
 
 

ENGINEERING POLYMERS BASED ON 1,1-DIPHENYLETHYLENE 

DERIVATIVES: POLYMER SUBSTRATES AS PRECURSORS FOR MEMBRANE 

DEVELOPMENT 

 

by 

 

MIZOLO GINETTE KASIAMA 

 

 

Submitted in fulfilment of the requirements for the degree of  

 

 

MASTER OF SCIENCE 

 

 

in the subject 

 

 

CHEMISTRY 

 

 

at the 

 

 

UNIVERSITY OF SOUTH AFRICA 

 

 

SUPERVISOR: PROFESSOR G J SUMMERS 

 

 

2012 



 
 

 

 

 

 

 

Student number: 4122-623-2 

 

I declare that the dissertation entitled: ENGINEERING POLYMERS BASED ON 1,1-

DIPHENYLETHYLENE DERIVATIVES: POLYMER SUBSTRATES AS PRECURSORS 

FOR MEMBRANE DEVELOPMENT is my own work and that all sources that I have used or 

quoted have been indicated and acknowledged by means of complete references. 

 

 

 

 

SIGNATURE                    DATE 

(Ms M G KASIAMA) 

 

 

 

 



 
 

 

ABSTRACT 

 

A series of new, well-defined poly(ether ether sulfone), poly(ether ether ketone) and 

polyimide derivatives containing the diphenylethylene moiety were prepared by step-growth 

polymerization methods.  

 

Poly(ether ether sulfone) derivatives were prepared by two step-growth polymerization 

methods: 

 

(a) The cesium fluoride catalyzed polycondensation reactions of 4,4´-difluorodiphenylsulfone 

with different mole percentage ratios of silylated bisphenol derivatives, 2,2-bis(4-t-

butyldimethylsiloxyphenyl)propane and 1,1-bis(4-t-butyldimethylsiloxyphenyl)ethylene 

in N-methyl-2-pyrrolidone at 150 °C. 

 

(b) The potassium carbonate catalyzed nucleophilic aromatic substitution polycondensation 

reactions of 4,4´-difluorodiphenylsulfone with different mole percentage ratios of 

bisphenol A and 1,1-bis(4-hydroxyphenyl)ethylene in N,N-dimethylacetamide and 

toluene at 165 °C. 

 

Poly(ether ether ketone) derivatives were prepared by the cesium fluoride catalyzed 

polymerization reactions of 4,4´-difluorobenzophenone with different mole percentage ratios 

of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane and 1,1-bis[4-(t-butyldimethylsiloxy)- 

phenyl]ethylene in N-methyl-2-pyrrolidone at 150 °C. 



 
 

Polyimide derivatives were prepared by step-growth polymerization methods by the 

polycondensation reactions of 4,4´-oxydiphthalic anhydride with different mole percentage 

ratios of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and 1,1-bis(4-aminophenyl)ethylene.  

The intermediate polyamic acids were subjected to thermal imidization processes to provide 

the corresponding polyimide derivatives. 

 

Due to the regiospecific introduction of the 1,1-diphenylethylene group along the polymer 

backbone, the different poly(ether ether sulfone), poly(ether ether ketone) and polyimide 

derivatives were subjected to post-polymerization sulfonation reactions via the thiol-ene 

reaction using sodium 3-mercapto-1-propane sulfonate as sulfonating agent and AIBN as 

initiator in N-methyl-2-pyrrolidone/dimethylsulfoxide at 75 °C for 5 days.  The 1,1-

diphenylethylene derivatives and the different polymeric compounds were characterized by 

size exclusion chromatography, dilute solution viscometry, 1H NMR and 13C NMR 

spectrometry, FTIR spectroscopy, thermogravimetric analysis, differential scanning 

calorimetry, X-ray diffraction, atomic force microscopy, transmission electron microscopy, 

elemental analysis, energy dispersive spectroscopy and ion exchange capacity measurements. 
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CHAPTER 1 

 

INTRODUCTION 

 

Research emphasis on the development of renewable and clean energy strategies has recently 

received considerable interest in academia and industry.  In particular, fuel cell technology has 

been considered as the alternative to fossil fuels for power generation because of its high 

electrical efficiency, low emissions and the use of materials which cause no environmental 

damage.1, 2,3  Thus, polymer electrolyte membrane fuel cells (PEMFCs) have been developed 

as a promising alternative for vehicular transportation and for stationary and portable 

communications systems. 

 

The electrolyte employed in PEMFCs is a solid polymeric membrane fitted between two 

platinum porous electrodes.4  Commercially available sulfonated based perfluorinated 

polymers, such as Nafion®, Flemion®, Dow® and Aciplex® are currently used as membranes in 

PEMFC’s because of their excellent chemical stability, good mechanical properties and high 

proton conductivity characteristics.  However, such polymers are very expensive and exhibit 

low operation temperature with high methanol permeability.  Thus, current worldwide 

research focuses on the development of alternative hydrocarbon based polymer electrolyte 

membranes to overcome the drawbacks of Nafion® and its analogues.5  
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It is well known that thermoplastic engineering polymers with sulfonated groups introduced 

directly onto the polymer chain or pendant to the polymer backbone provides the following 

membrane characteristics which are required for an effective proton exchange membrane: (i) 

high proton conductivity; (ii) excellent oxidant and mechanical durability; (iii) reduced fuel 

permeability; (iv) low water uptake; (v) reduced swelling and good membrane fabrication 

properties and (vi) cost effectiveness.  In particular, chemically and thermally stable, fully 

aromatic sulfonated poly(ether ether sulfone), sulfonated poly(ether ether ketone) and 

sulfonated polyimides are considered promising alternatives to Nafion® as the membrane 

material of choice in fuel cell technology.1,2,6-11 

 

Step-growth polymerization methods are generally employed for the preparation of a variety 

of thermoplastic engineering polymers.  In general, poly(ether ether sulfone)s, poly(ether ether 

ketone)s and polyimides and its functionalized derivatives are readily prepared by reacting 

two or more different functionalized monomers via a step-growth polymerization process or 

by post-polymerization polymer backbone functionalization reactions to introduce the 

functional group pendant to the polymer chain.6 

 

Poly(ether ether sulfone)s are tough, strong and stiff polymers with high chemical and thermal 

stability and are good polymer precursors for the preparation of membranes used in water 

purification processes, ultracentrifugation, reverse osmosis and liquid and gas separations.7  

The most common methods for the preparation of poly(ether ether sulfone)s by the step-

growth polymerization process involves three synthetic routes, namely: 
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(a) the Friedel-Crafts reaction of different diaryl sulfone substrates with aromatic bis-

sulfonylchlorides.6-8 

(b) the metal catalyzed coupling reaction of different silylated bisphenols with dihalogenated 

diaryl sulfones.6-8 

(c) the base mediated nucleophilic displacement reaction of aromatic bisphenols with 

activated dihalogenated diaryl sulfones.6-8 

 

Poly(ether ether ketone)s are high performance polymers with excellent mechanical 

properties, good resistance to acidity and alkali and high thermal and thermoxidative stability.7  

Poly(ether ether ketone)s are generally semi-crystalline polymers with limited solubility in 

common organic solvents.  Poly(ether ether ketone)s are commonly prepared via the 

nucleophilic substitution reaction of dihalogenated diaryl ketones with aromatic bisphenol 

derivatives in the presence of a strong base as well as Friedel-Crafts carbonylation reactions.7,8  

In addition, poly(ether ether ketone)s can also be prepared via metal catalyzed coupling 

reactions of different silylated bisphenols with dihalogenated diaryl ketones.7, 8 

 

Polyimides are engineering thermoplastics with high thermal stability, good chemical 

resistance and excellent mechanical properties and are used in electronic packaging, 

passivation coatings, die attach adhesives, flexible circuit substrates and more recently as the 

interlevel dielectric in high speed IC interconnections.12  In general, polyimides are prepared 

by the step-growth polymerization process via a two-step method.  In the first step, the 

polyamic acid precursor is commonly prepared from the reaction of a tetracarboxylic 

dianhydride with an aromatic diamine via a ring-opening polycondensation reaction.  In the 
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second step, the thermal or chemical cyclodehydration of the polyamic acid leads to the 

formation of the corresponding polyimide.9 

 

The present study focuses on the synthesis of new engineering polymers based on 1,1-

diphenylethylene derivatives.  A series of new poly(ether ether sulfone), poly(ether ether 

ketone) and polyimide derivatives were prepared by step-growth polymerization methods by 

the reactions of different difunctionalized 1,1-diphenylethylene derivatives with dihalogenated 

diaryl sulfones, dihalogenated diaryl ketones and aromatic dianhydride as monomers   

respectively.13, 14  Poly(ether ether sulfone)s were prepared by the cesium fluoride or 

potassium carbonate catalyzed polymerization of dihalogenated diaryl sulfones with silylated 

bisphenols and bisphenols, respectively.  Poly(ether ether ketone)s were prepared by the 

cesium fluoride catalyzed polymerization of dihalogenated diaryl ketones with silylated 

bisphenols.  Polyimides were prepared via a two-step polymerization process which involves 

the formation of the polyamic acid derivative followed by a thermal imidization process.  In 

addition, due to the regiospecific introduction of the 1,1-diphenylethylene unit along the 

polymer backbone in poly(ether ether sulfone)s, poly(ether ether ketone)s and polyimides, the 

new engineering polymers were subjected to a post-polymerization sulfonation process via a 

thiol-ene reaction15 to produce sulfonated poly(ether ether sulfone), poly(ether ether ketone) 

and polyimide derivatives, respectively. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Characteristics of Step-Growth Polymerization 

 

2.1.1 Polymer Structure 

 

The step-growth polymerization method is the major polymer synthesis process for the 

preparation of thermoplastic engineering polymers such as poly(ether ether sulfone)s, 

poly(ether ether ketone)s and polyimides.6-9, 16  In general, step-growth polymerization 

involves the reactions between different difunctional monomers which leads to the formation 

of polymer and the loss of molecule with low molecular weight, for example, in the 

preparation of polyesters and polyimides.  However, step-growth polymerization reactions 

also occur when polymers are formed without elimination of small molecules, for example in 

the synthesis of polyurethanes and polyurea.12, 17-20  In most linear step-growth polymerization 

processes, the reactions are reversible.  Thus, the final conversion and molecular weight is 

limited by the reaction equilibrium.  When step-growth polymerization occurs with the loss of 

a molecule with low molecular weight, the concentration of the loss molecule considerably 

affects the reaction equilibrium.  Consequently, the by-product needs to be removed to ensure 

the formation of polymers with high molecular weights.  By removing the condensation by-
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products, the rate of the reverse reaction is lowered and polymers with high molecular weights 

are produced.3, 17, 20    

 

Depending on the monomer structure, two types of linear step-growth polymerization methods 

are defined.  One method involves the step-growth polymerization of two different 

difunctional monomers in which each monomer possesses only one type of functional group.  

The second method involves the polymerization of a single monomer containing two different 

functional groups.12, 19, 20  The two methods of polymers synthesis can be represented in 

general manner by the following equations: 

 

n A A

n A B

n B B+

A B
n

A AB B
n

 

where A and B are two different types of functional groups. 

 

In the step-growth polymerization process, the monomers can react at any time in consecutive 

reactions leading to an increase of the molecular weight of the macromolecules.  Therefore, no 

initiator is necessary.  Catalysts, such as acids are commonly used to speed up and control the 

mechanism of the reaction.  Monomers react progressively to form dimers, trimers until the 

formation of a polymer chain is obtained.  Any two species in the reaction mixture can react 

with each other.  The polymerization reaction proceeds with the number average molecular 

weight of the polymer increasing slowly throughout the reaction.  Thus, the monomer 

concentration is rapidly reduced in the reaction.  For most step-growth polymerization 

reactions, when the average polymer chains contain at least 10 monomers per unit, less than 1 

http://en.wikipedia.org/wiki/Trimer_(chemistry)
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percent of the original monomers remain present in the reaction mixture.  Termination occurs 

when all available monomers are consumed.12, 19, 20  The step-growth polymerization reaction 

can be carried out by various techniques including melt polymerization, solution 

polymerization, interfacial polymerization, emulsion polymerization and solid state 

polymerization.3 

 

2.1.2 Carothers’ Theory 

 

The mathematical expression leading to the manufacture of polymers with high molecular 

weights in step-growth polymerization reactions was developed by Wallace Carothers.  In the 

Carothers equation, the degree of polymerization, Xn, is related to a given fractional monomer 

conversion, p, for a specific step-growth polymerization reaction.  Polymers with high 

molecular weight are formed at high degrees of percentage monomer conversion or extent of 

reaction.19 

 

For the linear step-growth polymerization method, the Carothers theory is depicted as follows: 

A-A + B-B → -(A-B)n-  

Rate = k [A-A] [B-B]  

 

The kinetic equation may be rewritten as: 

Rate = -d [A-A]/dt = k [A-A]2 = k [B-B]2  
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The degree of polymerization (Xn) and the number average molecular weight Mn are given by 

the following equations: 

Xn = N0/Nt 

Mn = M0 × Xn  

With N0 = number of functional groups present initially 

 Nt = number of functional groups present at time t 

 M0 = value of the mean molar mass 

 

Molar mass of the repeat unit
Number of monomer units in the repeat unitM0 =

 

 

The extent of reaction, p, in a given period of time is given by: 

 

Number of carboxylic acid groups which have reacted
Number of carboxylic acid groups initially present

p =
 

 

The number of functional groups can be rewritten as: 

p = (N0-Nt)/N0  

Thus   Xn = 1/(1-p)   [Carothers Equation] 

 

2.1.3 Stoichiometric Control of Molecular Weight 

 

The number average molecular weight of a specific polymer is one of the important polymer 

parameters which affect polymer properties such as glass transition and tensile strength.19  In 
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the step-growth polymerization process, the viscosity of polymer reaction in the melt and 

solution increases monotonically with molecular weight, making very high molecular weight 

polymers very difficult to process.6  Therefore, there is a need to deliberately control 

molecular weight in step-growth polymerization.  There are three synthesis methods to 

purposefully control the molecular weight of a polymer in step-growth polymerization 

reaction,19 namely: 

(a) The reaction is quenched by a specific method at the appropriate time to avoid increase of 

molecular weight since the degree of polymerization is a function of reaction time. 

(b) The stoichiometry of the polymerization reaction is selected to have one monomer 

slightly in excess to avoid further polymerization.  Polymerization stops when the 

monomer in smaller concentration is completely consumed and all chains have the same 

functional end groups (the functional group of the monomer in excess).  The resulting 

polymer is stable to subsequent molecular weight changes, because further polymerization 

is impossible. 

(c) The polymerization reaction is controlled by the addition of a small amount of a 

monofunctional component.  The monofunctional component is referred to as a chain 

stopper.  The growing polymer produced does not possess functional end groups and is 

therefore incapable of further polymerization. 

 

For a successful step-growth polymerization process and the production of polymers with high 

molecular weights, the following experimental requirements are essential:4, 6, 17 

(a) A perfect stoichiometric equivalence of the two difunctional monomers. 

(b) High degree of purity of the monomers is necessary. 
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(c) High monomer conversion (greater than 99 %). 

(d) Absence of side reactions to ensure high yield polymerization reactions. 

 

2.1.4 Molecular Weight Distribution for Linear Step-Growth Polymerization 

 

In step-growth polymerization, the product of polymerization is composed of macromolecules 

of different molecular weights.  The broad molecular weight distribution is calculated 

considering that the reactivity of different functional groups is equal and independent of 

molecular size.  Flory developed a statistical approach whereby the probability of finding a 

chain with x-structural units (“x-mer”) that is equivalent to the probability of finding a 

molecule with (x-1) A groups reacted and one A group unreacted can be calculated as 

follows:19 

 

x AA+ x BB

x AB

AA - (BB-AA)x-1 - BB

A - (B-A)x-1 - B
 

 

The probability that an A functional group has reacted is given by px-1 and the probability of 

finding an A unreacted is given by (1-p).  Thus: 

 

Nx = (1-p) px-1  

where Nx = probability of finding a chain that is x-units long and has an unreacted A.  When x 

increases, the probability decreases.  Since Nx is the same as the mole or number fraction of 

molecules in the polymer mixture which are x-mers, the following equation can be written: 
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Nx / N = (1-p) px-1  

 

where N = the total number of polymer molecules present in the reaction 

 

If the total number of structural units present initially is N0, then N = N0(1-p).  The equation 

Nx can be expressed as follows: 

 

Nx = N0(1-p)2px-1 

 

Similarly, the weight fraction of x-mers in the system and the probability of finding x-mers in 

terms of mass fraction is Wx = x Nx/ N0.  The weight fraction of x-mers can also be rewritten 

as: 

  Wx = x (1-p)2px-1 

 

2.1.5 Reaction Kinetics 

 

To follow the polymerization kinetics for the step-growth polymerization reaction, it is 

assumed that there is equivalence in the reactivity of the two functional groups of the 

difunctional monomers, despite the size of the specific molecule or the extent of the reaction.  

The reaction rate constants of the step-growth polymerization process are completely 

independent of the reaction time and molecular weight of the polymeric species.  The rate of 

step-growth polymerization is only expressed in terms of the concentrations of the reacting 
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functional group.  As a result, the polymerization rate decreases as the number of functional 

groups decreases.12, 19, 20   

 

The following parameters should be taken into consideration during the kinetic study of a 

step-growth polymerization reaction:19, 21 

(a) The rate of polymerization can be expressed as the rate of disappearance of a specific 

functional group. 

(b) The concentration of a specific functional group is constant throughout the reaction. 

(c) Each step involves the reaction between one functional group with the other. 

(d) The reactivity of each functional group is independent of the chain length. 

 

2.2 Engineering Polymers by Step-Growth Polymerization 

 

2.2.1 Synthesis of Poly(ether ether sulfone)s 

 

Aromatic poly(ether ether sulfone)s is a family of thermoplastic polymers containing the sub 

unit with the aryl-SO2-aryl functionality.  Poly(ether ether sulfone)s, first introduced in 1965 

by Union Carbide, possess excellent mechanical, biological and chemical stability with an 

extensive operating range of temperatures (>80 °C) and pH values.  The unique chemical and 

physical characteristics of poly(ether ether sulfone) make it the polymer material of choice for 

membrane substrates in fuel cell technology and water purification processes.6-8, 19, 20  

Poly(ether ether sulfone)s are inexpensive and commercially available.  Udel® is one typical 

example of a commercially available poly(ether ether sulfone):  
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O
CH3

CH3

O S
O

O n 

 

In particular, aromatic poly(ether ether sulfone)s are well-known high performance 

engineering polymers with good thermal stability and good mechanical properties because of 

the incorporation of aromatic nuclei along the polymer backbone.  In addition, the presence of 

the flexible ether linkages along the polymer backbone facilitates polymer processing while 

maintaining excellent oxidative and thermal properties.  The synthesis of a plethora of 

different poly(ether ether sulfone) derivatives with different polymer backbone chemical 

composition and microstructure have been reported in the literature.6, 7 

 

The general synthesis methods for the preparation of different poly(ether ether sulfone)s 

involve electrophilic aromatic substitution, metal catalyzed coupling reaction and nucleophilic 

aromatic substitution mechanisms.6, 7, 22 

 

2.2.1.1 Poly(ether ether sulfone)s by Electrophilic Aromatic Substitution Reactions  

 

The electrophilic aromatic substitution polycondensation process was the first method used for 

the synthesis of poly(ether ether sulfone)s.  Poly(ether ether sulfone)s were prepared by the 

Friedel-Crafts polysulfonylation reaction of an arylene sulfonyl chloride derivative with an 

aromatic compound in the presence of a Lewis acid catalyst.6  A sulfonium ion, generated 

from an arylene sulfonyl chloride and Lewis acid, attacks the aromatic compound and leads to 

the formation of para substituted linear polymers.23, 24  Two different routes6, 7, 19, 20 are 

employed for the synthesis of poly(ether ether sulfone)s via the Friedel-Crafts 
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polysulfonylation reaction, namely (a) the reaction of two different polyfunctional monomers 

of the AA and BB type and (b) the polymerization of monomers of the AB types:   

 

O O SO2ClClO2S+
FeCl3
C6H5NO2

O SO2 + 2 HCl
n

O SO2Cl
FeCl3
C6H5NO2

O SO2 + HCl
n

(a)

(b)

AA BB

AB  

 

2.2.1.2 Poly(ether ether sulfone)s by Metal Catalyzed Coupling Reactions 

 

The synthesis of poly(ether ether sulfone)s can also be effected by the metal catalyzed 

coupling reactions of dihalogenated diaryl sulfones with silylated bisphenols with cesium 

fluoride or potassium fluoride as catalyst.6, 7  For example, the treatment of    

4,4´-difluorodiphenylsulfone with silylated bisphenol A in the presence of CsF in 

tetrahydrofuran produces the corresponding poly(ether ether )sulfones in high yields:7 
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The fluoride anion from the catalyst converts the silyl ether to phenolate salt derivative.  The 

phenolate salt species attack the dihalide monomer to produce the polymer.  The use of 

silylated ethers of bisphenols allows the preparation of poly(ether ether sulfone)s in the melt 

(temperatures between 130 - 300 °C) in the presence of 0.1 - 0.3 % mol of catalyst, thus 

avoiding the removal of large amounts of inorganic salts and solvents.  However, the metal 

catalyzed coupling method is limited only to the use of fluorinated monomers, with 

chlorinated monomers affording polymers with low molecular weights.6, 7, 16, 20, 22, 25 

 

Another metal catalyzed synthesis method for poly(ether ether sulfone)s involves the Ni(0) 

homocoupling reactions of the appropriate aromatic ether sulfone dihalides.26, 27  The method 

was first developed for the synthesis of soluble functionalized poly(p-phenylene)s (PPP) and 

polyarenes derivatives from substituted dichlorobenzene and triflates of hydroquinones and 

bisphenols.26-28  The Ni(0) catalyst is generated by the reduction reaction of NiCl2 with Zn in 

the presence of triphenylphosphine and bipyridine in N,N-dimethylacetamide to reduce 

potential side reactions such as the reduction of ArCl to ArH and the transarylation of 

triphenylphosphine:29 
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NiCl2/Zn/PPh3/DMAc/N2

 

 

The current research work focuses on the synthesis of new poly(ether ether sulfone)s via the 

metal catalyzed polymerization of dihalogenated diaryl sulfones with silylated bisphenols.  

The polymerization reaction of 4,4´-difluorodiphenylsulfone (1) with different percentage 

mole ratios of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) afforded well-defined poly(ether ether sulfone) 

derivatives in high yields. 

 

2.2.1.3 Poly(ether ether sulfone)s by Base Catalyzed Nucleophilic Aromatic 

 Substitution Reactions 

 

The aromatic nucleophilic substitution polycondensation reaction between aromatic dihalides 

and aromatic diols can be employed to produce engineering polymers via step-growth 

polymerization process.30, 31  For example, the nucleophilic aromatic substitution 

polycondensation reaction of 4,4´-difluorodiphenylsulfone with bisphenol A affords 

poly(ether ether sulfone)s in high yields.  A weak base, K2CO3 is used as catalyst to afford the 

bisphenolate in the first step.  Potassium carbonate serves as catalyst and HF acceptor.  
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Toluene is added as co-solvent for the azeotropic removal of the liberated water.25  In the 

second step, the bisphenolate reacts with the dihalide monomer to yield the resultant 

poly(ether ether sulfone) derivative.  The nucleophilic displacement polycondensation of the 

aromatic dihalide and the bisphenol is carried out in aprotic polar solvents such as N-methyl-

2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) or dimethylsulfoxide (DMSO) as 

solvent to provide a plethora of poly(ether ether sulfone)s derivatives with different backbone 

structures.6, 7, 21, 25, 29, 32, 33 

 

Gao and Hay33 prepared a series of poly(ether ether sulfone)s containing the diphenylethylene 

unit via the base catalyzed aromatic nucleophilic substitution polycondensation reaction of 

4,4´-difluorodiphenylsulfone with 1,1-bis(4-hydroxyphenyl)ethylene in DMAc and toluene as 

solvent to produce well-defined polysulfones for use as precursors in photochemical reactions: 

 

S FF +
K2CO3

C O

O

O DMAc/165 oC

CH2
O

n

C OHHO
CH2

S
O

O  

 

McGrath and coworkers34 have investigated the kinetics and mechanism associated to the 

synthesis of poly(ether ether sulfone)s using K2CO3/DMAc as base and aprotic dipolar 

solvent.  Several homopolymers and copolymers of 4,4´-dichlorodiphenylsulfone and 4,4´-

difluorodiphenylsulfone with bisphenol A, bisphenol T, bisphenol S and hydroquinone were 
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prepared in different monomer mole ratios to produce polymers with high molecular weights.  

In addition, polymer hydrolysis and bisphenate insolubility, usually observed in the synthesis 

of poly(ether ether sulfone)s via the classical synthetic route using sodium hydroxide and 

DMSO system, were avoided: 

 

HO
CH3

CH3

OH+Cl S Cl
O

O

K2CO3/DMAc/toluene

HO
CH3

CH3

O S
O

O
O

CH3

CH3

OH
n  

 

In the present study, the base catalyzed nucleophilic substitution reaction of dihalogenated 

diaryl sulfones with bisphenols was adopted for the preparation of new poly(ether ether 

sulfone) derivatives with the 1,1-diphenylethylene unit incorporated along the polymer 

backbone.  The potassium carbonate catalyzed polymerization of       

4,4´-difluorodiphenylsulfone (1) with different mole percentage ratios of bisphenol A (4) and 

1,1-bis(4-hydroxyphenyl)ethylene (5) afforded a series of new well-defined poly(ether ether 

sulfone) derivatives with excellent chemical and thermal stability. 
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2.2.2 Synthesis of Sulfonated Poly(ether ether sulfone)s 

 

The synthesis of new sulfonated high performance polymers is widely considered as the 

replacement for Nafion® as the polymer electrolyte membrane in fuel cell technology.  

Nafion® is a sulfonated tetrafluoroethylene based copolymer utilized in proton exchange 

membrane fuel cells and direct methanol fuel cells to transfer protons from the anode to the 

cathode, thus providing a barrier between electrodes.  However, Nafion® have limited use due 

to their high cost, low temperature operation (≤80 °C), propensity for dehydration, high 

methanol crossover and environmental recycling problems.1-3  Thus, to replace Nafion® as the 

polymer substrate in PEMFCs, many sulfonated engineering polymers based on poly(ether 

ether sulfone) have been prepared by the incorporation of sulfonic acid groups into the 

polymer backbone.5  In general, sulfonated poly(ether ether sulfone)s can be prepared by three 

general methods, namely: 

(a) The direct copolymerization of sulfonated monomers. 

(b) The direct post-polymerization sulfonation reactions. 

(c) The post-polymerization sulfonation reaction to introduce the sulfonic acid group pendant 

to the polymer chain. 

 

2.2.2.1 Sulfonated Poly(ether ether sulfone)s by Direct Copolymerization of  

 Sulfonated Monomers 

 

Sulfonated poly(ether ether sulfone)s can be prepared by the step-growth polymerization 

reaction of an appropriate difunctionalized monomer with a sulfonated difunctionalized 

http://en.wikipedia.org/wiki/Tetrafluoroethylene
http://en.wikipedia.org/wiki/Copolymer
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monomer.  In general, the sulfonated difunctionalized monomer can be prepared by 

electrophilic aromatic substitution reaction of difunctionalized monomer with an appropriate 

sulfonating agent.  Many research groups outlined the preparation of sulfonated monomers 

with different degrees of purity from the reactions of 4,4´-dichlorodiphenylsulfone with 

different sulfonating agents.35-42  The synthesis of a sulfonated dihalogenated diaryl sulfone 

monomer widely used in step-growth polymerization reactions was first reported by Robeson 

and Matzner.35  McGrath and coworkers36 and Ueda and coworkers37 also reported the 

preparation and purification of sulfonated 4,4´-dichlorodiphenylsulfone used in condensation 

polymerization.  McGrath and coworkers38 reported the synthesis of sulfonated monomers 

from 4,4´-dichlorodiphenylsulfone using the method of Ueda and coworkers,37 with 

modifications. 

