
 

 
 
 
 
 
 

AN APPROACH TO FAILITATING THE TRAINING OF MOBILE 
AGENT PROGRAMMERS AND ENCOURAGING THE 

PROGRESSION TO AN AGENT-ORIENTED PARADIGM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M. A. SCHOEMAN 



 

AN APPROACH TO FAILITATING THE TRAINING OF MOBILE AGENT PROGRAMMERS 
AND ENCOURAGING THE PROGRESSION TO AN AGENT-ORIENTED PARADIGM 

 
 
 

by 
 
 
 

MARTHA ANNA SCHOEMAN 
 
 
 

submitted in part fulfillment of the requirements 
for the degree of 

 
 
 

MASTER OF SCIENCE 
 
 
 

in the subject 
 
 
 

COMPUTER SCIENCE 
 
 
 

at the 
 
 
 

UNIVERSITY OF SOUTH AFRICA 
 
 
 

SUPERVISOR: PROF E CLOETE 
 
 

JOINT SUPERVISOR: PROF L M VENTER 
 
 
 

DESEMBER 2005 



 

ABSTRACT 
 

Mobile agents hold significant benefits for the rapid expansion of Internet applications and current 

trends in computing.  Despite continued interest, the promised deployment has not taken place, 

indicating a need for a programming model to introduce novice mobile agent programmers to this 

environment/paradigm.  Accordingly the research question asked was, “Since novice mobile agent 

programmers1 require a paradigm shift to construct successful systems, how can they be equipped to 

grasp the contextual issues and gain the necessary skills within reasonable time limits?” 

 

To answer the question, a complete reference providing contextual information and knowledge of 

mobile agent system development was compiled.  Simultaneously novices are introduced to agent 

orientation.  A generic mobile agent system architectural model, incorporating guidelines for 

programming mobile agents, further provides a framework that can be used to design a mobile agent 

system.  These two structures are presented in a knowledge base that serves as a referencing tool to 

unlock concepts and knowledge units to novices while developing mobile agent systems. 

 

Key terms: Mobile agents; Mobile agent systems; Agent orientation; Software architectural model, 

Knowledge base, Novice programmers 

 

                                                 
1Novices include mature, beginner and intermediate programmers who have no experience of mobile 

agent programming. 



 

ACKNOWLEDGEMENTS 
 

Him who is able to do so much more than we can ever ask for, or even think of 

 

Johan, Chris, Jan-Hendrik and Berto for love, support and sharing our holidays at Kleinbrak with my 

studies 

 

Lucas and Elsabé for guidance and encouragement 

 

My family, friends and colleagues for prayers and support 



 

TABLE OF CONTENTS 
 

1 PROPOSAL 1 

1.1 Introduction............................................................................................................................... 1 

1.2 Research problem...................................................................................................................... 4 

1.3 Proposed solution...................................................................................................................... 5 

1.4 Strategies for finding solutions ................................................................................................. 6 

1.5 Research design......................................................................................................................... 6 

1.6 Relevance and significance....................................................................................................... 6 

1.7 Context of research ................................................................................................................... 8 

1.8 Scope of the study ..................................................................................................................... 8 

1.9 Synopsis .................................................................................................................................... 9 

2 MOBILE AGENTS: BACKGROUND FOR RESEARCH AND 

PROGRAMMING 10 

2.1 Introduction............................................................................................................................. 10 

2.2 What is a mobile agent? .......................................................................................................... 10 

2.2.1 What is an agent? ............................................................................................................ 10 

2.2.2 Defining a mobile agent.................................................................................................. 12 

2.2.3 Background ..................................................................................................................... 13 

2.2.3.1 A brief history ............................................................................................................. 13 

2.2.3.2 Communities currently working in mobile agents...................................................... 16 

2.2.3.3 Views of mobile agents............................................................................................... 17 

2.2.4 Mobile agent life cycle.................................................................................................... 19 

2.2.5 Salient characteristics of a mobile agent......................................................................... 21 

2.2.6 Circumstances suited to mobile agent applications ........................................................ 24 

2.2.6.1 Advantages offered by mobile agents......................................................................... 24 

2.2.6.2 Disadvantages of using mobile agents ........................................................................ 25 

2.2.6.3 When to use a mobile agent ........................................................................................ 26 

2.3 The mobile agent execution environment............................................................................... 26 

2.3.1 Terminology.................................................................................................................... 26 

2.3.2 The mobile agent system................................................................................................. 27 

2.3.3 Features exhibited by mobile agent systems................................................................... 28 



 

2.3.3.1 Agent mobility ............................................................................................................ 28 

2.3.3.2 Naming services.......................................................................................................... 29 

2.3.3.3 Communication........................................................................................................... 29 

2.3.3.4 Access to local resources ............................................................................................ 29 

2.3.3.5 Fault-tolerance/Persistence ......................................................................................... 29 

2.3.3.6 Interoperability............................................................................................................ 29 

2.3.3.7 Agent management and control .................................................................................. 29 

2.3.3.8 Security ....................................................................................................................... 30 

2.3.4 Mobile agent standards ................................................................................................... 30 

2.3.4.1 The FIPA standard ...................................................................................................... 30 

2.3.4.2 The MASIF standard................................................................................................... 31 

2.4 Summary ................................................................................................................................. 33 

3 MOBILE AGENT DEVELOPMENT CONTEXT 34 

3.1 Introduction............................................................................................................................. 34 

3.2 The agent orientation paradigm .............................................................................................. 35 

3.2.1 Agent orientation: terminology....................................................................................... 36 

3.2.2 Agent orientation as a paradigm ..................................................................................... 38 

3.2.3 Implementing the agent paradigm................................................................................... 42 

3.2.3.1 Requirements Analysis Phase ..................................................................................... 42 

3.2.3.2 Design phase ............................................................................................................... 44 

3.2.3.3 Design approaches ...................................................................................................... 45 

3.2.4 The agent-oriented programming landscape................................................................... 49 

3.2.4.1 Agent Theory .............................................................................................................. 49 

3.2.4.2 Agent Architectures .................................................................................................... 49 

3.2.4.3 Development Tools ..................................................................................................... 50 

3.2.4.4 Implementing Agent Systems ..................................................................................... 51 

3.3 The OO paradigm.................................................................................................................... 53 

3.4 Agent orientation as an extension of OO................................................................................ 55 

3.4.1 Historic development ...................................................................................................... 56 

3.4.2 Agents and objects .......................................................................................................... 57 

3.4.2.1 Comparing OO and agent-oriented analysis and design............................................. 57 

3.4.2.2 Comparing agents and objects at implementation level.............................................. 58 



 

3.5 When to use agent orientation................................................................................................. 65 

3.6 Conclusion .............................................................................................................................. 69 

4 A FRAMEWORK FOR CONSTRUCTING A MOBILE AGENT SYSTEM . 71 

4.1 Introduction............................................................................................................................. 71 

4.2 Mobile agent implementations................................................................................................ 72 

4.2.1 SMART........................................................................................................................... 73 

4.2.2 D’Agents ......................................................................................................................... 74 

4.2.3 Grasshopper .................................................................................................................... 75 

4.2.4 Aglets .............................................................................................................................. 76 

4.2.5 Essential features in mobile agent systems ..................................................................... 77 

4.3 Proposed architectural model.................................................................................................. 81 

4.3.1 Mobile agent life cycle.................................................................................................... 81 

4.3.2 Model layers.................................................................................................................... 84 

4.3.2.1 Authority API layer..................................................................................................... 84 

4.3.2.2 Agency layer ............................................................................................................... 84 

4.3.2.3 Execution layer ........................................................................................................... 85 

4.3.2.4 Social layer.................................................................................................................. 86 

4.3.2.5 Mobility aspect in the social layer .............................................................................. 88 

4.3.2.6 Communication aspect in the social layer................................................................... 89 

4.3.2.7 Persistence aspect in the social layer .......................................................................... 92 

4.3.2.8 Mobile agent management services layer ................................................................... 93 

4.3.2.9 Agent security ............................................................................................................. 94 

4.3.2.10 Naming server layer ................................................................................................ 94 

4.3.2.11 Host security ........................................................................................................... 95 

4.3.2.12 Network layer.......................................................................................................... 96 

4.4 Significance of the proposed model........................................................................................ 99 

4.5 Proposed model application and comparison........................................................................ 100 

4.6 Conclusion ............................................................................................................................ 103 

5 KNOWLEDGE BASE FOR NOVICE MOBILE AGENT PROGRAMMERS

 104 

5.1 Introduction........................................................................................................................... 104 

5.2 Importance of the knowledge base for the novice mobile agent programmer...................... 105 



 

5.3 Design and development of the proposed knowledge base environment ............................. 106 

5.4 Implementation of the knowledge base environment ........................................................... 110 

5.4.1 Functioning ................................................................................................................... 110 

5.5 Examples of knowledge base communication with programmers........................................ 115 

5.5.1 Example 1: Searching for information on Aglets ......................................................... 115 

5.5.2 Example 2: Searching for information on BDI agents.................................................. 119 

5.6 Testing the Knowledge Base................................................................................................. 121 

5.7 Conclusion ............................................................................................................................ 123 

6 CONCLUSION 124 

6.1 Introduction........................................................................................................................... 124 

6.2 Summary of objectives and realization thereof..................................................................... 124 

6.3 Discussion of research results ............................................................................................... 126 

6.4 Comparison with other similar research ............................................................................... 127 

6.5 Significance........................................................................................................................... 128 

6.6 Limitations ............................................................................................................................ 129 

6.7 Future research...................................................................................................................... 129 

6.8 Conclusion ............................................................................................................................ 130 

Bibliography 131 



 

 

LIST OF FIGURES 
 

Figure 2.1 The Perceive-Reason-Act cycle illustrated............................................................................ 11 

Figure 2.2 Dimensions used to classify software agents according to Gilbert et al. (1995)................... 18 

Figure 2.3 The life cycle of a mobile agent ............................................................................................ 20 

Figure 3.1 Agent Orientation .................................................................................................................. 37 

Figure 3.2  The examination situation in a school represented by a society of agents ........................... 41 

Figure 3.3 Roots for the development of agent-oriented methodologies................................................ 47 

Figure 3.4 The agent programming landscape........................................................................................ 51 

Figure 3.5 Lind's three-step characterization (Lind, 2001)..................................................................... 56 

Figure 4.1 SMART architecture.............................................................................................................. 73 

Figure 4.2 D'Agents architecture ............................................................................................................ 74 

Figure 4.3 Grasshopper architecture ....................................................................................................... 75 

Figure 4.4 Aglets architecture................................................................................................................. 76 

Figure 4.5 Proposed architectural model for mobile agent development ............................................... 82 

Figure 4.6 Project TUTA architecture .................................................................................................. 102 

Figure 5.1 The essential interactivity between the gathered data and information to create explicit and 

tacit knowledge on the part of the novice mobile agent ............................................................... 107 

Figure 5.2 Tables used in relational database used to implement knowledge base .............................. 108 

Figure 5.3 Software design of knowledge base .................................................................................... 110 

Figure 5.4 Entry to the knowledge base................................................................................................ 111 

Figure 5.5 Entry to the knowledge base................................................................................................ 111 

Figure 5.6 Information relevant to the topic Mobile agent life cycle is displayed................................ 113 

Figure 5.7 Extract from the list of available keywords......................................................................... 113 

Figure 5.8 List of topics linked to keyword Agent................................................................................ 114 

Figure 5.9 Information relevant to the topic Agent architecture displayed .......................................... 115 

Figure 5.10 Select the Keyword button................................................................................................. 116 

Figure 5.11 Select Aglets from the list of keywords ............................................................................. 116 

Figure 5.12 List of topics with Aglet as a keyword .............................................................................. 117 

Figure 5.13 Information about the dispatch method for Aglets is displayed under the topic Aglet 

dispatching .................................................................................................................................... 118 

Figure 5.14 Initial user interface ........................................................................................................... 119 



 

 

Figure 5.15 Choose the Topic button to activate the display of a list of available topics..................... 120 

Figure 5.16 Pick BDI agent from the list of available topics................................................................ 120 

Figure 5.17 Display of information on topic BDI agent ....................................................................... 121 

 



 

 

LIST OF TABLES 
 

Table 3.1 Comparison between objects and agents ................................................................................ 64 

Table 4.1 Features required by mobile agent systems ............................................................................ 80 

Table 4.2 FIPA mobile agent life cycle execution states in the generic mobile agent system 

architectural model.......................................................................................................................... 83 

Table 4.3 A summary of the different layers in the proposed architectural model................................. 99 

Table 5.1 Questions used to explain usability concepts........................................................................ 122 

 



 

 

Acronyms used in this dissertation 

 

Acronym Definition Page number where first 
used 

ACL Agent communication 
language 

2 

ADK Agent Development Kit 15 
AI Artificial Intelligence 6 
AML Agent Modelling Language 68 
AOSE Agent-oriented software 

engineering 
38 

API Application Programming 
Interface 

28 

AUML Agent UML 46 
BDI Belief-Desire-Intention 13 
CLAIM Computational Language 

for Autonomous, Intelligent 
and Mobile Agents 

13 

DAI Distributed Artificial 
Intelligence 

13 

FIPA Foundation for Intelligent 
Agents 

15 

HCI Human Computer 
Interaction 

8 

MASIF Mobile Agent System 
Interoperability Facility 

15 

OMG Object Management Group 6 
OO Object-oriented/ 

Object orientation 
4 

RPC Remote procedure call 24 
SODA Societies in open and 

distributed spaces 
47 

TCP/IP Transmission Control 
Protocol/Internet Protocol 

75 

TUTA Tshwane University of 
Technology Agents 

101 
 

UML Unified Modeling Language 43 
WWW World Wide Web 35 
 



 

1 

CHAPTER 1 

1 PROPOSAL 

1.1 Introduction 

The usefulness and viability of mobile agents have been debated since the mid-nineties, and the debate 

continues (Gray, 2004; Harrison, Chess & Kershenbaum, 1995; Johansen, 2004; Kotz, Gray & Rus, 

2002; Kotz & Gray, 1999; Lange & Oshima, 1999; Milojicic, 1999; Roth, 2004; Roth, Braun & 

Rossak, 2002; Samaras, 2004; Satoh, 2005; Vigna, 2004; Zaslavsky, 2004).  Despite the continued 

interest demonstrated, the promised deployment has not taken place.  The number of publications on 

mobile agents from 1996 to 1999 and the noticeable decline therein from 1999 to 2001 seem to confirm 

this.  Nevertheless, several researchers have noticed that a steady trickle of articles, workshops and 

panel discussions related to mobile agent research continues (Roth, 2004; Zaslavsky, 2004).  Since the 

end of 2001 the number of publications has increased again.  This is mainly due to the recent interest in 

the semantic web and the ubiquitous growth of Internet applications.  The renewed interest is fuelled by 

mobile agents’ potential to offer a convenient structuring technique in distributed and Internet 

applications owing to their flexibility, adaptability and capability of migration (Hayes-Roth & Amor, 

2003; Johansen, Lauvset & Marzullo, 2002).  This is substantiated by the inclusion of mobile agents as 

one of the topics covered by the recently launched Journal of Mobile Information Systems (Taniar, 

2005). 

 

However, many of the problems preventing the widespread adoption of mobile agent technology have 

not yet been resolved.  There are few commercial mobile agent systems able to meet the needs of large 

complex systems, and even fewer standards2 (Gray, 2004; Kotz et al., 2002).  Researchers agree that 

the mobile agent model is not generally applied, but they also maintain that it has overcome the first 

acceptance phases and has been widely accepted as a break-through in obtaining results in some 

application areas such as systems and network management fields, and the search and filtering of 

globally available information (Corradi, 2001; Gray, 2004; Johansen, 2004; Zaslavsky, 2004).  Some 

industries, notably the telecommunications and mobile computing industries, are currently actively 

exploring mobile agents for a range of applications (2004 IEEE International Conference on Mobile 

                                                 
2Mobile agent standards are addressed in chapter 2. 



 

2 

Data Management (MDM'04), ; Gray, 2004; Manvi & Venkataram, 2004; Satoh, 2004; 2005).  Other 

researchers maintain that agents represent the most important new paradigm for software development 

since object-orientation (Luck, McBurney & Preis, 2004b; Luck, McBurney, Shehory, Willmott & 

Community, 2005).  They foresee that systems will develop from the current closed multi-agent 

systems3, into integrated systems across corporate boundaries that share standard agent communication 

languages (ACLs), despite interaction protocols still being non-standard.  In the medium term much 

larger systems with large numbers of agents will be developed in which heterogeneous agents, 

designed by different teams, will be able to participate in multi-agent systems provided their behaviour 

conforms to a defined set of standards.  In the long term (2009 onwards) multi-agent systems are 

expected to be fully scalable, without arbitrary limits, such as restrictions on agents, users and 

complexity. 

 

The broad problems in the field, due to independent agent development, are pointed out by Kendall et 

al. (2000): 

• lack of an agreed definition - agents developed by different teams differ in capabilities; 

• duplication of effort - little or no reuse of agent architectures, designs or components takes 

place; 

• inability to satisfy industrial strength requirements - agents have to integrate with existing 

software and computer infrastructure while addressing scaling and security concerns; 

• incompatibility - if development efforts are not coordinated, agents cannot interact and 

cooperate with each other in a standardized manner. 

These problems are mainly due to lack of a programming model for agent-based applications 

(Milojicic, 1999).  Furthermore, there seems to be general consensus that mobile agents are difficult to 

design and implement, especially for novices, because of the infrastructure they require and the 

environment in which they operate (Hayes-Roth & Amor, 2003; Johansen et al., 2002; Luck, Ashri & 

d'Inverno, 2004a; Vigna, 2004).  Therefore it seems as if a model indicating the key features that make 

mobile agents successful would encourage wider mobile agent deployment (Gray, 2004; Johansen, 

2004; Kotz et al., 2002; Kotz & Gray, 1999). 

 

                                                 
3Closed systems are defined as systems designed by one design team for one corporate environment 
where agents share common goals in a single domain. 



 

3 

Despite the problems pointed out above, a preliminary literature survey done in 2002 and work being 

done by a number of organizations involved in AgentLink III4 (AgentLink III), appear to confirm the 

time schedule proposed by Luck et al. (2004b; 2005).  Current trends in computing, such as 

pervasiveness, distributed systems interconnected via networks, ambient intelligence and Web Services 

(Hayes-Roth & Amor, 2003; Luck et al., 2004a; 2005; Wooldridge, 2002), also emphasize the 

relevance and applicability of mobile agents due to their ability to carry their code with them.  Luck et 

al.’s (Luck et al., 2004b; 2005) proposed time schedule, the rapid expansion of Internet applications 

and wireless computing, as well as the benefits mobile agents hold for mobile platforms (Roth et al., 

2002), distributed and Internet applications (Hayes-Roth & Amor, 2003; Johansen et al., 2002), seem 

to indicate that introducing novice users to mobile agent programming will become a common task in 

the future.  

 

The high levels of interest in mobile agents, followed by a relatively sharp decline as indicated by the 

decrease in publications, and the renewed growth in interest mentioned earlier, correspond to the Hype 

cycle (Gartner's Hype cycle).  The Hype cycle (Gartner's Hype cycle) is used to indicate the maturity 

of a technology, from initial excitement to disillusionment and eventually, for some, market 

acceptance.  The Hype cycle (Gartner's Hype cycle) consists of the following five stages: technology 

trigger, peak of inflated expectations, trough of disillusionment, slope of enlightenment and plateau of 

productivity.  The sharp decline in interest in mobile agents corresponds to the trough of 

disillusionment.  The renewed interest corresponds to the slope of enlightenment, when more is learnt 

about the technology, and, as many problems from the trough of disillusionment are solved, 

standardization takes place.  During this period the technology is adopted mainly in the areas that 

perceive the greatest benefit.  During the last stage, the plateau of productivity, the new technology 

becomes mainstream since benefits and drawbacks are generally recognized.  The fact that the 

telecommunications and mobile computing communities are at present implementing mobile agents, 

seems to indicate that mobile agent technology is probably currently at the slope of enlightenment.  

Therefore, a programming model to provide a set of guidelines to build efficient mobile agents will 

assist mobile agent technology in reaching the plateau of productivity. 

                                                 
4 AgentLink III represents the European Coordination Action for Agent Based Computing. 



 

4 

1.2 Research problem 

The problems described in the previous section, as well as the point on the Hype cycle where mobile 

agent technology probably resides, point to the need for a programming model to provide a set of 

guidelines to build efficient mobile agents.  The subsequent and recent confirmation that the 

development of mobile agents is still deemed to be a difficult task (Hayes-Roth & Amor, 2003; 

Johansen et al., 2002; Luck et al., 2004a; Vigna, 2004) indicates that the problem has not been 

addressed satisfactorily.  Combined with the expected promise mobile agents hold for mobile platforms 

and Internet computing, this points to the fact that the use of mobile agents will be much more 

successful if key characteristics can be extracted into a clear, adaptable set of composable software 

tools with a standard interface, as suggested by various researchers (Gray, 2004; Johansen, 2004; Kotz 

et al., 2002; Kotz & Gray, 1999).   

 

A long time span (1999 – 2005) has elapsed with little visible progress in published generic mobile 

agent deployment models, despite the existence of different groups that each understand a conceptual 

aspect or a group of aspects about mobile agents very well.  The possible incompatibility between the 

general view of a mobile agent and the diverse definitions of agents (Lind, 2001; Luck et al., 2004a) 

has been raised as one of the potential reasons why industry has not yet adopted agent and mobile 

technology as widely as could be expected (Samaras, 2004).  This seems to indicate that mobile agent 

implementers need to make a paradigm shift before deployment can be done successfully.  

Furthermore, both practical experience and the literature (Rothermel & Schwehm, 1998) show that 

intense theoretical study and practical experience are required for efficient mobile agent programming.  

Hence, the research question dealt with in this dissertation is: “Since novice mobile agent 

programmers5 require a paradigm shift to construct successful systems, how can they be equipped to 

grasp the contextual issues and gain the necessary skills within reasonable time limits?”  

Approximately six months of part-time study or one to three months of fulltime study would be deemed 

a reasonable time limit for such an endeavour.  The actual time required would clearly depend on the 

proficiency of the novice.  

 

                                                 
5Novices include mature, beginner and intermediate programmers who have no experience of mobile 

agent programming. 



 

5 

This dissertation aims to answer the question by providing the conceptual background novice mobile 

agent programmers require and by describing a framework for the construction of mobile agent 

systems.  These two aspects are then combined in a knowledge base that provides a set of guidelines 

that can be used by novice users, other researchers and practitioners to construct efficient mobile agent 

systems.  A knowledge base is defined as 

 

‘a special kind of database for knowledge management.  It is the base for the collection of knowledge.  

Normally, the knowledge base consists of explicit knowledge of an organization, including 

troubleshooting, articles, white papers, user manuals and others.  A knowledge base should have a 

carefully designed classification structure, content format and search engine.’ (Knowledge Base, 

2005).  

 

A knowledge base has been chosen to present the conceptual background and construction framework 

in order to limit the amount of time spent on becoming au fait with the field of mobile agents.  This 

decision is based on the ability of a knowledge base to provide quick and easy access to references and 

information.   

1.3 Proposed solution 

The research question will be answered by compiling a knowledge base that can be used to introduce 

novice users to programming mobile agents, as well as to the milieu in which this is done.  This 

knowledge base will provide this by combining the conceptual background and the framework for the 

construction of mobile agents.  The knowledge base will thus 

• explain what mobile agents are;  

• elaborate on their characteristics and the environment in which they operate;  

• indicate the circumstances under which using mobile agents will be appropriate;  

• describe the context for programming mobile agents; 

• recommend a framework for constructing a mobile agent system; and  

• supply a set of guidelines for programming mobile agents with the focus on programming 

concepts. 

 

The first four points provide the conceptual background to support the paradigm shift, while the last 

two points explain how to implement it.  The knowledge base aids in accessing this knowledge. 



 

6 

1.4 Strategies for finding solutions 

A combination of research techniques is used in this enterprise, namely literature survey, modelling and 

constructing arguments: 

• Literature survey: For the purpose of this study, a technical survey will be conducted of the 

mobile agent technology.  

• Modelling: A model presenting a generic mobile agent system architecture will be constructed. 

• Constructing arguments: Arguments regarding the paradigm shift required, the value of both the 

generic mobile agent system architecture and that of the knowledge base will be constructed. 

1.5 Research design 

A number of researchers claim that agent orientation is an extension of OO (Lind, 2001; Luck et al., 

2004a; Odell, 2002; Parunak, 2000; Travers, 1996; Wooldridge, 2002; Zambonelli & Omicini, 2004).  

Therefore, the literature review includes inter alia identifying the differences between programming 

agents and mobile agents and OO programming in order to introduce the required paradigm shift.  In 

this regard the literature study will also serve to identify essential requirements for implementing a 

mobile agent system in the agent orientation paradigm.  This is used to model a generic mobile agent 

system architecture.   

 

Based on the literature review and on the essential elements identified and used to construct the generic 

mobile agent system architecture, a knowledge base is developed.  The essential concepts novice 

mobile agent programmers need to know to enable them to build commercially viable systems will be 

extracted from the literature survey and the generic mobile agent system architecture in order to 

populate the knowledge base.  A small number of test subjects will be engaged to determine the 

suitability of the knowledge base as a tool to assist novice mobile agent programmers.  

 

Arguments will be constructed to contend that the paradigm shift, the generic mobile agent system 

architecture and the knowledge base will certainly aid novice users in building mobile agents. 

1.6 Relevance and significance 

The relevance of this research has already become apparent in the previous discussions regarding 

current trends (Hayes-Roth & Amor, 2003; Luck et al., 2004a; 2005; Wooldridge, 2002), mobile 

agents’ potential for both mobile platforms (Roth et al., 2002) and distributed and Internet applications 



 

7 

(Johansen et al., 2002), and the importance of agents as a relatively new programming paradigm (Luck, 

McBurney & Preist, 2003; Luck et al., 2005).   

 

Developing agent systems requires specialized skills and knowledge in various areas (AgentBuilder, 

2004; Badjonski, Ivanovic & Budimac, 2005; Dastani & Gomez-Sanz, 2005).  Accordingly, no matter 

what computing background the novice may have, he or she usually has to assimilate new knowledge 

in order to implement mobile agents.  This is part of the required paradigm shift.  Novices with a 

distributed systems background, for example, typically lack the artificial intelligence (AI) training to 

incorporate intelligence in their agents, while novices from an AI background, on the other hand, lack 

the distributed systems experience.  Therefore several researchers indicate that agent construction 

toolkits should be used to build agent systems (Dastani & Gomez-Sanz, 2005; Hayes-Roth & Amor, 

2003; Luck et al., 2004b; 2005).  However, even when using agent construction toolkits to implement 

agent systems, mobile agent programmers need to be aware of a substantial number of concepts at 

various levels, such as at the level of individual agents and the agent system level.  Accessible articles 

and toolkits often focus on a specialization area linked to a specific domain, which may not include all 

the required concepts when it is used as a starting point and applied to a different area.  Novices also 

frequently have difficulty distinguishing between concepts on the different levels and in different 

contexts, since there is some overlap, as well as in achieving a broad overview of the field.  

Furthermore, to program agents requires adapting to a different mindset or paradigm shift, namely 

agent orientation.  This research is therefore both necessary and relevant in order to promote the mobile 

agent paradigm and agent orientation. 

 

The generic mobile agent system architecture presents a model that makes it possible to include 

different mobile agent characteristics with maximum reuse of available technologies and architectures.  

Benefits of this model are that it provides a clear understanding of the architectural issues in mobile 

agent computing, giving novice researchers and practitioners who enter the field for the first time a 

foundation for making sensible decisions when researching, designing and developing mobile agents.  

These benefits apply to researchers and practitioners from all communities involved in researching and 

programming mobile agents.  The model is also significant in that it provides a benchmark for 

researchers and developers to measure the capabilities of mobile agent systems created by 

commercially available toolkits. 

 



 

8 

The research is significant to both industry and academia, as it will facilitate the transfer of agent 

technology and skills by providing a substantial part of the material needed for an introductory course 

in programming mobile agents.  Such a course directly benefits lecturers who are experienced 

programmers, but not mobile agent programmers, and who have to take part in supervising mobile 

agent projects, for example at fourth year level.  It is also advantageous to novice mobile agent 

programmers by providing both a broad overview and a reference tool to refresh concepts quickly 

while exploring the literature and implementing mobile agent systems.  Finally, mature programmers 

embarking on programming mobile agents for the first time may also benefit significantly from an 

introductory course in programming mobile agents.  Mature programmers can generally not afford to 

spend a substantial amount of time (in terms of calendar weeks) to acquaint themselves with any new 

field before being productive. 

1.7 Context of research 

A number of disciplines, such as programming, teaching programming, software engineering and 

distributed computing, as well as the various application areas for mobile agents, for example mobility 

in distributed applications and e-commerce, relate to this research. 

 

The context necessitates an investigation into the difference between programming mobile agents and 

OO programming as well as recommending a framework that incorporates guidelines to be used for 

constructing mobile agents.  Such an investigation relates to programming and teaching programming.  

The design and development guidelines incorporated in the generic mobile agent system architecture 

relate to software engineering, though the focus of the research is not on architectural design.  The 

applicability of mobile agents touches on both distributed computing and the various application areas 

for mobile agents, such as distributed information retrieval, e-commerce and network management. 

1.8 Scope of the study 

In the previous section on the context of the research, it is shown that this particular research effort 

relates to many fields.  It would therefore be very easy to be distracted into issues concerning related 

fields.  Educationists, for example, will be very interested in the efficacy of learning through the 

knowledge base.  Similarly, software engineers could be interested in the architecture of the knowledge 

base and in factors that can optimize its design.  The Human Computer Interaction (HCI) community 

might be interested in the commonality between the efficiency of learning through the knowledge base 

and incorporating additional resources such as mobile agent toolkits.  



 

9 

This research, however, focuses on using the knowledge base to convey fundamental theoretical 

concepts, since a better understanding of the proper principles of agent orientation will allow 

developers to build more robust systems that are easier to maintain and expand (Ashri & Luck, 2002).  

Since the focus is on providing the conceptual knowledge that novice mobile agent programmers 

require, and enough detailed work has been covered for the requirements of this dissertation, 

programming constructs as such have been excluded to a large extent.  Though agents can also be 

compared to software components6, this research focuses on fundamental concepts for novices and 

agent orientation is therefore compared to object orientation.  Furthermore, since mobile agent 

programming is seen as a relatively young paradigm, references to circumstances for which using a 

mobile agent can be recommended will be included, though this will not be the main theme.  Also, 

extensive depth of some issues that developed into research topics in their own right, for example 

mobile agent security, will be covered, but will not form the main focus. 

1.9 Synopsis 

In Chapter 2 mobile agents, their characteristics and the environment in which they operate are 

discussed to explain essential concepts.  The context for programming mobile agents is sketched in 

Chapter 3 by exploring the difference between agent-orientation and object-orientation in order to 

provide the paradigm shift.  Based on key concepts extracted from literature, a model of a generic 

mobile agent system architecture proposes guidelines for programming mobile agents in chapter 4.  In 

Chapter 5 one possible visualization of the knowledge base is described.  The research is concluded in 

Chapter 6. 

                                                 
6 A component is a cohesive unit of functionality that can be independently developed, delivered and 
combined with other components to build a larger unit. A component is typically (though not 
necessarily) implemented as a collection of classes and has contractually specified interface(s) which 
define its access points. With a pure OO approach, software is built from a collection of classes, while 
with a component-based approach software is built from a collection of components (Ambler, 2001) 
 



 

10 

CHAPTER 2 

2 MOBILE AGENTS: BACKGROUND FOR RESEARCH AND 
PROGRAMMING  

2.1 Introduction 

This chapter introduces the concept of a mobile agent and sets the background with regard to the 

research and the programming of mobile agents.  To define a mobile agent, in section 2.2 the essential 

qualities of a software agent are first identified.  This is followed by an explanation of how these 

qualities manifest in a mobile agent.  To orientate the reader with regard to the background of 

programming mobile agents, a brief history of mobile agent research, the various communities 

involved in mobile agent research and their views of mobile agents are presented.  The life cycle of a 

mobile agent and its salient characteristics are described.  Circumstances for which the use of mobile 

agent applications can be recommended are based on the advantages and disadvantages of mobile 

agents, combined with their salient characteristics. 

 

In section 2.3 the execution environment for mobile agents is introduced by clarifying some of the 

terminology used with regard to the mobile agent programming environment.  Mobile agent systems as 

well as the features exhibited by mobile agent systems are only covered in brief, since these aspects 

receive more attention in Chapter 4 when a generic mobile agent system architecture is presented.  The 

available standards for mobile agent systems are also covered briefly. 

 

Section 2.4 provides a summary of this chapter. 

2.2 What is a mobile agent? 

2.2.1 What is an agent? 

There is no clear definition of exactly what comprises an agent, mainly owing to the large number of 

areas in which agents are applied.  These range from AI, telecommunications, distributed computing, 

intelligent user interfaces, e-commerce, power system management and air traffic control to 

information retrieval management, digital libraries, smart databases and many more (Dale, 1997; 

Grimley & Monroe, 1999; Lingnau, Drobnik & Dömel, 1995; Luck et al., 2004a).  In general, though, 



 

11 

end-users see software agents as programs that assist people and act on their behalf, by allowing people 

to designate work to them (Grimley & Monroe, 1999; Lange & Oshima, 1998; Lingnau et al., 1995). 

 

Franklin and Graesser (1996) define a software agent as an autonomous system, that, while situated 

within an environment, is at the same time part of the said environment.  The software agent is able to 

sense the environment and act on it over a period of time, in pursuit of its own agenda in order to effect 

what the system will sense in the future.  This corresponds to a widely accepted notion of agency which 

regards an agent as an autonomous software system acting in a continuous Perceive-Reason-Act cycle 

(as illustrated in Figure 2.1) as part of a dynamic and open environment in order to achieve a goal 

(Lind, 2001; Luck et al., 2004a).  The software agent perceives by receiving and processing some 

stimulus from its environment.  It reasons by combining the newly acquired information with its 

existing knowledge and goals, and determining possible actions.  It acts by selecting and executing one 

of the possible actions.  As a result the state of the environment is changed and new perceptions are 

generated for the next Perceive-Reason-Act cycle. 

 

Environment 

Perceive 

Reason 

Act 

 

Figure 2.1 The Perceive-Reason-Act cycle illustrated 

 

To succeed in assisting humans, an agent has to meet at least the requirements of weak agency (Dale, 

1997; Lange & Oshima, 1998; Luck et al., 2004a; Tveit, 2001; Wooldridge & Jennings, 1995), namely 



 

12 

• Autonomy – Once launched, an agent should be able to operate independently without direct 

programmer or user intervention, make decisions based on information gathered, and control its 

actions. 

• Social ability – An agent must be able to communicate with the local environment, other agents 

and its user, preferably via an agent-communication language. 

• Reactivity – An agent must be able to respond in good time to perceived changes in its 

environment. 

• Pro-activity – An agent must be able to exhibit goal-directed behaviour, based on the state of its 

environment, to achieve its objectives. 

 

Agents may have additional properties such as the ability to learn, mobility, being rational and/or 

honest, flexible in the sense that their actions are not scripted, as well as many others (Dale, 1997; 

Franklin & Graesser, 1996; Luck et al., 2004a; Ndwana & Ndumu, 1996).  Adding mentalistic attitudes 

such as knowledge, belief, intention and obligation to the requirements for weak agency listed above, 

creates a strong agent (Dale, 1997; Luck et al., 2004a; Ndwana & Ndumu, 1996; Wooldridge & 

Jennings, 1995).  Intelligence (reasoning and understanding) can be given to both weak and strong 

agents, and will determine their behaviour in certain situations as well as their reaction to certain 

events.  The spectrum of agents can therefore vary from weak agents with no specific intelligence but 

still performing useful tasks, to very strong agents representing nearly the end-goal of AI, a thinking 

machine (Dale, 1997). 

2.2.2 Defining a mobile agent 

For the purpose of this dissertation a mobile agent is regarded as an active entity that can migrate 

autonomously through a computer network and resume execution at a remote site to access resources 

required in order to perform a task on behalf of its user.  It is able to observe its environment and to 

adapt dynamically to changes during its execution.  A mobile agent can continue its computations 

independently even if its user is not connected to the network since both the mobile agent’s state and 

code are transferred with it (Baumann, 2000; Cabri, Leonardi & Zambonelli, 2000; Dale, 1997; Horvat, 

Cvetkovic, Milutinovic , Kocovic & Kovacevic 2000; Lange & Oshima, 1998; Wooldridge, 2002).  

 

Mobile agents conform to all the criteria for weak agency, namely autonomy, social ability, reactivity 

and pro-activity.  Once launched, the agent decides independently whether it should return to its origin 

or visit another server (autonomy).  During execution, the agent transfers information to the host, and it 



 

13 

may receive information from the host (social ability).  Once the exchange of information has taken 

place, the agent will decide, based on this exchange of information (reactivity), whether to terminate, 

become a resident agent, or repeat the migration process (pro-activity). 

  

This definition does not imply that mobile agents are strong agents, though some mobile agents may 

contain mentalistic attitudes to enable reasoning such as knowledge, belief, intention and obligation, 

turning them into strong agents.  Agent Factory (Collier, Rooney, O'Donoghue & O'Hare, 2000) and 

JAM (Huber, 2000), for example, provide the ability to build Belief-Desire-Intention (BDI) mobile 

agents, while CLAIM (Computational Language for Autonomous, Intelligent and Mobile Agents) can 

be used to program a multi-agent system consisting of autonomous, intelligent, mobile agents over 

several platforms (Fallah-Seghrouchni & Suna, 2003a, 2003b). 

  

An individual mobile agent is implemented as a code component and a state component that allows it 

to continue execution at the destination after migration (Dale, 1997; Harrison et al., 1995; Lange & 

Oshima, 1999).  Since mobile agents are agents, they need an agent execution environment at both the 

client and host computers.  The agent execution environment allows the mobile agent to interact with 

its host as well as with other agents in order to exchange information or services.  It also enables agent 

mobility, and protects both host and agent security (Harrison et al., 1995; Lingnau et al., 1995).  The 

implementation of a mobile agent as well as its execution environment is discussed in Chapter 4. 

