/o ™ AT

SOFTWARE ENGINEERING DEVELOPMENT METHODOLOGIES
APPLIED TO COMPUTER-AIDED INSTRUCTION

Paula Kotzé and Ruth de Villiers
Department of Computer Science and Information Systems
University of South Africa, P O Box 392, Pretoria, 0001
Email: {kotzep,dvillmr}@alpha.unisa.ac.za

Abstract

The research reported in this paper aims to integrate software engineering approaches with
instructional factors in the requirements, analysis, design and production phases of
instructional software development. The integration has resulted in the evolution of a branch
of software engineering (SE) called courseware engineering. The paper reports on the results
of an independent study we have undertaken into the aspects of SE that are appropriate for the
development of courseware. Examples of other research efforts combining the disciplines of
SE and instructional system development (ISD) are given, where applicable. Two SE methods
were identified as being particularly useful and appropriate to ISD: prototyping and object-
oriented (O0) design. Factors that support the use and applicability of these two approaches
are discussed.

Introduction

Software engineering (SE) is concerned with the development of software systems using sound engineering
principles including both technical and non-technical aspects — over and above the use of specification,
design and implementation techniques, human factors and software management should also be addressed.
/7 Well-engineered software provides the services required by its users. Such software should be produced in
a cost-effective way and should be appropriately functional, maintainable, reliable, efficient and provide a

g relevant user interface [Shneiderman 1992, Sommerville 1992].

v(/&\\/ Computer-aided instruction (CAI) is concerned with the way in which computers can be used to support
L students engaged in particular educational activities and incorporates a variety of computer-aided instruction
and learning modes, for example, formal courseware such as tutorials and drills, and more open-ended
software such as simulations, concept maps and microworlds. Over the last decade such systems have

b &ad roliferated, evolving from simple beginnings, merely in the educational territory, to the realm of complex
5 racta.{, ! arod™ %oftware systems, As such, they should be designed and developed by applying the established principles of
Cf? /,f/"\' software enginédring to instructional software development (ISD).
)

The general problem of ISD is therefore to develop appropriate methods for the specification, design and
implementation of CAI software systems. The research reported in this paper aims to integrate software
engineering approaches with instructional factors in the requirements, analysis, design and production phases
of instructional software development. The integration has resulted in the evolution of a branch of software
engineering called courseware engineering. Two SE methods are identified as being particularly useful and
appropriate to ISD: prototyping and object-oriented (0O) design. Factors that support the use and
applicability of these two approaches are discussed.

Software Engineering Models

One of the comerstones of SE is the software life cycle, describing the activity stages that take place from
the initial concept formation for a software system, up to its implementation and eventual phasing cut and
replacement. Complementing these life cycle models are a number of design and development models.

Figure 1: Chen and Shen’s life cycle model {Chen 1989, p 11]

Life cycle models

A multitude of general software engineering life cycle (or process) models exist, some being variations on
others. Two examples are the so-called waterfall model, and the spiral model.

« Waterfall model: In the waterfall approach [Budgen 1994, Conger 1994, Sommerville 1992] the
software process is viewed as made up of a number of stages or activities such as requirements
specification, software design, software implementation, testing, operation and maintenance, etc. Each
activity serves as input to the next. One disadvantage of this approach is that it suits a principled
approach to design where all requirements for a system have to be known before system development

is begun.

The behaviour of a CAI system is highly dependent on the domain knowledge modelled within the
system. The tasks a user will perform are often not known until the user is familiar with the system on
which he performs them. A second drawback of this process model is that it does not promote the use
of notations and techniques which support the user’s perspective of the CAI system.

+ Spiral model: An alternative to the waterfall approach is Boehm's spiral model [Boehm 1988] which
is essentially an iterative model. Its key characteristic is an assessment of management risk items at
various stages of the project and the initiation of actions to counteract these risks. Before each cycle,
a review procedure judges whether to move on to the next cycle in the spiral. A cycle of the spiral
commences by elaborating objectives such as performance, functionality, and so on. Alternative ways
of achieving these objectives and constraints are then enumerated, followed by an assessment of each
objective. This typically results in the identification of sources of project risk. The next step is to
evaluate these risks by activities such as more detailed analysis, prototyping, simulation, etc. After risk
evaluation a development model (or a combination of models) for the system is chosen.