 

SCl
O

O
Cl

(i)  Fuming sulfuric acid

(ii) NaOH/ NaCl
SCl
O

O
Cl

NaO3S

SO3Na

 

 

The principal advantage of preparing sulfonated poly(ether ether sulfone)s by the base 

catalyzed nucleophilic aromatic substitution copolymerization of sulfonated monomers is the 

control of the sulfonation content and site of sulfonation during the step-growth 

polymerization process.43, 44  For example, Zhang and coworkers45 prepared a novel series of 

bisphenol A based sulfonated poly(arylene ether sulfone) by the base catalyzed nucleophilic 

aromatic copolymerization of bisphenol A with 3,3´-disulfonate-4,4´-dichlorodiphenylsulfone 

and 4,4´-dichlorodiphenylsulfone.  The different sulfonated poly(arylene ether sulfone) 

samples were evaluated as polymeric candidates for PEM in direct methanol fuel cells: 
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Yoon and coworkers46 reported the synthesis of a new sulfonated poly(ether ether sulfone) 

from 3,3´-disulfonated-4,4´-difluorodiphenylsulfone (SDFDPS) and investigated the effect of 

the membrane properties of the resultant sulfonated polymers.  Sulfonated poly(ether ether 

sulfone) were prepared by nucleophilic aromatic polymerization reaction of 1,6-bis(4-

fluorophenyl)-perfluorohexane (FPPFH), 6F-bisphenol A (6F-BPA) with SDFDPS using 

K2CO3 as catalyst .  The reaction was performed at 150 °C in the presence of NMP and 

toluene as solvents: 
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2.2.2.2 Sulfonated Poly(ether ether sulfone)s by Post-Polymerization Sulfonation  

 Methods: Direct Sulfonation 

 

The most common method for the sulfonation of aromatic poly(ether ether sulfone)s via post-

polymerization methods involves the classic electrophilic aromatic substitution reaction 

whereby the hydrogen atom of the aromatic ring is replaced by an electrophile using different 

sulfonating agents.  Sulfonation takes place on the aromatic ring of the phenyl ether ring due 

to the electron-withdrawing inductive and resonance effects of the SO2 group.47  The 

following sulfonating agents have been employed in the sulfonation of poly(ether ether 

sulfone) derivatives by electrophilic aromatic substitution mechanisms:6, 11, 48-56 
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Sulfonating agents Reactivity Comments 

Chlorosulfonic acid  High Inexpensive, side reactions 

(degradation, crosslinking) 

Fuming H2SO4 oleum  High Inexpensive, crosslinking 

H2SO4  High Inexpensive, lowering of reactivity by 

reaction product (water) 

SO3/ Triethyl phosphonium  Medium to high Inexpensive 

Trimethylsilylsulfonyl 

chloride  

Medium Relatively expensive 

Acetylsulfate  Low Inexpensive 

BuLi+SO2 or SO3  High Expensive 

BuLi+ Sultones, 

Halogenoalkyl sulfonic acid  

High Expensive 

 

For example, Smitha and coworkers49 prepared sulfonated poly(ether ether sulfone)s from the 

reaction of commercially available poly(ether ether sulfone) with chlorosulfonic acid and the 

sulfonated derivative was evaluated as the polymer substrate for membranes in fuel cell 

applications.  Due to the electron withdrawing sulfonic acid groups on the ortho ethers sites, 

the hydrolytic stability of the ether linkage was reduced and chain degradation and 

crosslinking reactions were observed when chlorosulfonic acid was used as sulfonating 

agent.48 
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Sulfonation of commercially available poly(ether ether sulfone)s with chlorotrimethylsilyl 

sulfonate at room temperature proceeded without side reactions due to the lower 

electrophilicity of chlorotrimethylsilyl sulfonate.  The degree of sulfonation was controlled by 

varying the reaction time and mole ratio of the sulfonating agent to the polymer.47 However, 

the most efficient sulfonation reaction for poly(ether ether sulfone)s involves the use of 

sulfonating agents based on SO3, such as SO3/dichloromethane and SO3/triethylphosphate 

complex.49, 53  Noshay and Robeson53 prepared sulfonated poly(ether ether sulfone) from the 

reaction of commercially available Udel® with sulfur trioxide and triethylphosphate.  The 

introduction of –SO3Na groups onto the poly(ether ether sulfone) backbone increases the glass 

transition temperature due to the increased intermolecular associations via the polar ionic 

sites: 
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2.2.2.3 Sulfonated Poly(ether ether sulfone)s by Post-Polymerization Sulfonation 

 Methods: Sulfonation Pendant to the Polymer Chain 

 

A regiospecific, well-controlled chemical modification reaction of poly(ether ether sulfone) 

was developed by Guiver57 and exploited by Summers58 and Jannasch and coworkers59 for the 

regiospecific introduction of functional groups on the polymer backbone.59-62  The reaction 

involves the lithiation of the polysulfone precursor and the subsequent reaction of the lithiated 

polysulfone derivatives with the appropriate electrophilic species.  For example, Jannasch and 

coworkers59 reported the reaction of lithiated poly(ether ether sulfone)s with 4-fluorobenzoyl 

chloride in the first step, followed by the sulfonation of reaction via the base catalyzed 

substitution of the fluorine atom with either 4-sulfophenoxy or 7-sulfo-2-naphtoxy units to 

afford the corresponding sulfonated poly(ether ether sulfone) derivatives:  
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Another method for the preparation of functionalized engineering polymers with the 

functional group pendant to the polymer backbone involves the use of thiol-ene click 

chemistry.15, 63, 64  Functionalized thiols can be used to form a sulfur linkage with polymers 

containing some degree of insaturation by the thiol-ene free radical coupling reaction with the 

resultant introduction of the functionalized group pendant to the polymer backbone.15  In a 

reaction which involves the hydrothiolation of a C=C bond, the thiol-ene reaction can occur 

via a photochemically and radical-mediated method, nucleophile-mediated method, acid/base 

catalysis and solvent promoted process.15, 47, 63-73  For example, Jannasch and coworkers,74 

exploited the thiol-ene synthetic strategy for the preparation of functionalized poly(ether ether 

sulfone).  First, the undecenoyl side chain was introduced onto the poly(ether ether sulfone) 

backbone by the reaction of the lithiated polysulfone derivative with undocenoyl chloride in 

THF at -40 °C.  Treatment of the undecenoyl functionalized polysulfone derivative with 2-(2-

benzimidazolyl)ethanethiol in the presence of 2,2´-azobis(isobutyronitrile) (AIBN) gave the 

poly(ether ether sulfone) with the introduction of the benzimidazole moiety pendant to the 

polymer chain: 
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The current research work utilizes the thiol-ene click reaction for the introduction of the 

sulfonate group pendant to the polymer backbone.  Due to the regiospecific introduction of the 

1,1-diphenylethylene unit along the polymer backbone, the thiol-ene free radical coupling 
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reaction of poly(ether ether sulfone) with sodium 3-mercapto-1-propane sulfonate and AIBN 

affords sulfonated poly(ether ether sulfone) with the sulfonate group pendant to the polymer 

backbone. 

 

2.2.3 Synthesis of Poly(ether ether ketone)s 

 

Poly(ether ether ketone)s (PEEK) are semicrystalline thermoplastic polymers with the 

combined chemical characteristics of the ether and ketone groups.  The first poly(ether ether 

ketone), named Victrex®, was prepared by Bonner at DuPont in 1962 via the Friedel-Crafts 

acylation reaction.75  Poly(ether ether ketone)s have low smoke and toxic gas emissions and 

low moisture absorption, with high mechanical strength and excellent chemical resistance.6-7  

The mechanical and chemical resistance of poly(ether ether ketone)s are retained at high 

temperature, including continuous service temperature of 260 °C.  Poly(ether ether ketone)s 

are used in the aerospace, automotive, marine, nuclear, oil-well, electronics, medical and 

chemical process industries and have the following general structure:6,7, 19-21 

 

 

 

A large variety of poly(ether ether ketone)s with different chemical structures and polymer 

properties can be prepared by standard organic chemistry reactions.  The synthesis of 

poly(ether ether ketone)s can be achieved via electrophilic aromatic substitution reactions, 

metal catalyzed coupling reaction mechanisms and nucleophilic aromatic substitution 

reactions.6, 7, 21 

O

O

O n
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2.2.3.1 Poly(ether ether ketone)s by Electrophilic Aromatic Substitution Reactions 

 

The Friedel-Craft acylation reaction was used by Bonner75 for the synthesis of the first 

poly(ether ether ketone).6  The step-growth polymerization reaction involves the treatment of 

diphenylether with terephthaloyl chloride in nitrobenzene solution in the presence of a catalyst 

such as aluminium chloride: 

 

O + CC
O

Cl
O

Cl

O C
O

C
O

n

AlCl3/nitrobenzene

 

 

Different poly(ether ether ketone)s with high molecular weight have been prepared by Friedel-

Craft acylation methods using different monomers, solvents and reaction     

conditions.6, 7, 22, 44, 59, 76  For example, Joshi and coworkers60 prepared poly(ether ether ketone) 

copolymers from the reaction of o-chloroanisole with 1,4-phenylenedioxy diacetylchloride 

(1,4-PDC) and appropriate dihalides using anhydrous AlCl3 as catalyst and CS2 as solvent by 

Friedel-Craft acylation and alkylation reactions, respectively. 
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The resultant polymers with low molecular weights were tested for biological activities 

against bacteria, fungi and yeast due to the presence of chlorine within the polymer backbone. 

 

Rose77 reported the synthesis of poly(ether ether ketone) from a carboxylic acid derivative 

with an activated phenyl ether moiety using trifluoromethanesulfonic acid as catalyst to form 

polymers with high molecular weights: 

 

O O C
O

OH O O C
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n

CF3SO3H
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2.2.3.2 Poly(ether ether ketone)s by Metal catalyzed Coupling Reactions 

 

The utilization of the metal catalyzed coupling reaction in polymerization processes provides 

an efficient method for the preparation of poly(ether ether ketone)s with high molecular 

weights.  For example, Kricheldorf and Bier78 prepared well-defined poly(ether ether ketone) 

derivatives by the reaction of the appropriate dihalogenated diaryl ketone derivatives with 

specific silylated bisphenols using cesium fluoride as catalyst in a metal catalyzed coupling 

solution or melt polymerization reaction.6, 7, 22  For example, treatment of 4,4´-

difluorobenzophenone with different silylated bisphenols such as silylated bisphenol-A, 

tetramethylbisphenol-A, 1,1-bis(4-hydroxyphenyl)cyclohexane and 4,4´-

dihydroxydiphenylsulphone in the presence of cesium fluoride afforded well-defined 

poly(ether ether ketone)s in high yields.  The activated cesium phenoxide is generated with 

cesium fluoride as the catalyst.  The effectiveness of the catalyst depends on the formation of 

dissolved fluoride ions which cleave the Si-O bond of silylated bisphenol derivatives.  The 

fluoride ions are highly nucleophile and attack the Si-O bond to generate a more stable Si-F 

bond.78  The volatile by-product, trimethylsilyl fluoride is removed at high temperature.  The 

polymer products were isolated in its pure form, thus avoiding the process of removal of 

inorganic salts and solvents.  For example: 
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Emrick and coworkers79 prepared a series of new poly(ether ether ketone) derivatives by the 

cesium fluoride catalyzed polymerization of dihalogenated diaryl ketones with silylated 

derivatives of 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene (BPC) and bisphenol A (BPA): 
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Similarly, in the current study, a series of new poly(ether ether ketone) derivatives were 

prepared by the cesium fluoride catalyzed polymerization of 4,4´-difluorobenzophenone (6) 

with 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and      

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in different mole ratios of monomers to 

afford well-defined poly(ether ether ketone) derivatives with the regiospecific introduction of 

the 1,1-diphenylethylene unit along the polymer backbone. 

 

2.2.3.3 Poly(ether ether ketone)s by Base Catalyzed Nucleophilic Aromatic 

 Substitution Reactions 

 

Poly(ether ether ketone)s can also be prepared by nucleophilic aromatic substitution reactions 

using appropriate aromatic dihalogenated ketones and diphenolates as monomers.  Potassium 

carbonate or sodium carbonate is used as the catalyst and the polymerization reaction is 

conducted in aprotic solvents.6,7, 80  Johnson and coworkers81 were the first to prepare 

poly(ether ether ketone) by step-growth polymerization via nucleophilic aromatic substitution 

mechanisms using appropriate dihalogenated diaryl ketones and diphenolates in the presence 

of sodium hydroxide as catalyst and DMSO as solvent.  However, poly(ether ether ketone)s 

obtained were insoluble in DMSO.  To overcome the polymer solubility problem, the careful 

choice of solvent resulted in facile step-growth polymerization reactions to form polymers 

with high molecular weights.6-7  For example, the step-growth polymerization reaction of 4,4´-

difluorobenzophenone with the disodium salt of hydroquinone in the presence of sodium 

carbonate and diphenylsulphone (DPS) as solvent at 300 °C afforded poly(ether ether ketone)s 

in a nucleophilic aromatic substitution polycondensation reaction.7, 22  The carbonyl electron 
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withdrawing group is necessary to activate the aromatic dihalides.  The leaving group should 

be a fluoride ion to afford polymers with high molecular weights:22   

 

HO OH + C
O

FF

DPS/Na2CO3/150 - 300 oC

O C
O

O
n  

 

Koch and Ritter82 prepared a series of new aromatic poly(ether ether ketone)s via the base 

catalyzed nucleophilic aromatic substitution reactions of 4,4´-difluorobenzophenone with 

bisphenol A and 4,4-bis(4-hydroxyphenyl)pentanoic acid.  Well-defined poly(ether ether 

ketone) derivatives were obtained and DSC analyses data show that amorphous polymers were 

obtained with the glass transition temperatures increasing with the content of the acidic 

monomer: 
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The direct synthesis of poly(ether ether ketone)s in solution by nucleophilic aromatic 

substitution reactions results in the formation of polymers with low molecular weights due to 

inherent solubility problems.  However, the solubility of the resultant polymer can be 

increased by using functionalized bisphenol derivatives as monomers, followed by the step-

growth polymerization process to form polymers with high molecular weights after the final 

removal of the substituent group.  For example, Risse and Sogah83 prepared poly(ether ether 

ketone) with high molecular weights via (a) the base catalyzed nucleophilic substitution 

polycondensation reaction of 4,4´-difluorobenzophenone with a tert-butyl substituted aromatic 

diol in solution to provide a soluble, amorphous substituted poly(ether ether ketone) 

derivative, and (b) followed by removal of the substituent group by retro-Friedel-Crafts 

alkylation in the presence of a Lewis acid (CF3SO3H) to give the final crystalline poly(ether 

ether ketone):   
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Another route for the preparation of poly(ether ether ketone)s via a soluble precursor was 

developed by Mohanty and coworkers.84  The base catalyzed nucleophilic substitution 

polycondensation reaction of a Schiff base of a dihalogenated diaryl ketone derivative with an 

appropriate aromatic bisphenol at low temperature gave a polyketimine derivative, which was 

subsequently converted to poly(ether ether ketone)s using HCl as catalyst: 
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2.2.4 The Synthesis of Sulfonated Poly(ether ether ketone)s 

 

Sulfonated poly(ether ether ketone)s (SPEEK) have been utilized as the polymer substrate for 

the formation of membranes in ultrafiltration processes and as nanocomposite proton 

exchange membranes in fuel cell technology.18  In general, sulfonated poly(ether ether 

ketone)s can be prepared by three synthetic methods namely:  

(a) The direct copolymerization reactions of sulfonated monomers with appropriate 

monomers. 
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(b) The direct post-polymerization sulfonation reactions with poly(ether ether ketone) 

derivatives. 

(c) Sulfonation reactions of poly(ether ether ketone)s to introduce the sulfonate group 

pendant to the polymer chain.   

 

2.2.4.1 Sulfonated Poly(ether ether ketone)s by Direct Copolymerization of 

Sulfonated Monomers 

 

Random (statistical) sulfonated poly(ether ether ketone)s can be obtained by the direct 

copolymerization of an appropriate dihalogenated diaryl ketone or diaryl ether monomer unit 

with a specific sulfonated dihalogenated diaryl ketone monomer or sulfonated bisphenol 

derivative.6, 7  The step-growth copolymerization reaction using sulfonated monomers results 

in the regiospecific introduction of the sulfonate group along the polymer backbone and the 

sulfonation sites and sulfonation content can be controlled by the careful control of the 

reaction stoichiometry.6,7 

 

Sulfonated dihalogenated diaryl ketone or bisphenol monomer derivatives can be prepared by 

electrophilic aromatic substitution reactions using different sulfonating agents:22, 85-91  For 

example, Koji and coworkers92 reported the synthesis of a sulfonated dihalogenated diaryl 

ketone monomer by the treatment of 4,4´-difluorobenzophenone with 25.3 % fuming sulfuric 

acid to afford disodium-3,3´-disulfate-4,4´-difluorobenzophenone in 100 % yield and high 

purity. 
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SO3Na
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A series of sulfonated poly(ether ether ketone)s were prepared by the base catalyzed 

nucleophilic aromatic polycondensation reaction of 4,4´-difluorobenzophenone and pure 

sulfonated monomer, disodium-3,3´-disulfate-4,4´-difluorobenzophenone with 

hexafluoroisopropylidene diphenol.93  Polymers with high molecular weights were obtained 

which are thermally stable up to 260 °C.  The resultant sulfonated poly(ether ether ketone)s 

were employed as proton exchange membranes in fuel cells applications: 
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2.2.4.2 Sulfonated Poly(ether ether ketone)s by Post-Polymerization Sulfonation 

Methods: Direct Sulfonation 

 

Poly(ether ether ketone)s are high performance polymers that are insoluble in most organic 

solvents.  However, the incorporation of the sulfonic acid group along the polymer backbone 

of poly(ether ether ketone)s leads to a decrease in crystallinity and an increase in the solubility 

of the resultant polymer.37  In general, the direct sulfonation of poly(ether ether ketone)s using 

different sulfonating agents is not regiospecific because of the lack of control of the degree 

and site of sulfonation during the sulfonation process.37  In addititon, polymer degradation and 

numerous side reactions are observed.  Sulfonation of poly(ether ether ketone)s by sulfonating 

agents such as H2SO4 proceeds via the electrophilic substitution reaction mechanism.  The 

phenyl rings of the polymer chain are activated for the electrophilic substitution reactions by 

the ether linkage and the sulfonating group is introduced into the hydroquinone segment of the 

polymer chain.94, 95  One sulfonic acid group is generally added per unit due to the electron-

attracting nature of the carbonyl group which makes the electron density of the other aromatic 

rings very low.37, 95  However, at higher temperature or long reaction times, disulfonation 

reactions are possible.95  In general, sulfonation reactions with poly(ether ether ketone)s are 

conducted in the presence of chlorosulfonic acid94, 96, 97 or sulfuric acid as sulfonating 

agents.97, 98-100  Sulfonation with sulfuric acid is a heterogenous reaction controlled by the 

reaction time, temperature and acid concentration.97, 98 
  For example, Javaid Zaidi100 prepared 

sulfonated poly(ether ether ketone) from Victrex and 97.5 % concentrated sulfuric acid at 

room temperature at different reaction times to produce polymers of different degrees of 
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sulfonation.  The sulfonated poly(ether ether ketone) derivatives were employed as 

electrochemical devices in fuel cell and electrodialysis processes: 

 

O O C
O

n
O O C

O

n

Conc. H2SO4

SO3H  

 

2.2.4.3 Sulfonated Poly(ether ether ketone)s by Post-Polymerization Sulfonation

 Methods: Sulfonation Pendant to the Polymer Chain  

 

Standard organic reactions are commonly employed for the functionalization of poly(ether 

ether ketone)s to facilitate the introduction of the sulfonic acid group pendant to the polymer 

chain.  The reactive sites along the polymer chain can be introduced directly along the 

polymer backbone or by the introduction of an appropriate functional group pendant to the 

polymer chain in the polymer precursor prior to the sulfonation functionalization reaction. 

For example, Zhu and coworkers101 prepared a series of new sulfonated poly(ether ether 

ketones) using dihydroxy functionalized poly(ether ether ketone)s as substrates.  The synthesis 

of dimethoxylnaphthalene based poly(ether ether ketone) derivative was conducted by the 

base catalyzed nucleophilic aromatic substitution polymerization method and the subsequent 

demethylation reactions afforded the corresponding dihydroxynaphthalene based poly(ether 

ether ketone) derivative. The preparation of sulfonated poly(ether ether ketone) was effected 

by the base catalyzed nucleophilic reaction of the dihydroxynaphthalene based poly(ether 

ether ketone) with 1,4-butane sultone via a ring-opening mechanism.  The resultant sulfonated 
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poly(ether ether ketone) derivative with pendant sulfonic acid groups exhibits high proton 

conductivity in DMFC applications: 
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Another synthetic route for the preparation of sulfonated poly(ether ether ketone)s with the 

sulfonic acid group pendant to the polymer chain was developed by Tsai and Lin.102  The 

synthesis method involves the reaction of poly(ether ether ketone) with concentrated sulphuric 

acid, followed by the treatment of the resultant sulfonated poly(ether ether ketone) with 1,1´-

carbonyl-diimidazole (CDI) to afford pristine sulfonated poly(ether ether ketone).  Subsequent 

reaction with 2-aminoethanesulphonic acid afforded novel main-chain type and side-chain 

type sulfonated poly(ether ether ketone) with improved nano-phase separation morphology. 

The introduction of the new sulfonated group pendant to the polymer chain accounted for the 

formation of well-defined nano-phase separation morphology and enhanced the characteristics 

of the proton exchange membrane in DMFC applications: 
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The sulfonic acid group can also be introduced pendant to the poly(ether eher ketone) chain 

via the thiol-ene reaction which involves the following procedure: 

(a) The preparation of the poly(ether ether ketone) precursor derivative bearing a site of 

unsaturation pendant to the polymer chain. 

(b) The reaction of the pendant site of unsaturation with a mercapto compound bearing the 

sulfonate group via the classic thiol-ene reaction. 
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Guan and coworkers15 used the thiol-ene method for the synthesis of poly(aryl ether ketone) 

ionomers with sulfonic acid groups pendant to the polymer backbone: Treatment of the 

propenyl derivative of poly(ether ether ketone) with sodium 3-mercapto-1-propane sulfonate 

and AIBN in NMP/DMSO produced sulfonated poly(ether ether ketone) in quantitive yields.  

The sulfonated poly(ether ether ketone)s were used as polymeric membrane substrates for fuel 

cell technology applications: 
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The current research work outlines a new synthesis route for the preparation of sulfonated 

poly(ether ether ketone)s using the thiol-ene reaction to introduce the sulfonate group pendant 

to the polymer backbone.  Treatment of a new poly(ether ether ketone) derivative, with the 

1,1-diphenylethylene unit regiospecifically introduced in the polymer backbone, with sodium 

3-mercapto-1-propane sulfonate and AIBN afforded the corresponding well-defined 

sulfonated poly(ether ether ketone). 

 

2.2.5 Synthesis of Polyimides 

 

Polyimides are engineering polymers with high thermal stability, excellent oxidative stability, 

good mechanical properties and are used in high performance applications in the electronics 

and aerospace industries.6, 9  Initially, aromatic polyimides were prepared by the melt 

polymerization of diamines and tetracids or diacid/diesters derivatives.  However, such 

polymers were intractable and difficult to process.9  The first high molecular weight aromatic 

polyimides were prepared by researchers at the DuPont Chemical Company by the 

polycondensation reactions of pyromellitic acid (1,2,4,5-benzenetetracarboxylic dianhydride) 

and aliphatic diamines103 with the following the general structure.  For example: 
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2.2.5.1 The Synthesis of Polyimides via a Three Step Process 

 

The synthesis of polyimides can occur by a three step process which involves the formation of 

intermediate polyisoimides, an isomeric form of polyimides.9  In the three step process, the 

polyamic acid intermediate is prepared in the first step from the polycondensation reaction 

between an appropriate dianhydride and a diamine at room temperature.  In the dehydration 

step, the resultant polyamic acid is then converted to polyisoimides by treatment with 

dicyclohexyl carbodiimide (DCC) or trifluoroacetic anhydride as dehydrating agents.  In the 

final step, the polyisoimides are converted to the corresponding polyimides by heating at high 

temperature.104-106  For example, Oh and coworkers107 reported the synthesis of polyimides 

from polyisoimides using 4,4´-oxydiphthalic anhydride (ODPA) and 4,4´-oxydianiline (ODA) 

as starting material: 
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2.2.5.2 The Synthesis of Polyimides via a Two Step Process 

 

Polyimides are commonly prepared via a two step process using tetracarboxylic dianhydrides 

and diamines as substrates.104  In the first step, the polycondensation reaction between an 

appropriate aromatic tetracarboxylic dianhydride and an appropriate aromatic diamine at room 

temperature in a polar aprotic solvent affords a polyamic acid derivative via a ring-opening 

polycondensation reaction.  The second step involves the imidization process via the thermal 

or chemical cyclodehydration reaction of the polyamic acid.  At room temperature, polyamic 

acid is formed when an appropriate dianhydride is treated with a specific diamine in the 

presence of a polar aprotic solvent such as DMAc.  Polyamic acids with high molecular 

weight are produced in an equilibrium reaction.  At high monomers concentrations, the 

formation of polyamic acids with high molecular weights is favoured.  The reaction 

mechanism involves the nucleophilic attack of the amino group of diamine derivative on the 

carbonyl carbon of the dianhydride followed by the opening of the anhydride ring to form the 

amic acid group.6, 7, 9  The polyamic acid can then undergo a thermal cyclodehydration 

reaction at 200 - 300 °C to form the imide ring with concomitant removal of the water by-

product.  The high degree of imidization (as high as 99 %) can be achieved at 230 - 250 °C for 

10 minutes.  Polyamic acids in the film form promote the imidization reaction.9   

 

The thermal imidization reaction which involves the cyclodehydration of polyamic acid is 

widely used in the industry and is suitable for the preparation of thin objects such as films, 

coatings, fibers and powders in order to allow the diffusion of by-product and solvent without 

forming bristle and voids in the final polyimide product.104, 108   
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The chemical imidization reaction by the cyclodehydration of the polyamic acid is carried out 

at room temperature by treatment of the polyamic acid solution with a suitable mixture of 

dehydrating agents, such as acetic anhydride and pyridine.  High degrees of imidization are 

usually obtained by the chemical imidization process.9, 109-113  Ye and coworkers110 outlined 

the preparation of polyimides by polycondensation reactions between five different 

dianhydrides, (2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA), 

3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA), 4,4′-

(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 1,4-bis(3,4-dicarboxyphenoxy) 

benzene dianhydride (HQDPA) and 4,4′-oxydiphthalic anhydride (ODPA)) with 2,2-bis[4-(4-

aminophenoxy)phenyl]hexafluoropropane as precursors.  The process involves a two step 

polyimide synthesis method which involves the formation of the polyamic acid intermediate 

and the subsequent chemical imidization reaction at ambient temperature to form the resultant 

polyimide derivative: 
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Wang and coworkers,111 prepared different polyimides via a two step process polymerization 

method by the polycondensation reactions of 4-phenyl-2,6-bis[4-(4-aminophenoxy)-

phenyl]pyridine with equimolar amounts of different aromatic dianhydrides in N-methyl-2-

pyrrolidone.  The polyamic acid intermediates were converted to the corresponding polyimide 

derivatives by a thermal imidization process or a chemical imidization method using acetic 

anhydride/pyridine.  Processable polyimides were prepared with good solubility in polar 

aprotic solvents: 
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Soluble polyimides can also be prepared by a two step polyamide synthesis process which 

involves derivatives such as polyamic acid alkyl esters and polyamic acid trimethylsilyl 

esters.104, 114  For example, Becker and Schmidt115 described the conversion of several para-

linked aromatic polyamic acid alkyl esters precursors to the corresponding aromatic 

polyimides. The esters were prepared by the polycondensation of bis(alkoxycarbonyl)-

substituted aromatic dicarboxylic acids derived from tetracarboxylic dianhydrides and 
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alcohols or their acid chlorides with aromatic primary diamines.  The polyamic acid alkyl 

esters were heated to afford polyimides with the concomitant elimination of alcohols: 
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De la Campa and coworkers116 also reported the preparation of polyimides via the two step 

polyimide synthesis process which involves polyamic acid trimethylsilyl esters as 

intermediates.  The intermediate trimethylsilyl esters derivatives were prepared from the 

reaction of N-trimethylsilyl-substituted aromatic secondary diamines with tetracarboxylic 

dianhydrides via a ring–opening polycondensation reaction.  Subsequent thermal imidization 

led to the lost of trimethylsilanol and formation of the resultant polyimides: 
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In the present study, a series of new polyimides were prepared via a two process polyimide 

synthesis process from the reactions of 4,4´-oxydiphthalic anhydride (7) with different mole 

percentage ratios of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) and 1,1-bis(4-

aminophenyl)ethylene (9).  The polyamic acid intermediates were produced at room 

temperature after 24 hours and were cast on a glass plate and then subjected to a thermal 

imidization process for 3 hours to produce the corresponding polyimides films. 
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2.2.5.3 The Synthesis of Polyimides via a One Step Process 

 

Another method for the synthesis of polyimides is via a concerted polycondensation reaction 

between an appropriate dianhydride with different diamines in the presence of high boiling 

solvent such as m-cresol, α-chloronaphthalene, isoquinoline, nitrobenzene, o-dichlorobenzene 

or polar aprotic amide solvents and their mixtures.108  The dianhydride and diamine monomers 

undergo polymerization at high temperature to provide the desired polyimides directly and the 

by-products are removed by an azeotropic distillation process.  However, polymers with high 

molecular weight are seldom produced in the one step method due to deleterious side 

reactions.6, 7, 9, 117 

 

However, Jin and coworkers118 recently developed a one step process for the synthesis of 

polyimides.  Completely cyclized polyimides were prepared in a homogeneous one-pot 

process in the presence of phosphorus pentoxide powder using polyphosphoric acid as solvent 

at 220 °C for 4 hours.  Polyphosphoric acid has excellent solvating power and low volatility to 

produce polyimides with high molecular weights and higher thermal stability: 
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Polyimides can also be prepared via a one step process by the direct polycondensation of 

tetracarboxylic dianhydrides with aromatic diisocyanates.  Marek and coworkers119 reported 

that the polycondensation reaction proceeds in a polar aprotic solvent such as N-methyl-2-

pyrrolidone (NMP) at temperatures between 70 – 90 oC with the evolution of carbon dioxide: 
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Another route for the synthesis of polyimides via the one step process involves the use of 

dithioanhydrides and diamines as monomers.  Oishi and coworkers120 reported that the 

polycondensation reaction takes place in dimethylacetamide or pyridine at 100 - 140 oC with 

evolution of hydrogen sulfide to afford the resultant polyimides: 
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Polyimides have also been prepared by polycondensation of salt monomers based on 4,4´-

oxydiphthalic acid and aliphatic diamines at 140 - 330 oC under high pressure 250 - 600 

mpa.121 
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2.2.6 The Preparation of Sulfonated Polyimides  

 

In general, sulfonated polyimides are prepared by the incorporation of sulfonic acid groups 

onto polymers backbone by two methods: 

(a) The preparation of sulfonated polyimides by direct copolymerization reactions of 

sulfonated monomers with appropriate monomers. 



