S| = 2.

Suppose now that m > 3 orn > 4. Then {vy1, %2} is not maximal iredundant
and therefore is a proper subset of §. Consider s € S — {v;,v2}. There are three
possibilities: |

Case 1: s € N(vy1) N N(ugg). Assume without loss of generality that s = 13;. Then
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{11,799, v33} is minimal dominating ; hence S = {v11, 22,12} and | S| = 3.

Case 2; s is not dominated by {v;,v0}. Assume without loss of generality that
& = vy9. Then {111, U39, V19 } is minimal dominating ; consequently S = {uy1, V9, 112}
and |S] =3

Case 3: s is adjacent to exactly one vertex of {111, 22}, Assume without loss of gen-
erality that 8 = vy3. Then {vy1, 2,723} is irredundant and vy, is the only vertex not
dominated by {v11, 2, 193}, Now v, annihilates ves and 153, The only vertices ad-
jacent to wy; that annihilate no vertex of {vy, Vag, U3 } are vyq, 15, ..., V1. Therefore,
without loss of generality, 5 must contain v,4 also. Now {1, van, V93, V14 } 15 minimal

dominating ; hence & = {vq1, v, U3, o4} and |S|=4. A

We define the circulamt C, {aq,ay,...,q;) with0 < q; < ay < oy < n by

specifying the vertex and edge sets, where the arithmetic is performed modulo n:
V =1{1,2,.,n}

E = {{ii+j}}i=12,...,nandj=a,ay, ...}
Counsider the circulant G = C, (1,2,...,r) forn = 3and 1 < = £ [n/2]. Note that G
is the cycle C,, if r = 1 and the complete graph K, if = |n/2]. Also, if r = n/2,
then A = 2r — landif r < n/2, then A = 2r.

Foreachi € V, Nfij = {i~r,...,i— L5, i+ 1,..,i+ 7} Let LN(i) = {i —
T,...,t = 1} and AN(i) = {i + 1,...,7 + r} and call these sets the Jeff and the right
neighbourhoods of i respectively. Clearly, N(7) = LN(¢) U RN (7} and the union is
disjoint except when r = n/2, in which case LN (i) N RN (i) = {i — r} = {i +r}.

Theorem 2.8 f G =C,{1,2,...r) forsome n > 3and 1 <r < |n/2], then
ir(G) = 1(G) = i(G) = [n/(2r +1)]
and

IR(G) =T'(G) = B(G) = [n/(r +1)].
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Proof. If » = |n/2], then G = K,; hence all the domination parameters equal 1 =
[n/{2r 4+ 1)] = [»/(r + 1}]. Assume henceforth thatr < |n/2|. Then A = 2r and
for every v € V, LN(v) N RN (v) = |

We first prove that ir (G) = +(G) = i(G@) and I R(G) = I'((G) = 3(G) by showing
that, for every maximal irredundant set 5 of G, there exists a minimal dominating set
T with |T| = |5/, and for every minimal dominating set S, there exists a maximal
independent set T' with |77 = |S|.

Suppose S is an irredundant set of (7 and consider any two adjacent vertices z and y
of S with y € RN(z). Clearly, PN (x,5) C LN (z) and PN(y,S) C RN (y); hence
no other vertex of S is adjacent to x or y. It follows that A({S)) < 1 and that

I = {ie S|iisanisolated vertex of S}

X

Il

{z € §|PN(z,5) C LN(x)} and
Y = {y€S8PN(y,5S)C RN}

are mutually disjoint sets with |X| = |Y|, J U X and I UY independent and 5§ =
JUXUY . Let

Z={z+r+1liz e X}
and

We{y—r—1lyeY}

For adjacent vertices z € X andy € Y,z +r+1 € PN{yp,S)andy —r — 1 €
PN (z,8). Therefore ZNS=WnNS8=2ZnW =0 IuZ XUZ ITUW andY UW
are independent sets and |[W| = | X} = |Y| = | Z]. Furthermore, N{[z]UN[y] is a subset
of each of the sets N{z]UN{z+r+1}, Njy—r—1UN}yland Njy—r—1JUN[z+r+1].
Therefore N{S] is a subset of each of the sets N[/ U X U Z], N[ZUW UY] and
NIuwuZ].
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Suppose S is minimal dominating but not independent and let T = f LU X U Z or
TUW UY. Itis now clear that T is an independent dominating set with |T'| = |S}].

Suppose 5 is maximal irredundant but not dominatingandlet 7' = fUW U Z. It
is clear that |7} = |{S} and sincez € PN(y—r—1,Tandy € PN{z+7+1,T) for
every adjacent pairz € X and y € Y, T is an irredundant set. It remains to be proved
that T is dominating,

Ifv € N{S]|, thenv € N[T}. Ifv ¢ N[S], then there exist adjacent vertices
z € X and y € Y such that PN (z,5) C N(v) or PN(y,5) C N(v). Therefore
y—~7—1€ N{v)orr+r+1¢€ N(v); hence v is dominated by W or Z and it follows
that T is a dominating set.

To complete the proof, we show that v(G) = [n/(2r + 1)] and 8(G) = |n/(r + 1)].
By Proposition 2.2, 4(G) = [n/(2r + 1)]. Let

S ={(2r+1),2(2r +1),..., [n/(2r + )] (2r + 1)}

Then S is a dominating set and the only possible non-isolated vertices of S are

[n/(2r +1)] (2r + 1) émd (2r +1).
These vertices have r and 37 + 1 as private neighbours respectively. Therefore S'is a
minimal dominating set of (7 and it follows that +(G) < [n/(2r + 1)].
Suppose S'isa - set of (7. Let ! be the number of edges between S'and V — 5. Since
S is independent, each s € S sends 2r edges to V' — S; hence L = 2r|S]. Consider
any v € V — S. Since S is independent, LV (v) and RN (v) each contains at most one
vertex of .S; hence v is adjacent to at most two vertices of 5. Therefore I < 2|V — S,

It follows that

2riS| < 2|V - 5]
Lor+nls) < v
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r+1)8 < n
g < ln/tr+1)].
Finally,
S={(r+1),2(r +1),..., |2/(r +1)] (r + 1)}

is an independent set with |S| = |n/(r + 1)] and we have thus proved that 7 =
n/r+1)). =

Consider the circulant G = C,(1,3,5,...,2r— 1) for1 < r < (n—1)/2. For
eachv € V,

N={v-—2r+1,v—2r+3,..,v—-Lv,v+1,.,0v+2r—3,v+2r —1}.
Let
INW)={v-2+1Lv-2r+3,..,v—1}
and
ERN@w)={v+1, .,v+2r—3,v4+2r~1}.

Since r < (n— 1) /2, both LN (v) and RN (v) has cardinality r and neither contains
2. Therefore N (v) = LN (v) U BN (v).

If 7 is odd, then LN (v) N AN (v} = 0; hence A = 2r. In this case, each r €
{1,2,3,...,(r — 1) /2} gives a different graph G. If r = 1, then G = C, and if
r=(n—1)/2 then G = K.

If 7 is even, then we assume r < (n + 2) /4, for
Cn{l,3,.,2r - 1) =CL{1,3,..,2|{(n+2) /4] - 1}

whenever r > (n+2) /4. Ifr < (n+2) /4, then LN (v} 0 RN (v) = §; hence
A=2r Ifr=(Mn+2)/4then LN(v) N EN(v) = {v—-2r+1l=v+2r-1}
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Section 2.2 Domination parameters of some well-known classes of graphs

hence A = 2r — 1.

Suppose o = ¥¥_,n; is a partition of n such that each »; is odd and n; > 2r + 1.
Let Vi = U | N, be a partition of Vs such that each /V; consists of n; consecutive
veriices of Vi;. This is itlustrated in Figure 2.4 with G = (g (1, 3} and the partitions
5+5+95+7+7and 19, of 19.

Foreach i, if
Ni={v+1l,v+2,v+3,..,v+n},
let o
Si={v+r+lLov+r4+3,v+r+5,..,v4+n—r}

Then S; C N; and 1S;} = (n; — 2r 4+ 1) /2. Ttis not difficult to check that § = U%_ S;
is an independent dominating set of G. We call S an independent dominating set of G
induced by ihe partition . = ¥ n, and we say that n; contributes (n; — 2r +1) /2

vertices to 5. Now

k

1S|=> (ni—2r+1)/2=[n— (2r —1)k] /2

b= |

Theorem 2.9 fet G = G, {1,3,...2r— 1), where 1 < v < (n—1)/2, and let

n = (2r + 1) m + q for some integer m andwhere 0 < q < 2r. Then

B 7/2 if v is even
8e) = {(ﬁn)/zmr if nis odd

( m+q/2 if ¢ is even
e = m4+r+{g—1)/2 if qisodd

Proof. Consider any independent set § of . Cleardy || < n/2 and if |5} = n/2,
then the only independent dominating sets of & are {2,4,...,n} and {1,3,...,n — 1}.
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19=5+7+7

Figure 2.4

v+25+2

v-r+1 v+25+r+1

v 2r+1 v+ 25, +2r+1

Figure 2.5
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Assume now that |5} < n/2. Then S has a partition 5 = U¥_, 5, such that each
S; (1 €4 < k) has the form

Si={v+2v+4,.,v+ 28}

with s; = |S], v € Vi and {v,v + 28; + 2} € Vo — S. See Figure 2.5, p. 32. Since
v is not dominated by S;, it must be dominated by the rightmost vertex of 5;._;, which

151 — 2r + 1. Therefore
{fo—2r+2, v—r+lv—r4+2 . v+1}CVs-5

Similarly, v + 2s; + 2 is dominated by the leftmost vertex v + 25; 4+ 2r + 1 of 5;,1;

hence
{v+2s;+1,.,v+2s5+rv+28+r+1,..,v+28+2r} C Ve — S,
Let
Ni={v—-r+2,..,v+2s+r)

and n; = |V;]. Then Vi = U% | N; is a partition of V; and n; = 2r + 25; — 1. Itis
now clear that n = X¥ ,n; is a partition of n into & odd numbers n; > 2r + 1 and that
S is induced by this partition of 7.

