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ABSTRACT 

Researchers conceptually recommend inquiry-based learning as a necessary means 

to alleviate the problems of learning but this study has embarked on practical 

implementation of inquiry-based facilitation and learning in Euclidean Geometry. 

Inquiry-based learning is student-centred. Therefore, the teaching or monitoring of 

inquiry-based learning in this study is referred to as inquiry-based facilitation. The null 

hypothesis discarded in this study explains that there is no difference between inquiry-

based facilitation and traditional axiomatic approach in teaching Euclidean Geometry, 

that is, H0: µinquiry-based facilitation = µtraditional axiomatic approach. This study emphasises a 

pragmatist view that constructivism is fundamental to realism, that is, inductive inquiry 

supplements deductive inquiry in teaching and learning. Participants in this study 

comprise schools in Tshwane North district that served as experimental group and 

Tshwane West district schools classified as comparison group. The two districts are 

in the Gauteng Province of South Africa. The total number of students who participated 

is 166, that is, 97 students in the experimental group and 69 students in the 

comparison group. Convenient sampling applied and three experimental and three 

comparison group schools were sampled. Embedded mixed-method methodology 

was employed. Quantitative and qualitative methodologies are integrated in collecting 

data; analysis and interpretation of data. Inquiry-based-facilitation occurred in 

experimental group when the facilitator probed asking students to research, weigh 

evidence, explore, share discoveries, allow students to display authentic knowledge 

and skills and guiding students to apply knowledge and skills to solve problems for the 

classroom and for the world out of the classroom. In response to inquiry-based 

facilitation, students engaged in cooperative learning, exploration, self-centred and 

self-regulated learning in order to acquire knowledge and skills. In the comparison 

group, teaching progressed as usual. Quantitative data revealed that on average, 

participant that received intervention through inquiry-based facilitation acquired 

inquiry-based learning skills and improved (M= -7.773, SE= 0.7146) than those who 

did not receive intervention (M= -0.221, SE = 0.4429). This difference (-7.547), 95% 

CI (-8.08, 5.69), was significant at t (10.88), p = 0.0001, p<0.05 and represented a 

large effect size of 0.55. The large effect size emphasises that inquiry-based 

facilitation contributed significantly towards improvement in inquiry-based learning and 



v 

that the framework contributed by this study can be considered as a framework of 

inquiry-based facilitation in Euclidean Geometry. This study has shown that the 

traditional axiomatic approach promotes rote learning; passive, deductive and 

algorithmic learning that obstructs application of knowledge in problem-solving. 

Therefore, this study asserts that the application of Inquiry-based facilitation to 

implement inquiry-based learning promotes deeper, authentic, non-algorithmic, self-

regulated learning that enhances problem-solving skills in Euclidean Geometry.  

Key terms 

Analysis; Cognitive processing; concepts; conceptualisation; conjecturing; 

cooperative learning; Differentiated teaching; Errors; Euclidean Geometry; formal 

deduction; geometric modelling; informal deduction; inquiry-based facilitation; inquiry-

based learning; mathematical reasoning; mathematics; perception; pre-visualisation; 

problem-solving; rigour; Self-regulated learning; spatial abilities; spatial skills; 

traditional axiomatic approach; visualisation or imagination;  
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CHAPTER 1  

STUDY OVERVIEW 

1.1 INTRODUCTION 

The traditional way of teaching geometry in classrooms is apparent when teachers 

present geometry content and concepts through creating doubts (that is, formulating 

conjectures) in the minds of students in order to motivate a need for deductive proof 

(De Villiers, 2004). It is a view of this study that teachers should not formulate 

conjectures for students, nor motivate deductive proof, but teachers should guide and 

assist students to apply self-regulated learning and inquiry for exploration and 

discovery, in order to seek out patterns, formulate and validate conjectures and 

ultimately establish the truth. Self-regulated learning is also addressed as self-directed 

learning in this study. Inductive teaching that yields self-regulated learning is perceived 

in this study as a basis for deductive teaching and learning; therefore, learning by 

induction in a student-centred environment is perceived as essential to motivate 

deductive proof. It is recommended that in order to develop essential mathematics 

skills in Euclidean Geometry, the student should apply spatial skills to identify, pose, 

use properties of shapes, apply critical thinking and creativity to advance problem 

solving (Department of Basic Education [DBE], 2011). Therefore, teacher facilitation 

skills should enable students to apply relevant processes to control and own their 

learning in order to acquire mathematical knowledge through meaningful learning, that 

is, learning that will impact in and out of classroom context. This study focuses on the 

teaching of the content area of Euclidean geometry, with emphasis on the topic circle 

geometry including cyclic quadrilaterals. The concepts circle geometry and cyclic 

quadrilaterals will be used interchangeably in this study.  

1.2 BACKGROUND 

According to Gutierrez, Leder and Boero (2016), spatial reasoning skills are connected 

to human thought, action, geometric thinking and development of geometric 

knowledge. In addition, DBE (2011) highlights that, through acquiring geometric 

problem-solving skills, students are prepared to handle abstract concepts and improve 

their reasoning in problem solving as a result of experience they have acquired. In 

other words, experience, action and geometric thinking are basic to abstract thinking; 

learning from what one knows (experience) and learning by doing (action) induce 
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inductive geometric thinking and thought, resulting in deductive abstract thinking. 

Regardless of the fact that identifying, posing and solving problems creatively and 

critically are essential skills in Euclidean Geometry, research has shown that learning 

these skills is a challenge to many South African students who are at the Further 

Education and Training (FET) level (Alex & Mammen, 2014; Cassim, 2007). The FET 

band or level comprises Grades 10 – 12 high school classes. This study has shown 

that teaching these skills applying the traditional axiomatic approach only, contributes 

to the lack of learning these skills properly. However, inquiry-based facilitation (IBF) 

initiates inquiry-based learning (IBL) that equips students with skills such as creativity, 

critical thinking, student-centred learning and confidence in order enhance geometric 

thinking to identify, pose and solve problems. 

When considering the three grades in the FET band, students in Grade 10 are new in 

the FET phase having been through the senior phase; therefore, they are still trying to 

find their place within the FET system. Students in Grade 10 are expected to have 

some experience with geometric shapes and objects, and to understand a few 

properties of these shapes and objects because they were oriented to geometric 

systems in the lower grades. However, in Grade 11 students should have settled into 

the FET phase and be preparing for the last level of Grade 12. Students are expected 

to be experienced enough, and to have accumulated knowledge, understanding and 

spatial skills to identify and create problems and ultimately apply creativity and critical 

thinking in problem-solving. It is at this stage that experience and level of 

understanding should enable the students to progress from being passive participants, 

as well as learning by rote and memorisation. Further, grade 11 students should be 

able to apply knowledge acquired through explorations and discoveries in lower 

grades to build corroborations based on how they understand (Cassim, 2007). In 

addition, Cassim highlighted that the students at FET levels do not need to learn ready-

made substantiations by rote in order to give the proofs as they are in assessment. 

Cassim (2007) comments that very few students reach this stage of advanced 

reasoning, understanding and knowledge. It is also apparent from his study that the 

majority of Grade 11 students struggle in almost all levels of knowledge and 

understanding.  

Clark (2012) suggests that for teachers to assist students to attain the requirements 

of the advanced reasoning stage, teachers should bear in mind that knowledge from 
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lower grades might not be in place to develop the advanced reasoning of geometric 

knowledge and understanding. In order to put knowledge and understanding of lower 

levels in place, Clark (2012) states that teachers must introduce definitions through a 

class discussion that advances gradually to the advanced levels of reasoning. The 

current study takes cognisance of the fact that students are still lacking in requisite 

lower-level knowledge and posits that teaching through IBF encourages IBL that would 

contribute to a reasonable number of students being able to master the concepts and 

skills they have missed in lower levels.  

1.3 APPROACHES TO TEACHING EUCLIDEAN GEOMETRY 

1.3.1 Open systems for acquiring knowledge and understanding in Euclidean 

Geometry 

Teaching in Euclidean Geometry happens in different countries as either a 

systematised Euclidean Geometry based on few axioms or occurs as an open system 

to acquire skills for proof to advance solutions (Bankov, 2013; Baptist, 2012; Friesen 

& Scott, 2013; Kunimune & Nagasaki, 1996; Olkun, 2009; Siyepu & Mtonjeni, 2014). 

Different countries use diverse names for these open systems of learning, for example, 

Inquiry-Based Mathematics Education (IBME); inspiring education; dynamic geometry 

application and Realistic Mathematics Education (RME) (Baptist, 2012; Friesen & 

Scott, 2013; Kunimune & Nagasaki, 1996; Olkun, 2009; Siyepu & Mtonjeni, 2014). For 

example, teaching Euclidean Geometry through inquiry is practised in Japan, and the 

recommended learning process is that learning begins with concrete realistic activities, 

secondly, application of analogy and inductive thinking for discovering properties that 

are proved deductively (Kunimune & Nagasaki, 1996). Similarly, in Netherlands the 

education system recognises RME as the essential teaching approach. RME is an 

inquiry course whereby a real problem is interpreted and solved mathematically 

(Siyepu & Mtonjeni, 2014; Wubbels, Korthagen & Broekman, 1997). Furthermore, 

RME encompasses consecutive steps such as constructing the problem, analysis of 

the constructed problem; finding solutions; application of solutions in real contexts; 

and reflecting on the implications of the solution (Wubbels, et al., 1997). In addition, 

Wubbels, et al. (1997) state that, in applying RME, teachers should utilise the students’ 

constructions of knowledge in guiding them to build new knowledge and to solve 

problems. Inspiring education system is envisaged in Alberta, Canada to ensure that 
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students apply the process of discovering through inquiry to develop skills (Friesen & 

Scott, 2013). The education system relies on traits such as exploring, experimenting, 

probing, hypothesising and reflecting. Further, the system is envisioned at enabling 

students to apply co-operative learning in order to learn how to think critically, 

innovatively and make discoveries. 

Dynamic geometry as an instructional approach means that instructional activities in 

geometry are designed to emphasise students’ learning through exploration (Olkun, 

2009). In addition, Olkun (2009) states that other activities behind the dynamic 

geometry approach comprise teacher asking questions to probe, students 

participating actively and making decisions by themselves. IBF activates 

metacognition and self-regulated critical learning that enable students to learn through 

exploration, experimentation and discovery.  

Teaching and learning Euclidean Geometry through inquiry has been commented as 

productive because Netherlands has been considered to be one of the highest 

achieving countries in terms of international mathematics tests, which has been 

attributed to the implementation of RME during teaching and learning (Dickinson & 

Hough, 2012). In their research on RME, Dickinson and Hough (2012) found that 

teachers using RME testified that students who learn through RME acquire a positive 

attitude about mathematics than students who are exposed to traditional teaching and 

learning contexts. Further, Dickinson and Hough (2012) aver that students who are 

exposed to RME understand more, can explain the strategies they employ in problem 

solving and can solve problems in the approved manner. In light of this, this study 

employed inquiry-based teaching and learning to improve learning Euclidean 

Geometry in the South African context. 

1.3.1.1 Guided inquiry 

Guided inquiry is one teaching approach. Clark (2012) explains guided inquiry as a 

method that revolves around students other than focusing only on textbooks and the 

teachers’ word. In addition, Clark (2012) highlights that guided inquiry engages 

students in class discussion where every student is involved. This study focuses on 

inquiry-based facilitation (IBF) as a foundation for inquiry-based learning (IBL) that 

empowers Grade 11 students to develop the experience, knowledge and 

understanding that they did not acquire in the lower grades and at entry level (Grade 
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10) to FET. The current study focuses on circle geometry. Further, this study motivates 

that IBF prompts IBL. In addition, IBL enables students to identify, pose and solve 

problems in circle geometry apply knowledge and understanding of geometric shapes, 

objects and vocabulary acquired in lower grades; and get empowered to solve 

problems at advanced abstract levels of problem-solving. Becoming equipped in 

geometric problem-solving skills not only makes students competent problem solvers, 

but prepares the students for the Grade 12 school exit examinations, and beyond. 

Furthermore, Feza and Webb (2005) argue that the appropriate teaching strategy that 

can assist teachers to implement considerations stated is the inquiry approach. They 

highlight that, inquiry approach could assist teachers to generate teacher-student 

conversations where teachers would be able to establish students’ social or 

educational background, pre-knowledge and level of knowledge and understanding. 

1.3.1.2 Traditional axiomatic approach in Euclidean Geometry 

The traditional axiomatic approach in Euclidean Geometry is defined as a 

systematised Euclidean Geometry based on limited number of priori axioms (Bankov, 

2013). According to Houdement and Kuzniak (2003), the axiomatic teaching approach 

influences students to memorise axioms and theorems in order to produce proofs as 

solutions. Further, they assert that the axiomatic teaching approach can be without 

any relation to reality, where truth is needed to maintain facts. Research has indicated 

that the traditional axiomatic approach in the teaching and learning of Euclidean 

Geometry has been adhered to for long in South Africa and in more other countries.  

For example, (Bankov, 2013) motivated that in Bulgaria teaching Euclidean Geometry 

revolves around presenting a set of agreed facts as a set of axioms and geometry is 

deductively build on these facts. This is similar to the traditional axiomatic approach. 

According to Bankov (2013) strict axiomatic approach contribute towards reasons that 

are more didactical and pedagogical in presenting solutions. Therefore, Bankov (2013) 

suggested that it is not appropriate to use traditional axiomatic approach for students 

at school level.  

According to research in South African Euclidean Geometry, the teaching and learning 

style that is currently practised to deliver the content for problem-solving revolves 

much around traditional axiomatic approach. Much research has been conducted in 
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South Africa related to teaching and learning Euclidean Geometry using the traditional 

axiomatic approach (Alex & Mammen, 2014; du Plessis, 2011; Malati, 2014; Siyepu & 

Mtonjeni, 2014; Van Putten, Howie & Stols, 2010). Mostly, findings are that teaching 

methods currently applied in South Africa yield passive learning, that is, learning by 

memorisation and rote; and problem-solving skills are not developed by students for 

competence in the classroom or in the real world. 

In the traditional axiomatic approach, students are supposed to listen to the teacher 

passively and memorise theorems for test and examination purposes (Siyepu & 

Mtonjeni, 2014). In the South African context, learning Euclidean Geometry is 

characterised by memorisation of rules, signs and procedures (Siyepu & Mtonjeni, 

2014), leading to traditional axiomatic learning approach.  

1.3.1.3 Differentiated teaching  

In principle, the Department of Education in South Africa (DoE, 2010) recommends 

differentiated teaching as method of teaching or lesson presentation in various 

subjects including mathematics. DoE (2010) motivates that teaching methods should 

be inclusive and consider individual students’ levels of participation, levels of thinking, 

and learning methods. The levels of thinking are expected to enable students to work 

on concepts that reflect their previous achievements (DoE, 2011). Further, DoE (2010) 

highlights that “differentiation or inclusivity assumes that students vary in their 

cognitive abilities” (p. 10); therefore, in order to cater for various cognitive abilities, 

teachers should consider teaching from most basic levels to complex levels; and 

present the content in multimedia format. However, in practice, the teaching strategy 

has not been successful as there is an outcry of learner’s underperformance in 

geometry and mathematics in general; further, researchers continually recommend 

that South Africa needs a different angle when coming to the teaching of mathematics 

or diverse learning areas within the mathematics subject. This study embarked on a 

different angle of teaching geometry, that is, practical application of IBF.  

1.3.1.4 Van Hiele’s approach 

This study emphasises that teaching that is based on students’ experience or past 

achievements and students’ levels thinking, or level of knowledge and understanding 

is in line with the actual learning method of Euclidean Geometry as reflected in the 
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Van Hiele (1959) theory.  The Van Hiele levels of understanding geometry designate 

the students reasoning around geometric ideas, objects, figures and shapes; and 

further address the issue that students cannot memorise geometric systems, but must 

experience illustrations as models and patterns in order to be well conversant with the 

systems in geometry. (Van Hiele, 1986, 1959). The teaching approach is essential in 

guiding the students through their development in learning Euclidean Geometry.  

Van Hiele’s theory describes learning Euclidean Geometry in terms of learning by 

following the principles of visualisation, analysis, informal deduction, deduction and 

rigour. According to Clement and Battista (1992), pre-visualisation or pre-visualisation 

is more basic than the Van Hiele basic level of visualisation. Therefore, the current 

study operates on six levels of knowledge and understanding, that is, pre-visualisation; 

visualisation; analysis; informal deduction; formal deduction and rigour. Much 

research has been done on the Van Hiele levels of knowledge and understanding; 

however, the pre-visualisation stage has not been researched in any depth in 

combination with Van Hiele’s levels of knowledge and understanding. 

The six levels are sequential. The first level, that is, the pre- visualisation, is the stage 

where students consider the world as they perceive it with their normal senses, aided 

by instruments such as pictures, models, digital resources and other resources (Harre, 

2002). Cassim (2007) contextualises the other levels according to Van Hiele’s theory. 

Succeeding the pre-visualisation level, the visualisation level follows. Students 

visualise by recognising space in their context, considering geometric objects in 

entirety rather than basing judgements on properties, identify and reproduce specific 

shapes, and learn the appropriate geometric vocabulary. Thirdly, analysis follows 

where students unpack the properties of the visualised shapes through 

experimentation and observation and use the unpacked properties to conceptualise 

classes of shapes. In the fourth stage, students do informal deduction by using 

analysed properties to establish interrelationships that exist between and among 

figures. In the fifth stage, formal deduction occurs where students identify the problem, 

pose the exploration questions and construct proofs based on their understanding 

from the informal deduction. Lastly, students advance to the rigour level where they 

apply axioms from the formal deduction stage in problem-solving and apply knowledge 

and understanding of geometric systems in non-Euclidean systems such as spherical 

geometry.  
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Research related to students’ understanding of Euclidean Geometry based on the Van 

Hiele levels of knowledge and understanding, has shown that students at FET (Grade 

10-12) level have difficulties in solving Euclidean Geometry problems at deduction 

level, while their foundation knowledge (pre-visualisation, visualisation, analysis and 

informal deduction) is not well-established (Alex & Mammen, 2014; Van Putten, Howie 

& Stols, 2010). In order to address and improve the foundational knowledge of 

students, Feza and Webb (2005) suggest that teachers need to take into consideration 

the Van Hiele levels in conjunction with students’ background and application of 

vocabulary from the home language. This would benefit students mostly in the pre-

visualisation and visualisation levels where students will be assisted to be aware of 

the natural space around them, build concepts and vocabulary from what they know.  

The importance of understanding geometric language is emphasised as important 

because distinction is accentuated in each level as each level of learning has its own 

language symbols and connections (Van Hiele, 1986). Olkun (2009) highlights that 

instruction should support students to learn across levels from exploratory phase, to 

concept construction and ability to link new and existing knowledge. 