Combining SE aspects with those related specifically to the design and development of instructional systems
resulted in a number of specialised life cycle models specifically aimed at the development of computer-
based instructional systerns. Two examples are:

sequence

Design

Analyze information:
- content
- context
Define entry knowledge
Define organization /

ituationa

Evaluation
(Diagnosis)
Analyze need / problems

.ﬁ—-
. Precriptions =
Production
Prepare program description
Prepare instructional activilies
(print, video, computer, interaclive, live)
Prepare management syslem
Produce program prototype

pecify instr, strategies
Specily message design
Specify human factors
Review [selecl
existing material

Analyze target population
Propose solution plan
urriculum or instructional

Conduct formative evaluation
Revise program
Document development

Implementation

Disseminate and imptemeny
program (instruction
and management)

Specify and
develop learner
evaluation

Refine final program
Define dissemination plan

Conduct summative
evaluation

Develop program 1D plan
Define learning envifonmsnt
Specify goals / objectives
Define management

Deline speci fication of instr.
Define delivery system

Conduet
maintenance
evaluation

Revise and
refine program

Maintain system

Define educational philosophy
Define learning theory

Define instructional theory
Define evaluation plan

Maintenance

Analysis

Figure 2; ISD* [Tennyson 1994, p 4]

Chen and Shen's model: Chen and Shen [Chen 1989] propose a life cycle model similar to the
waterfall model but aimed specifically at the development of CAI with the joint objective producing
high quality products and development effectiveness. Verification and revision occur after each phase
resulting in an iterative, cyclic process, as illustrated in Figure 1.

Tennyson's ISD': Tenmyson’s Fourth Generation Instructional Systems Design Model {(ISD%) [Tenny-
son 1994], as illustrated in Figure 2, advocates the employment of advancements from cognitive science
and intelligent programming techniques to automate instructional system development. It focuses on
explicit rules in terms of development activities rather than on the sequencing of phases.

Development models

Detailed software process models are still the subject of research, but a number of general models or
paradigms of software development can be identified as supporting these process models [Dix 1993,
Sommerville 1992]. Two of these approaches have been widely used:

Exploratory programming (also known as evolutionary prototyping): A working system is developed
as quickly as possible and then modified until it performs in an adequate way. This approach is used
to a great extent in artificial intelligence systems development where a detailed requirements
specification cannot be formulated, and where adequacy rather than correctness is the aim of the
systems designers. The disadvantage of this approach relates to the encapsulation of design decisions.
Firstly, some of the earlier decisions may have been wrong and may never be removed from the system.
Secondly, because the behaviour of an interactive system is highly dependent on the knowledge
modelled within the system, earlier versions of the system will not include all of the knowledge to be
included in the completed system.

Throw-away prototyping: The software process starts off in a similar way to exploratory programming
in that the first phase of development involves the development of a program for user experiment. The
objective of the development is, however, to establish system requirements. The prototyping process

Analyze constrainis /resources

is followed by re-implementation of the software to produce the desired software system. Suffering from
the same drawbacks as exploratory programming, it has a further disadvantage in that it may
concentrate only on the surface features of the design, rather than on deeper issues and the functioning
of the interface, and does not on its own guarantee that the software produced exhibits the required
interaction qualities.

To compensate for the limitations of the prototyping approaches, and to support the waterfall and spiral
models in the requirements and design activity phases, a number of researchers in recent years have
advocated the use of two more approaches in the design process of interactive systems: formal transformation
and system assembly from reusable components.

o Formal transformation: A formal or abstract specification of the software system is developed and then
transformed, by means of correctness preserving transformations, to an implemented software system.
The principal value of using formal specification techniques in the software development process is that
it compels an analysis of the system requirements at an early stage. Correcting errors at this stage of
development is much cheaper than modifying a delivered system. A range of abstract modelling
approaches for interactive systems are reported in [Abowd 1990, Dearden 1995, Dix 1991, Harrison
1990, Palanque 1995, Paterné 1995, Sommerville 1992].

The formality of these models is intended to assure the exploration of the consequences of the design
without constructing prototypes or other working models of the design, as well as algorithmic
manipulation of the design.

« System assembly from reusable components: The system development process is either a total reuse
process using components which already exist in assembling the new system, or available components
applicable to the envisaged system are reused while additional components are developed using any
other development approach.

A trait of an engineering discipline is that it is founded upon an approach to system design which makes
maximum use of existing components. Design engineers base their designs on components which are
common with, and tried and tested in other systems of the same, or similar, nature. A number of reuse
approaches are reported in [Biggerstaff 1989, Johnson 1988, Tracz 1988].