Thus, the only independent dominating sets of (& are those induced by the parti-
tions n = IF  m; of n into & odd numbers n; > 2r + 1, and also {2, 4, ...,n} and

{1,3,...,n— 1} if nis even. It follows that the cardinalities of the independent domi-
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nating sets of (= are
{[n—(2r—=1)k] /2| k €{0,2,....,m}} if » and g are both even,

{Iln—(2r -1k} /2| k€{0,2,...,m~1}} ifnisevenand gis odd,
{[n~2r—-1)k} /2| k€ {1,3,...,m}} if n is odd and ¢ is even,

{ln=(2r—1)k]/2|k€{1,8,...,m—1}} ifn and g areboth odd.
Notethatn— (2r — 1)m = 2m+gandn—(2r — 1) (m — 1) = 2m+2r—1+¢q. The

theorem now follows by evaluating the least and the greatest elements of these sets. W

Theorem 2.10 Let G = C, (1,3,....2r —~ 1), where 1 < r < (n~1)/2, and let
n = (2r + 1) m + q for some integer m andwhere ) < g < 2r.

(@) If g= 0, then v(G) =m,

b)) Ifqg=2 then v(G) = m+ 1,

(€) If gisodd, then v(G) =m+1.

Proof. Supposer = (n+2) /4, Then A =2r — land r > 2. By Proposition 2.2,
ven/(A+ D= (4r—2)/2r=2-1/r.

Since G has no universal vertices, v () # 1 and thus v (&) = 2.
Assume henceforth that 7 # (r + 2) /4. Then A == 2r. By Proposition 2.2,

1) 2 0/ (A+1) = m+q/(2r+1),
If ¢ = 0, then v (G) > m. By Theorem 2.9, ¢ (&) = m. Therefore
m<y(@)<i(G)=m
and (a) holds. Similarly, if ¢ = 2, then
m+1<y(G)<i(G)=m+1

and thus (b) also holds.
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Now suppose that g is odd. For1 < j <m 1, let
Ny={({-1@r+1)+1,G-12r+1)+2.,502r+1)}
and
Npp={{m~-1)2r+1)+1,(m~1){2r+1)+2,..,n}.
Then

INl=2r+1for1<j<m-—1,

INpl=2r+1+4¢

and V' = UP N; is a partition of V. For1 < 7 < m, lets; = j(2r +1) — r and
let § = {31, 82,..., $m, Sm +¢}. This is illustrated in Figure 2.6, p. 35 with G =
Cis (1,3). Clearly S is a minimal dominating set of G with s,, and s,,, + g the only

non-isolated vertices. It follows that
Y{G) < |5 =m+ 1.

By Proposition 2.2, v (G) > m + 1 and hence v (G) = m + 1. This proves (¢). W

i5



18=5+5+8

Figure 2.6
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Chapter 3
Vertex-Critical Graphs

In this chapter we discuss w-critical and 7 -critical graphs. We have seen that the
edgeless graphs K, n > 2 are n-m-critical and that there exists no m*-critical graphs
for w € {ir,v,1,3, 11} Also, recall that a graph is m-critical (xt-critical, respec-
tively)} if and only if each of its components is either w-critical or K, (r*-critical,

respectively).

3.1 Lower domination parameter critical graphs:
vertex removal

Graphs that are y-critical were first studied by Brigham, Chinn and Dutton in [8] ,
where they showed that the only 2~y-critical graphs are nK», = > 1. They presented
some properties of -y-critical graphs and a method of constructing them, and concluded

their study with the following questions:

(1) If ¢ is y-eritical, is [V > (6 + 1) (v — 1) + 17

(2) If G'is y-critical and |V]| = (A +1){y — 1) + 1, is  regular?

(3) 1si =~ for all y-critical graphs?

(4) Let dbe the diameter of the v-critical graph G. Isitalways truethatd < 2 (y — 1)?

These questions were answered by Fulman, Hanson and MacGillivray in [15] .
They proved that (2) and (4) are true, but presented C17 {1, 3, 5, 7) as a counter-example
to (1) and (3).
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Chapter 3 Vertex-Critical Graphs

Graphs that are {-critical were studied by Ao in [2], in which she obtained results
analogous to those in [8] and [15] . For example, she showed that the graphs n K,
n > 1, are also the only 2-i-critical graphs. This result can be generalised to

Proposition 3.1 For 7 a lower parameter, the only 2-m-critical graphs are nKe, nn >

1.

Proof. Let G = nK,, n > 1. That 7 (G) = 2and w (G — v) = 1 forevery v € Vg is
clearif n = 1 and follows from Proposition 2.5 if n > 2. Suppose now that T (G) = 2
and 7 (G — v) = 1 for every v € V. Then, for every ve Vg, there exists f(v) € V5
which is adjacent to all vertices of V; except v. Clearly, f(f (v)) = v forallv € Vg

and therefore G = nKA, forsomen > 1, W

Various classes of {-critical or y-critical graphs are exhibited in [2] . These include
the graphs
Gy = K, x K,withn > 2,
Gy = Kz x K,
Gy = Cp{l,2,3,...,r) withn=m(2r+1)+1and m,r > 1,
Gy = Cp(1,3,5,..,2r ~1) withn=4r+landr > 2,
Gs = mK,withm>2andn > 3,

Gﬁ = KmXKmWithm?m:Ji
and
Gy whichis illustrated in Figure 3.1, p. 38.

The graphs (1, Gq, Gy and G4 are i-cnitical and ~y-critical; Gy, (72 and G sausfy
=t1=mn7=1=3and v = ¢ = m + 1 respectively, while v (G1) = 3 and
1(Gy4) =r + 1. The graphs G5 and G are examples of graphs which are {-critical but
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Section 3.1 Lower domination parameter crtical graphs: vertex removal

Figure 3.1

not y-critical and (37 is an example of a graph which is y-crtical but not i-critical. Note
thaty (Gs) = 2and i (Gg) = n, 7 (Gs) = 3 and i (G5) = mand v (Gy) = i (G7) = 3.
The proofs can be found in [2] . Observe that the statements for G and (g are true
dlso for K x K, with n > 3 and for K, X K, with n > m > 4 respectively.

In Theorem 3 .4 we give a new class of i-critical graphs. We begin by giving a char-
acterisation of y- and -critical graphs in terms of so-called “singularisolated vertices”.
Consider a graph ¢ and let v € S C V. We say that v is a singular isolated vertex of
8if PNg (v, §) = {v}, i.e. vis anisolated vertex of S which has no external private
neighbours.

The following result implies that if # € {y,1}, then & is 7-crtical if and only if
every vertex of (G is a singular isolated vertex of some m-sei of G. Proposition 3.2(a)

is well-known and appears in [2, 8, 25] .

Proposition 3.2 Let 7 € {ry,i}. For any n-vertex graph G with n > 2,
@ #(G—-v)>7n(G)=1forall ve Vg

b)) 7(G —v) =7 (G)—1ifand only if v is a singular isolated vertex of some w-set
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Chapter 3 Vertex-Critical Graphs

of G.

Proof. Forn = ¢, letv € V; and consider an i-set S of G —v. Then S'1s an independent
get of G and S U (v} is a dominating set of (7. If S dominates v, i.e. if v is not an

isolated vertex of (S U {v}), then S is an independent dominating set of G; hence
t(G) < |SI=1(G—v).

If S does not dominate v, i.e. if vis a singular isolated vertex of SU {v}, then SU {v}

15 an independent dominating set of G; hence
i(G)<|Si+1=1i(G—v)+ 1.

Furthermore, if i (G) = ¢ (G — v) + 1, then S U {v} is an 4-set of 7. This establishes
(a) and necessity in (b). For sufficiency in (b), suppose v is a singular isolated vertex

of the i-set T of G, Since 7" — {v} is an independent dominating set of G — v,
(G~ <|T1=1=1i(G) =1 <i(G~v);

hences (G —v) =i(G) ~ 1.
For 7 == v, letv € Viz and consider ay-set 5 of G —v. Since SU{v} is a dominating
set of (7,

7(G) <

Sl+l=79(G—-v)+1L

Furthermore, if ¥ (&) = v (G —v) + 1, then S U {v} is a y-set of 7 and since Sis a
dominating set of & — v which does not dominate v, v is a singular isolated vertex of
S U {v}. This establishes (a) and necessity in (b). For sufficiency in (b), suppose v is
a singular isolated vertex of the y-set " of G. Since T —-{v} is a dominating set of
G v,

VG =) ST~ 1=7(G) - 1<7(G~v);
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Section 3.1 Lower domination parameter critical graphs: vertex removal

thus y (G —v) =4(G) -1 W

Corollary 3.3 ZLet 7 € {~,1}. Then

(@) Gis mcriticalifand only if 7(G —v) =7 (Q) ~ 1 foralf v € V5.

(b) G is wcritical if and only if every vertex of G is a singular isolated vertex of
same w-set of GG

(¢) Ifavertex-transitive graph G has a n-set which contains a singular isolated ver-

tex, then (3 is m-critical.

Observe that the statements concerning the graphs (G to (g above now foliow easily

from Corollary 3.3 and the results in Section 2.2.

Theorem 34 Jet G = C,(1,3,...,2r — 1), where 1| < r < (n—1)/2 and let
no= (2r+ 1)+ g where 0 < q < 2r. Then G is i~ritical ifand only if q ¢ {0,2}.

Proof. Suppose first that ¢ is odd. If m = 1, then it follows from Theorem 2.9 that
(@) =r+(g+1)/2=n/2.

Therefore S = {2,4,...,n} is an i-set of . Since every vertex of S is a singular
isolated vertex, it follows from Corollary 3.3(c) that G is i-critical.

Assume henceforth that :n > 2 and consider the partition
n=(2r+1)(m~2)+(4r+2+q)

of i into 7r — 1 odd numbers. Let S be an independent dominating set induced by this

partition of n. Since
ISl=m-02r—-D{m-1]/2=m+ (g+2r — 1) /2,

S is an i-set of G. Furthermore, (4r + 2 + ¢) contributes (2r + 3 + g) /2 vertices to
S, and since (2r +3 +q) /2 = (2r +4) /2 = 3, § has at least one singular isolated
vertex. In fact, it is not difficult to see that of these (2r + 3 + ¢) /2 vertices, only the
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Chapter 3 Vertex-Cntical Graphs

Figure 3.2

two extreme ones are not singular isolated vertices of 5. This is illustrated in Figure
3.2, p. 41 with Cyg {1, 3); the singular isolated vertices are denoted by squares. It now
follows from Corollary 3 3(c) that G is i-critical.