60 
 

(b) The synthesis of sulfonated polyimides by post-polymerization sulfonation reactions 

which involves sulfonation reactions with the polyamic acid intermediate as well as the 

final polyimide derivative. 

 

2.2.6.1  Sulfonated Polyimides by Direct Copolymerization of Sulfonated Monomers 

 

The most efficient method for the preparation of sulfonated polyimides involves the direct 

step-growth copolymerization process using appropriate sulfonated monomers as substrates.  

Many synthetic routes have been developed for the synthesis of sulfonated diamines 

monomers.7, 10  For the preparation of sulfonated polyimides, a plethora of sulfonated diamine 

derivatives, which are commercially available, can be employed as precursors in the direct 

step-growth copolymerization with a specific dianhydride derivative.  The following 

sulfonated diamines are extensively used as substrates for the synthesis of polyimides: 2,5-

diaminobenzenesulfonic acid (DAB), 4,4´-diamino-2,2´-biphenyl disulfonic acid (BDA), 4,4´-

diamino-5,5´-dimethyl disulfonic acid (6TS), 3,3´-disulfonate- bis[4-(3-

aminophenoxy)phenyl]sulfone (SA-DADPS), 3-sulfo-4,4´bis(3-aminophenoxy)triphenyl 

phosphine oxide sodium salt (SBAPPO), 2,2-bis[4-(4-

aminophenoxy)phenyl]hexafluoropropane disulfonic acid (BAHFDS), 4,4´-

diaminodiphenylether-2,2´-disulfonic acid and 9,9´-bis(4,-aminophenyl)fluorine-2,7-

disulfonic acid (BAPFDS): 
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Sulfonated diamines can be prepared by the reaction of the specific diamines or their nitro 

analogues with sulfonating agents via electrophilic aromatic substitution reactions.  In 

aromatic diamines, the nature of sulfonation reactant determines the position of the sulfonic 

acid groups in the final product.  For example, Fang and coworkers122 prepared different 

sulfonated diamines from the corresponding diamine precursors by the reaction with fuming 

sulfuric acid as sulfonating reagent to introduce the sulfonic acid group into the ortho position.   
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Sulfonated diamine derivatives can also be prepared by aromatic nucleophilic substutition 

methods.123  For example, SA-DADPS was prepared from the reaction of the sodium salt of 

m-aminophenol with disodium -3,3´-disulfate-4,4´-dichlorodiphenylsulfone (S-DCDPS) as 

outlined by McGrath and coworkers:124 
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The choice of the diamine precursor is essential for the design of a specific polymer with well-

defined properties.  The presence of flexible diamines increases the solubility and hydrolytic 

stability of the resultant polymer.  Bulky diamines increase interchain space within the 

resultant polymers, leading to higher conductivity at high humidity and good hydrolytic 

properties.122  Disulfonated polyimides were prepared by the polymerization reactions of 

1,4,5,8-naphthalene tetracarboxylic dianhydride (NDA) with the novel diamine SA-DADPS 

and bis[4-(3-aminophenoxy)phenyl]sulfone (m-BAPS) in a one-pot high temperature 

polycondensation reaction.  By varying the molar ratio of the sulfonated diamine and 

unsulfonated diamine, sulfonated polyimide derivatives with 30 to 80 % sulfonation were 

obtained:124 
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Chhabra and Choudhary125 prepared a series of sulfonated polyimide copolymers from the 

polymerization reaction of 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) with  

4,4´-diaminodiphenylether-2,2´-disulfonic acid (ODADS) and bis[4-(4-

aminophenoxy)phenylhexafluoropropane] (BDAF) using different molar ratios of monomers.  

The sulfonated polyimides displayed excellent thermal properties with the proton conductivity 

of the sulfonated polymers increasing with the degree of sulfonation: 
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2.2.6.2 Sulfonated Polyimides by Post-Polymerization Sulfonation Reactions 

 

2.2.6.2.1 Sulfonated Polyimides by Post-Polymerization Sulfonation Methods: Direct 

Sulfonation of Polyamic Acid Intermediates 

 

Sulfonated polyimides can be prepared by (a) the formation of the polyamic acid intermediate 

followed by (b) sulfonation of the polyamic acid prior to the imidization process.126  For 

example, Deligoz and coworkers,126 described a method whereby sulfonated polyimides were 

prepared by the sulfonation of the intermediate polyamic acid.  The intermediate polyamic 

acid is formed by the reaction of benzophenone tetracarboxylic dianhydride (BTDA) with 

different diamine derivatives.  The first step involves the sulfonation of the polyamic acid 

intermediate with concentrated sulfuric acid (95 - 98 %) at room temperature to afford the 

corresponding sulfonated polyamic acid.  In the second step, the sulfonated polyamic acid was 

converted to the corresponding sulfonated polyimide by a thermal imidization process: 
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2.2.6.2.2 Sulfonated Polyimides by Post-Polymerization Sulfonation Methods: Direct 

Sulfonation of Polyimide Derivatives 

 

In general, due to the low solubility of polyimides in most organic solvents, the post-

polymerization sulfonation reactions of polyimides are not common in polymer synthesis 

since it is difficult to control the positions and amounts of sulfonic acid groups along the 

polymer backbone.  Nevertheless, Marestin and coworkers127 described the preparation of 

sulfonated polyimides using chlorosulfonic acid and sulfur trioxide/triethyl phosphate as 
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sulfonating agents.  Furthermore, Irvin and coworkers128 outlined the synthesis of a series of 

polyimides via a two step process by the treatment of 1,4,5,8-naphthalenetetracarboxylic 

dianhydride (NTDA) and/or 4,4´-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) 

with four different diamines followed by thermal imidization of the intermediate polyamic 

acid to form the resultant polyimide.  The sulfonic acid groups were incorporated onto the 

polyimides backbone by subsequent sulfonation reactions of the polyimide precursor with 

sulfuric acid: 
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The present research work describes the syntheses of well-defined polyimide derivatives with 

the regiospecific introduction of the 1,1-diphenylethylene unit along the polyimide backbone.  

A series of new polyimides were prepared by polycondensation reactions of 4,4´-

oxydiphthalic anhydride (7) with different mole percentage ratios of 2,2-bis[4-(4-

aminophenoxy)phenyl]propane (8) and 1,1-bis(4-aminophenyl)ethylene (9) by a two step 

polyimide synthesis process to produce polyamic acid intermediates in the first step, followed 

by the formation of the corresponding polyimides via a thermal imidization process.  

Subsequent treatment of the appropriate polyimide derivative with sodium 3-mercapto-1-
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propane sulfonate and AIBN via the thiol-ene reaction outlines a new method for the synthesis 

of new sulfonated polyimide derivatives with excellent chemical and thermal properties. 

 

2.3 The Use of Functionalized 1,1-Diphenylethylene in Step-Growth 

 Polymerization Methods 

 

In general, functionalized 1,1-diphenylethylene derivatives are used in anionic polymerization 

methods for the synthesis of chain end functionalized polymers.129  The reaction of simple 

organolithium compounds with 1,1-diphenylethylene derivatives affords the 1,1-

diphenylalkyllithium species in quantitative yields.  Similarly, poly(styryl)lithium and 

poly(dienyl)lithium reacts with 1,1-diphenylethylene derivatives by addition reactions to 

produce polymeric compounds with the quantitative and regiospecific introduction of the 1,1-

diphenylethylene groups at the end of the polymer chain.130  Futhermore, the use of 1,1-

diphenyethylene derivatives in anionic polymerization include: (a) the copolymerization of 

1,1-diphenylethylene derivatives with styrenes and dienes; (b) the use of 1,1-

diphenylalkyllithium as initiator for anionic polymerization of alkyl methacrylates, styrenes 

and dienes; (c) the use of polymeric 1,1-diphenylalkyllithium as intiator for block 

copolymerization with dienes and styrene and (d) the reaction of polymeric organolithium 

compound with functionalized 1,1-diphenylethylene derivatives to form chain end-

functionalized polymers.130  In addition, Summers and coworkers58 described the preparation 

of dipyridyl functionalized poly(ether ether sulfone) derivatives by the reaction of lithiated 

poly(ether ether sulfone) with 2,2-vinylidenedipyridine to introduce the dipyridyl derivative 

pendant to the polymer chain: 
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Limited reports on the introduction of the 1,1-diphenyethylene units along the polymer 

backbone engineering polymers have been reported in the literature.33  Poly(ether ether 

sulfone), poly(ether ether ketone) and polyimides are engineering polymers with excellent 

chemical, thermal and mechanical properties.  To extend its use in engineering applications, 

polymer functionalization reactions using 1,1-diphenylethylene derivatives have been 
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developed in order to improve polymer properties for specific applications.  For example, Gao 

and Hay33 prepared poly(ether ether sulfone) based on the 1,1-diphenylethylene unit by step-

growth polymerization and induced post-polymerization crosslinking reactions to improve the 

thermal characteristics of the specific polymer system. 
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Jian and coworkers131 prepared photo-crosslinkable fluorinated poly(phthalazinone ether)s 

containing 1,1-diphenylethylene segments in the polymer backbone from a polycondensation 

reaction of decafluorobiphenyl with different mole percentage ratios of 4-(4-

hydroxylphenyl)(2H)-phthalizin-1-one (DHPZ), 4,4-(hexafluoroisopropylidene)diphenol and 

1,1-bis(4-hydroxyphenyl)ethylene (BHPE).  The resultant polymers undergo crosslinking 

reactions under UV irradiation to afford polymers with improved chemical stability, high 

thermal stability and high glass transition temperature for applications such as passive optical 

waveguide devices: 
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In the present research work, well-defined poly(ether ether sulfone), poly(ether ether ketone) 

and polyimide derivatives were prepared by step-growth polymerization methods according to 

the following procedure: 

(a) The novel synthesis of a series of disubstituted 1,1-diphenylethylene derivatives. 

(b) The utilization of the appropriate disubstituted 1,1-diphenylethylene derivative as a 

monomer in the preparation of a series of new poly(ether ether sulfone), poly(ether ether 

ketone) and polyimide derivatives. 

Due to the regiospecific introduction of the 1,1-diphenylethylene unit along the polymer 

backbone, post-polymerization functionalization reactions with the 1,1-diphenylethylene unit 

can be effected to improve the chemical and physical properties of the 1,1-diphenylethylene 

based engineering polymers. 
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2.4 Thiol-ene Chemistry 

 

The hydrothiolation or the thiol-ene addition reaction is the addition reaction of electron 

deficient carbon-carbon double bonds with thiols.  The addition reaction of olefins with thiols 

can be catalyzed by protic or Lewis acids or by free radical methods.60, 63-73  In general, the 

thiol-ene addition reaction proceeds via two methods:60, 63-73 

(a) The radical addition of thiols to olefins via catalytic processes mediated by nucleophiles, 

acids, bases in the presence of highly polar solvent (DMF and water) in absence of 

catalyst. 

(b) Supramolecular catalysis using ß-cyclodextrin. 

Activated and non-activated alkenes as well as multiple-substituted alkenes have been 

employed in the thiol-ene reaction.60, 63-73  However, the reactivity of the alkene varies 

depending on reaction mechanism and substituents of the alkene.  A variety of thiol 

derivatives, including functionalized thiol compounds, have been used as substrates in 

hydrothiolation reactions with alkenes.  The reactivity of the specific thiol derivative depends 

on the S-H bond strength and the mechanism of the hydrothiolation reaction.60, 63-73   

 

The most efficient thiol-ene reaction is the radical hydrothiolation of olefins in the presence of 

2,2´-azobis(isobutyronitrile) (AIBN) and involves the following steps:15 

(a) The thermal decomposition of the initiator, AIBN. 

(b) The formation of thiyl radical by reaction of the radical from the initiator, AIBN with the 

thiol. 

(c) The addition of the thiyl radical to the olefin group to form a carbon radical. 
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(d) The chain transfer reaction between the carbon radical and the thiol derivative to generate 

a new thiyl radical. 
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Guan and coworkers,15 reported the preparation of sulfonated poly(ether ether ketone)s via the 

thiol-ene method.  Poly(ether ether ketone)s bearing unsatured propenyl group were prepared 

by step-growth copolymerization of 4,4´-difluorobenzophenone with 3,3´-diallyl-4,4´-

dihydroxy biphenyl and 9,9´-bis(4-hydroxyphenyl)fluorene and to afford an intermediate 

poly(ether ether ketone) derivative with pendant propenyl groups.  Sulfonation of the parent 

propenyl substituted copolymer with sodium 3-mercapto-1-propane sulfonate via thiol-ene 

chemistry produce the corresponding sulfonated poly(ether ether ketone) derivative.15    
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The current research work focuses on the regiospecific introduction of the 1,1-

diphenylethylene unit along the polymer backbone of poly(ether ether sulfone), poly(ether 

ether ketone) and polyimide derivatives to produce a series of new polymer material which 

can be used as polymer precursors for sulfonation reactions via the hydrothiolation reaction.  

The presence of the 1,1-diphenylethylene unit within the polymer backbone of the new 

poly(ether ether sulfone), poly(ether ether ketone) and polyimide derivatives acts as a synthon 

for subsequent thiol-ene reactions with sodium 3-mercapto-1-propane sulfonate in order to 

prepare new sulfonated engineering polymers for potential fuel cell technology applications. 
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CHAPTER 3 

 

EXPERIMENTAL 

 

3.1 Chemicals and Solvents 

 

All chemicals and solvents were purchased from the Sigma Aldrich Chemical Company, 

unless otherwise stated.  4,4´-Dihydroxybenzophenone (97 %), t-butyldimethylsilyl chloride 

(97 %), imidazole (Saarchem Chemical Company), methyl lithium (1.6 M solution in diethyl 

ether), methyltriphenylphosphonium bromide, 4,4´-diaminobenzophenone (97 %), 

tetrabutylammonium fluoride (1 M solution in tetrahydrofuran), sodium 3-mercapto-1-propane 

sulfonate, 2,2´-azobis(isobutyronitrile) (Eastman Chemical Company), cesium fluoride (99 

%), sodium hydrogen carbonate, anhydrous sodium sulfate, anhydrous potassium carbonate, 

N,N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone 

(NMP), hexane, petroleum ether, ethyl acetate, toluene, methanol, ethanol, acetone, 

dichloromethane and distilled water were used as received.  Tetrahydrofuran (THF) was 

freshly distilled from sodium/benzophenone before use.  N,N-Dimethylformamide (DMF) was 

dried over molecular sieves before use. 
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3.2 Characterization 

 

3.2.1 Size Exclusion Chromatography (SEC) 

 

The determination of the molecular weights and molecular weight distributions of polymers 

were performed by size exclusion chromatography on a Waters Alliance Size Exclusion 

Chromatograph equipped with a Waters Alliance SEC autosampler and a Phenogel column   

(5 μ, 500 Ǻ pore size, 1 K – 5 K MW range, 300×7.8 mm) in series with a refractive index 

detector and a dual angle laser light scattering detector. Tetrahydrofuran was used as the 

eluent at a flow rate of 1 mL/min at 30 °C.  For the SEC analyses of sulfonated polymers, a 

mixture of tetrahydrofuran and LiBr (2 g/L) was used as eluent.132  The SEC system and the 

Precision dual angle laser light scattering detector were calibrated with polystyrene standards 

(dn/dc = 0.186).  The chromatograms were analyzed using the Varian Star Discovery 5.5 

software package. 

 

3.2.2 Nuclear Magnetic Resonance Spectrometry (NMR) 

 

1H NMR and 13C NMR spectra were recorded on a Varian Gemini 300 mHz and 75 mHz 

NMR spectrometer at ambient temperature.  Deuterated chloroform (CDCl3) or deuterated 

dimethylsulfoxide (DMSO-d6) was used as solvent.  In general, a 10 mg sample was dissolved 

in the appropriate solvent prior to the NMR analysis.  The chemical shifts for the 1H NMR and 

13C NMR are reported in ppm relative to the CDCl3 resonance at δ = 7.26 ppm and 77.36 ppm, 
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respectively.  In DMSO-d6, the 1H NMR and 13C NMR signals were reported in ppm relative 

to δ = 2.54 ppm and 40.45 ppm, respectively.133 

 

3.2.3 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Infrared spectra were recorded on a Digilab FTS-7000 spectrometer equipped with infra-red 

hyperspectral imaging and microscopy capabilities in the range from 4000 to 600 cm-1.  A 

solid sample was placed on a germanium crystal and maximum pressure was applied using the 

slip-clutch mechanism followed by the acquisition of the FTIR spectrum. 

 

3.2.4 Thermogravimetric Analysis (TGA)  

 

Thermogravimetric analyses of different polymer samples were performed on a TA 

Instruments Hi-Res Q500 Thermogravimetric Analyser.  In general, a 10 mg polymer sample 

was heated between 25 °C to 800 °C at a rate of 10 °C/min under nitrogen gas, where 

applicable. 

 

3.2.5 Differential Scanning Calorimetry (DSC) 

 

Differential Scanning Calorimetry of each polymer sample was performed on a TA 

Instruments Q100 research grade DSC equipped with a 50-position autosampler.  Solid 

polymer samples of different masses between 5 - 10 mg were heated between 25 °C to 400 °C 

at a rate of 10 °C/min under nitrogen gas. 
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3.2.6 Thin Layer Chromatography (TLC)  

 

TLC analyses of samples were carried out on silica gel plates (Silica Gel 60 F254) using 

specific organic solvents or mixtures of organic solvents as mobile phases. 

 

3.2.7 Melting Point Determination 

 

The melting points of samples are uncorrected and were determined on a Stuart SMP3 melting 

point apparatus. 

 

3.2.8 X-Ray Diffraction (XRD) 

 

X-ray diffraction analyses of the polymer samples in the powder form were performed at the 

CSIR, Pretoria on a PANalytical X’PertPRO materials research diffractometer using CuKα 

sealed tube X-ray source (wavelength 1.514 Å). 

 

3.2.9 Atomic Force Microscopy (AFM) 

 

Atomic Force Microscopy images of polymers were obtained at the CSIR, Pretoria with a 

Digital Instruments Nanoscope, Veeco, MMAFMLN-AM (Multimode) instrument.  The 

poly(ether ether sulfone) and poly(ether ether ketone) samples were dissolved in NMP, spin 

coated onto glass and dried in an oven at 50 °C for 1 hour before AFM analyses.  The 

polyimide samples in the film form with maximum sample size of 1 cm x 1 cm and maximum 
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sample height of 3 mm were prepared for AFM analyses.  The AFM images were analyzed 

using the AFM imaging programs to determine the pores sizes and roughness of the 

membrane.  The measurement of the distance variations in the surface of the polymer sample 

by two pairs of cursors is depicted in the following image:  

 

 

 

3.2.10 Transmission Electron Microscopy (TEM) 

 

Transmission Electron Microscopy analysis of polymers was performed at the University of 

Pretoria, Pretoria on a JEOL-Jem 2100 transmission electron microscope using an accelerating 

voltage of 200 kV.  Each polymer sample was dispersed in ethanol and a drop of the 

heterogenous solution of the polymer was deposited onto a copper grid.  The wet copper grids 
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were allowed to dry on a filter paper at room temperature for 15 minutes prior the TEM 

analysis. 

 

Cross-sectional TEM analyses were performed on polyimide and sulfonated polyimide 

samples in the film form.  The membranes were embedded in epoxy resins and cured at 60 °C 

for 39 hours.  The embedded samples were then cut in ultrathin sections at room temperature 

and placed onto copper grids prior to TEM analysis. 

 

3.2.11 Elemental Analysis 

 

Elemental analyses of polymers were performed at the University of Johannesburg on a 

FlashEA 4000 machine equipped with Eager Xperience software. 

 

3.2.12 Energy Dispersive Spectroscopy (EDS) 

 

Energy Dispersive Spectroscopy (EDS) was performed at the CSIR, Pretoria on a JEOL-JSM 

7500F Scanning Electron Microscope to determine the elemental composition of the dense 

membranes of the different polymer samples. 
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3.2.13 Ion Exchange Capacity (IEC) 

 

The IEC of the sulfonated polymers was calculated using the following equation:134, 135 

IEC = 1000 Sc/ MWs  

Where Sc :  sulphur content (weight rate) determined by elemental analysis 

 MWs :  the molecular weight of sulphur 

 IEC :  in mmol/g 

 

3.2.14 Dilute Solution Viscometry 

 

The inherent viscosity136 of polymers were measured using an Ubbelohde viscometer at 25 °C.  

Polymer samples with concentrations of 0.08 g/dL in concentrated sulfuric acid were prepared 

prior to dilute solution viscometry analysis. 

 

3.3 Synthesis of Poly(ether ether sulfone)s based on Functionalized   

 1,1-Diphenylethylene Derivatives 

 

3.3.1 Purification of 4,4´-Difluorodiphenylsulfone (1) 

 

Commercially available 4,4´-difluorodiphenylsulfone was purchased from the Sigma Aldrich 

Chemical Company and purified by recrystallization from ethanol to yield pure               

4,4´-difluorodiphenylsulfone (1) as a white crystalline solid, mp = 98 – 99 °C (Lit mp137 = 98 

– 99 °C). 
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3.3.2  Synthesis of 2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

 

2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) was prepared according to the general 

procedure outlined by Quirk and Wang,138 with modifications.  Under an argon atmosphere, 

bisphenol A (10 g, 0.0438 mol), t-butyldimethylsilyl chloride (12.76 g, 0.0846 mmol), 

imidazole (7.95 g, 0.0001168 mol) and DMF (30 mL) were added to a 250 mL dry round 

bottom flask equipped with a magnetic stirrer bar.  The flask was heated at 40 °C for 3 hours, 

with stirring, until the formation a homogenous solution.  The desired product was then 

extracted with hexane (1×120 mL) and washed with 5 % aqueous NaHCO3 (100 mL).  The 

hexane layer was dried over anhydrous MgSO4.  After solvent removal in vacuo, the residue 

was purified by SiO2 column chromatography with petroleum ether and ethyl acetate (80/20 = 

v/v) as eluent.  After removal of the solvent, the resultant clear viscous product solidified on 

standing to give a white solid.  Recrystallization of the white solid from absolute ethanol gave 

17.83 g (94 %) of pure 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) as white crystals.  

TLC: Rf (petroleum ether/ethyl acetate = 80/20, v/v) = 0.9; mp = 69 – 72 °C; 1H NMR (300 

mHz, CDCl3, δ, ppm) : δ = 0.21 (s, 12H, 2 × Si-(CH3)2), 0.99 (s, 18H, 2 × Si-C-(CH3)3), 1.63 

(s, 6H, 2 × -CH3), 6.72 - 7.10 ppm (d × d, 8H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, 

ppm): δ = -4.40 (Si-(CH3)2), 18.16 (C(CH3)3), 25.69 (C(CH3)3), 31.10 (C(CH3)2), 41.72 

(C(CH3)2), 119.17, 127.66, 143.67 and 153.25 ppm (C-C, aromatics); FTIR (solid): 1259 cm-1 

(Si-CH3). 
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3.3.3 Synthesis of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

 

4,4´-Bis(t-butyldimethylsiloxy)benzophenone:  

4,4´-Bis(t-buyldimethylsiloxy)benzophenone was prepared according to the method outlined 

by Quirk and Wang.138  Under an argon atmosphere, 4,4´-dihydroxybenzophenone (11.70 g, 

0.054 mol), t-butyldimethylsilyl chloride (15.91 g, 0.105 mol), imidazole (9.91 g, 0.145 mol) 

and N,N-dimethylformamide (30 mL) were added to a dry 250 mL round bottom flask 

equipped with a magnetic stirrer bar.  The flask was heated at 40 °C with stirring, until the 

formation of a homogenous solution.  After 3 hours, the desired product was extracted with 

hexane (1×120 mL) and washed with 5 % aqueous NaHCO3 (100 mL).  The hexane layer was 

dried over anhydrous MgSO4.  The solvent was removed using a rotary evaporator to give a 

white residue.  The product was purified by SiO2 column chromatography with toluene as 

eluent.  After removal of toluene in vacuo, the product 4,4´-bis(t-

butyldimethylsiloxy)benzophenone was isolated as a white solid.  Recrystallization of the 

white solid from absolute ethanol gave 15.9 g (66 %) of pure 4,4´-bis (t-butyldimethyl- 

siloxy)benzophenone as white crystals: TLC: Rf (toluene) = 0.6; mp: 52.5 - 55.7 °C; 1H NMR 

(300 mHz,CDCl3, δ, ppm): δ = 0.24 (s, 12H, 2 × Si-(CH3)2), 0.99 (s, 18H, 2 × Si-C-(CH3)3) 

and 6.88 - 7.74 ppm (d × d, 8H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm) : δ =  -4.40 

(Si-(CH3)2), 18.19 (C(CH3)3), 25.56 (C(CH3)3), 119.56, 131.21, 132.10 ,159.44 (C-C, 

aromatics) and 194.60 ppm (C=O). FTIR (solid): 1272 cm-1 (νs, Si-CH3) and 1695 cm-1 (s, 

C=O). 
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1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3):         

1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was prepared according to the procedure 

outlined by Quirk and Wang,138 with modifications.  Under a nitrogen atmosphere, 

methyllithium (26.60 mL of a 1.6 M solution in diethyl ether, 0.0425 mol) was added to 

methyltriphenylphosphonium bromide (13 g, 0.034 mol) in dry THF (50 mL) at room 

temperature.  The reaction mixture was stirred at room temperature for 2 hours to ensure 

complete ylide formation.  A solution of 4,4´-bis(t-butyldimethylsiloxy)benzophenone (15 g, 

0.034 mol) in dry THF (50 mL) was added to the ylide solution at 0 °C and the resultant 

reaction mixture was stirred at room temperature for 12 hours.  The reaction was terminated 

by the addition of methanol (2 mL).  The triphenylphosphine oxide, which precipitated from 

the reaction, was removed by filtration.  After removal of the solvent from the filtrate using a 

rotary evaporator, the clear viscous residue was extracted with petroleum ether (120 mL).  

After removal of petroleum ether in vacuo, the crude product was isolated as viscous product 

which solidified on standing to give a white solid.  Recrystallization of the white product from 

absolute ethanol gave 9.6 g (63 %) of pure 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene 

(3) as fine, white crystals: mp = 55.9 - 56.4 °C (Lit mp138 = 56 - 57.5 °C); TLC: Rf (toluene) = 

0.9; 1H NMR (300 mHz, CDCl3, δ, ppm): δ = 0.21 (s, 12H, 2 × Si-(CH3)2), 0.99 (s, 18H, 2 × 

Si-C-(CH3)3), 5.28 (s, 2H, C=CH2) and 6.77 - 7.20 ppm (d × d, 8H, aromatic H).  13C NMR 

(75 mHz, CDCl3, δ, ppm): δ = -4.38 (Si-(CH3)2), 18.21 (C(CH3)3), 25.69 (C(CH3)3), 111.66 

(C=CH2), 134.81 (C=CH2), 119.57, 129.361, 149.17 and 155.39 ppm (C-C, aromatics); FTIR 

(solid): 1265 cm-1 (νs, Si-CH3) and 889 cm-1 (m, C=CH2). 
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3.3.4 Purification of Bisphenol A (4) 

 

Bisphenol A (4) was purchased from the Sigma Aldrich Chemical Company and purified by 

recrystallization from toluene to afford pure bisphenol A (4) as white crystals; mp = 156 – 158 

°C (Lit mp139 = 156 – 158 °C). 

 

3.3.5 Synthesis of 1,1-Bis(4-hydroxyphenyl)ethylene (5) 

 

A new method for the preparation of 1,1-bis(4-hydroxyphenyl)ethylene (5) was developed by 

the treatment of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) with 

tetrabutylammonium fluoride using the general functional group transformation procedure 

described by De Meulenaer and coworkers.140  Under an argon atmosphere, 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) (7.06 g, 0.01604 mol) was added to dry THF (10 mL) 

in a dry 100 mL round bottom flask equipped with a magnetic stirrer bar.  