It has been argued that FET teachers and students are guided by the curriculum which 

directs them through questions and proof construction that requires the student to be 

on level three of the Van Hiele level of understanding (Van Putten, Howie & Stols, 

2010). The authors further highlight that students who do not meet the level three 

requirements, can do proofs only by memorisation. However, it has been argued that 

learning by memorisation imposes limitations in terms of students’ development of 

conceptual and problem-solving skills (Siyepu & Mtonjeni, 2014). While research 

continues to recommend open systems of teaching in principle, in practice the 

application of open systems teaching is still lacking. Malati (2014) states that the 

teaching of geometry should comprise steps such as: (1) the description and 

classification of plane figures (for example parallelograms, and cyclic quadrilaterals); 

(2) the study of the properties of the plane figures; (3) the direct comparison of these 

figures and their properties; (4) deduction using congruence of figures as a basic tool 

(some of the properties are deduced from others).  
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1.3.3 IBL teaching approach, learning environment and assessment 

Research has found the IBL approach essential in learning Euclidean Geometry 

(Artigue, 2012; Bankov 2013; Clark, 2012; Feza & Webb, 2005; Kunimune & 

Nagasaki, 1996; Siyepu & Mtonjeni, 2014).  

Research on IBF and IBL in Euclidean Geometry in the South African context, has 

been conducted by several researchers (Malati, 2014; Sanni, 2007; Siyepu & Mtonjeni, 

2014) but applied research on IBF and IBL in mathematics, particularly in Euclidean 

Geometry, is still lacking. In emphasis, Botha (2017) highlight that there are extensive 

discussions in research literature about the application of inquiry based learning in 

South Africa. In a paper based on empirical study in South African schools, Botha, 

(2016) argue that IBL erupts as an essential strategy to improve learning. Similarly, 

Paulsen (2006) argue that the current approach to education in South Africa advocates 

constructivist teaching and learning; that is, classrooms must become “student-

centred” and teachers must act as facilitators, instead of transmitters of knowledge 

(p.170). In light of the researchers’ views, it is clear that the traditional axiomatic 

teaching approach is the method that is currently applied in teaching and learning 

geometry in most of the South African classrooms. While in principle researchers 

recommend IBF and IBL as strategies for alleviating the problems of learning, this 

study focuses on the practical application of IBF and IBL in Euclidean Geometry in 

order to contribute in assisting teachers with their teaching of circle geometry and 

support students to reach higher levels in geometry thinking, that is, formal deduction 

and rigour. Emphasising the idea that IBL is essential in teaching Euclidean geometry, 

Mason (1998) aver that the application of lecture and memorisation as the teaching 

method does not lead to effective and meaningful learning. In addition, Mason (1998) 

argue that meaningful and effective learning takes place when students engage in IBL 

activities such as engaging in discussions and reflection in order to acquire experience 

in the content they are studying. Therefore, the implementation of IBL through IBF in 

this study is grounded by the pragmatist view of inquiry-based learning aligned to John 

Dewey’s philosophy of pragmatism that relates to IBL. 

1.3.4 Use of technology in teaching Euclidean Geometry 

The traditional axiomatic teaching approach differ with IBF in terms of teaching and 

learning methods; assessment and learning environment. How the teachers plan and 
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organise the learning environment has a major influence on learning. The teaching 

and learning environment may foster either traditional axiomatic approach or IBF. The 

use of technology is seen to be essential in the teaching of Euclidean Geometry. For 

example, it has been stated that mathematical laboratories like GEOMLAND1 enable 

pupils to construct and experiment with Euclidean Geometry objects to investigate 

their properties, to formulate and verify conjectures (Checlarova & Sendova, 2012). 

Further, Checlarova and Sendova (2012) highlight that the usage of GEOMLAND has 

proved to be appropriate for materialising the abstract mathematical concepts and to 

enable students to adopt the style of discovery learning.  

Friesen and Scott (2013) highlight that Alberta Education prioritises teaching that can 

utilise technology to assist students to successfully implement inspiring education. 

However, Friesen and Scott (2013) indicate that technology alone only provides a 

single flow of information; therefore, integrating technology in the classroom implies 

using multiple resources. According to Masilo (2015), multiple resources or multimedia 

that cater for all students’ needs can be selected from different categories of resources 

such as visual, audio, audio-visual, text and digital resources. In addition, Masilo 

(2015) states that multimedia should be used in teaching in order to assist students to 

link concrete and abstract learning; to retain mathematical concepts and procedures; 

to approach problem-solving from various perspectives; and to play an active role in 

self-directed learning. Further, it has been stated that teachers should provide 

students with learning supports and rich, multiple sources of information to assist 

students in finding solutions (Indiana University, 2015). This study asserts that a 

combination of diverse resources fosters inquiry, self-regulated learning, 

metacognition and active students’ participation in the learning process.  

Chehlarova and Sendova (2012) maintain that the main purpose of integrating 

technology is to encourage students to “behave like working mathematicians, i.e. play 

with mathematical ideas and communicate their findings” (p. 114). Therefore, this 

study takes cognisance of the fact that the teaching and learning environment must 

                                            
1 GEOMLAND refers to a computer environment that supports exploration. In GEOMLAND students 
can explore geometric objects, investigate the properties of diverse geometric objets, create and verify 
conjectures.  
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be organised properly by making multiple resources available in order to allow 

students to explore and learn by discovery.  

1.3.5 Concluding remarks on teaching approaches 

The gap realised in this study is that traditional axiomatic teaching approach applied 

in South Africa has been commented as unproductive, while inquiry-based learning is 

recommended only in principle as an alternative method of teaching. To close this gap, 

, his study focuses on the application of inquiry- based facilitation in practice as an 

alternative teaching approach. The IBF practice applied has shown to have credits in 

assisting students to be able to apply inquiry to retrieve knowledge lost in lower grades. 

Further, teachers do not consider assisting students to recover knowledge lost from 

lower grades while teaching at grade 11 level.  Lack of consideration of knowledge 

from lower grades leave students with one option, but memorising theorems. However, 

it is difficult for students to recall the memorised information during examination. 

Further, teaching and learning for memorisation is examination driven. This study had 

shown that inquiry based facilitation and learning strategies bridges the knowledge 

gap among levels of knowledge and understanding and students are able to acquire 

all the information from pre-visualisation to rigour. Essentially, the gap of learning for 

examination is closed in this study, because inquiry based learning had contributed 

towards conceptual development where the product produced by teaching and 

learning is knowledge that can be applied in both examination and other situations that 

require inquiry for problem solving.  

The other essential factor contributed by this study is that testing through formal writing 

should not focus on questioning that require lower level demands of thinking such as 

completely procedural tasks and memorisation, but the focus of testing should be on 

high level cognitive demands of geometric thinking such as sense-making during 

mathematising or doing mathematics, comprehension of geometric concepts and 

exploration of concepts through linking inductive and deductive knowledge. The task 

compiled by the researcher (cf Annexure B) is a practical example of a formal task that 

links both higher level and lower level of cognitive demands. The tasks are developed 

according to Stein, Smith, Henningsen and Silver’s (2000) idea of considering diverse 

levels of cognitive demands when structuring an assessment. The stipulated task used 

as a pre and post-test in this study represents multiple ways of knowledge, for 
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example, diagrams, symbols, figures representing real-life objects and conceptual 

ideas that underlie procedures of mathematising. The pre and post-test have 

contributed towards the development of students’ understanding of all levels of 

knowledge and understanding through inquiry. The application of IBF is structured 

according to the Van Hiele levels of learning Euclidean Geometry, where the teaching 

and learning model (learning by inquiry, discovery, exploration and experience) 

according to Dewey’s learning and teaching theories are integrated with the levels of 

knowledge in learning geometry.  

While differences between the traditional axiomatic approach and inquiry-based 

approach have been enunciated, it is worth noting that assessment in inquiry-based 

approaches is executed differently compared to traditional axiomatic approaches. 

Assessment in traditional teaching and learning approach focuses on recalling what 

was memorised, while in IBL it focuses on the students’ ability to find and use 

information, including discovering facts and relationships among concepts.  Further, 

the learning environment that is resourced is vital in applying IBF successfully. Against 

this background, the study argues that IBF methods are necessary and the study is 

focused on the practical implementation of IBF to activate IBL in Euclidean Geometry. 

The IBF framework (cf. figure 5.4) contributed by this study stipulates that in order to 

facilitate problem solving through IBL, IBF strategies encompasses probing and 

following sequential steps specified in this study as coordinating orientation, 

orchestrating conceptualisation and guiding the conclusion stage. In addition, this 

study emphasises that through the stipulated IBF strategy, IBL in Euclidean geometry 

becomes a mode of inquiry, students are able to apply experience or prior knowledge 

and are able to establish connections among concrete and abstract geometric levels 

of knowledge.      

1.4 PROBLEM STATEMENT 

Teaching and learning Euclidean Geometry revolves around exploration through pre-

visualisation, visualisation, analysis, informal deduction, formal deduction, and rigour 

(Clark, 2012; Clements & Battista, 1992; Van Hiele, 1986). In the Curriculum 

Assessment Policy Statement (CAPS) (DBE, 2011), Euclidean Geometry requires 

formal proof and also implies that students must perform at Van Hiele level 4, that is, 

at formal deduction with proof (Alex & Mammen, 2014, Malati, 2013). The key feature 
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of Van Hiele’s theory is that students’ comprehension of geometric concepts is 

classified according to an order of levels from 0 to 4 with level 0 being the lowest. The 

specific levels are outlined as follows (Alex & Mammen, 2014; Cassim, 2007): level 0 

– visualisation where a student recognises a figure by its appearance, shape or form; 

level 1 – analysis, that is, students view a collective of shapes within a typology rather 

than as distinct shapes; level 2 – informal deduction where students realise and frame 

generalisations based on their pre-knowledge about properties of shapes; level 3 – 

Formal deduction where students prove theorems deductively and understand the 

structure of the geometric system; and level 4 – rigour, that is, where students can 

establish theorems in different systems, compare and analyse systems. Alex and 

Mammen (2014) conducted research based on the Van Hiele model of thinking with a 

sample of Grade 10 South African students studying Euclidean Geometry. The results 

of the study were that the majority of the students were at level 0 although the CAPS 

expectation is that students should perform at level 3 to be able to handle level 4. 

Students in Grades 10 and 11 are expected to have achieved level 0-3 of the Van 

Hiele levels of comprehension before they enter the FET phase. Grade 11 students 

should be in a position to handle problems at deduction level despite the fact that they 

have not yet achieved the informal deduction level 2.  

In a report by Malati (2014) where primary school teachers were observed, it was 

argued that many of the teachers at primary level teach little or no geometry to their 

classes; and if the teaching is done, it is restricted to naming simple figures such as a 

square, triangle, circle and rectangle. Therefore, how teachers handle Euclidean 

geometry in their classrooms confirm that teachers encounter difficulties when 

teaching geometry. The report also shows that regardless of all the teachers’ efforts 

in conveying Euclidean geometry content in an abstract way, students continue to 

encounter difficulties with formal deduction and proof which are more abstract. It was 

further reported that in trying to cope with difficulties students and teachers turn formal 

deduction and proof into something algorithmic, that is, many students simply 

memorise proofs or rules (Malati, 2014). In light of this, it appears that students at 

Grade 11 lack knowledge and understanding of lower levels in Euclidean Geometry; 

therefore, they learn by rote to operate with mathematical relations at the formal 

deduction level. 
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The main problem and question is: “Does IBF influence IBL to develop the students’ 

knowledge and understanding of formal deduction level through pre-visualisation, 

visualisation, analysis and formal deduction in Euclidean Geometry?”  

1.5 RATIONALE 

It has been stated that geometry is important because: (1) Shape and space form the 

world and geometry is part of mathematics that constitute space and shape (2) natural 

part of geometry is essential in assisting students to acquire experience and expertise 

in comprehending and applying concrete materials and activities; and (3) geometry 

can be applied in more fields of study (Teachers’ Lab, 2017). According to Teachers’ 

Lab (2017), learning Euclidean Geometry can benefit students in diverse ways. That 

is, experience with concrete materials can assist students with abstraction. Secondly, 

spatial understanding is necessary to assist student in understanding their natural 

geometric world. Thirdly, spatial sense enhances students’ perceptions about two- and 

three-dimensional shapes as well as their properties.  Lastly, rigorous spatial 

reasoning enable students to learn by integrating topics within the mathematics 

subject. The benefits of learning as outlined by the Teachers’ Lab report align with the 

vision about learning Euclidean Geometry in South African. DoE (2011) states that 

students should apply critical and creative thinking skills to perceive, construct, critique 

and solve problems utilising spatial skills and applying properties of shapes. This will 

enable them to improve creative and reasoning skills for advancing more deductive 

mathematics. In addition, South African students should learn school geometry to 

acquire experience in mathematics, for them to have opportunities to study related 

courses at higher education and further to follow related career paths and occupations 

(Alex & Mammen, 2014). Related courses, career paths and occupations related to 

geometry include geology, architectural, engineering and various aspects of 

construction work. Geometric skill is important in all the mentioned fields and the fields 

are commented as important for the country’s development (Alex & Mammen, 2014). 

It is, therefore, essential that students should know the space around them, use the 

shape and space knowledge to develop spatial skills that will enable them to build 

comprehension of the schemes of connections between geometric concepts and 

linking to other subjects and to life in general. Notwithstanding the fact that geometry 

is an important branch of mathematics, research has proved that challenges are 

encountered in teaching and learning geometry in South Africa (Alex & Mammen, 
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2014). Using algorithmic styles in learning geometry, that is, memorising proofs or 

rules (Malati, 2013), does not enable students to create new knowledge and ultimately 

to solve problems in Euclidean Geometry. 

1.6 HYPOTHESIS 

Teachers teach Euclidean Geometry at formal deduction level when the students 

could not achieve the pre-visualisation, visualisation, analysis and informal deduction 

levels of understanding; therefore, students experience challenges with Euclidean 

Geometry (Alex & Mammen, 2014; Clark, 2012; Malati, 2014). The IBF method and 

strategies other than the traditional axiomatic teaching approach are needed to 

develop students’ knowledge and understanding of formal deduction level through pre-

visualisation, visualisation, analysis and informal deduction in Euclidean Geometry 

(Clark, 2012).  

Therefore, this study addresses the following null hypothesis, there is no difference 

between IBF and traditional axiomatic approach in teaching Euclidean Geometry, that 

is, H0: µIBF = µtraditional axiomatic approach. The directional hypothesis, also known as the 

alternative hypothesis states that IBF in Euclidean Geometry influences IBL, that is, 

H1: µIBF ≠ µtraditional axiomatic approach.  

1.7 AIMS AND OBJECTIVES 

This study is aimed at investigating the influence of IBF on the students’ knowledge 

and understanding of formal deduction level in geometry through pre-visualisation, 

visualisation, analysis and informal deduction.  

The objectives of the study are to:  

 investigate the impact of inquiry-based facilitation strategies on students’ 

development of higher levels of geometric thinking, that is, formal deduction and 

rigour.  

 determine the influence of interventions in activating IBL to assist students to 

acquire knowledge and understanding of the formal deduction level through Van 

Hiele’s levels of visualisation, analysis and informal deduction.  

 Explore whether IBF assists students to learn Euclidean Geometry successfully.  
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1.8 THE RESEARCH APPROACH ADOPTED IN THIS STUDY 

This mixed-methods study with the aforementioned focus employs both quantitative 

and qualitative methodologies. Through the mixed-method design, namely, the 

quantitative methodology (quasi-experimental design) complemented by the 

qualitative methodology (phenomenographic approach through observations and 

interviews), clarification of the research questions is advanced. Through quasi-

experimental design approach, this study is an empirical interventional study that 

estimates the causal impact of intervention on targeted grade 11 group without 

randomisation. To complement the quantitative quasi-experimental design, the 

qualitative phenomenographic or phenomenological approach is applied in this study 

to discover various ways in which the participants understand, conceptualise and 

realise the phenomenal aspects of teaching and learning around their world. 

Ultimately, the quasi-experimental approach and the phenomenological approach are 

triangulated to constitute the concurrent embedded mixed-method approach.   

1.8.1 The research questions 

The questions clarified in this study are: (1) To what extent does IBF assist students 

reach higher levels in geometry thinking? (2) Do inquiry-based interventions influence 

students’ development in geometric thinking through Van Hiele’s levels? (3) Does IBF 

help students to learn Euclidean Geometry?  

Inferential statistical analysis is employed to clarify the question: “To what extent does 

IBF assist students reach higher levels in geometry thinking?” Descriptive statistical 

analysis is employed to elucidate the research question “Does inquiry-based 

intervention influence students’ development in geometric thinking through Van Hiele’s 

levels?” Differences in percentages as shown through the descriptive statistics 

demonstrate differences in achievement between the experimental and the 

comparison group. Therefore, evidence is accumulated regarding the influence of 

intervention on students’ development in the experimental group or lack of 

development in the comparison group. Qualitative data are combined with the 

quantitative data to clarify both the questions. However, to respond to the question 

“Does IBF help students to learn Euclidean Geometry?” content analysis of 

observations and interviews applies.  
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Triangulation of qualitative data with quantitative data provides credibility to increase 

the integrity of the results. Qualitative data was collected through participatory 

observation during interventions in an experimental group and non-participatory 

observation of teachers teaching in a comparison group. Observation in the 

comparison group was necessary to ensure that the topic was taught before the 

students could take the post-test. Pre- and post-tests were administered to both 

experimental and comparison groups. Six conveniently-sampled schools from two 

districts (Tshwane North and West) participated in this study. Three schools (97 Grade 

11 students) in Tshwane North served as the experimental group while three schools 

(69) students in Tshwane West were classified as the comparison group. The two 

districts are approximately 30 km apart. The researcher used IBF strategies to teach 

Euclidean Geometry to the experimental groups, while teachers of the comparison 

groups continued to use the regular traditional axiomatic approach to teach. The 

researcher played a participant observer role in the experimental groups, while the 

role was that of a non-participant observer in the comparison groups.  

1.9 ELUCIDATION OF CONCEPTS 

 Concept – mental representation of a category of some kind (things, actions, 

situations etc.). Concepts allow people to sort stimuli with similar characteristics 

into categories. Conceptualisation refers to the action or process of thinking in 

order to formulate a concept or idea of something. (Hamilton & Ghatala, 1994).  

 Conjecturing – forming an opinion or supposition about (something) on the basis 

of incomplete information. A conjecture refers to a claim that an idea is true when 

there is no evidence (Haylock, 2001). In addition, Haylock (2001) motivate that a 

conjecture is followed by a mathematical process of confirming through checking. 

Confirming conjectures contribute as essential basis to mathematical reasoning.   

 Differentiated teaching and learning means personalised instruction or inclusive 

teaching and learning. In differentiated teaching and learning, teacher applies 

different methods of facilitation to cater for all students’ learning needs. 