Suppose next that q is even, ¢ ¢ {0, 2} and consider the partition

n=2r+1)(m-1)+(2r+14+9q)

of n into . odd numbers. Let S be an independent dominating set induced by this

partition of 2. Since
S| =In~ (2r - 1)m] /2 =m+ q/2,

S'is an i-set of G. Furthermare, 2r + 1 + ¢ contributes 1 + ¢/2 vertices to 5. Since
g € {0,2}, 1+ q/2 > 3. With an argument similar to the one above it now follows
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Section 3.2 Upper domination parameter critical graphs: vertex removal

that 2r + 1 + g contributes at least one singular isolated vertex ro S, Therefore G is
i-cntical by Corollary 3.3(c). See Figure 2.4, p. 31: 19 = 5+ 8 + 9 induces an i-set
of Cig {1,3) with singular isolated vertices; 19 = 5 + 7 + 7 also induces an i-set, but
it has no singular isolated veriices.

Finally, suppose 4 = 0 or ¢ = 2. Then any i-set S of G is induced by respectively
n=(2r+1)morn = (2r+1)(m-—-1) + (2r + 3). Since {2r + 1) and (2r + 3)
contribute respectively 1 and 2 vertices to S, S has no singular isolated vertices, and
by Corollary 3.3(b), GG is not t=critical. W

Since ir < v < 1, it follows that if (7 1s i-critical and v = 7, then (¢ is ~y-critical,
and if G is «-critical and ér = -y, then G is ir-critical. The y-critical graphs Gy to Gy
above all have ir = ~ and are therefore also #r-critical. It remains an open problem
to find ir-critical graphs which are not ~-critical and y-critical graphs which are not

ir-gritical.

3.2 Upper domination parameter critical graphs:
vertex removal

In this section we show that the only G-critical graphs are the edgeless graphs and that
a graph is 7 R-crtical if and only if it is T-critical. We then investigate the I'-critical
graphs which are not F-critical.

Proposition 3.5 The graph G is G-critical if and only if G is edgeless with more
than one verlex.

Proof, We know that edgeless graphs with more than one vertex are 3-critical. Suppose
(7 has at least one edge and let S be a F-set of . Then there exists avertexv € Ve — 8.
Now, S is an independent set of G — v, hence 2(G) = |S| < B{G —v). It follows that
G is not -critical. W
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Consider a graph (7 with n vertices. A partition {5, T} of Vi 15 called a one-to-
one perfect matching, abbreviated ta 1 — 1 p.m., of G if each s € S is adjacent to
exactly one ¢t € T, and each t € T is adjacent to exactly one s € 5. If G hasal -1
p.m. {5,T}, then clearly & has an even number of vertices. Furthermore, S is an
irredundant dominating set of G (every vertex of S has a unique private neighbour in
T, hence T(G) > n/2.

Proposition 3.6 [f a graph (G with n vertices has a1 - 1 p.m., then I'(G) = n/2
and the class of T'-sets of (i is the same as the class of I R-sets of G.

Proof. Let {S5,T} beal-1pm. of G. Consider any JR-set B of G and let W =
Ve — B. Define the sets

Ly = {steEglse SNB,teTnB},
I, = {steEglse SNBteTNW,ors€ SNW,¢ € TN B}
and

Ly = {steEglseSNW,teTnW}

Then |Ls| + |Ly| + |Lo| = n/2 and |B| = 2|Ly| + |L4]. Furthermore, each vertex
incident with an edge of ., is a non-isolated vertex of B and therefore has a pnvate
neighbour in W and, since the vertices incident with edges of L, are dominated by
vertices of B, this private neighbour is incident with an edge of Lp. Therefore | L,| <
|Ln) and hence

|Bl = 2{Ly| + | L] < |La| + | L1| + | Lo| = n/2.
It follows that

n/2 <T(G) < IR(G) = |B| < n/2
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and therefore
I'(G) = IR(G) = |B] = n/2,

Since |B] = n/2, it follows that |Ly] = |Lgl. This implies that each vertex incident
with an edge of Iy is the private neighbour of some vertex incident with an edge of
Ls; hence B is a dominating set.

We have proved that every JR-set of & is a dominating set of G and that I'(G) =
IR(G). It follows that B is a T'-set of G if and only if Bisan IH-setof ¢. W
Theorem 3.7 If GG is a connected graph with n vertices, then the following state-
ments are equivalent.

(a) G is T-critical.

(b) n>2andforevery T-set Sof Gand T =V~ S, {§,T}isal~1pm of G.
(¢) T'(G) =n/2andno T-sel S of G has any isolated vertices.

(d) G is IR-critical.

Proof. We first prove that (b) and (c) are equivalent and then use this equivalence to
prove (2) = (b) = (d) = (a).

() = (c): Consider any I'-set S of G and let T’ = Viz — 5. By (b), {5, T}isal—1
p.m. of G and by Proposition 3.6, ['(G) = n/2. Suppose s is an isolated vertex of
S and let ¢ be the vertex of T' adjacent to s. Since G is connected and n > 2, it
follows that ¢ is adjacent to some u € T. Let R = (T — {t}) U {s}. Then Risa
dominating set of , while s is an isolated vertex of & and eachr» € R~ {s} hasa
private neighbour (refative to R) in 5. Therefore K is 2 mimmal dominating set of &
and, since |R| = |S| = T'(G), it follows that R is a I'-set of G. This contradicts (b),
since the vertices s and « of K are both adjacent to t and ¢ ¢ K. We conclude that .S
has no isolated vertices.

(c} = (b): Consider any I'-set S of f and let T" = Vz — 5. Since S has no isolated

vertices, each s € § has at least one private neighbour in T and since I'(G) = n/2,
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it follows that | S| = |T’| and therefore each ¢ € T is the unique private neighbour of
some s € S. It follows that {5, T}isal —1pm. of G.

(@) = (b): Consider any I'-set S of G andlet T = Vz — S. Forevery t € T, the set S
is a dominating set of G —t and since T(G —t) < (@), 5 is not an irredundant set of

(7 —t; hence ¢ is the unique private neighbour of some non-isolated vertex s € S. Let
5" = {s € 5] 5 has a unique private neighbour ¢ € T with respect to 5} .

Then S — 5 consists of all the isolated vertices of {S}. By the above, these vertices are
isolated in G and since (7 is connected, it follows that S = 5. Therefore each s € §
has a unique private neighbour in I". Consequently, {S,T}isal — 1 p.m. of G.

() = (d): Suppose to the contrary that v € Vg and that S is an irredundant set of G —t:
such that |S| > TR((7). Since S is an irredundant set of G, we have that |S] < 1R(G)
and necessarily S is an J R-set of . By (b) and Proposition 3.6, S is a I™-set of G.
Therefore, by (b) and (c), {5, T} withT =V; — Sisal—1p.m. of G and S has no
isolated vertices. Note that v € T and let s £ S be adjacent to v. Since v is the unique
private neighbour in G of s and since s is notisolated in S, we see that s is a redundant
vertex of 5 in G' — v. This is impossible since S is an irredundant set of &G — v.

(d) = (a): We first prove that T'(G) = IR({). Let S be an IR-set of G. For each
v € Ve — S, IR(G — v) < IR(G), hence S is not irredundant in G — v from which it
follows that S dominates v. Therefore S is an irredundant dominating set of (7 so that
1S} < T(G) and thus T'{G) = I R(G). Now;, for each v € V¢,

NG - ) £ IR(G — v} < IR(G) =T(G);
consequently, ¢ is -critical. W

In Theorem 3.7 (c) it is necessary to require that I'(G) = n/2: The graph in Fig-
ure 3.3, p. 46 has only the two ['-sets {1,2,3} and {4, 5,6} and neither has isolated
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1 3
& 3
2
7
5
4 © QG
Figure 3.3

vertices, but the graph does nothavea 1l — 1 me,

Corollary 3.8 If G is a U-critical graph with n vertices, k of which are isolated,
then each component of G is either K, or it hasa 1 — 1 p.m. with more than two

vertices, hence U(G) = 2% 1+ k.
Corollary 3.9 The graph G is U—critical if and only if it is I R-critical.

Corollary 3.10 [f a connected graph G with n vertices is I'<crifical, then it has a
1—1pm., while §(G) > 2and §(G) < nf2

Proof. By Theorem 3.7 (b), Ghasal—1pm. {S5,T}. By Theorem 3.7 (c), since both
S and T are I'-sets of G, neither has any isolated vertices. It follows that §(G) > 2.
The fact that #{G) < n/2 follows directly from Theorem 3.7 (c). W

The converse of Corollary 3.10 does not hold: The connected graph in Figure 3.4,
p. 47hasal— 1 p.m. (Figure 3.4 (a)) with 16 vertices, & = 7 and & = 3, but it is not
I-cntical since it has a ['-set (the dark vertices in Figure 3.4 (b)) with isolated vertices.
The following two propositions give sufficient conditions, in terms of §{(), for a

connected graph G witha 1 — 1 p.m. to be I'-critical. We first prove a lemma.
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(b)
Figure 3.4

Lemma 3.11 Suppose G isa graphwitha 1 — 1 p.n. If a T-set of G has isolated

vertices, then it has at least 2(8(G) — 1) isolated vertices.

Proof. If 5{(G) = 1, then the statement is trivial. Assume therefore that 5(G) > 2.
Considera 1 — 1 pm. {S,T’} of G and a I'set B of (7 that has isolated vertices. Let
W = V5 — B and let k and { denote the numbers of isolated and non-isolated vertices
of B respectively. By Proposition 3.6, k +{ = I'((7) = n/2.

Suppose all & isolated vertices of B are in S. Since {S,7'}isal — 1 pm, ¢ach
isolated vertex of B in 5 N B sends one edge to T'N W and at least 6(G) — 1 edges
to .S MW, and the neighbours in 7" U W of distinct vertices in 5 N B are all distinct.
Therefore S N B dominates at least k + 5(() — 1 vertices of W. Since each of the /

non-isolated vertices of B needs a private neighbour in W, it follows that

W2 i+k+6G)—1;
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hence
n/2>n/2+4+8G)—1,

from which it immediately follows that §(¢;) < 1. This contradicts our assumption.
Therefore T" and (similarly) S both contain isolated vertices of B.