2.2.3 Background 

2.2.3.1 A brief history 

The concept of a mobile agent grew from advances made in distributed systems research.  In the 

distributed systems community mobile agents are mainly intended to improve on remote procedure 

calls (RPCs) for distributed programming.  The distributed artificial intelligence community (DAI) 

focuses on the ability of a mobile agent to relocate itself between nodes in a network and views a 

mobile agent as one of a number of different types of agents (Baumann, 2000; Green, Hurst, Nangle, 

Cunningham, Somers & Evans, 1997; Manvi & Venkataram, 2004; White, 1994; Wong, Paciorek & 

Moore, 1999).  Jim White (1994) coined the term ‘mobile agent’ in 1994 to describe a procedure that 

travels with its data to a host computer, to be executed at the host, in a white paper describing General 

Magic’s Telescript technology.  The Telescript technology consists of three main components: the 

Telescript language, an OO and remote programming language specifically designed to program 



 

14 

mobile agents and their places (execution environments), an engine or interpreter for the language; and 

communication protocols to enable engines in different host computers to exchange mobile agents in 

order to effect an instruction that activates the mobile agent’s execution.   

 

Telescript was followed by research systems such as Tacoma in 1995, which offers operating system 

support for mobile agents written in almost any language, and Agent Tcl in 1996 (the enhanced version 

is currently known as D’Agents), based on the scripting language Tcl (Baumann, 2000; Tripathi, 

Ahmed & Karnik, 2001).   

 

Initially a variety of languages was used to develop mobile agent systems.  All mobile agent systems 

are required to be implemented in code that does not require recompilation after migration.  

Furthermore, they are also required to be executed on a variety of hardware platforms.  For this reason, 

most existing mobile agent platforms are based on either scripting languages or Java.  Of these, the 

platforms based on scripting languages have mostly been developed before Java’s general acceptance 

during the latter half of the nineties (Perdikeas, Chatzipapadopoulos, Venieris & Marino, 1999).  While 

some mobile agents systems such as D’Agents (Gray, 1996; Gray, Cybenko, Kotz, Peterson & Rus, 

2002) have been programmed in scripting languages, currently Java is the most commonly used 

language to program mobile agents (Baumann, 2000; Manvi & Venkataram, 2004; Perdikeas et al., 

1999; Pham & Karmouch, 1998; Tripathi et al., 2001; Wooldridge, 2002).  Other examples of well-

known Java-based applications include Aglets, Voyager and Odyssey.  IBM’s Tokyo Research 

Laboratory started development for one of the first industrial and probably the best-known mobile 

agent systems, Aglets, in 1995, while ObjectSpace’s Voyager started in mid-1996, Mitshubishi’s 

Concordia in 1997, and General Magic’s Odyssey in 1997.  The latter replaced Telescript (Horvat et 

al., 2000). 

 

At present several general-purpose commercial mobile agent systems exist, such as Voyager 

(Voyager's Intelligent Mobile Agent Technology, 2004-2005), which integrates distributed computing 

with mobile agent technology, Jumping Beans (Jumping Beans) which provides code mobility and the 

Agent Development Kit (ADK) from Tryllian (Agent Development Kit, 2004), a mobile component-

based development platform. 

 



 

15 

Recently (since 2002) Microsoft’s .NET framework has also been employed to implement mobile agent 

systems (Delamaro & Picco, 2002; Mentz, 2004; Vecchiola, Gozzi & Boccalatte, 2003) or integrate 

mobile agent computation with Web services (Luck et al., 2004a). 

 

During the second half of the nineties, the level of industrial interest in agents initiated standardization 

efforts in an attempt to enhance the acceptance of agent technology.  For mobile agents in particular, 

two main sets of standards have been compiled: the Mobile Agent System Interoperability Facility 

(MASIF) from the Object Management Group (OMG) in 1998 (Milojicic, Breugst, Busse, Campbell, 

Covaci, Friedman, Kosaka, Lange, Ono, Oshima, Tham, Virdhagriswaran & White, 1998) and the 

Foundation for Intelligent Physical Agents (FIPA) Agent Management Support for Mobility 

Specification (FIPA00087 - FIPA 98 Part 11 Version 1.0: Agent Management Support for Mobility 

Specification) in 1998.  MASIF attempts to provide a minimal interoperable interface for mobile agent 

systems with specifications for three areas, namely agent management, agent tracking and agent 

transport, as well as a reference terminology.  The FIPA specification set attempts to identify the 

minimum requirements necessary to grant mobility to agents.  The steps needed to integrate with the 

OMG MASIF standard are also discussed.  Unfortunately both groups seem to be inactive at the 

moment, without having produced complete standards documents (Baumann, 2000; Luck et al., 2004a; 

Schoeman & Cloete, 2003).  Mobile agent standards are covered in more detail in section 2.3.4.  

 

Despite the lack of complete standards documentation, a steady trickle of articles on mobile agent 

research continues.  At the moment some of the focus of mobile agent research appears to move to 

enhancing mobile agents with intelligence and to the integration of mobile agents in multi-agent and 

distributed systems, as can be seen from several projects under way in the DAI and distributed agents 

communities (Comet Way Java Agent Kernel, 2005; Ancona, Demergasso & Mascardi, 2005; Collier et 

al., 2000; Huber, 2000).  The amalgamation of the international conferences on mobile agents with 

other conferences such as the 2004 IEEE International Conference on Mobile Data Management 

(MDM’04), confirms this trend.  Application areas such as mobile computing (2004 IEEE 

International Conference on Mobile Data Management (MDM'04)) and telecommunications (Mobile 

Agents for Telecommunications Applications Workshops, 2002) are also actively investigating and 

implementing mobile agents.  The recently launched Journal of Mobile Information Systems (Taniar, 

2005), for example, includes mobile agents as one of the topics covered.  In developing a knowledge 

base for novice mobile agent programmers, this dissertation provides a view of how mobile agents fit 



 

16 

into the current programming milieu, contributing to all of these fields.  Chapter 3 describes the context 

for programming mobile agents and introduces the required paradigm shift. 

2.2.3.2 Communities currently working in mobile agents 

At least two general communities are active in mobile agent research: the DAI and distributed systems 

communities (Lingnau et al., 1995; Luck et al., 2004a; Mentz, 2004).  Some of the more well-known 

research groups in the DAI community include the Intelligent Agents Group (IAG) consisting of 

members of the Department of Computer Science at the Trinity College Dublin and Broadcom Ireland 

(Green et al., 1997), the Department of Computer Science at the University College Dublin with Agent 

Factory (Agent Factory, 2003; Collier et al., 2000), the JADE community (Bellifemine, Caire, Poggi & 

Rimassa, 2003) and the Distributed and Information Systems Group at the University of Hamburg with 

Jadex (Braubach, Pokahr & Lamersdorf, 2004a; Braubach & Pokahr, 2002).  D’Agents (D'Agents: 

Mobile Agents at Dartmouth College, 2002) from the Center for Mobile Computing at Dartmouth 

College (Center for Mobile Computing, 2005), Ajanta from the Department of Computer Science, 

University of Minnesota (Tripathi, Karnik, Ahmed, Singh, Prakash, Kakani, Vora & Pathak, 2002), 

TACOMA network agents (The TACOMA project [Tromsø And COrnell Moving Agents], 2001), a 

joint project between the Departments of Computer Science of the Universities of Tromso, Cornell and 

California, as well as Voyager® from Recursion Software, Inc. (Recursion Software - Intelligent 

Mobile Agent Technology, 2004) and Tryllian’s ADK (Agent Development Kit, 2004) originate from 

research by the distributed systems community. 

 

The DAI community includes the intelligent and multi-agent systems communities, with their main 

focus on (stationary) agents placed at nodes distributed over the network and cooperating to pursue a 

common goal.  Multi-agent systems consist of a number of autonomous agents that cooperate or 

compete to achieve a common goal (Manvi & Venkataram, 2004; Wooldridge, 2002; Zambonelli, 

Jennings, Omicini & Wooldridge, 2001).  As mobile agents can be intelligent as well as be part of a 

multi-agent system, the DAI community considers mobility an orthogonal property of an agent, namely 

an optional or additional quality (Lange, 1998; Lange & Oshima, 1998; Lingnau et al., 1995; Mentz, 

2004; Pham & Karmouch, 1998; Tveit, 2001; Wooldridge & Jennings, 1995).   

 

The distributed systems community typically has a background of research in operating systems, 

distributed systems and object-orientation.  They focus on mobility and consider a mobile agent to be 

code or an object (Lingnau et al., 1995; Mentz, 2004; Pham & Karmouch, 1998).   



 

17 

The research areas of these two communities coincide in the area of distributed agent computing, as 

multi-agent systems are often distributed systems, and distributed systems act as platforms to support 

multi-agent systems (About Distributed Agents, 2004).  Multi-agent systems are used to model complex 

distributed processes.  A distributed system consists of a number of autonomous hosts on a network 

each executing components that interact (via middleware) in order to present an integrated facility to 

the users of the system.  Distributed systems enable multi-agent systems, while multi-agent systems can 

be seen as a special kind of distributed application.  Distributed agent computing is considered to be the 

area where these two approaches intersect, which also covers mobile code, and therefore mobile agents. 

2.2.3.3 Views of mobile agents 

Agents have been classified in various categories according to their characteristics or purposes (Dale, 

1997; Franklin & Graesser, 1996; Gilbert, Aparacio, Atkinson, Brady, Ciccarino, Grosf, O'Connor, 

Osisek, Pritko, Spagna & Wilson, 1995; Lind, 2001; Manvi & Venkataram, 2004; Mentz, 2004; 

Wooldridge & Jennings, 1995).  According to Gilbert et al. (1995) software agents can be classified in 

terms of a space defined by three dimensions: intelligence, agency and mobility (see Figure 2.2).  In the 

intelligence dimension agents can be classified according to their capabilities to express preferences, 

beliefs and emotions, and their ability to fulfil a task by reasoning, planning and learning.  The agency 

dimension denotes the degree of autonomy and authority vested in the agent, which can be measured 

by the nature of the interaction between the agent and other entities in the system.  The mobility 

dimension denotes the scope of an agent’s mobility, which may range from being static or a desktop 

agent to Internet agents or network agents.   

 

Rothermel and Schwehm (1998) point out that mobile agents can achieve their desired functionality 

without employing capabilities from the intelligence or agency dimensions.  Gray (2004) too argues 

that mobile agents ‘really are poorly named’ as many mobile agent applications require no intelligence, 

adaptability or goal-driven behaviour in the moving components, whereas for many agent applications 

demonstrating intelligent behaviour, stationary code suffices.  Most applications therefore require only 

a subset of agent and mobility behaviours.  This endorses the distributed computing community’s view 

of mobile agents, namely that a mobile agent is just an object or program code.  Note though that a 

certain level of autonomy is necessary to allow a mobile agent to migrate without external intervention. 

 



 

18 

IntelligencePreferences
Reasoning

Planning
Learning

Agency
Service Interactivity
Application Interactivity

Data Interactivity

Representation of User (i.e. the   
agent’s authority)

Asynchronicity (i.e. independent 
execution or autonomy)

Mobility

Message Passing
Remote Procedure Call
Remote Execution

Weak Migration
Strong Migration

 

Figure 2.2 Dimensions used to classify software agents according to Gilbert et al. (1995) 

 

In contrast, the multi-agent systems and distributed agents communities have several projects going to 

create BDI mobile agents, that is, strong mobile agents with a level of intelligence that allows them to 

reason based on goals, beliefs and commitments (Comet Way Java Agent Kernel, 2005; Ancona et 

al.,2005; Collier et al., 2000; Huber, 2000).  Multi-agent systems per se also imply a measure of 

mobility, as even stationary agents have to be moved at least initially to their nodes, while a multi-

agent system can and frequently does, include mobile agents.   

 

Furthermore, the current trend in agent technology appears to be towards multi-agent systems for the 

development of complex software systems.  Cabri, Ferrari & Leonardi (2005) even consider mobility as 

essential an attribute of agents as the other properties of weak agency (autonomy, social ability, 

reactivity and pro-activity). 

 

As mentioned previously, the possible incompatibility between the general view of a mobile agent and 

the diverse definitions of agents has been raised as one of the potential reasons why industry has not yet 

adopted agent and mobile technology as widely as could be expected (Samaras, 2004).  Johansen 

(2004), for example, claims that a web service down-loaded over the network resembles a single-hop 

mobile agent.  While this invokes some measure of doubt as to exactly what degree of agency is 



 

19 

necessary to term a mobile agent an agent, it also serves to emphasize the wide diversity of notions of 

what an agent and a mobile agent specifically is, as can be seen from the different views held by the 

distributed computing community, and the DAI and distributed agents communities.   

 

Despite the difference in views and emphasis held by these communities, in essence a mobile agent is 

an agent albeit one whose level of intelligence, autonomy (demonstrated by its reactivity and pro-

activity) and interaction (with other agents, its environment and humans, i.e. its social ability) can vary 

widely.  Since a mobile agent is an agent, and ths more than just an object, novices need to make a 

paradigm shift in order to program mobile agents. 

2.2.4 Mobile agent life cycle 

The life cycle of a mobile agent defines the different execution states in which it may be, as well as the 

events that cause the transition from one state to another (Green et al., 1997).   

 

FIPA (FIPA00087 - FIPA 98 Part 11 Version 1.0: Agent Management Support for Mobility 

Specification) identifies six execution states during the life cycle of a mobile agent: initialised, active, 

suspended, waiting, migration and disposed.  This is illustrated in Figure 2.3.  Each circle in the 

example indicates the state of a particular mobile agent during its life cycle.  The mobile agent in this 

illustration visits two remote hosts.  Note that a specific state may occur more than once, and indeed 

does, during the mobile agent’s life cycle.  If required, the mobile agent could create clones.  Lange and 

Oshima (1998) also indicate that its owner can control a mobile agent by retracting it from a host.  The 

various states in which the mobile agent may be, are numbered in the order in which they occur in this 

example, and the following explanation holds: 

1. A new agent is created (initialised) only once by its owner or user on the sending host.  At 

this time it receives a unique ID and initial state, and is prepared for further instructions.   

2. The mobile agent is invoked, causing it to migrate to a remote host to execute there. 

3. Each time the mobile agent arrives at a new host, it is started (activated) with its own thread 

of execution.  In this active state the mobile agent can execute independently at the remote 

host.  

3a.  The mobile agent creates a clone of itself to enable it to pursue its task in parallel on 

different hosts. 

4. On deactivation (suspension), the agent stops processing, and stores its state and 

intermediate results in such a way that allows it to migrate. 



 

20 

5. During transition/migration the mobile agent is possibly being transferred to another host. 

6. On arrival at the next host, the mobile agent is restarted, and continues execution – it is now 

once again in an active state. 

7. When the mobile agent is interrupted to wait for a specific event, it goes into a waiting state. 

8. Before migrating to the next host, the mobile agent is once again suspended. 

9. The mobile agent returns to its owner/user with the results of its computation, by migrating 

to the sending host.  Alternatively, in some mobile agent systems the owner could have 

retracted the mobile agent, which would return the mobile agent to the host from where it 

was retracted. 

10. Once the mobile agent has returned to its owner on the sending host, and the results of its 

computation has been extracted the owner disposes of it.  On disposal the agent stops all its 

operations and frees all resources it has been using, causing its state to be lost permanently 

so that the mobile agent is destroyed (Braun, Eismann, Erfurth & Rossak, 2001; Horvat et 

al., 2000; Vogler, Kunkelmann & Moschgath, 1997; Wong, Helmer, Naganathan, 

Polavarapu, Honovar & Miller, 2001). 

 

 

 

Sending host

Remote host

Remote host

Initiated
Active

Active

Migrating

Migrating

Migrating

Destroyed

Suspended

Waiting

Suspended

1
3

4

7

8

6

2

9

5

10

3a
Clone

 

Figure 2.3 The life cycle of a mobile agent 



 

21 

Green et al. (1997) identify two life cycle models for mobile agents: the persistent process model (as 

implemented by Telescript [White, 1994] and AgentTcl [Gray, 1996]); and the task-based model 

implemented by Aglets (Lange & Oshima, 1998).  The persistent process model refers to strong 

migration in which the mobile agent’s running state is frozen before migration and execution continues 

at the new host from the point where it was frozen at the previous node.  The task-based model is used 

in weak migration where the running state is not preserved during migration, but the mobile agent 

restarts executing from the beginning.  During weak migration a mobile agent typically follows an 

itinerary of tasks, based on a set of conditions.  Each task has its own state, but when an agent moves to 

a new node, the context of the currently executing task is lost (Green et al., 1997).  An example where 

weak migration would be more appropriate than strong miration includes situations where the mobile 

agent is used to distribute or update code, and therefore has to execute all of its code each time.  Using 

a mobile agent with strong migration would make programming a search for the cheapest ticket easier, 

though it is not impossible to use a mobile agent with weak migration for such a purpose. 

 

Adapting the description of a mobile agent’s life cycle to the task-based model will consist mainly of 

modifying steps 4 and 6 to:  

4. On deactivation, owing to a particular condition that caused the mobile agent to suspend 

execution, the mobile agent stores its intermediate results, if required (which may not always be 

neccesary), in such a way that it allows migration to the next host on its itinerary. 

6. On arrival at the next host, the mobile agent is restarted, and once again executes its code from 

the beginning, or from a specific point indicated before migration.  

 

The life cycle of a mobile agent is illustrated in Figure 2.3.  During its visit to a host, a mobile agent 

clearly displays the characteristics of weak agency, as pointed out in 2.2.2.  Because of its autonomy, 

the mobile agent can execute independently at a host.  During execution, the mobile agent displays its 

social ability by interacting with the host to access resources at the host site and exchange information 

with the host.  Based on the exchange of information with the host, the mobile agent decides on the 

next action to be taken (reactivity), and then executes it (pro-activity).   

2.2.5 Salient characteristics of a mobile agent 

According to Lange and Oshima (1998) mobile agents exhibit the following unique characteristics: 

object-passing, autonomy, asynchronicity, local interaction, disconnected operation and parallel 

execution.  In Braun et al., (2001) adaptation, communication, cooperation, persistence, and goal-



 

22 

orientedness are added to this list.  White (1996; 1994) mentions that a mobile agent also has authority 

as it represents a real-world individual or organization, and as such can be expected to be loyal to its 

owner or user.  In addition, a mobile agent can clone itself, if necessary, which implies a measure of 

recursion (Harrison et al., 1995; Horvat et al., 2000; Tripathi et al., 2001).  Similar characteristics are 

pointed out by (Green et al., 1997; Ndwana & Ndumu, 1996; Sunsted, 1998).   

 

As mobile agents match the criteria for weak agency, and mobility is the most fundamental 

characteristic of mobile agents, their salient characteristics can be described as: 

 

• Mobility – A mobile agent can transfer its code, data and execution state (as well as its 

itinerary, if used), namely the entire entity representing the mobile agent, to another host in a 

distributed network of computers, and resume execution. 

• Autonomy – A mobile agent can arrive at a destination, execute and move independently 

without external intervention.  This enables a mobile agent to fulfil a given task autonomously 

and asynchronously. 

• Asynchronous – As a mobile agent has its own thread of execution, it can execute 

asynchronously, i.e it does not require its sending host to suspend execution until the mobile 

agent returns. 

• Local interaction – A mobile agent interacts locally with its host, and can if necessary, dispatch 

other mobile agents (messenger agents or clones of itself) to enable local interaction at another 

host. 

• Disconnected operation – As a mobile agent runs in its own thread, it can perform its tasks at a 

host regardless of whether or not the network connection is open.  If the network connection is 

closed, it can wait until the connection is re-opened. 

• Parallel execution – Cloning allows more than one mobile agent to execute a task in parallel at 

different hosts. 

• Intelligence – Levels of intelligence can vary, but in general mobile agents’ intelligence 

supports autonomy by allowing a mobile agent to learn from information it obtains in the sense 

that this information assists it in making decisions such as where to move next.  Intelligence 

therefore sustains reactivity as well as pro-activity. 

• Communication – A mobile agent can communicate with other agents, the current agent server, 

local applications and its owner/user, while agent servers can also communicate with each 

other, thereby providing the social ability expected of weak agents. 



 

23 

• Cooperation – Cooperation is based on communication between agents and their ability to work 

together in a structured way, preferably via public protocols, to reach a common goal that 

supports progress for each agent’s local goal. 

• Adaptation – Mobile agents can react to dynamically changing (external) situations by choosing 

an appropriate reaction.  This supports the reactivity criteria for weak agency. 

• Persistence – The state of a mobile agent is persistent, even if the mobile agent is deactivated 

and restarted at a later stage, as this is a prerequisite for migration, where agent execution is 

interrupted and resumed at another host. 

• Goal-orientedness – Mobile agents perform tasks on behalf of users, and thus have to achieve 

certain goals.  To be goal-oriented, an agent has to be able to be activated on other agent 

servers, migrate between agent servers, collect information, adapt or react to changing 

situations/environments, learn and be persistent.  This corresponds to the pro-activity exhibited 

by weak agents. 

• Loyalty – An agent performs computations on behalf of the user or authority that creates it, and 

is therefore expected to be loyal to its user. 

• Recursion – If necessary, a mobile agent can create child agents for subtasks. 

 

The primary trait that distinguishes mobile agents from other forms of mobile code and from other 

agents is autonomous migration, namely the ability to decide by itself when and where to go, based on 

the current situation in its environment as well as its goals.  In order to achieve this, a certain level of 

intelligence incorporating both reactivity and pro-activity is required.  Receptiveness in order to 

perceive changes in its environment, adaptation to the perceived changes, and goal-orientedness to 

guide how to react or act, form the foundation of this intelligence.  Furthermore, in the persistent 

process model migration can only succeed if the state of a mobile agent is preserved during the actual 

process itself.   

 

Mobile agents can exist in a single agent system or in a multi-agent system.  Because of the nature of a 

multi-agent system, the social character of a mobile agent as exhibited by its interaction with the 

environment and cooperation with other agents and/or mobile agents, will be of more importance than 

in a single agent system.  Since an agent performs tasks on behalf of its user, it is expected to be loyal 

to the user.   

 



 

24 

The autonomous, asynchronous character of mobile agents, combined with their mobility, allows 

disconnected operation and parallel execution.  This reduces network traffic, as the mobile agent can 

execute its task(s) at the remote host(s) and only return to its owner/user with the results of its 

computations.  The type of applications that can benefit from using mobile agents therefore typically 

involve a fair amount of network traffic and/or need to be able to continue execution autonomously 

even during intermittent connectivity, namely when only asynchronous interaction is possible. 

2.2.6 Circumstances suited to mobile agent applications 

The circumstances under which the use of mobile agents are regarded as beneficial can be recognized 

by reviewing the advantages as well as the disadvantages of mobile agents, and combining these with 

their salient characteristics. 

2.2.6.1 Advantages offered by mobile agents 

Researchers (Dale, 1997; Harrison et al., 1995; Lange & Oshima, 1999) cite several advantages to 

using mobile agents: 

• They reduce the network load by processing data at the remote host, instead of transmitting it 

over the network.  Reducing the multiple flows of information in RPC communications to a 

single mobile agent creates a corresponding reduction in network traffic.  This also overcomes 

the limitations of a client computer with insufficient resources. 

• They overcome network latency since they can execute and act locally.  In critical real-time 

systems (e.g. robots in manufacturing processes) that need to respond in real time to changes in 

their environment, this is especially important. 

• They encapsulate protocols.  In a distributed system, each host owns the code that implements 

the protocols needed to exchange outgoing and incoming data properly.  Because of the 

practical difficulties in upgrading protocol code, protocols can become a legacy problem.  

Mobile agents can transfer proprietary protocols to remote hosts by acting as ‘channels’ for 

information exchange, and can also be used by vendors to distribute the client end of a 

transaction protocol in a device-independent way.  

• They execute asynchronously and autonomously, thereby exhibiting persistence.  Once a 

mobile agent has been despatched, it becomes independent of the system that launched it, and 

will not be affected if the sending node goes down.  This offers a distinct advantage to mobile 

computer users, since they can log off after despatching the agent, and retrieve the result at a 

later stage.   



 

25 

• They adapt dynamically.  As seen in the reactivity attribute defined in weak agency, mobile 

agents are aware of their environment and respond to changes in it.   

• They are naturally heterogeneous.  Since network computing is heterogeneous (often both in 

hardware and software), and mobile agents are usually computer- and transport-layer-

independent, in a networked system mobile agents will run on different hardware and different 

operating systems.   

• They are robust and fault-tolerant.  Mobile agents’ ability to react dynamically to adverse 

situations and events (pro-activity) allows for robust and fault-tolerant distributed systems.  If a 

host has to shut down, for example, the agents on that machine can be warned and allowed to 

migrate to another host in the network.    

• Mobile agents can easily be customized since they are peer entities and can act as either a client 

or server, according to their needs.   

2.2.6.2 Disadvantages of using mobile agents 

The major disadvantage to using mobile agents is seen as the need for highly secure agent execution 

environments.  This includes all security issues such as authentication of both user and server, 

authorisation, verification and protecting agents during transfer, as well as the resulting performance 

and functional limitations (Dale, 1997; Harrison et al., 1995; Lange & Oshima, 1999; Roth, 2004; 

Samaras, 2004; Vigna, 2004).   

 

Other security risks listed include aspects such as protecting the mobile agent’s data during transit, 

limitations in the security provided by Java (the most commonly used implementation platform for 

mobile agents), guaranteeing agent termination, exactly-once protocols and the administrability of 

mobile agents (Johansen, 2004; Luck et al., 2004b; Roth, 2004; Vigna, 2004).  This dissertation does 

not focus on security issues, and in this regard the reader is referred to (Farmer, Guttman & Swarup, 

1996; Grimley & Monroe, 1999; Vogler et al., 1997; Zapf, Muller & Geihs, 1998) among others. 

 

Lack of universally accepted standards and a pervasive infrastructure are also inhibiting factors 

(Milojicic, Douglis & Wheeler, 1999; Roth, 2004; Samaras, 2004; Vigna, 2004).  Other possible 

problems put forward for the lack of expected deployment, include lack of a so-called ‘killer’ 

application’, lack of proper education in mobile agents, and lack of scalability or performance.  Lack of 

scalability and performance refers to the possible negative effect that a large number of mobile agents 

may have on the network (Harrison et al., 1995; Samaras, 2004; Vigna, 2004).  As mentioned earlier, 



 

26 

Samaras (2004) also alludes to diverse definitions of what is an agent actually is and its incompatibility 

with the general view of a mobile agent, as another obstacle to the general adoption of mobile agents. 

2.2.6.3 When to use a mobile agent 

Their salient characteristics, as well as the advantages they offer, confirm the main reasons cited for 

using mobile agents: 

• Intermittent connectivity, slow networks, lightweight devices and mobile computing, as well as 

offline processing, namely unreliable and/or limited network capacity. 

• Using asynchronous execution, autonomy and persistence for distributed retrieval or 

dissemination of information; or to execute transactions on large networks covering a large area 

and a vast amount of information (Dale, 1997; Picco, 2001; Samaras, 2004; Sunsted, 1998). 

 

Two major areas in which mobile agents offer considerable advantages have been identified, namely 

network management (Corradi, 2001; Feridun & Krause, 2001; Gschwind, Feridun & Pleisch, 1999; 

Kendall et al., 2000; Milojicic, 1999; Picco, 2001; Samaras, 2004; Shih, 2001; Wong et al., 2001) and 

information retrieval (Corradi, 2001; Feridun & Krause, 2001; Manvi & Venkataram, 2004; Picco, 

2001; Samaras, 2004; Shih, 2001).  Other areas where mobile agents are seen as offering potential 

advantages are disconnected computing, also known as wireless or mobile computing, dynamic 

deployment of code, ‘thin’ clients or ‘resource-limited’ devices, personal assistants (used in e-

commerce for example), telecommunications networks services, grid computing, workflow and 

groupware management, monitoring and notification, and mobile agent-based parallel processing 

(Voyager's Intelligent Mobile Agent Technology, 2004-2005; Horvat et al., 2000; Kendall et al., 2000; 

Lange, 1998; Luck et al., 2004a; Manvi & Venkataram, 2004; Milojicic, 1999; Samaras, 2004; Shih, 

2001).   

2.3 The mobile agent execution environment 

2.3.1 Terminology 

Mobile agents need an environment in which they can execute, migrate and communicate.  Various 

authors use the terms ‘platform’ (Tahara, Ohsuga & Honiden, 1999), ‘framework’ (Feridun & Krause, 

2001), ‘architecture’ (Gschwind et al., 1999; Shih, 2001; Tahara et al., 1999; Vogler et al., 1997; Wong 

et al., 2001) or ‘infrastructure’ (Aridor & Oshima, 1998; Tripathi et al., 2001) to describe this 

environment.  Although there may not be general consensus about the exact meaning of these terms, 



 

27 

they describe more or less the same entity.  However, some clarification, as described in Huhns & 

Singh (1998), follows: 

 

Agent architectures view agents as reactive/proactive entities and conceptualize agents as consisting of 

perception, reasoning and action components. 

 

Agent system architectures consider agents as interacting service provider/consumer entities.  Agent 

system architectures facilitate agent operations and interactions under environmental restrictions and 

allow them to use available services and facilities. 

 

Agent frameworks are programming toolkits for constructing agents, such as D’Agents 

(D'Agents:Mobile Agents at Dartmouth College, 2002) or Voyager® (Voyager's Intelligent Mobile 

Agent Technology, 2004-2005). 

 

Agent infrastructures provide the rules that agents follow to communicate and understand each other in 

order to share knowledge.  Agent infrastructures deal with:  

• Ontologies – These allow agents to agree about the meaning of concepts. 

• Communication protocols – They describe languages for agent communication. 

• Communication infrastructures – These specify channels for agent communication. 

• Interaction protocols – They describe conventions for agent interaction. 

 

A platform consists of the computer hardware as well as the basic software that is available, such as the 

operating system (Cuadron, Groote, Van Hee, Hemerik, Somers & Verhoeff). 

 

A mobile agent system is usually programmed using an agent framework (toolkit).  An agent 

framework implements a specific agent system architecture and is built to run on a particular platform.  

In the mobile agent system, agents will communicate and cooperate according to the rules provided by 

the agent infrastructure.  An agent itself will typically, though not necessarily, be constructed according 

to a specific agent architecture.   

2.3.2 The mobile agent system 

A mobile agent system provides the environment mobile agents need to interact with hosts and other 

agents, to migrate, and to protect both host and agent security.  The basic mobile agent environment 



 

28 

consists of agencies and authority application programming interfaces (APIs).  An agency may also be 

regarded as an agent server and the authority API as an agent client.   

 

An agency running on each computer is in charge of all the agents executing on that computer, and will 

know about the other agencies in its neighbourhood.  Its tasks include accepting agents, providing 

suitable runtime environments, supervising agents’ execution, organising agent transfer to other hosts, 

managing communications among agents as well as between agents and hosts, and doing authentication 

and access control for all agent operations.  Each agent will run in a dedicated runtime environment 

(provided by the agency), which acts as an interface between the agent and its host.  A host can contain 

more than one agency.   

 

The user will interact with the mobile agent system via an authority API that will allow the user to 

create and control agents locally or directly at remote hosts (Aridor & Oshima, 1998; Dale, 1997; 

Farmer et al., 1996; Gray et al., 2002; Harrison et al., 1995; Lingnau et al., 1995; Tripathi et al., 2001; 

Wong et al., 2001). 

 

Though implementing an agency and an authority API is beyond the scope of this dissertation, a 

generic mobile agent system architecture is discussed in Chapter 4 in the interests of completeness.   

2.3.3 Features exhibited by mobile agent systems  

It has been argued that the most important characteristics of a mobile agent are its mobility and 

autonomy, since, as mentioned previously, many mobile agent applications require no intelligence.  To 

support this, mobile agent systems need to exhibit features to support agent mobility, security, 

communication, access to local resources, fault-tolerance and interoperability (Tripathi et al., 2001).  

Each of these aspects will be expanded on in Chapter 4. 

2.3.3.1 Agent mobility 

Not all of the instructions in a mobile agent have to be executed on the same node or even within the 

same network.  Mobility allows the transfer or migration of a mobile agent to another host, as well as 

the resumption of execution at the new host.  Agent migration can be implemented as weak mobility or 

strong mobility, as discussed in 2.2.4.   



 

29 

2.3.3.2 Naming services 

A global naming scheme and name service are needed to locate resources, specify agent servers for 

migration and establish inter-agent communication (Tripathi et al., 2001), while globally unique agent 

names are used for identification, controlling and locating agents (Milojicic et al., 1998).   

2.3.3.3 Communication 

Mobile agents need to communicate with each other, their owners, their hosts and sometimes, with 

other non-agent services and resources, in order to fulfil their social ability.   

2.3.3.4 Access to local resources 

Access control to local resources includes controlling the mobile agent’s access to application-defined 

resources and system level resources such as files, I/O devices and network ports, as well as limiting 

resource consumption, for example CPU time, disk storage, number of threads, network bandwidth, 

etc.  Various mobile agent systems handle this in different ways.  Chapter 4 provides more information. 

2.3.3.5 Fault-tolerance/Persistence 

Picco (2001) points out that, while improved fault-tolerance is cited as one of the benefits of mobile 

agents, this is only true if agent migration itself is fault-tolerant with proper mechanisms for local 

recovery in place.   

 

Various situations, such as breakdown of connections or hosts, destruction of the agent or network 

errors causing the agent to get lost, can prevent an agent from migrating successfully (Horvat et al., 

2000; Vogler et al., 1997).  In order to ensure a fault-tolerant system, some form of failure detection 

and recovery has to be provided to ensure persistence. 

2.3.3.6 Interoperability 

Interoperability refers to both the interoperability between different mobile agent platforms and 

integration with existing applications.  MASIF and FIPA’s standardisation efforts attempt to address 

these issues, and are reviewed in section 2.3.4.  

2.3.3.7 Agent management and control 

Agent management and control should allow tracking of an agent in order to control its lifetime and 

goals, as well as a mechanism for recalling or terminating remote agents. 



 

30 

2.3.3.8 Security 

Though security is perceived as one of the main issues in preventing a general acceptance and use of 

mobile agents (Milojicic, 1999), and a significant amount of research is done in this area, there are also 

claims that in some situations or environments (e.g. in Intranets) the importance of this issue is 

overestimated (Kotz et al., 2002; Kotz & Gray, 1999; Milojicic, 1999; Picco, 2001). 

 

Nevertheless, the two most important problems in this area are mutual protection of the host and the 

mobile agent from each other.  The host needs to be protected against attacks by unauthorised or 

malicious mobile agent code, while an agent needs to be protected from the host that is executing it 

(Kotz et al., 2002; Picco, 2001; Tripathi et al., 2001).  Apart from protecting the agents and hosts from 

each other, the agent system must also be able to handle many other security considerations, including: 

control resource consumption, protect agents and the data they collected during transmission, as well as 

during execution, protect the naming services and provide secure remote communication (Lingnau et 

al., 1995). 

2.3.4 Mobile agent standards 

As mentioned previously, two main sets of standards have been compiled for mobile agents: MASIF 

from the OMG (Milojicic et al., 1998) and the FIPA Agent Management Support for Mobility 

Specification (FIPA00087 - FIPA 98 Part 11 Version 1.0: Agent Management Support for Mobility 

Specification).  Though both groups are currently inactive, and the specifications incomplete, they still 

offer valuable guidelines for novice mobile agent programmers. 

2.3.4.1 The FIPA standard 

The FIPA specifications (FIPA:The Foundation for Intelligent Agents, 2000) represent a collection of 

standards which are intended to promote the interoperation of heterogeneous agents and the services 

they represent.  These specifications are focused on ACLs, agent services and supporting management 

ontologies for agent systems in general.  

 

Though FIPA is no longer active in the area of mobile agents, the FIPA Agent Management Support 

for Mobility Specification (FIPA00087 - FIPA 98 Part 11 Version 1.0: Agent Management Support for 

Mobility Specification) intends to cover the minimum requirements necessary to allow agents to take 

advantage of mobility.  This comprises four main areas: 

• Definitions of terms related to mobility such as migration, mobile agents etc. 



 

31 

• The minimum specifications for management actions that a FIPA platform would need to 

provide in order to support mobile agents 

• An ontology specification for elements of an agent profile describing items such as agent data 

and code in a standard framework 

• A mobility life cycle, as described in 2.2.4, and a number of different mobility protocols 

describing different modes of agent transfer between systems. 

 

FIPA does not define how mobile agents or mobile agent systems operate or are implemented.  

However, it indicates three types of agent mobility, namely migration, cloning and invocation.  It also 

specifies two mobility protocol abstractions that can both be used for all three types of mobility, 

namely Simple Mobility Protocols and Full Mobility Protocols.  In Simple Mobility Protocols the agent 

relies on a high level protocol that uses a single action to transfer the agent to a destination host.  The 

agent delegates the mobility operation to the host agent platform, which has to implement the protocol 

and complete the entire migration process.  In Full Mobility Protocols the agent directs the mobility 

protocol itself without delegating responsibility to the host agent platform.  The agent first moves its 

agent code and state to the destination host, and only transfers its identity and authority once it is 

assured that the new agent has been created successfully.  

2.3.4.2 The MASIF standard 

The OMG MASIF (Milojicic et al., 1998) is a standard specifically aimed at addressing interfaces 

between mobile agent systems.  It presents a set of definitions and interfaces that provide an 

interoperable interface for mobile agent systems with the purpose of promoting interoperability 

between agent systems.  MASIF uses two primary interfaces to achieve this purpose, namely the 

MAFAgentSystem and the MAFFinder interface.  These two interfaces address the four interoperability 

concerns MASIF identified, namely: 

• a standard way of managing agents, including operations such as creation, suspension, 

resumption and termination;  

• a common mobility infrastructure enabling different mobile agent systems to communicate with 

and visit other agent systems; 

• a standardised syntax and semantics for naming services of agents and agent systems; and  

• a standardised location syntax for finding agents.  

 



 

32 

The intention of the MAFAgentSystem is to address the first two concerns, while the MAFFinder 

interface has to realise the last two.  

 

Although the MASIF standard goes some way towards providing a standard for mobile agent systems, 

it excludes a number of important architectural components in its standardisation attempts.  Its claim to 

interoperability is not as penetrating as desired, since it only addresses interoperability between agent 

systems written in Java.  MASIF justifies this by assuming that Java is becoming the de facto standard, 

which means that all mobile agent systems will be written in Java soon.  MASIF does not address local 

agent operations such as agent interpretation and execution.  It also excludes inter-agent 

communication from its standardization efforts, and does not address conversion issues as such, as 

these are too complex (Milojicic et al., 1998).  Assuming mobile agent systems to be written in Java, 

the MASIF standard uses built-in Java constructs, as well as CORBA services, to address security and 

further expects the communication infrastructure to honour certain security concerns.  A brief depiction 

of mobile agent aspects that are addressed by MASIF follows. 