Differentiated instruction is driven by the notion that students may learn in diverse 

ways, however, the content learned and skills developed remain the same, that is, 

students apply diverse methods of interest and expertise to reach a common goal 

(Tomlinson, 1999).     
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 Errors refer to misapplication of the rules in problem-solving (Luneta & Morapeli, 

2017).  

 Euclidean Geometry is the study of the relationships among points, lines, angles, 

surfaces and solids (Salim & Tiawa, 2015). In addition, Baroody and Coslick (1998) 

outline Euclidean Geometry as the study of stationery figures that have a rigid or 

fixed shape; Euclidean Geometry includes solid three dimensional and plane or 

two dimensional geometries.    

 A figure is a conceptualised geometric object including its graphical representation. 

Figures are tools for solving problems and for constructing a geometrical theory 

(Hershkowitz, et al., 1996).  

 Geometric modelling means to apply geometric concepts in modelling situations. 

In additions geometric modelling denotes the use of geometric shape, their 

measures and their properties to describe objects (CCSSI, 2017) 

 Inquiry-based facilitation is the instruction conducted to teach students how to 

think, how to be attentive and reflective in thinking processes. The instruction 

follows an inquiry process, that is, explain inquiry process, present the inquiry 

problem, help students to formulate the hypothesis (conjecture), encourage 

students to collect data to test the hypothesis (prove the conjecture) and lastly help 

students to formulate explanations from proven conjectures (Arends, 2012). 

 Inquiry-based learning (IBL) designates a learning approach where students have 

ownership of their learning. Students ask questions, collect and examine 

information, produce solutions, make decisions, rationalise conclusions and take 

actions (Friesen, 2014). In addition, IBL empowers students as self-directed and 

active knowledge creators where inquiry is driven by questions or problems 

(Spronken-Smith, 2012; Spronken-Smith & Walker, 2010). 

 Inquiry describes an activity in which students explore situations and try to solve 

problems (Rusbult, 2007). 

 Inquiry-Based Mathematics Education (IBME) means promoting mathematical 

learning with understanding through inquiry, to help students experience authentic 

mathematical activity (Artigue, 2012). 

 Mathematics refers to a process of using symbolic notations for describing 

connections between numerals, geometrical concepts and graphical 

representations (DoE, 2011). Mathematicians seek out patterns, formulate new 
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conjectures and establish truth through studying quantity, structure, space and 

change.   

 Perception – the ability to see, hear, or become aware of something through the 

senses; the way in which something is understood or interpreted (Harre, 2002). 

 Problem-solving – the process of finding solutions to a problem. A problem bears 

a characteristic that it lacks an obvious way to find a solution or a solution is not 

immediately obvious. Problem solving process according to Polya (1887-1985) 

comprise four steps that are understanding the problem, devising a plan, carrying 

out the plan and looking back (Baroody & Coslick, 1998; Sonnabend, 2010).    

 Self- regulated learning points to a classroom context wherein students take 

initiatives with the help of the teacher and other students to diagnose own learning 

needs, formulate goals, evaluate necessary resources and evaluate learning 

outcomes (Bergamin, Werlen, Siegenthaler & Ziska, 2012). Further, Bergamin et 

al. (2012) assert that self-regulated learning strategies involve cognition, 

metacognition, and resource based learning.  

 Space and shape means real objects that occupy the real world. Shapes are visual 

representations of mathematical phenomena, processes and concepts 

(Hershkowitz, Parzysz and Van Dormolen,1996).  

 Spatial reasoning and understanding concerns interpreting and understanding the 

inherently geometric world (Baroody & Coslick, 1998).  Spatial reasoning is 

essential in real-world situations and relates to thinking about objects in three 

dimensions and to draw conclusions about those objects from limited information.  

 Spatial skills are spatial abilities. Spatial abilities are defined as how students view 

space and shape, how they conceptualise and interpret space and shape in terms 

of two or three dimensional views. Spatial abilities also include how students react 

to visual stimulus material and the capability to manipulate visual patterns (Carroll, 

1993).   

 Traditional axiomatic approach of teaching involves teaching that revolves around 

presenting a set of agreed facts as a set of axioms and geometry is deductively 

build on these facts (Bankov, 2013).  

 Visualisation or imagination implies knowledge representations formulated around 

physical objects and events (Hamilton & Ghatala, 1994); and visualisation is 
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grounded on the construction of symbolic representations of concepts and 

establishment of relations.   

1.10 SCOPE AND ASSUMPTIONS  

1.10.1 Scope 

The scope of the study includes high schools in Tshwane North and West Districts of 

Gauteng Province in South Africa. The high schools were conveniently sampled 

according to their comparability based on the background, biographical and 

geographical factors. Six schools participated; i.e. three schools from each location. 

Grade 11 mathematics teachers and students were the main participants. Participation 

was limited to inquiry teaching and learning in Euclidean Geometry. The researcher 

interacted with teachers and students through the quasi-experimental design method, 

observations and interviews. Tshwane North teachers and their classes were located 

in the experimental group whereas the teachers in the Tshwane West were positioned 

in the comparison group; and both groups participated in pre- and post-tests. The 

researcher presented the lessons at the three experimental group schools, and 

teachers at comparison group schools presented lessons as normal while the 

researcher observed without participating. 

Teaching and learning activities were evaluated according to Van Hiele’s levels of 

understanding and John Dewey’s theory of inquiry in this study. Of utmost importance 

is the use of IBF to achieve IBL in Euclidean Geometry. The teaching environment 

and resources that encourage IBL played a pivotal role in the study. Teaching 

Euclidean Geometry through inquiry fosters learning that moves from the known to 

critical self-discovery of the unknown in order to achieve higher levels of geometric 

thinking.  

1.10.2 Assumptions 

Assumptions are made in the study that all students who participated are full-time 

Grade 11 mathematics students. The students studied mathematics from Grade 1 

through to Grade11 level. Further, it is assumed in the study that the methods of 

teaching and learning Euclidean Geometry need improvement in order to assist 

students to achieve higher levels of understanding in Euclidean Geometry. 
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1.11 OUTLINE OF CHAPTERS 

 Chapter 1 – Study overview 

 Chapter 2 – Review of literature and theoretical framework 

 Chapter 3 – Research design (that is, methodology, method or approach, 

population and sample, data collecting tools and process, data analysis and 

interpretation, validity and reliability, and ethics issues). 

 Chapter 4 – Presentation of results  

 Chapter 5 – Interpretation of data, discussion of results, conclusion and 

recommendations  

1.12 CHAPTER SUMMARY 

This chapter provided the introduction and background to the thesis. Approaches to 

teaching Euclidean Geometry were reviewed with a focus on the difference between 

guided inquiry methods such as IBF and the traditional axiomatic approach. The 

problem statement, objectives, hypothesis and the research questions were set out 

and the adoption of a mixed-methods strategy using both qualitative and quantitative 

approaches was explained. The sample of participants was explained and the 

formation of a comparison group and experimental group was outlined. The key 

concepts used in the study were defined to provide the necessary content for the 

study. The next chapter provides a detailed literature review and theoretical framework 

for the study.  
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CHAPTER 2  

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

2.1 OUTLINE 

The literature review in this study focuses on cognitive processing in Euclidean 

Geometry. Theoretical framework is centred on IBF and IBL in Euclidean Geometry. 

In this study, cognitive process or cognitive processing concern how student learn 

while cognition refers to understanding. Inferences are made from literature to support 

the hypothesis. Therefore, literature is reviewed from books, articles, journals, 

newspapers, the internet and theses based on (1) the methods of teaching; (2) how 

students learn Euclidean Geometry in South Africa; and (3) the contribution of both 

the traditional axiomatic approach and the IBL teaching approach to learning. 

Knowledge on how students learn is regarded as important in this study considering 

that when teachers know how learning takes place they will be able to practise 

relevant teaching methods. This study is not subjected to a comparison between the 

traditional axiomatic approach and IBL, but to support the alternative hypothesis that 

IBF teaching approach influences IBL and consequently increases students’ 

knowledge and understanding of formal deduction level (that is, Van Hiele’s level 4) 

through pre-visualisation, visualisation, analysis and informal deduction (that is, Van 

Hiele’s levels 0-3).  

2.2 COGNITIVE PROCESSING IN EUCLIDEAN GEOMETRY 

Geometry comes from ancient Greek knowledge where it is described as “earth 

measure” where it was used to measure land in ancient times. (Hansen, 1993; Jones, 

2002). Jones (2002) agrees that various ancient beliefs established a form of geometry 

appropriate to the associations among lengths, areas and volumes of physical objects. 

Further, Jones (2002) states that there are different types of geometry such as plane 

geometry, elliptic geometry, analytical geometry, coordinate geometry, Euclidean 

Geometry and others. Curriculum designers at schools choose a few types to be 

studied at school level, for example, transformation, analytical geometry and 

Euclidean Geometry.  

The teaching and learning of Euclidean Geometry is crucial in this study. Hansen 

(1993) and Jones (2002) state that the understanding of geometry was accumulated 
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and ordered in a writing that was named Euclid’s Elements. They posit that Euclid’s 

Elements epitomise the axiomatic-deductive method and maintain that several 

theorems were proved by deductive logic. Jones (2002) states that in the nineteenth 

century, there were changes in the concepts of geometry. Euclid introduced abstract 

geometry, but according to British mathematician, Sir Zeeman (Jones, 2002), 

geometry is composed of mathematics that calls on visual intuition to perceive reality, 

to remember theorems, understand proofs, stimulate conjecture and give universal or 

inclusive insight. This study views Euclidean Geometry as an entity comprising both 

Euclid and Zeeman’s views. That is, geometry begins with people perceiving and 

recognising the immediate world concretely, formulating conjectures about the 

environment and the world; and utilising the accumulated perceived and recognised 

knowledge as well as pre-conceived conjecture to seek validity and confirmation 

through existing axiomatic-deductive knowledge; that is, knowledge contained in 

axioms and theorems. It is the view of this study that inductive and deductive logic 

supplement each other in the teaching and learning of Euclidean Geometry.  

The objectives of teaching geometry as summarised by Jones (2002) are: to 

encourage geometrical intuition, spatial awareness, and visualisation; provide 

geometrical experience with two and three-dimensional objects; develop knowledge 

of geometrical properties including theorems; develop the capability to apply the usage 

of properties of geometric figures and theorems in problem-solving; stimulate the 

progression and application of supposition, logical reasoning and proof; promote 

awareness of geometry in society and the contemporary applications of geometry; 

encourage expertise of applying geometric knowledge in modelling and problem-

solving for real-world contexts; promote useful integrated technology (IT) skills in 

geometric contexts; and inculcate a positive attitude towards mathematics. Teaching 

influences learning, therefore, based on the objectives of teaching geometry, Jones 

(2002) outlines the objectives of learning geometry as: (1) developing the skills of 

perception, intuition, visualisation, critical thinking, conjecturing, logical argument, 

proof and deductive reasoning; (2) making sense of other sections of mathematics, for 

example, statistical representations of data through graphic illustrations; and (3) 

applying spatial sense or reasoning in curriculum for other areas of study, for example 

in technology, art, science, geography and other.  
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The teaching approach has a great impact on the development of the levels of learning 

in Euclidean Geometry. The impact is evident based on the fact that teachers teach at 

the deduction level, that is, level 4, while the students have not yet mastered the 

induction level. This study asserts that teaching must be based on leading students to 

learn by inquiry for them to apply inductive inquiry to develop knowledge and 

understanding at levels 0-3 in order for them to apply deductive inquiry in achieving 

level 4 of knowledge and understanding. Research has elaborated on mathematical 

reasoning as either deductive or inductive. For example, Polya in Gurung, Chick and 

Haynie (2009) state that practical mathematics seem as science that is inductive and 

experimental, but Euclidean mathematics appear as science that is deductive and 

systematic. Inductive and deductive reasoning are two forms of basic reasoning for 

mathematicians: through inductive reasoning students apply new observations to 

infer rules; thereafter they apply deductive reasoning to test their new observations 

by referring to existing rules (Prince & Felder, 2006). However, the two types of 

reasoning appear not to be appropriately integrated in mathematical teaching. This is 

consistent with the observation that students who take mathematics as a subject are 

not conscious nor oriented to the work of a mathematician which is to experiment, 

create and discover models, and use knowledge and inductive reasoning to solve new 

problems (Gurung, et al., 2009; Kinsey & Moore, 2015). 

The common belief among mathematics teachers and students is that in Euclidean 

Geometry theorems can only be memorised and applied when tested for academic 

progression or promotions and cannot be applied in real-life problems. Gurung, et.al. 

(2009) outline the general conceptions of students towards mathematics as follows: 

(1) mathematics problems have only one solution, and there is only one correct 

method to find the correct answer; (2) memorisation of facts and processes will allow 

students to solve problems in a few minutes; (3) mathematics is an individual activity; 

and (4) the mathematics learned is not related to students’ lives and the real world. 

However, they attribute all these statements to the currently-applied lecture method 

which is a teaching method that focuses on facts, concepts and procedures as 

knowledge to be memorised. 

Research has shown that the teaching of Euclidean Geometry in the South African 

context is focused on the lecture method or the traditional axiomatic approach (Malati, 

2014; Siyepu & Mtonjeni, 2014; Van Putten, Howie & Stols, 2010). Further, it has been 
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indicated through research that the traditional axiomatic approach yields learning by 

rote and memorisation. According to Luneta (2015), most teachers do not elucidate 

on concepts applying methods that empower students to acquire conceptual 

knowledge through thorough understanding of geometric concepts. Students commit 

more procedural errors in problem-solving, are not able to determine geometric 

relationships and, from the students answers in a geometry test, it was concluded that 

procedural errors committed by students outweighed conceptual errors. Further, 

Luneta (2015) attributes the errors and difficulties experienced by students to the 

conventional way of teaching. In light of his views, this study asserts that learning 

through memorisation does not afford the students a chance to acquire the skill of 

geometric problem-solving. With the traditional axiomatic approach, students are 

unable to acquire knowledge and understanding of the higher levels of geometric 

thinking as outlined in Van Hiele’s theory of geometric understanding. Research has 

proved that countries that apply open systems of teaching and learning in Euclidean 

Geometry perform better in geometric problem-solving (Kunimune, et al., 1996; 

Wubbels, et al.,1997). In South Africa, the principle of open systems has been 

recommended, but the practice is still lacking.  

Further, research has proved that South African students at Grade 11 have poor 

foundational knowledge in Euclidean Geometry (Alex & Mammen, 2014). This makes 

it difficult for students to acquire knowledge at higher levels of learning. Regardless of 

the fact that the students have not acquired foundational knowledge, teachers teach 

at higher levels without considering building knowledge and understanding that 

students may not have developed the requisite conceptual skills at lower levels. This 

study focuses on implementing IBF strategies that can improve learning by inquiry 

and, as a result, increase the students’ knowledge and understanding of Euclidean 

Geometry at formal deduction level through visualisation, analysis and informal 

deduction levels of Van Hiele’s theory. Therefore, this study hypothesises that IBF 

strategies are effective and can contribute positively towards IBL in developing 

inductive and deductive reasoning; namely, knowledge and understanding of formal 

deduction through pre-visualisation, visualisation, analysis and informal deduction. 

Consequently, students develop critical thinking skills to obviate learning Euclidean 

Geometry through memorisation.  
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To address the issue of how students learn Euclidean Geometry, Van Hiele’s theory 

of geometric knowledge and understanding is applied. In addition, the following 

aspects of cognition are also examined: cognitive processing philosophy, cognitive 

science, cognitive load and the influence of using technology or multimedia in 

teaching Euclidean Geometry. The link between Van Hiele’s theory of understanding 

in Euclidean Geometry and other aspects of cognition is outlined in this study. Van 

Hiele’s theory also applies as an assessment theory in the alignment of the pre- and 

post-tests. Further, Van Hiele’s theory also outlines the phases of learning in relation 

to instruction. These phases are also linked to methods of instruction that influence 

the development of geometric knowledge and understanding.  

Literature in support of this study’s hypothesis focuses on looking at IBL as a way 

of supporting students to achieve both inductive and deductive learning. As the 

directional hypothesis posits, much emphasis in this study is put on the process of 

IBL (the IBL framework), the essence of IBL, teacher and students’ role in IBL and 

the challenges of IBL in Euclidean Geometry. 

2.2.1 Methods of teaching to advance cognitive processing 

The argument that Euclidean Geometry needs a deductive approach to mathematics 

instruction is supported by research. For example, Dell’Olio and Donk (2007) point out 

that traditional methods of teaching have been shown not to be effective in teaching 

mathematics. Knowledge is the product of inquiry which is a problem-solving process 

of moving from doubt to belief. Prawat (1999) highlights that, according to Dewey, truth 

is the relation between perception and the external object. Moving from doubt to belief 

is consistent with the idea that inductive reasoning (through perception) and deductive 

reasoning (through confirmation) supplement each other during teaching and learning. 

Inductive reasoning is basic to proofs. It is through inductive reasoning that 

hypotheses are formulated and tested. As it relies on inductive reasoning, deductive 

reasoning can be employed to arrive at correct conclusions. Looking at Van Hiele’s 

theory of geometric understanding, the basic levels (that is, visualisation, analysis and 

informal deduction) are more concrete and inductive reasoning is needed. The 

knowledge accumulated in lower levels through inductive reasoning is helpful in higher 

levels (that is, formal deduction and rigour) which are more abstract and require 

deductive reasoning. The traditional method of teaching starts from the formal 
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deduction level, that is from an abstract level that relies more on deductive reasoning. 

Teachers and students start with belief; that is, they start problem-solving by 

attempting to make valid, reliable and correct conclusions without inquiring, that is, 

without moving from doubt. Moving from doubt to belief or learning by inquiry is done 

through manipulating reality or experimentation. The teaching of Euclidean Geometry 

needs first to encourage students’ experimentation, exploration and discovery into 

space and shape, and then to encourage verification of results through 

experimentation, exploration and discovery by applying known facts.  

The study emphasises that teaching should start with facilitating inquiry and end with 

confirming inquiry through facts. Based on the fact that the predominant method of 

teaching in South Africa is the traditional teaching method, comparisons are made 

between traditional axiomatic teaching and IBF. However, this study maintains a 

pragmatic point of view that traditional teaching where a teacher is present as the 

facilitator can encourage learning by inquiry, and teacher as a more knowledgeable 

agent is there to confirm knowledge constructed by students though inquiry. This 

means the teacher must use both inductive and deductive teaching techniques in order 

to ensure inductive and deductive learning in Euclidean geometry. 

Despite the development of other approaches to teaching, the traditional axiomatic 

approach is predominant in most teaching. It is essential that it is linked to IBL in order 

to allow students also to be knowledge producers through the guidance of an expert 

who is a teacher. IBL as a means and process of capacitating students through 

creating doubt, aims to enable students to learn to retain concepts, exhibit deeper 

understanding of concepts, show superior abilities in higher-order thinking skills and a 

higher level of creativity through experiences in inquiry (Dell’Olio & Donk, 2007). 