Letz € Sandy € T beisolated vertices of B. Since {S,T}isal~1p.m., = sends
one edge to T' N W and at feast §(G') — 1 edges to S U W. Similarly, v sends at least
5{GG) — 1 edges to T N W, Therefore {z,y} dominates at least 2 (§(G) — 1) vertices
of W. Since each of the ! non-isolated vertices of B needs a private neighbour in W,

it follows that
k+l=|W[21+2(6G)~1);
hence
E>20G)~1). =

Proposition 3.12 Zet G be a connected graph with n vertices, a1 — 1 pm. and
8(G) 2 |n/4) + 2. Then G is T-critical.

Proef. By Proposition 3.6, T'(G) = n/2 If G is not T-critical, then it follows from
Theorem 3.7 that GG has a I'-set B with isolated vertices. Hence, by Lemma 3.11, B

has at least
2(6(G) ~ 1) 2 2([n/4] +1) > n/2
isolated vertices, which is impossible since |B| =n/2. W
Corollary 3.13 Jf G is a connected graphwithal — 1 p.m. and §(G) > |nfd| +2,
then B(G) < T'(G).

The result in Proposition 3.12 can be improved slightly if we know beforehand that
A(G) <T(G):
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L3 {)
H: i % I
Q o
(a) (b)
Figure 3.5

Proposition 3.14 Let G be a cormected graphwith n > 2 vertices, al —1 p.m. and
8(G) > [n/4| + 1. If B(G) < n/2, then G is T-critical.

Proof. By Proposition 3.6, I'(G) = n/2. Suppose (5 is not ['-critical. By Theorem
3.7, (G has a I'-set B with isolated vertices, Hence, by Lemma 3.11, B has at least
2(8(G)—1) =z 2(|n/4]) > n/2— 1 isolated vertices. Therefore B is independent,
hence 3(G) =n/2. =

This last result is the best possible, in the sense that if §(G) < |n/4] + 1 and
8(G) < n/2 then it does not necessarily follow that &' is I-critical: The connected
graph H in Figure 3.5, p. 49 has 6(H) = |n/4] and 5(G) < n/2 and the black vertices
inFigure3.5 (a) form one part of a 1 — 1 p.m, of H. However, H is not I'-crtical since
the black vertices in Figure 3.5 (b) form a I'-set of H with isolated vertices.

Also, in Proposition 3.14 itis necessary to require that G has at leastone 1 ~ 1 p.m.:
The connected graph K in Figure 3.6, p. 50 has §(K) = [n/4| + 1and 8(K) < n/2,
but it is not T-critical since the black vertices form a I'-set of A” with isolated vertices.
(Note that K does not havea 1l — 1 p.m.)
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Figure 3.6

Proposition 3.15 [f G is a connected r-regular graph with 8(G) < T(G) = n/2,

then G is Tcritical.

Proof. Suppose to the contrary that (5 is not ['-critical. By Theorem 3.7 (c), GhasaT'-
set S such that {S) has isolated vertices. Since 3(G) < n/2, (S} also has non-isolated
vertices. Let £ # 0 and L 5 @ be the sets of isolated and non-isolated vertices of {5}
respectively. Let I/ = | ),., PN(s,S5) and K’ = (Vg — §) — I/, Clearly {, L} and
{K', L'} are partitions of § and Vi — S respectively.

Let g be the number of edges between K and K’. Since (7 is r-regular and since
K sends all its edges to K’, ¢ = r|K|. Suppose K’ does not send all its edges to
K. Then ¢ < r|K’| and therefore |K| < |K’|. Since ['(G) = n/2, |K| + L] =
{K’| + |L’|. Therefore |L| > |L’|, which is impossibie since every vertex of L has a
private neighbour in £, It follows that K’ sends all its edges to K. Therefore K U K’
sends no edges to L, U I/, This contradicts the assumption that G’ is connected. W

Propaosition 3.16 et G be a graph on nverticeswithal— 1 pm. {S, T} such that
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(S) and (T") are connected r-regular graphs with
BUS) +B((T)) < n/2.
Then G is I'-crifical.

Proof. Clearly, (7 is a connected r-regular graph and T'{(G) = n/2 by Proposition 3.6.
Consider a §-set I3 of (G. Then 4N S and B NT are independent sets of (S and
{T') respectively; hence

B(G) = |Bl=|BNS|+{BNT|
< BUS+BUTY
< n/2

It follows from Proposition 3.15 that 7 is T-critical. W
We illustrate the usefulness of Proposition 3.16 with some examples:
(1) In the proposition, let {5} and (T") be complete graphs; then
AUSH+B((T) =1+1=2.

Ifn > 6, it follows that 3 ({(S}) + & ({T')) < n/2; hence (J is T'-critical. If n = 2 or 4,

then (5 1s not ['-critical, i.e. % and C, are not [-critical.
(it) Again in the proposition, let {5} and (T’} be cycles. By Theorem 2.8,
BUSH +BUTY) = [n/4] + |n/4].

If n is not divisible by 4, it follows that 3 ({S)) + 3 ({I}) < n/2; hence G is [-critical.
If 72 is divisible by 4, then (7 is not T-critical. (Tt is easy to construct an independent

set of (7 with n/2 vertices.)
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Figure 3.7

(ii1) Figure 3.7 shows that the dodecahedron hasal — 1 p.m. {5,T'} with {5} = Ciq
(indicated by the black vertices) and {(T% = 2€. By Theorem 2.8,

BUSH+ /(T =5+24+2=9<10=mn/2

It follows from Proposition 3.16 that the dodecahedron is T'-critical.

We conclude this section with a method for constructing I'-critical graphs that need
not be regular and for which |n/4] — & (see Propositions 3.12 and 3.14) may be made
arbitrarily large.

Begin with four empty vertex-gets V1, V2, V3, V) and an empty edge-set. Increase
the number of vertices and edges by applying R1 and R2 any number of times :

R1 Addacyele Cy, (v > 1) with consecutive vertices in 14, V, Va, Vi, 14, ...
R2  Add £, with its two vertices in V; and V4 orin V5 and V.

This construction ensures that our graph has two 1 — "ldperfect matchings, namely
ViuVa, VauVy)and {Va UV, Vi UV} Foreachi € {1,2,3,4}, join all vertices

in V; so that (V) is compleie and ensure that the graph is connected with at least 10

53



Chapter3 ‘ertex-Critical Graphs

vertices and that |V;| > 2 foreach i € {1, 2, 3,4} by applying R1 and R2 enough times
and R1 at least once. Graphs so constructed are I'-critical

Proposition 3.17 Suppose G is a connected graph with n. > 10) vertices and two
distinct 1 — 1 perfect maichings {A, B} and {C, D} such that each of the subgraphs
(ANCY {(ANDY, (BNCYand (BN D) of G is a complefe graph with more than

one vertex. Then (G is T-crifical.
Proof. By Proposition 3.6,
A= B| = 1C] = |D| = T(G) = n/2.

Let |ANC| = |[BND| = pand |[AND] = |[BNC} == q. Then p,q > 2 and
p+g=n/2>5.

Suppose to the contrary that G is not I'-critical. By Theorem 3.7 (c), G has a I'-set
S that has isolated vertices.

Forany z € AnC, since {A,B}isal~— 1pm. and {ANC) is complete with
more than one vertex, deg(z) > 2. A similar argument holds for AN D, BN € and
B N D; hence §(G) > 2. It follows from Lemma 3.11 that S contains at least two
isolated vertices T, and 4.

Letz; € Xyand 1y € Xy for X, X, € {ANC, AN D, BNC, BN D}, Since
(X1) and {X,) are complete graphs, SN X; = {1}, SN Xp = {z} and X; U X,
does not contain private neighbours of non-isolated vertices of 5.

Since |5| = p+ ¢ > b, assume without loss of generality that [SN AN D] > 2.
Since {A N 1) is complete, SN AN D consists of non-isolated vertices of .S, and AND
contains no private neighbours of vertices of 5. Therefore all the private neighbours

of the non-isolated vertices of 5 lie in

Y e{ANC,BNC,BND} - {X;, Xa}.
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Since (Y') is complete, SNY = @. It follows that z; and z, are the only isolated
vertices of S5 and that A N D contains all p + ¢ — 2 non-isolated vertices of § ; hence
q > p+q— 2. Therefore, sincep > 2and p+¢ > 5, itisevidentthaty = Zand ¢ > 3.
It follows that AN 1) is the set of non-isolated vertices of S5, Y = BN is the set of the
private neighbours of the non-isolated vertices of S'and {X;, Xu} = {ANC, BN D}

Now, since {A, B} and {C, D} are 1 — 1 perfect matchings of G and each vertex
in AN ) is adjacent to precisely one vertex in BN (7 and vice versa, it follows that no
vertex in (ANDYU{BNC}is adjacent to any vertex in (ANC)U(BNC). Therefore

GG is disconnected. W

Note that if we apply R1 (with » = 1) in the construction only once and ensure
|Vi| = V3] = 2, then § = 2 while n/4 may be made arbitrarily large.

3.3 TI'*-critical graphs

If I'(G) = IR(G), then it follows from Propositions 1.7 and 1.8 that I'(G — v) <
IR (G —v) € IR(G) =T(G) forall v € Viz. Therefore, of all the graphs considered
in Section 2.2, only K, x K, with m,n > 5 are candidates for ' -criticality. The
following proposition states that they are indeed I -critical. We first prove a lemma.
Lemma 3.18 [f Sisan I R-set of G which dominates all vertices of GG except v €
Vz, then T'(G — v) = IR(G).

Proof. S is a dominating set of G — v and, since v € Viz — N[5, it follows that S'is
an irredundant set of G — v. Therefore R(G) = |S| < T'(G — v). Propositions 1.7
and 1.8 imply that ['(G — v) = IR(G — v} = IR(G). N

Proposition 3.19 For any m,n > 5, the graph K, x Ky is I'Meritical,

Proof. Let G = K, x K, forn > m > & and consider any v € V. Since G

is vertex-transitive, assume without loss of generality that v = vp,,. Now, 5p in the
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proof of Theorem 2.6 (see Figure 2.2, p. 24) is an IIt-set of G that dominates all

vertices of G except v. Therefore, by Lemma 3.18 and Theorem 2.6,

I'NG—7v)=IR(G)=m+n—4>n=T(G). N

If G = K., x K, with m,n > 5, then there exists, for every v € V;, an [ H-set of
G that dominates all vertices of G except v. I8 this a general property of I't-critical
graphs? (If this is so, then it will follow from Lemma 3.18 that every I't-cntical
graph G has the property that I'(G — v) = I R(G) for each v € Vz.) Are the graphs
K X K, withm, n > 5 the only vertex-transitive I'*-critical graphs? Are there ['T-
critical graphs that are not vertex-transitive? The results in the rest of this section may

be useful in the investigation of these questions, which remain unanswered.