Tetrabutylammonium fluoride (32 mL of a 1 M solution in THF, 0.03209 mol) was then added 

to the clear solution and the resultant mixture was stirred at room temperature.  After 2 hours, 

the reaction was quenched with water (10 mL).  The crude product was extracted with diethyl 

ether (3×15 mL) and the ether layer was dried over anhydrous Na2SO4.  After removal of the 

solvent in vacuo, the crude product was obtained as a pale yellow solid.  Recrystallization of 

the crude product from ethanol/water (1/18 = v/v) gave 2 g (62 %) of pure 1,1-bis(4-

hydroxyphenyl)ethylene (5) as fine yellow crystals: TLC: Rf (toluene) = 0; mp: 151.1 - 152.8 

ºC (Lit mp141 = 150 – 152 °C); 1H NMR (300 mHz, DMSO-d6, δ, ppm): δ = 5.17 (s, 2H, 

C=CH2), 6.71 - 7.21 (d × d, 8H, aromatic H), 9.50 ppm (s, 2H, 2× OH); 13C NMR (75 mHz, 
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DMSO, δ, ppm): δ = 110.71 (C=CH2), 132.44 (C=CH2), 115.47, 129.56, 140.31 and 157.69 

ppm (C-C, aromatics); FTIR (solid): 3240 cm-1 (νs, OH) and 892 cm-1 (m, C=CH2). 

 

3.3.6 Synthesis of Poly(ether ether sulfone)s by Step-Growth Polymerization 

 Methods 

 

3.3.6.1 The Cesium Fluoride Catalyzed Polymerization of Dihalogenated Diaryl 

Sulfones with Silylated Bisphenols  

 

A series of new poly(ether ether sulfone) derivatives (PSU-1 to PSU-5) was prepared by the 

catalytic arylation polymerization reactions of dihalogenated diaryl sulfones with silylated 

bisphenols as outlined by Kricheldorf and coworkers.29, 30  In a typical procedure, poly(ether 

ether sulfone) PSU-2 was prepared as follows:  Under an argon atmosphere, 4,4´-

difluorodiphenylsulfone (1) (1.47 g, 0.00581 mol), 2,2-bis(4-t-

butyldimethylsiloxyphenyl)propane (2) (2.03 g, 0.00469 mol), 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) (0.49 g, 0.00112 mol), cesium fluoride (30 mg) and 

NMP (6 mL) were added in a 100 mL round bottom flask equipped with a magnetic stirrer 

bar.  The reaction mixture was heated to 150 °C for 12 hours, with rapid stirring.  The reaction 

flask was then cooled to room temperature and diluted with dichloromethane (4 mL).  The 

polymer product was precipitated into methanol, filtered and vacuum dried at 80 °C to give 

4.1 g of poly(ether ether sulfone) PSU-2 as a white solid: SEC: Mn = 9.6×103 g/mol and 

Mw/Mn = 1.23; 1H NMR (300 mHz, CDCl3, δ, ppm): δ = 1.68 (s, 6H, -C-(CH3)2); 5.44 (s, 2H, 

C=CH2); 6.91 - 7.88 ppm (m, 32H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm): δ = 
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30.93 (C-(CH3)2), 42.39 (C-(CH3)2), 114.62 (C=CH2), 135.27 (C=CH2), 117.64, 117.90, 

119.69, 119.80, 119.94, 127.84, 128.42, 129.67, 129.74, 129.82, 129.95, 130.16, 130.28, 

135.27, 135.35, 135.71, 135.98, 147.15, 147.25, 148.00, 152.79, 161.63, 161.95, 162.00 ppm 

(C-C, aromatics); FTIR (solid): 1487 and 1584 cm-1 (νs, C=C aromatic) and 1149 cm-1 (νs, 

SO2). 

 

Experimental data for the preparation of the different poly(ether ether sulfone) derivatives are 

outlined in the following table: 

 

Polymer Monomer (1) Monomer (2) Monomer (3) CsF 

PSU-1 0.5 g 

0.00196 mol 

0.84 g 

0.00196 mol 

- 30 mg 

PSU-2 1.47 g 

0.00581 mol 

2.03 g 

0.00469 mol 

0.49 g 

0.00112 mol 

30 mg 

PSU-3 1.02 g 

0.00401 mol 

0.18 g 

0.002 mol 

0.88 g 

0.002 mol 

30 mg 

PSU-4 0.73 g 

0.00298 mol 

0.26 g 

0.00062 mol 

1.09 g 

0.00239 mol 

30 mg 

PSU-5 0.57 g 

0.00227 mol 

- 1 g 

0.00227 mol 

30 mg 
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3.3.6.2 The Potassium Carbonate Catalyzed Polymerization of Dihalogenated Diaryl 

Sulfones with Bisphenols 

 

Different poly(ether ether sulfone) derivatives (PSU-6 to PSU-10) were prepared according to 

the general procedure outlined by Gao and coworkers.33  In a typical procedure, poly(ether 

ether sulfone) PSU-7 was prepared as follows:  Under an argon atmosphere, 4,4´-

difluorodiphenylsulfone (1) (0.4 g, 0.00157 mol), bisphenol A (4) (0.29 g, 0.00126 mol), 1,1-

bis(4-hydroxyphenyl)ethylene (5) (0.067 g, 0.000315 mol), anhydrous K2CO3 (0.405 g, 

0.00293 mol), toluene (4 mL) and N,N-dimethylacetamide (8 mL) were added to a 100 mL 

round bottom flask equipped with a magnetic stirrer bar and a Dean-Stark apparatus.  The 

reaction mixture was heated at 165 °C for 3 hours, with rapid stirring.  The reaction flask was 

cooled to 100 °C and the viscous product diluted with cold N,N-dimethylacetamide (5 mL).  

The reaction mixture was filtered and the filtrate neutralized with acetic acid.  The filtrate was 

coagulated into methanol.  The polymer was isolated by filtration and washed with methanol 

and water.  The polymer product was boiled in distilled water for 1 hour to remove any 

trapped salts, filtered and vacuum dried at 80 °C to afford 0.40 g of poly(ether ether sulfone) 

PSU-7 as a white solid: SEC: Mn = 14.7×103g/mol, Mw/Mn = 1.23; 1H NMR (300 mHz, 

CDCl3, δ, ppm): δ = 1.69 (s, 6H, -C-(CH3)2); 5.45 (s, 2H, C=CH2); 6.92 - 7.85 ppm (m, 32H, 

aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm): δ = 30.90 (C-(CH3)2), 42.40 (C-(CH3)2), 

114.62 (C=CH2), 135.30 (C=CH2), 114.82, 116.40, 116.72, 117.65, 117.90, 119.70, 119.81, 

119.96, 127.85, 128.42, 129.68, 129.75, 129.83, 129.97, 130.20, 130.26, 135.29, 135.37, 

135.76, 135.94, 147.17, 147.27, 148.05, 152.81, 161.65, 161.98, 162.00 ppm (C-C, 

aromatics); FTIR (solid): 1487 and 1584 cm-1 (νs, C=C aromatic) and 1149 cm-1 (νs, SO2). 
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Experimental details for the preparation of a series of poly(ether ether sulfone) derivatives are 

outlined as follows: 

 

Polymer Monomer (1) Monomer (4) Monomer (5) K2CO3 

PSU-6 0.5 g 

0.00196 mol 

0.45 g 

0.00196 mol 

- 0.507 g 

0.00366 mmol 

PSU-7 0.4 g 

0.00157 mol 

0.29 g 

0.00126 mol 

0.067 g 

0.00031 mol 

0.405 g 

0.00293 mol 

PSU-8 0.4 g 

0.00157 mol 

0.18 g 

0.0007 mol 

0.17 g 

0.0007mmol 

0.405 g 

0.00293 mol 

PSU-9 0.22 g 

0.0008 mol 

0.04 g 

0.00017 mol 

0.15 g 

0.00070 mol 

0.22 g 

0.00159 mol 

PSU-10 0.167 g 

0.00066 mol 

- 

 

0.14 g 

0.00066 mol 

0.17 g 

0.00123 mol 

 

3.3.7 Preparation of Sulfonated Poly(ether ether sulfone)s 

 

Sulfonated poly(ether ether sulfone) was prepared by the general procedure for the thiol-ene 

reaction as outlined by Guan and coworkers.15  Under a nitrogen atmosphere, poly(ether ether 

sulfone) PSU-2 (1 g, 0.469 mmol, Mn = 9.6×103 g/mol and Mw/Mn = 1.23), sodium 3-

mercapto-1-propane sulfonate (0.16 g, 0.938 mmol) and 2,2´-azobis(isobutyronitrile) (0.04 g, 

0.281 mmol) were added to a 250 mL round bottom flask equipped with a magnetic stirrer bar, 

followed by the addition of 7.5 mL of a mixed solvent system of NMP and DMSO (2/1, v/v).  
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The reaction mixture was heated at 75 °C for 5 days, with stirring.  The reaction mixture was 

then precipitated into water to give a white solid.  Further purification of the white polymer 

product by dialysis with 30 % aqueous acetone for 3 days gave 0.89 g of sulfonated poly(ether 

ether sulfone) SPSU-2 as a white solid: SEC: Mn = 10.8×103 g/mol, Mw/Mn = 1.20; 1H NMR 

(300 mHz, DMSO-d6, δ, ppm): δ = 1.62 (s, 6H, -C-(CH3)2), 1.87 – 1.92 (quin, 2H, CH2-CH2-

CH2), 2.15 - 2.17 (t, 2H, (CH2)2-CH2-S), 2.66 – 2.74 (t, (CH2)2-CH2-SO3Na), 4.35 – 4.39 (t, 

1H, R2-CH-CH2-S), 4.44 – 4.46 (d, 2 H, R2-CH-CH2-S), 6.68 – 8.00 ppm (m, 20H, aromatic 

H); 13C NMR (75 mHz, DMSO-d6, δ, ppm): δ = 25.91 (CH2-CH2-CH2-SO3Na), 30.64 ((CH2)2-

CH2-S), 31 (C-(CH3)2), 42.43 (C-(CH3)2), 63.59 (R2-CH-CH2-S-CH2), 115.24, 135.60, 118.28, 

120.26, 120.67, 128.93, 130.2, 147.32, 152.79, 161.91 ppm (C-C, aromatics); FTIR (solid): 

1488 and 1585 cm-1 (νs, C=C aromatic), 1151 cm-1 (νs, SO2) and 1027 cm-1 (w, SO3Na). 

 

3.4 Synthesis of Poly(ether ether ketone)s based on Functionalized   

 1,1-Diphenylethylene Derivatives 

 

3.4.1 Purification of 4,4´-Difluorobenzophenone (6) 

 

4,4´-Difluorobenzophenone (6) was purchased from the Sigma Aldrich Chemical Company 

and purified by recrystallization from ethanol to give pure 4,4´-difluorobenzophenone (6) as 

white crystals: mp = 102 - 104 °C (Lit mp137 : 102 – 104 °C). 

 

 

 



91 
 

3.4.2  Synthesis of 2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

 

2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) was prepared according to the general 

procedure outlined by Quirk and Wang,138 with modifications.  Under an argon atmosphere, 

bisphenol A (10 g, 0.0438 mol), t-butyldimethylsilyl chloride (12.76 g, 0.0846 mmol), 

imidazole (7.95 g, 0.0001168 mol) and DMF (30 mL) were added to a 250 mL dry round 

bottom flask equipped with a magnetic stirrer bar.  The flask was heated at 40 °C for 3 hours, 

with stirring, until the formation of a homogenous solution.  The desired product was then 

extracted with hexane (1×120 mL) and washed with 5 % aqueous NaHCO3 (100 mL).  The 

hexane layer was dried over anhydrous MgSO4.  After solvent removal in vacuo, the residue 

was purified by SiO2 column chromatography with petroleum ether and ethyl acetate (80/20 = 

v/v) as eluent.  After removal of the solvent, the resultant clear viscous product solidified on 

standing to give a white solid.  Recrystallization of the white solid from absolute ethanol gave 

17.83 g (94 %) of pure 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) as white crystals.  

TLC: Rf (petroleum ether/ethyl acetate, 80/20, v/v) = 0.9; mp = 69 – 72 °C; 1H NMR (300 

mHz, CDCl3, δ, ppm) : δ = 0.21 (s, 12H, 2 × Si-(CH3)2), 0.99 (s, 18H, Si-C-(CH3)3), 1.63 (s, 

6H, 2 × -CH3), 6.72 - 7.10 ppm (d × d, 8H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm): 

δ = -4.40 (Si-(CH3)2), 18.16 (C(CH3)3), 25.69 (C(CH3)3), 31.10 (C(CH3)2), 41.72 (C(CH3)2), 

119.17, 127.66, 143.67 and 153.25 ppm (C-C, aromatics); FTIR (solid): 1259 cm-1 (Si-CH3). 
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3.4.3 Synthesis of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

 

4,4´-Bis(t-butyldimethylsiloxy)benzophenone: 

4,4´-Bis(t-buyldimethylsiloxy)benzophenone was prepared according to the method outlined 

by Quirk and Wang.138  Under an argon atmosphere, 4,4´-dihydroxybenzophenone (11.70 g, 

0.054 mol), t-butyldimethylsilyl chloride (15.91 g, 0.105 mol), imidazole (9.91 g, 0.145 mol) 

and DMF (30 mL) were added to a dry 250 mL round bottom flask equipped with a magnetic 

stirrer bar.  The flask was heated at 40 °C with stirring, until the formation of a homogenous 

solution.  After 3 hours, the desired product was extracted once with hexane (1×120 mL) and 

washed with 5 % aqueous NaHCO3 (100 mL).  The hexane layer was dried over anhydrous 

MgSO4.  The solvent was removed using a rotary evaporator to give a white residue.  The 

product was purified by SiO2 column chromatography with toluene as eluent.  After removal 

of toluene in vacuo, the crude product 4,4´-bis(t-butyldimethylsiloxy)benzophenone was 

isolated as a white solid.  Recrystallization of the white solid from absolute ethanol gave 15.9 

g (66 %) of pure 4,4´-bis (t-butyldimethylsiloxy)benzophenone as white crystals: TLC: Rf 

(toluene) = 0.6; mp: 52.5 - 55.7 °C; 1H NMR (300 mHz, CDCl3, δ, ppm): δ = 0.24 (s, 12H, 2 × 

Si-(CH3)2), 0.99 (s, 18H, 2 × Si-C-(CH3)3) and 6.88 - 7.74 ppm (d × d, 8H, aromatic H); 13C 

NMR (75 mHz, CDCl3, δ, ppm) : δ = -4.40 (Si-(CH3)2), 18.19 (C(CH3)3), 25.56 (C(CH3)3), 

119.56, 131.21, 132.10 ,159.44 (C-C, aromatics) and 194.60 ppm (C=O). FTIR (solid): 1272 

cm-1 (νs, Si-CH3) and 1695 cm-1 (s, C=O). 
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1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3): 

1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was prepared according to the procedure 

outlined by Quirk and Wang,138 with modifications.  Under a nitrogen atmosphere, 

methyllithium (26.60 mL of a 1.6 M solution in diethyl ether, 0.0425 mol) was added to 

methyltriphenylphosphonium bromide (13 g, 0.034 mol) in dry THF (50 mL) at room 

temperature.  The reaction mixture was stirred at room temperature for 2 hours to ensure 

complete ylide formation.  A solution of 4,4´-bis(t-butyldimethylsiloxy)benzophenone (15 g, 

0.034 mol) in dry THF (50 mL) was added to the ylide solution at 0 °C and the resultant 

reaction mixture was stirred at room temperature for 12 hours.  The reaction was terminated 

by the addition of methanol (2 mL).  The triphenylphosphine oxide, which precipitated from 

the reaction, was removed by filtration.  After removal of the solvent from the filtrate using a 

rotary evaporator, the clear viscous residue was extracted with petroleum ether (120 mL).  

After removal of petroleum ether in vacuo, the crude product was isolated as viscous product 

which solidified on standing to give a white solid.  Recrystallization of the white product from 

absolute ethanol gave 9.6 g (63 %) of pure 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene 

(3) as fine, white crystals: mp = 55.9 - 56.4 °C (Lit mp138 =  56 - 57.5 °C); TLC: Rf (toluene) = 

0.9; 1H NMR (300 mHz, CDCl3, δ, ppm): δ = 0.21 (s, 12H, 2 × Si-(CH3)2), 0.99 (s, 18H, 2 × 

Si-C-(CH3)3), 5.28 (s, 2H, C=CH2) and 6.77 - 7.20 ppm (d × d, 8H, aromatic H);  13C NMR 

(75 mHz, CDCl3, δ, ppm): δ = -4.38 (Si-(CH3)2), 18.21 (C(CH3)3), 25.69 (C(CH3)3), 111.66 

(C=CH2), 134.81 (C=CH2), 119.57, 129.361, 149.17 and 155.39 ppm (C-C, aromatics); FTIR 

(solid): 1265 cm-1 (νs, Si-CH3) and 889 cm-1 (m, C=CH2). 
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3.4.4 Synthesis of Poly(ether ether ketone)s by Step-Growth Polymerization 

 

3.4.4.1 The Cesium Fluoride Catalyzed Polymerization of Dihalogenated Diaryl 

 Ketones with Silylated Bisphenols 

 

A series of poly (ether ether ketone) derivatives (PEEK-1 to PEEK-5) was prepared by the 

catalytic arylation reaction of dihalogenated diaryl ketones with silylated bisphenols according 

to the procedures outlined by Kricheldorf.30, 142  In a typical procedure, poly(ether ether 

ketone) PEEK-2 was prepared as follows: Under an argon atmosphere, 4,4´-

difluorobenzophenone (6) (1.238 g, 0.00566 mol), 2,2-bis(4-t-

butyldimethylsiloxyphenyl)propane (2) (1.96 g, 0.00452 mol), 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) (0.5 g, 0.00112 mol), cesium fluoride (30 mg) and 

NMP (6 mL) were added in a 100 mL round bottom flask equipped with a magnetic stirrer 

bar.  The reaction mixture was heated at 150 °C for 12 hours, with rapid stirring.  The reaction 

flask was then cooled to room temperature and the reaction mixture diluted with 

dichloromethane (4 mL).  The reaction mixture was then coagulated into excess methanol.  

The polymer product was filtered and vacuum dried at 80 °C to give 2.64 g of poly(ether ether 

ketone) PEEK-2 as a white solid: SEC: Mn = 6.9 × 103 g/mol, Mw/Mn = 1.20; 1H NMR (300 

mHz, CDCl3, δ, ppm): δ = 1.71 (s, 6H, C-(CH3)2); 5.45 (s, 2H, C=CH2); 6.98 - 7.81 ppm (m, 

32H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm): δ = 30.99 (C-(CH3)2), 42.34 (C-

(CH3)2), 114.81 (C=CH2), 132.29 (C=CH2), 117.11, 117.41, 119.53, 119.63, 127.87, 128.318, 

129.86, 137.56, 146.72, 153.41, 161.10, 161.42 and 161.75 (C-C, aromatics), 194.28 ppm 

(C=O); FTIR (solid): 1654 cm-1 (m, C=O) and 1497 and 1584 cm-1 (νs, C=C aromatic). 
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A series of poly(ether ether ketone) derivatives was prepared according to the reaction 

stoichiometry outlined in the following table. 

 

Polymer Monomer (6) Monomer (2) Monomer (3) CsF 

PEEK-1 0.5 g 

0.00242 mol 

1.049 g 

0.00242 mol 

- 30 mg 

PEEK-2 1.234 g 

0.00566 mol 

1.96 g 

0.00452 mol 

0.5 g 

0.00112 mol 

30 mg 

PEEK-3 0.86 g 

0.00394 mol 

0.90 g 

0.00197 mol 

0.87 g 

0.00197 mol 

30 mg 

PEEK-4 0.64 g 

0.00293 mol 

0.25 g 

0.00054 mol 

1.018 g 

0.00231 mol 

30 mg 

PEEK-5 0.5 g 

0.00242 mol 

- 

 

1.068 g 

0.00242 mol 

30 mg 

 

3.4.5 Preparation of Sulfonated Poly(ether ether ketone)s 

 

Sulfonated poly(ether ether ketone) SPEEK-2 was prepared by the procedure of the thiol-ene 

reaction as outlined by Guan and coworkers.15  Under a nitrogen atmosphere, poly(ether ether 

ketone) PEEK-2 (1 g, 0.496 mmol, Mn = 6.9 × 103 g/mol, Mw/Mn = 1.20), sodium 3-

mercapto-1-propane sulfonate (0.17 g, 0.992 mmol) and 2,2´-azobis(isobutyronitrile) ( 0.04 g, 

0. 297 mmol) were added to a 250 mL round bottom flask equipped with a magnetic stirrer 

bar, followed by the addition of 7.5 mL of a mixed solvent of NMP and DMSO (2:1, v/v).  
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The reaction mixture was heated at 75 °C for 5 days with stirring.  The reaction mixture was 

then precipitated into water to afford a white solid.  The polymer product was isolated by 

filtration and vacuum dried at 80 °C.  Purification of the white polymer product by dialysis 

with 30 % aqueous acetone for 3 days gave 0.83 g of sulfonated poly(ether ether ketone) 

SPEEK-2 as a white solid: SEC: Mn = 7.1×103g/mol, Mw/Mn = 1.21; 1H NMR (300 mHz, 

CDCl3, δ, ppm): δ = 1.65 (s, 6H, -C-(CH3)2), 1.84 – 1.92 (quin, 2H, CH2-CH2-CH2), 2.15 - 

2.20 (t, 2H, (CH2)2-CH2-S), 2.67 – 2.75 (t, (CH2)2-CH2-SO3Na), 4.37 – 4.41 (t, 1H, R2-CH-

CH2-S), 4.45 – 4.47 (d, 2H, R2-CH-CH2-S), 6.70 – 7.70 ppm (m, 20H, aromatic H); 13C NMR 

(75 mHz, DMSO-d6, δ, ppm): δ = 30.59 ((CH2)2-CH2-S), 31.19 (C-(CH3)2), 42.40 (C-(CH3)2), 

63.56 (CH-CH2-S-CH2), 115.21, 132.90, 115.94, 116.23, 117.54, 119.18, 119.99, 127.85, 

128.84, 132.16, 132.62, 132.79, 146.968, 153.33, 161.31 (C-C, aromatics), 193.59 ppm 

(C=O); FTIR (solid): 1657 cm-1 (m, C=O), 1496 and 1590 cm-1 (νs, C=C aromatic) and         

1024 cm-1 (w, SO3Na). 

 

3.5 Synthesis of Polyimides based on Functionalized 1,1-Diphenylethylene 

 Derivatives 

 

3.5.1 Purification of 4,4´-Oxydiphthalic Anhydride (7) 

 

Commercially available 4,4´-oxydiphthalic anhydride (7) was purchased from Sigma Aldrich 

Chemical Company and purified by recrystallization from acetic anhydride to afford pure 4,4´-

oxydiphthalic anhydride (7) as white crystals with a melting point of 224 – 226 °C (Lit mp143, 

144 = 224 – 226 °C). 
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3.5.2 Purification of 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (8) 

 

2,2-Bis[4-(4-aminophenoxy)phenyl]propane (8) was purchased from the Sigma Aldrich 

Chemical Company (98 %) and dried in the oven at 60 °C for 12 hours to give 2,2-bis[4-(4-

aminophenoxy)phenyl]propane (8) as white solid: mp: 127 – 130 °C (Lit mp145 = 127 – 130 

°C). 

 

3.5.3 Synthesis of 1,1-Bis(4-aminophenyl)ethylene (9)  

 

The preparation of 1,1-bis(4-aminophenyl)ethylene (9) was effected by the general procedure 

outlined by Ndawuni.146  Under a nitrogen atmosphere, methyllithium (15.63 mL of a 1.6 M 

solution in anhydrous diethyl ether, 0.025 mol) was added to methyltriphenylphosphonium 

bromide (8.93 g, 0.024 mol) in dry THF (100 mL) at room temperature.  The reaction mixture 

was stirred at room temperature for 2 hours to ensure complete ylide formation.  A solution of 

4,4´-diaminobenzophenone (5.0 g, 0.0236 mol) in dry THF (100 mL) was added to the ylide 

solution at 0 °C and the resultant reaction mixture was heated to reflux for 12 hours.  The 

reaction was terminated by the addition of cold methanol (1 mL).  The triphenylphosphine 

oxide, which precipitated from solution, was removed by filtration.  After removal of the 

filtrate solvent in vacuo, the crude product was purified by SiO2 column chromatography using 

petroleum ether/ethyl acetate (50/50, v/v) as eluent.  After removal of the solvent, the product 

was isolated as a yellow solid.  Recrystallization of the crude product from ethanol/water 

(80/20, v/v) gave 2.58 g (52 %) of pure 1,1-bis(4-aminophenyl)ethylene (9) as yellow crystals: 

TLC: Rf (petroleum ether/ethyl acetate = 50/50, v/v) = 0.35; mp: 161.5 - 163.1 °C (Lit mp147 = 
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170 – 172 °C); 1H NMR (300 mHz, CDCl3, δ, ppm): δ = 3.69 (bs, 2 H, -NH2), 5.19 (s, 2 H, 

C=CH2) and 6.61 - 7.25 ppm (d × d, 8H, aromatic H); 13C NMR (75 mHz, CDCl3, δ, ppm): δ = 

109.71 (C=CH2), 132.31 (C=CH2), 114.56, 129.35, 145.93 and 149.46 ppm (C-C, aromatics); 

FTIR (solid): 3435 cm-1 (m, N-H) and 890 cm-1 (m, C=CH2). 

 

3.5.4 The Synthesis of Polyimides by Step-Growth Polymerization 

 

3.5.4.1 Polyimide Synthesis by the Two Step Thermal Imidization Process 

 

A series of different polyimide derivatives, (PI-1 to PI-5) was prepared by the general 

polyimide synthesis method by a two step thermal imidization process according to the 

procedure outlined by Li and coworkers.109  In a typical procedure, polyimide PI-2 was 

prepared according to the following process:  Under a nitrogen atmosphere, 4,4´-oxydiphthalic 

anhydride (7) (0.5 g, 0.0003223 mol), 2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) (0.529 

g, 0.001289 mol) and 1,1-bis(4-aminophenyl)ethylene (9) (0.059 g, 0.0003223 mol) in N,N-

dimethylacetamide (10 mL) were added to a dry 100 mL round bottom flask equipped with a 

magnetic stirrer bar.  The reaction mixture was stirred at room temperature for 24 hours, with 

rapid stirring.  The resultant polyamic acid was cast into a glass plate and subjected to a 

thermal imidization process at 100 °C, 200 °C and 250 °C for one hour each, respectively.  

After the thermal imidization process, the glass with the polymer film was cooled to 25 °C and 

placed into water to remove the film.  The film was vacuum dried at 80 °C to give 1.48 g of 

polyimide PI-2 as a brown film: ŋinh: 0.24 dL/g at 25 °C; 1H NMR (300 mHz, CDCl3, δ, ppm): 

δ = 1.65 (s, 6H, C-(CH3)2); 5.65 (s, 2H, C=CH2); 6.99 - 8.10 ppm (m, 36H, aromatic H); 13C 
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NMR (75 mHz, CDCl3, δ, ppm): δ = 31.14 (C-(CH3)2), 42.28 (C-(CH3)2), 114.19 (C=CH2), 

134.98 (C=CH2), 118.74, 119.02, 124.79, 125.98, 126.22, 127.31, 127.94, 128.20, 129.10, 

146.23, 154.20, 157.47, 161.18, (C-C, aromatics) and 166.28, 166.42 ppm (C=O); FTIR 

(solid):1778 cm-1 and 1719 cm-1 (C=O), 730 cm-1 (C-N) 

 

A series of polyimides derivatives were prepared according to the reaction stoichiometry 

outlined in the following table.  

 

Polymer Monomer (7) Monomer (8) Monomer (9) 

PI-1 0.5 g 

0.001611 mol  

0.66 g 

0.001611 mol  

- 

PI-2 0.5 g 

0.001611 mol 

0.53 g 

0.001289 mol 

0.06 g 

0.0003223 mol 

PI-3 0.5 g 

0.001611 mol 

0.33 g 

0.0008059 mol 

0.15 g 

0.0008059 mol 

PI-4 0.5 g 

0.001611 mol 

0.13 g 

0.0003223 mol 

0.23 g 

0.001289 mol 

PI-5 0.5 g 

0.001611 mol 

- 0.3 g 

0.001611 mol 
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3.5.5 Preparation of Sulfonated Polyimides 

 

A sulfonated polyimide SPI-2 derivative was prepared by the general procedure for the thiol-

ene reaction as outlined by Guan and coworkers.15  Under a nitrogen atmosphere, polyimide 

PI-2 (1 g, 0.314 mmol, ŋinh: 0.24 dL/g at 25 °C), sodium 3-mercapto-1-propane sulfonate 

(0.11 g, 0.628 mmol) and 2,2´-azobis(isobutyronitrile) (0.03 g, 0.188 mmol) were added to a 

250 mL round bottom flask equipped with a magnetic stirrer bar, followed by the addition of 

7.5 mL of a mixed solvent of NMP and DMSO (2:1, v/v).  The reaction mixture was heated at 

75 °C for 5 days.  The polymer product was precipitated into water to give a brown solid.  