However, to become capacitated and enabled to confirm their doubts through belief, 

Dell’Olio and Donk (2007) pointed out that direct instruction through teacher facilitation 

is needed as this will support students to focus their attention on the past, that is, on 

what has been already discovered by others to confirm their doubts. Further, Dell’Olio 

and Donk (2007) suggest that inquiry experiences will provide students with the tools 

to move into the future as producers of knowledge. Qualities produced by IBL are 

necessary to enable the Grade 11 students to learn Euclidean Geometry better; 

therefore, it is essential that teachers facilitate IBL in teaching Euclidean Geometry in 

Grade 11.  
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2.2.2 Geometric understanding of South African students 

Euclidean Geometry at school level is a challenge, mostly at higher grades such as 

grade 11 and 12. The challenge results from the students’ lack of experience as well 

as geometric knowledge and understanding from lower grades. Several studies within 

the South African context in grades lower than Grade 11 have proved that students 

are progressed from lower grades lacking experience and knowledge that contribute 

to the students’ failure to cope with higher thinking in Grade 11. For example, Feza 

and Webb (2005) conducted a study investigating the Grade 7s competency in 

connection with the assessment criteria outlined by the curriculum in South Africa and 

the Van Hiele thinking levels. In their study, Feza and Webb (2005) deduced that most 

of the participants were not English native speakers, therefore, language proficiency 

remained a barrier that obstructed students from achieving the set requirements. 

Further, Alex and Mammen (2014) conducted a study with a sample of Grade 10 

students in South Africa. The study conducted by Alex and Mammen (2014) focused 

on learning Euclidean Geometry based on the Van Hiele model of thinking. The results 

of the study revealed that regardless of CAPS expectation that Grade 10 students 

should perform at level 3, most students’ level of knowledge was 0.  

Challenges encountered in lower grades pose a problem in abstract, higher thinking 

levels; for example, Cassim (2006) also conducted a study focusing on the strategies 

that Grade 12 students employed to solve cyclic quadrilaterals and tangent problems. 

Cassim’s study applied the Van Hiele levels of geometric knowledge and 

understanding as a method for classifying students’ levels of understanding. Data 

gathered resulted in the following patterns: students’ inappropriate usage of theorems 

in finding solutions to geometry problems; and students’ responses that were based 

on visual form of the figures. Cassim’s study concluded that the manner in which 

educators approach the solving of geometrical problems determined the strategies 

that the students applied to solve geometry problems.  

Research confirms that it is in the lower grades where instruction leads the students 

to learn by memorisation, but they cannot recall the knowledge at higher levels. 

Despite lack of students’ cognitive development in Euclidean Geometry, teachers 

teach at a higher cognitive level in Grade 11. The Grade 11 students cannot cope with 

the Euclidean Geometry at a very abstract formal deduction level as they cannot evoke 
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the basic knowledge from lower levels. To resolve this problem, learning by inquiry is 

necessary. Spronken-Smith and Walker (2010) highlighted that IBL is an example of 

experiential learning. Therefore, students should be instructed through IBF in order for 

them to apply IBL to draw from their experience and call to mind the information lost 

at lower grades. Through IBL, teachers allow students to learn by discovery and 

exploration, students can discover knowledge they could not acquire in lower grades 

and overcome the misconceptions about mathematics. If the students can overcome 

the misconceptions, then they will actively become engaged in searching and 

producing knowledge in order to develop their cognitive abilities. Spronken-Smith 

(2012) motivated that IBL enhances students’ involvement in educational, 

accomplishment and higher level learning outcomes. Therefore, reconstructed 

cognitive abilities can contribute to higher-order critical thinking that will ease the 

problem-solving challenges at the abstract formal deduction level. IBL thus benefits 

the cognitive development of students.  

This study avers that inductive inquiry coupled with deductive inquiry yield learning 

which produces critical thinkers in mathematics and in turn knowledgeable, skilled and 

competent mathematicians (Prince and Felder, 2006). Therefore, literature in this 

study provides information to answer the following question: ‘Does IBF influence IBL 

to develop the students’ knowledge and understanding of formal deduction level 

through pre-visualisation, visualisation, analysis and formal deduction in Euclidean 

Geometry?’. Further, answering the question posed, provide enough evidence to 

support the alternative hypothesis of this study 

2.2.3 How do students learn? 

In testing the hypothesis, the literature review focused on the influence of inquiry-

based facilitation as a means to influence cognitive processes in IBL, that is, how 

instructional or teaching approaches influence the students’ cognitive processes. 

According to Rubie-Davis (2011), there is a connection between human cognitive 

architecture and instructional design. Cognitive architecture refers to cognitive 

arrangements or structure in relation to the operation of the limited working memory. 

Essentially, teachers should know and understand how students learn (the process of 

learning, cognitive process or cognitive processing) in Euclidean Geometry. This idea 

directs the study to the integration of the cognitive processing philosophy (Table 2.1) 
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which emphasises the development of students’ thinking abilities or how students 

learn (Dell’Ollio & Donk, 2007). According to Dell’Ollio and Donk (2007), cognitive 

processing philosophy entails factors that are outlined in Table 2.1.  

Table 2.1: Cognitive processing philosophy 

 

 Students’ time and energies should be employed in developing intellectual skills such as 

analysis, inference, induction and evaluation, rather than focusing on developing 

academic content only. 

 Learning should focus on students’ development of cognitive skills and the application of 

the scientific method. 

 Deductive teaching disrupts authentic students’ learning 

 Students should work as scientists, that is, through inductive teaching models. 

 Inductive teaching models directs instruction and learning as follows: rather than students 

being given a scientific principle to observe through teacher direct demonstration and 

experimentation, students are presented with an engaging meaningful question; and 

through the inquiry process, students analyse the problem, generate the hypotheses, 

choose from among those hypotheses, and design an experiment to test the hypotheses. 

 Students can induce principles of the subject through experience rather than absorb them 

passively in teacher directed lessons. These experiences strengthen students’ intellectual 

abilities as they do the work of mathematicians 

 Once the intellectual skills have been introduced in the early school grades, they should 

continue to be developed through learning experiences in all mathematical sections in 

higher grades. 

 Critical thinking skills can also be viewed as instructional objectives. 

 Traditional content organisation and teaching methods do not involve and promote 

cognitive abilities with deliberation.  

 Teacher-centred methods do not promote students’ thinking beyond basic levels of 

comprehension. 

 Learning experiences can be designed to move students to higher levels of critical thinking  

 Students possess an individual repertoire of cognitive skills when they enter the classroom 

 Students’ can produce knowledge at any age, they are not considered as empty to the 

extent that they just receive knowledge and replicate it.  

 Traditionalist education focuses on acquisition and re-creation of knowledge, while 

cognitive processing philosophy outlines that through substantial experience as problem 

solvers, students will be able to create knowledge in future. 

Adapted from: (Dell’Olio & Donk, 2007) 
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According to Dell’Olio and Donk (2007), cognitive processing philosophy gives both 

structure and directions to constructivist theory as it applies in the classroom. 

However, teaching and learning traits similar to those of the cognitive processing 

philosophy apply even in pragmatism as a philosophy of education. In relation to the 

teaching and learning traits of the cognitive processing philosophy, Ozmon (2012) 

emphasises that the pragmatist teaching and learning philosophy focuses on teaching 

that encourages students’ active participation, rather than students’ passive 

engagement of receiving knowledge imparted by the teacher.   

This study addresses cognitive processing in Euclidean Geometry as the pragmatic 

process whereby self-directed students with minimal teacher facilitation, acquire 

knowledge and understanding through analysis, inferences, induction and evaluation; 

thereafter students construct and make sense of Euclidean Geometry knowledge 

through diverse cognitive levels (Van Hiele’s levels of knowledge and understanding) 

in order to solve problems.  

Merging teachers’ consideration of students’ cognitive architecture or cognitive 

processing abilities with instructional design is consistent with the idea in this study 

that instruction should motivate and equip students to utilise their intellectual abilities 

in self-directed learning. Self-directed learning assists students to learn by inquiry (that 

is, to develop authentic learning as well as both inductive and deductive inquiry) and 

the process of acquiring knowledge and understanding by inquiry is known as IBL.  

2.2.4 IBL 

IBL refers to the method of learning that involves students in activities that make sense 

to them, rather than students being provided with an easy way to the solution (Love, 

Hodge, Corritore & Ernst, 2015). IBL is a student-centred approach where the teacher 

only facilitates and directs the learning process. Therefore, IBL is a component of the 

learning paradigm rather than the teaching paradigm (Barret, 2005). In light of Barret’s 

idea, the teaching approach that influences learning in this study is referred to as 

inquiry-based facilitation (IBF) or or IBL facilitation. Love et al. (2015) argue that in the 

process of IBF, the teacher directs learning employing well designed problems through 

adventurous activities, activities that supports discovery of concept and application of 

acquired knowledge in problem solving. Furthermore, Love et al. (2015) aver that in 

the IBF process teacher give students activities that engage them in problem solving 
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through communicating, experimenting, exploring, making suppositions and applying. 

Rubie-Davis (2011) emphasises that it is of essence that teachers know the students’ 

cognitive processes and techniques as well as the students’ cognitive architecture in 

order to select the correct methods for manipulating instructional processes and 

procedures as well as their interactions with students’ cognitive structures and 

processes. In addition, teachers should know the contributors to cognitive load, that 

is, factors that hinder cognitive processing, in order to apply IBF to stimulate IBL that 

will ease the cognitive load. 

Inquiry-based facilitation promotes IBL that empowers students to attain better 

cognitive processes in Euclidean geometry. Therefore, literature in this study is 

focused on cognitive processes based on cognitive science, pragmatism as a 

philosophy of education, Van Hiele’s cognitive levels and cognitive processing and 

learning experiences according to Dale’s theory. Further, literature in this study 

addresses cognitive load in Euclidean Geometry; traditional axiomatic approach as a 

supplement to IBL in Euclidean Geometry; challenges associated with the 

implementation of IBF to promote IBL in Euclidean Geometry; and IBL assessment 

and performance indicators in Euclidean Geometry. The main unit of analysis in this 

study is the teaching strategy; however, learning strategies are discussed at length in 

order to weigh the effect of the teaching strategies as applied in both the experimental 

and comparison group. Further, learning strategies are discussed as evidence of 

achievement in the experimental group, and non-achievement in the experimental 

group in order to single out IBF as an essential teaching strategy.  

2.2.5 Cognitive processing according to cognitive science 

Cognitive science is described as the “science of mind”, where “mental operations” 

are regarded as “information-processing operations” (Bermúdez, 2010:3 & 457). 

Cognitive processing in geometry is mainly focused on “an account of how information 

is processed in individual cognitive systems” (Bermúdez, 2010, p. xix). Clements and 

Battista (1992) argue that cognitive science is another perspective applied to 

understand students’ learning of geometry. Further, Clements and Battista (1992) 

discuss Anderson’s and Greeno’s models of cognitive science as follows:  



33 

2.2.5.1 Anderson’s model 

Anderson’s model of cognitive science (called the Adaptive Control of Thought – 

Rational [ACT-R] model) depicts that learning geometry involves: acquisition of 

declarative knowledge; application of declarative knowledge to new situations by 

means of search and analogy; compilation of domain-specific productions and 

strengthening declarative and procedural knowledge.  

Andersons’ model of cognition declares that declarative knowledge means ‘knowing 

that’, for example, conjectures and theorems would be stored in schemas along with 

knowledge about the function of theorems; and procedural knowledge means ‘knowing 

how’ and is stored in the form of production systems or sets of condition-action pairs. 

According to Anderson (2000), declarative knowledge is knowledge about facts and 

things, that is, unequivocal understanding that individuals are knowingly aware of and 

can account on. Further, Anderson (2000) argued that procedural knowledge is 

inherent knowledge of how to do things, also knowledge about how to perform 

cognitive activities.  

2.2.5.2 Greeno’s model 

Greeno’s model of cognitive science emphasises procedural knowledge as production 

of systems. The model explains that for students to solve geometry problems, three 

domains of geometry are required: First, propositions are made in making inferences 

that establish the main steps in geometry problem-solving. For example, making 

familiar statements about geometric relations such as corresponding angles formed 

by parallel lines and a transversal are equal. Second, perceptual concepts are used 

to recognise patterns mentioned in the backgrounds of many propositions (for 

example, the corresponding angles). Thirdly, strategic principles are used in setting 

goals and planning; for example, when solutions require showing that two triangles 

are congruent, one approach is to use relations such as corresponding angles, proving 

that angles contained in the two triangles are equal, and that the triangles are therefore 

congruent.  

In light of the two models it is clear that there is a link between declarative and 

procedural knowledge. The link is based on the fact that acquired declarative 

knowledge is essential in order to advance procedural knowledge. 
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2.2.5.3 Declarative knowledge and procedural knowledge  

Clements and Battista (1992) argue that procedural knowledge occurs only in 

executing a skill, that is, learning by doing; and step-by-step interpretation is 

straightforward when declarative information is in the form of direct instruction. They 

further claim that in high school geometry, students may use declarative information 

to provide the data required by general problem-solving operations such as means-

ends analysis, inferential reasoning and making analogies between worked examples 

and new problems. In light of these ideas, it appears that procedural knowledge 

depends on the compilation of previously-learned declarative knowledge. However, 

the authors indicate that it is a huge challenge when students have to acquire 

mathematical ideas only procedurally while they have not yet acquired declarative 

knowledge (this shows that deductive reasoning and inductive reasoning are 

supplementary). In this state, students cannot connect procedural knowledge to 

declarative knowledge, that is, students perform sequences of mathematical 

processes without being able to describe what they are doing or why.  

Essentially the study addresses a gap in research on why students fail to apply 

declarative knowledge acquired in pre-visualisation, visualisation, analysis and 

informal deduction at advanced formal deduction through procedural knowledge. The 

main factor that places students in such a predicament is that teachers emphasise 

procedural knowledge at formal deduction level without leading students from the lost 

declarative knowledge. Teachers make students memorise, facts, names and rules to 

apply in proving theorems instead of guiding students to apply self-acquired schemata 

in reasonably proving and applying theorems. The study aims to close the gap by 

introducing IBF that will assist teachers to guide students to apply IBL id order to 

accumulate declarative knowledge in pre-visualisation, visualisation, analysis and 

informal deduction; and to apply the declarative knowledge in procedurally solving 

problems at the formal deduction and rigour levels. 

2.2.6 Cognitive processing in Euclidean Geometry based on the Van Hiele cognitive 

levels 

Van Hiele’s levels of geometric knowledge and understanding emphasise that 

students should understand and organise into schemata the system of associations 

that connects geometric concepts as well as processes; but not only memorise 
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formulae, rules, existing facts and names (Clements & Battista, 1992). A schema 

(plural schemata or schemas) is referred to as a cognitive structure that permits 

problem-solvers to distinguish a problem as fitting in a specific classification of 

problems that require defined methods (Sweller, 1988; 1994). In addition, Sweller 

(1994) proposes that the combination of discrete features into a single feature can 

efficiently increase the quantity of information that can be stored in the employed 

memory. Schemas organised by learning the network of relationships (that is, 

geometric concepts and processes) through Van Hiele levels contribute to the 

improvement of students’ knowledge and understanding, and this is supported by De 

Villiers’ (2004) idea that the exceptional characteristic of Van Hiele’s theory is the 

dissimilarity of five detached levels of knowledge based on the students’ growth of 

geometry understanding. As students build knowledge schemas in lower levels, the 

chances are high that students will competently achieve in higher levels. The five 

discrete levels of the Van Hiele model are outlined in Table 2.2.  

2.2.7 Levels of knowledge and understanding (Van Hiele Model) 

In the original Van Hiele model of geometric knowledge and understanding, the levels 

are numbered from 0 to 4. Mason (1998) states that the numbering in the model was 

altered by other researchers who numbered the levels 1 to 5. This was done in order 

to allow the additional level discovered, that is, the pre-visualisation stage which was 

numbered level 0 (Clements & Battista, 1992; Mason, 1998). First, the original Van 

Hiele model is shown in Table 2.2 and thereafter the additional opinions to the model 

by different authors are discussed. 

Table 2.2: The Van Hiele levels of geometric knowledge and understanding 

Level Description 

Visualisation(Recognition)  Students distinguish figures by how they are formed  

 At this stage, students do not notice the properties 

figures.  

 Students base decision making on perception but not 

on cognition 

Analysis  Students identify and name characteristics of 

geometric figures 

 They designate an object according to properties 

they know, but cannot determine which properties 
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are essential and which are adequate to define an 

object 

Informal deduction(abstraction)  Students observe connections among properties and 

among figures 

 Students can validate their thinking through 

constructing meaningful definitions  

 Group enclosures and rational effects are 

understood 

Formal deduction  Students can create verifications 

 They understand the meaning of adequate and 

essential characteristics and circumstances  

 Students comprehend the part of delineations 

axioms 

Rigour   Students understand how to compare mathematical 

networks as the formal feature of deduction  

 Students comprehend equally Euclidean and non-

Euclidean systems 

Adapted from: (Clements & Battista, 1992; De Villiers, 2004; Mason, 2009; Van Hiele, 

1986) 

Subsequently, Van Hiele developed a model where the original model was 

characterised into three levels (Clements & Battista, 1992; Teppo, 1991). Clements 

and Battista (1992) indicate that in Van Hiele’s latest model the three levels of 

geometric knowledge and understanding are characterised as: (1) Visual (level 1 in 

the original model); (2) analytic (level 2 in the original model); and theoretical (level 3-

5 in the original model). Teppo (1991) further summarises the visual, descriptive, and 

theoretical levels of thinking shown in Table 2.3. According to Teppo (1991), the Van 

Hiele model of geometric knowledge and understanding emphasises the importance 

of the teaching and learning act. He further argues that students progress sequentially 

across levels of knowledge as the result of decisive teaching planned according to five 

phases of sequenced activities that emphasise investigation, and amalgamation 

conversation. 

Table 2.3: Three levels of Van Hiele’s model 

Level Phases of learning Description 

Theoretical  

(Level 3) 
None 

Use deductive reasoning to 

prove geometric relationships 
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Descriptive   

(Level 2) 

Integration 

Free orientation 

Explication 

Bound orientation 

Information 

Awareness of objects by their 

geometric characteristics 

Visual    

(Level 1) 

Integration 

Free orientation 

Explication 

Bound orientation 

Information 

Distinguish geometric objects 

universally 

Source: (Teppo, 1991) 

The three-level model developed by Van Hiele has been criticised by Clements and 

Battista (1992) as not being sufficiently refined to characterise thinking, which is 

consistent with their findings that students may progress to level 3 without having 

acquired axiomatic thinking. In addition, Clements and Battista (1992) argue that the 

combination of the levels 3-5 as theoretical may contribute to teaching and learning 

deficiencies at higher levels. However, in contrast to the view of Clements and Battista 

(1992), Teppo (1991) states that the three-level model is effective because: (1) in order 

to succeed in each level of knowledge, students advance diverse learning phases, for 

example, learning pertinent concepts in each level, essential language appropriate in 

each, progress from lower level to higher level of thinking; (2) According to Van Hiele’s 

theory, each learning phase is apportioned to instruction to ensure improvement in 

student’s understanding of geometry; (3) A teaching and learning programme is 

necessary in order to efficiently stimulate a shift from one level to the subsequent. 