Proposition 3.20 Suppose G is T -critical. For every v ¢ Vg and every T-set 5,
of G'—uv, 8, is a maximal irredundant set of G that dominaies all vertices of (5 except

v. Furthermore, each w € Ngl| annihilates at feast two vertices of 5,

Proof. Since S, is an iredundant set of G, S, is not a dominating set of G, for other-
wise (G — v) = |5,| < T(G). Hence S, dominates all vertices of G but not v.
Consider any w € Ng[v]. Since S, U {w} is a dominating set of G, it follows that

Sy U {w} is not an irredundant set of G, for otherwise
MG -v)+1=|5}+1<T(G).

It follows from Proposition 1.4 that &, is a maximal irredundant set of G. Moreover,
if w annihilates only one vertex x of S, then the set § = (S, — {r}) U{w}isa

dominating irredundant set of G; hence
NG - v) = |5 = 18] <TG

which contradicts the fact that I'(G — w) > T(G). Therefore each w € Ng{v} annihi-
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lates at least two vertices of 5,. W

Proposition 3.21 If G is Tt-critical, then
(2) G has at least |V maximal irrecdundant sets.
b) §(3) >3
(c) N{v) € N(u) for any two adjacent vertices v and v.
(d) If N(v) C© N(u)for two non-adjacent vertices v and v, then deg(u) > deg(v)+2.

Proof. (a) For any two distinct vertices w and v of G, let S, and S, be I'-sets of G — «
and &7 — u, respectively. By Proposition 3.20, S, and S, are maximal irredundant sets
of & and since S, dominates 2> and .5, does not dominate v, the sets S, and 5, are
distinct.

(b) Let v € Vg and consider a I'-set 5, of G — v. Since v annihilates some vertex of
Sy, we see that N{v) # P. Letw € N{v) and consider a I'-set S,, of G — w. Since
v annihilates at least two vertices of Sy, and since v is adjacent to w, it is clear that
deg(v) = 3.

(c) Let u and v be two adjacent vertices. Consider a I'-set 5, of G ~ u. Since S,
dominates v but not u, N(v) € N(u).

(d) Suppose N(z) € N{u) for two non-adjacent vertices » and v. Consider a I'-
set S, of & — u. Since S, dominates v but not u and since N(v) C N(u), vis an
isolated vertex of 5,. But u annihilates two non-isolated vertices of S;. Therefore
deg(u} > deg(v)+ 2. W

Corollary 3.22 If G is [Vecritical and A(G) ~ 8(G) < 1, then N(v) € N{u) for

any distinct vertices v and v of C.
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Recall that the edgeless graphs K,,, n > 2, are n-r-edge-critical for all the domina-
tion parameters 7 and that there do not exist 7t -edge-critical graphsif = € {ir,v,1,3}.

4.1 Lower domination parameter critical graphs:
edge addition

The study of -y-edge-critical graphs was initiated by Sumner and Blitch in [21], where
they showed that G is 2-y-edge-critical if and only if G is the disjoint union of non-
trivial stars, They also obtained several properties of 3-y-edge-critical graphs. Hamil-
tonian properties of 3-y-edge-critical graphs were studied in {27] and [28] and k--
edge-critical graphs with k& > 4 were studied in [12] and [19] . For a recent survey on
~y-edge-critical graphs we refer the reader to [22] .

Graphs that are {-edge-critical were studied by Ao in'[Z‘]l . Whére she obtained results
analogous to those in [21] . For example, G is 2-i-edge-critical if and only if G is the
disjoint union of non-trivial stars. Since ¥(G) = 2 implies ir (G) = 2, it is evident
that the same characterisation holds for ir-edge-critical graphs.

Considerable interest and subsequent papers concerning y-edge-critical graphs were

generated by the following two conjectures.
Conjecture 1 [21] If G is k—-y-edge-critical, then v ((7) = { (G).

Conjecture 2 [27] If G is 3-y-edge-critical and § (G) > 2, then G is hamiltonian.
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Fork > 4 Conjecture 1 was shown to be false by Ao, Cockayne, MacGillivray and
Mynhardt [3] and this conjecture can therefore be reformulated as

Conjecture 1’ If G is 3-y-edge-critical, then ¥(G) = 1 (G).

This conjecture remains unsolved, although some pfogress has been made. It was
shown in [21] that the conjecture holds for disconnected graphs, for graphs with § < 2
and for graphs with diameter 3. The only other known result on this conjecture is one
by Favaron, Tian and Zhang [13] . They first proved that 3 < § 4+ 2 for any 3-v-edge-
cnitical graph, and then showed that if equality holds, then 1 = 3.

Conjecture 2 has recently been proved. The eventual solution is the result of a
combined effort by five researchers and the proof, whichis long, difficult and technical,
is contained in the three papers [13, 14, 23] . The first contributions were made by
Flandrin, Tian, Wei and Zhang in [14] . This includes the result that a 2-connected
3-y-edge-critical graph & of order n has c¢(G) > = — 1, where ¢(G) denotes the
circumference of ¢, Using the resultsin [14], Favaron, Tian and Zhang next proved in
[13] that connected 3—y-edge-critical graphs with § > 2 and 7 < §+1 are hamiltonian.
That Conjecture 2 also holds if § = & 4+ 2 was finally proved by Tian, Wei and Zhang
in [23].

For an exposition of all the work done on Conjectures 1 and 2 we refer the reader
to the Master’s dissertation by Moodley [17] .

In the remainder of this section we present a characterisation of +- and i-edge-
critical graphs in terms of the existence of y-sets and i-sets with certain properties,
and determine which of the graphs in Section 2,2 are m-edge-critical for 7 a lower

domination parameter.
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Proposition 4.1 Let = & {v,1}. For any non-complete gm_bh G,
(8) (G +uv)>y(G)-1forall we B5,
(b) 7{(G +uv) = 7(G) — 1 if and only if there exists a n-set T of G such that

{u,v} C T and one of v and v is a singular isolated vertex of T

Proof. For w = i, let uv € Ez and consider an i-set § of G + wv. Then S is an
independent set of G and 5 U {u} or §'U {v} dominates G. If S dominates G, then
5 is an independent dominating set of &; hence 2 (G) < |S| = 1(G + uv). Suppose
now that 5 does not dominate G and assume without loss of generality that S U {u}
dominates . Thenu ¢ S, v € S and w is a singular isolated vertex of S U {u} in G,

It follows that S U {u} is an independent dominating set of G and thus
(@) L[S+ 1=1(G+uwv)+ 1

Furthermore, if i (G) = 4 (G + uv) + 1, then SU {u} is an i-set of G. This establishes
(a) and necessity in (b). For sufficiency in (b), suppose T is an i-set of G such that
{w,u} € T and u is a singular isolated vertex of T'. Since T — {u} is an independent

dominating set of G + uw,
HGHuw) <7 ~1=i(G)~1<i(G+uv).

It follows that ¢ {G + wv) = ¢ (@) — L. |

For m = ~, let uu € Ey and consider a 'y—set Sof G + uw. Then §'U {u} or
S U {v} dominates G; hence v(G) < [S] +1 = f;(G' + uv) + 1. Furthermore,
if v(G) = (G +uv) + 1, then S does not dominate G. Assume without loss of
generality that S U {u} dominates (7. Then ¢ & S, v € S and u is a singular isolated
vertex of S U {u} in G. This establishes (a) and necessity in (b). For sufficiency in
(b), suppose T is a y-set of G such that {u,v} C T and u is a singular isolated vertex
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of T'. Since T — {u} is a dominating set of (G + uv, it follows that
V(G +un) < IT|~ 1= (G) ~1 S 7(C +uv)
and therefore y (G +uv) =v(G) -1, W

Corollary 4.2 Let 7 € {v,i}. Then
(a) G is m-edge-critical if and only if (G + wv) =% (G) — 1 for all wv € F.
by G is m-edge-critical if and only if for every we € Ep, there exists a w-set T
of G such that {u,v} C T and one of u or v is a singular isolated vertex of T.

We remark that by Corollary 4.2, if ¥ € {~,i} and v and v are nonadjacent vertices
in a k-m-edge-critical graph (7, then there exists aset § C V' (G) — {u, v} of cardinality
k — 2 such that § U {u} dominates &' — v but not v, or §'U {v} dominates G — u but
not . This was also observed in [2, 21] for { and - respectively.

Consider the graphs G to Gy of Section 3.1. Gy and G» are i-edge-cntical and
~v-edge-critical. G5 and Gy are i-edge-critical but not y-edge-critical. Detailed proofs
of these statements appear in [2] . Alternative proofs can be found by considering the
- and t-sets of the graphs described in the proofs of Proposition 2.5 and Theorems 2.6
and 2.7 and applying Corollary 4.2,

If nn > m, then Ky % Ay is neither i-edge-critical nor y-edge-critical (apply Corol-
lary 4.2(b)tou = vy; and v = wa). Fm = 1, then G = (r + 1) Ka: hence Gy is a
disjoint union of stars. If m > 1, then G is neither ¢-edge-critical nor ~y-edge-critical
(apply Corollary 4.2(b) to vertices v and v = u + 2r + 1). & 15 neather i-edge-critical
nor y-edge-crtical {apply Corollary 4.2(b) to vertices u and v = u + 27).

The ~-edge-critical graphs G} and Gy have ir = - and are therefore also ir-edge-
critical. It remains an open problem to find fr-edge-critical graphs which are not y-
edge-critical, and y-edge-critical graphs which are not ir-edge-cnitical (or to show that

these classes of graphs coincide).
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4.2 Upper domination parameter critical graphs:
edge addition

In this section we find charactensations of J- and I'-edge-critical graphs and show that
a graph is f R-crtical if and only if it is ['-edge-critical.

For any graph (- and integer ¢ > 0, let G + ¢ denote the graph obtained by adding
g universal verticesto V (G),ie, G+ 9= G+ K.

Lemma 4.3 Suppose  is an upper parameter and q > 0. Then G is w-edge-critical
ifand only if G + g is m-edge-critical.

Proof, We make three observations,

Ol. Esm=Eg

02, Ifuv € Eg then (G + uv) + ¢ = (G + g) + ww.
03, 7(G+q)=7n{G).