 

MASIF identifies an authority as the person or organisation for whom an agent acts.  The term agent 

system denotes the platform on a host where agents are created, interpreted, executed, transferred and 

terminated.  Such an agent system is uniquely identified by its name and address, and each host can 

contain many agent systems.  Within each agent system, there can be one or more places.  A place is 

the execution environment, within a specific context, where a mobile agent executes.  An authority can 

own many agent systems, which may not all be of the same type.  Agent systems belonging to the same 

authority are known as a region, and this is regarded as a security domain as it creates a trusted 

environment.  

 

The MAFAgentSystem interface addresses mobility as follows: To process a mobile agent's request to 

move, the source agent system halts the agent’s thread, identifies its state and serialises the agent and 

its state.  The serialised data is then encoded according to the underlying transport protocol and 

authentication information provided to the server before transferring the agent.  On the receiver host 

side, the receiving agent system verifies that it can support the agent profile (agent system type, 

language and serialisation method) before authenticating the sender.  Thereafter the serialised data is 

decoded and deserialised, whereupon the agent is instantiated.  Finally the agent’s state is restored and 

execution is resumed.  

 



 

33 

MASIF’s naming and locating services are based upon and use corresponding CORBA services.  The 

MAFFinder interface defines mechanisms to register, unregister and locate agents, agent systems and 

places.  It also provides a set of techniques that an authority can use to locate agents, including  

• brute force, where the agent is found by searching for it in every agent system in the region;  

• logging, where the agent is followed by its trail, indicated by leaving its next destination at each 

server it visits;  

• agent registration, where every agent registers its current location in a database that keeps the 

latest information about agents’ locations; and  

• agent advertisement, where only places are registered, and an agent’s location is registered only 

when the agent advertises itself.  

2.4 Summary 

It has become clear that autonomy and mobility are the two most distinctive attributes of a mobile 

agent.  Accordingly, within the context of this dissertation, a mobile agent is considered to be an active 

entity that can migrate autonomously through a computer network and resume execution at a remote 

host.  Mobile agents satisfy the criteria for weak agency, namely autonomy, social ability, reactivity 

and pro-activity.  

 

The concept of a mobile agent developed from advances in distributed computing.  At present research 

on mobile agents by the DAI and distributed systems computing communities concur in the research 

area of distributed agent computing.  The DAI community considers mobility to be an orthogonal 

property of agents, while the distributed systems community focuses on mobility and considers a 

mobile agent to be code or an object.  Nevertheless, a mobile agent remains essentially an agent with 

varying degrees of intelligence, autonomy and interaction, depending on the application in which it is 

applied.  This is a fundamental part of the required paradigm shift.  Limited network capacity and 

circumstances requiring asynchronous execution, autonomy and persistence are the main criteria for 

recommending the use of mobile agent applications.  Current trends appear to integrate mobile agents 

with multi-agent systems and to imbue mobile agents with a level of intelligence that allows them to 

reason, as well as actively to investigate the implementation of mobile agents in areas such as 

telecommunications and mobile computing.  In Chapter 3 the context for programming mobile agents 

is described and the required paradigm shift is introduced. 



 

34 

CHAPTER 3 

3 MOBILE AGENT DEVELOPMENT CONTEXT 

3.1 Introduction 

As described earlier, the purpose of this research is to develop a programming model to introduce 

novices to mobile agent programming.  This includes a description of the context for developing 

mobile agents and the circumstances suitable for using mobile agents, as well as the required paradigm 

shift. 

 

Current trends in computing indicate the milieu in which mobile agents will be applied.  These consist 

of, among others, ubiquity or pervasiveness, distributed systems interconnected via networks, 

increasing complexity, delegation or automating processes by giving control to computer systems, and 

human orientation, where computers are increasingly personalized in terms of human characteristics 

(Hayes-Roth & Amor, 2003; Luck et al., 2004a; Luck et al., 2005; Wooldridge, 2002).  Both the 

Semantic Web7 and Web Services8 are also important developments.   

 

Several of the trends mentioned are Internet-based applications.  Many of them can be implemented by 

using software agents.  For example: agents provide the autonomy and ability to interact that allows 

delegation to remote computer systems or automating processes.  Autonomy and interaction also allow 

personalizing computers in terms of human characteristics.  Mobile agents are especially suited to 

distributed computing.  

 

Mobile agents carry their program code, data and execution state information with them, making their 

know-how available throughout the network.  Their autonomous, asynchronous nature, combined with 

their mobility, enables disconnected operation and parallel execution.  Autonomy also allows mobile 

agents to exhibit flexible (reactive, proactive and social) behaviour, since they can react to changes in 

                                                 
7 The Semantic Web is envisioned as a universal information space consisting of ontologies that create 
machine-readable meaning and structure of the content of the World Wide Web (WWW) so that agents 
rather than humans can use it.  The intention is that every user of the WWW would have a personal 
agent on his/her computer to assist in the goal of the Semantic Web (Gerber, 2005).   
8 A Web Service is a software system identified by a URI (Uniform Resource Identifier) that allows 
other software systems to discover it (Web Services, Available at: http://www.w3.org/TR/ws-arch. 
[Accessed 15/8/2004]). 



 

35 

their environment.  Coupled with the ability to carry their know-how with them, this allows mobile 

agents to offer significant benefits for Internet-based applications as well as for ubiquitous (pervasive) 

and mobile computing applications.  However, to realise the full potential of mobile agents in the 

programming environment sketched above, they should be implemented according to the proper 

principles involved in agent programming.  

 

As OO programming is commonly taught today and many modern languages support OO principles, it 

can be expected that most programmers probably have an OO background.  Agents are generally hailed 

as an extension, improvement or specialization of the OO paradigm (Dastani, 2004; Flores-Mendez, 

1999; Lind, 2001; Luck et al., 2004a; Luck et al., 2003; Tveit, 2001).  In order to introduce novice 

mobile agent programmers to agent programming (or orientation), agent programming (or orientation) 

is compared to OO in this chapter.  This provides insight into the way in which agents diverge from 

objects and how mobile agents fit into this current computing milieu.  Such a discussion works towards 

the objective of this dissertation, namely to provide insight into the paradigm shift required for 

programming mobile agents.  

 

Section 3.2 thus investigates terminology and implementation issues in the agent orientation paradigm, 

while section 3.3 covers the OO paradigm in brief. 

 

Section 3.4 considers agent orientation as an extension of OO.  This is done by describing the evolution 

of programming approaches in section 3.4.1, and comparing agents and objects in section 3.4.2.  

Similarities between agent orientation and OO are pointed out, while the specialization from OO to 

agent orientation is highlighted. 

 

Section 3.5 examines the conditions recommended for agent orientation and the way in which mobile 

agents fit into this context.  Section 3.6 provides the conclusion. 

3.2 The agent orientation paradigm 

According to the Merriam-Webster Online Dictionary (Merriam-Webster Online Dictionary, 2004) a 

paradigm is seen as a ‘philosophical and theoretical framework of a scientific school or discipline 

within which theories, laws, and generalizations and the experiments performed in support of them are 

formulated’.  A paradigm is also described as an overall strategy or viewpoint, namely a mindset, for 

doing things (Ambler, 2001).  Within the software domain paradigms represent mental models of 



 

36 

systems, which influence the approach and techniques used to analyse and develop systems (Cloete & 

Gerber, 2004). 

3.2.1 Agent orientation: terminology 

In section 2.3.1 during the discussion of the mobile agent execution environment, some terminology 

regarding this environment was defined.  Here, in order to put agent orientation in the correct 

perspective, some of the terminology used in the context of agent-orientation is explained.  In both 

cases, this is done in order to define the terminology as closely as possible to the relevant discussion.  

Furthermore, the terminology used to describe the mobile agent execution environment, is used in the 

agent programming milieu, and therefore lies on a different level.  

 

The terms ‘agent-based’ and ‘agent-oriented’ appear to be used quite loosely and sometimes 

interchangeably in the literature (see for example [Jennings, 1999a; 2001]).  To eliminate any 

confusion that may exist, the terms ‘agent-based’ and ‘agent-oriented’ are clarified.   

 

In A Dictionary of Computing, (2004) the term ‘based’ implies ‘use of’ or ‘using’, while ‘oriented’ 

conveys the impression of being ‘focused on’ or ‘geared towards something’.  In the same vein, but 

applied to programming, both Ambler (2001) and Sebesta (1999) describe object-based programming 

languages as programming languages that natively support some, but not all of the properties of an OO 

language, and thereby allow the use of objects.  OO programming languages in contrast are generally 

seen as supporting the OO concepts of inheritance, classes, objects, polymorphism and message 

passing.  Following this analogy, agent-based systems can be seen as merely using agents, while agent-

oriented systems are viewed as having the entire development process from systems analysis to 

implementation steeped in and founded on agent concepts such as autonomy, interaction, intelligence, 

etc.   

 

Agent-based programming then entails creating a software system that uses a set of collaborating 

agents to achieve a task(s).  On the other hand, agent-oriented programming (AOP) is defined as 

programming the desired behaviour of individual agents directly using mental attitudes, in an agent 

programming language with semantics based on some theory of agency (Luck et al., 2004a; Shoham, 

1993; Wooldridge, 2002).  This concept is expanded on in the next section.  

 



 

37 

Judging by the number of articles referring to ‘agent-oriented software engineering’, this term seems to 

be well established.  This is confirmed by the recent launch of the new International Journal on Agent-

Oriented Software Engineering (IJAOSE) (2005).  Agent-oriented software engineering (AOSE) 

approaches focus directly on the properties of agent-based and agent-oriented systems and try to define 

a methodology to cope with all aspects of agents (Bauer & Muller, 2004; Tveit, 2001).   

 

Though agent-based computing is used as an encompassing term to include AOSE and agent 

programming, ‘agent orientation’ (similar to ‘object orientation’ in comparison to ‘object-oriented’) 

appears to be a wider and in general a more encompassing term than both ‘agent-based’ and ‘agent-

oriented’.  The term agent orientation is therefore used in this research to include the concepts of both 

AOSE, and agent programming.  Agent programming is usually a consequence of AOSE and in turn 

includes both agent-based programming (often implemented by using OO techniques and 

methodologies) and agent-oriented programming (frequently implemented in explicit agent 

programming languages), as depicted below: 

 

Agent Orientation 

Agent-oriented Software Engineering (AOSE)

Agent Programming

Agent-based Programming Agent-Oriented Programming

 

Figure 3.1 Agent Orientation 

 

There are essentially two schools of thought in AOSE (Henderson-Sellers & Gorton, 2002).  One point 

of view is that agent-oriented methodologies should be developed independently of OO methodologies.  

The other believes that existing OO methodologies should be extended to support agent concepts.  

Methodologies based on the first approach might lead to agent-oriented programming.  The latter leans 

towards agent-based programming, since an OO methodology uses classes, class features and a specific 

set of relationships based on the object-server model, and were not originally intended to support agent 

orientation.  Similarly, agent-oriented methodologies can probably more readily be used to implement 

strong agents, than extensions of OO methodologies. 



 

38 

To conclude this section, attention is drawn to the distinction between single-agent and multi-agent 

systems.  In a single-agent system, an agent performs a task on behalf of a user or some process, and 

consists of a computer program providing assistance to a user dealing with a particular application.  

During this process, the agent may communicate with a user and local or remote system resources, as 

well as other agents.  Examples include personal assistants, meeting schedulers, mail managers, search 

agents or news filtering agents.  As mentioned earlier, multi-agent systems consist of a number of 

autonomous agents working towards a common goal.  Each agent typically has to achieve a specific 

task or goal in order to contribute to the agent system’s collective goal.  This may require the agents to 

interact with one another, as well as with users and system resources.  A single agent may be a mobile 

agent, and multi-agent systems may consist of mobile agents, stationary agents or a combination of 

both types (Luck et al., 2004b; Manvi & Venkataram, 2004). 

3.2.2 Agent orientation as a paradigm 

As explained above, agent orientation includes AOSE as well as agent programming.  The 

philosophical and theoretical framework, or mindset of agent orientation as described here, therefore 

refers to analyzing, designing and implementing complex software systems as a collection of 

interacting, autonomous agents.  These agents exhibit proactive and intelligent behaviour, and interact 

with one another through high-level protocols and languages (Burmeister, 1996; Jennings, 1999a; Luck 

et al., 2004a; Zambonelli et al., 2001).   

 

In an agent-oriented software-engineering approach a problem will be decomposed into multiple 

autonomous agents, embedded in an environment, that can act and interact in flexible ways to achieve 

their goals (Weyns, Helleboogh, Steegmans, Wolf, Mertens, Boucke & Holvoet, 2004).  Three key 

abstractions are employed in the agent-oriented paradigm: agents, interaction and organization 

(Burmeister, 1996). 

 

Aa already suggested in the previous chapter, an agent is autonomous, continuously perceives its 

environment, reacts to the perceived information and interacts proactively with its environment as well 

as with other agents in order to achieve its goals.  Agents usually act on behalf of 

individuals/companies or as part of some wider problem-solving effort.  Interaction between agents 

therefore typically occurs in the presence of some organizational context, namely in the context of 

some relationship between the agents concerned, which in turn affects the behaviour of the agents.  

These relationships have to be represented explicitly in the system.  This is done by means of protocols 



 

39 

that enable organizational groupings to be formed and disbanded, mechanisms that ensure groupings 

act together in a coherent fashion, and structures that characterize the macro-behaviour of collectives.  

 

In an agent-oriented view of the world, most problems require or involve multiple agents to represent 

the decentralized nature of the problem, the multiple loci of control, the multiple perspectives or 

competing interests.  Agents in such a multi-agent system need to interact with one another in order to 

achieve their individual goals or to manage the complexities of being situated in a common 

environment.  There are two points that qualitatively differentiate agent interactions from those that 

occur in other software engineering paradigms:  

• Agent-oriented interactions occur through a high-level ACL so that interactions are conducted 

at the knowledge level, in terms of which goals should be followed at what time, and by whom. 

Method invocation or function calls in contrast operate at a purely syntactic level. 

• As agents are flexible problem solvers, operating in an environment in which they have only 

partial control and observability, interactions need to be handled in a similarly flexible manner.  

Agents therefore need the computational apparatus to make context-dependent decisions about 

the nature and scope of their interactions and to initiate actions that were not foreseen at the 

time they were designed (Jennings, 1999a; 1999b; 2001).  

 

Decomposing the system into autonomous agents introduces a tool for conceptual grouping that comes 

with the well-defined bounds of an agent, since all components that compose the control-flow of a 

particular agent are grouped as an entity.  This makes it easier to identify larger units in the system that 

belong together semantically (Lind, 2001).   

 

As a result agents can be grouped or organized in order to be managed as a unit and to create various 

hierarchies in the system.  The organization of agents endows a multi-agent system with more than the 

knowledge, competence and abilities provided by all of its individual agents.  Frequently a multi-agent 

system as a whole, therefore, achieves more than the sum of its component agents’ goals.  This is 

termed ‘emergence’ (Jennings, 1999a; Zambonelli et al., 2001).  For example, in a system composed of 

multiple autonomous agents, each looking for computational resources to utilize, a global load 

balancing of the activities can be achieved, without any one agent specifically attempting to manage the 

load balancing.  Consequently the organizational structures, or societies of agents, should be analyzed, 

designed and implemented as first-class entities in the system (Zambonelli et al., 2001).   

 



 

40 

Huhns (2004) point out that there is a difference between agent-oriented programming and 

programming multi-agent systems.  In agent-oriented programming the goal is to provide a societal 

view of computation in which multiple agents interact with one another in order to realise their goals.  

Agents consist of mental states such as beliefs, desires and intentions, while a computation consists of 

the agents informing, requesting, offering, accepting, rejecting, competing and assisting one another.  

Various constraints are placed on the mental state and methods of the agents (Shoham, 1993).  An 

agent-oriented program will consist of a set of transition rules that determine how an agent in a given 

mental state will react to an input, possibly a message or set of messages from other agents, by 

specifying its new mental state and any outputs (Luck et al., 2004a).  Reacting to input and specifying a 

new mental state, with corresponding outputs, can be seen as (at least) adapting to the environment, and 

possibly learning from experience. 

 

The abstractions provided by agents are therefore founded on animate behaviour (autonomy and active 

functionality) as well as psychological concepts such as beliefs, desires and intentions.  The 

combination of activity and autonomy allows an agent to protect its internal state against unwarranted 

changes and refute unwanted attempts to use its functionality, as well as to play an active role in its 

environment.  Agent-oriented programming focuses on implementing the mentalistic states of the 

individual agent (beliefs, desires and intentions) to allow it to act intelligently in its environment.  The 

resultant systems tend to consist of complex entities (strong agents) that use simple interactions to deal 

with a complex environment, as there is little effort to model the environment and incorporate that into 

the agent (Huhns, 2004).   

 

Multi-agent systems on the other hand are based on social abstractions taken from sociology, economy 

and law, namely commitments and obligations (Huhns, 2004).  In a multi-agent system, agents are 

regarded as populating a society whose global activities proceed according to specific social laws and 

conventions.  Agents living in a multi-agent society therefore have to obey some global laws when 

interacting with other agents (Zambonelli et al., 2001).  Accordingly multi-agent systems focus on 

cooperative interactions, both between the active entities (agents) and with the passive entities (objects) 

in their environment, in order to realize the global laws.  As a result multi-agent system development 

models the environment, mutual beliefs, joint intentions and common goals.  Commitments are used to 

encode relationships between the agents, while obligations, namely commitments to follow required 

policies, enable an agent to reason about the relationship between its responsibilities and its decision-

making constraints and goals (Huhns, 2004). 



 

41 

A multi-agent system is therefore a deliberate planned outcome resulting from focusing on the 

organization and coordination of the agents during the development process, over and above the design 

and implementation of the agent architectures and their environment. 

 

Figure 3.2 provides an agent-oriented view of a system illustrating some concepts in agent orientation. 

The system represents a scaled-down version of an examination situation in a school involving a 

society of teachers, learners and a supervisor.  Agents represent each of the teachers, learners and the 

supervisor.  The school itself is the environment in which the agents operate.  The teachers (T1 and T2) 

are organized in a group.  Each teacher has an individual goal, namely to mark the examination scripts 

for the subject he/she is offering.  Each teacher also works towards a global goal, namely to determine 

a final mark for each learner.  The final mark consists of the average of the marks for all the subjects a 

learner is taking.  Teachers interact with students, for example to hand out marked scripts.  They also 

interact with each other in order to determine the final mark for a learner.  The manner in which they 

interact with each other, differ from the manner in which they interact with a learner, and thus use 

different interaction protocols. 

 

Learners (L1 to L5) are organized in groups according to the subjects they are taking.  Similar to the 

group of teacher, individual goals, common goals, and different interaction protocols, etc. can be 

identified for the learners as well as for the supervisor S, who supervises during the examination.   

 

S 

T1 T2 

L1 

L2 

L3 L4 

L5 

Environment 
(school) 

 

Figure 3.2  The examination situation in a school represented by a society of agents 



 

42 

Since agent orientation is a relatively new software engineering paradigm, a variety of methodologies 

and techniques to design agent-based and agent-oriented systems has been developed, and no standard 

methodology has, as yet, been adopted.  Various methodologies based on, among others, knowledge-

level approaches, agent-oriented approaches and methodological extensions to OO approaches, as well 

as using patterns and components to develop agents, have been proposed.   

3.2.3 Implementing the agent paradigm 

Methodologies for software development typically consist of a modelling language and a software 

development process.  The modeling language, such as Unified Modelling Language (UML), is used to 

represent models of the system visually.  The software development process defines the development 

activities, interrelationships between activities and the manner in which activities are performed.  Each 

activity produces artifacts such as specification documents, designs, models, code, test cases, manuals 

etc.  In the software development process four phases are generally identified: requirements analysis, 

design, implementation and testing.  These phases can be executed sequentially (the waterfall method) 

or iterations can be made over (parts of) the phases (Ambler, 2001; Bauer & Muller, 2004; Weyns et 

al., 2004).  This dissertation focuses on providing guidelines for novice mobile agent programmers.  

However, the implementation or programming of mobile agents is based on the analysis and design of 

agent systems, and therefore a brief look at these phases are necessary to place agent orientation, and 

specifically mobile agents, in the context of current programming paradigms.  Since Chapter 4 

considers implementing a mobile agent system, only the analysis and design phases will be discussed 

here.  Section 3.2.4 considers the agent-oriented programming landscape. 

3.2.3.1 Requirements Analysis Phase 

During the requirements analysis phase, the analyst investigates the problem domain and the various 

requirements by focusing on what the problem is and documenting it, without indicating how to resolve 

it.  Both functional requirements and non-functional requirements have to be identified.  Functional 

requirements state what the system must do, namely its capabilities.  These are typically captured in use 

cases.  Non-functional requirements refer to constraints on the system such as performance, reliability 

or security.  A visual representation of all relevant concepts or real-world entities in the system is also 

captured in a domain model (Ambler, 2001; Weyns et al., 2004). 

 

Regardless of which methodology, agent theory, agent architecture or agent language is used to 

implement a software agent system, at a conceptual level the analysis process should describe both the 



 

43 

agent model(s), and group/society models for the system to indicate what the agent system has to do 

(but not how it should be done).  Agent models state the characteristics of each agent, including its 

skills (sensors and effectors), reasoning capabilities and tasks.  Group/society models convey the 

relationships and interactions between the agents, as well as their global responsibilities (Iglesias, 

Garijo & González, 2000; Zambonelli et al., 2001).    

 

Similar to traditional methodologies, agent-oriented analysis starts with the definition of a system’s 

requirements and goals.  The application domain is studied and modelled, computational resources 

available and technological constraints listed, fundamental application goals and targets identified, etc.  

As agents have goals to pursue proactively and autonomously, agent-oriented analysis should also 

identify the responsibilities of an agent.  These responsibilities consist of the activities it has to carry 

out in performing one or more tasks.  In all probability this involves specific permissions to access and 

influence the environment as well as interactions with other agents in the application (Zambonelli et 

al., 2001).   

 

Since a multi-agent system forms a society of agents, the analysis phase should identify the agents’ 

individual responsibilities (tasks), as well as their global responsibilities in the multi-agent system as a 

whole, namely its social tasks.   

 

Individual tasks are associated with one specific competency in the system.  Such tasks typically 

involve accessing and influencing a specific section of the environment to perform a simple task.  One 

or more tasks are assigned to each agent in the system, which have to accept responsibility for it.  

Multiple agents in a system may be assigned the same task.  This corresponds to assigning each agent a 

specific role in the organization or society (Zambonelli et al., 2001).  The role of an agent is regarded 

as the functional or social part that an agent embedded in a multi-agent system environment enacts to 

assist in a (joint) process such as problem solving, planning or learning (Lind, 2002a).  A role 

definition therefore describes the agent’s capabilities, the data that is needed to produce the desired 

results and the requests that may activate a particular service (Lind, 2001).   

 

Social tasks represent the global responsibilities of the agent system.  In order to perform these tasks, 

several, possibly heterogeneous, competencies will usually have to be combined.  This creates the need 

for global social laws that have to be respected and/or enforced by the society of agents in order to 

function properly and achieve the global task (Zambonelli et al., 2001). 



 

44 

3.2.3.2 Design phase 

In the design phase the designer creates a solution to the problem based on the outcome of the 

requirements analysis phase by specifying how to solve the problem.  Two design levels are commonly 

recognized: architectural design and detailed design.  During architectural design, an architecture is 

devised to satisfy both functional and non-functional requirements.  This will denote the structure(s) in 

the system, consisting of software elements, the externally visible properties of the elements and the 

relationships between them.  Software elements, such as a process, module or component form the 

building blocks for structures.  The externally visible properties of the elements indicate what other 

elements will know about a specific element such as services provided, performance characteristics and 

shared resource usage.  The relationships between elements indicate how they are connected, namely 

how an element uses, is used by, relates to, or interacts with other elements.  During detailed design 

detailed descriptions and diagrams of the inner workings of all elements in the architecture are created 

to such a level that the system can actually be implemented (Weyns et al., 2004). 

 

During the design of the agent system, responsibilities, tasks and interaction protocols are mapped onto 

agents, high-level interactions and organizations.  The competence required by the task(s) assigned to 

an agent, determine the inner structure of the agent, namely its capabilities and the way it represents the 

environment.  The information required and provided, as well as the actions to be performed to perform 

the task, in turn determines the interaction protocol for the agent.  The agent will be designed to 

represent the portion of the environment with which it is concerned, to infer new information from this 

knowledge, and to act on the environment somehow.  Its interaction protocols will be defined to allow 

the agent to contact other agents, obtain the information it needs from them, transfer newly construed 

information to them and coordinate its activities with other agents (Zambonelli et al., 2001).   

 

Though the design process in the available methodologies may produce a variety of different artifacts, 

it should provide at least the following in a format detailed enough to allow implementation (or design 

using traditional OO techniques): 

• An internal agent structure or architecture to describe the internal structure of an agent such as 

its goals, beliefs and plans. 

• A social architecture to indicate the social organization of agents or groups of agents, and to 

describe their behaviour. 



 

45 

• A relationships model to indicate inter-agent dependencies, cooperation and commitments 

between agents (Bauer & Muller, 2004; Burmeister, 1996; Ellamari & Lalonde, 1999; Sudeikat, 

Braubach, Pokahr& Lamersdorf 2004, Braubach et al., 2004a). 

 

Other design outputs suggested include among others artifacts to indicate (Bauer & Muller, 2004; 

Ellamari & Lalonde, 1999; Sudeikat et al., 2004) 

• the services/capabilities of an agent in order to define the ability of the agent to solve problems 

autonomously; 

• a communication model to allow agents to communicate and cooperate; 

• an acquaintance model to provide an agent with models of other agents’ beliefs, capabilities and 

intentions; and  

• a deployment model to express the allocation of agents to places in the environment, migration 

and dynamic creation of agents.  

 

As a substantial number of methodologies and modelling languages are currently used to design agent-

based systems, the artifacts produced during the design process vary according to the methodology.  

These may include among others, UML or Agent UML (AUML) descriptions, use cases, sequence and 

state diagrams, Class Responsibility Collaborator (CRC) cards, agent class diagrams, protocol 

diagrams, organization diagrams etc.  For a discussion on various methodologies and modelling 

languages see Bauer and Muller (2004), Iglesias et al. (2000), Tveit (2001) and Zambonelli et al. 

(2001).   

3.2.3.3 Design approaches 

In order to present a comprehensive view of the agent programming environment, some issues in this 

area are discussed briefly, and a number of design approaches are described. 

 

One of the issues in agent orientation is the gap between agent-oriented design and implementation 

(Amor, Fuentes & Vallecillo, 2004; Dastani & Gomez-Sanz, 2005; Sudeikat et al., 2004).  Currently 

there is no single unified and unique general-purpose agent-oriented methodology.  Some 

methodologies such as PASSI (process for agent societies specification and implementation) 

(Cossentino, Burrafato, Lombardo & Sabatucci, 2002), support the complete software development life 

cycle from problem description to code generation on the agent platform supported by the specific 

methodology.  Most methodologies, however, facilitate only analysis and design.  Gaia (Wooldridge, 



 

46 

Jennings & Kinny, 2000) and SODA (societies in open and distributed spaces) (Omicini, 2001) are 

examples of methodologies supporting only analysis and design.  In these cases the implementation is 

done on an existing or available agent platform, which does not necessarily match the methodology 

used.  Developers consequently have to, for each system, define and implement mappings and 

transformations from the design produced by the agent-oriented methodology, to the APIs provided by 

the agent platform (Amor et al., 2004).   

 

The diversity of both the domains for agent technology and the underlying agent and multi-agent 

architectures, implies that a single AOSE methodology may not be suitable for all purposes.  

Accordingly, which agent-oriented methodology to use, is to some extent dependent on the platform on 

which the design will be implemented, since different implementations of agent architectures need 

different levels of expressiveness (Bauer & Muller, 2004; Sudeikat et al., 2004).  While this is not 

necessarily perceived as a problem (Report on Workshop 14 at OOPSLA2002: Agent-Oriented 

Methodologies, 2002; Henderson-Sellers & Gorton, 2002), various approaches attempt to bridge the 

gap between agent-oriented design and implementation.  For more information on these efforts, see 

(FIPA Methodology Technical Committee; OMG Agent Working Group; Report on Workshop 14 at 

OOPSLA2002: Agent-Oriented Methodologies; Amor et al., 2004; Ashri & Luck, 2002; Bauer & 

Muller, 2004; Fortino, Russo & Zimeo, 2004; Henderson-Sellers & Gorton, 2002; Jo, 2001; Sudeikat et 

al., 2004).  

 

In order not to detract from the focus of this research, this problem will not be discussed further.  Only 

a brief survey of agent-oriented design approaches is hence provided in this section, followed by their 

implementation in the next section. 

 

Three main roots for the development of agent-oriented methodologies and modelling languages can be 

identified: extensions of both knowledge engineering and OO approaches, and agent-oriented 

approaches (Bauer & Muller, 2004; Iglesias et al., 2000; Zambonelli et al., 2001). 

 



 

47 

A g e n t - b a s e d  s y s t e m s  d e s i g n

K n o w le d g e  A g e n t - O r i e n te d  O b j e c t - O r i e n te d  
E n g in e e r i n g  A p p r o a c h e s  A p p r o a c h e s

 

Figure 3.3 Roots for the development of agent-oriented methodologies 

 

Early approaches supporting the software engineering of agent-based systems were based on 

knowledge engineering.  These approaches now once again receive attention in Semantic Web and 

ontology technologies.  Examples include CommonKADS (Schreiber, Wielinga, Akkermans & Van de 

Velde, 1994), CoMoMAS (Glaser, 1996) and MAS-CommonKADS (Iglesias, Garijo, Gonzalez & 

Velasco, 1997).  Since agents have cognitive characteristics, knowledge engineering principles provide 

the ability to represent entities and relationships relevant for a specific domain from a knowledge-level 

perspective by providing formal and compositional modelling languages for the verification of system 

structure and function.  However, these approaches cannot support specific agent-related constructs 

such as the distributed and social aspects of agents or their reflective and goal-oriented attitudes (Bauer 

& Muller, 2004; Iglesias et al., 2000; Zambonelli et al., 2001).  

 

Consequently agent-oriented approaches were developed to provide support for modelling artifacts 

such as goals, intentions and organizations.  Examples include the Gaia methodology (Wooldridge, 

Jennings. & Kinny, 2000), its extension ROADMAP (Juan, Pearce & Sterling, 2002) and the SODA 

methodology (Omicini, 2001).  However, as the underlying conceptual models were proprietary, 

difficult to understand without a background in agent technology, and few, if any industrial-strength 

tools were available to reduce the complexity, purely agent-oriented approaches were not easily 

implemented and accepted by industry (Bauer & Muller, 2004).   

 

As a result, a number of methodologies to extend and include agent-oriented features into OO 

approaches such as UML and RUP (Rational Unified Process) were developed (Bauer & Muller, 2004).  

Examples of these include Agent Modelling Technique for Systems of BDI Agents (Kinny, Georgeff & 



 

48 

Rao, 1996), TROPOS (Giunchiglia, Mylopoulos & Perini, 2002; Mylopoulos, Kolp & Castro, 2001), 

Prometheus (Padgham & Winikoff, 2003) and MaSE (Wood & DeLoach, 2000).  Extensions to UML 

such as AUML (Bauer, Muller & Odell, 2001), and M-UML for mobile agents (Saleh & Elmorr, 2004) 

have also been proposed.  OO methodologies do not address the different types of communication and 

the social relationships between agents or their autonomous and proactive behaviour (Bauer & Muller, 

2004; Iglesias et al., 2000; Zambonelli et al., 2001).  Accordingly, some trade-offs are required in the 

design process, particularly regarding the natural design of agent-based systems.  Nevertheless, they 

offer the advantage of fitting easily into the OO paradigm and enable the development of design tools 

by extending existing OO tools (Bauer & Muller, 2004).  The similarities between agents and the 

specialization from objects to agents are covered in section 3.4.2. 

 

Other design approaches include patterns and components.  A pattern is a reusable solution to a 

common problem, based on proven techniques and approaches from other developers, and taking 

relevant forces into account.  Several types of patterns exist, such as analysis patterns, design patterns 

and process patterns (Ambler, 2001).  Design patterns are defined as ‘explicit formulations of good past 

software development experiences consisting of proven solutions to recurring problems that arise 

within some contexts and systems of force’ (Tahara et al., 1999).  Various patterns have been presented 

for agent systems (Tahara et al., 1999), multi-agent systems (Agent Factory, 2003; Cossentino et al., 

2002; Platon, Sabouret & Honiden, 2004) and mobile agent systems (Aridor & Lange, 1998; Kendall et 

al., 2000).  A possible structure for a pattern catalogue for agent-oriented patterns is also proposed 

(Lind, 2002b). 

 

A component is a cohesive unit of functionality that can be developed independently, delivered and 

combined with other components to build a larger unit. A component is typically (though not 

necessarily) implemented as a collection of classes and has contractually specified interface(s), which 

define its access points. With a pure OO approach, software is built from a collection of classes, while 

with a component-based approach software is built from a collection of components (Ambler, 2001).  

In Kotz et al. (2002) Picco proposes structuring mobile agent systems as a set of mobility components 

in which mobile code and mobile agents interoperate with existing mechanisms, such as remote method 

invocation, wherever possible.  The current features in mobile agent systems would also be available as 

a set of orthogonal components that could be plugged in by programmers to provide for example 

mobility, security or communication.  This would provide much more flexibility than current mobile 

agent systems allow, but it could be a quite difficult challenge to convert mobile agent system features 



 

49 

into standard, reusable, orthogonal components to be combined as needed.  Composing agents and 

mobile agents from components, is explored in Errol, Lang and Levy (2000); Gray (2004); Jazayeri and 

Lugmayr (2000); Lauvset and Johansen (2002); Lee and Shepherdson (2003); Marques, Silva and Silva 

(2000). 

3.2.4 The agent-oriented programming landscape 

A programming environment is the collection of tools used in the development of software.  In the 

context of agents, this is frequently called an agent toolkit.  As pointed out earlier, mobile agents and 

agent-based systems need an environment providing services such as basic communication, the 

discovery and coordination of agents, security, and so forth.  Agent developers use development tools 

and programming languages to implement agent systems.  Development tools and programming 

languages, in turn, are based on agent architectures and different agent theories, which are rooted in 

disciplines such as sociology, philosophy, psychology and biology (Braubach & Pokahr, 2004).   

3.2.4.1 Agent Theory 

Agent theory concerns the use of mathematical formalisms to represent the properties or attributes of 

agents, to define how these attributes are related and to reason about them (Wooldridge & Jennings, 

1995).  Examples of agent theories cited by Wooldridge (2002) and Wooldridge and Jennings (1995) 

include intention logic and the BDI model of rational agency, while Braubach and Pokahr (2004) also 

includes agent-oriented programming and subsumption theory. 

3.2.4.2 Agent Architectures 

As indicated earlier, agent architectures provide software engineering models of agents (Wooldridge & 

Jennings, 1995) and are used to conceptualise the perception, reasoning and action components of 

agents in order to view agents as reactive/proactive entities (Flores-Mendez, 1999).  An agent 

architecture therefore provides information about essential data structures, relationships and control 

flow between the data structures, the processes or functions that operate on these data structures, and 

the operation or execution cycle of the agent (Lind, 2002b; Luck et al., 2004a; Wooldridge, 2002).  In 

(Luck et al., 2004a) four different types of agent architectures are pointed out, namely reactive (for 

example the subsumption architecture), deliberative (for example BDI) and hybrid agent architectures 

(for example TouringMachines) for single-agent systems, and distributed agent architectures (for 

example Contract Net Protocol) for multi-agent systems.  Single-agent systems also use layered 

architectures (Mangina, 2002).  



 

50 

3.2.4.3 Development Tools 

To implement agent systems, the design models developed during the design process should be 

translated into program code.  This can be done in two ways.  The design models can be expressed in 

enough detail to allow direct implementation in an existing language such as Java, or an agent 

programming language that provides the programming constructs to implement agent concepts can be 

used.  In both cases, a programming environment should be provided to facilitate the conversion into 

program code and to implement the agent system (Dastani, 2004).  It can be very difficult to build 

sophisticated software agents from scratch, as specialized skills and knowledge of agent architectures, 

communication technology, reasoning systems, knowledge representation, ACLs, and protocols are 

required.  Both Hayes-Roth and Amor (2003) and Luck et al. (2004a) hence recommend that software 

developers without agent expertise use an agent construction toolkit to build software agents quickly 

and easily.   

 

Agent toolkits deploy the infrastructure required to support agent applications and offer the necessary 

support for developing agents (Lind, 2001; Luck et al., 2004a).  This infrastructure typically includes 

the network-programming and agent communication, security and thread synchronization necessary to 

implement the agent system (Badjonski et al., 2005).  Agent toolkits thus provide the framework to 

implement agent system architectures, and in this way compose the agent programming environment.  

This may be seen as providing a kind of operating system for agents, layered over the standard 

operating system.  Support may range from graphical development environments to management and 

monitoring services.  Toolkits differ considerably in the manner they facilitate the development of an 

agent system.  Some, such as Zeus, use a graphical development environment and require almost no 

need for code.  Others, for example RETSINA, allow the use of a variety of languages (Java, C, C++, 

Python, Perl, Lisp), while still others use agent programming languages such as JACK and DECAF 

(Luck et al., 2004a).   

 

Accordingly, the actual form of toolkits also vary widely: from integrated development environments 

providing a graphical interface, to some form of middleware providing networking capabilities or sets 

of APIs that a programmer can integrate into his/her own solution.  Agent toolkits may typically offer 

(Luck et al., 2004a) 

• facilities to enable the development of individual agents and their interface to the environment – 

namely they allow the developer to construct a single agent and to specify how that agent can 



 

51 

perform actions to influence its environment.  This includes agent capabilities such as planning 

or reasoning as well as the agent architecture or agent model used to convey that; 

• discovery, communication, ontologies and coordination mechanisms to provide coordination 

and communication between multiple agents with regard to both low-level and high-level 

services.  Low-level services include generic services that any distributed system infrastructure 

requires, such as enabling middleware and basic security services.  High-level services refer to 

requirements specific to the operation of an agent-based system, such as coordination 

mechanisms and complex security infrastructure; 

• management services to monitor and debug agent applications; and  

• software specifically aimed at assisting with the software development process, such as an 

integrated development environment, or a set of classes to be used in the construction of an 

agent.  