Purification of the brown solid by dialysis with 30 % aqueous acetone for 3 days gave 0.5 g of 

sulfonated polyimide SPI-2 as a light brown solid: ŋinh : 0.25 dL/g at 25 °C; 1H NMR (300 

mHz, CDCl3, δ, ppm): δ = 1.64 (s, 6H, -C-(CH3)2), 1.87 – 1.92 (quin, 2H, CH2-CH2-CH2), 

2.15 - 2.20 (t, 2H, (CH2)2-CH2-S), 2.64 – 2.72 (t, (CH2)2-CH2-SO3Na), 4.44 – 4.48 (t, 1H, R2-

CH-CH2-S), 4.50 – 4.52 (d, 2H, R2-CH-CH2-S), 6.99 – 8.02 ppm (m, 32H, aromatic H); 13C 

NMR (75 mHz, DMSO-d6, δ, ppm): δ = 31.40 (C-(CH3)2), 42.28 (C-(CH3)2), 63.58 (CH-CH2-

S-CH2), 114.20, 134.97, 118.91, 119.15, 125.43, 126.57, 127.18, 127,67, 128.71, 129.57, 

146.30, 154.40, 157.10 (C-C, aromatics), 166.88 ppm (C=O); FTIR (solid): 1779 cm-1 and 

1720cm-1 (C=O), 1496 and 1590 cm-1 (νs, C=C aromatic), 1024 cm-1 (w, SO3Na) and 730 cm-1 

(C-N). 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

The synthesis of inexpensive, thermally stable polymeric compounds for use as substrates for 

the preparation of membranes for water purification and desalination processes, fuel cell 

technology and nanotechnology has been the focus area of research in industry and academia 

for the past decade.6-8  In general, poly(ether ether sulfone)s, poly(ether ether ketone)s and 

polyimides and their derivatives have been extensively used as the engineering polymers of 

choice for fuel cell technology and water purification applications.  The most efficient 

methods for the preparation of aromatic poly(ether ether sulfone), poly(ether ether ketone) and 

polyimide derivatives by step-growth polymerization methods involve electrophilic aromatic 

substitution and nucleophilic aromatic substitution polycondensation reactions.6-8 

 

4.1 Synthesis of Poly(ether ether sulfone)s based on Functionalized   

 1,1-Diphenylethylene Derivatives 

 

Poly(ether ether sulfone)s are useful engineering plastics because of their high thermal and 

chemical stability.  Even in air, degradation is only detected at temperatures above    

420 - 450 °C.7, 8  A variety of synthetic methods for the synthesis of poly(ether ether sulfone)s, 

which involve electrophilic aromatic substitution, nucleophilic aromatic substitution and metal 
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catalyzed coupling reactions have been reported in the literature.6-7  Electrophilic aromatic 

substitution polycondensation reactions were initially used for the syntheses of different 

poly(ether ether sulfone)s in the presence of low concentrations of Lewis acids and at elevated 

temperature.6, 7  However, poly(ether ether sulfone) derivatives with poor polymer properties 

were formed.  In addition, the synthesis of poly(ether ether sulfone)s via the metal catalyzed 

coupling method of dihalogenated diaryl sulfone derivatives with silylated bisphenols in the 

presence of cesium fluoride as catalyst was reported by Kricheldorf and coworkers.30  

Furthermore, the base catalyzed nucleophilic aromatic substitution polycondensation reaction 

between dihalogenated diaryl sulfones and bisphenols provides the most efficient method for 

the preparation of a wide variety of poly(ether ether sulfone)s.6, 7  For example, Gao and Hay33 

prepared poly(ether ether sulfone)s containing the diphenylethylene moiety by the 

polycondensation reaction of bis(4-chlorophenyl)sulfone with       

1,1-bis(4-hydroxyphenyl)ethylene and different bisphenols in the presence of potassium 

carbonate as catalyst in DMAc/toluene as solvent at 165 °C.  In the present study, a series of 

new poly(ether ether sulfone) derivatives, containing the 1,1-diphenylethylene unit along the 

polymer backbone were prepared by the step-growth polymerization process using the 

following synthesis methods: 

(c) The cesium fluoride catalyzed polycondensation reaction of 4,4´-difluorodiphenylsulfone 

(1) with different mole percentage ratios of silylated bisphenol derivatives,     

2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and       

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3); and 
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(d) The potassium carbonate catalyzed nucleophilic aromatic substitution polycondensation 

reaction of 4,4´-difluorodiphenylsulfone (1) with different mole percentage ratios of 

bisphenol A (4) and 1,1-bis(4-hydroxyphenyl)ethylene (5). 

 

4.1.1 Synthesis and Purification of Monomers 

 

4.1.1.1 Purification of 4,4´-Difluorodiphenylsulfone (1) 

 

Recrystallization of commercially available 4,4´-difluorodiphenylsulfone (1) from ethanol 

gave the pure product as white crystals with a melting point of 98 – 99 °C        

(lit mp137 = 98 – 99 °C) and the following structure: 

 

F S
O

O
F

(1)  

 

4.1.1.2 Synthesis of 2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

 

Thompson and coworkers148 have reported the synthesis of the silylated bisphenol A 

derivative, 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) from the reaction of bisphenol 

A with t-butyldimethylsilyl chloride and imidazole hydrochloride in methylene chloride.  A 

synthetic feature of the reaction is the facile removal of the imidazole salt by filtration.  

Similar procedures for the preparation of silylated bisphenol derivatives were outlined by 

Quirk and coworkers13, 138 and De Meulenaer and coworkers.140  In the current study, the 
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preparation of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) was effected by the general 

procedure outlined by Quirk and Wang,138 with modifications.  Treatment of bisphenol A with 

t-butyldimethylsilyl chloride in the presence of imidazole and N,N-dimethylformamide gave 

the crude product as a clear viscous residue.  Purification of the product by column 

chromatography using petroleum ether and ethyl acetate (80/20 = v/v) as eluent gave the clear 

viscous product.  The viscous product solidified on standing to form a white solid, data which 

was not reported previously in the literature.  Recrystallization of the white solid from 

absolute ethanol gave pure 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) as white 

crystals in 94 % yield and a melting point of 69 - 72 °C. 

 

The following reaction pathway outlines the synthetic route for the preparation of    

2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2): 

 

HO OH
CH3

CH3

CH3

CH3

ORRO

Si Cl

Imidazole/
DMF

With  RO  = Si O

(2)

 

 

The 1H NMR spectrum (Figure 1) of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

shows the following spectral characteristics: (a) a singlet at δ = 0.21 ppm, attributed to the 

resonance of the twelve protons of the methyl groups attached to the silicon atom; (b) a singlet 
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at δ = 0.99 ppm, due to the resonance of the eighteen protons of the methyl groups of the 

tertiary butyl groups attached directly to the silicon atoms; (c) a singlet at δ = 1.63 ppm, 

ascribed to the resonance of the six methyl protons of the isopropylidene group; and (d) a 

doublet of doublets at δ = 6.72 - 7.10 ppm, due to the resonance of aromatic protons of the p-

substituted benzene rings. 

 

The 13C NMR spectrum (Figure 2) of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

shows the following characteristic peaks: (a) a peak at δ = - 4.40 ppm, attributed to the 

resonance of the four carbon atoms of the methyl groups attached to the silicon atom; (b) 

signals at δ = 18.16 ppm and 25.69 ppm, attributed to the resonance of the tertiary carbon 

atom and the three carbon atoms of the methyl groups of each t-butyl moiety, respectively; 

and (c) peaks at 31.10 ppm and 41.72 ppm, corresponding to the resonance of the primary and 

quaternary carbon atoms of the isopropylidene group, respectively.  The peaks between 119.17 

ppm and 153.25 ppm correspond to the resonances of the different carbon atoms of the two 

phenyl rings. 

 

The FTIR spectrum (Figure 3) of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) shows an 

absorption band at 1259 cm-1, which is attributed to the vibration modes of Si-C bonds of the 

Si(CH3)2 groups. 

 

A modified synthetic route for the preparation of the silylated bisphenol A derivative,   

2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) is reported.  After purification of the 

product by column chromatography, the clear resultant viscous product solidified on standing 
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to form a white solid.  Recrystallization of the white solid from absolute ethanol gave pure 

2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) as white crystals with a melting point of 69 

- 72 °C.  The structure of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) was confirmed by 

1H NMR and 13C NMR spectrometry and FTIR spectroscopy. 

 

4.1.1.3 Synthesis of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

 

The general synthetic route for the preparation of symmetrical disubstituted 1,1-

diphenylethylene derivatives involves the conversion of the appropriate benzophenone 

precursor to the corresponding carbinol intermediate, followed by the thermal or acid 

catalyzed dehydration of the intermediate carbinol to produce the corresponding disubstituted 

1,1-diphenylethylene derivative.149, 150  A more efficient method for the direct conversion of 

disubstituted benzophenones to the corresponding disubstituted 1,1-diphenylethylene 

derivatives is via the Wittig reaction with phosphoryl ylides30, 138 or the Tebbe reagent.151  

Recently, Raut and coworkers152 developed a new method for the preparation of    

disubstituted 1,1-diphenylethylene derivatives by the copper-catalyzed C-H addition of arenes 

with aryl acetylenes. 

 

The preparation of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was first reported by 

Quirk and Wang13, 138 using the following method: 

(a) Treatment of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride in the 

presence of imidazole and N,N-dimethylformamide to form the intermediate   

4,4´-bis(t-butyldimethylsiloxy)benzophenone derivative; and 
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(b) The conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to     

1,1-bis(4-t-butyldimethylsiloxyphenyl)ethylene (3) via the Wittig reaction. 

However, the intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone, was only 

obtained as a clear viscous liquid.  Furthermore, Hejaz and coworkers153 reported the synthesis 

of the intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone which was isolated 

as a solid, but no melting point data was recorded. 

 

The current research work reports the high yield synthesis pathway for the preparation of 1,1-

bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) as a pure, white solid using the procedure 

outlined by Quirk and Wang,138 with modifications.  The synthetic route involved the 

following steps: 

 

(a) The preparation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone using    

4,4´-dihydroxybenzophenone as the starting material; and 

(b) The direct conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to     

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) via the classic Wittig reaction as 

outlined in the following reaction scheme: 
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HO OH

O

+ SiH3C
H3C

H3C
Cl

DMF/imidazole

O

O

O SiSi
CH3

CH3

CH3
CH3

CH3

CH3

CH3

H3C
H3C

H3C

O

CH2

O SiSi
CH3

CH3

CH3
CH3

CH3

CH3

CH3

H3C
H3C

H3C

CH3

CH3

(3)

(i) Ph3PCH3Br/MeLi/THF

(ii) CH3OH

 

 

Preparation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone: 

The intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone, which was obtained 

after treatment of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride in the 

presence of imidazole in N,N-dimethylformamide for 3 hours, was purified by column 

chromatography to give 4,4´-bis(t-butyldimethylsiloxy)benzophenone as white solid.  

Recrystallization of the white solid from absolute ethanol gave pure 4,4´-bis(t-
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butyldimethylsiloxy)benzophenone as fine white crystals in 66 % yield with a melting point of 

52.5 - 55.7 °C. 

 

The 1H NMR spectrum (Figure 4) of 4,4´-bis(t-butyldimethylsiloxy)benzophenone shows the 

following spectral characteristics: (a) a singlet at δ = 0.24 ppm, attributed to the resonance of 

the protons of the four methyl groups attached directly to the silicon atom; (b) a singlet at δ = 

0.99 ppm, due to the resonance of the protons of the six methyl groups of the t-butyl moieties 

attached directly to the silicon atom.  The doublet of doublets at δ = 6.88 - 7.74 ppm, 

corresponding to the resonance of the aromatic protons of the phenyl rings, is characteristic of 

p-substituted benzene rings. 

 

The 13C NMR spectrum (Figure 5) of 4,4´-bis(t-buyldimethylsiloxy)benzophenone shows a 

peak at δ = - 4.40 ppm, attributed to the resonance of the carbon atoms of the Si-(CH3)2 

groups.  The peaks at δ = 18.19 ppm and 25.56 ppm correspond to the resonance of the tertiary 

carbon atom and the carbon atoms of the three methyl groups of each t-butyl moiety, 

respectively.  The peak at 194.60 ppm corresponds to the resonance of the carbonyl carbon of 

the benzophenone nucleus. 

 

The FTIR spectrum (Figure 6) of 4,4´-bis(t-butyldimethylsiloxy)benzophenone shows an 

absorption band at 1272 cm-1, due to the presence of the stretching modes of the Si-C bonds of 

the Si-(CH3)2 groups.  The strong adsorption band at 1695 cm-1 is due to the C=O stretching 

modes of the benzophenone derivative.  The spectroscopy data of the intermediate 4,4´-bis(t-
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butyldimethylsiloxy)benzophenone derivative is in good agreement with the data reported by 

Quirk and Wang.138 

 

The modified synthesis pathway for the conversion of the 4,4´-dihydroxybenzophenone to 

4,4´-bis(t-butyldimethylsiloxy)benzophenone afforded the pure product as a white crystalline 

solid with a melting point of 52.5 – 55.7 °C. 

 

Preparation of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3):  

The direct conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to the desired product, 

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was effected by the classic Wittig 

reaction with phosphoryl ylides.  The phosphoryl ylide was generated in situ from the reaction 

of methyllithium with methyltriphenylphosphonium bromide at room temperature.  The rapid 

treatment of 4,4´-bis(t-butyldimethylsiloxy)benzophenone with the phosphoryl ylide gave a 

clear viscous product which solidified on standing to give a white solid.  Recrystallization of 

the resultant white solid from absolute ethanol gave the target molecule, 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) as white crystals in 63 % yield with a melting point 

of 55.9 - 56.4 °C (lit mp138 = 56 - 57.5 °C). 

 

The 1H NMR spectrum (Figure 7) of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

exhibits a singlet at δ = 0.21 ppm, attributed to the resonance of the twelve protons of the 

methyl groups attached directly to the two silicon atoms.  The singlet at δ = 0.99 ppm is due to 

the resonance of the protons of the three methyl groups of each t-butyl moiety attached 

directly to the silicon atoms.  The singlet at δ = 5.28 ppm corresponds to the resonance of the 
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protons of the C=CH2 olefin group and the doublet of doublets at δ = 6.77 - 7.20 ppm is due to 

the resonance of the aromatic protons of the phenyl rings and is characteristic of p-substituted 

benzene rings. 

 

The 13C NMR spectrum (Figure 8) of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

shows the presence of a signal at δ = - 4.38 ppm, due to the resonance of the carbon atoms of 

the methyl groups attached directly to the silicon atoms.  The signals at 18.21 ppm and 25.69 

ppm are due to the resonance of the two tertiary carbon atoms and the resonance of the carbon 

atoms of the three methyl groups of the t-butyl groups, respectively.  The peaks at 111.66 ppm 

and 134.81 ppm correspond to the resonance of the C-1 (CH2=CR2) and C-2 (CH2=CR2) 

olefin carbon atoms of the CH2= CR2 group, respectively.  The absence of a peak at 194.60 

ppm, due to the resonance of carbonyl carbon atoms confirms the complete conversion of the 

benzophenone precursor to the 1,1-diphenylethylene derivative via the Wittig reaction. 

 

The FTIR spectrum (Figure 9) of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) shows 

the presence of two absorption bands at 1265 cm-1 and 889 cm-1, which corresponds to the 

stretching modes of the Si-C and C-H bonds of the siloxyl and olefin groups, respectively.  

The absence of an adsorption band at 1695 cm-1 indicates the complete Wittig reaction with 

4,4´-bis(t-butyldimethylsiloxy)benzophenone and subsequent product formation without any 

benzophenone impurity. 

 

The synthesis of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was performed via a 

two step synthesis method using 4,4´-dihydroxybenzophenone as starting material.  The high 
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yield formation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone as white crystals was effected 

by the reaction of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride.  The 

subsequent Wittig reaction of 4,4´-bis(t-butyldimethylsiloxy)benzophenone with an 

appropriate phosphoryl ylide afforded 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) as 

white crystals.  The structure of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was 

confirmed by 1H NMR and 13C NMR spectrometry and FTIR analysis and the spectroscopic 

data corresponds well with the data reported by Quirk and Wang.138 

 

4.1.1.4 Purification of Bisphenol A (4) 

 

Recrystallization of commercially available bisphenol A from toluene afforded pure bisphenol 

A (4) as white crystals with a melting point of 156 - 158 °C (lit mp140 = 156 - 158 °C) and the 

following structure: 

 

HO C OH
CH3

CH3

(4)  

 

4.1.1.5 Synthesis of 1,1-Bis(4-hydroxyphenyl)ethylene (5) 

 

The general synthetic pathway for the preparation of symmetrical disubstituted 1,1-

diphenylethylene compounds from appropriate benzophenone precursors involves two 

methods: 
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(a) The conversion of an appropriate disubstituted benzophenone precursor to a carbinol 

intermediate product, followed by the spontaneous thermal or acid catalyzed 

dehydration of the intermediate carbinol149, 150 to afford the corresponding disubstituted 

1,1-diphenylethylene derivative; and 

(b) The direct conversion of an appropriate disubstituted benzophenone precursor to the 

corresponding disubstituted 1,1-diphenylethylene derivative via the classic Wittig 

reaction using phosphoryl ylides30, 138 or the Tebbe reagent.151 

 

In addition, disubstituted 1,1-diphenylethylene derivatives can be efficiently prepared by 

functional group transformation reactions using the appropriate disubstituted 1,1-

diphenylethylene derivative as the starting material.  For example, Hay and Gao,33 Sonawane 

and coworkers154 as well as Jian and coworkers131 reported the preparation of 1,1-bis(4-

hydroxyphenyl)ethylene (5) by the demethylation of the 1,1-bis(4-methoxyphenyl)ethylene 

precursor. 

 

The current research outlines a new method for the preparation of 1,1-bis(4-

hydroxyphenyl)ethylene (5) using 4,4´-dihydroxybenzophenone as substrate via a synthesis 

route which involves three steps: 

(a) The preparation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone from 4,4´-

dihydroxybenzophenone; 

(b) The direct conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) via the classic Wittig reaction; and 
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(c) The conversion of 1,1-bis(4-t-butyldimethylsiloxyphenyl)ethylene (3) to the 

corresponding dihydroxyl 1,1-diphenylethylene derivative, 1,1-bis(4-

hydroxyphenyl)ethylene (5) by removal of the silyl groups by the reaction with 

tetrabutylammonium fluoride according to the procedure outlined by De Meulenaer and 

coworkers140 as depicted in the following reaction scheme: 

 

HO OH

O

O O

CH2

HO OH

CH2

SiSi
CH3

CH3

CH3

CH3

H3C
H3C

H3C

CH3
CH3

CH3

O O

O

SiSi
CH3

CH3

CH3

CH3

H3C
H3C

H3C

CH3
CH3

CH3

Si Cl

Imidazole
DMF

(i) (C6H5)3PCH3Br/CH3Li /THF

(ii) CH3OH

TBAF

THF

(3)(5)  

 

The disiloxy derivative, 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was treated with 

tetrabutylammonium fluoride (TBAF) to give 1,1-bis(4-hydroxyphenyl)ethylene (5).  The 

reaction of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) with tetrabutylammonium 

fluoride proceeded at room temperature for 2 hours.  Removal of the solvent afforded the 

crude product as a pale yellow solid.  Recrystallization of the yellow solid from ethanol/water 

(1/18, v/v) gave 1,1-bis(4-hydroxyphenyl)ethylene (5) as fine yellow crystals in 62 % yield 

with a melting point of 151.1 - 152.8 ºC (lit mp141 = 150 – 152 °C). 
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The 1H NMR spectrum (Figure 10) of 1,1-bis(4-hydroxyphenyl)ethylene (5) exhibits a singlet 

at δ = 5.17 ppm, which is due to the resonance to the protons of the olefinic C=CH2 group.  

The singlet at δ = 9.50 ppm corresponds to the resonance of the protons of the two OH groups.  

The doublet of doublets at δ = 6.71 - 7.21 ppm is assigned to the resonance of the protons of 

the aromatic rings and is characteristic of the p-substituted benzene rings.  The absence of any 

peaks at 0.21 ppm and 0.98 ppm confirms the complete removal of the t-butyldimethylsilyl 

groups. 

 

The 13C NMR spectrum (Figure 11) of 1,1-bis(4-hydroxyphenyl)ethylene (5) shows 

characteristic peaks at δ = 110.71 ppm and 132.44 ppm, assigned to the resonance of the 

carbon atoms of the ethylene group.  The peak at δ = 110.71 ppm correspond to the resonance 

of terminal =CH2 carbon atom of the olefin group and the peak at 132.44 ppm is due to the 

resonance of the olefinic carbon atom of the CH2=CR2 group.  The peaks between δ = 115.47 

ppm and 157.69 ppm are attributed to the resonance of the different aromatic carbon atoms of 

the para substituted benzene rings. 

 

The FTIR spectrum (Figure 12) of 1,1-bis(4-hydroxyphenyl)ethylene (5) shows the presence 

of strong absorption bands at 3240 cm-1 and 892 cm-1, due to the O-H and C-H stretching 

modes of the OH and C=CH2 groups, respectively. 

 

The results show that treatment of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3), with 

tetrabutylammonium fluoride (TBAF) in THF for 12 hours provides a new facile method for 

the removal of the t-butyldimethylsilyl groups to afford 1,1-bis(4-hydroxyphenyl)ethylene (5) 
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in high yields.  The structure of 1,1-bis(4-hydroxyphenyl)ethylene (5) was confirmed by 1H 

NMR and 13C NMR spectrometry and FTIR analysis and the spectroscopic data is consistent 

with the data reported by Wang and coworkers131 and Gao and Hay.33 

 

4.1.2 Synthesis of Poly(ether ether sulfone)s by Step-Growth Polymerization  

 Methods 

 

4.1.2.1 The Cesium Fluoride Catalyzed Polymerization of Dihalogenated  

 Diaryl Sulfones with Silylated Bisphenols. 

 

The general method for the synthesis of poly(ether ether sulfone)s by step-growth 

polymerization using dihalogenated diaryl sulfones and silylated bisphenols as monomers in 

the presence of cesium fluoride as catalyst was developed by Kricheldorf and coworkers.30  

Similarly, a series of new poly(ether ether sulfone)s were prepared by the cesium fluoride 

catalyzed polymerization of 4,4´-difluorodiphenylsulfone (1) with different mole percentage 

ratios of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) as the silylated bisphenols according to the following 

reaction scheme: 
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In a typical polycondensation experiment, 4,4´-difluorodiphenylsulfone (1) was treated with a 

mole percentage ratio of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2): 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) = 80:20 in the presence of cesium fluoride as catalyst 

in NMP at 150 °C for 12 hours.  The polymer product was precipitated into methanol, filtered 

and vacuum dried to afford the poly(ether ether sulfone) copolymer derivative PSU-2 as a 

white solid. 

 

The different poly(ether ether sulfone) derivatives were prepared using the stoichiometric 

ratios of reactants as outlined in the following table: 
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Polymer Monomer (1) 

mol % 

Monomer (2) 

mol % 

Monomer (3) 

mol % 

PSU-1 100 100 - 

PSU-2 100 80 20 

PSU-3 100 50 50 

PSU-4 100 20 80 

PSU-5 100 - 100 

 

4.1.2.2 The Potassium Carbonate Catalyzed Polymerization of Dihalogenated 

 Diaryl Sulfones with Bisphenols. 

 

The preparation of poly(ether ether sulfone)s by the base catalyzed nucleophilic aromatic 

substitution polycondensation reactions have been reported in the literature.6, 7, 33  Similarly, 

the syntheses of new poly(ether ether sulfone) derivatives by step-growth polymerization by 

the base catalyzed nucleophilic substitution reactions of dihalogenated diaryl sulfones with 

bisphenols were conducted according to the procedure described by Gao and Hay.33  The 

synthesis of a series of new poly(ether ether sulfone)s was effected by the potassium carbonate 

catalyzed polymerization of 4,4´-difluorodiphenylsulfone (1) with different mole percentage 

ratios of bisphenol A (4) and 1,1-bis(4-hydroxyphenyl)ethylene (5) according to the following 

reaction pathway: 
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In a typical polycondensation experiment, the poly(ether ether sulfone) derivative PSU-7 was 

prepared by the polycondensation method involving the nucleophilic aromatic 

polycondensation reaction of 4,4´-difluorodiphenylsulfone (1) with a percentage mole ratio of 

bisphenol A (4): 1,1-bis(4-hydroxyphenyl)ethylene (5) = 80:20 in the presence of potassium 

carbonate as catalyst at 165 °C in dimethylacetamide for 3 hours with toluene as the 

azeotropic agent.  The polymer product was coagulated into methanol, filtered and vacuum 

dried to afford the poly(ether ether sulfone) copolymer derivative PSU-7 as a white solid. 

 

The experimental details for the preparation of the different poly(ether ether sulfone) 

derivatives are outlined in the following table: 
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Polymer Monomer (1) 

mol % 

Monomer (4) 

mol % 

Monomer (5) 

mol % 

PSU-6 100 100 0 

PSU-7 100 80 20 

PSU-8 100 50 50 

PSU-9 100 20 80 

PSU-10 100 0 100 

 

4.1.3 Characterization of the Different Poly(ether ether sulfone) Derivatives 

 

To evaluate the effect of the introduction of the 1,1-diphenylethylene unit along the polymer 

backbone, a series of new poly(ether ether sulfone) derivatives were prepared by two different 

methods: 

(a) Method 1: The preparation of poly(ether ether sulfone)s by the cesium fluoride 

catalyzed polycondensation reactions of dihalogenated diaryl sulfones with silylated 

bisphenols; and 

(b) Method 2: The synthesis of poly(ether ether sulfone)s by the potassium carbonate 

catalyzed polycondensation of dihalogenated diaryl sulfones with bisphenols. 

 

The synthesis and characterization of poly(ether ether sulfone) PSU-2 as a representative 

sample is discussed in detail and compared with the other poly(ether ether sulfone) samples, 

where applicable.  In a typical experiment, the preparation of poly(ether ether sulfone) 

derivative PSU-2 was effected by the catalytic arylation reaction of 4,4´-
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difluorodiphenylsulfone (1) with 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and    

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) using cesium fluoride as the catalyst in 

NMP at 150 °C for 12 hours.  The poly(ether ether sulfone) derivative PSU-2 was prepared 

using mole percentage ratios of [1]:[2]:[3] = [100]:[80]:[20] in the monomer feed.  The 

polymer product was isolated by precipitation into methanol, filtered and vacuum dried to 

afford poly(ether ether sulfone) derivative PSU-2 as a white solid. 

 
The size exclusion chromatogram (Figure 13) of poly(ether ether sulfone) derivative PSU-2 

shows a monomodal molecular weight distribution curve with Mn = 9.6×103 g/mol and Mw/Mn 

= 1.23.  The following table provides size exclusion chromatography characterization data for 

different poly(ether ether sulfone) derivatives: 

 
Polymer Mn 

×10-3 g/mol 

Mw 

×10-3 g/mol 

Mw/Mn 

PSU-1 8.9 10.7 1.20 

PSU-2 9.6 11.8 1.23 

PSU-3 12.5 17.3 1.38 

PSU-4 13.2 18.1 1.37 

PSU-5 21.1 25.32 1.20 

PSU-6 13.6 17.7 1.30 

PSU-7 14.7 18.1 1.23 

PSU-8 16.3 19.7 1.20 

PSU-9 17.9 22.2 1.24 

PSU-10 30.4 40.4 1.32 
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Well-defined poly(ether ether sulfone) derivatives with the number average molecular weights 

between 8.9×103 – 30.4×103 g/mol and narrow molecular weight distributions (Mw/Mn = 1.20 

– 1.38) were obtained. 

 

The Mn values of the 1,1-diphenylethylene based homopolymers, PSU-5 and PSU-10 obtained 

by the polycondensation reaction of 4,4´-difluorodiphenylsulfone (1) with the 1,1-

diphenylethylene derivatives, are significantly higher than the Mn values of the bisphenol A 

based homopolymers PSU-1 and PSU-6, respectively.  In addition, the size exclusion 

chromatography results show that the number average molecular weights of the different 

poly(ether ether sulfone) derivatives increases with increasing content of the 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) monomer, irrespective of the synthesis method. 

 

The chemical structure of each poly(ether ether sulfone) derivative was confirmed by 1H NMR 

and 13C NMR spectrometry and FTIR analyses.  The 1H NMR spectrum (Figure 14) of the 

poly(ether ether sulfone) derivative PSU-2 exhibits a singlet at δ = 1.68 ppm, due to the 

resonance of the protons of the methyl groups of the bisphenol A units along the polymer 

backbone.  The singlet at δ = 5.44 ppm, attributed to the proton resonances of the C=CH2 

group, confirms the presence of the 1,1-diphenylethylene unit along the polymer backbone.  A 

multiplet at δ = 6.91 - 7.88 ppm corresponds to the resonance of the aromatic protons from the 

different benzene rings along the polymer backbone. 
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The 13C NMR spectrum (Figure 15) of poly(ether ether sulfone) derivative PSU-2, shows a 

signal at δ = 114.62 ppm, due to the resonance of the C=CH2 carbon atom, which confirms the 

presence of the C=CH2 group along the polymer backbone.  The absence of any peaks 

associated with the resonance of the carbon atoms of the silyl groups of the monomer 

precursor confirms complete step-growth polymerization process and the absence of 

contamination by residual monomer. 