According to Teppo (1991), the model characterises thinking as much as the model 

with five phases does.  

This study postulates that Van Hiele’s theory in general, that is, the theory of five levels 

and that of three levels, address the same issue of knowledge and understanding in 

Euclidean Geometry. The notion that there should be a pre-visualisation level is also 

viewed as significant in this study. Therefore, this study focuses on six levels of 

knowledge and understanding which are pre-visualisation, visualisation, analysis, 

informal deduction, formal deduction and rigour. This study emphasises that for 

students to advance the formal deduction level (which may be addressed as 

theoretical level), they should develop cognitive skills at the lower levels; and cognitive 
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development in this study is viewed as viable when each and every level is thoroughly 

addressed during teaching and learning. Lower levels such as pre-visualisation, 

visualisation, analysis and informal deduction need to be unfolded in Grade 11 in order 

to improve the students’ perception skills (Harre, 2002) In support of developing the 

basic cognitive levels to enhance students’ perceptual powers or perception skills, 

Harre (2002) outlines three distinct regions, shown in Table 2.4.  

Table 2.4: Regions of perceptual power  

Regions within the perceptual power of 
human beings 

Contribution in the available world 

What we can perceive 
The world as we perceive it with our normal 
sense organs 

What we can visualise 
The world as we do experience it with sense 
extending instruments  

What we can imagine 
The world as we imagine it to be beyond the 
reach of all our powers of perception, aided or 
unaided by instruments 

Adapted from: (Harre, 2002) 

This study actualises the view by Harre (2002) and postulates that when the students 

interact with and experience the world or environment around them through 

perceiving, visualising, and imagining, levels such as pre-visualisation, Visualisation 

and analysis can be achieved by the students. Region one (that is, what we can 

perceive) supports the pre-visualisation stage identified by Clements and Battista 

(1992). This study further assumes that it is of essence for students to perceive the 

world around them in order to visualise this particular world. Imagination is supported 

by what has been perceived and visualised. These three regions of the students’ 

material world are prioritised as items that can enhance what is perceived and what is 

visualised. This takes us to Dale’s (1946) theory that learning begins with action 

learning, and action learning is possible when the student is exposed to diverse 

learning materials (Corpuz & Lucido, 2008). Ultimately, assumptions can be made in 

the study that pre-visualisation stage is very essential before visualisation can take 

place, and learning and teaching resources are essential in order for students to 

advance pre-visualisation and visualisation stages.    

Based on their claim that that pre-visualisation is a level that is more basic than the 

Van Hiele’s visualisation level, Clements and Battista (1992) numbered the levels in 

the original Van Hiele model as levels 1 to 5 in order to accommodate the pre-

visualisation level. Therefore, according to Clements and Battista there are six 
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cognitive levels of geometric knowledge and understanding which are: level 0 – pre-

visualisation (addressed as pre-visualisation in this study); level 1 – recognition; level 

2 – descriptive or analytical; level 3 – abstract or relational; level 4 – formal deduction; 

and level 5 – rigour. The characteristics of the additional pre-visualisation level are: (1) 

students perceive geometric shapes, but may attend to only a subset of the shape’s 

visual characteristics; (2) they may not be able to distinguish figures in the same class, 

even though they may be able to differentiate between figures that are curvilinear 

(shapely) and those that are rectilinear (uncurving or straight), for example, not being 

able to make a distinction between a three-sided figure and a four-sided figure 

(Clements & Battista, 1992). This study assumes that at Grade 11 level students are 

competent in the pre-visualisation level, that is, they can perceive geometric figures in 

their world and can, for example, distinguish between three- and a four-sided figure.  

Pre-visualisation in this study explains that students can visualise what they have seen 

and perceived as a distinct object. According to Harre (2002), what an individual can 

perceive depends on the aspects of the material world that are available to their 

unaided senses; for example (1) the larger world available due to being adventurous 

in the exploration of the available environment; (2) the wider world because an 

individual has equipment; and (3) the richer world because an individual has more 

elaborate conceptual systems with which to recognise and classify things, properties 

and relations available to the unaided senses. Strong cognitive development in pre-

visualisation can enable student to advance visualisation easily. 

In concurrence with Harre’s view that the world around the student is essential for 

visualisation, Hershkowitz et al., (1996) argue that geometry education starts with 

orientation in real space, that is, the space of which students themselves are part. In 

addition, the authors argue that experiencing space is about the student as the 

observer in space describing the relative position of objects in that space. 

Experiencing space by describing the position of objects in that space generates 

visualisation which is of essence in Euclidean Geometry. The main goal of 

visualisation in Euclidean Geometry has been outlined as inductive reasoning by 

Hershkowitz, et al. (1996); and they further highlight that knowing shapes and visual 

reasoning is considered as intuitive and underpinning the development of the higher 

levels of learning inVan Hiele’s theory. Visualisation is propelled by the students’ 

spatial skills grounded by pre-visualisation (The National Academy for Sciences, 
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2018). A report by the National Academy for Sciences (2018) further outlines that 

visualisation is evident in students’ spatial abilities to apply diverse perspectives in 

constructing mental representations of objects.  In order to activate students’ pre-

visualisation and visualisation skills, Hershkowitz, et al. (1996) aver that problem 

situations in geometry should be materialised with real objects. In light of these ideas 

on visualisation, it appears that instructional planning in the pre-visualisation and 

visualisation levels of knowledge should focus more on exposing students to sufficient 

and relevant learning resources. Instruction should also probe through questioning to 

enable students to relate with their world, environment or real space. Pre-visualisation 

and visualisation levels appear to be more concrete. These particular levels can 

enable students to build knowledge schemas that they can apply in higher levels which 

are more theoretical and abstract (that is, levels such as analysis, informal deduction, 

formal deduction and rigour).  

2.2.8 Characteristics and the contribution of Van Hiele’s model in teaching and 

learning  

According to Fuys, Geddes and Tischler (1988), the Van Hiele model of geometric 

knowledge and understanding (that is, visualisation, analysis, informal deduction, 

formal deduction and rigour), supported by other researchers (De Villiers, 2004; 

Clements & Battista, 1992; Mason, 2009; Tempo, 1991), makes the following 

contribution to learning as presented in Table 2.5. 

Table 2.5: Characteristics and contribution of Van Hiele’s levels 

 Levels are hierarchical in a fixed sequence. 

 Students cannot skip a level, that is, they must be competent in lower levels in order to 
advance higher levels. 

 Properties that are central in one level turn out to be fundamental in the succeeding level; 
for example, the properties of the analysis level exist as the visualisation level, however, 
the student becomes aware of the properties only when reaching the analysis level.  

 Each level has its own language signs and system of relations. 

 Progression to the succeeding level is dependent on educational background not on 
maturation or age. 

 

Adapted from Clements & Battista,1992; De Villiers, 2004; Fuys, et al., 1988; Mason, 

1998; Van Hiele, 1986). 
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The authors further observe the following: (1) difficulty in learning geometry (that is, 

cognitive load) is caused by teaching that occurs at the deduction level when the 

students have not yet attained knowledge and understanding at the informal deduction 

level; and (2) lack of understanding and difficulties may be experienced by students 

when the teacher reasons at a diverse Van Hiele level than that of the students during 

instruction. Further, Mason (1998), argues that in order to assess the Van Hiele levels, 

there are tests assigned to levels; for example, observation made by the teacher in 

order to find out how a student applies geometric language; and ultimately the teacher 

determines the students’ thinking level through the analysis of the student’s answers 

and reactions in the task allotted for a level. 

Furthermore, emanating from the contribution of the Van Hiele levels in learning is a 

notion that learning should be conducted in a fixed sequence of the levels, and should 

not proceed if the preceding step has not been achieved (Van Hiele, 1986). In light of 

this, this study suggests that students through inquiry (reflecting on own experiences, 

predictions, experimentation, exploration, discovery, and drawing conclusions) should 

explore each level, and understand symbols and network of relationships in that level 

before progressing to the next level. Therefore, instruction or teaching methods have 

a great effect on the students’ achievement on different Van Hiele levels. In 

concurrence, Clements and Battista (1992) highlight that the Van Hiele model 

emphasises that the process of development is subjective to the teaching or learning 

process. Mason (1998) states the implications of the Van Hiele model for teaching 

practices as follows: using the traditional teaching method of facilitating as the key 

methods, influences rote learning and obstructs meaningful learning; teachers should 

afford students chances to discuss appropriate capabilities; and teachers can assess 

the students’ level of thought at each level and provide facilitation at each specific level 

to address gaps in their knowledge.  

Mason (1998) outline that the agreement between the National Council of Teachers 

of Mathematics (NCTM) curriculum and evaluation standards and Van Hiele’s theory 

is that students’ geometric knowledge and understanding progresses through a 

hierarchy of levels.  In addition, Mason’s (1998) analysis of the NCTM standards in 

relation to Van Hiele’s theory outline the following: learning starts by recognising whole 

shapes, analyse the properties of shapes and ultimately by specifying relationships 

among shapes and making deductions. Further, Mason’s analysis motivates that the 
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the classroom context should contribute to students’ active engagement in developing 

mathematical concepts through exploration, description, demonstration and 

discussion; and classroom context should enable students to communicate in order to 

discuss, share discoveries, formulate conjectures, confirm conjectures and acquire 

knowledge through reading, writing, speaking and listening. In summary, the 

pragmatist method of teaching and learning (for example, learning by exploration and 

discovery inquiry) promotes progression according to the hierarchy of the Van Hiele 

model.  

Looking at the influence of instruction on learning, the Van Hiele model emphasises 

that teaching should be organised into five phases of learning in order for a student to 

progress through each level (Clements & Battista, 1992; Fuys et al., 1988; Teppo, 

1991; Mason, 2009; Van Hiele, 1983). The phases are described in Table 2.6. The 

authors indicate that the student could go through the phases more than once in a 

particular topic. 

Table 2.6: Van Hiele’s phases of learning 

Phase of learning Description 

Information  Applying the discussion method, the teacher ascertains the 

students’ pre-knowledge about the topic in order to engage 

students in the new topic. 

 Material connected to the presented level of study. 

Guided orientation  The teacher involves students and allow them to explore 

geometric concepts though active participation, for example in 

activities such as measuring, constructing etc.  

Explication  The teacher introduces essential geometric terms and allow 

students to use their own words to describe acquired knowledge.  

Free Orientation  Students explore open-ended activities by applying connections 

they have learnt to solve problems. 

Integration  Students review what they have learned and utilise it in  impoving a 

new system of substances and connections. 

Adapted from Clements and Battista (1992); Fuys, et al. (1988); Teppo (1991) 

2.2.9 Cognitive processing and learning experiences 

According to Bennet (2015), teachers can facilitate learning through inquiry by (1) 

encouraging students to connect to the subject; (2) identifying stimulating themes; (3) 
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applying metacognition by taking students into the real world; (4) using prompts to 

support students to advance analysis in order to extricate knowledge; and (5) 

encouraging students to inquire through asking thoughtful questions. Essentially, 

Bennet (2015), highlights that for students to advance inquiry through critical thinking, 

it depends on stimulating themes and prompts used by the teacher. Further, in light of 

Bennet’s view of IBL, it shows that connection to the real world during learning 

demands metacognition, that is, students’ knowledge about strategies and skills of 

identifying, selecting and monitoring cognitive strategies (Hamilton & Ghatala, 1994). 

Hamilton and Ghatala (1994) define cognitive strategies as mental processes for 

controlling learning and thinking. They state that students’ ability to utilise cognitive 

strategies appropriately allows them to effectively manage their own learning, 

remembering and thinking. Carr (2010) agrees that the quality of conceptual 

knowledge is mostly advocated in mathematics; however, metacognition is necessary 

to determine how well and how quickly students will learn. In addition, Carr (2010) 

highlights that individuals’ ability to evaluate the state of their knowledge supports the 

emergence of more conceptual knowledge and understanding. Tarricone (2011) 

states that metacognition is connected to reflection; and reflection and metacognition 

are dependent on self-knowledge. In addition, Tarricone (2011) also observes that 

reflection and self-knowledge as components of metacognition are essential for the 

identification, monitoring and control of problem-solving strategies. Reflection is an 

essential part of learning, where students develop skills such as awareness, 

monitoring and regulation of own learning. Metacognition through reflection remains 

essential for learning Euclidean Geometry.  

It is postulated in this study that pre-visualisation and visualisation are important in 

students’ cognitive growth, and the two levels rely on the adequate resources. It is at 

these two levels that students’ metacognition or cognitive growth should be stimulated 

or prompted in relation to the students’ real world. According to Tall (2004), 

construction of mathematical ideas in order to learn can develop in different ways such 

as: (1) from acting intuitively on the real-world; (2) increasing complexity of language 

to sustain representation of numbers and deductive concepts; and (3) increasing 

abstraction, explanation and meaning that end in formal axiomatic approaches. In 

addition, Tall (2004) categorises cognitive growth according to the following 

developments which he says are distinct but interdependent: (1) perception which 
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consists of thoughtfulness about objects sensed and observed in own intellectual 

world and in the real world; (2) manipulation of mathematical symbols to advance 

computations, for example, in algebra which is fundamental to geometry; (3) Formal 

expression of properties used in axiomatic approaches to postulate mathematical 

constructions. Perception or pre-visualisation, visualisation and analysis (that is 

evident through real-world enactive and iconic representations) get activated through 

actual and visual learning (Figure 1). Activating the pre-visualisation levels, 

visualisation and analysis can assure schema acquisition and ability to establish 

networks and relationships in order to link Euclidean Geometry concepts and 

processes. Formal definitions and deductions can be easily advanced based on 

acquired schema and cognition; and verbal learning can be applied to advance formal 

deduction and rigour which relies heavily on developed schemata and cognition.  

The study aligns the necessity of supporting students’ cognitive growth through 

diverse learning activities with a theory developed by Dale during the 1960s 

(Anderson, 2013; Corpuz & Lucido, 2008). The authors highlight that Dale’s theory 

concerns a model that conceptualises three learning experiences, that is, action 

learning, visual learning and verbal learning. Learning experiences refer to ways of 

learning that can assist students to acquire knowledge, understanding and problem 

solving skills (Anderson, 2000; Corpuz & Lucido, 2008). In addition, Dale’s theory of 

learning stipulates that students retain information and knowledge through what they 

do contrary to what they hear, read or observed (Anderson, 2013). In addition, 

Anderson (2013) motivate that Dale’s theoretical model explains that the least effective 

method of learning (that is, reading and hearing) involves learning from information 

presented through verbal symbols, i.e., listening to spoken words (mostly practised in 

traditional approaches); and the most effective method (action learning) involves direct 

purposeful learning experiences, such as hands-on experience. In addition, Anderson 

(2013) highlights that learning according to learning experiences shows that action-

learning techniques result in up to 90% retention of the content learned. 

In addition to viewing action learning experiences as a means to better retention rate, 

Corpuz and Lucido (2008) view learning experience as being arranged according to 

the degree of abstraction of the learning experience. However, according to Molenda 

(2003), Dale’s theory of learning emphasise that the classification of learning 

experiences according to levels should not be regarded as any type of hierarchy or 
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rank order. Further, Molenda (2003) agrees that Dale advocated the use of whatever 

method or medium was appropriate for the student and the task. In light of Dale’s 

model, Molenda (2003) suggests that it is a misconception that there is a preference 

for concrete over abstract activities. Based on Molenda’s argument, this study 

assumes that for IBL to take place effectively, teaching should move from concrete to 

abstract and vice versa in various stages of engaging students in conjecture and 

exploration. Therefore, in this study, integration of learning   experience provides a 

means of assisting teachers in selecting relevant resources for both concrete and 

abstract activities (Anderson, 2000). Further, considering all learning experiences in 

teaching contributes to learning that integrates both inductive and deductive learning.  

According to Corpuz and Lucido (2008), Dale’s theory explains that: (1) maintaining 

the balance between concrete and abstract learning experiences could help students 

in their holistic development; and (2) the student should advance holistic improvement 

in learning by first acquiring basic experience in action learning, proceed to learning 

through visual learning, and lastly acquire knowledge by leaning through verbal 

learning; and (3) this means a student needs to be exposed to different media in order 

to have different learning experiences for holistic development. In addition, Corpuz 

and Lucido (2008) argue that in facilitating learning one medium is not enough, 

therefore, diverse medium of teaching and learning should be used in order for 

students to attain a maximum learning experience. 

When resources or multimedia are combined with students’ activities, they do not only 

serve as supporting mechanisms in the teaching of mathematics; they contribute in 

shaping the students’ actions and therefore learning (Trigueross & Lozano, 2007). It 

is essential that teachers introduce more than one medium to assist students to 

acquire diverse learning experiences. Therefore, this study emphasises that Learning 

and Teaching Support Material (LTSM) must shift from verbal learning (text book, 

reading and hearing) to multiple resource usage in order for students to advance to 

other learning experiences. Assisting students with diverse learning experiences 

ensures a connection of sequenced activities from pre-visualisation to rigour. The 

LTSM that can be used are, for example, visual media, audio-visual material, textual 

material and digital material. 
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Linking cognitive processes and the learning experiences, the study suggests that it 

is of essence to combine learning experiences (action learning, visual learning and 

verbal learning) during IBL facilitation in order to enable students to (1) develop 

holistically; (2) acquire better retention rate; and (3) learn from the concrete to the 

abstract. Holistic development, better retention rate and learning from the concrete to 

the abstract impact learning positively and the positive impact thereof significantly 

improves students’ ability to recognise and pose problems; and therefore apply 

creative thinking, critical thinking, spatial skills and acquired knowledge about 

properties of shapes to solve problems.   

It is essential to combine media during the IBL facilitation in order to include all learning 

experiences. This will enable the teacher to facilitate learning in all levels of learning 

and understanding such as pre-visualisation, visualisation; analysis, informal 

deduction, formal deduction and rigour. Therefore, considering the challenge of 

cognitive growth from lower levels faced by Grade 11 students in Euclidean Geometry, 

it is of essence to link media combination and selection with the learning experiences, 

that is, action learning, verbal learning and visual learning focusing on the levels of 

learning Euclidean Geometry. For example, action learning by using visual aids, audio-

visual aids, virtual manipulatives and digital manipulatives can support students in 

building schemas or mental structures in the pre-visualisation, visualisation, analysis 

and informal deduction levels. Verbal learning in combination with media like textual 

materials can support students in acquiring schema in formal deduction and rigour 

levels.  