3.2.4.4 Implementing Agent Systems 

Agent systems are frequently implemented using OO programming, logic-based programming or a 

combination of logic and OO programming (Braubach & Pokahr, 2004).  In Figure 3.4 Braubach and 

Pokahr (2004) provide a visual overview of the current agent programming landscape from the view of 

an agent developer.  This is done by classifying some concrete agent architectures, languages and 

development tools.   

 

Figure 3.4 The agent programming landscape 



 

52 

This classification reveals two main platforms used for agent development: 

• ‘Middleware’ agent platforms provide a conventional OO programming interface, and use a 

simple task-based agent model instead of a theoretically grounded architecture. 

• ‘Intelligent’ or ‘reasoning-oriented’ agent platforms provide deliberative capabilities based on 

an agent model, such as BDI, and follow a logic-based approach. 

 

Middleware platforms focus on FIPA-related9 issues such as interoperability, security and 

maintainability, as well as infrastructure concepts such as white and yellow page services.  Most 

middleware platforms intentionally leave open the issue of internal agent architecture and employ a 

simple task-oriented approach.  The overall agent behaviour can then be taken apart into smaller pieces 

and attached to the agent as required. The tasks themselves can also be implemented in an OO language 

such as Java, which allows the software developer a gentler introduction to agents (Braubach et al., 

2004a).  The majority of current mobile agent systems fall into this category and use a class library to 

provide facilities to support mobility (Luck et al., 2004a).   

 

Reasoning-oriented platforms, on the other hand, concentrate on the behaviour model of a single agent 

trying to achieve rationality and goal-directedness.  Behaviour models are typically based on adapted 

theories from disciplines such as philosophy, psychology or biology.  Behaviour models tend to 

become complicated and difficult to implement and use, especially when advanced AI and theoretical 

techniques such as deduction logics have to be employed to program the agents (Braubach et al., 

2004a). 

 

Middleware agent platforms naturally allow agent-based programming, in contrast to reasoning-

oriented platforms, which implement agent-oriented programming.  On a reasoning-oriented platform, 

an agent system is often implemented with an agent programming language.  Agent programming 

languages are often developed as an extension or specialization of OO languages and allow the 

programming of a system in terms of some of the concepts developed by agent theorists.  They 

typically include some structure corresponding to an agent, as well as possibly some other attributes 

relating to agent concepts, such as beliefs and goals (Wooldridge & Jennings, 1995).  AI techniques, 

such as a construct corresponding to a neural network, can also be included (Badjonski et al., 2005).  

                                                 
9http://www.fipa.org 



 

53 

Examples are the Telescript language (White, 1994; 1997), the JACK Agent Language (an extension of 

Java) (JACK), AGENT0 (Shoham, 1993), PLACA (Thomas, 1995) and Concurrent METATEM 

(Fisher, 1994).  Multi-agent programming languages should include programming constructs to 

implement the individual agents as well as programming constructs to implement their communications 

and interactions.  Jadex, Jason and 3APL support the development of multi-agent systems (Multi-agent 

Systemen, 2004), while CLAIM (Fallah-Seghrouchni & Suna, 2003a; 2003b) is intended for multi-

agent systems comprising intelligent mobile agents. 

 

Many agent-based systems deployed in industry are implemented directly in OO languages.  The close 

similarity between objects and agents (see section 3.4.2) makes it easier to implement agents in an OO 

language rather than in a language such as Prolog.  The absence of a standard agent programming 

language and the environment provided by the Java virtual machine are also listed as some of the 

reasons for this (Dastani, 2004).   

 

Certain agent toolkits, such as RETSINA and Zeus, allow agents to operate as a stand-alone program, 

while others, for example JACK, JADE, IMPACT and living markets, provide some kind of containing 

environment in which agents have to operate.  Such a containing environment offers supporting 

services for all agents, provides a standardized approach for communications and appears to be the only 

way to support mobility for agents (Luck et al., 2004a).  The containing environment provides 

protection and allows access control to local resources, one of the features required from a mobile 

agent system, as indicated in 2.3.3.4. 

 

A wide variety of agent construction toolkits, both in number and capabilities, is available.  Given the 

lack of a standard agent construction toolkit, combined with the number of AOSE methodologies 

available, guidance in choosing the appropriate methodology and/or agent construction toolkit to 

develop an application should be sought.  Though it falls beyond the scope of this dissertation, several 

researchers such as Lall (2005), Müller (1998), Sudeikat et al. (2004) attempt to provide guidelines for 

choosing the appropriate methodology and/or toolkit.    

3.3 The OO paradigm 

The OO paradigm is a development strategy based on the concept that systems should be built from a 

collection of reuseable components called objects (Ambler, 2001). In this paradigm a system is seen as 

a collection of interacting objects that models the interactions between objects to achieve the desired 



 

54 

systems functionality (Ambler, 2001; Cloete & Gerber, 2004).  Objects do things (have functionality) 

and know things (have data) (Ambler, 2001).  The data or attributes that an object holds embodies the 

state of the object, namely what it knows.  The operations on the data, or its functionality (its methods), 

indicates the object’s behaviour, namely what it does/can do.  This resemblance to actual entities 

provides objects with the ability to model elements of real systems as well as to serve as components in 

software systems (Object-oriented programming and the Objective-C Language, 1996). 

 

In the object-orientation paradigm, a program consists of a collection or network of interconnected 

objects calling upon each other in order to solve a problem.  Program design for an OO system consists 

of defining a hierarchy of classes that describe the relationship of the objects that will populate the 

solution program, as well as laying out the network of objects with their behaviours and patterns of 

interaction.  There is no central control and the object network is activated by an external stimulus 

(often a flow of events).  Each object plays a specific role in the program design and collaborates 

through messages with the other objects that it has a relationship with (Object-oriented programming 

and the Objective-C Language, 1996; Ambler, 2001; Horstmann & Budd, 2005; Voss, 1991). 

 

Objects are often seen as ‘actors’ ‘performing’ their methods in the sense that each object plays a 

particular role within the overall program design.  The objects therefore act as the tools or delegates 

executing the program’s activity.  Within its role an object acts fairly independently of the other parts 

of the program, since it is self-contained and to a certain extent can act on its own.  However, despite 

the role possibly being multi-faceted and quite complex, the object still follows the ‘script’ 

programmed for it through its methods (Object-oriented programming and the Objective-C Language, 

1996).  Though UML and Java have introduced event-listener frameworks and other mechanisms to 

allow objects to be more active, traditional objects are still passive, as their methods can only be 

invoked under an external entity’s thread of control (Odell, 2002). 

 

OO programming itself involves three fundamental concepts: abstract data types, inheritance, and 

polymorphism. OO programming languages support the paradigm with classes, methods, objects and 

message passing.  An abstract data type, called a class, generalizes a collection of similar objects and 

represents a template that can be used to create or instantiate similar objects.  An object (instance of a 

class) encapsulates data and procedures in a single entity, and hides information by restricting access to 

it.  Specializations of a class (the base class or superclass) can be defined through inheritance (derived 

classes or subclasses).  A class can simultaneously be a derived class and a base class for its own 



 

55 

derived classes, thereby specifying a hierarchy of objects.  Polymorphism refers to the ability of similar 

objects to respond to the same message in different ways and enables objects to interact with one 

another without knowing their exact type (Object-oriented programming and the Objective-C 

Language, 1996; Ambler, 2001; Horstmann & Budd, 2005; Sebesta, 1999; Voss, 1991). 

 

The relationships or interconnections providing the interaction between objects can take various forms: 

• Inheritance - where a more specialized class (the derived class) inherits from a more general 

class (the base class).  This is often described as an is-a relationship. 

• Dependency - a class depends on another class if one of its member functions or methods uses 

an object of the other class in some way. This is often described as a uses-a relationship. 

• Association - A class is associated with another class if the class has a data field (attribute) 

whose type is another class, namely one can navigate from objects of the class to objects of the 

other class. Associations are maintained with attributes to store the information necessary to 

maintain the relationship, and methods to keep the attributes current. 

• Aggregation - Aggregation is a stronger form of association when a ‘whole-part’ relationship 

exists between classes. This is often described as a has-a relationship. 

• Composition - Composition is a stronger form of aggregation in which a ‘part’ can only belong 

to one ‘whole’ at a given time, and the ‘part’ exists only while the ‘whole’ exists (Ambler, 

2001; Horstmann & Budd, 2005). 

 

In order to maintain relationships, objects and the information needed to maintain the relationships with 

which they are involved, are made persistent, by saving these to permanent storage in either an object 

database or a relational database.  

3.4 Agent orientation as an extension of OO 

Several researchers maintain that object-orientation fails to provide an adequate set of concepts and 

mechanisms for modelling complex systems (Booch, 1994; Huhns, 2004; Jennings, 1999a; Zambonelli 

et al., 2001).  Therefore, agent-oriented system development aims to simplify the construction of 

complex systems by introducing a natural abstraction layer on top of the OO paradigm composed of 

autonomous interacting actors (Braubach, Pokahr, Lamersdorf & Moldt, 2004b; Wooldridge & 

Jennings, 1999).  In fact, agents provide a different and higher level of abstraction than objects, as the 

behaviour of agents more closely mirrors that of the people whose work they are assigned to carry out 

and/or support (Luck et al., 2004a; Zambonelli et al., 2001). 



 

56 

This section investigates how agent orientation extends OO by describing the historic development of 

programming paradigms and comparing objects and agents.  Objects and agents are compared by 

identifying similarities between them, as well as indicating the manner in which agents enhance 

objects. 

3.4.1 Historic development  

The evolution of programming approaches is explained with the aid of Lind’s (2001) three-step 

characterisation, as shown in Figure 3.5: 

 

Agents

Objects Resources

Functions Data

 

Figure 3.5 Lind's three-step characterization (Lind, 2001) 

 

Initially the basic unit of software consisted of a complete program.  A program was seen as a 

collection of functions executed in a pre-determined order to reach a specific well-defined goal.  The 

programmer had full control and determined the behaviour of the program before it began execution.  

Accordingly, the program’s state was the responsibility of the programmer and the system operator 

invoked it.   

 

During the next development step (structured programming), a modular approach was followed to 

organize a program into smaller units of code that could be reused in a variety of situations.  The 

subroutines and structured loops concerned were designed to have a high degree of local integrity.  A 

program is hence interpreted in terms of its data and the functions used to manipulate the data.  The 

state of the unit is determined by externally supplied arguments and it can only gain control when 

invoked externally. 

 



 

57 

Abstract data types created stronger and more explicit relations between data and functions, leading to 

OO programming.  Here each object has local control over the variables (data) manipulated by its 

methods (functions), enhancing the modular approach.  In traditional OO, objects are still regarded as 

passive, since their methods are only invoked when some external entity sends them a message.  

Objects can be invoked at any stage during the program execution. 

 

In the last step of the characterisation, objects are enhanced by the allocation of resources that can be 

used freely, such as computation time.  This freedom in allocating resources provides autonomy to 

agents, and allows software systems to be perceived as a collection of active entities.  For mobile 

agents, the ability to move themselves allows access to additional resources.  Agents can use a variety 

of messages to interact with other entities, including method invocation, notifying, requesting and 

receiving messages from other agents and their environment.  Each agent has its own thread of control, 

thereby localizing code, state and invocation.  The individual rules and goals of an agent can determine 

when and how it acts, and little or no interaction is required to initiate an application.  This view 

supports the principle of locality, since all the elements that combine to create the control-flow of a 

specific agent are grouped together. In an OO system, in contrast, the control-flow specification is 

distributed through the entire program code (Lind, 2001; Odell, 2002; Parunak, 2000).  Multi-agent 

system focus on the cooperation between agents and explicit structures, mechanisms and protocols are 

used to implement this.  

3.4.2 Agents and objects 

The lack of a unanimously established definition of an agent gives rise to disagreement among 

practitioners and researchers on the difference between agents and objects (Luck et al., 2004a; Odell, 

2002; Wooldridge, 2002).  This section attempts to clarify this by considering agents and objects from 

the viewpoints of the two paradigms (agent orientation and OO) and their implementation, in order to 

show how the agent orientation paradigm extends the OO paradigm.  Agent orientation and OO are 

compared at two levels: during design and analysis, and during implementation.  Table 3.1 provides a 

summary of this comparison, and points out both similarities and differences between agent orientation 

and OO. 

3.4.2.1 Comparing OO and agent-oriented analysis and design  

In both the OO and AOSE paradigms a system is regarded as a set of interacting entities working 

together to achieve a goal.  Accordingly, during the analysis and design phases of both paradigms, 



 

58 

these entities as well as their interactions and interrelationships are identified and defined.  However, in 

agent orientation not only the individual responsibilities and corresponding tasks for agents are 

identified, but also the global responsibilities and the corresponding social tasks of the multi-agent 

system as a whole.  This means that agents may pursue their own goals as well as a common goal.  In 

general objects cooperate to achieve a common goal, but does not each have a goal of its own.  

Furthermore, in pursuit of the common goal(s) in a multi-agent system, emergence often ensues, which 

is not the case in an OO system.  In a single agent system the focus will be on the individual agent 

acting autonomously, which also differs from the traditional view of an OO system in which the objects 

are not autonomous. 

 

OO methodologies do not define explicit techniques for modelling the autonomous and proactive 

behaviour of agents, or for their social relationships and the various types of communication they 

employ.  OO methodologies also offer no support for capturing the reactive and proactive behaviour of 

agents, or for maintaining a balance between the two (Zambonelli et al., 2001).  As a consequence, the 

resulting system architectures for OO systems and agent systems differ.  Both agents and objects can 

use inheritance and aggregation to define their architecture (Shoham, 1993).  A traditional OO software 

architecture expresses the functional dependencies or relationships between objects.  An agent or multi-

agent system architecture, though, models high-level dynamic interaction between agents, as well as 

agent interactions with the environment (Zambonelli & Omicini, 2004).  Since no first-class notion of 

organizational structure exists in OO, OO approaches provide only minimal support for specifying and 

managing organizational relationships.  Relationships are basically defined by static inheritance 

hierarchies (Jennings, 1999a; 2001).  This is insufficient to denote organizational relationships between 

real-world entities.  As discussed earlier, agents in a multi-agent system are regarded as a society and 

each agent in the multi-agent system can be viewed as both an individual software system and part of a 

society.  Procedures for modeling these social relationships between agents have to be defined.  In 

AOSE organizational relationships, such as collections of agents (subsystems), are explicitly 

represented in structures, and interaction protocols are used for grouping and disbanding sets of agents 

(Zambonelli et al., 2001). 

3.4.2.2 Comparing agents and objects at implementation level 

As described in 3.3, an object is a high-level abstraction that encapsulates state (attributes or data) and 

behaviour (methods or operations on the data).  Objects typically represent abstractions of things, or 

passive entities in the real world (Huhns, 2004; Lind, 2001; Travers, 1996; Tveit, 2001).   



 

59 

In contrast, an agent was earlier described as a software system that is situated in an environment in 

which it operates in a continuous Perceive-Reason-Act cycle.  The ability of the agent to choose how to 

react or respond to perceived changes in the environment provides the agent with autonomy, allowing it 

to display flexible behaviour, thereby becoming active.  Agents are therefore generally regarded as 

representing abstractions of intelligent beings, namely active entities, and need to support structures for 

representing mental components such as beliefs and commitments.  These structures are not normally 

embedded in an object, even though it is possible to build systems that do integrate these properties 

(Flores-Mendez, 1999; Wooldridge, 2002).   

 

At an implementation level encapsulation allows objects to hide or control their own internal state, but 

leaves them no choice as to whether or not to execute a public method when it is invoked by a 

message from another object.  The object sending the message to invoke a method, in effect then 

controls the execution of the method.  The fact that objects cannot choose whether or not to interact 

makes them passive.  Therefore, though objects encapsulate state and behaviour realization (similar to 

agents), they do not encapsulate behaviour activation or invocation (Jennings, 1999a; 2001; 

Wooldridge, 2002).  In contrast to traditional OO languages, agent programming languages typically 

include special features such as a structure corresponding to an agent, and possibly programming 

constructs to implement agent communication, interaction and cooperation.  This allows the 

implementation of agents as active autonomous entities with the ability to choose whether or not, as 

well as how, to respond to a request from another agent (Flores-Mendez, 1999; Luck et al., 2004a; 

Tveit, 2001; Wooldridge, 2002).  Furthermore, since software agents each has its own thread of control, 

agents also have the ability to initiate action at any time and cannot be directly invoked like objects, 

thereby encapsulating behaviour activation in addition to state and behaviour realization (Luck et al., 

2004a; Odell, 2002).   

 

When comparing agents and objects, autonomy and interaction are perceived as the two key elements 

that distinguish agents from traditional objects (Odell, 2002).  To a certain extent the varying degrees 

of autonomy and interaction as described by Odell (2002) and set out in the following paragraphs 

(where only references other than Odell are indicated) also characterize the manner in which agent 

orientation extends OO.   

  

Autonomy has two independent aspects: dynamic autonomy and nondeterministic autonomy.  Dynamic 

autonomy in agents varies from them being simply passive to entirely proactive, since they can react to 



 

60 

both specific method invocations and to observable events in the environment.  Proactive agents poll 

the environment for events and messages to determine their actions.  In contrast, despite mechanisms 

that allow objects to be more active (see 3.1), traditional objects are still regarded as passive, since their 

methods are invoked under a caller’s thread of control. 

 

Nondeterministic autonomy refers to the degree of unpredictable behaviour, which may range from 

absolutely predictable to entirely unpredictable.  Though conventional objects do not have to be 

completely predictable, they tend to be more predictable since object classes are designed to be 

predictable to encourage reuse.  Agents, however, are usually designed to base their behaviour on 

individual goals and states, combined with the input from ongoing interaction with other agents, which 

causes their behaviour to be relatively unpredictable. 

 

Furthermore, at the time of design, it is not always known how and when an object’s functionality will 

be used, or how this will affect its state, which can lead to unanticipated errors (Huhns, 2004).  Agents, 

however, are designed to handle unexpected events and, owing to their autonomy, have the flexibility 

to react or respond appropriately to perceived changes in the environment (Jennings, 2001; Luck et al., 

2004a).  Agents therefore exhibit flexible (reactive, proactive and social) behaviour, while the standard 

object model does not provide for these concepts, even though it is possible to build systems to include 

these properties (Flores-Mendez, 1999; Wooldridge, 2002).   

 

The more ‘opaque’ view of encapsulation in the agent-based approach also renders agent behaviour 

unpredictable, for two reasons:  

• The requested behaviours that an agent may perform may not be known within the active 

system, since an agent can employ mechanisms such as publish/subscribe, protocol registration, 

‘yellow page’ or ‘white page’ directories or broker agents to access methods or services.  In 

OO, in order to code, the programmer needs to know what interfaces are supported by an 

object.  

• Agent communication is usually asynchronous, with no predetermined flow of control from one 

agent to another, since an agent may initiate action at any time, and not only in response to a 

message.  Agent languages therefore need to support parallel processing to enable asynchronous 

messaging and event notification.  OO languages do not usually support asynchronous 

messaging and event notification. 

 



 

61 

Interaction, namely the ability to communicate with the environment and other entities, can also be 

expressed in degrees.  It varies from the most basic level, which is object messages or method 

invocations, to agents reacting to observable events in the environment, and at the highest level, 

multiple, parallel interactions with other agents in multi-agent systems. 

 

Both objects and agents use message-passing to communicate with other objects or agents.  For objects, 

message-passing is usually simply method invocation, though they can also communicate by changing 

data members to which they have access rights, or that fall within their scope (Venter & Barrow, 2003).  

In contrast, while agent-based communication can also use method invocation, agents distinguish 

between different types of messages.  Often these messages are modelled as speech-acts in an ACL, 

using complex protocols to negotiate.  As mentioned earlier, objects thus communicate at a purely 

syntactic level, while agents interact at a knowledge level (Iglesias et al., 2000; Jennings, 1999a; Luck 

et al., 2004a; Shoham, 1993).  In an agent-based environment, agent public services and policies can be 

advertised through mechanisms such as publish/subscribe, protocol registration, page directories or 

broker agents.  Agents also analyze the messages and can decide whether or not to execute the 

requested action.        

 

Agents can have long-term conversations (negotiations) and associations, as well as participate in 

multiple conversations simultaneously by means of multiple threads.  In such a situation each 

conversation would needs its own identity, while a unique message destination or identifier can also be 

used to distinguish threads of conversations.  While conventional OO languages and environments 

cannot easily support such situations, objects could be used for elements of agent conversation where 

little or no autonomy or interactive capability is required. 

 

Agents may also use third party interactions to communicate, by employing for example a broker that 

accepts a request and delegates it to a service provider, or an anonymizer that hides the identity of a 

requester from the service provider.  Strongly typed object systems find it difficult to support these 

situations (Odell, 2002). 

 

In a distributed system, client and server objects generally reside on different computers while OO 

middleware and component transaction monitors provide the interacting facilities required to present 

the system as an integrated whole.  Similarly, software agents can reside on different platforms and 



 

62 

require interacting facilities in order to enable them to communicate and cooperate (Brantschen & 

Haas, 2002). 

 

Because of the interactive and autonomous nature of agents, applications can be launched with little or 

no physical interaction.  No centralized thread or top-down organisation is required, since agent 

systems can organize themselves (Luck et al., 2004a; Odell, 2002).  Furthermore, since agents have at 

least one thread of control each, agent systems and especially multi-agent systems are inherently multi-

threaded.  Even though some programming languages provide constructs for concurrency in OO 

programming, in the standard object model a system has a single thread of control dispersed throughout 

the entire program code (Flores-Mendez, 1999; Luck et al., 2004a; Wooldridge, 2002).   

 

In summary, though objects and agents are both high-level representations of software components by 

means of their states and behaviour, conceptually agents represent a higher level of abstraction.  Agents 

differ from traditional objects in the following ways:  

• They represent flexible, active, autonomous entities since they may decide not to execute a 

request, whereas traditional objects are passive and have no choice as to whether or not to 

execute an invoked method. 

• Agents are interactive and able to use a variety of forms of communication such as method 

invocation, ACLs, advertising services, etc.  To communicate, traditional objects, in contrast, 

mainly use messages and invoke methods.   

• An agent system is usually multi-threaded and has no centralized control, while the standard 

OO system has a single thread of control.  

 

In conclusion, while agent orientation and OO share several similarities, agents are regarded as 

extending objects to a higher level of abstraction owing to their autonomous, flexible nature.  Though 

agents can be implemented as objects and can benefit from using OO technologies, the developer 

should keep agent orientation in mind while implementing agents as objects.   

 

 



   

63 

D
iff

er
en

ce
s 

E
le

m
en

t o
f 

co
m

pa
ri

so
n 

Si
m

ila
ri

tie
s 

O
O

 
A

ge
nt

 o
ri

en
ta

tio
n 

En
tit

y 
 

O
bj

ec
t: 

hi
gh

-le
ve

l a
bs

tra
ct

io
n 

of
 a

 
so

ftw
ar

e 
co

m
po

ne
nt

 e
nc

ap
su

la
tin

g 
its

 
da

ta
 (s

ta
te

) a
nd

 m
et

ho
ds

 (b
eh

av
io

ur
). 

 R
ep

re
se

nt
 a

bs
tra

ct
io

ns
 o

f t
hi

ng
s, 

na
m

el
y 

pa
ss

iv
e 

en
tit

ie
s  

A
ge

nt
: s

of
tw

ar
e 

sy
st

em
 si

tu
at

ed
 in

 a
n 

en
vi

ro
nm

en
t i

n 
w

hi
ch

 it
 o

pe
ra

te
s i

n 
a 

co
nt

in
uo

us
 P

er
ce

iv
e-

R
ea

so
n-

A
ct

 c
yc

le
 

 R
ep

re
se

nt
 a

bs
tra

ct
io

ns
 o

f i
nt

el
lig

en
t b

ei
ng

s, 
na

m
el

y 
ac

tiv
e 

en
tit

ie
s. 

Sy
st

em
 v

ie
w

 d
ur

in
g 

an
al

ys
is

 a
nd

 d
es

ig
n 

Sy
st

em
 re

ga
rd

ed
 a

s a
 se

t o
f i

nt
er

ac
tin

g 
en

tit
ie

s w
or

ki
ng

 to
ge

th
er

 to
 a

ch
ie

ve
 a

 g
oa

l. 
  

En
tit

ie
s, 

th
ei

r i
nt

er
ac

tio
ns

 a
nd

 
in

te
rr

el
at

io
ns

hi
ps

 a
re

 id
en

tif
ie

d 
an

d 
de

fin
ed

. 

O
bj

ec
ts

 c
oo

pe
ra

te
 to

 a
ch

ie
ve

 a
 c

om
m

on
 

go
al

, b
ut

 e
ac

h 
do

es
 n

ot
 h

av
e 

a 
go

al
 o

f i
ts

 
ow

n.
 

 

A
ge

nt
s h

av
e 

in
di

vi
du

al
 g

oa
ls

 a
s w

el
l a

s a
 c

om
m

on
 

gl
ob

al
 g

oa
l. 

  
A

rc
hi

te
ct

ur
e 

B
ot

h 
ca

n 
us

e 
in

he
rit

an
ce

 a
nd

 a
gg

re
ga

tio
n 

to
 

de
fin

e 
th

ei
r a

rc
hi

te
ct

ur
e.

 
O

O
 so

ftw
ar

e 
ar

ch
ite

ct
ur

e 
ex

pr
es

se
s t

he
 

fu
nc

tio
na

l d
ep

en
de

nc
ie

s b
et

w
ee

n 
ob

je
ct

s 
or

 c
om

po
ne

nt
s. 

 R
el

at
io

ns
hi

ps
 a

re
 b

as
ic

al
ly

 d
ef

in
ed

 b
y 

st
at

ic
 in

he
rit

an
ce

 h
ie

ra
rc

hi
es

, t
ho

ug
h 

re
fle

ct
io

n 
m

ak
es

 it
 p

os
si

bl
e 

to
 g

en
er

at
e 

ob
je

ct
s o

n 
th

e 
fly

 th
at

 in
he

rit
 

dy
na

m
ic

al
ly

. 
 O

bj
ec

ts
 d

o 
no

t o
ffe

r s
up

po
rt 

fo
r c

ap
tu

rin
g 

th
e 

re
ac

tiv
e 

an
d 

pr
oa

ct
iv

e 
be

ha
vi

ou
r o

f 
ag

en
ts

, o
r f

or
 m

ai
nt

ai
ni

ng
 a

 b
al

an
ce

 
be

tw
ee

n 
th

e 
tw

o 

A
ge

nt
 o

r m
ul

ti-
ag

en
t s

ys
te

m
 a

rc
hi

te
ct

ur
e 

m
od

el
s 

hi
gh

-le
ve

l d
yn

am
ic

 in
te

ra
ct

io
n 

be
tw

ee
n 

ag
en

ts
, a

s 
w

el
l a

s a
ge

nt
 in

te
ra

ct
io

ns
 w

ith
 th

e 
en

vi
ro

nm
en

t. 
 O

rg
an

iz
at

io
na

l r
el

at
io

ns
hi

ps
, s

uc
h 

as
 c

ol
le

ct
io

ns
 o

f 
ag

en
ts

 (s
ub

sy
st

em
s)

 a
re

 e
xp

lic
itl

y 
re

pr
es

en
te

d 
in

 
st

ru
ct

ur
es

.  
In

te
ra

ct
io

n 
pr

ot
oc

ol
s a

re
 u

se
d 

fo
r 

gr
ou

pi
ng

 a
nd

 d
is

ba
nd

in
g 

se
ts

 o
f a

ge
nt

s. 

Im
pl

em
en

ta
tio

n 
B

ot
h 

ob
je

ct
s a

nd
 a

ge
nt

s e
nc

ap
su

la
te

 st
at

e 
an

d 
be

ha
vi

ou
r r

ea
liz

at
io

n 
O

bj
ec

ts
 c

an
no

t c
ho

os
e 

w
he

th
er

 o
r n

ot
 to

 
ex

ec
ut

e 
a 
p
u
b
l
i
c

 m
et

ho
d 

w
he

n 
it 

is
 

in
vo

ke
d 

by
 a

 m
es

sa
ge

 fr
om

 a
no

th
er

 
ob

je
ct

.  
 

 O
bj

ec
ts

’ m
et

ho
ds

 a
re

 in
vo

ke
d 

w
he

n 
an

 
ex

te
rn

al
 e

nt
ity

 se
nd

s t
he

m
 a

 m
es

sa
ge

 
  A

ny
 o

bj
ec

t c
an

 in
vo

ke
 a

ny
 p

ub
lic

ly
 

ac
ce

ss
ib

le
 m

et
ho

d 
on

 a
ny

 o
th

er
 o

bj
ec

t, 
so

 
th

at
 b

eh
av

io
ur

 a
ct

iv
at

io
n 

ca
nn

ot
 b

e 
en

ca
ps

ul
at

ed
. 

A
ge

nt
s a

re
 a

ct
iv

e 
au

to
no

m
ou

s e
nt

iti
es

 w
ith

 th
e 

ab
ili

ty
 to

 c
ho

os
e 

w
he

th
er

 o
r n

ot
, a

s w
el

l a
s h

ow
, t

o 
re

sp
on

d 
to

 a
 re

qu
es

t f
ro

m
 a

no
th

er
 a

ge
nt

. 
  Si

nc
e 

so
ftw

ar
e 

ag
en

ts
 e

ac
h 

ha
s i

ts
 o

w
n 

th
re

ad
 o

f 
co

nt
ro

l, 
ag

en
ts

 h
av

e 
th

e 
ab

ili
ty

 to
 in

iti
at

e 
ac

tio
n 

at
 

an
y 

tim
e.

  
 A

ge
nt

s c
an

no
t b

e 
in

vo
ke

d 
di

re
ct

ly
 li

ke
 o

bj
ec

ts
, 

th
er

eb
y 

en
ca

ps
ul

at
in

g 
be

ha
vi

ou
r a

ct
iv

at
io

n 
in

 
ad

di
tio

n 
to

 st
at

e 
an

d 
be

ha
vi

ou
r r

ea
liz

at
io

n.
 



   

64 

D
iff

er
en

ce
s 

E
le

m
en

t o
f 

co
m

pa
ri

so
n 

Si
m

ila
ri

tie
s 

O
O

 
A

ge
nt

 o
ri

en
ta

tio
n 

Au
to

no
m

y:
 

D
yn

am
ic

 a
ut

on
om

y 
 

   N
on

de
te

rm
in

is
tic

 
au

to
no

m
y 

(d
eg

re
e 

of
 

un
pr

ed
ic

ta
bl

e 
be

ha
vi

ou
r)

 

 
Tr

ad
iti

on
al

 o
bj

ec
ts

 a
re

 re
ga

rd
ed

 a
s 

pa
ss

iv
e 

si
nc

e 
th

ei
r m

et
ho

ds
 a

re
 in

vo
ke

d 
un

de
r a

 c
al

le
r’

s t
hr

ea
d 

of
 c

on
tro

l, 
th

ou
gh

 
an

 o
bj

ec
t c

an
 a

ls
o 

ha
ve

 it
s o

w
n 

th
re

ad
 a

nd
 

ac
t a

ut
on

om
ou

sl
y 

w
ith

in
 a

 sy
st

em
. 

 C
on

ve
nt

io
na

l o
bj

ec
ts

 te
nd

 to
 b

e 
m

or
e 

pr
ed

ic
ta

bl
e 

si
nc

e 
ob

je
ct

 c
la

ss
es

 a
re

 
de

si
gn

ed
 to

 b
e 

pr
ed

ic
ta

bl
e 

to
 e

nc
ou

ra
ge

 
re

us
e 

by
 m

ea
ns

 o
f i

nh
er

ita
nc

e.
 

 U
ne

xp
ec

te
d 

be
ha

vi
ou

r c
au

se
s e

rr
or

 
m

es
sa

ge
s. 

D
yn

am
ic

 a
ut

on
om

y 
ca

n 
va

ry
 fr

om
 th

em
 b

ei
ng

 
si

m
pl

y 
pa

ss
iv

e 
to

 e
nt

ire
ly

 p
ro

ac
tiv

e 
si

nc
e 

th
ey

 c
an

 
re

ac
t t

o 
bo

th
 sp

ec
ifi

c 
m

et
ho

d 
in

vo
ca

tio
ns

 a
nd

 
ob

se
rv

ab
le

 e
ve

nt
s w

ith
in

 th
e 

en
vi

ro
nm

en
t 

  A
ge

nt
s’

 b
eh

av
io

ur
 is

 re
la

tiv
el

y 
un

pr
ed

ic
ta

bl
e 

si
nc

e 
th

ey
 a

re
 u

su
al

ly
 d

es
ig

ne
d 

to
 b

as
e 

th
ei

r b
eh

av
io

ur
 o

n 
in

di
vi

du
al

 g
oa

ls
 a

nd
 st

at
es

, c
om

bi
ne

d 
w

ith
 th

e 
in

pu
t 

fr
om

 o
ng

oi
ng

 in
te

ra
ct

io
n 

w
ith

 o
ne

 a
no

th
er

. 
 Fl

ex
ib

ili
ty

 to
 re

ac
t o

r r
es

po
nd

 a
pp

ro
pr

ia
te

ly
 to

 
un

ex
pe

ct
ed

 b
eh

av
io

ur
. 

In
te

ra
ct

io
n,

 n
am

el
y 

th
e 

ab
ili

ty
 to

 
co

m
m

un
ic

at
e 

w
ith

 th
e 

en
vi

ro
nm

en
t a

nd
 o

th
er

 
en

tit
ie

s 

B
ot

h 
ob

je
ct

s a
nd

 a
ge

nt
s u

se
 m

es
sa

ge
-

pa
ss

in
g 

to
 c

om
m

un
ic

at
e.

 
M

es
sa

ge
-p

as
si

ng
 =

 m
et

ho
d 

in
vo

ca
tio

n 
or

 
ch

an
gi

ng
 d

at
a 

m
em

be
rs

 to
 w

hi
ch

 it
 h

as
 

ac
ce

ss
 ri

gh
ts

 / 
th

at
 fa

lls
 w

ith
in

 it
s s

co
pe

 
   A

t s
yn

ta
ct

ic
 le

ve
l 

 Sy
nc

hr
on

ou
s 

D
iff

er
en

t t
yp

es
 o

f m
es

sa
ge

-p
as

si
ng

: m
et

ho
d 

in
vo

ca
tio

n,
 A

C
L,

 y
el

lo
w

 p
ag

e/
w

hi
te

 p
ag

e 
di

re
ct

or
ie

s, 
pr

ot
oc

ol
 re

gi
st

ra
tio

n,
 p

ub
lis

h/
su

bs
cr

ib
e 

to
 

no
tic

eb
oa

rd
s, 

th
ird

-p
ar

ty
 in

te
ra

ct
io

ns
, f

or
 e

xa
m

pl
e 

br
ok

er
 a

ge
nt

.  
 A

t k
no

w
le

dg
e 

le
ve

l  
 A

sy
nc

hr
on

ou
s 

 Lo
ng

-te
rm

 c
on

ve
rs

at
io

ns
 (n

eg
ot

ia
tio

ns
)  

M
ul

tip
le

 c
on

ve
rs

at
io

ns
 si

m
ul

ta
ne

ou
sl

y 
D

is
tri

bu
te

d 
sy

st
em

s 
A

ge
nt

s, 
as

 w
el

l a
s c

lie
nt

 a
nd

 se
rv

er
 o

bj
ec

ts
, 

ge
ne

ra
lly

 re
si

de
 o

n 
di

ff
er

en
t c

om
pu

te
rs

 a
nd

 
re

qu
ire

 in
te

ra
ct

in
g 

fa
ci

lit
ie

s. 
 

Th
ou

gh
 O

O
 sy

st
em

s c
an

 b
e 

m
ul

ti-
th

re
ad

ed
, i

n 
th

e 
st

an
da

rd
 o

bj
ec

t m
od

el
 a

 
sy

st
em

 h
as

 a
 si

ng
le

 th
re

ad
 o

f c
on

tro
l 

di
sp

er
se

d 
th

ro
ug

ho
ut

 th
e 

en
tir

e 
pr

og
ra

m
 

co
de

. 

Si
nc

e 
ag

en
ts

 e
ac

h 
ha

s a
t l

ea
st

 o
ne

 th
re

ad
 o

f c
on

tro
l, 

ag
en

t s
ys

te
m

s a
re

 in
he

re
nt

ly
 m

ul
ti-

th
re

ad
ed

.  
 

 N
o 

ce
nt

ra
liz

ed
 th

re
ad

 o
r t

op
-d

ow
n 

or
ga

ni
za

tio
n 

is
 

re
qu

ire
d 

si
nc

e 
ag

en
t s

ys
te

m
s c

an
 o

rg
an

iz
e 

th
em

se
lv

es
. 

 A
pp

lic
at

io
ns

 c
an

 b
e 

la
un

ch
ed

 w
ith

 li
ttl

e 
or

 n
o 

ph
ys

ic
al

 in
te

ra
ct

io
n.

  

T
ab

le
 3

.1
 C

om
pa

ri
so

n 
be

tw
ee

n 
ob

je
ct

s a
nd

 a
ge

nt
s 



 

65 

3.5 When to use agent orientation   

This section investigates the conditions recommended for agent orientation, and indicates how mobile 

agents fit into this context. 

 

Various researchers (Parunak, 2000; Weyns et al., 2004; Wooldridge, 2002; Wooldridge & Jennings, 

1999) indicate that autonomous agents and multi-agent systems seem to be applicable to systems in 

which: 

• the environment is open, or at least highly dynamic, uncertain or complex;   

• data, control, expertise or resources are distributed;   

• agents offer a natural metaphor for delivering system functionality, namely for applications that 

can be naturally modeled as societies of interacting autonomous entities;   

• a number of legacy systems have to be integrated or work together.   

 

Closed agent systems are defined as systems designed by one design team for one corporate 

environment where agents share common goals in a single domain.  Open agent systems, in contrast, 

may include more than one design team and multiple heterogeneous environments as well as a number 

of agents, which do not necessarily share common goals.  A mobile agent system, in particular, is 

deemed to be open if an unknown agent can enter over the network (Picco, 2001).  Because of their 

very nature, open systems are often complex. 