O1 and O2 are obvious. We prove 03. Obviously, G and G + ¢ are either both
complete or both non-complete. In the'.firét case 7 (G) == #{(G+4¢) = 1 Inthe
second case, 5 is an independent (dominating, irredundant) set of G if and only if S is
an independent (dominating, irredundant) set of G + ¢. It follows that if S is a 7-set
of G, then 7 (G + ¢) < |§] = = (G) and if Sisaw-setof G + ¢, then 7 () < |§] <
7 (G + q); hence m (G + ¢q) = 7(G).

It now follows from O1 and O3 that 7 (G + uv) < 7(G) for all wv € Ez if and
only if 7 (G 4 uv) + q) < 7 (G + q) for all uv € Ezpz. Applying O2 completes the
proof of the lemma. W
Proposition 4.4 The graph G is §-edge-critical if and only if G = H + q, where
H is an edgeless graph with more than one vertex.

Proof. Suppose (7 is J-edge—critical and consider a S-set 5 of G. Clearly i = (5) i3
an edgeless graph with more than one vertex. Let ¢ = {Vo — S| Foreachu € Vi — 5
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and v € Vg —q{u}, uv € Fg, for otherwise S is an independent set of G +ww, in which
case 3(G) = |§] < (G + wv). ltfollows that G = H + ¢q. ~
Conversely, if H is edgeless with more than one vertex, then H is clearly J-edge-
critical. It now follows from Lemma 4.3 that [/ + g is S-edge-critical for any ¢ > 0.
|

Theorem 4.5 The following statements are equivalent for any graph G

(8) G is D-edge-critical.

®) G = H + q, where (1) H is an edgeless graph with more than one veriex, or
(1) the non-isolated vertices of H induce a graph M with at least six vertices and a
1~ 1 perfect matching {5, T} such that (S) and (T} are complete graphs.

(¢) G is IR-edge-critical.

Proof. (a) = (b): ConsideraI'-set X of G and let Z and S be the sets of'isolated and
non-isoiated vertices of X, respectively. Let T be the set of external private neighbours
of vertices in X and let W be the set of vertices of V; — X that are adjacent to more
than one vertex of X. Clearly, X = Z U Sand {Z, 5,7, W} is a partition of V.

If uv € Ez and X is an irredundant set of G + uwv, then X is a minimal dominating
set of G + ww. Therefore I' (G) = | X| < T (G + uu), which contradicts the ['-edge-
criticality of G. Hence

for all ur € By, X is not an irredundant set of G 4 uv. 4.1

Furthermore, if 3(G) = I' (G), then G is 3-edge-critical and it follows from Propo-
sition 4.4 that G = H + ¢, where H is a graph satisfying (i). Henceforth, assume
that

4(GQ) <T(6). 4.2)
Suppose » € X and | PNg (2, X)| > 1. Letu € X — {x} and v € PNy (z, X). Then

X is an irredundant set of & 4 uv, which contradicts (4.1). Therefore | PNg (z, X)| =
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1 for all x € X. It follows that Z is the set of isolated vertices of H = (ZUSUT)
and that {S,T}isal—1pm. of M = (SUT).
Suppose ur € Fz and {u,v} C S or {u,v} C T. Then X is an irredundant set of
G + uv, which contradicts (4.1). Therefore (S} and {T') are complete graphs.
Suppose |S| = 2andlets € S, t € T with s and ¢ nonadjacent. Then Z U {g,1} is

an independent set of . Therefore
T{G) = X =1Z2u{st}] < B(C),

which contradicts (4.2). Consequently |S| > 3 and so M has at least six vertices,
Finally, suppose uv € Ez withu € W and v € Vg —{u}. Then X is an irredundant
set of & + wuw, which contradicts (4.1). Therefore « is a universal vertex of G. It thus
follows that G = H + ¢ with H satisfying (ii).
(by={c). Inthecaseof (i}itis clear that H is ] H-edge-cnitical. Hence by Lemma
43, H + g is I H-edge-critical. Now consider condition (ji) and let Z be the set of
isolated vertices of H. Since SU Z and T U Z are [ R-sets of H,

IR(G) =18+ 12| = |T| +|Z].

Consider any uv € Eyy and let B be an [ H-set of [f 4 uv.
Casel: BNS#£Pand BNT # P. Lets € BN Sandt € BNT. Since (S)
and (T} are complete graphs, BN S = {s} and BNT = {t}, for otherwise B is not
irredundant in H + uwv. Therefore B C {s,£} U Z and so

IR(H +uv) =|B| < 2+|2| <|S|+12| = IR(H).

Case2: BnNS = Por BNT = . Assume without loss of generality that BN S = .
Then B C TUZ. Since {T) is complete, T Z is notirredundant in  +uv. Therefore

TR(H +w) = |B| < |T} + 12| = IR (H).
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Figure 4.1

This proves that H is / R-critical and by Lemma 4.3, H + g is [ R-edge-critical.

{c) = (a) Let Sbean IR-setof G andlets € S. if r € Vg — Ng|[S], then
ar € Bz and 5 is irredundant in G + sr; hence IR (G) = |S| < IR (G + sr), which
contradicts the / R-edge-criticality of G. Therefore S is a dominating irredundant set
of G and thus I (G) = /R (G). It follows that for all uv € Fg,

T'(G+w) <IR(G+w) < IR(G) =T(G).

|
Figure 4.1 shows the I-edge—critical graph G = H + g with |Z] = |5] = |T] =
W) =3. .
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4.3 T't-and IR'-edge-critical graphs

In this section we show that K, x K, is I'"-edge-cnitical if m,n > 5. Whether there

exist ] Rt -edge-critical graphs or not remains an open problem,

Proposition 4.6 Forany m,n > b, the graph K, x K, is [t -edge-critical.

Proof, Let G = K, x K, where n. > m = 5 and consider any uv € Fz. Since G
is edge-transitive, assume without loss of generality that « = vy and v = vms. Now
So in the proof of Theorem 2.6 (see Figure 2.2, p. 24) is a minimal dominating set of
- G+uv. ThereforeI' (Gl =n<m+n—4=|S| <T(G+uw) N

«

Although we have not found an f 2*-edge-critical graph, we show that for such a
graph G, if it exists, the upper iredundance number increases by exactly one whenever
an edge is added to GG

Proposition 4.7 Suppose G is I R*~edge-critical. For every wv € Fz and every
IRset Sof G+uv,ue Sorve S Ifue S, then PNopw (4,5} = {v} and
S — {u} isan IH-set of G.

Proof. S is not an irredundant set of G, for otherwise I R (G + wv) = |S| < IR(G).

It follows that u € S and PNy, (6, 8) == {v}, orv € S and PNg .. (v, S) = {u}.

Furthermore, if u € S, then S — {u} is an imedundant set of G. Therefore
IR(G+wv)—1=|8]-1<IR(GQ) <IR(G+uv)

and hence § — {u} isan [ R-setof G, W

[

Corollary 4.8 If G is I R*-edge-critical, then IR (G +wv) = IR (G) + 1 for each
uv € Kz,



Chapter 5
ER-Critical Graphs

If w is an upper parameter, then K,,, n > 2, is w-ER-critical and if 7 is a lower
parameter, then K, n > 1is w-ER-critical. For m € {y,4,I, IR} there do not
exist 7 -ER-crifical graphs. Also recall that a graph is m-ER~critical (= ~-ER-¢ritical,
respectively) if and only if each of its components is either 7-ER~critical or isomorphic

to K; (m~-ER-cntical or isomorphic to K3, respectively).

5.1 Upper domination parameter critical graphs:
edge removal
Let m be an upper parameter. In this sechon we present a class of non~-complete 7-ER-

critical graphs. We first find a useful characterisation of J-ER-cntical graphs.

Proposition 5.1  For any graph G with at least one edge,

(@) A{C — uv) < A(G) + 1 for all wv € Eg; |

®) B(G —uv) = 3(G) + 1 if and only if there exists a $-set T of G such that
w€ Tand ve PNg(u,T).

Proof. Let uv € Eg and consider a A-set 8 of G — uv. Since T = § — {v} is an
independent set of G,

LG —w)—1=1|5|-1<|T| <A(G).
Furthermore, if 7 (G — wv) — 1 = 3(G), then 7" 1s a A-set of & and since 5 18 inde-

pendent in G' — uz, v € PNg (u,T). This establishes (a) and necessity in (b). For
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sufficiency in (b), suppose 7" is a J-set of G such thatw € T and v € PN (u,T).

Since T'U {v} is an independent set of G — uv,
BG)+1=|T|+1<8(G—uw).
It follows from (a) that 4 (G ~ww)=3(G)+1. MW
Corollary 5.2 (3) G is B-ER-critical if and only if 3 (G —wv) = 8(G) + 1 for all
uv € Eg.

(b) Gis j-ER-critical if and only if for every uv € Eg, there exists a §-set T' of
G suchthat ue T and v € PNg (u.T).

Observe that it follows from Proposition 1,7 that if (7 is J-ER-critical and J = T,
then GG is [-ER-critical, and if G is I'-ER-critical and ' = IR, then G is TR-ER-
critical.

Proposition 5.3 Let G = C,{1,2,...,v),where 1 <1 < (n~2)/2 andlet n =
{r +1)m + q for some integer m andwhere 0 < q < r. Then G is 3-ER-critical if
andonlyif q=r.

Proof. Suppose g = r and consider any uv € F¢. Assume without loss of generality
thatu =r + land v € LN (u) = {1,2,...,r}. Let

Te={(r+1),2(r+1),...m(r+1)}.

Then T is a -set of G, and since n = (r + 1) +r, v € PN (u,T). It follows from
Corollary 5.2 that ¢ is J-ER-critical.

Conversely, suppose that (7 is J-ER-critical. Letuw =71 + 1 and v = 1. Then uv €
E¢. By Corollary 5.2 there exists a 8-set T of G such that u € T and v € PN (u,T).
Since v € PN (u,T), none of the vertices of -

INW={n-r+1,..,n~1n}
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are in I". Therefore, since T is an independent dominating set of &, m —r € T. It

follows that n —+ = (r + 1)mand hence g =r. W

In order to find a characterisation of T-ER-critical graphs, we need a definition and
a lemma.