2.2.10 Cognitive processing and mathematical modelling 

Cognitive processing involves observing reality and analysing the reality observed by 

using words, sketches, drawings and mathematical formulae. Reality can be modelled 

mathematically. Stockie (2014) states that a cognitive activity in which individuals think 

about and create models to describe how objects in the real-world function is called 

mathematical modelling. Furthermore, Stockie (2014) posits that, scientifically, 

mathematical modelling involves relating phenomena and behaviours observed in the 

external world to the conceptual world, that is, the world of the mind where 

understanding of the real-world is established. Three stages, that is, observation, 

modelling and prediction characterise conceptualisation, according to Stockie (2014). 
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The author further explains that in the conceptual world of mathematical modelling, 

observation measures the events in the real world, and further empirical evidence is 

collected directly by using the senses, or indirectly by taking readings or 

measurements of an event. The observations are analysed through developing 

models that describe the behaviour of observed results, explain why the behaviour 

and results occurred and predict future behaviours. In addition, Stockie (2014) 

recommends that successful modelling requires intense immersion in mathematics, 

that is to say, students need to be intensely engaged in mathematical activities as well 

as acquiring intense knowledge and understanding of mathematical concepts and 

processes. In order to afford students intense immersion in mathematical knowledge, 

understanding, concepts and processes, Lingefjard and Holmquist (2001) recommend 

that teachers must know both mathematics and computing tools in order to orientate 

students to mathematical modelling. Lingefjard and Holmquist (2001) further state that 

it is not enough for teachers in the 21st century to adhere to defining terms and 

implementing algorithms but teachers need an understanding of mathematics that 

allows them to (1) produce and interpret technology-generated results; (2) develop 

and evaluate different solution paths, and (3) recognise and understand the 

mathematical limitations of particular technological tools. However, Lingefjard and 

Holmquist (2001) emphasise that teachers must be informed about the place and role 

of technology in the pedagogical process in order for them to optimally apply 

technology in their practice. The current study suggests that technology or digital 

resources should be supplemented by other resources such as visual, audio, audio-

visual and text. Mathematical modelling complemented by technology in facilitating 

and learning Euclidean Geometry adds to the strategies that can be used to equip 

students with geometric knowledge, understanding, concepts and processes in order 

to ease the cognitive load in Euclidean Geometry.   

2.2.11 Cognitive load in Euclidean Geometry 

According to Sweller (1994), learning mathematics can differ from being easy to 

difficult or impossible. Sweller (1994) posits that the features that make learning 

mathematics difficult concerns cognitive load in mathematical problem-solving. 

Students’ cognitive load is evident mostly when students cannot perform as desired in 

examinations or in mathematical tasks in and out of the classroom. Committing 

mathematical errors during problem-solving is also evidence that students experience 
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difficulties. According to Luneta and Morapeli (2017) committing mathematical error 

refers to misapplication of mathematical rules. Further, Luneta and Morapeli (2017) 

argue that mathematical errors occur when (1) concepts are given to students in the 

form of concept names and definitions; (2) the students formulate their own conceptual 

images using cognitive structures linked to concepts that the teacher imparted to them; 

(3) new knowledge cannot be anchored to the existing knowledge or concept image; 

and (4) concept images are ill-constructed as a result of weak conceptual 

understanding. Furthermore, Sweller (1994) advances the following reasons for 

differences in how students acquiring mathematical knowledge: (1) changes in the 

amount of information, that is, difficulty in some concepts and procedures and (2) more 

information that students cannot acquire as expected. In addition, Rubie-Davis (2011) 

argues that the need to integrate more than one source in the mind, for example, 

integrating text and a diagram, inflicts a load in the working memory, therefore, 

learning is obstructed. These problems may be exacerbated by students’ natural or 

artificial cognitive constructions. Thus, Dhlamini (2012) indicates that, in essence, 

teachers should consider the fact that students utilise limited working memory within 

the process of learning. Further, Dhlamini (2012) avers that instructional design should 

encourage students’ efficient use of the limited working memory. 

 Efficient use of limited working memory is explained as the ability to increase the 

limited working memory through processing visual and auditory information 

simultaneously. Therefore, increased learning possibilities will be evident if teaching 

considers efficiency in students’ utilisation of limited working memory (Dhlamini, 2012). 

In agreement, Rubie-Davis (2011) argues that increasing effective working memory 

capacity can ease the cognitive load. In addition, Rubie-Davis (2011) highlights that 

instructional procedures can alleviate cognitive load by formatting instructional 

material and cognitive resources in such a way that activities essential to learning are 

prioritised. This study collates the ideas on supporting cognitive construction by 

emphasising that instruction should be based on learning experiences such as 

orientating students to action learning, visual learning and verbal learning. Action 

learning is associated with active learning in this study. Dale’s theory that refers in 

some sections of this study, suggests that exposure to more than one resource can 

enable individual students to cope by interacting based on individual style of learning, 
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e.g. one student can cope through action learning, another through visual or verbal 

learning, while others can cope by integrating more than one learning experience.  

It is not only the students’ cognitive architecture that can pose difficulties in learning, 

as artificial features like curriculum, environment and many other contextual factors 

can also contribute. According to the cognitive load theory, problem-solving can be 

enhanced by instructional design (Sweller, 1994). In Euclidean Geometry particularly, 

Grade 11 students cannot assimilate knowledge readily when they are taught at the 

formal deduction level while they could not achieve the pre-visualisation, visualisation, 

analysis and the informal deduction levels (Clements & Battista, 1992; De Villiers, 

2004; Mason, 1998; Fuys, et al., 1988; Van Hiele, 1983). The authors further agree 

that when the teacher is reasoning at a different Van Hiele level than the students 

during instruction, students experience lack of understanding and difficulties in 

learning. However, to decrease the cognitive load by reducing the impact of 

contributing factors, Cathcart, Pothier, Vance and Bezuk (2014) advise that teachers 

should (1) develop a sequence of activities that will contribute to students’ progress 

according to Van Hiele levels; (2) discern the students’ geometric level of thinking by 

involving students in open-ended geometry surveys; and (3) design activities that will 

connect students with the real world or environment; for example, teachers could 

conduct tasks that will include students’ reaction, collation of figures and processes on 

objects familiar to students. Pre-visualisation as well as visualisation and analysis play 

a major role in building fundamental knowledge and understanding of Euclidean 

Geometry. Fundamental knowledge in turn can support the students’ natural or 

artificial cognitive construction and can also establish a good grounding for Euclidean 

Geometry problem-solving at more advanced levels such as formal deduction and 

rigour.  

Natural and artificial cognitive construction arise from the ability to think creatively. 

Creative thinking initiates the generation of ideas; the ability to determine which ideas 

are best and when to use them; the ability to examine ideas from various perspectives; 

the ability to make inferences; and the ability to reflect on own learning processes, that 

is, metacognition (Cennamo, Ross & Ertmer, 2010). Further, Cennamo, et al. (2010) 

highlight that creative thinking involves diverse cognitive skills such as divergent 

thinking (from a common point to a variety of perspectives); convergent thinking (from 

diverse perspectives to a common understanding or conclusion); innovation 
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(producing something that is original and of value); critical thinking (also analytical 

thinking, thinking that determines the validity or value of something); inductive thinking 

(from parts to the whole); and deductive thinking (from generalisation to underlying 

concepts). In order to show that students possess creative thinking, the characteristics 

in Table 2.7 as outlined by Cennamo, et al., (2010) must be evident. 

Table 2.7 Characteristics of Creative thinking 

 Non-algorithmic. 

 The process of actions is not specified in advance and multiple ways and solutions are 
available. 

 Differences in judgement and interpretations. 

 Conflicting information is evident; judgements and interpretation are necessary. 

 Imposing meaning. 

 Visible disorder needs to be structured and inconsistencies need to be addressed. 

 Complex. 

 Multiple vantage points are needed; Single way is not sufficient. 

 Effortful. 

 Substantial mental work is required and the students’ elaborations and judgements involve 
higher-order thinking. 

 Uncertainty. 

 Irrelevant presented information, essential facts are not known  

 Self-monitoring of problem-solving processes is essential and making choices based on 
learning goals. 

 

          Source: (Cennamo, et al., 2010) 

2.2.12 Traditional axiomatic teaching approach versus IBL in Euclidean Geometry 

Research has shown that IBL is more productive as compared to the traditional 

method of teaching. For example, Dell’Olio and Donk (2007) state that the traditional 

method of teaching has not been shown to be more effective than the inquiry method. 

The authors further suggest that, through the process of inquiry, students learn to 

retain concepts, exhibit deeper understanding of concepts, show superior abilities in 

higher-order thinking skills and demonstrate a higher level of creativity through 

experiences in inquiry. In addition, Dell’Olio and Donk (2007) emphasise that “direct 

instruction will continually focus students’ attention on the past and on what has been 

already discovered by others, while IBL based on constructivist learning theory will 

provide students with the tools to move into the future as producers of knowledge” (p. 

348-349). Table 2.8 shows the contrast between IBL and traditional axiomatic 

approach.  

 

Table 2.8 Comparison of traditional axiomatic approach and IBL 
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Traditional axiomatic approach IBL 

 Traditionally organised classroom. 

 Teacher centred instruction. 

 Positive classroom climate.  

 Student-centred instruction.  

 Open classroom organisation. 

Teaching and learning are textbooks based. 
Teaching is facilitation that uses spontaneous 

and practical learning methods  

Use only of formal proof.  

Posing problems, analysing examples, 

formulating conjectures, offering 

counterexamples, revising conjectures; 

answering significant questions and validating 

ideas that result in theorems.  

Deductive reasoning based on axioms. 
Inductive reasoning based on authentic, self-

directed inquiry. 

Students work individually, memorise proofs to 

formally produce during testing. 

Students consider cooperative learning in order 

to formulate and validate conjectures; and further 

present evidence to argue about solutions they 

have obtained.  

Communication is one way, that is, from teacher 

to students. Students remain passive. 

Teacher-students and student-student 

communication and discussion are evident. 

Students are actively involved in classroom 

activities. 

Student sit in a row to face the front, that is, the 

teacher and chalkboard. The chalkboard is the 

only resource. 

Students sit in groups or in work stations to 

actively participate in scrutinising and discussing 

concepts using diverse resources.  

Adapted from Dell’Olio & Donk, (2007); Battista & Clements (1995); Prince and Felder 

(2006).  

Learning and teaching Euclidean Geometry that has been leaning much on traditional 

axiomatic approach has not contributed to cognitive growth of students if we consider 

fact that in Grade 11, students struggle with geometric concepts and processes that 

they have not acquired in lower grades. Therefore, students experience cognitive load 

that obstructs attaining knowledge and understanding during learning. Exposure to 

multiple learning experiences (that is, action learning, visual learning, and verbal 

learning) could possibly ease the cognitive load and improve the retention rate, degree 

of abstraction and hands-on experience (Anderson, 2013; Corpuz & Lucido, 2008; 

Dell’Olio & Donk, 2007). Using diverse learning experiences for inquiry is essential to 

enable students to learn Euclidean Geometry through explorations, discovery, 

guessing, and problem-solving. 
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2.2.13 The process and the essence of IBL in Euclidean Geometry 

Inquiry or to inquire is to pursue an answer to a question that is not already known by 

the individual (Case, Gini-Newman, Gini-Newman, James & Tylor, 2015). In addition, 

Case et al. (2015) suggest that students’ answers to an inquiry question require some 

examination or investigation on their part. Further, Case et al. (2015) state that the 

characteristics of IBL in mathematics include learning mathematical actions and 

language through co-operative involvement in mathematical discussions and 

reasoning while engaged in the process of finding solutions for unacquainted 

problems. According to March and Peters (2008), the inquiry process is as follows: 

questions should be asked about puzzlement, followed by formulating supposition 

about what might help explain the puzzlement; an actual experiment or activity might 

follow to test the supposition in real time; inquiry is limited to an informed discussion; 

inquiry requires students to apply thoughtful and strategic procedures; during the 

inquiry process, students behave like scientists investigating discrepant events and 

puzzlements, looking for reasonable solutions and explanations. In the inquiry 

process, a post-inquiry debrief helps students to reflect on what happened. This is the 

time for students to identify particularly successful strategies that should be repeated 

in subsequent inquiries, but students should also identify missteps that should be 

avoided the next time. Thus, inquiry can be useful when students need to apply 

creative and critical thinking to solve real-time or immediate problems and the inquiry 

process and its debrief are instructive, whether or not the students’ suppositions were 

correct.  

March and Peters (2008) state that inquiry lessons are classified according to designs 

which are hypothetical and real-time designs. Hypothetical designs are inquiries that 

address past events where students are expected to analyse underlying causes and 

effects and to analyse the relationships among relevant factors whereas real-time 

inquiry designs are inquiries that student can apply to solve actual problems. They 

further argue that the main objective of real-time inquiry designs (problem-solving 

inquiry and experimental inquiry) is for students to propose a solution or explanation 

and then test it as scientists would do. This study adhered to problem-solving inquiry-

based on the notion that problem-solving is the core activity in mathematics. Problem-

solving is a significant activity to the students and should be linked to the knowledge 

that must be assimilated (Grugnetti & Jaquet, 1996). In addition, Grugnetti & Jaquet 
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(1996) agree that the knowledge assimilated during the problem-solving activity must 

force the students to transform their methods of thinking and working. Real-time 

inquiry through exploration can teach students problem-solving skills that can 

transform them into critical thinkers.  

The inquiry-learning process is essential in learning Euclidean Geometry at lower 

levels of learning such as pre-visualisation, visualisation and analysis with a view that 

learning should be natural and encompass “explorations, discovery, guessing, and 

problem-solving” (Cathcart et al., 2014, p. 295). In addition, Cathcart et al. (2014) 

emphasise the essence of IBL in Euclidean Geometry by highlighting that students 

must take part in more geometric practices prior to showing the ability to express exact 

accounts that can be described in terms of using symbols and concepts. In light of 

these ideas, a gap addressed in the current study is that there is lack of cognitive 

growth from lower grades (pre-visualisation, visualisation, analysis and informal 

deduction) and students cannot overcome the cognitive demands posed by Grade 11 

problem-solving (that is, demand to solve problems at the formal deduction level).  

2.2.14 Teacher and students’ role during IBL in Euclidean Geometry 

IBL process involves a technique in which the teacher asks questions and the student 

gives answers so that one answer leads to the next question (Cotton, 1995). In 

addition, Cotton (1995) highlights that the IBL system works on the basis that the 

student, without realising it, already knows many of the answers, and the teacher uses 

questions to draw out clarity and understanding from the student. He further 

emphasises that the areas of ignorance which the teacher has to cover may be 

revealed during the process of inquiry. Students experience maximum participation 

during the inquiry process while the teacher becomes the facilitator. While the teacher 

as the facilitator must give some information as a base for the inquiry, Cotton (1995) 

cautions that, if too much information is given by the teacher, the session degenerates 

into the axiomatic style.  

The process of inquiry as facilitated by the teacher affords the students opportunities 

to actively take part in learning and the process assists the students to own their 

learning. An outline of teacher and students’ roles during the IBL process by Cotton 

(1995) relates well with the stages of IBL as outlined by Dell’Olio & Donk (2007) in 

Table 2.9.  
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Table 2.9 Stages of the scientific method (IBL) 

Stage Teacher’s role Students’ role 

1.Developing a 
question 

 Gives questions and facilitates 
working with the given questions 
as well as developing original 
learning. 

 Teacher uses a think aloud 
procedure 

Work with given questions, 
eventually develop their own 
questions. 

2.Generating a 
hypothesis 

Ask students to verbalise or write the 
rationale for the hypothesis they have 
made. 

Use their prior knowledge and 
understanding to answers 
questions asked at the beginning of 
the inquiry. 

3.Developing an 
experimental design 

 Facilitates experimental designs.  

 Uses think aloud procedure and 
provides multiple examples. 

Work with given designs and 
ultimately develop their designs. 

4.Collecting and 
recording data 

Facilitates by using a think aloud 
procedure and by providing multiple 
examples. 

Work with given systems for 
collecting and recording data and 
eventually develop their own 
systems. 

5.Analysing data Facilitates data analysis. Analyse given data; analyse their 
own data. 

6. Reaching 
conclusions, forming 
and extending 
generalisations 

Facilitates by using a think aloud 
procedure providing multiple 
examples.  

Reach conclusions, form and 
extend generalisations of given 
data as well as their own data. 

7.Communicating 
results 

Models multiple ways of 
communicating results. 

Communicate results using given 
data. 
Communicate results of their own 
data. 

Source: (Dell’Olio & Donk, 2007)  

In addition to stages of the inquiry-based process, Pedaste, Mäeots, Siiman, de Jong, 

van Riesen, Kamp &Tsourlidaki (2015) developed the IBL framework (Figure 2.1) The 

IBL framework by Pedaste et al. (2015) shows three possible cycles of IBL which starts 

with orientation and arrows signifying different pathways during the IBL process: (1) 

orientation, that is, questioning through search and interpretation of data through to 

conclusion; (2) orientation, that is, producing the supposition, testing, interpreting data 

by possibility reviewing the created supposition, and concluding; and (3) orientation: 

questioning through creating the proposition, experimenting, data interpretation by 

possibility reviewing the questions posed or produced proposition. The IBL framework 

(Figure 2.1) also depicts the teacher’s role as initiator and facilitator through 

questioning, and students’ role as main actors and problem solvers through answering 

questions and formulating their own questions in order to conceptualise (by 

questioning and generating the hypothesis) and investigate (by exploring or 

experimenting and interpreting the data from exploration or experimentation).  
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In summary, the IBL framework by Pedaste, et al. (2015) applies as follows: the IBL 

process begins with orientation where the teacher introduces the students to the 

problem to be solved and the students get the idea about the topic to be investigated. 

Conceptualisation follows where students start from open questions to the exploration 

or experimentation of the phenomenon (investigation). Students will be expected to go 

back to conceptualisation to generate the hypothesis based on the data collected from 

the exploration. In this case, exploration or experimentation can be repeated (to test 

the hypothesis). Data can be interpreted to arrive at the conclusion. Pedaste et al. 

(2015) highlight that from the interpretation of data, it is probable to advance onwards 

to the conclusion stage or move backwards to the conceptualisation stage to review 

prevailing information or delineate new hypothesis or questions, and this makes IBL a 

cyclic process. Figure 2.1 also includes discussion, communication and reflection. 

        Figure 2.1: Inquiry-based learning framework Source: Pedaste et al. (2015) 

According to Pedaste et al. (2015), in their IBL framework, discussion is an ongoing 

process. Further they argue that student-student and teacher-student communication 

can assist students to share outcomes and ideas in order to obtain feedback pertaining 

to their process of learning.  
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They further indicate that during the IBL process, communication can be “in action” or 

“on action” (p. 57), meaning that communication is regarded as a stage of inquiry, or 

can be completed separately as a task towards the conclusion of the inquiry stage. 