Notwithstanding the disadvantages of the prototyping approaches, they are still the most viable options for
the development of interactive CAI systems. The reason for this is firstly delermined by the high interactivity
that characterises instructional software in relation to the computer literacy levels of the primary developers
of such software, as well as that of the end-users of the completed product. The intended end-users are
frequently laymen with respect to computer usage and unless they are at ease with the human-computer
interface, the software will do little to achieve its instructiongl and,learning ends. Prototypes are instrumental
in pilot-testing by such end-users. Prototyping also a ovf\fo early evaluation by instructors, trainers,
teachers, subject-matter experts, peers, etc. Visual peQ’ n and hands-on experience of part of an
operational system often resuits in the instructor-client modifying the objectives and strategies. Also, the
developers of such system are, more often than not, novice computer users, with absolutely no background
in formal specification methods. The use of formal transformation techniques would therefore be totally
inappropriate.

The major purposes of conventional software are data processing and information processing, where defined
activities occur in a predefined sequence. Instructional software, by contrast, comprises synthesis,
presentation, practice and assistance facilities in the complex realm of human cognition, and has a high level
of human-computer interactivity. Whether in a situation of program-control where the flow is branched
deterministically according to user-response, or in a situation of user-control where the leamner may branch
or browse at will, the sequence of events and activities varies greatly. CAI protoiypes can play a vital role
in demonstrating proposals on-screen, thus clarifying actual requirements and identifying misconceptions
and potential errors at an early stage. Not only should basic aspects such as screen layout and colours be
scrutinised, but also the strategies for control and navigation through the material. Usability factors, such as
learnability and consistency can be evaluated, also interface aspects such as coherence of textual and visual
displays, and accessibility of facilities.

Particularly when a piece of instructional software breaks new ground, prototyping is required at the design
and programming stages in order to ensure feasibility of intentions, to refine requirements, to reduce
excessive written descriptions, to determine the optimal navigation and control strategies hands-on, and also
to ensure that an appropriate programming approach is used for implementation.

Development tools or authoring environments should offer modularity, thus facilitating the removal, addition
or adaptation of a segment without affecting other segments or the unit as a whole, and plasticity, the ability
to make changes easily. If exorbitant time and costs are incurred in developing a prototype, the process is
not cost-effective. An ISD prototype may either be evolutionary, i.e. a limited version of the final product
later developed through to full functionality, or else a throwaway. In the latter case, the software used to build
the prototype may not be the same as that used for the final system.

Furthermore, although envisaged by many, there is still no common base of reusable components of CAl
software which is widely documented and which can be used when developing a CAI system with similar
functionality. It is also interesting to note that prototype production forms a central part of Chen and Shen’s
life cycle model, and is also listed as one of the activities in the production ‘phase’ of ISD*. Other researchers
advocating the use of prototyping approaches for ISD include Black and Hinton [Black 1988, Black 1989],
Gray and Black [Gray 1994], Lantz [Lantz, no date] Tripp and Bichelmeyer [Tripp 19901, and Wong {Wong
1993].

Design models

Software design is in essence a problem-solving task. It is more important to design a solution that will
achieve its purpose in doing the required job properly, than to achieve elegance and efficiency at the expense
of accuracy and reliability. A designer needs to abstract the critical features of a system, so as to concentrate
initially on building a logical model of the system rather than becoming over involved with detailed design
and physical implementation at an early stage.

Various methodologies and representations are available to facilitate the processes of analysis, design, and
systen modelling, in particular, the process-oriented, data-oriented, and object-oriented approaches:

+ The process-oriented paradigm centres around the events, procedures and flows that comprise a
traditional procedural software system. Such applications are characterised by conventional data flow
and updating of data stores. Events trigger processes, and processes call other processes, sequentially
or selectively. The process-oriented approach is epitomised by concepts and tools such as top-down
design, finctional decomposition, transaction analysis, data-flow diagrams, structure charts and input-
output transformations. It tends to discount evolutionary changes.

o Data-oriented approaches are based on the philosophy that data is more stable and unchanging than
processes. The underlying principles are enterprise analysis and relational database theory, and key
concepts are entities, attributes, relationships and normalisation.

o The latest emerging methodology is the object-oriented paradigm [Bell 1992, Booch 1994, Budgen
1994, Coad 1995, Conger 1994, Schach 1996], which integrates aspects of, and uses formalisms from,
both the other major methodologies, and uses certain concepts from object-oriented programming
languages. It is based on objects, which encapsulate both data and operations (processes) on that data.
An object is a real-world entity whose processes and attributes are modelled in a computerised
application. In object-oriented programming languages, computation is achieved when messages are
passed to the objects in the program, and a central aspect is the abstract data type (ADT), which
permits operations to be performed on an object without being implementation-specific. Objects
incorporating data are identified as data entities and not as specific data structures.