Suppose uv € Es. Anirredundant set T of G is a uv-irredundant set if v € T or
veT,andifu € T, thenw € PN (u,T) and either

(1) u 1s an isolated vertex of T and PNg (t,T) € Ng [v]forallt € T — {u}, or

(ii) there exists an s € Ng [v] — T suchthat PNg (t,T) € Ngfv]forallt € T,

Lemma 5.4 (a)[f wv € B, and S is an frredundant set of G — uv but not of G,
then there exists a wv-irredundant set T of G with |T| = |S| — L. Furthermore, if S
dominates G — uv, then T dominates (5.

(b) If uv € Egand T isa vv-irredundant set of (3, then there exists an irredundant
set Sof G—uwvwith |S| =T\ + 1. If T dominates G, then S dominates G — uv.

Proof. (a) Clearly v € S or v € 5. Suppose first that {u,v} C 5. Thenuorvisa
singular isolated vertex of S in & — uv; assume without loss of generality that v is one.
LetT = 5~ {v}. ThenT is an irredundant set of G, u € T and v € PNg (u, T).
Furthermore, if © is also a singular isolated vertex of 5 in ¢ — uv, then u is an 1solated
vertex of T and PNg (t,T) &€ Nglv] forallt € T — {u}. If u is not one, then
PNg(t,T) € Ng[viforallt e T.

Suppose next that {u,v} £ S and assume without loss of generality that ¢ € S
and v € S. Then there exists an s € S — {u] such that PNg_,, (5,5) = {v}. Let
T = 8 ~ {s}. Then T is an irredundant set of G, u € T and v € PNg (u,T). Also,
s € Noju]—Tand PNg (t,T) & Ng ] forallt € T.

In both cases it is clear that {T'] = {S| — 1 and that T dominates (7 if 5 dominates
G — uv,
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Chapter 5 ER-Critical Graphs

(b) Assume without loss of generality that u € T'. Suppose first that « is an isolated
vertex of T"and PN (t,T) & Ng[v] forallt € T — {u}. Let S =T U {v}. Then
FPNg_uy (1,5) 5 0forallt € T—{u} and v and v are isolated vertices of S in G —uv.
Therefore S is irredundant in & — wwv. Clearly |S| = |T'| + 1 and S dominates G — uw
if 7" dominates G.

Suppose next that there exists an s € Ng [v] — T such that PNg (¢, 1) € Ng [v]
forallt € TandletS = T U {3} Then PNg_..(¢,S) # @foralt € T and
0 € PNg_y, (3, 5). Thisimplies that S isimredundantin G—uv. Clearly |S} = |T|+1.
If T dominates (7, then T dominates all veriices of G — uwv except v, and ¢ dominates

v; hence S dominates G — uv. N

Proposition 5.5 [et m € {T', IR} For any graph G with at least ane edge,
(@) 7(G—uv) £7(G)+1forall wve Eg.
(b) 7 (G — uv) = 7 (G) + L ifand only if there exists a w-set T of G suchthat T

is wu-irredundant.

Proof. Form = T, let uv € Eg and consider a I-set S of G — uv. Then Sisa
dominating set of G. If' 5 is an imedundant set of (7, it follows that S is 2 minimal
dominating set of ; hence I' (G — uv) = |5 < T'(G). Suppose now that S is not an
irredundant set of ;. By Lemma 5.4(a) there exists a dorﬁinaﬁng wv-iredundant set
T of G with |T| = |§| — 1. Therefore

FNG—w)—1=|8-1=T|<T(G).

Furthermore, if [' (G — wv) — 1 = I'(G), then T is a I'-set of G. This establishes
(a) and necessity in (b). For sufficiency in {b), suppose T is a uv-irredundani I'-set
of G. By Lemia 5.4(b) there exists an irredundant dominating set 5 of ( — uv with
1S] = [Tl + 1. Therefore

T(G)+1=T|+1=19] <TG —uv).
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It follows from (a) that ' (G — wv) =T (G) + 1.
Form = I R, letuv € Eg and consider an { K-set S of G —wuv. The rest of the proof
is stmilar to that for I'; the only difference is that S and T need not be dominating sets

of G — wv and G respeciively. W

Corollary 5.6 Let m € {[,{R}. Then

(a) G is m-ER-critical if and only if 7(G ~ wv) =7 (G) + 1 for all uwv € Eg,

(b) Gis w-ER-critical ifand only if for every uv € Eg, there exists a wv-irredundant
m-set of G.

With the aid of Corollaries 5.2 and 5.6 we are now able to determine which of the

graphs of Section 2.2 are w-ER-critical.

() G=Knnmn Withm > 2.

Consider any 7-set T of G. If T is independent, then all vertices of 7' are singular
1solated vertices. If T is not independent, then 7" has two vertices and both are annihi-
lated by their private neighbours. It follows from Corellaries 5.2 and 5.6 that G is not
7-ER-critical.

(i) G =K, x K, withn > m > 2.

There exists no J-set T of G with v; € T and vy, € PN (vy,T); hence G is not g-
ER-critical (by Corollary 5.2). For7 € {I', R}, consider any non-independent 7-set
Tof G. Forany v € T and v € PN (u,T), PN (u,T) C N [v]. (If T is dominating,
thizs is clear; if not, see Sy in Figure 2.2, p. 24.) Therefore G is not m-ER-critical (by
Corollary 5.6).

(i) G=K,x i, forn>m>2
If n = m = 2, then (7 is the m-ER-critical graph Ky U Ka. St‘ai.lrppose now that n > m

if m = 2. If T'is an independent 7-set of G, then all vertices of T" are singular isolated
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Chapter 5 ER-Crtical Graphs

vertices. If T’ is a non-independent m-set of GG, then m = 2, n = 4 and we may choose
T = {vyy, tag,vo3,v14 } (see Figure 2.3, p. 26), or m = n = 3 and we may assume
T = {11,v2,va3} or T = {vy,, s t12}. In all these cases, every external private
neighbour of any vertex in 7" annihilates some vertex of 7', It follows from Corollanies
5.2 and 5.6 that G is not m-ER-critical.

iv) G=0,(1,3,....2r — 1), where 1 < v < (n — 2) /2.

If nis odd and r = 1, then G is J-ER-critical by Proposition 5.3. Suppose that n is
odd and r > 1. Recall that the only 3-sets of G are the independent dominating sets
of G induced by the partition » = n of n. It is now eagy to check that, for any F-set T
of Gandu € T, u+1¢ PN (u,T). Hence (5 is not §-ER-~critical in this case. If nis
even, then the only (-sets of G are {2,4,6,....n} and {1,3.5,...,n — 1}. These sets

have only singular isolated vertices; hence in this case (7 is not 3-ER-critical either.

5.2 Lower domination parameter critical graphs:
edge removal

Graphs that are y-ER-critical and 7-ER-critical have been characterised by Walikar and
Acharya (25] and Ao [2] respectively.

Propasition 5.7 {2, 25] Let 7 € {v,i}. The graph G is w-ER-critical if and only if

& is a disjoint union of stars.

Proof. If G is a disjoint union of stars, then G is clearly m-ER-critical. Suppose G is
t-ER-critical and consider an i-set S of (Gand let uvv € Eg. Since S is independent in
(7, S 1s independent in G — w1, Therefore, if S dominates G — uv, then S is a maximal
independent set of G — uw; hence i (G ~ wv) < [S] = #(G). This contradicts the

criticality of . Therefore, for every vv € Eg, 5 does not dominate G — uw. It foilows
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Section 5.2 Lower domination parameter crtical graphs: edge removal

that (7 is a disjoint union of stars. The proof for 7 is the same except that we do not

require the set S to be independent. W

Clearly disjoint unions of stars are also ¢r-ER-crtical. The next proposition gives
necessary conditions for a conrected graph that is ¢r-ER-critical but not -y-ER-critical.
We will use the following notations in its proof: Suppose S is an iredundant set of the
graph GG. Let C, B and B denote the sets of vertices of Vi — S which are adjacent to

at least two vertices, exacily one vertex and no vertices of .5, i.e.

R == VGWNG[S}!
B = (LEJSPN(S}S))WS and
C = Ng(S)- B.

Foreach s € 5, let B (s) = PN¢ (3,5) — S, ie. B(s) in the set of external private

neighbours of s. Furthermore, let

Z = {z¢€ Sizisanisolated vertex of S},
X = {x € 5|zisannihilated by somer € R} and
Y = 5-(ZUX).

Let
X, = {zeX||B(@)|=1},
X = {zeX||B()>1},
Yi = {yeY|{B(y)l=1} and
Y, = {yeY||B{y) >1}.
Lastly, let
El = a:egf B(Cﬂ), E2m:‘rEUX B(l)‘
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Chapter 5 ER-Cntical Graphs

Fy = U B(y), F=U By,

yeYi yEYy

E = K UE, and

F o= UM
Propasition 5.8 Suppose G is a connected ir-ER-critical graph other than a star
Then every ir-set S of G has the following properties.

(a) Every r € Rannihilates exactly one vertex « (r) of Sand Ng (r) = B (a(r)).

(b) FEvery v € E, annihilates exactly one verfex o (v) of S and « (v) € Ya.

(€} If v and v are adjacent vertices of Vg — (SUR), then u € Eyand v €
Bla(u),or ve Eyand w€ B(a(v)).

(d) If v e Iy, then v annihilates no vertices of 5.

() Every vertex of C has exactly two neighbours and each neighbour is anniki-
lated by a vertex of RU F.

() (S} is a disjoint union of stars. Furthermore, if s € S has more than one
neighbour in S, then each of its neighbours is annihilated by a vertex of RU E. If s
has one neighbour in S, then s or its neighbour is anmihilated by a vertex of RU E.

(g) ¥ s € X,UYq,then s has only one neighbour in (S) .

Proof. Consider any ér-set Sof G. If uv € Eg and S is a maximal irredundant set of

G — uv, then ir (G — wv) < [§] = 4r (). This contradicts the criticality of G; hence
for every uv € Ep, S is not a maximal irredundant set of G — uv. (5.1}

Let uv € E¢ with {u,v} C Vg — S. Since PNg_ (8, 5) = PN (s,5) for all
s € 8, it follows from the irredundance of S in G that S i5 irredundantin G — uv. Note
that Vz_y, — No_wo [S] = Rand Ny, [B] © Ng [R]. By (5.1) and Proposition 1.4,
there exists w € Ny [K] such that w annihilates no vertices of 5 in G — uv.