Reflection during the IBL process has been classified by Pedaste et al. (2015) as 

consideration in action and reflection on task, that is, students can assess their study 

progression and conduct tasks of a particular stage, further, students appraise their 

study development when they have completed the entire process of inquiry. In 

addition, Pedaste et al. (2015) point out that IBL consequences can be attained while 

there is no reflection or conversation when each student is considered as an individual. 

The idea of lack of communication and reflection during the IBL cycle will apply in the 

study mostly during assessment. Students are expected to go through cycles of 

orientation, conceptualisation, investigation and drawing conclusions individually for 

evaluation process, towards the concluding stage of the facilitation process. However, 

the current study has adopted the discussion process as a continuous process 

characterised by teacher facilitation that directs and monitors the students in each 

inquiry cycle during the teaching and learning process, that is, as the lesson unfolds 

in the classroom.  

In essence, Cotton (1995), Dell’Olio & Donk (2007) and Pedaste et al. (2015) express 

the same notion that, during the IBL process, the student remains the main actor in 

providing the solution; whereas the teacher plays the role of the director and facilitator. 

Bennet (2015) explains the teacher role as the initiator. The teacher as the director 

and initiator facilitates the learning process by giving the students a chance to apply 

the IBL stages to advanced problem-solving such understanding the problem, 

conjecturing, judgements, verifications and validations (Grugnetti & Jaquet, 1996). In 

this sense, there is an association between IBL stages as presented in the IBL 

framework (Figure 2.1) and the mathematical problem-solving stages as presented by 

authors such as Grugnetti and Jaquet (1996), Polya (2004), Dewey and Wallas 

problem-solving phases presented by Natsusaka, (2007) and Baptist (2012). The 

comparison is shown in Table 2.10. 

 

Table 2.10: Mathematical problem-solving stages 
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IBL framework 
(Pedaste et,al) 

Problem-solving 
stages (Grugnetti 
& Jaquet, 1996) 

Polya’s four 
problem-solving 

phases 

Dewey’s five 
problem-solving 

phases 

Walla’s four 
problem-solving 

phases 

Orientation Understanding the 
problem 

Understanding the 
problem 

Experience a 
difficulty 

Preparation 

Conceptualisation 
(questioning and 
hypothesis 
generation) 

Hypothesising Devising a plan Define the 
difficulty 

Incubation 

Investigation 
(Exploration or 
Experimentation) 

Trials Carrying out a 
plan 

Produce a 
potential answer 

Illumination 

Conclusion Verifications  Looking back Assess the 
result by 
rationalising 

Verification 

--------------- Justifications -------------------- Confirm the 
answer 

------------------ 

 
In addition to Polya’s four phases of mathematical problem-solving, Baptist (2012) 

introduce a fifth phase and suggests it as “looking forward” (p. 7). In this study, it is 

postulated that when problem-solving or inquiry ends by looking forward, it means new 

knowledge can be developed to advance conclusions in problem-solving and to make 

changes to the contemporary and future development of Euclidean Geometry. 

In relating the IBL framework to mathematical problem-solving stages, Grugnetti and 

Jaquet (1996) recommend that teachers must organise the students’ problem-solving 

activities in an approach that allow students to take responsibility for problem-solving. 

Natsusaka (2007) agrees that problem-solving oriented programs generally consist of 

of four of five stages as shown in Table 2.11. 

Table 2.11: Structural model of a problem-solving oriented lesson 

(1) Identifying the problem  

 The teacher and students comprehend the problem by reading through the problem 
statement 

 Students listen to the teacher’s instruction to understand the problem clearly, and thereafter 
advance the student-student discussion. 

 Students link prior knowledge and existing knowledge by examining the differences and 
similarities  

 Collaboratively, students develop a standpoint about methods of solving a problem and 
finding answers. 

(2) Development of a result or answer 

 Students centre learning around themselves in thinking and finding the solutions.   

 The teacher monitors each group providing instructions and clues to assist students who are 
clueless and motivate those who have clues about advancing solutions.  

(3) Progress through conversation 

 A group of students who got diverse solutions elucidate the group methods to the whole 
class. 
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 After group presentations, the class advance a general view of how to solve the problem 
through conversations about outstanding and common points of each approach presented 
by diverse groups 

(4) Summarising 

 Students summarise the essential facts agreed upon throughout the period. 

 The teacher poses more and similar problems and student attempt to apply the knowledge 
a. 

Source: (Natsusaka, 2007: 93) 

Teacher-student as well as student-student communication is emphasised as 

important throughout the inquiry learning process. In concurrence, progression 

through discussion is highlighted in Table 2.11. Further, Natsusaka (2007) argues that 

the problem-based lesson should adopt an approach that focuses on fitting students’ 

thinking as a group. Communicating and discussing as a group during inquiry is also 

referred to as collaboration or cooperative learning. Active student participation and 

cooperative learning through discussion is encouraged. The importance of teaching 

through discussion to ensure consistent communication, collaboration and co-

operation is emphasised by Tanaka (2007) through the structural model of a 

discussion-oriented lesson (Table 2.12). In addition, Tanaka (2007) suggests that 

discussion as part of the problem-based lesson in essential because (1) as students 

explain their ideas to classmates and the teacher, students may come to realise their 

own errors, thereby facilitating a greater understanding of the issue; (2) one’s own 

ideas can be confirmed through discussion; and (3) discussion is another way of 

cultivating students’ mathematics skills and humanity. 
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              Table 2.12: Structural model of a discussion-oriented lesson   

1. Students develop their own approach. 
The teacher provides instruction about the problem. Students develop questions about the problem, 
discuss how to solve the problem they have been given. Further, students plan and find methods to 
solve the problem.  

2. Students present their own approaches to the problem. 
Students give presentations on individual solutions, report what they did not understand and acquire 
communication skills.  

 
3. Students listen to, understand and discuss each other’s approaches. 
Students strive to understand and confirm each other’s thoughts and processes. In addition, students 
debate among each other in order to examine or explore methods. Students acquire co-operative 
learning skill including ability to express themselves and listening skills. 

 
4. Students compare various ideas and incorporate into their own thinking. 
Students’ acquire improved thought processes, realise individual strength and ideas and learn new 
ways of looking at reality. 

 

Source: (Tanaka, 2007:103) 

The teacher plays a major role in planning and facilitating learning resources and 

providing a desirable environment to ensure students’ maximum reference for inquiry, 

discussion and involvement during problem-solving. March and Peters (2007) 

emphasise that problem-solving inquiry refers to where students are presented with a 

problem to solve, including constraints about materials they may use and conditions 

under which they must work. In order to advance inquiry for problem-solving, teachers 

are challenged to plan the resources and the learning environment appropriately. 

Inquiry cannot be achieved if it is not stimulated. In addition, March and Peters (2008) 

argue that the teachers’ use of resources in a productive learning environment and the 

questioning method applied can result in inquiry as a technique to advance problem-

solving and discovery.  

Through inquiry, students explore the material, make discoveries and ultimately solve 

problems. Dell’Olio and Donk (2007) argue that discovery learning, IBL and problem-

based learning refers to the experience acquired by students as they apply a 

systematic procedure to solve a problem and communicate their findings with other 

students.Similarly, Prince and Felder (2006) state that teaching and learning through 

inductive methods is key in IBL and refers to constructivist teaching and learning 

methods such as problem-based learning, project-based learning, exploration, 

experimentation and discovery learning. In support of this notion, Capaldi (2015) 

agrees that IBL is “a pedagogical method that encourages students to conjecture, 

discover, solve, explore, collaborate and communicate” (p. 283). In light of the ideas 
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mentioned above, this study asserts that IBL through the influence of IBF is necessary 

to assist students to attain problem solving skills through inquiry.  

Conjecturing is of essence in IBL. A conjecture during the inquiry process refers to a 

mathematical declaration which has been informally proven, however, seems to be 

true (Everything Maths and Science, 2012; 2015). The source further highlights that a 

conjecture can be thought of as the mathematician’s way of saying “I believe that this 

is true, but I have no proof yet” (p. 5); that is, a conjecture is a virtuous speculation 

about a pattern. Conjecturing in this study is related to informal deduction level of 

knowledge and understanding, that is, Van Hiele’s Level 3. This study emphasises 

that pre-visualisation and visualisation of objects and material can assist students in 

identifying problems and ultimately formulating conjectures that need proof. The proof 

will confirm the identified problem and conjecture to be true or false.  

Discovery learning is grounded in the “discover it on your own” rule where students 

are not given texts, articles or any previously published material (Capaldi, 2015: 284). 

In light of this, it is evident that, according to Dale’s theory, learning by discovery entails 

less verbal learning and more visual learning and action learning. Through visual 

learning, the teacher encourages students to accumulate direct purposeful experience 

through viewing pictures, watching demonstrations, audio-visual media, mathematical 

manipulatives and digital resources. Action learning refers to where the teacher 

inspires students to put the knowledge and experience accumulated through visual 

learning into practice, that is, through motor skills by participating in a problem-solving 

activity, simulating the activity through demonstrations. Discovery learning contributes 

to the students’ “lasting effect on memory” (Cotton, 1995:13).  

The ‘discover it on your own rule’ for discovery learning inspires student-centred 

learning rather than teacher-centred learning. According to Cotton (1995), teacher-

centred learning reflects the following characteristics: teachers choose the learning 

experiences that suit the subject matter; they use a highly structured approach for 

essential principles; learning is limited by the teacher; teachers are stepping stones 

for students to achieve more quickly; and teachers work to their level best by helping 

students to progress. 

http://www.everythingmaths.co.za/grade-10/04-number-patterns/04-number-patterns-02.cnxmlplus
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2.2.15 Challenges associated with implementing IBL  

Hwang, Chiu and Cheng (2014) found that researchers have indicated that IBL is 

confronted with various challenges: (1) the problem of large classrooms; (2) the time 

needed to develop the learning activities; and (3) the predicament of facilitating 

students’ motivation in learning to organise information and to follow the learning 

context. In addition, Ramnarain (2016) found that, in South African township schools, 

significant constraints in implementing IBL comprise dynamics such as resource 

sufficiency, professional support, school’s moral belief and time. Further, Hwang, Chiu 

and Cheng (2014) state that, as the IBL process unfolds, students with active learning 

styles (who learn by doing) out-perform those with reflective learning styles in terms 

of learning achievement. In agreement, Kinsey and Moore (2015) argue that stronger 

students often find using the discovery approach enjoyable, while other students are 

not motivated in using the approach. Regardless of the hurdles associated with the 

implementation of IBL, the model is still useful. For example, Kinsey and Moore (2015) 

found that in a study they conducted many students responded well to the IBL 

approach; and they concluded that students learned that they could discern and justify 

patterns in mathematics in nature, and even in their own lives. 

2.2.16 Suggested solutions to challenges encountered 

Hwang, Chiu and Cheng (2014) contribute the following as possible solutions to 

challenges faced: (1) the utilisation of computers and digital technologies and (2) 

gaming scenarios in order to instill active participation in activities and promote 

students’ learning motivation. Further, they indicated that the tactic that is applied by 

the teacher in engaging students to explore in gaming activities, should challenge 

students and allow them to respond to the feedback from the system through reflective 

and active learning methods. 

2.2.17 Assessment and performance indicators in IBL 

Instruction is always aimed at encouraging individuals to learn, and the learning 

process should yield results. March and Peters (2008) highlight that instructional 

design commences with its endpoint, that is, “indicators of a successful performance 

or what students are expected to master” (p. 26). Performance indicators should be 

set in accordance with contemporary teaching and learning theories as outlined by 
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March and Peters (2008). In addition, they suggest that the performance indicators 

should be structured along the following pointers: (a) output (construction of meaning) 

focused, rather than input (characterising the curricular); (b) integration of the 

outcomes across diverse subjects (e.g. maths & earth science, Euclidean Geometry 

as a space science); (c) using high-order thinking and problem-solving skills to process 

information; (d) integrating skills from diverse topics rather than teaching one topic in 

isolation (for example, integrating number operations or patterns from algebra with 

Euclidean Geometry). 

There should be indications that learning occurs during the process of inquiry. Hwang, 

Chiu and Cheng (2014) highlight that at the end of the IBL process, students should 

have developed higher-order thinking processes and self-directed learning skills. In 

addition, they argue that there should be evidence of authentic activities that afford 

students natural problem-solving contexts. According to Kreber (2006), assessment 

must be in part positivist (based on scientific facts) and partly constructivist (based on 

construction of knowledge). He further highlights that positivist assessment is 

appropriate when learning outcomes can be pre-specified, and constructivist 

assessment is proper when outcomes cannot be identified beforehand. This study 

postulates that content outcomes are predetermined as the focus in Euclidean 

Geometry; however, since the processes and procedures of problem-solving cannot 

be predetermined, students must establish their own processes and procedures of 

problem-solving through inquiry. Therefore, assessment partly requires both positivist 

and constructivist practices. 

In combination of positivist and constructivist practices in assessment, Stein et al. 

(2000) highlights that tasks used for assessment should address different levels of 

cognitive needs. Stein et al (2000) define the levels of cognitive needs in tasks as 

lower-level demands and higher level demands as follows: 

Lower-level demands 

Memorisation task - these are tasks that involve reproducing previously learnt 
definitions, rules, formulae and facts; tasks that disregards the connection of 
concepts and facts. 

Procedure without connection tasks – these tasks are algorithmic, no connection 
between meanings and procedures; are algorithmic and need limited cognitive 
effort. 
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Higher- level demands  

Procedure with connection tasks – develops deeper levels of comprehension 
through procedures; proposes various ways towards problem solving; demands 
higher cognitive effort; tasks are presented in multiple ways, for example, as 
symbols, diagrams, concepts and more. 

Doing Mathematics tasks – non-algorithmic and complex thinking is required; self-
regulation is needed; fosters exploration comprehension of concepts, relationships 
and processes; analysis skills are required; unpredictable solution processes 
contribute anxiety and require higher cognitive effort. 

   Source: Stein et al (2000)  

2.3 IBF AND LEARNING IN EUCLIDEAN GEOMETRY (DEWEY’S INQUIRY AND 

VAN HIELE’S THEORIES) 

2.3.1 Overview 

In analysing the current crisis in the learning of Euclidean Geometry in South Africa, 

this study bases its argument on the observation by Van Hiele (1986). Van Hiele 

(1986) stated that, in learning Euclidean Geometry: (1) students apply rote learning to 

operate with mathematical associations that they do not understand and have not seen 

the origin of such associations; (2) students experience the structure of mathematical 

connections as independent constructions having no relation to experiences acquired 

before; (3) the students know only what the teacher has taught them and what has 

been deduced from the teacher’s ideas; (4) students do not learn to institute networks 

between the structures and the physical domain; and (5) students are clueless about 

utilising acquired information in original contexts (Van Hiele,1986).  

In support of the statement by Van Hiele, research has shown that even in the 21st 

century the main contributor to rote learning is the mode of instruction that is applied 

by teachers. For example, Prince and Felder (2006) argue that traditional deductive 

teaching has been dominant for centuries; and this particular teaching approach has 

its foundation in positivism which explains that knowledge or unbiased certainty occurs 

autonomously of human insight. Hester (1994) agrees that the major educational 

process in most classrooms results in students avoiding the responsibility of 

independent thinking; and not trusting their own capacity of finding, creating and 

testing meaning for personal problem-solving. Prince and Felder (2006) believe that 

to alleviate the problem of objective teaching and learning; an alternative model of 
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constructivism should be adopted, explaining that regardless of the existence of 

objective reality, individuals make sense of their encounters in order to build own 

authenticity. In agreement, Hester (2004) believes that objective teaching needs to be 

de-emphasised, and suggests teaching and learning which involves critical thinking 

processes, methods such as diagnosis, speculation and hypothesis-testing. The 

constructivist model suggested by Prince and Felder (2006) highlights that, in the 

sense-making effort during learning, new evidence is clarified through intellectual 

constructions (schemas), and the schemas incorporate the students’ pre-knowledge 

and conceptions. They further argue that new information can be integrated into 

schemas if it is consistent with these particular schemas; but, if the information is 

contradictory to the schemas, it may be memorised and not learned. In addition, 

Hester (2004) in support of applying inquiry in teaching and learning states that the 

constructivist technique of inquiry provides students chances to produce thoughts, 

challenge problems, assess the notions and use them in other situations.   

Constructivism has been claimed to be an effective method of teaching and learning 

for educational reform. For example, in their research, Prince and Felder (2006) 

identify constructivism as a better learning method than the positivist approach. The 

constructivist philosophy is believed to be the best (in the current education era) at 

engaging students in learning and it is interpreted as a philosophy of teaching and 

learning that helps students to learn by exploration, investigation and discovery in 

order actively construct knowledge (Friesen & Scott, 2013; Prince & Felder, 2006; 

Tracey & Morrow, 2012). The authors specified the constructivist or inductive teaching 

methods as IBF, problem-based teaching, project-based teaching, case-based 

teaching and discovery-based teaching. However, Mougan (2013) argues that there 

are several shortfalls observed in constructivism; for example: (1) excessive 

subjectivism leads to arbitrariness and relativism; (2) constructivism states and 

investigates the origin of ideas, but does not point out the origin of sources for ensuring 

validity of the ideas. In addition, Priss (2014) emphasises that, in constructivism, 

learning is viewed as active creation of mental structures without making any 

philosophical claims. According to Priss (2014), Pierce as a pragmatist philosopher 

managed to find a middle way between constructivist (through idealism) and realist 

positions. He emphasises that pragmatism supports the advantages of a constructivist 

view of learning with a slightly more realist position. Further, Mougan (2013) describes 
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the similarities of constructivism and pragmatism as: (1) both theories do not ask for 

constructions for their own sake but look for solutions to problems of importance to 

people; and (2) both have established strong links between the ideas of democracy 

and construction of knowledge. 

In this study, constructivism is viewed as fundamental to realism. A pluralistic position 

in teaching is promoted in this study. Furthermore, this study adopts the pragmatic 

stance that teaching should start by inquiry that leads to inductive reasoning; and 

inductive reasoning is fundamental and a prerequisite for deductive reasoning. 

Inductive IBF enables students to achieve lower levels of geometric knowledge and 

understanding, and they can then meet the requirements of learning through deductive 

inquiry at higher levels of geometric knowledge and understanding such as formal 

deduction level.   

The framework of pragmatism has been outlined by Shields (2003) as follows: firstly, 

teaching is approached with a spirit of critical optimism; secondly, pragmatism takes a 

point of departure that involves inquiry which leads to successful learning in which the 

teachers’ duty is to facilitate the transformation of inquiry by developing teaching tools; 

thirdly, a class of students should be treated as a community of inquiry; fourthly, 

teaching should focus on pragmatic consequences, in other words utilising inquiry to 

bring about changes; fifthly, teachers’ and students’ perspectives should be 

broadened by bridging dichotomies such as theory and practice; and finally, the 

teacher opens the classroom for public scrutiny.  