 

The FTIR spectrum (Figure 16) of poly(ether ether sulfone) derivative PSU-2 shows an 

absorption band at 1149 cm-1, attributed to the presence of the S=O stretching modes of the 

sulfonyl groups along the polymer backbone.  The absorption bands at 1487 and 1584 cm-1 are 

attributed to the C=C stretching vibrations of the aromatic rings within the polymer chain. 

 

The thermal stability of each poly(ether ether sulfone) derivative was determined by 

thermogravimetric analysis.  Figure 17 shows a typical TGA curve the poly(ether ether 

sulfone) derivative PSU-2.  The thermal degradation pattern of poly(ether ether sulfone) PSU-

2 occurs via a two step process: (a) a weight loss of 0.26 % between 100 °C – 150 °C, due to 

the loss of moisture or solvent from the sample; and (b) a rapid weight loss of 61.06 % 

between 450 °C - 550 °C, due to the degradation of the polymer chain.  In addition, a residual 

weight of 33 % was retained up to 600 °C.  In general, the 1,1-diphenylethylene based 

poly(ether ether sulfone)s are thermally less stable than the bisphenol A based poly(ether ether 

sulfone)s and the thermal stability decreases with the increasing content of the rigid 1,1-

diphenylethylene unit.  All poly(ether ether sulfone) samples undergo thermal degradation of 
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the polymer chain above 450 °C, indicating good thermal stability for each polymer sample.  

The TGA data of each poly(ether ether sulfone) derivative is depicted in the following table: 

 

Polymer T10 (°C) Td W550°C 

PSU-1 511 455 51.60 

PSU-2 494 450 50.06 

PSU-3 490 437 38.02 

PSU-4 488 408 36.35 

PSU-5 483 380 32.53 

PSU-6 516 448 56.68 

PSU-7 508 446 50.70 

PSU-8 505 439 41.57 

PSU-9 472 401 36.71 

PSU-10 471 388 35.56 

 

where T10 represents the 10 % weight loss temperature, Td depicts the onset temperature for 

polymer chain decomposition and W550°C represents the percentage weight loss at 550°C, the 

temperature at which complete polymer degradation is observed. 

 

The glass transition temperature of each poly(ether ether sulfone) sample was determined by 

DSC analysis.  The DSC curve for poly(ether ether sulfone) derivative PSU-2 is shown in 

Figure 18.  The onset of molecular motion occurs at a temperature of 165 °C and a glass 

transition temperature of Tg = 168 °C was recorded.  The DSC analysis of poly(ether ether 
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sulfone) derivative PSU-2, shows that the introduction of 20 mole percentage of the 1,1-

diphenylethylene unit increases the Tg value when compared to the Tg value of the 

corresponding homopolymer PSU-1.  The introduction of the planar, rigid non-linear 1,1-

diphenylethylene unit along the polymer backbone increases steric hindrance to 

intersegmental motion, thus reduces chain mobility and flexibility and increases the Tg value 

of the copolymer PSU-2 relative to the pure homopolymer PSU-1.  Due to the introduction of 

the rigid, 1,1-diphenylethylene unit along the polymer backbone, which increases polymer 

chain stiffness, the Tg values of the 1,1-diphenylethylene based homopolymers PSU-5 and 

PSU-10, are significantly higher than the Tg values of the bisphenol A based homopolymers 

PSU-1 and PSU-6, respectively.  The Tg values for different poly(ether ether sulfone) 

derivatives are depicted in the following table: 

 

Polymer  Tg (°C) 

PSU-1 156 

PSU-2 168 

PSU-3 172 

PSU-4 190 

PSU-5 199 

PSU-6 151 

PSU-7 170 

PSU-8 172 

PSU-9 176 

PSU-10 180 
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The Tg values for the different poly(ether ether sulfone) derivatives range between 151 °C and 

199 °C.  For a given series, the Tg values of the different poly(ether ether sulfone) derivatives 

increase with increasing content of the 1,1-diphenylethylene content unit along the polymer 

backbone.  The Tg results show that all the samples displayed a single Tg value.  No melting 

endotherm and crystallization temperature were observed between the recorded temperatures 

of 25 °C to 400 °C. 

 

Dense membranes obtained from the different poly(ether ether sulfone) derivatives were 

prepared by the spin coating method and the membrane properties of the different polymers 

were characterized by atomic force microscopy.  The three dimensional AFM image (Figure 

19) of the surface of the membrane of poly(ether ether sulfone) derivative PSU-2 displays 

non-aligned nodule groups separated by pores of different sizes.  The surface of the membrane 

is not smooth, but display varying degrees of surface roughness and porosity of different pore 

sizes.  The dark regions, low valleys and depressions in the AFM image are attributed to the 

pores of the polymer, whereas the light regions, high peaks and bright areas correspond to the 

spherical macromolecular aggregates.155-157  The topographical image of the PSU-2 sample 

shows a surface roughness value of 9.4 nm.  The membrane surface shows that the variation 

between the light and dark regions is small and constant throughout the membrane region.  

The pore sizes vary between 263.67 to 808.6 nm 
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The morphology of each poly(ether ether sulfone) sample in the powder form was further 

investigated by transmission electron microscopy analysis.158-160  Figure 20 shows the TEM 

micrograph of poly(ether ether sulfone) derivative PSU-2 which displays polymer aggregates 

of different shapes and sizes. 

 

The X-ray diffraction patterns for the different poly(ether ether sulfone) derivatives in the 

powder form were recorded to determine the degree of crystallinity of each polymer sample.  

Typical broad amorphous bands with some crystallinity were observed for each polymer 

sample.  The X–ray diffraction pattern (Figure 21) of poly(ether ether sulfone) derivative, 

PSU-2 shows the presence of broad peaks between 2θ = 18 - 20° and 40 - 45° which are 

typical of amorphous and crystalline regions, respectively and indicates that the polymer 

structure for poly(ether ether sulfone) PSU-2 is predominantly amorphous with some degree 

of crystallinity.  The large amounts of ether linkages along the polymer backbone considerably 

lower the energy of internal rotation of the polymer chain, thus reducing the crystallinity of 

the polymer,161-163  whereas the 20 % rigid 1,1-diphenylethylene units along the polymer 

backbone promotes polymer crystal growth. 

 

Elemental analysis of the poly(ether ether sulfone) derivative PSU-2 was determined by 

elemental analysis and gave the following data: 

Elemental analysis (calculated): C, 73.47; H, 5.16; O, 14.24; S, 7.13. 

 Elemental analysis (found) :   C, 71.50; H, 4.96; S, 6.96. 

The elemental analysis data confirms the formation of the poly(ether ether sulfone) derivative 

PSU-2. 
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A series of new, well-defined poly(ether ether sulfone) derivatives were prepared by two 

methods, namely (a) the catalytic arylation polycondensation reactions between dihalogenated 

diaryl sulfones and silylated bisphenols, and (b) the base catalyzed polycondensation reactions 

between dihalogenated diaryl sulfones with bisphenols.  Due to the increased content of 1,1-

diphenylethylene units within the polymer backbone, the number average molecular weights 

of the resultant polymers increase accordingly.  The thermal stability of the resultant polymers 

decreases with the regiospecific introduction of the 1,1-diphenylethylene unit along the 

polymer chain for the different poly(ether ether sulfone) derivatives.  In addition, the Tg values 

of the different poly(ether ether sulfone) derivatives increase with increasing 1,1-

diphenylethylene content when compared to the parent poly(ether ether sulfone). 

 

4.2 Synthesis and Characterization of Sulfonated Poly(ether ether sulfone)s 

 

A plethora of synthetic methods for the preparation of sulfonated poly(ether ether sulfone) 

derivatives by different post-polymerization sulfonation methods have been reported in the 

literature.49  However, the use of thiol-ene chemistry in post-polymerization functionalization 

reactions, which was recently introduced to the area of polymer synthesis by the late Charles 

Hoyle and his coworkers,63, 64 has not been widely employed as a method for the preparation 

of sulfonated poly(ether ether sulfone) derivatives.  The classic thiol-ene reaction involves the 

addition of a S-H bond across a double bond by either a free radical or ionic mechanism.  

Post-polymerization functionalization of different polymers containing sites of unsaturation 

can be effected by the thiol-ene method under different reaction conditions and in the presence 

of different catalysts.  Jannasch and coworkers74 reported the synthesis of functionalized 
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poly(ether ether sulfone) via the thiol-ene method from the reaction of poly(ether ether 

sulfone) bearing the undecenoyl side chain with 2-(2-benzimidazoyl)ethanethiol and AIBN in 

THF at 60 °C.  The reaction proceeded in such a manner that no detectable polymer 

degradation was observed. 

 

In the current study, due to the regiospecific introduction of the C=CH2 group along the 

polymer backbone in the 1,1-diphenylethylene based different poly(ether ether sulfone) 

derivatives PSU-2 to PSU-5 and PSU-7 to PSU-10, a new sulfonation method, which utilizes 

the classic thiol-ene reaction, was employed to prepare new sulfonated poly(ether ether 

sulfone) derivatives for evaluation as polymeric precursors for membranes in fuel cell 

technology. 

 

In a typical procedure, a new sulfonated poly(ether ether sulfone) derivative SPSU-2 was 

prepared via the thiol-ene method according to the following synthesis pathway: 
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The design of the sulfonation reaction using the thiol-ene method was to target the 1,1-

diphenylethylene site on the polymer backbone and allow the regiospecific introduction of the 

sulfonate groups along the polymer chain as well as the control of the degree of sulfonation.  

In a one pot reaction, the poly(ether ether sulfone) derivative PSU-2 was treated with sodium 

3-mercapto-1-propane sulfonate in the presence of AIBN as the initiator at 75 °C for 5 days.  

The polymer product was coagulated into water, filtered and subsequently subjected to a 

dialysis process with 30 % aqueous acetone to afford sulfonated poly(ether ether sulfone) 

SPSU-2 as a white solid. 

 

The size exclusion chromatogram (Figure 22) of the sulfonated poly(ether ether sulfone) 

derivative SPSU-2 shows a monomodal molecular weight distribution curve with a Mn = 

10.8×103 g/mol and Mw/Mn = 1.20.  The Mn value of the sulfonated poly(ether ether sulfone) 

SPSU-2 is slightly higher compared to the Mn of the poly(ether ether sulfone) derivative PSU-

2 precursor. 

 

The 1H NMR spectrum (Figure 23) of the sulfonated poly(ether ether sulfone) derivative 

SPSU-2 shows a singlet at δ = 1.62 ppm, which corresponds to the resonance of the protons of 

the methyl groups of the isopropylidene group of the bisphenol A unit and confirms that the 

bisphenol A moiety along the polymer backbone was not affected by the thiol-ene reaction.  In 

addition, the 1H NMR spectrum shows the following characteristic peaks which are associated 

with the introduction of the mercaptopropyl sulfonate group pendant to the polymer 

backbone:15, 69, 70, 132  (a) a quintet at δ = 1.87 – 1.92 ppm, due to the resonance of the protons 

of the CH2-CH2-CH2-SO3Na group; (b) a triplet at δ = 2.15 - 2.17 ppm, attributed to the 
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resonance of the protons of the CH2-CH2-S group; (c) a triplet at δ = 2.66 – 2.74 ppm, 

assigned to the resonance of the protons on the carbon α to the sodium sulfonate group (CH2)2-

CH2-SO3Na; (d) a triplet at δ = 4.35 – 4.39 ppm, assigned to the resonance of the methine 

proton of the R2-CH-CH2-S group (e) a doublet at δ = 4.44 – 4.46 ppm, due to the resonance 

of the protons of the R2-CH-CH2-S group.  The absence of a peak at δ = 5.44 ppm, due to the 

resonance of the proton of the C=CH2 group of the 1,1-diphenylethylene unit within the PSU-

2 precursor, confirms the complete sulfonation of poly(ether ether sulfone) PSU-2 via the 

thiol-ene reaction. 

 

The 13C NMR spectrum (Figure 24) of the sulfonated poly(ether ether sulfone) derivative 

SPSU-2 shows characteristic peaks at δ = 25.91 ppm (CH2-CH2-CH2SO3Na), δ = 30.64 ppm 

(CH2-CH2-S), δ = 31 (C(CH3)2), δ = 42.43 (C-(CH3)2) and δ = 63.59 ppm (R2CH-CH2-S), 

which confirms the regiospecific introduction of the sulfonating agent pendant to the polymer 

backbone as the result of the thiol-ene reaction with the 1,1-diphenylethylene moiety along the 

polymer chain. 

 

The FTIR spectrum (Figure 25) of the sulfonated poly(ether ether sulfone) derivative SPSU-2 

shows an absorption band at 1027 cm-1, corresponding to the S=O stretching modes of the 

sulfonate groups.  The absorption band at 1151 cm-1, is due to the characteristic stretching 

modes of the sulfonyl groups along the backbone of the sulfonated poly(ether ether sulfone) 

derivative SPSU-2.  The absorption bands at 1488 cm-1 and 1585 cm-1 are attributed to the 

vibrational stretching modes of the C=C bonds of the aromatic rings along the polymer chain. 
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The thermal stability of the sulfonated poly(ether ether sulfone) derivative SPSU-2 was 

determined by thermogravimetric analysis. The TGA curve (Figure 26) of sulfonated 

poly(ether ether sulfone) SPSU-2 exhibits a three phase degradation pattern with the following 

characteristics: (a) an initial weight loss of 1.26 % between 75 °C - 150 °C, due to the loss of 

moisture and residual solvent trapped in the polymer, (b) a weight loss of 1.29 % between 320 

°C - 350 °C, which is assigned to the decomposition of the pendant substituents containing 

sulfonate groups, and (c) a rapid weight loss of 34 % between 425 °C– 550 °C, attributed to 

the degradation of the polymer backbone.  The TGA data shows that the sulfonated poly(ether 

ether sulfone) SPSU-2 derivative is thermally less stable than the poly(ether ether sulfone) 

precursor PSU-2, between 100 °C – 550 °C, due to the introduction of alkyl sulfonate groups 

along the polymer chain which increases the amorphous nature of the sulfonate polymer.11 

 

The glass transition temperature of the sulfonated poly(ether ether sulfone) derivative SPSU-2 

was determined by differential scanning calorimetry.  The DSC curve (Figure 27) of the 

sulfonated poly(ether ether sulfone) derivative SPSU-2 shows a glass transition temperature of 

192 °C.  The Tg value of SPSU-2 is higher than the Tg value of the poly(ether ether sulfone) 

precursor PSU-2 (Tg = 168 °C) due to the introduction of the pendant propyl sulfonate groups 

along the polymer backbone which increase polymer chain rigidity.  The interchain 

association of the sulfonate groups reduces the chain flexibility and increases the rigidity of 

the polymer chains, thus increasing the Tg value of the sulfonated poly(ether ether sulfone) 

derivative SPSU-2 relative to the poly(ether ether sulfone) PSU-2 precursor. 
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The dense membrane obtained from the sulfonated poly(ether ether sulfone) derivative SPSU-

2 was characterized by atomic force microscopy.  Figure 28 representing the three 

dimensional AFM image of the sulfonated poly(ether ether sulfone) derivative SPSU-2 

membrane shows non-aligned polymer aggregates.  The sulfonated poly(ether ether sulfone) 

derivative SPSU-2 is a relatively smooth membrane as shown by the membrane roughness of 

value of 1.11 nm.  Well-defined pores with pore sizes between 70.3 – 152.3 nm are displayed 

by dark regions, low valleys and depressions in the AFM image. 

 

The morphology of the sulfonated poly(ether ether sulfone) derivative SPSU-2, in the powder 

form, was evaluated by transmission electron microscopy analysis.  The TEM image (Figure 

29) of the sulfonated poly(ether ether sulfone) derivative SPSU-2 reveals dark domains, 

attributed to the polymer matrix which contains the non-polar amorphous polymer and a low 

concentration of polar hydrophilic sulfonate regions. 

 

The X–ray diffraction analysis data of the sulfonated poly(ether ether sulfone) derivative, 

SPSU-2 was recorded to determine the degree of crystallinity of the polymer in the powder 

form.  The analysis of the XRD spectrum (Figure 30) of the sulfonated poly(ether ether 

sulfone) derivative SPSU-2 reveals that the polymer structure is predominantly amorphous 

with the characteristic broad amorphous peak observed between 2θ = 20° - 25°.160-162  The 

amorphous nature of the resultant sulfonated polymer is attributed to the introduction of alkyl 

sulfonate groups along the polymer backbone, a characteristic requirement of an excellent 

material for use in polymer electrolyte membrane fuel cells.15 
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Elemental analysis of the sulfonated poly(ether ether sulfone) derivative SPSU-2 as 

determined by elemental analysis gave the following data: 

Elemental analysis (calculated): C, 64.66; H, 4.96; O, 16.34; S, 11.91. 

 Elemental analysis (found) :   C, 68.73; H, 5.04; S, 7.78. 

The elemental analysis data confirms the formation of sulfonated poly(ether ether sulfone) 

derivative SPSU-2 and is consistent with the introduction of 20 % 1,1-diphenyethylene units 

along the polymer chain in the poly(ether ether sulfone) precursor PSU-2 and the subsequent 

sulfonation reaction with the 1,1-diphenyethylene unit to afford the sulfonated poly(ether ether 

sulfone) derivative SPSU-2. 

 

The ion exchange capacity of the sulfonated poly(ether ether sulfone) derivative SPSU-2 was 

determined by using the difference in the weight percentage contents of sulphur in the 

sulfonated poly(ether ether sulfone) SPSU-2 and the poly(ether ether sulfone) PSU-2 obtained 

from the elemental analysis method.133  The IEC of the sulfonated poly(ether ether sulfone) 

derivative SPSU-2 was calculated from the elemental analysis data as follows:134, 135 

IEC = 1000 Sc/ MWs  

Where Sc :  resultant sulphur content determined by elemental analysis, 0.82 %. 

 MWs :  the molecular weight of sulphur, 32.1 g. 

 IEC :  in mmol/g. 

An IEC value of 0.25 mmol/g was obtained, in comparison with the ion exchange capacity 

value of 0.91 mmol/g for Nafion-117 as recorded by Luo and coworkers.164  
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A new, well-defined sulfonated poly(ether ether sulfone) derivative SPSU-2 has been 

prepared by the reaction of poly(ether ether sulfone) derivative PSU-2 with sodium 3-

mercapto-1-propane sulfonate via the thiol-ene functionalization method.  Spectroscopy data 

as well as TGA, DSC, XRD, TEM and AFM analyses confirm the regiospecific introduction 

of the alkyl sulfonate group along the polymer backbone.  The new sulfonated poly(ether ether 

sulfone) derivative SPSU-2 is thermally less stable than the poly(ether ether sulfone) 

precursor PSU-2, but exhibits a higher glass transition temperature due to the introduction of 

the pendant alkyl sulfonate group which reduces the polymer chain flexibility. 

 

4.3 Synthesis of Poly(ether ether ketone)s based on  Functionalized   

 1,1-Diphenylethylene Derivatives 

 

Poly(ether ether ketone)s are a special class of engineering polymers with good chemical and 

physical stability, excellent mechanical properties and good hydrolytic stability.  In general, 

poly(ether ether ketone)s are semicrystalline polymers with limited solubility in common 

organic solvents.  The most efficient synthesis routes for the preparation of poly(ether ether 

ketone)s involves the following synthesis methods6, 7: 

 

(a) The base catalyzed nucleophilic substitution polymerization reactions of dihalogenated 

diaryl ketones with bisphenols.6, 7 

(b) The electrophilic aromatic substitution reactions in step-growth polymerization.6,7 

(c) The metal catalyzed coupling polymerization reactions of dihalogenated diaryl ketones 

with silylated bisphenols.6, 7 
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In the present study, a series of new poly(ether ether ketone) derivatives was prepared by the 

cesium fluoride catalyzed polycondensation reactions of 4,4´-difluorobenzophenone (6) with 

different mole percentage ratios of silylated derivatives, 2,2-bis(4-t-butyldimethylsiloxy- 

phenyl)propane (2) and 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in N-methyl-2-

pyrrolidone at 150 °C. 

 

4.3.1 Synthesis and Purification of Monomers 

 

4.3.1.1 Purification of 4,4´-Difluorobenzophenone (6) 

 

Recrystallization of commercially available 4,4´-difluorobenzophenone (6) from ethanol gave 

a pure product as white crystals with a melting point of 102 – 104 °C (lit mp137 = 102 - 104 

°C) and the following structure: 

 

CF F
O

(6)  

 

4.3.1.2 Synthesis of 2,2-Bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

 

The synthesis of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) from the reaction of 

bisphenol A with t-butyldimethylsilyl chloride and imidazole hydrochloride in methylene 

chloride has been reported in the literature.148  A synthetic feature of the reaction is the facile 

removal of the imidazole salt by filtration.  In addition, Quirk and coworkers138 and De 
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Meulenaer and coworkers140 outlined the synthesis of silylated bisphenol derivatives using 

different bisphenol compounds as starting material. 

 

In the current study, the synthesis of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) was 

effected by the general procedure outlined by Quirk and Wang,138 with modifications.  The 

reaction of bisphenol A with t-butyldimethylsilyl chloride in the presence of imidazole and 

N,N-dimethylformamide gave the crude product as a clear viscous residue.  Purification of the 

product by column chromatography using petroleum ether and ethyl acetate (80/20 = v/v) as 

eluent gave a clear viscous product.  The viscous product solidified on standing to form a 

white solid, data which was previously not reported in the literature.  Recrystallization of the 

white solid from absolute ethanol gave pure 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane 

(2) as white crystals in 94 % yield and a melting point of 69 – 72 °C. 

 

The following reaction pathway outlines the synthetic route for the preparation of 2,2-bis(4-t-

butyldimethylsiloxyphenyl)propane (2): 

 

HO OH
CH3

CH3

CH3

CH3

ORRO

Si Cl

Imidazole/
DMF

With   RO   = Si O

(2)
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The structure of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) was confirmed by 1H 

NMR (Figure 1) and 13C NMR (Figure 2) spectrometry and FTIR (Figure 3) analysis.  A 

modified synthesis pathway for the preparation of the silylated bisphenol A derivative,    

2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) is reported.  After purification of the 

product by column chromatography, a clear viscous product was isolated and solidified on 

standing to form a white solid.  Recrystallization of the white solid from absolute ethanol gave 

pure 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) as white crystals with a melting point 

of 69 - 72 °C. 

 

4.3.1.3 Synthesis of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 

 

Symmetrical disubstituted 1,1-diphenylethylene derivatives can be prepared via the following 

synthesis pathways: (a) the conversion of the appropriate benzophenone precursor to the 

corresponding carbinol intermediate, followed by the thermal or acid catalyzed dehydration of 

the intermediate carbinol to produce the corresponding disubstituted 1,1-diphenylethylene 

derivative;132 (b) the direct conversion of disubstituted benzophenones to the corresponding 

disubstituted 1,1-diphenylethylene derivatives by the Wittig reaction with phosphoryl 

ylides138or the Tebbe reagent;151 and (c) via the copper-catalyzed C-H addition of arenes with 

aryl acetylenes to produce the corresponding disubstituted 1,1-diphenylethylene 

derivatives.149, 150 

 

The preparation of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was first reported by 

Quirk and Wang138 using the following method: 
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(a) The reaction of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride in the 

presence of imidazole and N,N-dimethylformamide to form the intermediate 4,4´-bis(t-

butyldimethylsiloxy)benzophenone derivative.138 

(b) The conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to 1,1-bis(4-t-

butyldimethylsiloxyphenyl)ethylene (3) via the Wittig reaction with phosphoryl ylides.138 

 

However, the intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone, was only 

obtained as a clear viscous liquid.  In addition, Hejaz and coworkers153 isolated the 

intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone as a solid, but no melting 

point data was recorded. 

 

The current research work reports the high yield synthesis pathway for the preparation of pure 

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) which was isolated as white crystals.  

The procedure outlined by Quirk and Wang,138 with modifications, was adopted and the 

synthetic route involved the following steps: 

 

(a) The preparation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone using   

4,4´-dihydroxybenzophenone as the starting material, and 

(b) The direct conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to     

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) via the classic Wittig reaction as 

outlined in the following reaction scheme: 
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HO OH

O

+ SiH3C
H3C

H3C
Cl

DMF/ imidazole

O

O

O SiSi
CH3

CH3

CH3
CH3

CH3

CH3

CH3

H3C
H3C

H3C

O

CH2

O SiSi
CH3

CH3

CH3
CH3

CH3

CH3

CH3

H3C
H3C

H3C

CH3

CH3

(3)

(i) Ph3PCH3Br / MeLi / THF

(ii) CH3OH

 

 

Preparation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone:  

The intermediate product, 4,4´-bis(t-butyldimethylsiloxy)benzophenone, which was obtained 

after treatment of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride in the 

presence of imidazole in N,N-dimethylformamide for 3 hours, was purified by column 

chromatography to give 4,4´-bis(t-butyldimethylsiloxy)benzophenone as a white solid.  

Recrystallization of the white solid from absolute ethanol gave pure     
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4,4´-bis(t-butyldimethylsiloxy)benzophenone as fine white crystals in 66 % yield with a 

melting point of 52.5 – 55.7 °C. 

 

The structure of 4,4´-bis(t-butyldimethylsiloxy)benzophenone was confirmed by 1H NMR 

spectrometry (Figure 4), 13C NMR spectrometry (Figure 5) as well as FTIR analyses (Figure 

6) and the spectral data is in good agreement with the data reported by Quirk and Wang.138  

The modified synthesis route for the conversion of the 4,4´-dihydroxybenzophenone to 4,4´-

bis(t-butyldimethylsiloxy)benzophenone afford the pure product as fine white crystals with a 

melting point of 52.5 – 55.7 °C. 

 

Preparation of 1,1-Bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3): 

The direct conversion of 4,4´-bis(t-butyldimethylsiloxy)benzophenone to the desired product, 

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was effected by the classic Wittig 

reaction at 0 °C.  The rapid treatment of 4,4´-bis(t-butyldimethylsiloxy)benzophenone with the 

phosphoryl ylide, generated in situ from the reaction of methyllithium with 

methyltriphenylphosphonium bromide, gave a clear viscous product which solidified on 

standing to give a white solid.  Recrystallization of the resultant white solid from absolute 

ethanol gave the target molecule, 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) as 

white crystals in 63 % yield with a melting point of 55.9 - 56.4 °C (lit mp138 = 56 - 57.5 °C).  

The structure of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene, (3) was confirmed by 1H 

NMR spectrometry (Figure 7), 13C NMR spectrometry (Figure 8) as well as FTIR analysis 

(Figure 9) and the spectroscopic data correspond well with the data reported by Quirk and 

Wang.138 
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The synthesis of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) was performed via a 

two step synthesis method using 4,4´-dihydroxybenzophenone as starting material.  The high 

yield formation of 4,4´-bis(t-butyldimethylsiloxy)benzophenone as white crystals was effected 

by the reaction of 4,4´-dihydroxybenzophenone with t-butyldimethylsilyl chloride.  The 

subsequent Wittig reaction of 4,4´-bis(t-butyldimethylsiloxy)benzophenone with an 

appropriate phosphoryl ylid afforded 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) as 

white crystals.  Results show that the treatment of 4,4´-bis(t-

butyldimethylsiloxy)benzophenone via the Wittig reaction with a phosphoryl ylid afforded 

1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in high yields and the absence of any 

benzophenone impurity. 

 

4.3.2  Synthesis of Poly(ether ether ketone)s by Step-Growth Polymerization 

 Methods 

 

4.3.2.1 The Cesium Fluoride Catalyzed Polymerization of Dihalogenated Diaryl 

 Ketones with Silylated Bisphenols 

 

The synthesis of poly(ether ether ketone)s by step-growth polymerization using dihalogenated 

diaryl ketones and silylated bisphenols as monomers in the presence of cesium fluoride as 

catalyst was first reported by Kricheldorf and coworkers29, 30, 78, 79.  Similarly, a new series of 

poly(ether ether ketone)s were prepared by the cesium fluoride catalyzed coupling 

polymerization reactions of 4,4´-difluorobenzophenone (6) with different mole percentage 

ratios of silylated monomers, 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and    
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1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in NMP as solvent at 150 °C according 

to the following reaction scheme: 

 

O

F F
+

CH3H3C

ORRO
+

RO OR

CH2

(6) (2) (3)

CsF/NMP/150 oC

O O

CH3H3C

O O

O O CH2

x 1-x n

With  RO       = Si O
 

 

In a typical procedure, the synthesis of the poly(ether ether ketone) derivative, PEEK-2 was 

effected by the polycondensation reaction of 4,4´-difluorobenzophenone (6) and a specific 

mole percentage ratio of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2): 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene (3) = 80:20 in the presence of cesium fluoride as the 

catalyst in NMP at 150 °C for 12 hours.  The polymer product was precipitated into methanol, 
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filtered and vacuum dried to afford pure poly(ether ether ketone) derivative PEEK-2 as a 

white solid. 