Conventional data-flow and process-linkage do not feature heavily in instructional and learning software and
such software therefore does not lend itself to the process-oriented paradigm. Object-oriented development
has been used in large, complex systems, compared to which CAI courseware and environments comprise
relatively few objects and components. Nevertheless, the strategies outlined can be beneficially applied in
the analysis, design and development of instructional and learning software.

Budpen [Budgen 1994] describes an object as an entity which possesses a state, exhibits behaviour, and has
a distinct identity. Sommerville {Sommerville 1992, p. 194] proposes the following definition: “An object
is an entity which has a state (whose representation is hidden) and a defined set of operations which operate
on that state. The state is represented as a set of object attributes™.

Analysis of classical CAI tutorials, simulations, drill-and-practice software, and state-of-the-art user-
controlled interactive learning environments reveals distinct design objects, or components, which possess
unique identities, certain attributes and relationships, and have operations performed on them, i.e. much CAI
software is explicitly, or implicitly, consisting of instructional components [Merrill 1988]. Many CAI systems
are comprised mainly of instructional presentations and exercise/question segments. The main processing
activities are determination of which unit / segment / example / exercise to present or do next, and the
assessment of student responses. The means of determination depends on the locus of end-user control -
whether program-control, learner-control, or a combination thereof. The various and varied instructional
activities and learning experiences — comprising learning segments, example presentations, practice
exercises and assessment activities — whether in textual or graphic form, whether requiring active learner-
participation or passive perusal, can readily be perceived as objects. The objects are separate, yet strongly
interrelated and it is appropriate to implement them in an object-oriented design. Such component-based
instructional systems can best be implemented by an object-oriented design. The OO paradigm thus appears
to be the most appropriate software engineering development methodology for ISD.

Even in the traditional life cycle models such as the waterfall model, the distinction between the systems
design (broad design) and the program design (detailed design/coding) can become blurred. In the OO
paradigm, however, the boundary is even more indistinct, because both top-down analysis and bottom-up
program development occur simultaneously or, at least, iteratively. The three traditional activities of analysis,
design, and implementation are all present, but the joints between are seamless. The unifying factor is the
prime role played by objects and their interrelationships. Modelling is prominent in object-oriented design,
the basic architecture being assembled from models of the entities and the relationships between them. Reuse
is a feature of OO design, since the prominent class and inheritance features lend themselves to code reuse.

CAI software incorporates well-defined objects, both concrete and abstract, and particularly in situations with
an initial lack of precise specifications, its procurement can be expedited and facilitated by a development
process incorporating evolutionary prototyping. Combining the essence of prototyping and the OO paradigm
requires a life cycle model emphasizing overlap and evolution with explicit incorporation of a prototyping
phase. Chen and Shen’s model, ISD*, as well as other similar life cycle models, for example the Wong
prototyping model [Wong 1993], the Booch model{Booch 1994] and the Henderson-Sellers and Edward’s
fountain model [Henderson 1990], all incorporate these requirements.

Conclusion

This article overviewed general software engineering models, tools and techniques, and investigated their
applicability to instructional systems development.

Day mpock? . . .

A life cycle m which ingludes evolutionary prototyping appears to be most appropriate for the
deveTopimént of instructional software, so that initially fuzzy requirements can be refined and the initial
working version can be modified and expanded towards a final operational CAI product.

The object-oriented methodology proves itself to be, in the terms of Korson & McGregor [Korson 1990],
“a unifying paradigm”, which is appropriate for the analysis and representation of CAL Viewing a system
as object-based provides a more versatile foundation than a view based fundamentally on data modelling or
on its functions and procedures. Although user-input plays a major role in determining the path through
instructional software, there is little conventional data flow. The concept of an object is a utilitarian approach,
which brings together such varied items as concrete objects, abstract objects, data, processes, and
environmental entities external to the software (yet vital components of the system), such as the human user.
Incorporation of the user as an object is particularly beneficial in CAI due to its highly interactive and
individuslised nature. The tools and representations of the OO paradigm can be of great value in the analysis,
design and documentation of instructional software.

It is hoped that object-based control structures developed for specific applications can eventually be used
as generic, content-free shells to present formal instruction or practice exercises in different instructional
modes in varying subjects and courses. This would capitalise on the modularity and reuse potential inherent
in an object-oriented design.