 

Software engineers apply three tactics to assist in managing complexity: 

• Decomposition to divide a large problem into smaller, more manageable parts with limited 

scope so that these can be handled in relative isolation. 

• Abstraction to emphasize some details or properties, while others are concealed, once again to 

limit the scope of the problem.  

• Organization to define and manage the interrelationships between various problem-solving 

components, as this can group smaller-grained components together so that they can be treated 

as a higher-level unit. 

 

Complex systems thus consist of a number of related subsystems organized in a hierarchical way.  Each 

component in the system strives to achieve one or more objectives, while at the same time these 

subsystems work together to attain the functionality of the system.  Each individual component should 



 

66 

have its own thread of control (be active), as well as control its own choices and actions (be 

autonomous).  To reach their individual and collective goals, the components have to interact.  Since a 

complex system’s inherent complexity makes it impossible to know about all interactions beforehand, 

components need the ability to initiate and respond to interactions in a flexible manner at run-time.  

Components in a subsystem thus correspond largely to the concept of autonomous agents, while 

subsystems correspond to agent organizations.  Both autonomy and organization allow incorporating 

abstraction in the system.  The interplay between subsystems and their constituent components also 

match high-level social interactions, in accordance with the agent-oriented approach.  The changing 

sets of relationships between the components in a complex system, as well as treating a set of 

components as a single conceptual unit, also fit in with the agent-oriented mindset (Jennings, 1999a; 

1999b; 2001).  The telecommunications industry provides an example where mobile agents are applied 

to manage the system load in complex distributed networks with differentiated components.  To adapt 

the system load, mobile agents are used to move the functionality around the physical network 

according to changing traffic patterns (Gray, 2004; Luck et al., 2004b; Manvi & Venkataram, 2004).   

 

As highly dynamic systems change frequently, the decentralized and modularized nature of agents 

minimizes the impact that modifications to a module (agent) may have on the rest of the system.  In 

this situation mobile agents can be used to update components and for quality of service negotiations.  

E-commerce and telecommunications applications are examples where this is applicable (Gray, 2004; 

Luck et al., 2004b; Manvi & Venkataram, 2004).  Another example of dynamic systems occurs in 

mobile computing, where dynamic adaptation to the various forms of user connectivity is frequently 

required.  Mobile agents support that as well as the asynchronous execution of client requests, weak 

connectivity and disconnected operations common in mobile computing (Samaras, 2004).  Similarly, a 

pervasive system needs to be context-aware in order to adapt dynamically to changing conditions.  

Mobile agent technology can assist in this regard by allowing intelligent agents to move to different 

locations and retrieve context-related information from there (Zaslavsky, 2004).   

 

An uncertain environment is ill-structured, because it is under-specified.  In such an environment agent 

orientation allows the analyst to design the classes or agents that generate a given domain structure 

rather than the structure itself.  This will extend the useful life of the system as well as reduce the cost 

of maintenance and reconfiguration (Parunak, 2000).  Here mobile agents offer considerable 

advantages for network management and information retrieval.  Mobile agents could search for 

information and services in an unstructured network, as well as provide distributed access to Internet 



 

67 

databases, including distributed retrieval and filtering of information, thereby reducing network load.  

They can also be used to disseminate information and monitor distributed processes (Samaras, 2004).   

 

The autonomous, flexible, pro-active nature of agents suits applications that can be decomposed into 

stand-alone processes, where each process executes without continuous direction from another 

procedure (Jennings, 2001; Parunak, 2000).  This is frequently the case in systems where data, control, 

expertise or resources are distributed.  An example of such an environment is Grid computing, an 

emerging computing model where heterogeneous resources (based on different platforms, 

hardware/software arcitectures and computer languages), located in different places and belonging to 

different administrative domains is shared over a network using open standards (Grid computing, 2006; 

Luck et al., 2003, 2004b).  It has already been shown that mobile agents are well-suited to such an 

environment.  

 

Agents are modular entities, and each agent has its own set of state variables, which, though distinct 

from those in its environment, are linked via the agent’s input and output mechanisms to a subset of the 

environment’s state variables.  An industrial entity with a well-defined set of state variables that are 

distinct from those in its environment, and clearly identifiable interfaces, is therefore suitable for 

implementation as an agent (Parunak, 2000).  This enables agents to represent distinct individuals and 

organizations, as well as groups, which interact at a knowledge level (for example to negotiate) to 

reach their individual and common goals (Jennings, 2001).  Such an application can be naturally 

modelled by a society of stationary and mobile agents.   

 

The recommendations by Whitestein Technologies (Whitestein Technologies) for using the recently 

released AML (Agent Modelling Language), spell out the conditions appropriate for implementing an 

application as an agent system even more clearly.  AML is specifically designed for building models of 

systems that implement multi-agent system concepts, and can be used to build models that    

• consist of a number of autonomous, concurrent and/or asynchronous (possibly proactive) 

entities; 

• consist of entities that are able to observe and/or interact with their environment; 

• use complex interactions and aggregated services; 

• use social structures; and 

• represent mental characteristics of systems and/or their parts (Whitestein Technologies: 

Methodology, 2005; Cervenka, Trencansky, Calisti & Greenwood, 2005).   



 

68 

These characteristics all correspond to those present in a society of agents. 

Legacy (non-agent) software can be integrated into an agent system by placing wrapping software 

around the legacy code to present an agent interface on the outside to other software components.  On 

the inside, the wrapper performs a dual translation process to map external requests from other agents 

into calls in the legacy code, while converting the legacy code’s external requests into an appropriate 

set of agent communication commands (Jennings, 2001).  While wrapping software around legacy 

(non-agent) software could be used to convert the legacy software into a stationary agent, it would 

typically not be possible to convert the legacy software into mobile agents. 

 

Agents and multi-agent systems, however, do not provide a ‘magic wand’.  Wooldridge and Jennings 

(1999) point out a number of pragmatic pitfalls in six areas, namely political (the corporate 

environment), management, conceptual, analysis and design, agent level and society level.  Political 

pitfalls include overselling agents and becoming dogmatic about agents by insisting on an agent 

system, regardless of whether it is suitable or not.  Management pitfalls involve insisting on an agent 

system without having clear goals, or requiring a generic solution.  Agent architectures and multi-agent 

systems are in fact suited only to certain types of conditions, such as those discussed in the previous 

paragraphs.  Conceptual dangers consist of regarding agents as a silver bullet to provide order-of-

magnitude improvements in software development, forgetting that agents are software that needs to be 

implemented, as well as overlooking multithreading as an inherent part of agent systems.  Omitting to 

incorporate related technology, concurrency and legacy software during analysis and design presents 

pitfalls.  Agent-level traps include developing one’s own agent architecture from scratch, using too 

much or no AI.  Society-level pitfalls include viewing everything as agents, having too few agents, 

implementing one’s own infrastructure instead of using an existing platform, allowing agents to 

interact too freely and suffering lack of structure in the agent society. 

 

Jennings (1999a) discusses problems inherent to agent orientation owing to the nature of agent-oriented 

software.  Designing software able to maintain a balance between the reactive and proactive behaviour 

of agents is difficult, since agents have to pursue their own goals while constantly interacting with their 

environment.  Such a balance requires context-sensitive decision-making.  This implies that which 

goals will be followed under which circumstances, as well as which methods will be used to achieve 

this, is to a degree, unpredictable.  Furthermore, since agents are autonomous, the patterns and 

consequences of their interaction are also uncertain, because the number, pattern and timing of 



 

69 

interactions cannot be predicted in advance.  Emergence, too, results in behaviour that cannot be 

deconstructed only in terms of the behaviour of individual agents.   

 

As discussed above, agent orientation can be used to develop applications that are inherently 

distributed, open, large and heterogeneous.  The benefits mobile agents hold for these types of 

applications have been indicated.  Examples of such systems can be viewed in Manvi and Venkataram 

(2004), Satoh (2004, 2005), Tozicka (2003) and Zaslavsky (2004). 

3.6 Conclusion 

Just as many systems may be understood as a collection of interacting but passive objects, many other 

systems may naturally be understood and modeled as a collection of autonomous interacting agents. 

The first adheres to the OO paradigm and the second to the agent orientation paradigm. 

 

The extension from OO to agent orientation shows that agents and objects are indeed different 

concepts.  Nevertheless, AOSE can benefit from OO technologies and approaches, while 

supplementing the shortcomings of OO modelling as seen in 3.2.3. 

 

Since agent orientation is a relatively young paradigm, and AOSE is still in its infancy, a considerable 

number of methodologies are in the process of being developed for agent systems.  In this chapter it 

was seen that agents can be implemented using a variety of paradigms and technologies such as object 

technology, logic programming and component-based programming as well as specific agent 

technologies, for example agent-oriented programming.  Agent development can be done via 

middleware platforms, typically by using OO languages, or by means of reasoning-oriented platforms 

following a logic-based approach.  Systems developed with OO languages appear to be more agent-

based, while systems developed using agent-oriented languages are naturally more agent-oriented, 

since agent-oriented languages already include structures and statements intended to be used for agent 

orientation. 

 

Many of the traits deemed to indicate the use of agents and multi-agent systems, such as being open, 

dynamic, uncertain, complex, distributed and containing legacy systems that have to be incorporated, 

also apply to the Internet.  Consequently, despite the problems described in section 3.5, factors such as 

the current computing trends indicate that mobile agents and multi-agent systems do have a place in the 

contemporary computing milieu.  Mobile agents in particular hold significant benefits for Internet-



 

70 

based applications as well as for ubiquitous (pervasive) and mobile computing applications.  

Furthermore, current computing trends tend towards integrating mobile agents into multi-agent systems 

and/or endowing them with intelligence, in order to assist with pervasive computing and applications 

such as mobile computing, telecommunications and Web Services.  This indicates that mobile agent 

programmers should take cognisance of agent orientation.  As has been seen, agents and objects are 

different concepts.  Therefore, to achieve the full potential of mobile agents in the current programming 

environment described above, they should be implemented according to the proper principles involved 

in agent programming. 

 

In Chapter 4 a framework for constructing mobile agent system by following an agent-oriented 

approach is presented. 



 

71 

CHAPTER 4 

4 A FRAMEWORK FOR CONSTRUCTING A MOBILE AGENT SYSTEM 

4.1 Introduction 
As described in previous chapters, building a commercially acceptable mobile agent system is a 

challenge, especially so for novice mobile agent programmers.  This is even more true if such systems 

are to be constructed quickly and efficiently to gain commercial acceptability.  One of the main reasons 

for this complexity is that so few guidelines are available on this topic.  To concentrate on the research 

problem of this dissertation, it is therefore also necessary to concern oneself with what the architectural 

requirements for designing and developing mobile agent systems are.  Addressing this concern will 

inevitably enable programmers to identify and include different mobile agent characteristics, with 

maximum reuse of available technologies and architectures.  The purpose of this chapter is therefore to 

describe the architectural components within a generic mobile agent system model.  These components 

represent the essential aspects of a mobile agent system in a simplified, general but clear way.  In 

contrast to the detail on different characteristics and specific design issues of mobile agents, presented 

in Chapter 2, this chapter only establishes an architectural basis for a mobile agent system.  A clear 

understanding of the architectural components that are involved is a constructive tool to a programmer 

or researcher who enters the field for the first time.  As a tool it directs the broad and essential 

structures in which the anticipated system should be designed.  The architectural model is also 

significant because it provides a benchmark for researchers and developers to measure the capabilities 

of mobile agents created by using commercially available tool kits. 

 

In the quest to establish such an architectural model, various mobile agent implementations were 

studied, and features and characteristics that are embedded in these agent systems were extracted.  In a 

further comparative study that was conducted, design and development guidelines were extracted.  

These guidelines are integrated into the architectural model that represents the essential features of a 

mobile agent system in the spirit of agent orientation.  

 

Section 4.2 describes the architectural design for a number of existing mobile agent systems used to 

identify typical features and characteristics in a mobile agent system.  Section 4.3 presents the proposed 

architectural model and section 4.4 compares it to one of the existing mobile agent systems described 

in section 4.2, in order to point out potential problems novices may experience as a result of missing 



 

72 

layers in an architectural design.  Section 4.5 discusses the significance of the architectural model and 

section 4.6 provides the conclusion.  

4.2 Mobile agent implementations 

In order to establish an architectural basis for the proposed architectural model, relevant architectural 

components are extracted from the available standards for mobile agent systems (see 2.3.4), and 

combined with features and characteristics that are embedded in a number of existing mobile agent 

systems.  These are then integrated with design and development guidelines, in conjunction with the 

required paradigm shift to agent orientation, to provide a comprehensive model representing the 

essential features of a mobile agent system.  This section discusses some of the existing mobile agent 

systems used to identify features and characteristics of mobile agent systems.  Other systems studied 

include Dale (1997), Feridun and Krause (2001), Gschwind et al. (1999), Johansen et al. (2002), 

Kendall et al. (2000), Tripathi et al. (2001). 

 

Four mobile agent platforms were selected to include in this discussion.  Four of them, SMART 

(Scalable Mobile and Reliable Technology), D’Agents, Grasshopper (currently integrated with 

PLATIN as enago from IKV++ [Master Consortium]) and Aglets, are publicly available.  Aglets is 

arguably the best known of all mobile agents, is implemented in Java and is MASIF-compliant.  

Grasshopper is the first mobile agent platform that was based on OMG MASIF and FIPA standards, 

and is also implemented in Java.  SMART is implemented in Java, is MAF10-compliant and 

incorporates additional features such as dynamic aggregation and network class loading.  D’Agents 

(formerly Agent Tcl) supports multiple languages (Tcl, Java and Scheme).   

 

Only the architecture of each of the four platforms is described briefly.  The common features from 

these models are extracted, and placed into the perspective of the mobile agent standards as described 

in Chapter 2.  This comparison then leads to the architectural model proposed in 4.3. 

                                                 
10 The common Mobile Agent Facility (MAF) is the predecessor of MASIF. 



 

73 

4.2.1 SMART  

Region administrator 

Agent system 

Place 

Agent proxy User API 

Create 
Mobility 
Destroy 

Execution 

Security 
Naming 
Locating 

 

Figure 4.1 SMART architecture 

 

Wong et al. (2001) developed a MAF compliant mobile agent platform, called SMART.  This 

architecture consists of four layers built on a Java virtual machine (JVM).  Figure 4.1 is a simplified 

depiction of SMART.   

 

At the lowest layer the region administrator manages and enforces security policies on a set of agent 

systems.  The region administrator uses a finder module to provide naming services to the region 

administrator and also to the layers above.  In the second-lowest layer, the agent system layer, mobile 

agents can create, migrate and destroy themselves.  The third layer from the bottom forms the 

execution environment and contains one or more places, which may exist for different execution 

contexts.  In the topmost layer, the agent proxy provides the mobile agent API for applications written 

in SMART.  



 

74 

4.2.2 D’Agents 

Transport mechanisms 

Server layer 

Class libraries 

Virtual machines 

Agents 

Execute 
Java threads 

Support Java, 
Tcl, Scheme 

Create 
Mobility 
Destroy 

Implement agent 
functionalities 

 

Figure 4.2 D'Agents architecture 

 

Gray et al. (2002) describe the D’Agents (formerly known as Agent Tcl) mobile agent system, which 

was developed to support distributed information retrieval and to characterize the mobile agent 

performance space.  In Figure 4.2 a simplified depiction of the D’Agents’ architecture is shown. 

 

The D’Agents’ architecture has five levels.  At the bottom level, TCP/IP is used to provide transport 

mechanisms.  The second layer defines a server layer to be implemented on all hosts to accept 

incoming mobile agents.  The server is a multi-threaded process and executes multiple agents as 

threads inside a single process, while each agent is executed inside its own (Unix) process.  The next 

layer holds shared C++ libraries that implement agent functionality.  The fourth layer provides the 

execution environment for each of the three supported languages (Java, Tcl and Scheme).  Each such 

execution environment includes the interpreter/virtual machine for the supported language, stub 

routines allowing the agent to invoke functions in the C++ library, a state-capture module to support 

mobility, and a security model to enforce resource limitations.  The agents themselves are defined in 

the top layer.  



 

75 

4.2.3 Grasshopper 

 

Agency 

 
 
Basic services 

Core services 

Enhanced services 

Distributed Agent Environment 

MASIF 

Communication channel 
Distributed 
Processing 
Environment 

Execution 
Transport 
Management 
Communication 
Security 
Naming 

Create 
Destroy 
Suspend 
Activate 
Locate 

APIs 
GUIs 
Task control 

 

Figure 4.3 Grasshopper architecture 

 

Grasshopper is a MASIF-compliant mobile agent platform supporting the development and execution 

of mobile agents.  The Grasshopper architecture (Pavlou, 2000) distinguishes between two layers.  The 

distributed agent environment resides on the top layer, while the bottom layer consists of the 

distributed processing environment.  A host in the distributed agent environment typically includes an 

agency that has access to basic services as well as advanced/extended services.  The basic services 

include a MASIF component with the MAFFinder and MAFAgentSystem interfaces as well as a 

number of core services.  The core services include execution, transport, management, communication, 

security and naming mechanisms.  Extended functionality includes adapter interfaces for external 

hardware/software, task control functions (for example itinerary), and application-specific graphical 

user interfaces (GUIs).   

 

The distributed processing environment on the bottom layer is structured into regions (optional), 

agencies and places.  Regions provide naming services and facilitate the management of distributed 

components.  Grasshopper uses both stationary and mobile agents.  The mobile agents migrate 

autonomously between different locations, while the stationary agents mostly reside permanently in 

their creation agency, offering services to other agents or entities.  An agency provides the runtime 

environment for mobile agents, which offers the basic platform functionality that includes agent life 

cycle management, agent transport, communication, persistence and security.  Each agency runs on its 



 

76 

own JVM and consists of one or more places.  In the Grasshopper architecture, a place that is residing 

in an agency is considered to be a grouping of agents that provide the same functionality.  A region 

facilitates the management of agencies, places and agents as well as the tracking and finding of agents.  

Each region therefore contains a region registry that acts as a directory service, which also provides 

various lookup operations and search criteria.  As can be seen, places, agencies and regions are used to 

organize agents in groups.  Figure 4.3 is a simplified depiction of Grasshopper. 

 

4.2.4 Aglets 

Serialisation 
Deserialisation 
Mobility 
Naming 
Locating 
Persistence 
Management 
Security 

Create 
Destroy 
Tracking 
Transfer 
Management 

Runtime layer 

Communication layer 

 

Figure 4.4 Aglets architecture 

 

The Aglets initiative (Lange, 1997) is probably one of the best-known mobile agent projects, where 

mobile agents are referred to as ‘aglets’.  The Aglets architecture consists of two layers and two APIs 

that define interfaces for accessing layer functions.   

 

The runtime layer (top layer) consists of a core framework and subcomponents to provide the 

following mechanisms fundamental to aglet execution: serialization and deserialization, class loading 

and transfer, reference management and garbage collection, persistence management, maintenance of 

byte code, and protecting hosts and agents (aglets) from malicious entities.  These services are defined 

through the API on this layer.   

 

The communication layer (bottom layer) uses a communication API that defines methods for creating 

and transferring agents, tracking agents and managing agents in an agent-system-and-protocol-



 

77 

independent way.  The communication API is derived from the MASIF standard.  The Aglets 

architecture uses the Agent Transfer Protocol (ATP), modelled on the HTTP protocol, as the default 

implementation of the communication layer.  

 

The Aglets system uses the following life cycle: A new aglet must first be instantiated.  This is done by 

either creating a new instance or cloning an existing aglet.  Once created, an aglet object can be 

dispatched to and/or retrieved from a remote server, deactivated and placed in secondary storage, then 

activated later.  An aglet can dispatch itself to a remote server, which causes the aglet to suspend its 

execution, serialise its internal state and byte code into the standard form and then be transported to the 

destination.  On the receiver side, the aglet is reconstructed according to the data received from the 

origin, and a new thread is assigned and executed.  Figure 4.4 is a simplified depiction of the Aglets 

architecture. 

4.2.5 Essential features in mobile agent systems 

As shown in Chapter 2, a mobile agent system provides the environment mobile agents need to exist 

and function.  This environment consists of agent clients and agent servers.  An agent client provides 

the API that allows a user to create and control agents.  Agent servers provide the runtime environment 

for agents to execute in as well as several other functions in support of the mobile agent.  Chapter 2 

also indicated that mobile agent systems should exhibit the following features to achieve functionality: 

agent mobility, naming services, communication, controlled access to local resources, fault-

tolerance/persistence, interoperability, agent management and control, and security.  These 

requirements, the architectural components identified in each of the four platforms described in 

sections 4.2.1 to 4.2.4, and the mobile agent standards provided by FIPA and MASIF are summarized 

in Table 4.1.  Where an architectural component corresponds to a feature identified in Chapter 2, only 

the name of the component as described in the relevant architectural model itself, is shown.  However, 

some platforms offer features that can apply to more than one of the features indicated in Chapter 2.  

These are grouped towards the end of the table and all the features indicated in Chapter 2 that apply are 

given. 

 

As can be seen in Table 4.1, none of the four mobile agent platforms completely satisfies the features 

required by a mobile agent system as identified in Chapter 2.  Grasshopper’s architecture satisfies most 

requirements, but, as can be seen from its depiction in both Figure 4.3 and Table 4.1, components are 

frequently located within several layers of other components.  Furthermore, the Grashopper 



 

78 

architecture consists of two layers that are mapped onto each other.  This makes it difficult for a novice 

to form a broad overview, as well as to recognize individual components.  The FIPA and MASIF 

standards also do not satisfy all the requirements listed.  

 

It is clear that the classification of features provided in Chapter 2 is not fine-grained enough to describe 

all the essential components in a mobile agent system.  The proposed generic mobile agent system 

architectural model described below includes all the components listed in Table 4.1, with the exception 

of an agent model and explicit reference to interoperability.  As mentioned before, interoperability 

refers to interoperability between different mobile agent platforms and integration with existing 

applications.  As can be seen from the MASIF standard, this covers a number of areas, namely a 

standard way of managing agents, a common mobility infrastructure to allow agents to communicate 

and visit other systems, a standardised syntax and semantics for naming services and a standardised 

location syntax for finding agents.  Accordingly, the relevant components in the proposed architectural 

model handle these aspects.  The proposed architectural model thus includes the requirements indicated 

in Chapter 2 and all the components available in the platforms discussed, as well as those identified by 

FIPA and MASIF.  This provides an extensive overview of the environment in which a mobile agent 

exists and operates.   

 

However, as indicated in Chapter 3, in agent orientation a multi-agent system focuses on addressing the 

organization and coordination of agents.  The proposed architectural model therefore enhances the 

environment derived from Table 4.1 by adding a social component.  The task of the social component 

is to control the organization and coordination of agents, as well as to enforce the resulting global 

social laws and conventions in a multi-agent system. 

 

Though Grasshopper does offer a facility to organize mobile agents in groups by means of places, 

agencies and regions, no provision is made for explicitly coordinating the mobile agents, as is required 

in a multi-agent system.  SMART uses a region administrator to enforce security policies on a set of 

agents, which hints at applying global laws, but does not provide a mechanism to organize agents into 

groups.  The proposed architectural model thus portrays a complete view of the architectural 

components required to implement a mobile agent system in agent orientation.  The next section 

presents the proposed architectural model.  



 

  

79 

Fe
at

ur
es

 r
eq

ui
re

d 
by

 m
ob

ile
 

ag
en

t s
ys

te
m

s (
fr

om
 C

ha
pt

er
 2

) 
SM

A
R

T
 

D
’A

ge
nt

s 
G

ra
ss

ho
pp

er
 

A
gl

et
s 

M
A

SI
F 

FI
PA

 

A
ge

nt
 c

lie
nt

 to
 p

ro
vi

de
 a

ge
nt

 
m

an
ag

em
en

t a
nd

 c
on

tro
l 

A
ge

nt
 p

ro
xy

 
 

En
ha

nc
ed

 se
rv

ic
es

 in
si

de
 

ag
en

cy
 in

 d
is

tri
bu

te
d 

ag
en

t e
nv

iro
nm

en
t 

C
om

m
un

ic
at

io
n 

la
ye

r 
A

ut
ho

rit
y 

 

A
n 

en
vi

ro
nm

en
t t

ha
t a

ct
s a

s 
in

te
rf

ac
e 

be
tw

ee
n 

ag
en

t a
nd

 se
rv

er
  

A
ge

nt
 sy

st
em

 
Se

rv
er

 la
ye

r 
A

ge
nc

y 
 

C
om

m
un

ic
at

io
n 

la
ye

r 
A

ge
nt

 sy
st

em
 

M
an

ag
em

en
t 

ac
tio

ns
 to

 
su

pp
or

t m
ob

ile
 

ag
en

ts
 

C
on

st
ra

in
ed

 a
cc

es
s t

o 
lo

ca
l 

re
so

ur
ce

s 
Pl

ac
es

 
V

irt
ua

l m
ac

hi
ne

s 
C

or
e 

se
rv

ic
es

 in
si

de
 b

as
ic

 
se

rv
ic

es
 in

 a
ge

nc
y 

in
 

di
st

rib
ut

ed
 a

ge
nt

 
en

vi
ro

nm
en

t  
 A

ge
nc

y 
in

 d
is

tri
bu

te
d 

pr
oc

es
si

ng
 e

nv
iro

nm
en

t 

R
un

tim
e 

la
ye

r 
Pl

ac
e 

 

A
ge

nt
 m

ob
ili

ty
  

 
V

irt
ua

l m
ac

hi
ne

s 
C

la
ss

 li
br

ar
ie

s 
M

A
SI

F 
in

si
de

 b
as

ic
 

se
rv

ic
es

 in
 a

ge
nc

y 
in

 
di

st
rib

ut
ed

 a
ge

nt
 

en
vi

ro
nm

en
t 

R
un

tim
e 

la
ye

r 
 

M
ob

ili
ty

 
pr

ot
oc

ol
s 

C
om

m
un

ic
at

io
n 

 
 

 
C

or
e 

se
rv

ic
es

 in
si

de
 b

as
ic

 
se

rv
ic

es
 in

 a
ge

nc
y 

in
 

di
st

rib
ut

ed
 a

ge
nt

 
en

vi
ro

nm
en

t 
 A

ge
nc

y 
in

 d
is

tri
bu

te
d 

pr
oc

es
si

ng
 e

nv
iro

nm
en

t 

 
 

 

In
te

ro
pe

ra
bi

lit
y 

 
 

 
 

M
A

FA
ge

nt
Sy

st
em

 
M

A
FF

in
de

r 
 

Fa
ul

t-t
ol

er
an

ce
 a

nd
 p

er
si

st
en

ce
  

 
 

A
ge

nc
y 

in
 d

is
tri

bu
te

d 
pr

oc
es

si
ng

 e
nv

iro
nm

en
t 

R
un

tim
e 

la
ye

r 
 

 

Se
cu

rit
y 

 
R

eg
io

n 
ad

m
in

is
tra

to
r 

V
irt

ua
l m

ac
hi

ne
s 

C
or

e 
se

rv
ic

es
 in

si
de

 b
as

ic
 

se
rv

ic
es

 in
 a

ge
nc

y 
in

 
di

st
rib

ut
ed

 a
ge

nt
 

en
vi

ro
nm

en
t  

 A
ge

nc
y 

in
 d

is
tri

bu
te

d 
pr

oc
es

si
ng

 e
nv

iro
nm

en
t 

R
un

tim
e 

la
ye

r 
B

ui
lt-

in
 Ja

va
 

co
ns

tru
ct

s a
nd

 
C

O
R

B
A

 se
rv

ic
es

 

 



  

80 

Fe
at

ur
es

 r
eq

ui
re

d 
by

 m
ob

ile
 

ag
en

t s
ys

te
m

s (
fr

om
 C

ha
pt

er
 2

) 
SM

A
R

T
 

D
’A

ge
nt

s 
G

ra
ss

ho
pp

er
 

A
gl

et
s 

M
A

SI
F 

FI
PA

 

N
am

in
g 

se
rv

ic
es

 
 

R
eg

io
n 

ad
m

in
is

tra
to

r 
 

C
or

e 
se

rv
ic

es
 in

si
de

 b
as

ic
 

se
rv

ic
es

 in
 a

ge
nc

y 
in

 
di

st
rib

ut
ed

 a
ge

nt
 

en
vi

ro
nm

en
t  

 M
A

SI
F 

co
m

po
ne

nt
 in

si
de

 
ba

si
c 

se
rv

ic
es

 in
 

di
st

rib
ut

ed
 a

ge
nt

 
en

vi
ro

nm
en

t 
 R

eg
io

ns
 in

 d
is

tri
bu

te
d 

pr
oc

es
si

ng
 e

nv
iro

nm
en

t 

R
un

tim
e 

la
ye

r 
C

om
m

un
ic

at
io

n 
la

ye
r 

M
A

FF
in

de
r 

 

A
ge

nt
 e

nv
iro

nm
en

t/c
on

st
ra

in
ed

 
ac

ce
ss

 
 

 
U

se
 p

la
ce

s, 
ag

en
ci

es
 a

nd
 

re
gi

on
s t

o 
or

ga
ni

ze
 a

ge
nt

s 
in

to
 g

ro
up

s 

 
 

 

M
ob

ili
ty

/P
er

si
st

en
ce

 
 

 
 

Se
ria

liz
in

g 
th

e 
ag

en
t 

be
fo

re
 tr

an
sm

is
si

on
 

an
d 

de
se

ria
liz

in
g 

it 
on

 a
rr

iv
al

 a
t t

he
 

re
m

ot
e 

ho
st

. 

M
A

FA
ge

nt
Sy

st
em

 
 

Li
fe

 c
yc

le
 

 
 

 
A

gl
et

 li
fe

 c
yc

le
 

 
M

ob
ili

ty
 li

fe
 

cy
cl

e 
A

ge
nt

 m
ob

ili
ty

 
 

Tr
an

sp
or

t 
m

ec
ha

ni
sm

s 
Tr

an
sp

or
t o

ff
er

ed
 b

y 
ag

en
cy

 in
 d

is
tri

bu
te

d 
pr

oc
es

si
ng

 e
nv

iro
nm

en
t  

A
TP

 
 

 

T
ab

le
 4

.1
 F

ea
tu

re
s r

eq
ui

re
d 

by
 m

ob
ile

 a
ge

nt
 sy

st
em

s 

       



 

 81

4.3 Proposed architectural model 

As described in the previous section, the proposed generic mobile agent system architectural model 

provides a comprehensive view of the architectural components required to implement a mobile agent 

system, including the social characteristics required by multi-agent systems.   

 

The proposed generic mobile agent system architectural model is depicted in Figure 4.5.  A layered 

approach, organized according to the life cycle of a mobile agent, is followed.  The layered approach 

isolates the individual components that each forms an essential part of the mobile agent system.  In this 

way, while providing a broad overview of the important system elements during design, the approach 

also enables developers to focus on the tasks pertaining to a specific layer, which forms a functional 

unit.  Furthermore, a layered model facilitates the development of layers in parallel, while 

implementing each layer independently also assists program maintenance, debugging and upgrading 

(Dale, 1997; Kendall et al., 2000; Schoeman & Cloete, 2004).   

 

Since the layers in the architectural model are organized according to the proposed life cycle of a 

mobile agent, this life cycle is described in section 4.3.1 before a detailed discussion on the individual 

layers in section 4.3.2 is conducted.  Table 4.2 relates the execution states in the FIPA mobile agent life 

cycle to the life cycle and layers in the proposed architectural model.  The detailed discussion of each 

layer includes guidelines to assist novice mobile agent programmers when developing a system. In 

Table 4.3, following after the detailed discussion, the purpose and significance of each of the different 

layers in the proposed architectural model is described.   

4.3.1 Mobile agent life cycle 

At the local host (see Figure 4.5), an authority (the person or organisation for whom an agent acts) uses 

the authority API to create one or more agents in the agency.  Such an agent moves through the 

execution layer to the social layer where the global social tasks of the agent society are added to the 

mobile agent.  In the mobility and communication aspects inside the social layer, standard mechanisms 

to ensure mobility and effective agent communication are added.  Fault tolerance mechanisms are 

added at the persistence aspect in the social layer.  At the mobile agent management services layer, the 

agent is serialised, before being encrypted at the agent security layer.  At the naming server layer, the 

agent is named and registered for future reference.  The location of hosts to be visited will also be  



 

 82

 

 

Figure 4.5 Proposed architectural model for mobile agent development 

 

determined at the naming server layer.  The agent receives credentials for access to other hosts at the  

host security layer before it is encoded in a suitable transport protocol at the network layer for transport 

through the network.  

 

On arrival at a remote host, the network layer removes the transport protocol envelope and sends the 

agent to the host security layer where the agent seeks host access by submitting its credentials.  If it is 

accepted, the host server registers the agent at the server layer, before the agent is decrypted at the 

agent security layer.  The mobile agent management services layer is responsible for deserialising the 

agent and performing any conversions that may be necessary.  The agent moves through the social 

layer to be executed at a place in the execution layer.  The social layer enforces the social laws in the 

agent society during interaction between agents, the environment and other entities such as Web 

Services, in order to allow coordination, cooperation and negotiation.  During execution, the agent will 

interact with the various aspects within the social layer: with the persistence aspect for storing 

information, with the communication aspect for communicating with other agents or entities, and with 

the mobility aspect for future migration requests.  Interaction with the persistence aspect, the 

Social layer Social layer

Local host

Host security

Network

Naming server layer

Agent security

Mobile agent management services

Execution layer

Agency

Authority API

Persis-
tence

Commu-
nicationMobility

Host security

Network

Naming server layer

Agent security

Mobile agent management services

Execution layer

Agency

Authority API

Persis-
tence

Commu-
nicationMobility

Remote host

Li
fe

 c
yc

le
Access policies

Finding
Naming

Encrypt/Decrypt

Serialise
Deserialise
Conversion

Interaction
Cooperation
Negotiation

Execution places

Create/Destroy
Suspend/Activate

Social layer Social layer

Local host

Host security

Network

Naming server layer

Agent security

Mobile agent management services

Execution layer

Agency

Authority API

Persis-
tence

Commu-
nicationMobility

Host security

Network

Naming server layer

Agent security

Mobile agent management services

Execution layer

Agency

Authority API

Persis-
tence

Commu-
nicationMobility

Remote host

Li
fe

 c
yc

le
Access policies

Finding
Naming

Encrypt/Decrypt

Serialise
Deserialise
Conversion

Interaction
Cooperation
Negotiation

Execution places

Create/Destroy
Suspend/Activate



 

 83

communication aspect and the mobility aspect are all subject to the social laws enforced by the social 

layer.  Once executed, the agent follows the path downwards through the architecture in a similar 

fashion as at the local host.  On arrival back at the agency in the local host, the owner of the mobile 

agent may use the authority API to dispose of the agent. 

 

Table 4.2 relates the execution states in the FIPA mobile agent life cycle as discussed in section 2.2.4 

to the life cycle and layers in the proposed architectural model.  For each FIPA execution state the layer 

in the architectural model where it will occur, is shown. 

 

FIPA execution state Layer in generic mobile agent system architectural model 
Initialized The owner of the mobile agent creates the mobile agent by 

means of the authority API in the agency layer. 
Active The mobile agent is executed at a place in the execution layer. 
Suspended The mobile agent is suspended to prepare for migration by 

storing its state and intermediate results in such a way that it 
allows migration.  During the preparation for migration, the 
mobility aspect in the social layer adds standard mechanisms to 
enable migration, while the mobile agent management services 
layer prepares (serializes) the mobile agent to be migrated. 

Waiting When the mobile agent is interrupted to wait for a specific 
event, it will temporarily pause its execution, but will remain in 
the execution layer. 

Migration The mobility aspect in the social layer adds standard 
mechanisms to enable migration, and the mobile agent 
management services layer serializes the mobile agent, but the 
actual migration occurs on the network layer. 

Disposed The owner of the mobile agent uses the authority API to dispose 
of the agent in the agency layer. 

Table 4.2 FIPA mobile agent life cycle execution states in the generic mobile agent system architectural model 



 

 84

4.3.2 Model layers 

4.3.2.1 Authority API layer 

According to the MASIF definition the agent’s authority is the person or organization on behalf of 

whom the agent acts.  The authority API thus refers to the application interface that enables an 

authority to interact with and manage its mobile agents both locally and remotely.  This includes tasks 

such as creating agents, communicating with them, and destroying them.  Ownership and the 

relationship between owners and users are very important in mobile agent systems, and should be 

clearly indicated (Ashri & Luck, 2001).  This takes place at the authority API layer.  

 

Da Silva et al. (2000) remind developers that there are two interface types to design between an 

authority and its agency, namely an interface for from-authority-to-agents, as well as an interface 

covering from-agents-to-authority interaction.  The first type of interface solves most of the interaction 

needs between the authority API and the agents.  There are, however, also instances in which agents 

should take the communication initiative, such as reporting back functions, or when the agents 

encounter problems, in which case the second type of interface is required.  Although there are many 

commercial agent development toolkits available, truly standardized system/independent agent APIs do 

not exist yet, and this necessitates further research and development (Luck et al., 2004b). 

4.3.2.2 Agency layer 

The term agency instead of agent system (as used by MASIF) is used to refer to the environment on a 

host where agents are created and terminated through an Authority API.  The agent system is used to 

refer to the entire mobile agent platform stretching from the lowest to the highest level.  To simplify 

agent design, the use of Wang, Hanssen and Nymoen’s (2000) categorisation of agents into three basic 

types is suggested: namely system agents, participation agents and user agents.   

 

The system agents take responsibility for administering the agency as well as other system functions 

residing on other layers of the architecture.  These system agents can be further classified into  

• manager agents, performing management tasks;  

• facilitator agents, facilitating communication;  

• monitor agents, logging events;  

• repository agents, responsible for retrieving and adding information as well as querying 

repositories; and 



 

 85

• interface agents, providing the necessary API as well as interfacing with other entities and 

applications.   

 

Participating agents provide system support for cooperative processes in execution places.  These 

agents can be further classified into subclasses to simplify agent design, but the classification depends 

on the type of mobile agent application.  This implies that a generic classification for this type of agent 

will not be sensible.  For example, in an e-commerce environment one can create negotiation and 

mediation agents, but these classes of agents will not make much sense in an information retrieval 

application.  Participating agents include middle agents: entities to which other agents advertise their 

capabilities (Flores-Mendez, 1999).  Middle agents are neither requesters nor providers in a transaction, 

but assist in facilitating the process.  Typical middle agents include brokers that receive requests and 

perform actions that combine services from other agents with their own resources; matchmakers and 

yellow pages that assist service requesters in finding service provider agents based on advertised 

capabilities; and blackboards that receive and hold requests for other agents to process. 