 

The experimental data for the preparation of the different poly(ether ether ketone) derivatives 

is outlined in the following table: 

 

Polymer Monomer (6) 

mol % 

Monomer (2) 

mol % 

Monomer (3) 

mol % 

PEEK-1 100 100 0 

PEEK-2 100 80 20 

PEEK-3 100 50 50 

PEEK-4 100 20 80 

PEEK-5 100 0 100 

 

4.3.3. Characterization of the Different Poly(ether ether ketone)s Derivatives 

 

To study the effect of the introduction of the 1,1-diphenylethylene unit along the polymer 

backbone, a series of new poly(ether ether ketone) derivatives was prepared by the cesium 

fluoride catalyzed step-growth polymerization of dihalogenated diaryl ketones with silylated 

bisphenols.  The synthesis and characterization of poly(ether ether ketone) PEEK-2 as a 

representative sample is discussed in detail and the characterization data compared with the 

different PEEK samples, where applicable.  In a typical procedure, the synthesis of poly(ether 

ether ketone) PEEK-2 was effected by the polycondensation reaction of 4,4´-
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difluorobenzophenone (6) with 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) and 1,1-

bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) using cesium fluoride as the catalyst in NMP 

at 150 °C for 12 hours with the mole percentage ratio of the monomer feed of [6]:[2]:[3] = 

[100]:[80]:[20].  The resulting polymer was coagulated in methanol, filtered and vacuum dried 

to afford the poly(ether ether ketone) derivative PEEK-2 as a white solid. 

 

The molecular weight data of PEEK-1 and PEEK-2, the only poly(ether ether ketone) 

derivatives completely soluble in tetrahydrofuran, were determined by size exclusion 

chromatography.  The molecular weight characteristics of the THF insoluble poly(ether ether 

ketone) derivatives were determined by dilute solution viscometry analyses.  The number 

average molecular weight, the molecular weight distribution data and the inherent viscosity 

data for different poly(ether ether ketone) derivatives as determined by size exclusion 

chromatography and dilute solution viscometry measurements, respectively are depicted in the 

following table: 

 

Polymer Mn
 

×10-3 g/mol 

Mw
 

×10-3 g/mol 

Mw/Mn ŋinh (dL/g) 

at 25 °C 

PEEK-1 6.6 8.2 1.24 0.10 

PEEK-2 6.9 8.3 1.20 0.12 

PEEK-3 - - - 0.18 

PEEK-4 - - - 0.29 

PEEK-5 - - - 0.53 
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The size exclusion chromatogram (Figure 31) of the poly(ether ether ketone) derivative, 

PEEK-2 shows a broad monomodal molecular weight distribution curve with Mn = 6.9×103 

g/mol and Mw/Mn = 1.20.  The size exclusion chromatography data shows that the number 

average molecular weight of the 1,1-diphenylethylene based poly(ether ether ketone) 

derivative, PEEK-2 is higher than the number average molecular weight of poly(ether ether 

ketone) derivative, PEEK-1, indicating that the introduction of 20 mole percentage of 1,1-

diphenylethylene moiety into the polymer backbone leads to an increase in the number 

average molecular weight of the resultant poly(ether ether ketone) derivative.  The poly(ether 

ether ketone) derivatives PEEK-3, PEEK-4 and PEEK-5 are only slightly soluble in THF.  

Thus, the inherent viscosity data of each sample was determined by dilute solution viscometry 

measurements.  The dilute solution viscometry data shows that the inherent viscosity values 

increase with increasing 1,1-diphenylethylene content in the polymer chain and inherent 

viscosity values in the range of 0.10 to 0.53 dL/g were obtained. 

 

The 1H NMR spectrum (Figure 32) of poly(ether ether ketone) derivative PEEK-2 shows a 

singlet at δ = 1.71 ppm, due to the resonance of the protons of the methyl groups of the 

isopropylidene unit of the bisphenol A moiety.  The singlet at δ = 5.45 ppm, which 

corresponds to the resonance of the protons of the C=CH2 group, confirms the introduction of 

the 1,1-diphenylethylene unit along the polymer backbone.  A multiplet between δ = 6.98 - 

7.81 ppm is attributed to the resonance of the aromatic protons of the different p-substituted 

benzene rings along the polymer backbone. 
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The 13C NMR spectrum (Figure 33) of the poly(ether ether ketone) derivative PEEK-2, 

shows a signal at δ = 114.81 ppm, attributed to the resonance of the carbon atom of the 

C=CH2 groups along the polymer backbone.  The signal at δ = 194.28 ppm is assigned to the 

resonance of the carbonyl carbon atoms along the polymer chain.  The absence of any carbon 

atom resonance at -4.40 ppm and 25.69 ppm confirms the complete polymerization reaction 

and absence of any silylated monomer contaminant. 

 

The FTIR spectrum (Figure 34) of poly(ether ether ketone) derivative PEEK-2 shows an 

absorption band at 1654 cm-1, attributed to the C=O stretching mode of the ketone groups 

along the polymer backbone.  The absorption bands at 1497 and 1584 cm-1 correspond to the 

C=C stretching modes of the aromatic phenyl rings. 

 

The thermal stability of each poly(ether ether ketone) derivative was determined by 

thermogravimetric analysis.  The TGA curve (Figure 35) of the poly(ether ether ketone) 

derivative PEEK-2 shows a two step thermal degradation pattern: (a) a weight loss of 5.7 % 

was observed at 80 °C – 125 °C, due to the loss of residual solvent from the polymer, (b) rapid 

weight loss of 47 % between 457 °C and 700 °C, attributed to the degradation of the polymer 

backbone.  The 1,1-diphenylethylene based poly(ether ether ketone) derivative PEEK-5, 

which contains the highest 1,1-diphenylethylene content, is thermally less stable than the 

bisphenol A based poly(ether ether ketone) PEEK-1, which indicates that the introduction of 

the 1,1-diphenylethylene unit decreases the thermal stability of the resultant poly(ether ether 

ketone) derivative.  In addition, the weight percentage retained at 800 °C is higher for the 
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poly(ether ether ketone) derivatives with the higher 1,1-diphenylethylene content.  The TGA 

data for each poly(ether ether ketone) derivative is outlined in the following table: 

 

Polymer T20 (°C)  Td W650°C (%) 

PEEK-1 529 459 52 

PEEK-2 513 457 46 

PEEK-3 512 447 44 

PEEK-4 507 440 42 

PEEK-5 445 435 34 

 

where T20 represents the 20 % weight loss temperature, Td represents the onset temperature for 

polymer chain decomposition and W650°C represents the percentage weight loss at 650°C, the 

temperature at which complete polymer degradation is observed. 

 
The glass transition temperature for each poly(ether ether ketone) sample was determined by 

differential scanning calorimetry and the Tg values are shown in the following table: 

 
Polymer Tg (°C) 

PEEK-1 121 

PEEK-2 123 

PEEK-3 130 

PEEK-4 133 

PEEK-5 135 
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The DSC thermogram of the poly(ether ether ketone) derivative PEEK-2 is shown in Figure 

36.  A glass transition temperature of Tg = 123 °C was recorded for the poly(ether ether 

ketone) derivative PEEK-2.  Results show that the introduction of 20 mole percentage of the 

1,1-diphenylethylene unit into the polymer backbone increases the Tg value when compared to 

the Tg value of the corresponding bisphenol A based poly(ether ether ketone) PEEK-1.  

Furthermore, the Tg of the 1,1-diphenylethylene based poly(ether ether ketone) PEEK-5 (Tg = 

135 °C) is significantly higher than the corresponding bisphenol A based poly(ether ether 

ketone), PEEK-1 (Tg = 121 °C).  The Tg data shows that the introduction of the non-planar, 

rigid 1,1-diphenylethylene unit increases the polymer chain stiffness and reduces the polymer 

chain mobility and subsequently higher Tg values were obtained for polymers with increased 

1,1-diphenylethylene content. 

 

The membrane characteristics of the different poly(ether ether ketone) derivatives were 

evaluated by AFM analysis.  A dense membrane of the poly(ether ether ketone) derivative 

PEEK-2 was prepared by spin coating an NMP solution of the polymer onto a glass plate to 

give the dense membrane before the AFM analysis.  The AFM image of the poly(ether ether 

ketone) derivative PEEK-2 is shown in Figure 37.  The AFM image of the dense membrane 

of the poly(ether ether ketone) derivative PEEK-2 displays dark regions which represents 

pores of different shapes and sizes varying between 0.1 and 0.25 μm.  The lighter regions or 

nodule groups correspond to spherical polymer aggregates with nodule sizes varying between 

123 – 744 nm.  The membrane is not smooth, but displays a relatively high surface roughness 

value of 9.74 nm. 
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The morphology of each poly(ether ether ketone) derivative in the powder form was evaluated 

by transmission electron microscopy.  The TEM micrograph (Figure 38) of poly(ether ether 

ketone) derivative PEEK-2 depicts spherical polymeric plate structures of different sizes and 

shapes. 

 

The X-ray diffraction patterns for the different poly(ether ether ketone) derivatives in the 

powder form were recorded in order to determine the degree of crystallinity of each polymer 

sample.  The X–ray diffraction pattern (Figure 39) of the poly(ether ether ketone) derivative 

PEEK-2 shows characteristic broad peaks between 2θ = 10 - 25° and 28 - 50° which 

correspond with the amorphous and crystalline regions, respectively, which is typical of semi-

crystalline polymers.161-163 

 

Elemental analysis of the poly(ether ether ketone) derivative PEEK-2 was determined by 

elemental analysis and gave the following data: 

Elemental analysis (calculated): C, 82.79; H, 5.61. 

 Elemental analysis (found) :   C, 54.89; H, 3.65 

 

In addition, the elemental composition of the poly(ether ether ketone) derivative PEEK-2 was 

determined by energy dispersive spectroscopy (EDS) measurements.  The EDS data for the 

poly(ether ether ketone) derivative PEEK-2 are depicted in the following table and show that 

elemental sulphur was not present in the poly(ether ether ketone) derivative PEEK-2: 
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Element Elements Weight % Weight % error Atom % 

CK 9.89 0.24 14.77 

OK 56.13 - 62.92 

NaK 7.40 0.13 5.77 

MgK 1.35 0.10 1.00 

AlK 0.66 0.05 0.44 

SiK 21.56 0.14 13.74 

CaK 31.05 0.06 1.36 

Total 100  100 

 

A series of new, well-defined poly(ether ether ketone) derivatives was prepared by catalytic 

arylation polycondensation reactions between dihalogenated diaryl ketones and silylated 

bisphenols.  The different semicrystalline polymers were characterized by 1H NMR 

spectrometry, 13C NMR spectrometry and FTIR spectroscopy and confirms the regiospecific 

introduction of the 1,1-diphenylethylene along the polymer backbone.  In addition, the 1,1-

diphenylethylene based poly(ether ether ketone) derivatives are thermally less stable than the 

bisphenol A based poly(ether ether ketone) derivatives, but the Tg values of the resultant 

polymers increases with increased 1,1-diphenyethylene content.  The membrane 

characteristics and polymer morphology of the poly(ether ether ketone) derivatives were 

evaluated by AFM and TEM analyses, respectively and show good membrane integrity and 

stability. 
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4.4 Synthesis and Characterization of Sulfonated Poly(ether ether ketone)s 

 

Several post-polymerization sulfonation routes for the introduction of the sulfonic acid group 

onto the poly(ether ether ketone) backbone have been reported in the literature.37, 94-100  

However, such sulfonation reactions proceed without the control of the amounts and the 

position of sulfonate groups along the poymer backbone.  Recently, thiol-ene click chemistry 

methods for the post-polymerization functionalization of different polymer backbones were 

developed by the late Charles Hoyle and coworkers.61  Subsequently, Guan and coworkers 15
 

prepared sulfonated poly(ether ether ketone) via the thiol-ene free radical coupling reaction of 

the parent poly(ether ether ketone), substituted with the pendant propenyl functional group, 

using sodium 3-mercapto-1-propane sulfonate as the sulfonating agent in the presence of 

AIBN.  Similarly, due to the regiospecific introduction of the C=CH2 group along the polymer 

backbone of the different poly(ether ether ketone) derivatives (PEEK-2 to PEEK-5), a new 

sulfonation method using thiol-ene chemistry was developed for the synthesis of sulfonated 

poly(ether ether ketone) derivatives using the new poly(ether ether ketone) samples as 

precursors.  In the present study, a new sulfonated poly(ether ether ketone) derivative was 

prepared from the reaction of poly(ether ether ketone) derivative PEEK-2 with sodium 3-

mercapto-1-propane sulfonate in the presence of AIBN as initiator in NMP/DMSO at 75 °C 

for 5 days.  The polymer product was purified by dialysis with 30 % aqueous acetone for 72 

hours.  The polymer product was precipitated into water, filtered and vacuum dried to afford 

sulfonated poly(ether ether ketone) SPEEK-2 as a white solid.  The reaction scheme for the 

sulfonation of poly(ether ether ketone) derivative PEEK-2 via the thiol-ene reaction is 

depicted as follows: 
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The sulfonation reaction using the thiol-ene click chemistry method is regiospecific since the 

reaction occurs between the 1,1-diphenylethylene unit along the polymer backbone and the 

sulfonating agent, sodium 3-mercapto-1-propane sulfonate and results in the formation of a 

sulfonated polymer with controlled degree of sulfonation.  The size exclusion chromatogram 

(Figure 40) of sulfonated poly(ether ether ketone) SPEEK-2 shows a monomodal molecular 

weight distribution curve with Mn = 7.1 × 103 g/mol and molecular weight distribution of 1.21.   

 

The 1H NMR spectrum (Figure 41) of the sulfonated poly(ether ether ketone) derivative 

SPEEK-2, shows the following characteristic peaks:15, 69, 70, 132 (a) a singlet at δ = 1.65 ppm, 

due to the resonance of the protons of the methyl groups from the bisphenol A moeity; (b) a 

quintet at δ = 1.84 – 1.92 ppm, ascribed to the resonance of the methylene protons of the alkyl 

sulfonate group, CH2-CH2-CH2SO3Na; (c) a triplet at δ = 2.15 - 2.20 ppm, due to the 

resonance of the methylene protons of the S-CH2-CH2-CH2SO3Na group; (d) a triplet at δ = 

2.67 - 2.75 ppm, assigned to the resonance of the protons of the (CH2)2-CH2-SO3Na group.  
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The triplet at δ = 4.37 – 4.41 ppm and the doublet at δ = 4.45 – 4.47 ppm, due to the 

resonances of the methine proton of R2-CH-CH2 and the protons of R2CH-CH2-S respectively, 

which indicates that the thiol-ene reaction between the sulfonating agent and the 

diphenylethylene unit along the polymer backbone proceeded via the anti-Markovnikov 

addition method.15 

 

The 13C NMR spectrum (Figure 42) of the sulfonated poly(ether ether ketone) derivative 

SPEEK-2 shows characteristic peaks at δ = 30.59 ppm (S-CH2-CH2-CH2SO3Na), δ = 31.19 

ppm (C-(CH3)2), δ = 42.40 ppm (C-(CH3)2) and δ = 63.56 ppm (CH-CH2-S-CH2) which 

confirms the introduction of the sulfonating unit pendant to the polymer backbone. 

 

The FTIR spectrum (Figure 43) of the sulfonated poly(ether ether ketone) SPEEK-2 displays 

an absorption band at 1657 cm-1, due to the C=O carbonyl stretching modes of the ketone 

groups along the polymer backbone.  The absorption bands at 1024, 1496 and 1590 cm-1 are 

attributed to the O=S=O stretching modes of the sulfonate groups and the C=C vibration and 

stretching modes of the aromatic rings along the polymer backbone, respectively. 

 

The thermal stability of the sulfonated poly(ether ether ketone) derivative SPEEK-2 was 

determined by thermogravimetric analysis.  The TGA thermogram (Figure 44) of sulfonated 

poly(ether ether ketone) derivative SPEEK-2 exhibits a three phase thermal degradation 

pattern: (a) a weight loss of 0.43 % between 100 - 125 °C, attributed to the loss of moisture 

and residual solvent within the polymer; (b) a weight loss of 1.9 % between 310 – 350 °C, due 

to the thermal decomposition of the pendant alkyl sulfonate groups; and (c) a rapid weight loss 
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of 47 % between 500 – 600 °C, which corresponds to the degradation of the polymer 

backbone.  Due to the introduction of the pendant alkyl sulfonate groups, the sulfonated 

poly(ether ether ketone) derivative SPEEK-2 is thermally less stable than the poly(ether ether 

ketone) precursor PEEK-2 between 100 – 600 °C, but the mass retained after 800 °C is higher 

for the sulfonated poly(ether ether ketone) SPEEK-2. 

 

The glass transition temperature of the sulfonated poly(ether ether ketone) derivative SPEEK-

2 was determined by differential scanning calorimetry.  The DSC thermogram (Figure 45) for 

sulfonated poly(ether ether ketone) derivative SPEEK-2 shows a glass transition temperature 

of 148 °C.  The Tg value for the sulfonated poly(ether ether ketone) derivative SPEEK-2 is 

higher than the Tg value of poly(ether ether ketone) PEEK-2 (Tg = 123 °C) due to the 

introduction of pendant alkyl sulfonate groups to the polymer backbone. The pendant alkyl 

groups as well as the interchain association of the sulfonate groups reduce the chain flexibility 

and consequently increases the Tg of the sulfonated poly(ether ether ketone) SPEEK-2.  The 

DSC data shows that the sulfonated poly(ether ether ketone) derivative SPEEK-2 is 

amorphous with no melting peak or crystallization peak detected up to 400 °C. 

 

Atomic force microscopy was used to determine the morphology and membrane 

characteristics of sulfonated poly(ether ether ketone) derivative SPEEK-2.  A dense 

membrane from sulfonated poly(ether ether ketone) was prepared by the spin coating method 

for AFM analysis.  The AFM image (Figure 46) of the sulfonated poly(ether ether ketone) 

derivative SPEEK-2 displays dark domains which are attributed to pores with different sizes 

and shapes and pore sizes between 297 – 563 nm.  The light circular and spherical regions 
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correspond to the nodules or polymer aggregates within the polymer membrane.  The surface 

of the membrane shows a surface roughness value of 2.4 nm, indicating that the sulfonation 

reaction produced a smoother membrane when compared to the membrane obtained from the 

poly(ether ether ketone) PEEK-2 precursor.155-157 

 

The morphology of sulfonated poly(ether ether ketone) derivative SPEEK-2 in the powder 

form was evaluated by transmission electron microscopy.  Spherical aggregates of polymer 

consisting of lamellae of different sizes and shapes are observed as dark regions in the TEM 

image (Figure 47) of the sulfonated poly(ether ether ketone) derivative SPEEK-2. 

 

The degree of crystallinity of the sulfonated poly(ether ether ketone) derivative SPEEK-2 in 

the powder form was determined by X–ray diffraction methods.  The XRD pattern of 

sulfonated poly(ether ether ketone) derivative SPEEK-2 is shown in Figure 48 and indicates 

that the polymer structure is predominantly amorphous.  A broad peak between 2θ = 20° - 25° 

confirmed the predominant amorphous character of the sulfonated poly(ether ether ketone) 

derivative SPEEK-2 which is attributed to the presence of alkyl sulfonate groups along the 

polymer backbone of the sulfonated polymer. 

 

The percentage sulphur content of the sulfonated poly(ether ether ketone) derivative SPEEK-

2 was determined by elemental analysis and gave the following data: 

Elemental analysis (calculated): C, 71.9; H, 5.31; Na, 2.29; O, 14.33; S, 6.38. 

 Elemental analysis (found) :   C, 21.96; H, 1.72; S, 0.22. 
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In addition, the elemental composition of the sulfonated poly(ether ether ketone) derivative 

SPEEK-2 was determined by energy dispersive spectroscopy (EDS) measurements.  The EDS 

data for the sulfonated poly(ether ether ketone) derivative SPEEK-2 is depicted in the 

following table: 

 

Element Elements Weight % Weight % error Atom % 

CK 25.77 0.20 31.96 

OK 71.17 - 66.27 

FK - - - 

NaK 1.46 0.06 0.95 

SiK 1.09 0.03 0.58 

SK 0.52 0.03 0.24 

Total 100  100 

 

The EDS data of the sulfonated poly(ether ether ketone) derivative SPEEK-2 show the 

presence of elemental sulphur, which confirms the introduction of the mercaptopropyl 

sulfonate group pendant to the polymer.  The sulfur content of the sulfonated poly(ether ether 

ketone) derivative SPEEK-2 of 0.24 atom percent of sulphur in the polymer backbone was 

obtained by EDS measurements. 

 

The ion exchange capacity of the sulfonated poly(ether ether ketone) derivative SPEEK-2 was 

calculated from the percentage of sulphur content obtained from EDS data and elemental 
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analysis.  For the sulfonated poly(ether ether ketone) derivative SPEEK-2, the sulphur content 

obtained by elemental analysis is 0.22 %.  The IEC value was calculated as follows:134, 135 

IEC = 1000 Sc/ MWs  

Where Sc :  sulphur content determined by elemental analysis, 0.22 %. 

 MWs :  the molecular weight of sulphur, 32.1 g. 

 IEC :  in mmol/g. 

An IEC value of 0.07 mmol/g was obtained for the sulfonated poly(ether ether ketone) 

derivative SPEEK134, 135  and compared favourably with the average IEC value of 0.91 

mmol/g for Nafion-117 with higher degree of sulfonation.164 

 

The synthesis of a new sulfonated poly(ether ether ketone) derivative SPEEK-2 via a new 

sulfonation post-polymerization method is described.  The sulfonation reaction involves the 

treatment of 1,1-diphenylethylene based poly(ether ether ketone) PEEK-2 with sodium 3-

mercapto-1-propane sulfonate via the classic thiol-ene functionalization method to effect the 

regiospecific introduction of the alkyl sulfonate groups pendant to the polymer chain.  The 

structure of the sulfonated poly(ether ether ketone) derivative SPEEK-2 was confirmed by 

SEC, 1H NMR and 13C NMR spectrometry as well as FTIR analysis.  TGA and DSC data 

show that the sulfonated poly(ether ether ketone) derivative SPEEK-2 is thermally less stable, 

but exhibits a higher Tg value when compared to the poly(ether ether ketone) precursor 

PEEK-2.  AFM and TEM data show that membranes obtained from the sulfonated poly(ether 

ether ketone) derivative SPEEK-2 exist as spherical aggregates of polymer and the dense 

membranes exhibit excellent membrane characteristics.  The ion exchange capacity value for 
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sulfonated poly(ether ether ketone) derivative SPEEK-2 with low levels of sulfonation 

compares favourably to Nafion-117 with higher degree of sulfonation. 

 

4.5 Synthesis of Polyimides based on Functionalized 1,1-Diphenylethylene 

 Derivatives 

 

Polyimides are thermally stable engineering polymers used as dielectric and packing material 

in the microelectronics industry.  The high thermal stability, chemical inertness and good 

adhesion make polyimides the material of choice for applications in the semi-conductor 

industry.  In addition, polyimides are extensively used in the manufacture of optical films, 

aircraft and automobile engines as well as membranes in fuel cell technology.165-166 

 

In general, polyimides can be prepared via three different synthetic methods, namely: 

(a) The one step melt polymerization of diamines with tetracids or diacids/diesters.165-166 

(b) The two step polycondensation reaction between aromatic tetracarboxylic dianhydrides 

and aromatic diamines at room temperature in a polar aprotic solvent.165-166  In the first 

step, the polycondensation reaction between an aromatic tetracarboxylic dianhydride and 

an aromatic diamine proceeds via a ring-opening polyaddition reaction to form the 

polyamic acid intermediate.  In the second step, the polyamic acid intermediate undergoes 

a thermal or chemical imidization reaction to produce the corresponding polyimide. 

(c) A three step polymerization process which involves the formation of polyisoimides as 

intermediate polymer products.165-166 
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Most polyimides in the fully cyclised state cannot be processed due to their high glass 

transition temperature and insolubility in common organic solvents.  To improve the 

processability of aromatic polyimides, it is common to introduce a flexible monomeric unit 

into the polymer repeating unit directly or by post-polymerization functionalization reactions. 

In the present study, a series of new aromatic polyimide derivatives were prepared by step-

growth polymerization methods by the polycondensation reactions of 4,4´-oxydiphthalic 

anhydride (7) with different mole percentage ratios of 2,2-bis[4-(4-

aminophenoxy)phenyl]propane (8) and 1,1-bis(4-aminophenyl)ethylene (9) as monomer 

precursors.  The intermediate polyamic acids were subjected to a thermal imidization process 

to provide the corresponding polyimide derivatives. 

 

4.5.1 Synthesis and Purification of Monomers 

 

4.5.1.1 Purification of 4,4´-Oxydiphthalic Anhydride (7) 

 

Recrystallization of commercially available 4,4´-oxydiphthalic anhydride (7) from acetic 

anhydride gave a pure product as white crystals with a melting point of 224 – 226 °C (lit mp143 

= 224 – 226 °C) and the following structure: 

O
OO

O

O

O

O

(7)  
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4.5.1.2 Purification of 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (8) 

 

The commercially available 2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) was purified by 

recrystallization from ethanol, vacuum dried at 60 °C for 12 hours to afford pure product as 

white crystals with a melting point of 127 – 130 °C (lit mp144 = 129 °C) and the following 

structure: 

 

CH3

CH3

OO

(8)

NH2H2N

 

 

4.5.1.3 Synthesis of 1,1-Bis(4-aminophenyl)ethylene (9) 

 

The preparation of symmetrical diamine functionalized 1,1-diphenylethylene derivatives can 

be accomplished by different synthetic organic chemistry methods.146 Bencze147 reported a 

method for the synthesis of 1,1-bis(4-aminophenyl)ethylene (9) by the reaction of                

3,3-di(4-aminophenyl)-2-butanone with phosphoric acid.  In addition, the high yield 

preparation of 1,1-bis(4-aminophenyl)ethylene (9) by the Friedel-Craft reaction of the 

aromatic substrates with 1,1,1-trichloroethane was reported by Sonawane and coworkers.153  

Recently, Ndawini146 reported the preparation of 1,1-bis(4-aminophenyl)ethylene (9) by a new 

method which involves the Wittig reaction using 4,4´-diaminobenzophenone as substrate. 
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In the present study, the preparation of 1,1-bis(4-aminophenyl)ethylene (9) was effected by 

the Wittig reaction using 4,4´-diaminobenzophenone as starting material as outlined by 

Ndawuni.146  Treatment of 4,4´-diaminobenzophenone with a phosphorous ylide, generated in 

situ from the reaction of methyllithium and methyltriphenylphosphonium bromide, in dry 

tetrahydrofuran under reflux for 12 hours gave 1,1-bis(4-aminophenyl)ethylene (9) according 

to the following reaction pathway: 

 

O

NH2H2N

CH2

NH2H2N

(9)

(i) Ph3PCH3Br/MeLi/THF

(ii) CH3OH

 

 

Column chromatography of the crude product using petroleum ether/ethyl acetate (50/50 = 

v/v) as eluent afforded a pale yellow solid.  Recrystallization of the crude product from 

ethanol/water = 80/20 afforded 1,1-bis(4-aminophenyl)ethylene (9) as yellow crystals in 52 % 

yield and a melting point of 161.5 – 163.1 °C (lit mp147 = 170 – 172 °C). 
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The 1H NMR spectrum (Figure 49) of 1,1-bis(4-aminophenyl)ethylene (9) exhibits the 

following spectral characteristics: (a) a broad singlet at δ = 3.69 ppm, attributed to the 

resonance of the primary amine protons of the NH2 groups; (b) a singlet at δ = 5.19 ppm, due 

to the resonance of the equivalent methylene protons of the C=CH2 group; and (c) a doublet of 

doublets at δ = 6.61 - 7.25 ppm, which correspond to the resonance of the aromatic protons of 

the p-substituted benzene rings. 

 

The 13C NMR spectrum (Figure 50) of 1,1-bis(4-aminophenyl)ethylene (9) shows a peak at δ 

= 109.71 ppm, attributed to the resonance of the olefin carbon atom of the terminal C=CH2 

and a signal at 132.31 ppm, due to the resonance of the C-2 carbon of the CH2=CR2 group, 

consistent with literature reports.138 

 

The FTIR spectrum (Figure 51) of 1,1-bis(4-aminophenyl)ethylene (9) shows the presence of 

absorption bands at 3435 cm-1 and 890 cm-1, due to the stretching modes of the N-H and the 

=C-H (of C=CH2) bonds, respectively. 