References

[Abowd 1991]
[Bell 1992]
[Biggerstaff 1989]
[Black 1988]

[Black 1989]

[Boehm 1988]
[Booch 1994]

[Budgen 1994]
[Chen 1989]

[Coad 1995]
[Conger 1994]
[Dearden 1995]

[Dix 1991]
[Dix 1993]

[Gray 1993]
[Harrison 1990]
[Henderson 1990]
[Johnson 1988]
[Korson 1990]
[Lantz no date]
[Merrill 1988]
[Palanque 1595]
[Paternd 1995]
[Schach 1996]

[Shneiderman 1992}

[Sommerville 1992]
[Tennyson 1994]

[Tracz 1988]
[Tripp 1550]

[Wong 1993]

Abowd G D. 1991. Formal Aspects of Human-Computer Interaction, DPhil. Thesis, Oxford
University, Programming Research Group.

Bell D, Morrey I & Pugh J. 1992. Sofiware Engineering: A Programming Approach (2nd ed.).
Hemel Hempstead: Prentice Hall International (UK Ltd.

Biggerstaff T J & Perlis A J (Eds). Software Reusability. Volumes 1 & 2. Reading MA:
Addison-Wesley.

Black T R. 1988. Prototyping CAL courseware: a role for computer-shy subject experts. In:
Aspects of Educational Technology Vol XXI, Designing New Systems and Technologies for
Learning, edited by H Mathias, H Rushby & R Budgett. London: Kogan Page.

Black T R & Hinfon T. 1989. Courseware design methodology: the message from software
engineering. In: Aspects of Educational Technology Vol XX, Promoting Learning, edited by
C Bell,] Davies & R Winders. London: Kogan Page.

Boehm B W. 1988. A spiral model of sofiware development and enhancement. JEEE
Computer,21(5),61 =72..

Booch G. 1994. Object-Oriented Analysis and Design: with Applications (2nd ed.) Redwood
City, CA: Benjamin/Cummings Publishing Company, Inc.

Budgen D. 1994. Software Design. Wokingham: Addison-Wesley.

Chen J W & Shen C. 1989, Software engineering: a new component for instructional software
development. Educational Technology, 29(9),9 - 15.

Coad P, North D & Mayfield M. 1995. Object Models: Strategies, Patterns & Applications.
Englewood Cliffs, NJ: Prentice Hall.

Conger S A. 1994, The New Software Engineering. Belmont, CA: Wadsworth Publishing
Company.

Dearden A M. 1995. The use of Formal Models in the Design of Interactive Case Memory
Systems. DPhil Thesis, University of York (UK).

Dix A. 1991. Formal Methods for Interactive Systems. London: Academic Press.

Dix A, Finlay J, Abowd G & Beale R. Human-Computer Interaction. Hemel Hempstead:
Prentice-Hall.

Gray D E & Black T R. 1994. Prototyping of computer-based training materials. Computers in
Education, 22(3), 251 — 256.

Harrison M D & Thimbleby H (Eds). 1990. Formal Methods in Human-Computer Interaction.
Cambridge: Cambridge University Press.

Henderson-Sellers B & Edwards J M. 1990. The Object-Oriented Systems Life Cycle.
Communications of the ACM, 33 (9), 142 - 159.

Johnson R & Foote B. 1988, Designing reusable classes. Object-Oriented Programming, 1(2),
22-35.

Korson T & McGregor J D. 1990. Understanding object-oriented: & unifying paradigm.
Communications of the ACM, 33 (9), 40 — 60.

Lantz K E. (no date). The Prototyping Methodology. Englewood Cliffs, NJ: Prentice-Hall.
Merrill M D. 1988. Applying component display theory to the design of courseware. In:
Instructional Designs for Microcomputer Courseware, edited by D H Jonassen. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Palanque P & Bastide R (Eds). 1995. Proceedings of the Eurographics Workshop in Toulouse
France, June 1995, Wien: Springer-Verlag.

Paternd F (Ed). 1995. Interactive Systems: Design, Specification and Verification. Berlin:
Springer-Verlag.

Schach S R. 1996. Classical and Object-Oriented Software Engineering (3rd ed.). Boston,
MA: Aksen Associates Inc. Publishers.

Shneiderman B. 1992. Designing the User Interface. Reading, MA: Addison-Wesley.
Sommerville L 1992. Saftware Engineering (4th ed.). Wokingham: Addison-Wesley Publishing
Company.

Tennyson R D. 1994. Knowledge base for automated instructional system development. In:
Automating Instructional Design, Development, and Delivery, edited by R D Tennyson.
Berlin: Springer Verlag.

Tracz W (Ed). 1988. Software Reuse: Emerging Technology. Washington DC: IEEE Computer
Society Press.

Tripp $ D & Bichelmeyer B, 1990. Rapid prototyping: an alternative instructional design
strategy. Educational Technology, Research and Development, 38(1),31 — 44,

Wong S €. 1993. Quick prototyping of educational software: an object-oriented approach.
Journal of Educational Technology Systems, 22(2), 155 - 172.