 

User agents are those agents created by an authority for a specific purpose to act on behalf of its owner.  

From the description of the different types and classes of agents, it is clear that both system and 

participating agents are created as part of the agent system, since they support the operations of the 

entire system, whilst the user agents are created afterwards by the authority to perform a specific user 

task.  Many programming patterns have been described to create and maintain these agents.  For more 

information see Aridor and Lange (1998), Kendall et al. (2000), Singh, Sankar and Jamwal (2002), 

Silva and Delgado (1998) and Tahara et al. (1999). 

4.3.2.3 Execution layer 

The proposed model follows the MASIF definition of a place as the execution environment within a 

specific context where an agent executes.  According to Da Silva et al. (2000), a place has two main 

objectives, namely to provide a conceptual and programming metaphor where agents are executed and 

meet other agents, and to provide a consistent way to define and control access levels and to control 

computational resources.  Agent places can also have CORBA-support, facilitating external 

applications to communicate with the agents.  

 
The execution environment is typically responsible for (Harrison et al., 1995; Tripathi et al., 2001) 

• hosting the interpreter/virtual machine for the supported agent language; 



 

 86

• hosting stub routines allowing the agent to invoke different library functions; 

• granting access to local resources in a selective manner; 

• binding operating systems functions; 

• binding to the network layer; and  

• providing an environment where the agent can interact with or query its environment.   

 

Although the agent may be executed in either machine or interpreted language, it is often preferable to 

express the agent in interpreted language since this supports heterogeneity better.  It also has the 

advantage of late binding as well as the improved potential to add security mechanisms (Harrison et al., 

1995).   

 

One of the major criticisms of mobile agents is that a guest agent can easily exploit its execution 

environment (Dale, 1997).  Constrained execution is therefore quite important to control access granted 

to host resources.  In this way the integrity of, and confidence in the host site is maintained.  Take note 

that constrained execution in this context is not intended for security purposes.  Access rights to the 

host (unlike access to host resources) are addressed on the host security layer.   

 

The notion of places in the execution environment addresses the constrained execution concern to a 

certain extent, because it is easier to allocate access limitations on a place than to restrict the entire 

execution environment where the access limitations imposed on a place might be different for different 

places/agents.  These access limitations on a place can be defined in quantifiable measures such as 

number of CPU cycles, number of files opened, etc.  Both the limitations themselves, and the agent’s 

awareness of such limitations will affect the manner in which an agent conducts itself, since the 

exhaustion of a constraint will typically result in the agent being terminated (Dale, 1997).  

4.3.2.4 Social layer 

Very few agent systems contain only one agent, and as mentioned previously, current trends tend 

towards incorporating mobile agents in multi-agent systems.  In a multi-agent system interaction and 

organization are used to coordinate agent actions.  This is necessary both to achieve the individual and 

common goals that agents in a multi-agent system pursue, and to prevent livelock and deadlock 

(Grimley & Monroe, 1999; Van Aart, 2005).  In Sudeikat et al. (2004) and Flores-Mendez (1999) 

various approaches are described to organize multi-agent societies for example in groups, teams, local 

areas or cooperation domain servers.  The organizational structures specify the relationships among 



 

 87

agents and agent types.  The relationships consist of both inheritance relations and relations among 

agents based on their roles in the system.  These organizational structures as well as coordination 

strategies, or problem-solving methods, can be used to allocate tasks to agents and control agents in 

multi-agent systems (Van Aart, 2005).  Agents as a society thus operate under global social laws and 

conventions in their interactions with other entities in their environment.   

 

A coordination model describes the interaction among agents and can be used to coordinate the 

interactions among agents and enact the social laws in the system by managing their organizational 

relationships or mutual dependencies.  A coordination model is defined as a framework dealing with 

the communication and synchronization of a system of autonomous agents.  To this end, a coordination 

model consists of three elements (Cabri et al., 2000; Zambonelli et al., 2001): 

• The coordinables, or entities whose mutual interaction is governed by the model, namely the 

agents. 

• The coordination media, consisting of the abstractions that enable agent interactions and the 

core around which the components of a coordinated system are organized, such as semaphores, 

monitors, channels, tuple spaces, blackboards, and so forth. 

• The coordination laws that define the behaviour of the coordination media in response to 

interaction events.  Coordination laws can be defined in terms of a communication language 

and a coordination language.  The communication language is a syntax used to express and 

exchange data structures.  The coordination language consists of a set of interaction primitives 

and their semantics.   

 

The coordination media in the coordination model, such as the blackboards or tuple spaces employed, 

resides on the social layer.  It arbitrates in all interactions between agents, and determines the effect of 

the interaction according to its embedded social laws.  The coordination media can allow agents with 

heterogeneous communication laws or interaction protocols to interact.  It can also constrain the 

behaviour of agents during interactions, thereby adding additional security (Zambonelli et al., 2001).  If 

the organizational structures and coordination problem-solving methods are stored in libraries as 

patterns, agent behaviours can be modelled accordingly (Van Aart, 2005).  Implementing a 

coordination model in the social layer therefore provides a situation where social tasks can be allocated 

and social laws enforced.   

 



 

 88

The mobility, communications and persistence aspects are placed inside the social layer, since all of 

them are subject to the social laws and conventions of the agent society.  For example, there may be a 

global restriction on the length or number of negotiations between agents, which will be handled by the 

communications aspect, and the social layer should then ensure that this global law is obeyed.  The 

mobility aspect may require that a third party be asked to serve as a code cache, and if certain servers in 

the agent society have been allocated to serve this purpose, the social layer should ensure that only 

these servers are used for this purpose.  Similarly, there may be global restrictions on which resources 

may be used for storage purposes to allow persistence, which should be enforced by the social layer. 

4.3.2.5 Mobility aspect in the social layer 

Because of their higher level of autonomy, mobile agent systems require more than the readiness of the 

underlying network and the typical system requirements for mobile code to move these agents over the 

Internet.  In fact, the mobility of many commercial mobile agent systems is restricted, being defined as 

an agent visiting a host, and then directly returning to its agency.  This is largely due to the relative 

infancy of the field (moving agents vs. stationary agents) and the lack of programming standards to 

facilitate mobility.  

 

Agent mobility can be implemented either as weak or strong mobility.  In weak mobility, the agent’s 

state is represented in data structures and migration is only allowed at specific points in the agent code.  

In strong mobility, the agent’s state is captured at the underlying thread, which allows for migration at 

any point in the agent’s execution (Tripathi et al., 2001).  With weak mobility, the agent will restart on 

the new host with its current data, while strong mobility allows the agent to continue execution from 

the point in its instructions where it was transferred (Horvat et al., 2000).  Most Java-based mobile 

agent systems support weak mobility, while systems not based on Java often provide strong mobility 

(Horvat et al., 2000; Picco, 2001; Tripathi et al., 2001).  If the thread of control needs to be retained in 

an agent system supporting weak mobility, additional programming is required to save the execution 

state manually.  In a system with strong mobility, migration is completely transparent to the migrated 

program, reducing programming effort as well as the size of the transported code (Picco, 2001).  

However, since moving to another host may require a mobile agent to perceive this new environment to 

determine for example what resources are available, restarting the agent, namely using weak migration, 

is considered more appropriate than strong migration (Hermann & Zapf, 2000). 

 



 

 89

Systems with weak mobility vary in the way agents request to move.  Some use a simple ‘go’ 

statement causing the agent code and data to be moved to a new host, where a predetermined procedure 

or method is invoked.  Others associate an itinerary listing the succession of hosts to visit with each 

agent and the method to invoke on each host.  Some systems invoke the same method at each stop, 

while others allow the agent to specify different methods for each stop (Shih, 2001; Tripathi et al., 

2001).  

 

Mobility often necessitates the transport of agent classes.  Class transfers are usually approached in two 

ways (Gray et al., 2002; Milojicic, 1999; Tripathi et al., 2001):  

1. all classes required by the agent code can be transported as part of the agent transfer protocol, or  

2. classes can be obtained on demand from a designated code-base server during execution.   

The purpose and circumstances under which the application will be used will determine which 

approach is followed. 

 

D’Agents uses the first approach, which actually makes agent transfer heavyweight, since more classes 

than the agent actually needs may be transferred.  Nevertheless, it has the advantage that the agent 

needs no further communication with its previous host for code transfer (Gray et al., 2002).  SMART 

uses the second approach, and allows the agent to attach new code and data at runtime through the 

process of dynamic aggregation.  This reduces the amount of code transferred with the agent.  It also 

reduces bandwidth requirements and speeds up the packing process before transmitting an agent to 

another host (Wong et al., 2001).  It slows down agent execution (Tripathi et al., 2001) though and is 

not suitable for disconnected operations.  An alternative approach is sometimes used where a third 

party could be asked to serve as code cache to allow the sending host to disconnect, or code could be 

cached at each host (Gray et al., 2002).  A number of variations on these approaches are discussed by 

Gray et al. (2002), Miljojic et al. (1999) and Triphathi et al. (2001). 

4.3.2.6 Communication aspect in the social layer  

Two of the critical characteristics of mobile agents are their capabilities to collaborate and to share 

information.  Without interoperability it will be impossible to realise the potential capabilities and 

benefits of mobile agent technology.  Mobile agent systems are interoperable if a mobile agent from 

one system can migrate to the second system, the agent can interact and communicate with other agents 

(local or even remote agents), the agent can leave this system and it can resume its execution on the 

next interoperable system (Pinsdorf & Roth, 2002).  Interoperability aspects are often impeded by 



 

 90

complexity and security concerns.  Current trends include open agent systems, which are 

heterogeneous by nature, and thus may include more than one language.  In the light of these trends, 

MASIF’s claim that interoperability issues can be restricted to mobile agents written in the same 

language, as all mobile agent systems will be written in Java in the near future, does not hold.  

Furthermore, the behaviour expected from the mobile agent often dictates the source programming 

language, since different languages have varying domains of applicability (Dale, 1997).  Ideally a 

mobile agent system should support several languages to accommodate different application needs 

(Gray et al., 2002; Kotz et al., 2002). 

 

Mobile agents need to communicate with one another and sometimes also with other non-agent 

services and resources.  Gray et al. (2002) point to four important communication issues to be included 

in the design of a mobile agent, namely  

• how to identify another party with which to communicate;  

• the required communication format;  

• how to pass data from one party to the other (messaging); and  

• how to maintain communication with a moving agent.   

Since identifying an agent or a communicating party can be treated as inherent to each of these issues, 

only the last three of these communication issues are discussed with referrals as to how the 

identification issue has a bearing on each of them.   

Innate to agent communication are the issues concerning the required communication format.  Because 

mobile agents operate in a heterogeneous environment, interoperability cannot be achieved if there is 

no standardised means through which agents can understand and communicate with their functional 

environment.  An ACL provides the capacity to integrate disparate sources of information (Finin, 

Labrou & Peng, 1998).  An ACL is usually composed of an inner context language with a common 

vocabulary with ontology, an outer communication language and message passing mechanisms.  Java 

and Tcl/Tk are commonly used as the inner context language.  An ACL must support three important 

communication aspects, namely  

• how to translate between different ACLs;  

• how to guarantee the semantics of concepts, objects and relationships; and  

• how to share the intended messages to be communicated.  

 

There are many examples of standardisation efforts with regard to an ACL.  Two examples are 

mentioned briefly.  The Knowledge Sharing Effort (Genesereth & Finin, 1992; Neches, Fikes, Finin, 



 

 91

Gruber, Patil, Senator & Swartout, 1991) developed three languages to address the abovementioned 

ACL issues: the Knowledge Interchange Format (KIF), Ontolingua and the Knowledge Query and 

Manipulation Language (KQML).  KIF was specifically designed to address the translation aspects of 

an ACL.  Ontolingua addresses the semantics issue.  KQML addresses the issue of sharing messages in 

inter-agent communication.  In another example, one of the primary activities of the FIPA standard is 

to design a standard modelling language to support agent software engineering and to guarantee a high 

quality development process to construct multi-agent systems (Calisti, 2003). 

 

Messaging plays an important role in inter-agent and agent-host communication.  Aridor and Oshima 

(1998) discuss two basic methods for the delivery of messages: 

• Locate-and-Transfer, where the agent is located with the aid of the naming services and then 

the message is transferred directly to it, namely two distinct phases exist during message 

delivery, and  

• Forwarding, where locating the receiving agent and delivering the message occurs in a single 

phase.   

The first may be problematic, since the agent may already have migrated when the second stage of 

transfer takes place.  The latter may be more efficient for smaller messages, while a large message can 

be delivered more efficiently through the former method. 

 

Communication maintenance approaches to address agent communication issues can be divided into 

three categories, namely synchronous communication (such as offered by TCP), asynchronous 

communication (IP, RMI or RPC) and indirect communication (event-notification and shared 

group/meeting objects) (Horvat et al., 2000; Tripathi et al., 2001).  Synchronous communication can be 

subdivided into (1) communication where messages containing strings of arbitrary data are passed and 

(2) communication where messages containing serialised objects are passed (Gray et al., 2002).  In all 

categories agents need to know each other’s names to establish or maintain communication.  

 

A demonstration of why it is important to distinguish between the different communication categories 

in mobile agent systems is offered by the following example.  In synchronous communication, 

migration mechanisms must be included to cater for a participating agent since migration of the agent 

will disrupt the communication session.  This will not happen in asynchronous communication, for if 

the agent is transferred, an exception will be thrown, and the initiating agent can simply re-execute the 



 

 92

lookup and binding protocol to re-establish communication with the other agent at its new location 

(Tripathi et al., 2001).  

 

Most mobile agent systems use more than one of these mechanisms, as well as 

broadcasting/multicasting when sending the same message to multiple receivers (Horvat et al., 2000).  

D’Agents, for example, uses all three by keeping a simple directory service, implemented as a 

collection of stationary cooperating agents (Gray et al., 2002).  Telescript agents (White, 1994) 

typically ‘meet’ other local agents and then invoke methods on objects in the other agents (example of 

asynchronous communication), but these agents can also communicate by sending events (an example 

of indirect communication). 

 

Maintaining security during communication, especially while providing remote communication to 

visiting agents, is an important factor to consider during the design of a mobile agent system.  A 

visiting agent could copy or transfer unauthorized information, gain access to protected resources, or 

launch denial of service attacks.  Therefore encrypted and authenticated inter-agent communication 

needs to be supported (Tripathi et al., 2001).  Authentication is addressed on the host security and 

agent security layers. 

4.3.2.7 Persistence aspect in the social layer 

The concept of an agent migrating between hosts implies that the user is not reliant on the system 

launching the agent and is not (or should not be) affected if a host fails, therefore persistence is built 

into the notion of mobile agents (Harrison et al., 1995).  However, explicit persistence mechanisms 

should be integrated into a mobile agent system, to avoid loops and interminable waiting upon agents 

to return to their agent system.  Furthermore, since mobile agents do not need to maintain a permanent 

connection, their state is centralised within themselves, implying that an improved fault tolerance can 

be expected from this technology.  Nevertheless, specific mechanisms have to be embedded into 

mobile agent systems to handle fault situations, such as breakdown of connections or hosts, destruction 

of the agent, or network errors causing the agent to get lost.   

 

While most systems offer little support for failure detection and recovery (Picco, 2001; Tripathi et al., 

2001), a number of systems provide some form of persistence and fault-tolerance for mobile agents by 

means of a checkpoint-restore mechanism to restart agents (Gray et al., 2002; Horvat et al., 2000; 

Picco, 2001).  According to this mechanism the agent’s state information is checked before and after 



 

 93

execution on a host server, and when the server is restarted, a recovery process restarts any agents left 

on the server at last shutdown (Horvat et al., 2000).  The Tacoma architecture (Johansen, Renesse & 

Schneider, 1995) achieves persistence by allowing agents to create folders inside cabinets (storage 

space on disk) on boot-up.  Tacoma then examines the ‘system’ cabinet and launches new agents for all 

the folders detected there.  Other persistence mechanisms are discussed in Triphati et al. (2001), 

Feridun and Krause (2001) and Vogler et al. (1997). 

4.3.2.8 Mobile agent management services layer 

Serialization, deserialization and conversions, where necessary, are done on the mobile agent 

management services layer of the proposed architectural model.  In essence object serialization in 

mobile agent technology is the ability to read and write objects to byte streams, commonly for saving 

session state information and for sending objects (agents and their states) over the network.   

 

Serialization adds lightweight persistence as well as limited security to the agent as it protects private 

and transient data.  Although object serialization in general does not contain any encryption/decryption 

algorithms in itself, it writes to and reads from streams, so it is possible for it to be coupled with any 

available encryption technology.   

 

Java includes serialization through an API that allows the serialised data of an object to be specified 

independently of the fields of the class.  Those serialised data fields can be written to and read from the 

stream using the existing protocol to ensure compatibility with the default writing and reading 

mechanisms.  Aglet hosts use the standard Java ObjectSerialization mechanism to export the agent 

state as well as the aglet itself to a stream of bytes.  However, the state of the execution stacks and 

program counters of the threads owned by the aglet are not serialised, which implies that when an aglet 

is dispatched, cloned, or deactivated, any relevant state sitting on any stack of a running aglet, as well 

as the current program counter for any thread, is lost (Venners, 1997).  Grasshopper uses the MASIF 

serialization/deserialization process also based on the Java language.  Examples of other methods of 

serialization (supporting other languages) are discussed in the Waterken Web (Object Serialization 

Specification, 2003), Le Goff et al. (Le Goff, Stockinger, Willers, McClatchey, Kovacs, Mar & Hassan, 

2001) and Procopio (2002).   



 

 94

4.3.2.9 Agent security 

A malicious hosting node can launch several types of security attacks on a mobile agent and divert its 

intended execution towards a malicious goal or alter its data or other information in order to benefit 

from the agent’s mission (Sander & Tschudin, 1998).  Bierman and Cloete (2002) describe four classes 

of security threats being imposed on mobile agents by malicious hosts, namely  

• integrity attacks, which include integrity interference and information modification;  

• availability refusals, which include denial of service, delay of service and transmission refusal;  

• confidentiality attacks including eavesdropping, theft and reverse engineering, and  

• authentication risks, which include masquerading and cloning.   

 

In the same paper, three types of counter-measures were presented to address these classes of problems.  

The first type of counter-measure refers to trust-based computing where a trusted network environment 

is created in which a mobile agent roams freely and fearlessly without being threatened by a possible 

malicious host.  A trusted environment can be achieved through tamper-resistant hardware, an 

agreement between specific hosts, and inclusion of detection objects in the mobile code.  However, a 

trusted environment also goes against the notion of mobility, thus having access to unlimited Internet 

information.  A second type of counter-measure that can be considered includes methods of recording 

and tracking that make use of the itinerary information of a mobile agent, either by manipulating the 

migration history or by keeping it hidden.  Examples of specific recording and tracking methods 

include among others, itinerary recording and tracking mechanisms (Roth, 1998; Schneider, 1997), and 

server replication (Minsky, Van Renesse, Sheider & Stoller, 1996).  The third type of counter-measure 

includes cryptographic techniques that utilise encryption/decryption algorithms, private and public 

keys, digital signatures, digital timestamps, and hash functions to address different threat aspects.  

Examples include cryptographic tracing (Vigna, 1997), encoding with encrypted functions (Sander & 

Tschudin, 1998), partial result encapsulation (Jansen, 2000), and others.   

 

Many of the abovementioned methods are merely theoretical proposals at this stage and have not yet 

been implemented, owing to their complexity.  As the malicious host problem is not simple, much 

research is currently being conducted to provide better detection and prevention mechanisms.  

4.3.2.10 Naming server layer 

A global naming scheme managing agent names is important for identifying, controlling and locating 

agents (Milojicic et al., 1998).  Moreover, a mobile agent system requires a name service to locate 



 

 95

resources, specify agent servers for migration and also to establish inter-agent communication.  A 

naming scheme defines a namespace, which may be hierarchically structured.  A name service maps a 

resource name to its physical address and could also indicate the type of resource as well as the 

protocol to access it (Tripathi et al., 2001).  Since communicating agents need to agree in advance on 

the naming server, an architecture where agent servers share a default naming server simplifies the 

registration system.  The naming server layer therefore implements a global naming scheme and name 

service. 

 

MASIF uses an agent’s name (as assigned by its authority), its identity (a unique value within the scope 

of the authority) and the agent’s system type (for example Aglet) to form a globally unique name for 

each agent.  As described earlier, MASIF uses four basic techniques to find an agent, including brute 

force, logging, agent registration and agent advertisement.  Other systems also use these, a hybrid of 

these, and additional methods to locate agents.  For example, Aridor and Oshima (1998) use the brute 

force search in parallel or in sequence, as well as a database for agent registration as a predefined 

directory server used to register, unregister or locate agents.  Other agents can then use this directory to 

find the agent.     

4.3.2.11 Host security 

A host is faced with two potential threats from mobile agents, namely a malicious agent, which might 

be a virus or Trojan horse vandalising the host, or a benign agent that might simply abuse a host’s local 

resources.  In an uncontrolled environment, mobile agents can potentially run indefinitely and consume 

the system level resources such as files, disk storage, I/O devices, etc., in their execution environment.  

Therefore resource consumption, such as CPU time, disk storage, number of threads, number of 

windows, network bandwidth and the like, should be limited and access control policies that define 

accessibility to these resources must be put in place (Feridun & Krause, 2001; Gray et al., 2002; Picco, 

2001; Tripathi et al., 2001).  

 
In both instances, three basic types of counter-measures can be applied, namely authentication, 

verification and authorisation.  Authentication ensures that the agent comes from a trustworthy site.  

Verification checks the agent code to ensure that it does not attempt to corrupt the execution 

environment by performing prohibited actions.  Authorisation checks the runtime actions of the agent 

to ensure it does not exceed allowances or access permissions.  Verification mechanisms address the 

malicious agent threat.  Protection mechanisms against a potentially malicious host can of course 



 

 96

prevent such verification procedures from being implemented.  This means that the verification 

mechanisms can only be confined to the execution environment and hence only manage the agent 

during execution to ensure that the agent does not try to corrupt the execution environment (Dale, 

1997).   

 

The XML-based Security Assertion Markup Language (SAML) (Assertions and Protocol for the 

OASIS Security Assertion Markup Language 3 (SAML) V1.1.4, 2003) is a recent standardisation effort 

to address the authentication and authorisation concerns.  One of the major design goals of SAML is 

single sign-on, which implies the ability of a user to authenticate in one domain and use resources in 

other domains without re-authenticating.  Although the OASIS standard is primarily aimed at Web 

services that allow the exchange of authentication and authorization information among business 

partners, it is of particular importance for mobile agents as they engage and interact with resources and 

other agents in various domains.  With it, a security administrator can express advanced security 

requirements, such as time- or event-based restrictions.  

4.3.2.12 Network layer 

The network layer is responsible for the final encoding of the encrypted serialised agent object so that 

the underlying network can transport it to its next host.  Although there are several ways to perform this 

encoding, the IBM Aglet’s workbench team proposed an ATP as a mobile agent standard to be adopted 

for transporting mobile agents.  ATP is a platform-independent, application-level protocol for 

distributed agent-based systems for the purpose of transferring mobile agents between networked 

computers (Lange & Oshima, 1998).  Some other mobile agent systems simply use the underlying 

HTTP or TCP/IP protocols as transport protocol, for example Aridor and Oshima (1998) and D’Agents 

(Gray et al., 2002). 

 

Security mechanisms can also be included in the agent’s transport protocols.  For example, protocols 

such as Secure Socket Layer (SSL) and Transport Layer Security (TLS) (Transport Layer Security), 

although a bit heavyweight, can be used for securing transmission of data between two hosts.  

Alternatively, the Key Exchange Protocol (KEP) (Internet Key Exchange Security Protocol) offers a 

lightweight transport security mechanism, which suits the notion of small transferable objects better. 

 

 

 



 

 97

 
Layer Purpose Significance 
Authority API API that facilitates interaction with and 

management of its mobile agents both 
locally and at remote hosts. Includes 
tasks such as agent creation, 
communication and destruction.   

Without the authority API, the mobile 
agent system is too complex for 
commercial acceptability.  Depending on 
the client, it is most likely that the user is 
not a programming expert and therefore 
would either not be able to or would not 
want to interact with the programming 
environment. 

Agency Provides an environment where agents 
can be created, suspended, activated 
and destroyed.   

This layer allows an agent system to 
control both its own agents and visiting 
agents from another agent system 
(Milojicic et al., 1998).   

Execution layer Provides constrained execution 
environments (places) where agents can 
execute and meet other agents. 

The constrained execution environment 
provides all the services necessary to 
execute a mobile agent, but limits their 
actions.  It allows multiple agents to live 
and execute on the same server without 
interfering with each other and allows 
agents to communicate with each other.  
To a certain extent it thus protects both 
the host and the agents against each other.   

Social layer Implements organizational structures 
and coordination strategies to allocate 
social tasks and enforce global laws 
and conventions in the society of 
agents. 

Without coordinating the agents’ actions, 
they may perform tasks that are 
counterproductive to each other, leading 
to livelock11 and/or deadlock in the 
system (Grimley & Monroe, 1999).  
Agents’ actions also need to be 
coordinated to allow them to achieve both 
their individual and common goals. 

Mobility aspect Implements mechanisms to ensure 
mobility such as providing support for 
transport of data and agent classes.  

The agent code may require class 
transfers when an agent is created 
remotely or transferred, since the Agent 
class is needed to instantiate the agent.  If 
it does not exist on the host, it must be 
transferred from the source.  Other classes 
used during agent execution, if they are 
not available at the destination, must also 
be transferred from the source or from a 
server (Milojicic et al., 1998).  Weak 
mobility may also require additional 
mechanisms to transfer data.  Without the 
transfer of the required classes or data, 
the mobile agent will be unable to restart 
and/or continue its execution. 

Communication aspect Implements messaging, which includes 
broadcasting, and maintains 
communication with moving agents. 
 

Without communication, mobile agents 
will be unable to collaborate and share 
information, and thus, to a large extent, 
unable to achieve their goals.   

                                                 
11 Livelock occurs when agents act continuously, but make no progress towards the overall goal (Grimley & Monroe, 1999)    



 

 98

Layer Purpose Significance 
Persistence aspect Implements fault-tolerance and 

persistence mechanisms. 
 

Various situations, such as breakdown of 
connections or hosts, destruction of the 
agent or network errors causing the agent 
to be lost, can prevent an agent from 
migrating successfully (Horvat et al., 
2000; Vogler et al., 1997).  Fault-
tolerance and persistence mechanisms 
provide mechanisms for local recovery.  
Without these, loops may arise or 
interminable waiting upon agents to 
return, may occur. 

Mobile agent management services Serialises the agent before transmission 
and deserialises it on arrival at the 
remote host. 

Serialization allows saving the state of the 
mobile agent and writing it to a byte 
stream in order to transfer it over the 
network.  On arrival at the remote host, 
deserialization allows reconstruction of 
the mobile agent and enables it to 
continue its execution.  Without it, the 
execution state of the agent would be lost. 

Agent security Protects the agent against malicious 
hosts and during transfer. 
Encrypts agent before migration and 
decrypts new agents before execution. 

Without agent security, malicious hosts 
and other agents could modify an agent’s 
code, state or data so that the agent does 
not achieve its goal, or achieves a 
different goal than the one intended.  
Encryption protects an agent’s code, state 
and data during transmission against other 
agents and malicious hosts under way.   

Naming server layer Implements a global naming scheme to 
identify, control and locate agents, and 
a name service to locate resources, 
specify agent servers for migration and 
establish inter-agent communication. 
Names and registers newly created 
agents for future reference. 
Registers new agents that arrive at the 
host. 
Determines location of hosts to be 
visited. 

Without a globally unique name for each 
agent, it would be impossible to identify, 
control and locate a specific agent in a 
mobile agent system.  This in turn implies 
that it would be impossible to 
authenticate and authorize the agent.  
Authentication ensures that the agent is 
trustworthy, and authorization checks the 
runtime actions of the agent to ensure that 
it does not exceed its access permissions.  
Both of these are linked to the agent’s 
identity.   
Agent identification is also important to 
enable communication with other agents, 
as well as with the environment.  
This layer thus makes it possible to 
implement host security, to trace agents 
and transfer them to their remote hosts, 
and enables communication. 



 

 99

Layer Purpose Significance 
Host security Provides credentials for access to other 

hosts to the mobile agent before 
migration. 
Authenticates agents received from 
remote hosts, verifies and authorises 
their code to protect the host against 
malicious agents. 
Enforces access control policies to 
protect the host against abuse of its 
local resources. 

Without host security, malicious agents 
can access and/or modify data and 
resources available at the server, or infect 
the server.  This can lead to denial of 
services, including disrupting execution 
of other agents and opposing services to 
other agents.  Access to the host can be 
abused, for example by formatting the 
hard disk and harming the server or other 
agents (Dale, 1997; Harrison et al., 1995; 
Lingnau et al., 1995).   This layer 
therefore protects the host environment. 

Network Encodes the agent in a suitable 
transport protocol for transport through 
the network. 

This layer represents the hardware and 
software protocols necessary to enable 
mobile agents to migrate.  Without it, the 
mobile agent would not be able to 
migrate. 

Table 4.3 A summary of the different layers in the proposed architectural model 

4.4 Significance of the proposed model 

The proposed generic mobile agent system architectural model provides a comprehensive view of the 

architectural components required to implement a mobile agent system in agent orientation.  This 

includes the social characteristics required by multi-agent systems, which are indicated by the social 

layer.   

 

Though most of the platforms used to identify the essential architectural components follow a layered 

approach, none of them includes all the layers in the proposed architectural model.  Grasshopper is the 

most comprehensive of the platforms described.  Its architecture though contains two aspects, that 

make it difficult for a novice to comprehend.  It consists of two layers, which appear to be mapped 

upon each other.  Within these two layers, components are layered within several other components.  

The architectural components in the proposed architectural model, in contrast, represent the essential 

features of a mobile agent system in a simplified, general but clear way.  A clear understanding of the 

architectural components that are involved makes it much easier for a novice to form a broad overview 

of the important system elements during design.  It also enables programmers to identify and include 

different mobile agent characteristics, with maximum reuse of available technologies and architectures.  

No other model with these features was found in the literature. 

 

The layered approach isolates the individual architectural components that each form an essential part 

of the mobile agent system.  This enables developers to focus on the tasks that apply to a specific layer 

during its development, since each layer forms a functional unit.  A layered model also allows the 



 

 100

independent development of layers while implementing each layer separately and also supports 

program maintenance, debugging and upgrading.   

 

Furthermore, the social layer, in representing the social character of a multi-agent system, reminds the 

novice that a paradigm shift is necessary to implement mobile agent systems.  As pointed out earlier, to 

realize the full potential of mobile agent systems, they should be implemented according to the proper 

principles in agent orientation.   

 

In the discussion of each component in the proposed architectural model, issues to take into account in 

order to enhance the design and development of mobile agent systems, are pointed out.  This provides 

further guidelines for building commercially acceptable mobile agent systems. 

 

The proposed architectural model thus provides a constructive tool to both programmers and 

researchers who enter the field for the first time.  The architectural model could act as a first step on the 

way to establishing a standard that can be used during the design and development of mobile agent 

systems.  It is also significant because it provides a point of reference for researchers and developers to 

evaluate the capabilities of mobile agent systems created by commercially available tool kits. 

4.5 Proposed model application and comparison 

The significance of the proposed architectural model becomes apparent when one compares it to a real-

life example.  This example is provided by Project TUTA (Tshwane University of Technology Agents) 

(Mentz & Bierman, 2004).  Project TUTA was formulated by the Tshwane University of Technology 

(TUT) and is based on a dissertation submitted by Mentz (2004).  For this project, three programming 

groups each received design requirements for a research-oriented mobile agent system.  One group 

consisted of five students and the other two groups of four students each.  The assignment was to 

produce a working mobile agent system in which at least one agent migrates between at least two 

different execution environments.  The mobile agent had to migrate to the various destinations stored in 

its itinerary, execute code at each of those nodes and store the results in its memory.  Implementations 

were done in C# in the .Net environment.   

 

The initial description of the system suggested that each node store air flight information and that the 

mobile agent migrates to each of these nodes to collect information such as the cheapest flight to a 

destination.  However, each group could also choose its own goal.  Eventually all the groups 



 

 101

implemented different applications.  One group searched for a book in a database, another attempted to 

coordinate a meeting between different parties, and the third group simply tried to achieve mobility.   

 

Project TUTA design requirements consisted of a descriptive model describing the relationships 

between mobile agent system elements.  It contained four layers.  The bottom layer consisted of the 

underlying network technology and was accepted as existing and appropriate for the system.  The 

second layer was provided by the operating system, which acted as interface between the underlying 

network and resources for the third layer, the execution environment.  The topmost layer consisted of 

the mobile agent itself.   

 

The execution environment contained five managers:  

• The migration manager was responsible for transferring the mobile agent to the desired node.  

This included preparation for migration, communication with the destination node, transfer of 

the mobile agent and completion of migration.  

• The security manager ensured the safety of the mobile agent, the host visited by the mobile 

agent and the resources of the host. 

• The mobile agent manager controlled the mobile agent life cycle in cooperation with the 

resource manager and the communications manager.  It also contained a GUI to show relevant 

information about mobile agents and their activities. 

• The resource manager provided mechanisms for access to resources other than basic execution 

resources, such as databases. 

• The communications manager provided communication channels to other mobile agents or 

entities outside the system.  

 

The Project TUTA architecture is depicted in Figure 4.6.  

 



 

 102

Execution environment

Agent

Resource 
manager

Communications 
manager

Mobile agent manager

Security Manager

Migration manager

Operating system layer

Network layer

Identification
Migration

Access to 
resources

Communications

Create
Destroy
Execution
Management
GIU

Security

Migration

Provides services 
to mobile agentInterface 

between user 
and hardware Transport

 

Figure 4.6 Project TUTA architecture 

 

Of the three groups in Project TUTA, only one group followed the design architecture given to it.  This 

was also the only group to produce a functional mobile agent system.  In this case the purpose of the 

system was that the agent would visit a database containing information about books and then report 

back whether or not a title had been found that matched the given information. 

 

To illustrate the importance of an architectural design, the rest of this discussion focuses on the design 

of the programming group whose mobile agent system attempted to coordinate a meeting between 

different parties.  While their demonstration of the system proved that the mobile agent was indeed able 

to reach other hosts, it was not able to coordinate the meeting.  One of the complaints of this 

programming group was that the system became too big and its clumsiness prohibited them from 

including all the functionality.  Their failure demonstrates a problem at design level rather than 

development level.  It emphasizes both the importance of analysis and the subsequent design processes, 

as well as following an iterative cycle in this process when implementing a system. 

 

If the programmers used a modular design based on different architectural components, they would 

most probably have incorporated most of the necessary elements into their design without being 

overwhelmed by the size of the system.  In this case slipshod communication infrastructure or 

persistence design most probably introduced most of the problems and programming failures. 

 



 

 103

Missing layers in the architectural design could cause novices to omit or neglect important aspects 

when developing a mobile agent system.  For example, it is possible that, without a global naming 

scheme and a naming service, when more than one mobile agent system is deployed on the same 

network in Project TUTA, confusion may ensue if the previous demonstration(s) had not been deleted. 

4.6 Conclusion 

This chapter proposed a generic mobile agent system architectural model that can guide novice mobile 

agent programmers when developing a mobile agent system.  The model provides a comprehensive 

overview of the different architectural components for a mobile agent system in the agent orientation 

paradigm.  The proposed architectural model includes more layers than any of the platforms used as a 

basis to identify components, and thus addresses more aspects, enabling it to provide more assistance to 

novices.  The Project TUTA example points out the importance of architectural design.  This shows 

that the proposed model can certainly act as a tool to assist novice mobile agent programmers by 

ensuring that all the necessary elements are included during system development. 

 

In Chapter 5 a knowledge base to encapsulate the concepts presented in Chapter 2 to 4 is discussed.  



 

 104

CHAPTER 5 

5 KNOWLEDGE BASE FOR NOVICE MOBILE AGENT PROGRAMMERS 

5.1 Introduction 

This chapter describes one possible visualization of the knowledge base that was developed to assist 

novice mobile agent programmers in order to help them to develop commercially acceptable mobile 

agent systems.  To this end the chapter contains seven sections.  Section 1 is this introduction, and 

section 2 discusses the importance of the knowledge base for novice mobile agent programmers.  

Section 3 describes the design and development of the knowledge base environment, while section 4 

describes the implementation of the knowledge base environment.  Section 5 provides some examples 

of the interaction between the novice mobile agent programmers and the knowledge base.  Section 6 

reports on the testing of the knowledge base, while section 7 concludes the chapter.  

 

Knowledge management is an evolving discipline that seeks to make the best use of available 

knowledge, creating new knowledge and increasing awareness and understanding in the process.  For 

this purpose, a separation may be made between concepts of data, information, tacit knowledge and 

explicit knowledge.  Data is considered to be factual, raw material without contextual meaning.  

Information is data that has been refined into a structural form, for example a database.  Explicit 

knowledge relates to “knowing about” and is storable and transferable, for example manuals, 

specialized databases or collections of programming libraries.  Tacit knowledge relates to “knowing 

how”.  It is not directly transferable between individuals, but through application, practice and social 

interaction (Knowledge Management, 2005). 

 

The intended knowledge base incorporates all these concepts in order to construct tacit knowledge that 

is transferable through application of the presented knowledge units.  A systematic approach is 

followed to implement the knowledge units described in previous chapters into a usable tool for the 

novice mobile agent programmer.  

 

As mentioned earlier, a knowledge base is  

 

‘a special kind of database for knowledge management.  It is the base for the collection of knowledge.  

Normally, the knowledge base consists of explicit knowledge of an organization, including 



 

 105

troubleshooting, articles, white papers, user manuals and others.  A knowledge base should have a 

carefully designed classification structure, content format and search engine.’(Knowledge Base, 2005) 

 

From this definition, it can be seen that the focus of this research effort is not on the architectural 

design of the knowledge base.  An elaborate description of the design elements will not contribute to 

the programming experience of the novice mobile agent programmer.  Instead, it would deviate the 

focus from the objectives of this research that were established in the first chapter.  Rather, for the 

novice mobile agent programmer, the knowledge base forms a programming aid or a tool.  Thus, the 

design, development and general deployment issues of the tool are not of any concern to the 

programmer, nor will these contribute to his or her understanding of the mobile agent programming 

environment.  For this reason (as stated in the scope of the dissertation), the discussions in this chapter 

are limited to issues that pertain to the objectives of this dissertation.  However, for the sake of 

completeness, a brief overview of some of the structural issues with regard to the knowledge base is 

provided in the section 5.3. 