 

A synthesis route for the conversion of 4,4´-diaminobenzophenone to 1,1-bis(4-

aminophenyl)ethylene (9) by the classic Wittig reaction gave the pure product as yellow 

crystals in 52 % yield with a melting point of 161.5 - 163.1 °C.  The structure was confirmed 

by 1H NMR and 13C NMR spectrometry and FTIR analysis and the spectroscopic data is 

consistent with the data reported by Ndawuni.146 
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4.5.2 Synthesis of Polyimides by Step-Growth Polymerization Methods 

 

4.5.2.1 The Polymerization of Aromatic Tetracarboxylic Dianhydrides with 

Aromatic Diamines followed by a Thermal Imidization Process 

 

The synthesis of aromatic polyimides by a two step polycondensation reaction using aromatic 

dianhydrides and aromatic diamines as monomer precursors is the most efficient method for 

the preparation of aromatic polyimides.  In general, aromatic polyimides cannot be processed 

due to their high Tg values and low solubility in organic solvents.  The processability of 

aromatic polyimides can be overcome by processing the intermediate polyamic acid 

derivatives, followed by the formation of the polyimide via a thermal imidization process.  In 

the current study, a new series of polyimide derivatives were prepared by step-growth 

polymerization of 4,4´-oxydiphthalic anhydride (7) with different mole percentage ratios of 

2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) and 1,1-bis(4-aminophenyl)ethylene (9) in 

N,N-dimethylacetamide as solvent according to the following pathway: 
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(i)  DMAc/30 oC/24 hours/N2

(ii) Thermal imidization 100 oC, 200 oC and 250 oC for one hour each
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In a typical procedure, the preparation of the polyimide derivative PI-2 was effected by the 

polycondensation reaction of 4,4´-oxydiphthalic anhydride (7) with a mole percentage ratio of 

2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) : 1,1-bis(4-aminophenyl)ethylene (9) = 80:20 

in N,N-dimethylacetamide at 30 °C for 24 hours.  The step-growth polymerization reaction 

proceeded smoothly at 30 °C for 24 hours to afford the intermediate homogeneous polyamic 

acid solution.  The polyamic acid solution was cast onto a glass plate and subjected to a 

thermal imidization process which involves heating the sample for an hour each at 100 °C, 

200 °C and 250 °C.  After removal of the film from the glass plate, the polyimide derivative 

PI-2 was isolated as a brown film.  The following table outlines the stoichiometry for the 

different polymerization reactions for the preparation of new polyimide derivatives: 

 

Polymer Monomer (7) 

mol % 

Monomer (8) 

mol % 

Monomer (9) 

mol % 

PI-1 100  100 - 

PI-2 100 80 20 

PI-3 100 50 50 

PI-4 100 20 80 

PI-5 100 - 100 

 

4.5.3 Characterization of the Different Polyimide Derivatives 

 

A series of new polyimide derivatives were prepared by the step-growth polymerization 

method which involves the polycondensation of aromatic dianhydrides with aromatic 
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diamines, followed by a thermal imidization process.  Polyimide derivatives with different 

1,1-diphenylethylene content were prepared to determine the impact of the                

1,1-diphenylethylene unit along the polymer backbone on polymer properties.  In a typical 

procedure, the synthesis of the polyimide derivative PI-2 was effected by the 

polycondensation reaction of 4,4´-oxydiphthalic anhydride (7) with 2,2-bis[4-(4-

aminophenoxy)phenyl]propane (8) and 1,1-bis(4-aminophenyl)ethylene (9) in DMAc for 24 

hours with the mole percentage ratio of the monomer feed of [7]:[8]:[9] = [100]:[80]:[20] to 

provide the corresponding polyamic acid intermediate.  In the second step, the thermal 

imidization of the polyamic acid derivative afforded the polyimide copolymer PI-2 as a brown 

film.  The synthesis and characterization data of polyimide PI-2 as a representative sample are 

reported in detail and the data compared with the other polyimide samples, where applicable. 

The different polyimide derivatives are insoluble in common organic solvents such as THF.  

Thus, the molecular weight measurements for the different polyimide derivatives were 

obtained by dilute solution viscometry analyses.  The inherent viscosity of the polyimide 

samples were determined using an Ubbelohde viscometer using sulfuric acid (98 %) solution 

as solvent.  Inherent viscosity values in the range of 0.10 - 0.35 dL/g for the different 

polyimide derivatives were obtained, indicating the formation of low molecular weight 

polymers.  The inherent viscosity of the polyimide derivative PI-1 is lower than the 1,1-

diphenyethylene based polyimide derivative PI-5.  In addition, inherent viscosity data shows 

that the molecular weight of the resultant polyimide derivatives increases with increasing 1,1-

diphenylethylene content.  The inherent viscosity (ŋinh) data of the different polyimides 

derivatives are listed in the following table: 
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Polymer ŋinh (dL/g) 

at 25 °C 

PI-1 0.10 

PI-2 0.24 

PI-3 0.32 

PI-4 0.35 

PI-5 0.35 

 

The 1H NMR spectrum (Figure 52) of the polymide derivative PI-2 shows the following 

spectral characteristics: (a) a singlet at δ = 1.65 ppm, corresponding to the resonance of the 

protons of the methyl groups of the isopropylidene group of the monomer; (b) a singlet at δ = 

5.65 ppm, due to the resonance of the protons of the C=CH2 of the 1,1-diphenylethylene unit 

moiety along the polymer backbone; and (c) a mutiplet at δ = 6.99 – 8.10 ppm, due to the 

resonance of the different aromatic protons of the phenyl rings along the polymer backbone. 

 

The 13C NMR spectrum (Figure 53) of the polyimide derivative PI-2 shows the following 

spectral data : (a) signals at δ = 31.14 ppm and 42.28 ppm, assigned to the resonance of the 

primary and quaternary carbon atoms of the isopropylidene group of the monomer unit; (b) 

signals at δ = 114.19 ppm and 134.98 ppm, corresponding to the resonance of the carbon 

atoms of C-1 (CH2=CR2) and C-2 (CH2=CR2) olefin carbon atoms of the CH2= CR2 group, 

respectively, confirming the incorporation of the 1,1-diphenylethylene moiety along the 

polymer backbone. 
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The FTIR spectrum (Figure 54) of the polyimide derivative PI-2 displays absorption bands at 

1779 cm-1 and 1720 cm-1, which are attributed to the stretching modes of the carbonyl groups 

of the imide functionality along the polyimide backbone.  The absorption band at 730 cm-1 is 

due to the C-N stretching vibrations of the imide groups along the polymer backbone. 

 

The thermal characteristics of each polyimide derivative were determined by 

thermogravimetric analysis and differential scanning calorimetry.  The TGA thermogram 

(Figure 55) of the polyimide derivative PI-2 shows a two step degradation pattern with the 

following characteristics: (a) a weight loss of 0.7 % is observed between 100 °C – 150 °C, 

attributed to the loss of water and residual solvent in the polymer backbone; (b) a rapid weight 

loss of 47 % between 500 °C - 650 °C due to the degradation of the polymer backbone.  As for 

the polyimide derivative PI-5, the TGA thermogram (Figure 55) shows a three step 

degradation pattern with the following characteristics: (a) a weight loss of 1.6 % is observed 

between 100 °C – 150 °C corresponding to the loss of water and residual solvent; (b) a weight 

loss of 15 % between 335 °C – 425 °C probably due to the degradation of the 

diphenylethylene portion of the polymer; (c) a weight loss of 23 % between 500 °C – 650 °C 

due to the degradation of the rest of the polymer matrix.  The TGA analysis for each 

polyimide derivative is described in the following table: 
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Polymer T10 (°C) Td W650°C (%) 

PI-1 524 467 48 

PI-2 523 456 47 

PI-3 484 371 46 

PI-4 441 337 43 

PI-5 412 335 41 

 

where T10 represents the 10 % weight loss temperature, Td is the onset temperature for 

polymer chain decomposition and W650°C represents the percentage weight loss at 650°C, the 

temperature at which complete polymer degradation is observed. 

 

The DSC curve of the polyimide derivative PI-2 is shown in Figure 56.  A glass transition 

temperature of Tg = 228 °C was recorded for the polyimide derivative PI-2.  The glass 

transition temperature of each polyimide derivative was determined by DSC and is shown in 

the following table: 

 
Polymer Tg (°C) 

PI-1 225 

PI-2 228 

PI-3 235 

PI-4 239 

PI-5 256 
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Data shows that the Tg values of the different polyimide derivatives range between 225°C - 

256 °C and increases with the increased content of the 1,1-diphenylethylene unit.  The 

introduction of 20 mole % of the 1,1-diphenylethylene unit increases the Tg value of 

polyimide derivative PI-2 (Tg = 228 °C) when compared to the Tg value of the corresponding 

polyimide derivative PI-1 (Tg = 225 °C).  The increased polymer chain stiffness, due to the 

increased content of the rigid 1,1-diphenylethylene unit, coupled with the reduction in mole 

percentage ratio of the flexible isopropylidene unit and -O- groups, accounts for the higher Tg 

value for the 1,1-diphenylethylene based polyimide derivative PI-2 when compared to 

polyimide derivative PI-1. 

 

The membrane properties of the dense membrane of each polyimide derivative were 

determined atomic force microscopy analyses.  The AFM image of the polyimide derivative 

PI-2 is shown in Figure 57.  The AFM image of the polyimide derivative PI-2 shows light 

regions, high peaks and bright areas which is attributed to polymer nodules of different shapes 

and sizes.  The darker regions in the AFM image represent pores of different pore sizes 

ranging between 54.7 – 150 nm.155-157  The AFM image depicts high surface roughness with 

surface roughness value of 7.96 nm for the polyimide derivative PI-2. 

 

The morphology of the dense membrane of each polyimide derivative was investigated by 

transmission electron microscopy analysis.  The TEM micrograph (Figure 58) of the 

polyimide derivative PI-2, in the powder form, shows an aggregate mass of spherical polymer 

materials.  The TEM image of the cross-section of the dense membrane of the polyimide 

derivative PI-2 exhibits a dark porous surface. 
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The X-ray diffraction patterns for the different polyimide derivatives in the film form were 

recorded to determine the degree of crystallinity of each polymer sample.  The X–ray 

diffraction pattern (Figure 59) of the polyimide derivative PI-2 shows that the sample is 

predominantly amorphous in nature with crystalline domains.  The broad peaks between 2θ = 

20° - 25° is characteristic of the degree of amorphous character of the polymer sample.  The 

sharp peaks between 2θ = 30° to 45° represent crystalline domains within the polymer 

sample.161-163 

 

Elemental analysis of the polyimide derivative PI-2 was determined by elemental analysis and 

gave the following data: 

Elemental analysis (calculated): C, 75.12; H, 4.20; N, 4.67; O, 16.01. 

 Elemental analysis (found) :   C, 26.06; H, 1.02. 

 

A series of new, well-defined polyimide derivatives was prepared by the two step 

polycondensation reactions between an aromatic tetracarboxylic dianhydride and different 

aromatic diamines.  The intermediate polyamic acid derivatives were subject to a thermal 

imidization process to produce the corresponding polyimides.  The different polyimide 

derivatives were characterized by 1H NMR and 13C NMR spectrometry and FTIR 

spectroscopy and confirms the regiospecific introduction of the 1,1-diphenylethylene along the 

polymer backbone.  Thermal analyses data of the different polyimide derivatives show that the 

thermal stability of a particular polyimide derivative decreases with increased 1,1-

diphenyethylene content, but the Tg value increases with increased 1,1-diphenyethylene 
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content.  AFM and TEM analyses show excellent membrane morphology data for the different 

polyimide derivatives. 

 

4.6 Synthesis and Characterization of Sulfonated Polyimides 

 

In general, sulfonated polyimides can be prepared via the direct copolymerization of 

sulfonated monomers or via direct post-polymerization sulfonation reactions using the 

intermediate polyamic acid or the polyimide as precursors.126-128  The thiol-ene reaction, 

which was developed by the late Charles Hoyle and his coworkers, has been extensively 

applied as a general post-polymerization functionalization reaction to afford a plethora of 

functionalized polymers with well-defined polymer properties.63-64  Subsequently, the 

synthesis of sulfonated poly(ether ether ketone) by the thiol-ene reaction was reported by 

Guan and coworkers.15 In the present study, a new sulfonated polyimide derivative SPI-2 was 

prepared by the reaction of polyimide PI-2 with sodium 3-mercapto-1-propane sulfonate and 

AIBN in NMP/DMSO at 75 °C for 5 days.  The polymer product was subjected to a dialysis 

process with 30 % aqueous acetone for 3 days.  The sulfonated polyimide SPI-2 was isolated 

by precipitation into water, filtered and vacuum dried at 80 °C to give the sulfonated 

polyimide derivative SPI-2 as a light brown solid.  The following scheme outlines the 

synthesis of sulfonated polyimide SPI-2 via the thiol-ene method: 
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The sulfonated polyimide derivative SPI-2 is slightly soluble in THF.  Thus, the molecular 

weight of sulfonated polyimide SPI-2 was determined by dilute solution viscometry analysis 

using an Ubbelohde viscometer and sulfuric acid (98 %) as solvent and an inherent viscosity 

value of 0.25 dL/g at 25 °C was obtained.  The inherent viscosity of the sulfonated polyimide 

SPI-2 is almost the same as the inherent viscosity of the precursor polyimide derivative PI-2. 

 

The 1H NMR spectrum (Figure 60) of the sulfonated polyimide derivative SPI-2 shows a 

singlet at δ = 1.64 ppm, corresponding to the resonance of the protons of the methyl groups 

from the 2,2-bis[4-(4-aminophenoxy)phenyl]propane unit of the monomer precursor.  In 

addition, the 1H NMR spectrum exhibits the following peaks associated with the 

alkylsulfonate groups pendant to the polymer backbone of the sulfonated polyimide derivative 

SPI-2:15, 69, 70, 132 (a) a quintet at δ = 1.87 - 1.92 ppm, due to the presence of the pendant –CH2-

CH2-CH2SO3Na group along the polymer backbone; (b) a triplet at δ = 2.15 – 2.20 ppm, 

attributed to the resonance of the methylene protons of the S-CH2-CH2-CH2SO3Na group; (c) 

a triplet at δ = 2.64 – 2.72 ppm, assigned to the resonance of the protons of the S-(CH2)2-CH2-

SO3Na group; (d) a triplet at δ = 4.44 – 4.48 ppm, due to the resonance of the methine proton 
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of R2-CH-CH2-S group; and (e) a doublet at δ = 4.50 – 4.52 ppm, due to the resonance of the 

protons of the R2-CH-CH2-S- group. 

 

The 13C NMR spectrum (Figure 61) of the sulfonated polyimide derivative SPI-2, shows 

peaks at δ = 31.40 ppm (C(CH3)2), δ = 42.28 ppm (C-(CH3)2) and δ = 63.58 ppm (CH-CH2-S-

CH2) which confirms the introduction of the pendant alkyl sulfonate to the polyimide 

backbone. 

The FTIR spectrum (Figure 62) of the sulfonated polyimide derivative SPI-2 shows the 

following characteristic absorption bands: (a) at 1779 and 1720 cm-1, due to the asymmetrical 

and symmetrical C=O stretching vibrations of the imide rings; (b) at 1024 cm-1, assigned to 

the S=O stretching vibrations of the pendant sulfonate group; and (c) at 730 cm-1, due to the 

C-N adsorption bands. 

 

The thermal stability of the sulfonated polyimide derivative SPI-2 was determined by TGA 

measurements.  The TGA thermogram (Figure 63) of the sulfonated polyimide derivative 

SPI-2 shows a three phase decomposition pattern: (a) a weight loss of 2.8 % between 90 - 150 

°C, attributed to the loss of moisture and residual solvent from the polymer; (b) a small weight 

loss of 1.4 % at 200 – 250 °C, due to the decomposition of the alkyl sulfonate groups; and (c) 

a weight loss of 34 % at 450 – 600 °C, corresponding to the decomposition of the polymer 

chain.  The TGA data shows that the sulfonated polyimide derivative SPI-2 is thermally less 

stable than the polyimide precursor PI-2. 
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The thermal characteristics of the sulfonated polyimide derivative SPI-2 were determined by 

DSC analyses.  The DSC thermogram (Figure 64) of the sulfonated polyimide derivative SPI-

2 shows an onset of molecular motion at 244 °C and a glass transition temperature of 249 °C 

was recorded.  The Tg for the sulfonated polyimide derivative SPI-2 is higher than the Tg of 

the polyimide precursor PI-2 (Tg = 228 °C), due to the introduction of the pendant alkyl 

sulfonate group which increases polymer chain stiffness and consequently a higher Tg value is 

observed. 

 

The membrane characteristics of the sulfonated polyimide derivative SPI-2 were determined 

by atom force microscopy.  The AFM image (Figure 65) of the dense membrane of the 

sulfonated polyimide derivative SPI-2 shows membrane formation with well-defined porosity 

and low surface roughness.  The dark regions in the AFM image of the sulfonated polyimide 

SPI-2 represents pores of different sizes and shapes in the range of 52.13 – 299 nm.  The light 

spherical regions are due to the presence of polymer aggregates within the polymer 

membrane.  The AFM image of the sulfonated polyimide derivative SPI-2 indicates that the 

membrane morphology has changed with the incorporation of the alkyl sulfonate unit along 

the polymer chain.  The surface roughness value of 7.33 nm was recorded for the sulfonated 

polyimide derivative SPI-2 compared to the surface roughness value of 7.96 nm of the 

polyimide derivative PI-2. 

 

The morphology of the sulfonated polyimide SPI-2 was determined by transmission electron 

microscopy.  The TEM image (Figure 66) of the powder form of the sulfonated polyimide 

SPI-2 shows spherical multilayer polymer sheets.  The cross-section TEM micrograph of the 
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dense membrane form of the sulfonated polyimide SPI-2 shows a compacted membrane 

structure with even porosity throughout the membrane. 

 

The crystallinity of the sulfonated polyimide derivative SPI-2 was evaluated by X–ray 

diffraction measurements.  The X-ray diffraction pattern (Figure 67) exhibits the 

characteristic amorphous peak between 2θ = 20° to 25°.161-163  The amorphous nature of 

sulfonated polyimide derivative SPI-2 may be attributed to (a) the presence of flexible ether 

linkages, which lower the energy of internal rotation of the polymer chain; and (b) alkyl 

sulfonate groups pendant to the polymer chain, which reduce the rate of crystallization and the 

extent of crystallinity. 

 

Elemental analysis of the sulfoanted polyimide derivative SPI-2 was determined by elemental 

analysis and gave the following data: 

Elemental analysis (calculated): C, 68.01; H, 4.17; N, 4.07; Na, 1.67; O, 17.42. 

 Elemental analysis (found) :   C 85.14; H, 5.34; S, 0.53. 

 

The sulphur content of the sulfonated polyimide derivative SPI-2 was determined by 

elemental analysis and a value of 0.53 weight percent of sulphur in the polymer was obtained.  

The ion exchange capacity of the sulfonated polyimide derivative SPI-2 was calculated using 

the percentage of sulphur obtained from elemental analysis method according the following 

equation: 134, 135 

IEC = 1000 Sc/ MWs  
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Where Sc :  sulphur content determined by elemental analysis, 0.53 %. 

 MWs :  the molecular weight of sulphur, 32.1 g. 

 IEC :  in mmol/g. 

An IEC value of 0.16 mmol/g for sulfonated polyimide SPI-2 was obtained which compares 

favourably with the IEC value of 0.91 mmol/g for Nafion-117 with a higher degree of 

sulfonation.164 

 

The current research outlines the preparation of a new sulfonated polyimide derivative SPI-2 

with the alkyl sulfonate group regiospecifically introduced pendant to the polymer chain.  The 

post-polymerization sulfonation reaction involves the reaction of 1,1-diphenylethylene based 

polyimide derivative PI-2 with sodium 3-mercapto-1-propane sulfonate via the classic thiol-

ene polymer functionalization method.  The structure of the sulfonated polyimide derivative 

SPI-2 was determined by dilute solution viscometry analysis, 1H NMR and 13C NMR 

spectrometry and FTIR analysis.  The sulfonated polyimide derivative SPI-2 is thermally less 

stable than the polyimide PI-2 precursor, but a higher Tg value for sulfonated polyimide 

derivative SPI-2 is obtained, due to the introduction of the pendant alkyl sulfonate groups 

which reduces chain flexibility and increase interactions between the sulfonate groups within 

the polymer chains.  The predominantly amorphous character accounts for the excellent 

membrane properties of the sulfonated polyimide derivative SPI-2 as evidenced by AFM and 

TEM analyses.  The ion exchange capacity of the sulfonated polyimide derivative SPI-2 with 

low degree of sulfonation compares favourably to the highly sulfonated commercially 

available Nafion-117 sample. 
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CHAPTER 5 

 

SUMMARY 

 

A novel series of aromatic poly(ether ether sulfone)s, poly(ether ether ketone)s and polyimides 

based on functionalized 1,1-diphenylethylene derivatives were prepared by step-growth 

polymerization methods. 

 

The preparation of poly(ether ether sulfone), with the regiospecific introduction of the 1,1-

diphenylethylene unit along the polymer backbone, was effected by two different synthesis 

methods.  The first method involves the following synthesis steps: 

 

(a) The synthesis of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane and 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene from bisphenol A and 4,4´-bis(t-

butyldimethylsiloxy)benzophenone, respectively; 

(b) The cesium catalyzed polymerization reactions of 4,4´-difluorodiphenylsulfone (1) with 

different mole percentage ratios of  2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) 

and 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in NMP at 150 °C for 12 hours 

afforded a series of new poly(ether ether sulfone) derivatives with well-defined polymer 

properties. 
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The second method involves the following synthesis procedure: 

 

(a) The novel synthesis of 1,1-bis(4-hydroxyphenyl)ethylene (5) in high yield using 1,1-

bis(4-t-butyldimethylsiloxyphenyl)ethylene (3) as precursor; 

(b) The potassium carbonate catalyzed polymerization reactions of 4,4´-

difluorodiphenylsulfone (1) with different mole percentage ratios of bisphenol A (4) and 

1,1-bis(4-hydroxyphenyl)ethylene (5) in dimethylacetamide at 165 °C gave a series of 

new well-defined poly(ether ether sulfone) derivatives. 

 

The preparation of a series of new poly(ether ether ketone) derivatives, with the 1,1-

diphenylethylene unit introduced regiospecifically along the polymer backbone, was effected 

by the following synthesis method: 

 

(a) The synthesis of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane and 1,1-bis[4-(t-

butyldimethylsiloxy)phenyl]ethylene from bisphenol A and 4,4´-bis(t-

butyldimethylsiloxy)benzophenone, respectively. 

(b) The cesium fluoride catalyzed polymerization reactions of 4,4´-difluorobenzophenone (6) 

with different mole percentage ratios of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane 

(2) and 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) in NMP at 150 °C for 12 

hours. 

 

Well-defined poly(ether ether ketone) derivatives with controlled polymer properties and 

excellent membrane characteristics were obtained. 
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A series of new polyimide derivatives was prepared via the following synthesis method: 

 

(a) The synthesis of 1,1-bis(4-aminophenyl)ethylene (9) from 4,4´-diaminobenzophenone as 

the starting material. 

(b)  The step-growth polymerization of 4,4´-oxydiphthalic anhydride (7) with different mole 

percentage ratios of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (8) and 1,1-bis(4-

aminophenyl)ethylene (9) in dimethylacetamide via a thermal imidization process 

afforded well-defined polyimide derivatives with the regiospecific introduction of the 1,1-

diphenylethylene unit along the polymer backbone. 

 

Due to the regiospecific introduction of the 1,1-diphenylethylene unit along the polymer 

backbones of the poly(ether ether sulfone), poly(ether ether ketone) and polyimide derivatives, 

a new post-polymerization sulfonation reaction was developed to produce well-defined 

sulfonated poly(ether ether sulfone), poly(ether ether ketone) and polyimide derivatives 

whereby the alkyl sulfonate group was regiospecifically introduced pendant to the polymer 

backbone. 

 

The organic compounds and different polymer derivatives were characterized by size 

exclusion chromatography and dilute solution viscometry analysis, 1H NMR and 13C NMR 

spectrometry, FTIR spectroscopy, thermogravimetric analysis and differential scanning 

calorimetry, thin layer and column chromatography, melting point determination, X-ray 

diffraction measurements, atomic force microscopy, transmission electron microscopy, 

elemental analysis, energy dispersive spectroscopy and ion exchange capacity measurements. 
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Figure 1: 1H NMR spectrum of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2) 
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Figure 2: 13C NMR spectrum of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2)  
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Figure 3: FTIR spectrum of 2,2-bis(4-t-butyldimethylsiloxyphenyl)propane (2)  
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Figure 4: 1H NMR spectrum of 4,4´-bis(t-butyldimethylsiloxy)benzophenone  
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Figure 5: 13C NMR spectrum of 4,4´-bis(t-butyldimethylsiloxy)benzophenone  
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Figure 6: FTIR spectrum of 4,4´-bis(t-butyldimethylsiloxy)benzophenone 
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Figure 7: 1H NMR spectrum of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 
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Figure 8: 13C NMR spectrum of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 
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Figure 9: FTIR spectrum of 1,1-bis[4-(t-butyldimethylsiloxy)phenyl]ethylene (3) 
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Figure 10: 1H NMR spectrum of 1,1-bis(4-hydroxyphenyl)ethylene (5) 
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Figure 11: 13C NMR spectrum of 1,1-bis(4-hydroxyphenyl)ethylene (5) 
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Figure 12:  FTIR spectrum of 1,1-bis(4-hydroxyphenyl)ethylene (5)  
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Figure 13:  Size exclusion chromatogram of the poly(ether ether sulfone) derivative PSU-2 
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Figure 14:  1H NMR spectrum of the poly(ether ether sulfone) derivative PSU-2 
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Figure 15:  13C NMR spectrum of the poly(ether ether sulfone) derivative PSU-2 

110 140 u o 100 .. •• 20 • .... 



208 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16:  FTIR spectrum of the poly(ether ether sulfone) derivative PSU-2 
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Figure 17:  TGA thermogram of the poly(ether ether sulfone) derivatives PSU-1, PSU-2 and PSU-5 



210 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18:  DSC thermogram of the poly(ether ether sulfone) derivative PSU-2 
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Figure 19:  AFM image of the poly(ether ether sulfone) derivative PSU-2 
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Figure 20:  TEM micrograph of the poly(ether ether sulfone) derivative PSU-2 
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Figure 21:  X–ray diffraction pattern of the poly(ether ether sulfone) derivative PSU-2 
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Figure 22:  Size exclusion chromatogram of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 23:  1H NMR spectrum of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 24:  13C NMR spectrum of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 25:  FTIR spectrum of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 26:  TGA thermogram of the sulfonated poly(ether ether sulfone) derivatives PSU-2 and SPSU-2 
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Figure 27:  DSC thermogram of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 28:  AFM image of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 29:  TEM image of the sulfonated poly(ether ether sulfone) derivative SPSU-2 
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Figure 30:  X–ray diffraction pattern of the sulfonated poly(ether ether sulfone) derivative SPSU-2 



223 
 

 

8 10

-12.5

0.0

R
I V

ol
ta

ge
 (m

V
)

Time    (min)

 

 

Figure 31  Size exclusion chromatogram of the poly(ether ether ketone) derivative PEEK-2 
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Figure 32:  1H NMR spectrum of the poly(ether ether ketone) derivative PEEK-2 
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Figure 33:  13C NMR spectrum of the poly(ether ether ketone) derivative PEEK-2 
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Figure 34:  FTIR spectrum of the poly(ether ether ketone) derivative PEEK-2 
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Figure 35:  TGA thermogram of the poly(ether ether ketone) derivatives PEEK-1, PEEK-2 and PEEK-5 
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Figure 36:  DSC thermogram of the poly(ether ether ketone) derivative PEEK-2 
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Figure 37:  AFM image of the poly(ether ether ketone) derivative PEEK-2 
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Figure 38:  TEM micrograph of the poly(ether ether ketone) derivative PEEK-2 
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Figure 39:  X–ray diffraction pattern of the poly(ether ether ketone) derivative PEEK-2 
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Figure 40:  Size exclusion chromatogram of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 41:  1H NMR spectrum of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 42:  13C NMR spectrum of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 43:  FTIR spectrum of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 44:  TGA thermogram of the sulfonated poly(ether ether ketone) derivatives PEEK-2 and SPEEK-2 
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Figure 45:  DSC thermogram of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 46:  AFM image of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 47:  TEM image of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 48:  XRD pattern of the sulfonated poly(ether ether ketone) derivative SPEEK-2 
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Figure 49:  1H NMR spectrum of 1,1-bis(4-aminophenyl)ethylene (9) 
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Figure 50:  13C NMR spectrum of 1,1-bis(4-aminophenyl)ethylene (9) 
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Figure 51:  FTIR spectrum of 1,1-bis(4-aminophenyl)ethylene (9) 
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Figure 52:  1H NMR spectrum of the polyimide derivative PI-2 
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Figure 53:  13C NMR spectrum of the polyimide derivative PI-2 
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Figure 54:  FTIR spectrum of the polyimide derivative PI-2 
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Figure 55:  TGA thermogram of the polyimide derivatives PI-1, PI-2 and PI-5 
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Figure 56:  DSC thermogram of the polyimide derivative PI-2 
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Figure 57:  AFM image of the polyimide derivative PI-2 
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Figure 58:  TEM micrographs of the polyimide derivative PI-2 
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Figure 59:  X–ray diffraction pattern of the polyimide derivative PI-2 
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Figure 60:  1H NMR spectrum of the sulfonated polyimide derivative SPI-2 
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Figure 61:  13C NMR spectrum of the sulfonated polyimide derivative SPI-2 
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Figure 62:  FTIR spectrum of the sulfonated polyimide derivative SPI-2 
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Figure 63:  TGA thermogram of the sulfonated polyimide derivatives PI-2 and SPI-2 
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Figure 64:  DSC thermogram of the sulfonated polyimide derivative SPI-2 
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Figure 65:  AFM image of the sulfonated polyimide derivative SPI-2 
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Figure 66:  TEM micrographs of the sulfonated polyimide derivative SPI-2 
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Figure 67:  X-ray diffraction pattern of the sulfonated polyimide derivative SPI-2 