Since S is a maxima! irredundant set of G, w annihilates some 5, € Sin G. It
follows that w = u and v € PNg (84,5), orw = vand u € PNg (8, 5) . In both

cases, s, is the only vertex of S annihilated by w in G. We have proved:
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Section 5.2 Lower domination parameter critical graphs: edge removal

Forevery uv € Eg with {u,v} C Ve — 5, u € Ng [H] and there exists
5y € 5 such thatv € PNg(s,,S) € Nglu) and s, is the only vertex
of 5 annihilated by u, or v € Ng [R] and there exists s, € S such that
u € PNg (8,,8) & Ng [v] and s, is the only vertex of S annihilated by ».

Letr € Rand v € Ng(r). Then rv € Ep with {r,v} € Vg — S. By (5.2), r
annihilates exactly one vertex o (r) of S and v € B({a/(r)). This is true for every
v € Ng(r). Therefore Ng (r) € B{a(r)) and hence Nz (r} = B (x(r)). This
completes the proof of (a). Note that (a) implies Ng [R] = RUE.

Letz € X; and v € B({z) Since PNg 4 (x,5) = B(z) — {v} # ¢ and
PNg_ oy (5,8) = PNg(s,8) # ¢forall s € S — {z}, 5 is an itredundant set of
G — zv. Note that

‘o—av — Ng-re [S] = RU{v} and RUFE C Ng. . [RU{v}|.

By (5.1), § is not maximal irredundant in G — xv. Therefore there exists a vertex
t € Ng_g |[RU {v}] such that v annihilates no vertices of S in G — zv, But since
S is maximal irredundant in G, every w € R U & annthilates some vertex of Sin G
and hence in G — 2v. Therefore u ¢ R U E and hence u € F. It follows from (5.2)
that v annihilates exactly one vertex « (v) of S and u £ B (« (v)). Since u dees not
annihilate @ (v), @ (v) € Y3. This completes the proof of (b). Furthermore, (5.2) and
(b) clearly imply (c). "

Lety € Yoandv € B(y). Since PNg_,. (v.5) = B(y) — {v} # ¢ and
PNg._ys(8,5) = PNg(s,5) # ¢ forall s € S~ {y}, S is an iredundant set of
G — yv. Note that

Va-ye — Ny [S] = RU {v} and, by (5.2), Ne—y [RU{v}] = RUE U {v}.

Since S is maximal irredundant in G, every vertex of I U £ annihilates some vertex
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of S in GG and hence in {7 —yu. Therefore, by (5.1), v annihifates no vertices of 5. This
completes the proof of (d).

Let c € (' and let v and v be distinct neighbours of ¢. By (5.2), {u,v} C S. Since
FPNg(9,8) C PNg_y. (38,8) for all s € S, it follows from the irredundance of S in
(s that 5 is irredundant in ¢ — ue. Note that

VG—UC - _l’\f'wa: [S] = R and i’\l?gmm [R] = R U E.

By (5.1), there exists w € RU F such that w annihilates no vertices of §'in G — ue. But
w annihilates the vertex o (w) of § in . Therefore v = a (w) and Ng (c) == {u,v}. A
similar argument with G —ve shows that © is also annihilated by some w» € RUE. This
completes the proof of (e).

By (c) and (e), if z € Z, then {N: [2]) is a component of . Therefore G is ei-
ther disconnected or a star  This contradicts our assumptions about & and therefore
% = (,1e. S has no isolated vertices. Let = and  be adjacent vertices of S. Since
PNg (5,5) € PNg_ys (5,8) for all s £ S, it follows from the irredundance of S in
 that S is irredundant in G — uv. Note that

Voou —~ Noow [S] =R and Ng_..|Rl = RUE.

By (5.1), there exists w € KU E such that «w annihilates no vertices of S'in G —uv. But
u; annihilates the vertex a (w) of S in . Therefore, either = is an endvertex of (S}
and u = a(w), or v is an endvertex of {S) and v = « (w) . This completes the proof
of (f).

Let s € X1 UY; and B (s) = {v}. If s has more than one neighbour in (S} , then
(S — {s})U{v} is a maximal irredundant set of G — sv, and therefore ir (G — sv) <
15| = ir (7) . This contradicts the criticality of &} hence s has only one neighbour in
{S) . This completes the proof of (g). W .
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'
G Sl r \, 32
Wl wz
O O
Ry R 2
Figure 5.1

With the aid of Proposition 5.8 we are now able to charactenise the connected 2-ir-

ER-critical graphs. Define the graph & as follows. The vertex-set of G has partition
'Er = R] URz UCu {31,32,15'1}'&32} )

where Ry, i, and C are non-empty, and sy, $y, w; and w- are all distinct. The edge-set
Eg of (G is defined as follows.

(1) Foreachc € C, {e51,c8} C Eg.
(1) ¥oreachi =1 2andeachr € &, rw; € Egs.
(i) {s18z, 53w, spwe} € Eg.

An example of  is illustrated in Figure 5.1. The class of all such graphs G will be
denoted by G. ‘
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Chapter 5 ER-Critical Graphs
Proposition 5.9 G is 2-ir-ER-critical if and only if G € G.

Proof. Suppose G is a connected 2-ir-ER-critical graph and let S = {sy, 3,} be an
ir-set of G. By Proposition 5.8 (), s15: € Eg and R # @. Let Ry and R, be the
sets of vertices in A that annihilate s, and s, respectively and assume without joss of
generality that R, # 0, i.e. s; € X. We prove that 5; € X;. Suppose to the contrary
that s, € X, and let w € B (s;). By Proposition 5.8 (b), u annihilates s, = o {u) €
Y,. This is true for every u € B (s1); therefore v € B (s2) annihilates s;. But this
contradicts Proposition 5.8 (d); hence 5, € X. Let B (s;) = {un }.

If R, = {, then {w, 31} is an independent dominating ¢r-set of G. This contradicts
Proposition 5.8 (f) and thus R, # @. With a proof similar to that in the case of s; we
now have that s, € X, Let B (s;) = {ws}.

If C = @, then {w;,w;} is an independent dominating ir-set of 7; again a contra-
diction of Proposition 5.8 (f). Therefore C' # @. Note that YV, ¥, X; and E; are ail
empty sets and that By = {wy,un }.

It is now clear that the vertex-set of &G corresponds to the description of the graphs
in the class G above. That all the edges of & are given by (i), (ii) and (u1) feilows from
Proposition 5.8 {e), (a) and (c). Therefore G € G.

Conversely, itis not difficult to check that G € G hastr {G) = 2and ir (G — wv) =
3foreachur e E;. R

3.3 Graphs that are ir—- or : " -ER-critical

Recall that 7~ -ER-critical graphs can only existif 7 € {ir,7}. In this section we ex-
hibit three classes of i~ -ER-~critical graphs, Whether there exist ir~-ER-critical graphs
remains an open problem.

Qbserve that if a graph G is ¢~ -ER-critical, then it follows from Proposition 1.8(¢)
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that v {G) < i (G).

Lemma 5.10 Suppose v{(G) < 1 () and, for any uv € E¢, G has a ~-set S such

that v and v are the only non-isolated vertices of 5. Then G is i"-ER-crifical.
Proof. Since 5 is an independent dominating set of G — uw,
i{G—u) < |Sl=9(G) <i(G). A
We begin by considering complete multipartite graphs.

Proposition 5.11 [f m = 2and n; > 3for 1 < i< m, then Kyyny. no i5 17 -ER-

critical.

Proof. This follows directly from Proposition 2.5 and Lemma 5.9. H
We now tum 1o the complement of the cartesian product of two graphs.
Proposition 512 If m,n 2> 4, then Kp, X K, is _z’*-Echriricaf.

Proof. Let G = K,, ¥ K, withn > m > 4, By Theorem 2.7, i (G) =m > 3 =
v(@). Consider any uv € Eg. Since G is edge-transitive, assume without loss of
generality that ¢ = vyy and » == vy, The set {v11, 119, veg} (see Figure 2.3, p. 26) is
a-y-set of G with u and v the only non-isolated vertices. It follows from Lemma 5.10
that (7 is ¢ -ER-critical. W

Finally, we show that some circulants are ¢~ -ER-critical.

Proposition 5.13 et G = Co{(1,3,...,2r — 1), where 1 < 7 < (n—1)/2 and
letn=2r+1)m+qfor 0 < q<2r Ifqgisoddand ¢ > 3 — 2r, then G is

i~ -FR-critical.
Proof. By Theorems 2.9 and 2,10,

V(@) =m+1<m+r+(g-1)/2=i(C).
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Chapter 5 ER-Critical Graphs

Let S be a ~v-set of G induced by the partition
n=2r+)(m-1)4+(2r+1+4q)

of n. Each term (2r + 1) contributes one isolated vertex to S and the term (2r + 1+ ¢)
contribuies two adjacent vertices to S. Lemma 5.10 and the edge-transitivity of G now
complete the proof. B
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Chapter 6
Conclusion

We conclude this thesis with a short list of open problems.

1, Are there ir-critical graphs which are not ~-critical, or ~-critical graphs which are
not ir-critical?

2. Are there ir-edge-critical graphs which are not y-edge-critical, or v-edge-critical
graphs which are not ir-edge-critical?

3. K x K, with m,n > b are the only known 'Y -critical graphs and also the only
known TI't-edge-critical graphs. Are these the only I't-critical or ['t-edge-critical
graphs? (This wouid be very surprising.) Do these two types of criticality coincide?

Do they imply vertex-transitivity? (This also seems unlikely.)

4. Are there I Rt-edge-critical or ir~-ER-critical graphs?
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isolated vertex of a set, 3

isomorphic graphs, 2

left neighbourhood, 27

lower domination parameters, 6
lower independence number, 3
lower irredundance number, 4

maximum degree, 1
minimum degree, 1

neighbour, 1
external private, 4



private, 4
neighbourheod, 1

closed, 1

private, 3
neighbourhoed of a set

closed, 3

open, 3
neighbourhood, left, 27
neighbourhood, right, 27

one-to-one perfect matching, 44
open neighbourhood, 1
open neighbourhood of a set, 3

private neighbour, 4
exiernal, 4

private neighbourhood, 3

product of graphs, 20

r-regular graph, 1

redundant vertex, 4
right neighbourhood, 27

singular isolated vertex, 39
star, 19
subgraph, 2
induced by a set of vertices, 2

union of graphs, 2

universal vertex, 1

upper domination number, 3
upper domination parameters, 6
uv-irredundant set, 69

vertex, 1
irredundant, 4
isolated, 1, 3

. redundant, 4
universal, 1

vertex-transitive, 3