5.2 Importance of the knowledge base for the novice mobile agent 
programmer 

Developing agent systems requires specialized skills and knowledge in various areas.  For this reason 

the use of agent construction toolkits are often recommended in order to implement agent systems.  

Even so, novice mobile agent system programmers need to understand and be aware of a substantial 

number of concepts, both at the level of implementing individual agents and agent societies, and at the 

level of constructing the environment in which mobile agents operate, namely the agent systems, in 

order to develop commercially viable systems.  Furthermore, novices attempting to program mobile 

agents often have difficulty in distinguishing between the concepts applicable to the agents themselves 

and those applicable to the agent execution environment, since there is some overlap, as well as in 

applying the concepts in the correct context.  Both literature (Rothermel & Schwehm, 1998) and 

practical experience show that at least twelve months of (intensive) literature study are necessary to 

gain sufficient knowledge and insight to apply the acquired learning.   

 

To facilitate and simplify this process, the literature study in Chapters 2 and 3 provides a survey of the 

programming milieu for mobile agents, while Chapter 4 provides guidelines for implementing mobile 

agent systems with a generic mobile agent system architecture.  The knowledge base offers a summary 

of the knowledge gained during the previous chapters.  It can be used as a tool both to refresh concepts 



 

 106

while novice mobile agent programmers orientate themselves to this environment, and to serve as a 

reference during the process of designing and developing a mobile agent system.  The examples, 

although fairly limited, are especially helpful.  

 

The nature of the knowledge base is such that it can be used in conjunction with the accompanying 

dissertation or as a stand-alone reference.  The references to related articles and websites provide 

guidance to users for independent further investigation, as well as links to a number of existing mobile 

agent systems.   

5.3 Design and development of the proposed knowledge base 
environment 

The knowledge base environment was designed to offer a summary of the knowledge gained during the 

previous chapters.  The candidate did not do the actual programming thereof.  To avoid being caught 

up in a separate systems analysis and design project, a rapid application development tool, namely 

Borland Delphi 7, was used to construct a knowledge management environment.  An Access 2000 

database is used to store the knowledge contained in the knowledge base.  The system was tested on an 

HP compaq nc4010 notebook with an Intel® Pentium® M memory chip, a clock speed of 592 MHz, a 

1.80GHz processor and 992 MB RAM; and an LG personal computer with an Intel® Pentium® 4 

memory chip, a clock speed of 1.62 GHz, a 1.60GHz processor and 512 MB RAM.  It also ran on a 

variety of other Windows-based machines.   

 

This environment then communicates with a database that stores the relevant mobile agent knowledge 

units.  The primary source of knowledge units is from the prior chapters in this dissertation.  These 

chapters capture the relevant information pertaining to mobile agents within the context of constructing 

mobile agent systems.  Figure 5.1 offers a graphical view of this process. 



 

 107

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The essential interactivity between the gathered data and information to create 
explicit and tacit knowledge on the part of the novice mobile agent 

 

The following structures were designed for each knowledge unit that had been identified as being 

relevant to the novice mobile agent programmer:  

• Topic or theme of the knowledge unit 

• Relevant keywords 

• Description or clarification 

• Example (if applicable) 

• Section reference to refer the programmer to a point of reference in the dissertation, should the 

excerpt not cover his or her expectations sufficiently. 

• Other reference(s) to related article(s) or websites.  

 

A simple relational database consisting of a set of three tables with fixed columns, maintains the entire 

structure of the knowledge base.  The main table TopicTable consists of four columns for the Topic, the 

Description, the Example and Section.  Since a topic may have more than one keyword, as well as more 

than one reference, separate tables are used for the keywords and references in order to share 

information and minimize data redundancy.  The KeywordTable consists of two columns, one for the 

Topic and one for a Keyword.  Similarly, the ReferenceTable consists of two columns, one for the 

Topic and one for a Reference.  Both the KeywordTable and the ReferenceTable are linked to the 

TopicTable with Topic as the common field.  The three tables are depicted in Figure 5.2. 

 

Chapters 1-4 

Knowledge Units Programmer Database 



 

 108

 

TopicTable 

Topic Description Example Section 

    

    

   KeywordTable 

Topic Keyword 

  

 

   ReferenceTable 

Topic Reference 

  

Figure 5.2 Tables used in relational database used to implement knowledge base 

 

Column values are commonly atomic12 or are allowed to be NULL.  For example, the knowledge unit 

“multi-agent system” will not contain sample code (as defined in the Example field) as this is irrelevant 

to the explanation as to what a multi-agent system is.  In this case the Example field reverts to NULL.  

On the other hand, the concept “initiate mobile agent” requires the inclusion of sample code to 

illustrate the initiation of a mobile agent.  In the latter case, the Example field will contain a description 

(as is typically defined in a MEMO field).   

 

The following example further illustrates the implementation of the database design: Both the Topic 

and the Keyword fields allow for the creation of indexed files to present information to the user.  This 

implies that the layout of the knowledge management environment is structured in such a way that the 

programmer can select from either a list of topics or a list of keywords.  If a topic is selected, the 

knowledge management environment will, in its communication with the underlying database, match 

the selected input with the available topics.  Once the topic is found, the knowledge management 

environment displays all relevant information related to the searched input.  This includes the topic 

(which is also the indexed key field), a clarification of the topic and which section in the dissertation 

pertains to the topic, as well as sample code and reference(s) to related articles where appropriate.  In 

                                                 
12 Does not contain structured values or a collection of values 



 

 109

some instances sample code is not sensible.  For example, if the searched term was “agency”, then the 

following information is appropriate: 

 TOPIC:  agency 

 DESCRIPTION:  Agency: 

Agency regards an agent as an autonomous software system acting in a 

continuous Perceive-Reason-Act cycle as part of a dynamic and open 

environment in order to achieve a goal.  Weak agents are autonomous, 

have social ability, and are reactive and pro-active.  Strong agents also 

have, in addition to the requirements for weak agency, mentalistic 

attitudes such as knowledge, belief, intention and obligation. 

 EXAMPLE:   Not applicable 

 SECTION:  2.2.1 

REFERENCE(S):  Franklin, S. & Graesser, A. 1996. Is it an Agent, or just a Program? A 

taxonomy for Autonomous Agents. in Proceedings of the Third 

International Workshop on Agent Theories, Architectures, and 

Languages. Springer-Verlag. 

Lange, D. B. 1998. Mobile Objects and Mobile Agents: the future of 

distributed computing? in E. Jul, (ed.) Proceedings of the European 

Conference on Object-Oriented Programming (ECOOP'98), LNCS. vol. 

1445. Springer-Verlag. Brussels, Belgium. 1-12. 

Lind, J. 2001. Issues in Agent-Oriented Software Engineering. in P. 

Ciancarini & M. J. Wooldridge, (eds.). Agent-Oriented Software 

Engineering - Proceedings of 1st International Workshop AOSE-2000. 

vol. 1957. Springer-Verlag. Berlin. 45-58. 

 

From the information given in the Description field above, it becomes obvious that sample code, or 

another type of example, is not applicable in this case since the searched term explains a concept rather 

than a specific implementation detail.  More examples follow in 5.5.  

 

Each keyword is linked to a topic or topics.  Since a particular keyword may be linked to more than one 

topic, when a keyword is chosen, a list of topics related to the keyword is displayed.  Once a topic is 

chosen, the process proceeds in the same way as described in the preceding paragraphs. 

 



 

 110

A functional view of the software design is presented in Figure 5.3.  It consists of a sequential system 

with a single control loop, which fetches and executes commands in sequence.  The initial user 

interface and each of the three displays are objects.  To display a list of available topics in the 

knowledge base, the column containing the topics is retrieved from the TopicTable and displayed.  

Similarly, to display a list of keywords, the list of keywords is retrieved from the Keyword column in 

the KeywordTable and displayed.  SQL statements are used to match topics linked to the requested 

keyword in order to extract an abbreviated list of topics.  The display of information relevant to a 

specific topic is also based on SQL statements.    

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Software design of knowledge base 

 

5.4 Implementation of the knowledge base environment 

5.4.1 Functioning  

Figure 5.4 illustrates the initial user interface when the knowledge base environment is activated. 

Topic 
Keyword 

Keyword button 

Display initial 
user interface 

 Display list of 
available topics 

 Display list of 
keywords 

Display relevant 
information 
related to 

searched input 

Topic button   



 

 111

 

Figure 5.4 Entry to the knowledge base 

As shown, the interface provides an introductory purpose statement and invites the user to make a 

choice between the Topic and the Keyword button to initiate his or her search.  To avoid misspelled 

terms and idle searches, a complete list of all available topics or keywords will be displayed upon 

selection of either button.  The user browses down through the individual items.  Figure 5.5 illustrates 

an excerpt from the lists of topics when the Topic button is selected.   

 

 

Figure 5.5 Entry to the knowledge base 

The list of available topics is displayed in a scrolling menu that allows the user to view all the available 

topics.  Either the scroll bar or the down arrow on the keyboard may be used to scroll through the list of 



 

 112

available keywords.  Picking the Back button causes the user to return to the initial user interface.  A 

topic is selected by pointing with the mouse.  Selecting a topic causes the relevant information linked to 

the searched input to be displayed.  This includes the following: 

• The relevant section in the dissertation 

• A short explanation of the concept according to the topic or keyword  

• An example, if available  

• References to related articles or websites. 

 

As shown in Figure 5.5, the topic Mobile agent life cycle is selected.  This causes the relevant 

information to be displayed, as shown in Figure 5.6.   

 

The Reference to section in dissertation note at the top of the display indicates section(s) in the 

dissertation where the life cycle of a mobile agent is discussed or referred to.  The clarification 

regarding the life cycle of a mobile agent is displayed in the Description text box.  There is no code 

example associated with the life cycle of a mobile agent, and therefore the Example text box displays 

‘Not applicable’.  References to articles containing further information on the life cycle of a mobile 

agent is displayed in the Reference text box.  Note that when more than one reference is available, as in 

this case, a scroll bar to the right of the Reference text box allows scrolling to view all the references.  

 

Selecting the Back button causes the user to return to the initial user interface (shown in Figure 5.4) 

where the user is once again invited to choose between the Topic or Keyword buttons to initiate a new 

search. 



 

 113

 

Figure 5.6 Information relevant to the topic Mobile agent life cycle is displayed 

 

Selecting the Keyword button on the initial user interface (displayed in Figure 5.4) initiates the display 

of the list of keywords on a scrolling menu, as shown in Figure 5.7. 

 

 

Figure 5.7 Extract from the list of available keywords 

The scrolling menu allows the user to view all the available keywords.  The user may use either the 

scroll bar or the down arrow on the keyboard to scroll through the list of available keywords.  Similar 



 

 114

to the display for the list of topics, selecting the Back button causes the user to return to the initial user 

interface.  A keyword is selected by pointing with the mouse.  Selecting a keyword causes an 

abbreviated list of topics consisting of those linked to the searched keyword to be displayed.  Picking 

the keyword Agent, as shown in Figure 5.7, causes the abbreviated list of topics shown in Figure 5.8 to 

be displayed. 

 

 

Figure 5.8 List of topics linked to keyword Agent 

Selecting a topic from the abbreviated list causes the relevant information linked to the searched input 

to be displayed.  This includes the same set of information to be displayed as if the topic was picked 

from the original scrolling menu for topics, namely 

• The relevant section in the dissertation 

• A short explanation of the concept according to the topic or keyword 

• An example, if available  

• References to related articles or websites. 

 

Picking the topic Agent architecture from the abbreviated list of topics shown in Figure 5.8, causes the 

relevant information to be displayed as shown in Figure 5.9.  There are two reference papers containing 

more information on agent architecture and thus a scroll bar is provided in the Reference box. 

 



 

 115

 

Figure 5.9 Information relevant to the topic Agent architecture displayed 

Once again, the Back button causes a return to the initial user interface shown in Figure 5.4.  Picking 

the Click here for no further searches button on the initial user interface (Figure 5.4) will close the 

knowledge base management environment. 

5.5 Examples of knowledge base communication with programmers 

5.5.1 Example 1: Searching for information on Aglets 

In the first example, it is assumed that the novice mobile agent programmer requires information on 

Aglets, which may either be a topic or a keyword.  The proposed knowledge base environment is 

activated and the programmer navigates through the system as follows: 

 



 

 116

 

Figure 5.10 Select the Keyword button 

 

The Keyword button is picked on the initial user interface shown in Figure 5.10 to initiate a search for 

keywords.  This causes a scrolling menu of all the available keywords in the knowledge base to be 

displayed, as shown in Figure 5.11.   

 

 
 

Figure 5.11 Select Aglets from the list of keywords 



 

 117

The user may use either the scroll bar or the down arrow on the keyboard to scroll through the list of 

available keywords.  Should he/she not find an appropriate keyword, he/she may return to the initial 

user interface by picking the Back button.  In this case the scroll bar or down arrow is used to move the 

cursor to the keyword Aglets (see Figure 5.11).  The user selects the keyword by pointing with the 

mouse to initiate a search for topics linked to the keyword Aglets.  This causes an abbreviated list of 

topics, linked to the keyword Aglets, to be retrieved from the knowledge base and displayed, as shown 

in Figure 5.12. 

 

Figure 5.12 List of topics with Aglet as a keyword 

As shown in Figure 5.12, the topic Aglet dispatching is picked, causing the relevant information in the 

knowledge base about the dispatching of Aglets to be displayed (see Figure 5.13).   

 



 

 118

 

Figure 5.13 Information about the dispatch method for Aglets is displayed under the topic Aglet dispatching 

 

The Reference to section in dissertation note indicates all the sections in the dissertation that refer to 

Aglets, though not all of them mention the dispatch method.  Clarification about the dispatch 

method is displayed in the Description text box while the code for the method itself is displayed in the 

Example text box.  Note that the user may click inside the Example text box and use the down arrow to 

scroll in order to view the complete example.  The reference in the Reference text box refers the 

programmer to more information about the dispatch method.  Picking the Back button causes the 

initial user interface to be displayed, as shown in Figure 5.14. 

 



 

 119

 

Figure 5.14 Initial user interface 

From the initial user interface, the programmer may continue with further searches based on a specific 

topic or keyword.  Alternatively, the button Click here for no further searches may be selected to exit 

the system by pointing with the mouse. 

5.5.2 Example 2: Searching for information on BDI agents 

In the second example, one assumes that the novice mobile agent programmer requires information on 

BDI agents, which may either be a topic or keyword.  In this instance, one assumes the programmer 

will do a search on the list of available topics.  Again, the proposed knowledge base environment is 

activated as shown in Figure 5.15 and the programmer navigates through the system as follows: The 

Topic button is chosen from the initial user interface by pointing with the mouse.  This causes a 

scrolling menu of all the available topics in the knowledge base to be displayed, as shown in Figure 

5.16.  

 



 

 120

 

Figure 5.15 Choose the Topic button to activate the display of a list of available topics 

 

 

 

Figure 5.16 Pick BDI agent from the list of available topics 

The programmer uses the scroll bar or the down arrow on the keyboard to scroll through the list of 

topics.  Should he/she not find an appropriate topic, he/she may return to the initial user interface by 

selecting the Back button.  In this case, the down arrow is used to move the cursor to the topic BDI 



 

 121

agent.  Selecting this topic by pointing with the mouse as shown in Figure 5.16, activates the display of 

the information on the searched topic in the knowledge base.  The result is shown in Figure 5.17.   

 

The Reference to section in dissertation note indicates all the sections in the dissertation that refer to 

the BDI model.  Clarification about the BDI model itself is displayed in the Description text box while 

the execution cycle of a BDI agent is displayed in the Example text box.  Note that the user may click 

inside the Example text box and use the down arrow to scroll in order to view the complete execution 

cycle.  The references in the Reference text box indicate articles where more information on BDI 

agents can be found.  The scroll bar to the right of the Reference text box shows that more than one 

reference is available for the topic BDI agent.  Again, selecting the Back button by pointing with the 

mouse causes the initial user interface to be displayed (not shown here), from where the Click here for 

no further searches button may be selected to exit the system. 

 

 

Figure 5.17 Display of information on topic BDI agent 

 

5.6 Testing the Knowledge Base 

A small number (fewer than 10) of novice agent programmers were invited to experiment with the 

knowledge base.  They were given a simple assignment to answer the question “What comprises the 

life cycle of a mobile agent?”  The test subjects were observed while they performed the task, and notes 



 

 122

were made on their performance and behaviour.  During the subsequent interview with each subject, 

the subjects rated the usability of the knowledge base according to the ISO standards of effectiveness, 

efficiency and satisfaction (Usability, 2005) on a scale of 1 to 10.  They also gave feedback on their 

experience of using the knowledge base.  

 

The questions used to explain the concepts effectiveness; efficiency and satisfaction to test subjects are 

shown in Table 5.1.   

 

Concept Questions explaining the concept 

Effectiveness “Does the knowledge base do what it says it does?” 

“Did you find the information you were looking for?” 

Efficiency “How quickly did you manage to find the information?” 

“Would it have been quicker to do an Internet search?”   

Satisfaction “Did the knowledge base satisfy the purpose?” 

“Were you satisfied with the information you found?”   

Table 5.1 Questions used to explain usability concepts 

 

Some of the test subjects preferred using the Topic button on the initial user interface to initiate 

searches, while others preferred the Keyword button for this purpose.  Nevertheless, the test subjects 

rated both the effectiveness and efficiency of the knowledge base at an average of 8 out of 10.  They 

expressed a level of satisfaction of 7.5 out of 10.  All the test subjects agreed that they would use it as a 

quick referencing tool, and would recommend it as an introduction to someone interested in mobile 

agents.  Most of the test subjects concurred that the knowledge base would assist them in mastering 

concepts related to mobile agents and in programming a mobile agent.  The references in particular 

were regarded as valuable.  The layout was seen as easy to use and acceptable, though incorporating 

more colour, as well as consulting HCI guidelines for interfaces was suggested. 

 

Additional features expected from such a tool include facilities to print, extract and store information.  

Typing in the first letters of a topic or keyword instead of browsing down is preferred.  Similarly test 

subjects wish to move up one level instead of two levels after a topic selected from the abbreviated 

topic list has been displayed.  Links to keywords or key concepts from the description text box would 

enhance the usability of the knowledge base.  All test subjects agree that, should the knowledge base be 



 

 123

exclusively for their own use, they would use a facility that supports their personal knowledge 

management.  Such a facility could allow them to make notes, to add to the contents of the knowledge 

base or to edit it, obviously with certain privileges, in order to enhance their own insight and 

comprehension.  An interesting suggestion is to add an intelligent environment providing templates for 

programming mobile agents.  More real-life examples and more code examples will also enhance the 

contents of the knowledge base.  All of these features could easily be added. 

5.7 Conclusion 

This chapter discusses the development and usage of the knowledge base environment that was 

developed to assist novice mobile agent programmers in order to allow them to develop commercially 

acceptable mobile agent systems.  The value of the knowledge base lies in reducing the time and effort 

to master the considerable number of concepts in the mobile agent environment, while also serving as a 

referencing aid.  Though the knowledge base could only be tested to a limited extent, the outcome of 

the test confirms the value of the knowledge base, since all of the test subjects involved in testing it 

regard it as an eminently usable tool.  This consent is expressed both verbally and in the usability 

ratings they ascribe to the knowledge base. 

 

The comments and suggestions stated by the test subjects offer directions for future improvements to 

the knowledge base and the knowledge base environment.  The comments and suggestions refer largely 

to the user-friendliness and ease of use of the knowledge base.  It is clear that both the contents to be 

presented in the knowledge base and the manner in which it is presented are crucial to the usability of 

the knowledge base.  Furthermore, when deploying the knowledge base, ideally each user should 

receive a copy for his/her exclusive use, with a facility to develop the contents of the knowledge base 

further. 

 

In conclusion, while this knowledge base has limitations, which are addressed in the following chapter, 

the test subjects nevertheless certainly regard it as a valuable tool to assist novice mobile agent 

programmers in developing commercially acceptable mobile agent systems.  The concept of the 

knowledge base thus achieves its purpose of transferring knowledge to novice mobile agent 

programmers. 

 

In Chapter 6 the research results, their significance and limitations are discussed.  The research is also 

compared to similar research and future research areas are identified. 



 

 124

CHAPTER 6 

6 CONCLUSION 

6.1 Introduction 

This chapter provides the conclusion to the research.  A summary of the objectives with the research 

and the realization thereof is provided in section 6.2.  Section 6.3 discusses the research results, and 

section 6.4 compares it with similar research.  The significance of the research is pointed out in section 

6.5 and its limitations in section 6.6.  Future research is discussed in section 6.7 and the final 

conclusion is made in section 6.8. 

6.2 Summary of objectives and realization thereof 

The benefits that mobile agents can offer to current trends in computing, such as pervasiveness, mobile 

computing, the Semantic Web and Web Services, are hampered by problems pointed out in section 1.1, 

owing to the independent development of agent and mobile agent systems.  These problems (lack of an 

agreed definition, duplication of effort, inability to satisfy industrial strength requirements and 

incompatibility) are aggravated by the fact that more than one community are active in the mobile 

agent field, with differing views on mobile agents and their abilities.  Nevertheless, considering the 

rapid expansion of Internet applications, trends such as mobile computing, and the benefits offered by 

mobile agents for these trends, it seems that introducing novices to programming mobile agents may 

become a regular task in the near future.  As pointed out earlier, this indicates a need for a 

comprehensive programming model to serve as an introduction to novice mobile agent programmers in 

mastering the paradigm/milieu. 

 

The outcome of this research is to develop a knowledge base that aids novice mobile agent 

programmers in making the required paradigm shift by providing the conceptual background as well as 

a framework for constructing mobile agent systems.  To this end, the following set of goals to be 

achieved by the knowledge base is identified.  It should 

1. explain what mobile agents are;  

2. elaborate on their characteristics and the environment in which they operate;  

3. indicate the circumstances under which using mobile agents will be appropriate;  

4. discuss the context for programming mobile agents; 

5. recommend a framework for constructing a mobile agent system; and  



 

 125

6. supply a set of guidelines for programming mobile agents with the focus on programming 

concepts. 

 

Chapter 2 achieves the first three goals mentioned.  This chapter defines a mobile agent as an active 

entity that can migrate autonomously through a computer network and resume execution at a remote 

host.  The historic development of mobile agents, the communities active in the field and the different 

views held by these communities introduce the mobile agent milieu.  The main criteria for the use of 

mobile agent applications, namely limited network capacity and circumstances requiring asynchronous 

execution, autonomy and persistence, are based on their salient characteristics.  The mobile agent 

execution environment is introduced, and available mobile agent standards are described.   

 

In order to provide insight into the context and the new paradigm required for programming mobile 

agents, Chapter 3 describes both the agent orientation paradigm and the OO paradigm.  Agent 

orientation is shown to be an extension of OO by pointing out the difference between agents and 

objects.  Agents can be implemented using specific agent technologies such as agent-oriented 

programming, as well as more general technologies such as object technology.  Guidelines on when to 

use agent orientation and the benefits that mobile agents hold for these types of systems are pointed 

out. 

 

Chapter 4 addresses the fifth and sixth goals stated.  A generic mobile agent system architectural model 

presents a comprehensive overview of the essential architectural components required to implement a 

mobile agent system, while incorporating agent orientation.  Guidelines for programming mobile 

agents systems are included in the descriptions of the layers composing the architectural model.   

 

Chapter 5 presents an example of a visualization of the knowledge base that was developed to contain 

the concepts introduced in Chapters 2 to 4.  It discusses the design and implementation of the 

visualization, provides some examples of interaction with the knowledge base and highlights its 

importance.  The interface supplies references to this dissertation as well as references to literature that 

expand on the concepts summarized in the knowledge base.  It also serves as a quick reference tool to 

refresh concepts while novices to the mobile agent paradigm explore the literature and implement 

mobile agent systems. 

 



 

 126

6.3 Discussion of research results  

Programming agents require the application of different programming principles from those used in 

current programming paradigms such as OO.  As pointed out in Chapters 3 and 4, a paradigm shift is 

required in order to develop commercially acceptable mobile agent systems.  However, it can take a 

significant amount of time and programming effort before novice mobile agent programmers realize 

this.  The essential knowledge required to enable novices to make this paradigm shift is thus addressed 

in Chapters 2 to 4, but mainly in Chapter 3.  This can be used as a source for example for a fourth-year 

course in mobile agent programming.  In so doing, novices’ learning curve would improve noticeably, 

while unproductive programming effort will be reduced at the same time.  The experience of students 

engaged in Project TUTA provides an example of the value such a knowledge base could offer. 

 

The comprehensive overview provided by the generic mobile agent system architectural model takes 

agent orientation into account.  When the novice uses this as a base for the design and implementation 

of a mobile agent system, he/she will include all the essential architectural elements required in his/her 

system. 

 

Developing a knowledge base is widely recognized as an instrument to share knowledge.  Furthermore, 

there is a strong technical and economic imperative to share information through the use of knowledge 

bases, thereby reducing one of the most costly aspects of the company budget, namely salaries.  Test 

subjects who experimented with the visual example of the proposed knowledge base all agree that they 

would use it to assist them in mastering concepts related to mobile agents and in programming mobile 

agents.  As such it offers a valuable quick referencing tool. 

 

From the above, it becomes clear that the research questions of this dissertation have indeed been 

answered.  The question that was asked in the first chapter was “Since novice mobile agent 

programmers13 require a paradigm shift to construct successful systems, how can they be equipped to 

grasp the contextual issues and gain the necessary skills within reasonable time limits?”   

 

                                                 
13Novices include mature, beginner and intermediate programmers who have no experience of mobile 

agent programming. 



 

 127

This research provides three structures whereby the research question is answered.  The first structure 

is a complete reference to equip the novice mobile agent programmer with contextual information and 

knowledge of mobile agent systems development.  At the same time the novice is introduced to agent 

orientation, which enables him/her to make the paradigm shift needed to apply the proper principles 

involved in agent programming in order to realize mobile agents’ full potential. The reference 

represents a summary of a few years’ worth of literature study.  This structure can be valuable in 

teaching mobile agent programming to graduate students or in a graduate computing project.  

 

The second structure is the presentation of a generic mobile agent system architecture that can be used 

by novice programmers to design a mobile agent system while taking agent orientation into account.  It 

follows a layered approach that isolates the individual components that each forms an essential part of 

the mobile agent system.  In this way, while providing a broad overview of the important system 

elements during design, the approach also enables developers to focus on the tasks pertaining to a 

specific layer, which forms a functional unit.  At the same time, the layered model facilitates the 

development of layers in parallel, while implementing each layer independently also assists program 

maintenance, debugging and upgrading. 

 

The third structure provides a visualization of a knowledge base that unlocks concepts and knowledge 

units to the novice mobile agent programmer while programming.  In a multi-window operating 

system, the programmer can merely activate the knowledge base interface and keep it active in the 

background while working in a programming language environment.  

6.4 Comparison with other similar research 

In comparison to other research, this research is focused on concepts important to the development of 

mobile agent systems.  Other research is frequently more practically oriented, resulting in programming 

code.  The result of this research is therefore more fundamental as it aims to point out essential 

principles. 

 

Examples of more practically oriented research groups are those involved with projects such as 

D’Agents (D'Agents: Mobile Agents at Dartmouth College, 2002), Agent Factory (Agent Factory, 

2003), Tryllian’s ADK (Agent Development Kit, 2004) and Voyager ® (Recursion Software - 

Intelligent Mobile Agent Technology, 2004).  They typically offer papers, tutorials, links to other 

mobile agent systems, conference proceedings and other publications, training courses, lists of 



 

 128

frequently asked questions (FAQs) or even software engineering consultants to assist novices and 

developers.   

 

As was pointed out in Chapter 4, the generic mobile agent system architectural model is more 

comprehensive than the models used to identify components to be included.  It is also more 

comprehensive than other known models, such as those resented by Braun et al. (2001), Johansen et al. 

(2002) and Kendall et al. (2000). 

 

No tool similar to the knowledge base could be found during an investigation into the manner in which 

such research groups and educational institutions introduce novices to the mobile agent paradigm.  

Lists of FAQs offer perhaps the nearest concept to it.  However, FAQs do not offer a comprehensive 

overview and are often focused on programming code rather than on fundamental concepts.  

Furthermore, depending on the list of FAQs, it may not be as easy to search for a specific concept in 

the FAQs as using the knowledge base is.  In conjunction with the dissertation and the generic mobile 

agent system architectural model, the knowledge base could provide a substantially quicker and 

broader overview than the methods currently employed.   

6.5 Significance 

The significance of this research lies in pointing out the paradigm shift required to enable novices to 

become mobile agent programmers, and providing an architectural model to assist the novice during 

mobile agent system development in keeping with this paradigm shift. 

 

The significance of certain elements, such as the generic mobile agent system architectural model 

(section 4.4) and the knowledge base for novice mobile agent programmers (section 5.2), has already 

been discussed in detail.  Only a brief summary of the significance of the architectural model and the 

knowledge base are therefore reiterated.   

 

The architectural components represent the essential aspects of a mobile agent system in a simplified, 

general but clear way, while relating it to agent orientation.  In so doing the novice mobile agent 

programmer is presented with a basis for making sensible decisions when designing and implementing 

mobile agents, as well as for choosing a mobile agent toolkit.  Since the architectural model is generic, 

it can be transferred to any specific application. 

 



 

 129

The comprehensive survey in Chapters 2 to 4 and the broad overview presented by the essential 

requirements for mobile agent systems in the architectural model allow the novice mobile agent 

programmer to orientate himself or herself to the mobile agent field at both the mobile agent and the 

mobile agent system level.  The knowledge base assists the novice mobile agent programmer both in 

grasping and refreshing the key concepts in the mobile agent paradigm and in placing it in context 

during the process of acquainting himself/herself with the field.  The knowledge base can also be used 

as a tool to recap concepts and to provide references while designing and developing a mobile agent 

system. 

 

Including agent orientation in the portrayal of the mobile agent execution environment offers a strong 

theoretical base enabling novices to develop mobile agent systems according to the appropriate 

principles.  The guidelines incorporated in the generic mobile agent system architecture further aid the 

development of commercially viable systems. 

6.6 Limitations 

The generic mobile agent system architectural model should be practically implemented and tested to 

prove its worth.  Since the purpose of the architectural model is to provide a comprehensive view of the 

essential elements required in a mobile agent system, it is of a theoretical nature.  Its focus is thus on 

conveying relevant issues to be considered in each of the architectural components in order to enhance 

the design and development of mobile agent systems.   

6.7 Future research 

A number of areas for future research can be identified.  Such efforts include research relating to the 

knowledge base, the architectural model, mobile agent toolkits and agent orientation.   

 

The effectiveness of the paradigm shift and the accompanying architectural model in assisting novices 

should be determined.  Such research has to be done in combination with researchers in education and 

educational psychologists in order to develop proper measuring instruments to determine the efficiency 

of novice mobile agent programmers after using the architectural model in conjunction with making a 

paradigm shift to agent orientation.  Should the current visualization of the knowledge base be used in 

such research, HCI experts will be included in the effort to ensure that the interface provides optimal 

user-friendliness.  Testing the effectiveness of the paradigm shift and the accompanying architectural 

model would take at least a year, since an extended testing period is required.  During this period one 



 

 130

group of students would typically develop a mobile agent system by using the architectural model 

while making the required paradigm shift, while the control group would develop the same system 

without having access to the architectural model or information on the paradigm shift.  Taking the 

development of the measuring instruments, designing of the tests, and the actual testing of the students 

into account, shows that this research would require at least eighteen months.   

 

In order to prove the worth of the generic mobile agent system architectural model, it should be 

practically implemented and tested to complete it.   

 

With regard to mobile agent toolkits, future research could investigate various mobile agent toolkits to 

determine which would be suitable to introduce novices to programming mobile agents.  Determining 

which agent and mobile agent principles are included in the various toolkits, and how clearly these 

principles can be identified in the toolkit, could be one of the criteria for such an objective. 

 

Research areas identified in agent orientation include investigating agent programming languages and 

constructs in agent programming languages specifically aimed at mobile agents, investigating the gap 

between AOSE and the implementation of agents/mobile agents, and investigating extensions to agent-

oriented methodologies to include the analysis and design of mobile agents.  Investigating the 

relationship between software components and agents, as well as implementing mobile agents by with 

software components would also be a worthwhile pursuit. 

6.8 Conclusion  

In the light of current trends in computing, and mobile agents’ applicability to these trends, a real need 

for tools to assist novices in mastering the programming of mobile agents has been identified and 

addressed in this research.  The introduction to the required paradigm shift combined with the 

architectural model and the accompanying knowledge base present an example of one such tool. 



 

 131

Bibliography 

 

2004 IEEE International Conference on Mobile Data Management (MDM'04), Available at: 

http://www.cs.duke.edu/mdm2004/. [Accessed 25/5/2005]. 

About Distributed Agents (2004), Available at: http://dsonline.computer.org/agents/about.htm. 

[Accessed 7/12/2004]. 

Agent Development Kit (2004), Available at: http://www.tryllian.com/technology/product1.html#. 

[Accessed 8/2/2005]. 

Agent Factory (2003), Available at: http://www.agentfactory.com/agentfactory/index.htm. [Accessed 

8/2/2005]. 

AgentBuilder (2004), Available at: http://www.agentbuilder.com/Documentation/whyAgents.html. 

[Accessed 2/11/2004]. 

AgentLink III, Available at: http://www.agentlink.org/. [Accessed 20/3/2004]. 

Ambler, S. W. (2001), The Object Primer, 2nd edn, Cambridge University Press, New York. 

Amor, M., Fuentes, L. & Vallecillo, A. (2004), Bridging the Gap Between Agent-Oriented Design 

and Implementation Using MDA*. 

Ancona, D., Demergasso, D. & Mascardi, V. (2005), A Survey on Languages for Programming BDI-

style Agents, Available at: http://www.cs.uu.nl/~mehdi/al3files/VivianaMascardi.ps. [Accessed 

10/5/2005]. 

Aridor, Y. & Lange, D. B. (1998), Agent Design Patterns: Elements of Agent Application Design, 

Proceedings of the Second International Conference on Autonomous Agents: 108-115. 

Aridor, Y. & Oshima, M. (1998), Infrastructure for Mobile Agents: Requirements and Design, MA 

'98, LNCS 1477.: 38-49. 

Ashri, R. & Luck, M. (2001), Towards a layered approach for agent infrastructure: the right tools 

for the right job, Available at: http://www.ecs.soton.ac.uk/~mml/papers/aa01wsinf.pdf. 

[Accessed 12/8/2005]. 

Ashri, R. & Luck, M. (2002), Infrastructure Support for Agent-based Development, in Foundations 

and Applications of Multi-Agent Systems. Lecture Notes in Artificial Intelligence, vol. 2403, 

Springer-Verlag, 73-88. 

Assertions and Protocol for the OASIS Security Assertion Markup Language 3 (SAML) V1.1.4 (2003), 

Available at: http://www.oasis-open.org/committees/download.php/1894/sstc-saml-core-1.1-

draft-10.pdf. [Accessed 24/10/2005]. 



 

 132

Badjonski, M., Ivanovic, M. & Budimac, Z. (2005), Adaptable Java Agents (AJA) - A Tool for 

Programming of Multi-Agent Systems, ACM SIGPLAN Notices, 40(2): 17-26. 

Bauer, B. & Muller, J. (2004), Methodologies and Modeling Languages, in M. Luck, R. Ashri & M. 

D'Inverno, (eds.), Agent-Based Software Development, Artech House, Norwood MA, 77-132. 

Bauer, B., Muller, J. P. & Odell, J. (2001), Agent UML: A Formalism for Specifying Multiagent 

Interaction, in P. Ciancarini & M. Wooldridge, (eds.), Agent-oriented Software Engineering, 

Springer-Verlag, Berlin, 91-103. 

Baumann, J. (2000), Mobile Agents: Control Algorithms, Springer-Verlag, Berlin Heidelberg New 

York. 

Bellifemine, F., Caire, G., Poggi, A. & Rimassa, G. (2003), JADE A White Paper, exp, 3(3): 6-19. 

Bierman, E. & Cloete, E. (2002), Classification of Malicious Host Threats in Mobile Agent 

Computing, in South-African Institute of Computer Science and Information Technology 2002, 

Port Elizabeth, South-Africa, 141-148. 

Booch, G. (1994), Oject-Oriented Analysis and Design with Applications, Addison-Wesley. 

Brantschen, S. & Haas, T. (2002), Agents in a J2EE World, Available at: 

http://www.whitestein.com/resources/whitepapers/whitestein_agentsj2ee.pdf. [Accessed 

12/8/2005]. 

Braubach, L. & Pokahr, A. (2002), Jadex BDI Agent System, Available at: http://vsis-

www.informatik.uni-hamburg.de/projects/jadex/features.php. [Accessed 10/3/2005]. 

Braubach, L. & Pokahr, A. (2004), Goal Oriented Programming, Available at: 

http://www.cs.uu.nl/~mehdi/al3tf8/Pokahr.pdf. [Accessed 3/8/2004]. 

Braubach, L., Pokahr, A. & Lamersdorf, W. (2004a), Jadex: A Short Overview, Main Conference 

Net.ObjectDays 2004, AgentExpo: 13. 

Braubach, L., Pokahr, A., Lamersdorf, W. & Moldt, D. (2004b), Goal Representation for BDI Agent 

Systems, in The Second International Workshop on Programming Multiagent Systems 

(PROMAS-2004), eds. R. H. Bordini, M. Dastani, J. Dix & A. E. Fallah-Seghrouchni, New 

York, NY, USA, 9-20. 

Braun, P., Eismann, J., Erfurth, C. & Rossak, W. (2001), TRACY A Prototype of an Architected 

Middleware to support Mobile Agents, in Eight Annual IEEE International Conference and 

Workshop on the Engineering of Computer Based Systems (ECBS'01), IEEE, 6. 

Burmeister, B. (1996), Models and Methodology for Agent-Oriented Analysis and Design, in 

K.Fischer, (ed.) Working Notes of the KI '96 Workshop on Agent-Orientated Programming and 

Distributed Systems, DFKI. 



 

 133

Cabri, G., Ferrari, L. & Leonardi, L. (2005), Injecting roles in Java agents through runtime bytecode 

manipulation, IBM Systems Journal, 44(1): 185-208. 

Cabri, G., Leonardi, L. & Zambonelli, F. (2000), Agents for information retrieval: Issues of mobility 

and coordination, Journal of Systems Architecture, 46(15): 1419-1433. 

Calisti, M. (2003), FIPA standards for promoting interoperability of industrial agent systems, in FIPA 

Presentation, Agentcities, Information Days, Barcelona, Spain. 

Center for Mobile Computing (2005), Available at: http://cmc.cs.dartmouth.edu/. [Accessed 

11/5/2005]. 

Cervenka, R., Trencansky, I., Calisti, M. & Greenwood, D. (2005), AML: Agent Modeling Language 

Toward Industry-Grade Agent-Based Modeling, in J. Odell, P. Giorgini & J. P. Muller, (eds.), 

Agent-Oriented Software Engineering V: 5th International Workshop, AOSE 2004,, vol. LNCS 

3382/2005, Springer-Verlag Berlin Heidelberg, New York, NY, USA, 31-46. 

Cloete, E. & Gerber, A. (2004), OO Systems Development Barriers for Structural Developers, in 

Proceedings of the 6th International Conference on Enterprise Information Systems, vol. III, 

42-47. 

Collier, R. W., Rooney, C. F. B., O'Donoghue, R. P. S. & O'Hare, G. M. P. (2000), Mobile BDI 

Agents, in Proceedings of the 11th Irish Conference on Artificial Intelligence & Cognitive 

Science, Galway, Ireland. 

Comet Way Java Agent Kernel (2005), Available at: http://www.agentkernel.com/. [Accessed 

9/5/2005]. 

Corradi, A. (2001), Mobile agent technology: from first proposals to current evolutions, 

Microprocessors and Microsystems, 2(2): 63-64. 

Cossentino, M., Burrafato, P., Lombardo, S. & Sabatucci, L. (2002), Introducing Pattern Reuse in the 

Design of Multi-Agent Systems, Available at: 

http://citeseer.ist.psu.edu/cache/papers/cs/26501/http:zSzzSzwww.csai.unipa.itzSzcossentinozS

zpaperssZsAITA02.pdf/cossentino021introducing.pdf. [Accessed 3/8/2004]. 

Cuadron, M., Groote, J. F., Van Hee, K., Hemerik, K., Somers, L. & Verhoeff, T. (2004), Software 

Engineering Reference Framework, Available at: http://www.win.tue.nl/~jfg/articles/CSR-04-

39.pdf. [Accessed 26/5/2005]. 

Da Silva, A. R., Da Silva, M. M. & Romão, A. (2000), Web-based Agent Applications: User 

Interfaces and Mobile Agents, Available at: http://citeseer.nj.nec.com/499980.htm. [Accessed 

24/10/2005]. 



 

 134

D'Agents: Mobile Agents at Dartmouth College (2002), Available at: http://agent.cs.dartmouth.edu/. 

[Accessed 11/5/2005]. 

Dale, J. (1997), A Mobile Agent Architecture for Distributed Information Management, Ph D, 

University of Southampton, Southampton. 

Dastani, M. (2004), AgentLink-III Technical Forum Group Programming MultiAgent System 

PROMAS, Available at: http://www.cs.uu.nl/~mehdi/al3tf8/report.pdf. [Accessed 11/4/2005]. 

Dastani, M. & Gomez-Sanz, J. J. (2005), Programming Multi-Agent Systems A Report of the 

technical forum meeting, Available at: http://www.cs.uu.nl/%7Emehdi/tfg/al3files/report.pdf. 

[Accessed 3/8/2005]. 

Delamaro, M. & Picco, G. P. (2002), Mobile Code in .NET: A Porting Experience, in N. Suri, (ed.) 

Mobile Agents 2002, LNCS 2535, Springer-Verlag, Berlin Hheidelberg, 2002. 

A Dictionary of Computing (2004), Available at: http://0-

www.oxfordreference.com.oasis.unisa.ac.za/views/GLOBAL.html. [Accessed 15/4/2005]. 

Ellamari, M. & Lalonde, W. (1999), An Agent-Oriented Mehodology: High-Level and Intermediate 

Models, in 1st International Workshop on Agent-Oriented Information Systems (AOIS 1999), 

Heidelberg, Germany, 17. 

Errol, K., Lang, J. & Levy, R. (2000), Designing Agents from Reusable Components, in Fourth 

International Conference on Autonomous Agents, 76-77. 

Fallah-Seghrouchni, A. E. & Suna, A. (2003a), CLAIM: A Computational Language for 

Autonomous, Intelligent and Mobile Agents, in Programming multi-agent systems : first 

international workshop, ProMAS 2003, eds. M. Dastani, J. Dix & A. E. F. Seghrouchni, Berlin; 

New York: Springer, Melbourne, Australia, 90-110. 

Fallah-Seghrouchni, A. E. & Suna, A. (2003b), An Unified Framework for Programming 

Autonomous, Intelligent and Mobile Agents, in Multi-Agent Systems and Applications III: 3rd 

International Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 

2003), eds. V. Marik, J. Muller & M. Pchouek, Springer-Verlag Berlin Heidelberg, Prague, 

Czech Republic, 353-362. 

Farmer, W. M., Guttman, J. D. & Swarup, V. (1996), Security for Mobile Agents: Issues and 

Requirements, in National Information systems Security Conference (NISSC). 

Feridun, M. & Krause, J. (2001), A framework for distributed management with mobile components, 

Computer networks, 35: 25-38. 



 

 135

Finin, T., Labrou, Y. & Peng, Y. (1998), Mobile Agents Can Benefit from Standards Efforts on 

Interagent Communication, Available at: 

http://www.cs.umbc.edu/~finin//papers/IEEECommDraft.pdf. [Accessed 24/10/2005]. 

FIPA00087 - FIPA 98 Part 11 Version 1.0: Agent Management Support for Mobility Specification 

(1998), Available at: http://www.fipa.org/specs/fipa00087/. [Accessed 23/5/2005]. 

FIPA Methodology Technical Committee, Available at: 

http://www.fipa.org/activities/methodology.html. [Accessed 20/7/2005]. 

FIPA:The Foundation for Intelligent Agents (2000), Available at: 

http://www.fipa.org/specifications/index.html. [Accessed 12/10/2005]. 

Fisher, M. (1994), A Survey of Concurrent METATEM - The Language and Its Applications, in D. 

Gabbay & H. Ohlbach, (eds.), Temporal Logic - Proceedings of the First International 

Conference (Lecture Notes in Artificial Intelligence 827), Springer, New York, 480-505. 

Flores-Mendez, R. (1999), Towards a Standardization of Multi-Agent System Frameworks, ACM 

Crossroads Student Magazine (5.4): 1-10. 

Fortino, G., Russo, W. & Zimeo, E. (2004), A statecharts-based software development process for 

mobile agents, Information and Software Technology, 46(13): 907-921. 

Franklin, S. & Graesser, A. (1996), Is it an Agent, or just a Program? A taxonomy for Autonomous 

Agents, in Proceedings of the Third International Workshop on Agent Theories, Architectures, 

and Languages, Springer-Verlag. 

Gartner's Hype cycle, Available at: 

http://gsb.haifa.ac.il/~sheizaf/ecommerce/GartnerHypeCycle.html. [Accessed 1/12/2005]. 

Genesereth, M. R. & Finin, T. (1992), Knowledge Interchange Format, Version 3.0 Reference 

Manual, Available at: http://logic.stanford.edu/kif/Hypertext/kif-manual.html. [Accessed 

24/10/2005]. 

Gerber, A. (2005), The Semantic Web, To be published, 26. 

Gilbert, D., Aparacio, M., Atkinson, B., Brady, S., Ciccarino, J., Grosf, B., O'Connor, P., Osisek, D., 

Pritko, S., Spagna, R. & Wilson, L. (1995), IBM Intelligent Agent Strategy, IBM Corporation. 

Giunchiglia, F., Mylopoulos, J. & Perini, A. (2002), The TROPOS Software Development 

Methodology: Processes, Models and Diagrams, in C. Castelfranchi & W. Johnson, (eds.), 

Proceedings of the First International Joint Conference on Autonomous Agents and Multi Agent 

Systems AAMAS'02, ACM Press, New York, 35-36. 

Glaser, N. (1996), Contribution to Knowledge Modelling in a Multi-Agent framework (the CoMoMAS 

Approach), PhD, L' Universite Henri Poincare, Nancy I, France. 



 

 136

Gray, R. S. (1996), Agent Tcl: A flexible and secure mobile-agent system, in 1996 Tcl/Tk Workshop, 

USENIX Association, New York, 9-23. 

Gray, R. S. (2004), Mobile Agents: Overcoming Early Hype and a Bad Name, in 2004 IEEE 

International Conference on Mobile Data Management (MDM'04), Los Alamitos, Calif., : 

IEEE Computer Society, Berkeley, California, 302-303. 

Gray, R. S., Cybenko, G., Kotz, D., Peterson, R. A. & Rus, D. (2002), D'Agents: Applications and 

performance of a mobile agent system, SOFTWARE: PRACTICE AND EXPERIENCE, 35(6): 

543-573. 

Green, S., Hurst, L., Nangle, B., Cunningham, P., Somers, F. & Evans, R. (1997), Software Agents: A 

review, Available at: http://www.lsi.upc.es/~bejar/aia/aia-web/green97software.pdf. [Accessed 

12/3/2005]. 

Grid computing (2006), Avaiable at http://en.wikipedia.org/wiki/Grid_computing. [Accessed 

29/3/2006] 

Grimley, M. J. & Monroe, B. D. (1999), Protecting the Integrity of Agents: An Exploration into 

Letting Agents Loose in an Unpredictable World, Available at: 

http://www.acm.org/crossroads/xrds5-4/integrity.html. [Accessed 13/4/2004]. 

Gschwind, T., Feridun, M. & Pleisch, S. (1999), ADK - Building Mobile Agents for Network and 

Systems Management from Reuseable Components, Proceedings of First International 

Symposium on Agent Systems and Applications: 13-21. 

Harrison, C. G., Chess, D. M. & Kershenbaum, A. (1995), Mobile Agents: Are they a good idea?, 

IBM Research Report. IBM T. J. Watson Research Center. 

Hayes-Roth, R. & Amor, D. (2003), Radical Simplicity transforming Computers Into Me-Centric 

Appliances, 1st edn, Prentice-Hall, Inc, New Jersey. 

Henderson-Sellers, B. & Gorton, I. (2002), Agent-based Software Development Methodologies, 

Available at: http://www.open.org.au/Conferences/oopsla2002/. [Accessed 20/6/2005]. 

Hermann, K. & Zapf, M. (2000), AMETAS White Paper Series, Available at: 

http://www.accsis.de/ametas/haupt2.html. [Accessed 8/02/2005]. 

Horstmann, C. & Budd, T. (2005), Big C++, 1st edn, John Wiley & Sons, Inc. 

Horvat, H., Cvetkovic, D., Milutinovic , D., Kocovic, P. & Kovacevic , V. (2000), Mobile Agents and 

Java Mobile Agent Toolkits, in Proceedings of the 33rd Hawaii International Conference on 

System Sciences, IEEE Computing Society, Los Alamos, CA., Maui, Hawaii, USA, 10. 

Huber, M. J. (2000), JAM: A BDI-theoretic Mobile Agent Architecture, AGENTLINK NEWS(5): 3-6. 



 

 137

Huhns, M. N. (2004), Software Development with Objects, Agents, and Services, Available at: 

http://www.open.org.au/Conferences/oopsla2004/PaperAO/Keynote-Huhns.pdf. [Accessed 

20/6/2005]. 

Huhns, M. N. & Singh, M. P. (1998), Agents and Multi-Agent Systems: Themes, Approaches, and 

Challenges, in M. N. Huhns & M. P. Singh, (eds.), Readings in Agents, Morgan Kaufmann 

Publishers, San Francisco, Calif., 1-23. 

Iglesias, C. A., Garijo, M. & González, J. C. (2000), A Survey of Agent-Oriented Methodologies, in 

J. P. Müller, M. P. Singh & A. S. Rao, (eds.), Lecture Notes in Computer Science, vol. 

1555/2000, Springer-Verlag Heidelberg, 317 - 330. 

Iglesias, C. A., Garijo, M., Gonzalez, J. C. & Velasco, J. R. (1997), Analysis and design of multiagent 

systems using MAS-CommonKADS. 

International Journal on Agent-Oriented Software Engineering (IJAOSE) (2005), Available at: 

http://www.inderscience.com/browse/index.php?journalID=174. [Accessed 24/6/2005]. 

Internet Key Exchange Security Protocol, Available at: 

http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113t/113t_3/isakmp.htm. 

[Accessed 1/11/2005]. 

JACK, Available at: http://www.agent-software.com. [Accessed 3/8/2005]. 

Jansen, W. A. (2000), Countermeasures for Mobile Agent Security, in Computer Communications. 

Special issue on advanced security techniques for network protection, Elsevier Science. 

Jazayeri, M. & Lugmayr, W. (2000), Gypsy: A Component-based Mobile Agent System, The 

proceedings of the Eight Euromicro Workshop on Parallel and Distributed Processing (EURO-

PDP 2000), Rhodos, Greece: 9. 

Jennings, N. R. (1999a), Agent-Based Computing: Promise and Perils, in 16th Joint Conference on 

Artificial Intelligence (IJCAI-99), 1429-1436. 

Jennings, N. R. (1999b), Agent-Oriented Software Engineering, Available at: 

http://www.ecs.soton.ac.uk/%7Enrj/download-files/cairo.pdf. [Accessed 20/3/2003]. 

Jennings, N. R. (2001), An Agent-Based Approach for Building Complex Software Systems, 

Communcations of the ACM, 44(4): 35-39. 

Jo, C.-H. (2001), A Seamless Approach to the Agent Development, in Proceedings of the 2001 ACM 

Symposium on Applied Computing, 641-647. 

Johansen, D. (2004), Mobile Agents: Right Concept, Wrong Approach, in 2004 IEEE International 

Conference on Mobile Data Management (MDM'04), Los Alamitos, Calif., : IEEE Computer 

Society, Berkeley, California, 300-301. 



 

 138

Johansen, D., Lauvset, K. J. & Marzullo, K. (2002), An extensible software architecture for Mobile 

Components, in Ninth Annual  IEEE International Conference and Workshop on the 

Engineering of Computer-Based Systems (EECBS'02), 231- 237. 

Johansen, D., Renesse, R. v. & Schneider, F. B. (1995), An introduction to the TACOMA distributed 

system version1.0, University of Tromso, Tromso. 

Juan, T., Pearce, A. R. & Sterling, L. (2002), ROADMAP: Extending the Gaia Methodology for 

Complex Open Systems, in Fiirst International Joint Conference on Autonomous Agents and 

Multi Agent Systems AAMAS '02, eds. C. Castelfranchi & W. Johnson, ACM Press, New York, 

3-10. 

Jumping Beans, Available at: http://www.jumpingbeans.com/. [Accessed 23/5/2005]. 

Kendall, E. A., Krishna, P. V., Suresh, C. B. & Pathak, C. V. (2000), An Application Framework for 

Intelligent and Mobile Agents, ACM Computing Surveys, 32(1es). 

Kinny, D., Georgeff, M. & Rao, A. (1996), A methodology and modelling technique for systems of 

BDI agents, in W. v. d. Velde & J. Perram, (eds.), Agents Breaking Away: Proceedings of the 

Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World 

MAAMAW'96 (LNCS Volume 1038), Springer, New York, 56-71. 

Knowledge Base (2005), Available at: http://en.wikipedia.org/Knowledge_base. [Accessed 

3/10/2005]. 

Knowledge Management (2005), Available at: http://en.wikipedia.org/wiki/Knowledge_management. 

[Accessed 14/11/2005]. 

Kotz, D., Gray, R. & Rus, D. (2002), Future Directions for Mobile Agent Research, Available at: 

http://dsonline.computer.org/0208/f/kot.htm. [Accessed 15/10/2002]. 

Kotz, D. & Gray, R. S. (1999), Mobile Agents and the Future of the Internet, Available at: 

http://www.cs.dartmouth.edu/~dfk/papers/kotz:future2/. [Accessed 20/5/2002]. 

Lall, M. (2005), Selection of mobile agent systems based on mobility, communication and security 

aspects, M.Sc., Unisa, Pretoria. 

Lange, D. B. (1997), Java Aglet Application Programming Interface White Paper - Draft 2, Available 

at: http://www.trl.ibm.co.jp/aglets. [Accessed 12/10/2005]. 

Lange, D. B. (1998), Mobile Objects and Mobile Agents: the future of distributed computing? , in E. 

Jul, (ed.) Proceedings of the European Conference on Object-Oriented Programming 

(ECOOP'98), LNCS, vol. 1445, Springer-Verlag, Brussels, Belgium, 1-12. 

Lange, D. B. & Oshima, M. (1998), Programming and Deploying Java Mobile Agents with Aglets, 

Addison-Wesley, Reading, M.A. 



 

 139

Lange, D. B. & Oshima, M. (1999), Seven Good Reasons for Mobile Agents, Communications of the 

ACM, 42(3): 88-89. 

Lauvset, K. J. & Johansen, D. (2002), Factoring Mobile Agents, Proceedings of the Ninth IEEE 

International Conference and Workshop on the Engineering of Computer-Based Systems 

(ECBS'02). 

Le Goff, H., Stockinger, J.-M., Willers, I., McClatchey, R., Kovacs, Z., Martin, P., Bhatti, N. & 

Hassan, W. (2001), Object Serialization and Deserialization using XML. The Compact Muon 

Solenoid Experiment, Available at: http://arxiv.org/ftp/physics/papers/0105/0105083.pdf. 

[Accessed 24/10/2005]. 

Lee, H. & Shepherdson, J. (2003), A Component Based Multi-agent Architecture to Support Mobile 

Business Processes, in Multi-Agent Systems and Applications III: 3rd International Central and 

Eastern European Conference on Multi-Agent Systems (CEEMAS 2003), eds. V. Marik, J. 

Muller & M. Pchouek, Springer-Verlag Berlin Heidelberg, Prague, Czech Republic, 636-636. 

Lind, J. (2001), Issues in Agent-Oriented Software Engineering, in P. Ciancarini & M. J. Wooldridge, 

(eds.), Agent-Oriented Software Engineering - Proceedings of 1st International Workshop 

AOSE-2000, vol. 1957, Springer-Verlag, Berlin, 45-58. 

Lind, J. (2002a), General Concepts of Agents and Multiagent Systems, Available at: 

http://www.agentlab.de/general_concepts.html. [Accessed 31/08/2004]. 

Lind, J. (2002b), Patterns in Agent-Oriented Software Engineering, in F. Giunchiglia, J. Odell & G. 

Weiß, (eds.), LNCS:Agent-Oriented Software Engineering III: Third International Workshop, 

AOSE 2002, Bologna, Italy, July 15, 2002. Revised Papers and Invited Contributions, vol. 

2583/2003, Publisher: Springer-Verlag GmbH, 47 - 58. 

Lingnau, A., Drobnik, O. & Dömel, P. (1995), An HTTP-Based Infrastructure for Mobile Agents, 

Available at: http://citeseer.nj.nec.com/lingnau95httpbased.html. [Accessed 9/03/2000]. 

Luck, M., McBurney, P. & Preist, C. (2003), Agent Technology: Enabling Next Generation 

Computing. A Roadmap for Agent Based Computing, 1st edn, Agentlink. 

Luck, M., Ashri, R. & d'Inverno, M. (2004a), Agent-based Software Development, 1st edn, Artech 

House, Norwood MA. 

Luck, M., McBurney, P. & Preist, C. (2004b), A Manifesto for Agent Technology: Towards Next 

Generation Computing, Autonomous Agents and Multi-Agent Systems, 9(3): 203-252. 

Luck, M., McBurney, P., Shehory, O., Willmott, S. & Community, A. (2005), Agent Technology 

Roadmap, Available at: http://www.agentlink.org. [Accessed 17/8/2005]. 



 

 140

Mangina, E. (2002), Review of Software Products for Multi-Agent Systems, AgentLink, 

http://www.agentlink.org/admin/docs/2002/MAS.pdf. 

Manvi, S. S. & Venkataram, P. (2004), Applications of agent technology in communications: a 

review, Computer Communications, 27: 1493-1508. 

Marques, P. J., Silva, L. M. & Silva, J. G. (2000), Going Beyond Mobile Agent Platforms: 

Component-based development of Mobile Agent Systems, Available at: 

http://ede.dei.uc.pt/~pmarques/papers/marques2000e_sea2000.pdf. [Accessed 23/10/2003]. 

Master Consortium, Available at: http://modeldrivenarchitecture.esi.es/mda_consortium.html. 

[Accessed 2/12/2005]. 

Mentz, J. C. (2004), The Modeling, Design and Implementation of Mobile Agent Systems, Master 

Technologiae: Information Technology, Tshwane University of Technology, Pretoria. 

Mentz, J. C. & Bierman, E. (2004), Project TUTA, Interview in November 2004, Pretoria. 

Merriam-Webster Online Dictionary (2004), Available at: http://www.m-w.com/. [Accessed 

14/10/2004]. 

Milojicic, D. (1999), Trend Wars Mobile Agent Applications, IEEE Concurrency, 7(3): 80-90. 

Milojicic, D., Breugst, M., Busse, I., Campbell, J., Covaci, S., Friedman, B., Kosaka, K., Lange, D., 

Ono, K., Oshima, M., Tham, C., Virdhagriswaran, S. & White, J. (1998), MASIF: The OMG 

Mobile Agent System Interoperability Facility, Personal Technologies, 2(2): 117-128. 

Milojicic, D., Douglis, F. & Wheeler, R. (eds.) (1999), Mobility Processes, Computers and Agents, 

Addison-Wesley, Reading, MA. 

Minsky, Y., Van Renesse, R., Sheider, F. & Stoller, S. (1996), Cryptographic support for fault-

tolerant distributed computing., in Seventh ACM SIGOPS European Workshop, Connemara, 

Ireland, 109-114. 

Mobile Agents for Telecommunications Applications Workshops (2002), Available at: 

http://dmag.upf.es/mata-ma2002/. [Accessed 25/5/2005]. 

Müller, J. P. (1998), The Right Agent (Architecture) to do the Right Thing, in Intelligent agents V : 

agent theories, architectures, and languages : 5th International Workshop, ATAL'98, Paris, 

France, July 4-7, 1998 : proceedings, eds. J. P. Müller, M. P. Singh & A. S. Rao, Berlin ; New 

York : Springer, Paris, France, 211-225. 

Multi-agent Systemen (2004), Available at: 

http://www.cs.uu.nl/education/vak.php?vak=INFOMAS&jaar=2004. [Accessed 4/05/2005]. 

Mylopoulos, J., Kolp, M. & Castro, J. (2001), UML for Agent-Oriented Software Development: The 

Tropos Proposal, in M. Gogolla & C. Kobryn, (eds.), UML 2001 - The Unified Modeling 



 

 141

Language, Modeling Languages, Concepts, and Tools, 4th International Conference, vol. 2185 

of LNCS, Springer, New York, 422-441. 

Ndwana, H. S. & Ndumu, D. T. (1996), An Introduction to Agent Technology, BT Technol J, 14(4): 

55-67. 

Neches, R., Fikes, R., Finin, R. E., Gruber, R., Patil, R., Senator, T. & Swartout, W. R. (1991), 

Enabling Technology for Knowledge Sharing, AI Magazine, 12(1001): 36-56. 

Object Serialization Specification (2003), Available at: http://www.waterken.com/dev/Web/Obect/. 

[Accessed 24/10/2005]. 

Object-oriented programming and the Objective-C Language (1996), Available at: 

http://toodarkpark.org/computers/objc/objctoc.html. [Accessed 14/10/2004]. 

Odell, J. (2002), Objects and Agents Compared, Journal of Object Technology, 1(1): 41-53. 

OMG Agent Working Group, Available at: http://www.objs.com/agent. [Accessed 20/7/2005]. 

Omicini, A. (2001), SODA: Societies and Infrastructures in the Design and Analysis of Agent-Based 

Systems, in P. Ciancarini & M. Wooldridge, (eds.), Agent-Oriented Software Engineering, vol. 

1975 of LNCS, Springer, New York, 185-193. 

Padgham, L. & Winikoff, M. (2003), Prometheus: A Methodology for Developing Intelligent Agents, 

in F. Giunchiglia, J. Odell & G. Weiss, (eds.), Agent-Oriented Software Engineering III, vol. 

2585 of LNCS, Springer, New York, 174-185. 

Parunak, H. V. D. (2000), Agents in Overalls: Experiences and Issues in the Development and 

Deployment of  Industrial Agent-Based Systems, International Journal of Cooperative 

Information Systems, 3(9): 209-227. 

Pavlou, G. (2000), The Grasshopper Mobile Agent Platform, Available at: 

http://www.ee.surrey.ac.uk/CSSR/ACTS/Miami/grasshopper.html. [Accessed 12/10/2005]. 

Perdikeas, M. K., Chatzipapadopoulos, F. G., Venieris, I. S. & Marino, G. (1999), Mobile agent 

standards and available platforms, Computer Networks, 31: 1999-2016. 

Pham, V. A. & Karmouch, A. (1998), Mobile Software Agents: An Overview, IEEE Communications 

Magazine(July 1998): 1-12. 

Picco, G. P. (2001), Mobile agents: an introduction, Microprocessors and Microsystems, 2(2): 65-74. 

Pinsdorf, U. & Roth, V. (2002), Mobile Agent Interoperability Patterns and Practice, in Ninth IEEE 

International Conference and Workshop on the Engineering of Computer-Based Systems, 

Sweden. 



 

 142

Platon, E., Sabouret, N. & Honiden, S. (2004), T-compound: An Agent-Specific Design Pattern, 

Available at: http://www.open.org.au/Conferences/oopsla2004/PaperAO/. [Accessed 

20/6/2005]. 

Procopio, M. (2002), Object Serialisation and Deserialisation in C#, Available at: 

http://www.devhood.com/tutorials/tutorial_details.aspx?tutorial_id=448. [Accessed 

24/10/2005]. 

Recursion Software - Intelligent Mobile Agent Technology (2004), Available at: 

http://www.recursionsw.com/mobile_agents.htm. [Accessed 11/5/2005]. 

Report on Workshop 14 at OOPSLA2002: Agent-Oriented Methodologies (2002), Available at: 

http://www.open.org.au/Conferences/oopsla2002/. [Accessed 16/6/2005]. 

Roth, V. (1998), Secure Recording of Itineraries through Cooperating Agents, in ECOOP Workshop 

on Distributed Object Security and 4th Workshop on Mobile Object Systems:Secure Internet 

Mobile Computations, Brussels, Belgium, 147-154. 

Roth, V. (2004), Obstacles to the Adoption of Mobile Agents, in Proceedings of the 2004 IEEE 

International Conference on Mobile Data Management (MDM’04), Los Alamitos, Calif.,: IEEE 

Computer Society, Berkeley, California, 296-297. 

Roth, V., Braun, P. & Rossak, W. (2002), Conference Session and Workshop on Performance, 

Interoperability and Applications of Mobile Agent Systems, in Ninth Annual IEEE 

International Conference and Workshop on the Engineering of Computer-Based Systems 

(ECBS'02). 

Rothermel, K. & Schwehm, M. (1998), Mobile Agents, in A. Kent & J. G. Williams, (eds.), 

Encyclopedia for Computer Science and Technology, M. Dekker Inc., New York. 

Saleh, K. & Elmorr, C. (2004), M-UML: an extension to UML for the modeling of mobile agent-

based software systems, Information and Software Technology, 46: 219-227. 

Samaras, G. (2004), Mobile Agents: What about Them? Did They Deliver what They Promised? Are 

They Here to Stay?, in Proceedings of the 2004 IEEE International Conference on Mobile Data 

Management (MDM’04), Los Alamitos, Calif.: IEEE Computer Society, Berkeley, Calif, 294-

295. 

Sander, T. & Tschudin, C. (1998), Protecting Mobile Agents Against Malicious Hosts, in Lecture 

Notes in Computer Science, vol. 1419, Springer-Verlag, 44-60. 

Satoh, I. (2004), Linking Physical Worlds to Logical Worlds with Mobile Agents, in Proceedings of 

the 2004 IEEE International Conference on Mobile Data Management (MDM’04), 332-345. 



 

 143

Satoh, I. (2005), Mobile Applications in Ubiquitous Computing Environments, IEICE Transactions 

on Communications, E88B(3): 1026-1033. 

Schneider, F. B. (1997), Towards Fault-Tolerant and Secure Agentry, in 11th international Workshop 

on Distributed Algorithms, Saarbrücken, Germany. 

Schoeman, M. & Cloete, E. (2003), Architectural Components for the Efficient Design of Mobile 

Agents, in IT Research in Developing Countries, SAICSIT 2003, eds. J. Eloff, A. Engelbrecht, 

P. Kotze & M. Eloff, SAICSIT, Fourways, South-Africa, 48-58. 

Schoeman, M. & Cloete, E. (2004), Design Concepts for Mobile Agents, South African Computer 

Journal (32): 13-24. 

Schreiber, A. T., Wielinga, B. J., Akkermans, J. M. & Van de Velde, W. (1994), CommonKADS: A 

Comprehensive Methodology for KBS Development, IEEE Expert, 9(3): 28-37. 

Sebesta, R. W. (1999), Concepts of Programming Languages, 4th edn, Addison-Wesley. 

Shih, T. K. (2001), Mobile agent evolution computing, Information Sciences, 137: 53-73. 

Shoham, Y. (1993), Agent-Oriented Programming, Artificial Intelligence, 60: 51-92. 

Silva, A. & Delgado, J. (1998), The Agent Pattern for Mobile Agent Systems, in European 

Conference on Pattern Langugaes of Programming and Computing, Bad Irsee, Germany. 

Singh, A. K., Sankar, R. & Jamwal, V. (2002), Design Patterns for Mobile Agent Applications, 

Available at: http://autonomousagents.org/ubiquitousagents/papers/papers/22/pdf. [Accessed 

24/10/2005]. 

Sudeikat, J., Braubach, L., Pokahr, A. & Lamersdorf, W. (2004), Evaluation of Agent-Oriented 

Software Methodologies – Examination of the Gap Between Modeling and Platform, in The 

Fifth International Workshop on Agent-Oriented Software Systems (AOSE-2004), Columbia 

University New York City, New York. 

Sunsted, T. (1998), Agents on the Move, Available at: http://www.javaworld.com/javaworld/jw-07-

1998/jw-07-howto.html. [Accessed 5/5/2005]. 

The TACOMA project (Tromsø And COrnell Moving Agents), Available at: 

http://www.tacoma.cs.uit.no. [Accessed 11/5/2005]. 

Tahara, Y., Ohsuga, A. & Honiden, S. (1999), Agent System Development Method Based on Agent 

Patterns, Proceedings of the 21th International Conference on Software Engineering: 356-367. 

Taniar, D. (2005), Editorial, Journal of Mobile Information Systems, 1(1): 1-2. 

Thomas, S. R. (1995), The PLACA Agent Programming Language, in M. Wooldridge & N. Jennings, 

(eds.), Intelligent Agents, ECAI-94 Workshop on Agent Theories, Architectures and Languages, 

vol. 890 of LNCS, Springer, New York, 355-370. 



 

 144

Tozicka, J. (2003), Airports for Agents: An Open MAS Infrastructure for Mobile Agents, in Multi-

Agent Systems and Applications III: 3rd International Central and Eastern European 

Conference on Multi-Agent Systems, CEEMAS 2003, eds. V. Marik, J. Muller & M. Pchouek, 

Springer-Verlag Berlin Heidelberg, Prague, Czech Republic, 373-382. 

Transport Layer Security, Available at: http://en.wikipedia.org/wiki/Secure_Sockets_Layer. 

[Accessed 1/11/2005]. 

Travers, M. D. (1996), Programming with Agents: New metaphors for thinking about computation, 

Doctor of Philosophy, Massachusetts Institute of Technology. 

Tripathi, A. R., Ahmed, T. & Karnik, N. M. (2001), Experiences and future challenges in mobile 

agent programming, Microprocessors and Microsystems, 25: 121-129. 

Tripathi, A. R., Karnik, N. M., Ahmed, T., Singh, R. D., Prakash, A., Kakani, V., Vora, M. K. & 

Pathak, M. (2002), Design of the Ajanta system for mobile agent programming, Journal of 

Systems and Software, 62(2): 123-140. 

Tveit, A. (2001), A Survey of Agent-Oriented Software Engineering, Available at: 

http://www.abiody.com/jfipa/publications/AgentOrientedSoftwareEngineering/. [Accessed 

03/08/2004]. 

Usability (2005), Available at: http://en.wikipedia.org/wiki/Usability. [Accessed 18/11/2005]. 

Van Aart, C. (2005), Organizational Principles for Multi-Agent Architectures, Birkhäuser Verlag, 

Basel, Switzerland. 

Vecchiola, A., Gozzi, M. & Boccalatte, A. (2003), An Agent Oriented Programming Language 

targeting the Microsoft Common Language Runtime., in 1st International Workshop on C# and 

.NET Technologies on Algorithms, Computer Graphics, Visualization, Computer Vision and 

Distributed Computing., UNION Agency - Science Press, Plzen, Czech Republic, 6. 

Venners, B. (1997), Under the Hood: The architecture of aglets, Available at: 

http://www.javaworld.com/jw-04-1997/jw-04-hood_p.html. [Accessed 24/10/2005]. 

Venter, L. & Barrow, J. (2003), Can Objects communicate, and why would they want to?, in South-

African Computer Lecturers Association (SACLA 2003), Pilanesberg, South-Africa, 5. 

Vigna, G. (1997), Protecting Mobile Agents through Tracing, in 3rd ECOOP Workshop on Mobile 

Object Systems, Jyväskylä, Finland. 

Vigna, G. (2004), Mobile Agents: Ten Reasons For Failure, in 2004 IEEE International Conference 

on Mobile Data Management (MDM'04), Los Alamitos, Calif.,: IEEE Computer Society, 

Berkeley, California. 



 

 145

Vogler, H., Kunkelmann, T. & Moschgath, M. L. (1997), Distributed Transaction Processing as a 

Reliability Concept for Mobile Agents, Proceedings of the 6th IEEE Workshop on Future 

Trends of Distributed Computing Systems (FTDCS ‘97). 

Voss, G. (1991), Object-Oriented Programming An Introduction, 1st edn, Osborne McGraw-Hill. 

Voyager's Intelligent Mobile Agent Technology (2004-2005), Available at: 

http://www.recursionsw.com/mobile_agents.htm. [Accessed 8/2/2005]. 

Wang, A. I., Hanssen, A. A. & Nymoen, B. S. (2000), Design Principles For A Mobile, Multi-Agent 

Architecture For Cooperative Software Engineering. 

Web Services, Available at: http://www.w3.org/TR/ws-arch. [Accessed 15/8/2004]. 

Weyns, D., Helleboogh, A., Steegmans, E., Wolf, T. D., Mertens, K., Boucke, N. & Holvoet, T. 

(2004), Agents are not part of the problem, agents can solve the problem, Available at: 

http://www.open.org.au/Conferences/oopsla2004/PaperAO/. [Accessed 20/6/2005]. 

White, J. (1996), Mobile Agents White Paper, Available at: 

http://citeseer.ist.psu.edu/white96mobile.html. [Accessed 7/5/2005]. 

White, J. E. (1994), Telescript Technology: The Foundation for the Electronic Marketplace., General 

Magic, Inc., Mountain View, CA, USA. 

White, J. E. (1997), Mobile Agents, in J. M. Bradshaw, (ed.) Software Agents, AAAI Press/The MIT 

Press, Menlo Park, California; Cambridge, Massachusetts; London, England, 437-472. 

Whitestein Technologies, Available at: http://www.whitestein.com. [Accessed 3/8/2005]. 

Whitestein Technologies: Methodology (2005), Available at: 

http://www.whitestein.com/pages/solutions/meth.html. [Accessed 3/8/2005]. 

Wong, D., Paciorek, N. & Moore, D. (1999), Java-based mobile agents, Communications of the ACM, 

42(3): 92-102. 

Wong, J., Helmer, G., Naganathan, V., Polavarapu, S., Honovar, V. & Miller, L. (2001), SMART 

mobile agent facility, The Journal of Systems and Software, 56: 9-22. 

Wood, M. F. & DeLoach, S. A. A. (2000), An Overview of the Multiagent Systems Engineering 

Methodology, in P. Ciancarini & M. J. Wooldridge, (eds.), Proceedings of the First 

International Workshop on Agent-Oriented Software Engineering, vol. 1957 of LNCS, 

Springer, New York, 127-141. 

Wooldridge, M. (2002), An Introduction to Multiagent Systems, 1st edn, John Wiley & Sons Ltd, 

Chichester. 

Wooldridge, M. & Jennings, N. R. (1995), Intelligent Agents: Theory and Practice., The Knowledge 

Engineering Review, 10(2): 115-152. 



 

 146

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000), The Gaia Methodology for Agent-Oriented 

Analysis and Design, Autonomous Agents and Multi-Agent Systems, 3(3): 285-312. 

Wooldridge, M. J. & Jennings, N. R. (1999), SOFTWARE ENGINEERING WITH AGENTS:Pitfalls 

and Pratfalls, IEEE INTERNET COMPUTING(May June 1999): 20 - 27. 

Zambonelli, F., Jennings, N. R., Omicini, A. & Wooldridge, M. (2001), Agent-Oriented Software 

Engineering for Internet Applications, in A. Omicini (ed.) Coordination of Internet Agents, 

Springer-Verlag. 

Zambonelli, F. & Omicini, A. (2004), Challenges and Research Directions in Agent-Oriented 

Software Engineering, Autonomous Agents and Multi-Agent Systems, 9(3): 253-283. 

Zapf, M., Muller, H. & Geihs, K. (1998), Security Requirements for Mobile Agents in Electronic 

Markets, in W. Lamersdorf & M. Merz, (eds.), TREC'98, LNCS 1402, Springer-Verlag, Berlin  

Heidelberg, 205-217. 

Zaslavsky, A. (2004), Mobile Agents: Can They Assist with Context Awareness?, in 2004 IEEE 

International Conference on Mobile Data Management (MDM'04), Los Alamitos, Calif.,: IEEE 

Computer Society, Berkeley, California, 304-305. 

  


	Cover page
	Title page
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	Acronyms used
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	Bibliography