Using the pragmatist framework, this study assumes that the teaching of Euclidean 

Geometry facilitates transformation through inquiry; turns classrooms into 

communities of inquiry and students are directed to think critically. The traditional 

axiomatic approach to teaching that has been used for most of students’ academic 

life, has not contributed to their cognitive growth and critical thinking skills. Grade 11 

students are confronted with challenges in geometric knowledge and understanding 

meaning that they could not master the lower Van Hiele levels and they cannot 

therefore cope at higher cognitive levels. A bridge between inductive learning and 

deductive learning (that is, pragmatist learning) is necessary. This is consistent with 

the idea that pragmatism bridges the gap between subjective and objective inquiry 

considering the fact that by applying pragmatist practices, excessive subjectivism is 

limited and justice is done to the objective aspect of human inquiry (Mougan, 2013). 
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Characteristics of pragmatism in learning as outlined by Mougan (2013) are that: (1) 

pragmatism rejects the impossibility of overcoming the isolation and lack of 

understanding; (2) what is different is recognised but ways are sought to understand 

and relate to what is different in a critical way.  

Pragmatist teaching is a practice that has not been rolled out in most of our South 

African classrooms. Constructivism has been commented by many South African 

researchers in order to overcome the problems of positivist teaching, but positivist 

teaching still plays a major role in most classrooms. This study agrees with Ozmon 

(2013) about teaching and learning that considers pragmatism as a foundation. 

Ozmon (2013) agrees that pragmatism should be experimental; become an agent of 

change in the social context, promote civilisation in people; and promote an 

individual or collective efforts to finding answers to the contemporary social, 

economic and political problems. Table 2.13 presents more of Ozmon’s ideas about 

pragmatism as a philosophy of education. 

Table 2.13: Pragmatism as a philosophy of education 
 Pragmatism believes that philosophy of education is the development of right 

psychological attitude and ethics that can be utilised in confronting modern problems, but 
not only the application of existing ideas to problems. 

 Continuous experimentation with ideas and procedures should be adhered to; rejecting 
ideas that do not work in order to assist a child to learn a better way. 

 Teaching consists of diverse methods, not only one way. 

 Teaching methods should apply multiple teaching and learning resources. 

 Students and teachers should realise the relation between disciplines and diverse 
approaches to teaching and learning even to problem solving.  

 Pragmatism rejects separating knowledge from experience; facts are not supposed to be 
separated from experience.  

 Attention is given to process rather than the outcome. 

 Learning concerns studying and evaluating material and students draw conclusions and 
construct suitable generalisations concerning the problem 

 Learning and growth are evaluated in order to set the next unit of study.  

 Traditional disciplines are not ignored, but are used as knowledge background of the 
problem. 

 Life in general provides lessons, however, due to the informal educational context of life 
students learn and acquire knowledge in an informal way. Furthermore, the disadvantage 
of formal education is its abstract nature and the education is more remote from the 
students’ actual life experiences. In balancing the two, the teachers’ role becomes critical. 

 Subject matter should not be treated apart from the students’ social life as the society is 
essential for the students’ learning experience.  

 Pragmatism believes that students have an inherent motivation to learn. Teachers must 
realise the enthusiasm that prevails and consider students’ diversity in order to diversify 
the teaching methods to include all students.  

 Teachers should serve as knowledgeable guides and resources for students, not as 
subject masters who drill the students in the subject matter. 

 Drill as well as recitation have occasional uses but are not central to teaching  
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 The teacher should not appear as subject masters who centralise knowledge that can be 
provided for practise purpose, but teachers should play a role of well-informed facilitators 
who direct students towards meaningful learning.   

 The educative process is fulfilled only when understanding and intelligent actions are 
promoted in order to help the students to advance reasoning. 

 Learning tasks need to be utilised to address ideas and assist students to acquire skills 
as well as understanding; and the educational setting should allow students to act on and 
test what they have learned. The educational environment must be deliberately regulated 
by the teacher to ensure maximum educational effect.  

 Teacher should display expertise of the knowledge area and enable students to link their 
experience and the subject matter. 

 Teaching is a procedure to assist students recognise problems and collect ordered 
knowledge to comprehend how communal contexts came into being, where to maintain 
existing contexts and how to reform the existing contexts.  

 

        Adapted from Ozmon (2012:132-135) 

The study contributes to educational practice in moving from the traditional axiomatic 

approach to IBL in teaching Euclidean Geometry based on Dewey’s philosophy of 

education and Van Hiele’s theory of teaching and learning Euclidean Geometry. 

2.3.2 Dewey’s philosophy of education  

Ozmon (2012) reported on Dewey’s view about the pragmatism philosophy. According 

to Dewey education occurs in both formal and informal settings and to achieve a 

balance between the two, the pragmatist philosophy must play a role (Ozmon, 2012). 

In addition, Ozmon (2012) elaborated on the pragmatist philosophy of education that 

education is a social endeavour and individuals must enter into social relations in order 

to be educated. In social contexts, communication becomes central to the education 

of individuals; and the centrality of communication stems from the fact that 

communication enlarges experience and makes it meaningful (Ozmon, 2012).  

2.3.3 The origin of IBL focused on Socrates’ and Dewey’s inquiry 

Self-directed inquiry is significantly addressed in pragmatism. Pragmatist theory 

underpins IBL, and IBL comprises methods like discovery learning, problem-based 

learning, experiential learning and exploration (Bruner, 1967; Kirschner, Sweller & 

Clark, 2006).  

Inquiry as a student-centred approach is said to have a strong historical antecedent in 

Ancient Greek philosophy. It is characterised by the questioning method employed by 

Socrates when engaging in dialogue with his interlocutors by leading them through a 

series of questions (Friesen & Scott, 2013). The Socratic method of inquiry dates back 

from 400BC (Cotton, 1995; March & Peters, 2008). The Socratic philosophy is as 
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follows: “I shall only ask him, and not teach him, and he shall share the inquiry with 

me and do you watch and see if you can find me telling or explaining anything to him, 

instead of eliciting his opinion” (Socrates, 400 BC cited in Cotton, 1995: 46). Friesen 

and Scott (2013) indicate that the spirit of inquiry strongly emerged in the 13th century, 

and in the 20th century, the historical threads of inquiry found a home in the work of 

John Dewey. Dewey encouraged K-12 teachers to use inquiry as the primary teaching 

strategy in science classrooms. Inquiry according to the originator of IBL (namely, 

Socrates) is “the act of reflective thinking, prompted by probing, provocative questions” 

(March & Peters, 2008:235). In addition, March and Peters (2008) indicate that in 

Dewey’s view, Socratic teaching depends on two basic elements which are doubt and 

the act of probing which are essential in clarifying ideas and details.  

IBL has been a method practised mostly in Science education, but “the term Inquiry-

Based Mathematics Education (IBME) is of recent use in mathematics education” 

(Artigue, 2012:3). Artigue (2012) suggests that IBME stems from ambitions of 

innovation of research in mathematics education. He explains the goals of innovation 

in mathematics research as promoting mathematical learning with understanding and 

helping pupils to experience authentic mathematical activity. Dell’Olio and Donk (2007) 

argue that when students are involved in IBL, they are provided with opportunities to 

act in systematic ways in response to engaging questions. The students’ involvement 

in IBL encompass firstly, thinking that originates from a state of doubt, hesitation, 

perplexity and mental difficulty; and secondly learning that involves an act of 

searching, hunting, inquiring to find material that can resolve the doubt and dispose 

the perplexity (Dewey,1933 in Dell’Olio and Donk (2007). It is of essence to consider 

IBME in promoting and helping students to develop learning with understanding and 

experience in authentic Euclidean Geometry activities. Socratic and Dewey’s inquiry 

methods are categorised in this study as IBF. Similarities on Socratic and Dewey 

inquiry are outlined in Table 2.14. 

Table 2.14: Socratic and Dewey’s Inquiry 

Socratic Inquiry  Dewey Inquiry 

- Inquiry is a way of living ethically in the world, 

that is, good life involves seeking knowledge as 

a means to live more ethically and consciously in 

the world.  

- Active inquiry should be used not only to gain 

knowledge, but also to learn how to live 
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- Through inquiry, education should help 

students realise their full potential, to strengthen 

democracy, and to promote the common good. 

- Teacher is not transmitter of knowledge 

- Classroom experience is a shared dialogue 

between teacher and students in which both are 

responsible for pushing the dialogue forward 

through questioning 

- Teacher should not simply stand in front of the 

class and transmit information to be passively 

absorbed by students. 

- Teacher’s role is that of facilitator and guide  

- Students must be actively involved in the 

learning process and given a degree of control 

over what they are learning. 

-Both teacher and students ask probing 

questions, meant to clarify basic assumptions 

underpinning a truth claim or the logical 

consequences of a particular thought.  

- Process involves sensing perplexing situations, 

clarifying the problem, formulating a tentative 

hypothesis, testing the hypothesis, revising with 

rigorous tests, and acting on the solution.  

Source: Friesen and Scott (2013: 5-7) 

IBF informed by Socrates and Dewey inquiry approach is the teaching method used 

in this study; however, teaching in Euclidean Geometry is aligned to the Van Hiele’s 

instructional levels. Students’ development in Euclidean Geometry moves from the 

pre-visualisation stage to the rigour level; from the concrete to the abstract; and from 

inductive inquiry to deductive inquiry. Therefore, teaching by inquiry at all levels of 

learning Euclidean Geometry is crucial to ensuring critical thinking and optimism in 

spatial development.  

2.3.4 Van Hiele’s theory of learning geometry 

The original Van Hiele’s theory is a model that defines a chronological order of five 

levels for geometric thinking, which are visualisation, analysis, informal deduction, 

formal deduction and rigour. Further, Van Hiele’s theory specifies that students have 

to pass through each level from global perception of geometric figures to, finally, an 

understanding of geometric proof (Teppo, 1991). In addition, Teppo (1991) argues that 

according to Van Hiele’s theory, students develop from one level to the next as a result 

of purposeful instruction organised into five phases of sequenced activities which are 

information, guided (directed or bound) orientation, explication, free orientation and 

integration.   
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Table 2.15: Integration of Van Hiele’s instructional phases and cognitive levels 

Phase Teacher activity Student activity 

Information or inquiry 

(level 0 - Visualisation) 

 Teacher asks questions to let 

students recall relevant 

geometric information related 

to their real-world. 

 The teacher presents a new 

idea and allows the students to 

work with the new concept 

Students get acquainted with the 

material and begin to discover its 

structure  

Guided or directed 

orientation 

(level 1 – Analysis) 

Teachers propose activities of a 

fairly guided nature that allow 

students to become familiar with 

the properties of the new concept 

which the teacher desires them to 

learn 

Students do tasks that enable them 

to explore implicit relationships 

Explication 

(level 2 – Informal 

deduction) 

Teacher emphasises the 

vocabulary after students have had 

an opportunity to become familiar 

with the concept. The discoveries 

are made as explicit as possible 

The students’ experiences are 

linked to shared linguistic symbols 

Free orientation 

(level 3- Formal 

deduction) 

A teacher might present other 

problems for which students have 

not learned a fixed procedure 

 Students do more complex 

tasks enabling them to master 

the network of relationships in 

the material.  

 They know the properties being 

studied, but need to develop 

fluency in navigating the 

network of relationships in 

various situations 

Integration 

(Level 4 – Rigour) 

The teacher may give the students 

an overview of everything they 

have learned. It is important that 

the teacher not present any new 

material during this phase, but only 

a summary of what has already 

been learned 

 Students summarise what they 

have learned and commit it to 

memory 

 Supporters of the Van Hiele 

model point out that traditional 

instruction often involves only 

this last phase, which explains 

why students do not master the 

material. 

Adapted from Fuys, D., Geddes, D., & Tischler, R. (1988: 224 - 251)  
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In this study, Van Hiele’s theory is perceived as underpinned by Dewey’s philosophy 

of inquiry because the teacher acts as a guide and facilitator more than the information 

disseminator in all levels and phases. Furthermore, inductive inquiry is emphasised 

more in fundamental levels, that is, from visualisation to informal deduction where 

students are guided to discover, explore and acquire experience. Clements and 

Battista (1992) discovered a cognitive level that is more basic than the Van Hiele’s 

visualisation labelled the pre-visualisation level. This study includes the more basic 

level and supports the teaching of Euclidean Geometry according to six cognitive 

levels. Therefore, this study focuses on intervention where the teacher facilitates the 

learning of Euclidean Geometry by using IBF in order for students to learn circle 

geometry through IBL; at the end of the process, students must be able to perform at 

the formal deduction level. Further, this study focuses on integrating the five 

instructional phases of the Van Hiele model and the six cognitive levels (that is, pre-

visualisation in addition to visualisation through to rigour). In this study, the following 

are incorporated: six cognitive levels (pre-visualisation to rigour), the five Van Hiele 

instructional phases and the IBL framework. The integration between the five 

instructional phases, cognitive levels and IBL framework is implemented as in Table 

2.16. The implementation is focused on encouraging IBF that will foster IBL through: 

(1) discussions (students’ peer discussions and teacher-student discussions); (2) 

students’ orientation to the problem; (2) conceptualisation (questioning and hypothesis 

generation); (3) exploration and drawing conclusions to solve problems. In order to 

ensure that IBL has taken place, this study is guided among others by IBL indicators 

determined by Hester (1994), that is, teachers treat students as investigators; students 

are encouraged by the teacher to investigate the problem, generate solutions and 

answers that are relevant to the problem; inquiry method is used by students; and the 

information is new to students and requires the students’ interpretation. 

Table 2.16: Integration of instructional phases, cognitive levels and IBL  

Instructional phase and the 

cognitive level 

Teacher activity (IBF) Student activity (IBL approach) 

Information or inquiry 

(level 0 pre- visualisation) 

For pre-visualisation teacher 

asks questions to let students 

recall relevant geometric 

Students recall geometric 

figures in their real-world. 

For example, a hut is round, the 

earth is round. Other shapes 
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Instructional phase and the 

cognitive level 

Teacher activity (IBF) Student activity (IBL approach) 

information related to their real-

world 

they can recall such as road 

traffic signs, traffic circle and 

many more.  

Information or inquiry 

(level 1– Visualisation) 

 

 Teacher makes objects or 

materials available for 

students to view, identify, 

and classify according to 

what they see.  

 Probing questions are 

asked by the teacher to 

confirm students’ 

orientation and 

conceptualisation 

 

Through discussions students 

explore (through action 

learning) the presented material 

related to their pre-visualisation 

knowledge; and asks clarity 

seeking questions. (Orientation 

according to IBL framework). 

Students visualise the shapes 

according to what they see, 

associating with what they have 

recalled in the pre-knowledge  

Guided or directed 

orientation 

(level 2 – Analysis) 

Teachers guide the students 

and propose activities that 

allow students to become 

familiar with the properties of 

materials they explored during 

visualisation, and teacher can 

lead students to provide 

sketches for materials 

according to classes  

Students do tasks that enable 

them to explore essential 

connections. 

They produce sketches 

denoting relations among 

shapes or figures, and outline 

the properties according to 

groups of materials. For 

example, four-sided figures, 

three-sided figures, round 

figures, etc. (Conceptualisation 

according to IBL framework) 

Explication 

(level 3 – Informal 

deduction) 

Teacher emphasises the 

vocabulary after students have 

had an opportunity to become 

familiar with the concept. The 

discoveries are made as 

explicit as possible 

The students’ experiences are 

linked to shared linguistic and 

symbols (for example, 

quadrilaterals as rhombus or 

kite, triangles as scalene, 

equilateral and individual figures 

are explored in relation to 

properties, for example 

properties of a square, 

rectangle, rhombus, isosceles 

triangle etc. 
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Instructional phase and the 

cognitive level 

Teacher activity (IBF) Student activity (IBL approach) 

(Conceptualisation stage 

according to IBL framework 

Free orientation 

(level 4- Formal deduction) 

A teacher might present other 

problems for which students 

have not learned a fixed 

procedure 

Students do intricate tasks in 

order to master the system of 

connections. They know the 

properties of figures, but need to 

develop efficiency in applying 

the network of relationships in 

various situations. For example, 

understanding a cyclic 

quadrilateral, relating properties 

of a circle and a selected 

quadrilateral to formulate 

conjectures, and proof 

conjectures (Investigation stage 

according to IBL framework) 

Integration 

(Level 5 – Rigour) 

The teacher gives a summary 

of what was taught and what 

the students have learnt. New 

knowledge or material is not 

necessary at this stage.  

Students summarise what they 

have learned and commit it to 

memory. Conclusions are 

made; students look forward 

and back to verify the solutions 

they got. 

(Conclusion stage according to 

the IBL framework) 

 
2.4 CHAPTER SUMMARY 

Education should aim at helping students to acquire skills, knowledge and the right 

attitude such as autonomy, authenticity, creativity and critical thinking. In addition, 

education needs to assist students to develop in all spheres of life. Test and 

examination should not only be the objective of teaching and learning. The focus of 

teaching and learning should be to empower students with skills of problem-solving in 

and out of the classroom context. Teaching and learning should further bridge the gap 

between theory and practice. Educational instruction that is aimed at developing a 

student in totality, progresses through probing, that is, facilitator asks open questions 

that are thought provoking to stimulate the thoughts of students. Tests, examinations 
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and tasks should be set in a sense that they assist students to develop higher-order 

thinking skills.  
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CHAPTER 3  

RESEARCH DESIGN 

3.1 INTRODUCTION 

Philosophical assumptions about the nature of knowledge in research relies on 

ontology, that is, the nature and existence of social reality, and epistemology which 

explains what constitutes knowledge and ways of knowing (Ngulube, 2015). In 

addition, Ngulube (2015) outlines the basic research paradigms as realism 

(positivism); pluralism (pragmatism) and constructivism (interpretivism). According to 

Ngulube (2015) the realist ontology claims that knowledge is relative and there is only 

one objective reality. In relation to realism, the positivist epistemology yields a 

research framework that moves from the general to the specific asserting that an 

established theory can generate data; however, in contrast, the constructivist ontology 

relates to knowledge as a subjective reality that can be interpreted (Ngulube, 2015). 

The following summary emerges from Ngulube’s (2015) work, firstly, relative to 

constructivism, the interpretivist epistemology outlines that knowledge exists, can be 

found, can be constructed and it can be used. Secondly, interpretivist research 

framework declares that theory emerges from data, that is, research moves from the 

specific to the general. Thirdly, the pluralist paradigm, that is, the pragmatist 

epistemology, combines realism and constructivism, that is, knowledge exists as 

objective reality and can be interpreted subjectively. Lastly, positivism is characterised 

by the quantitative methodology, interpretivism by the qualitative approach and 

pragmatism is considered as a mixed-methods approach. 

The essential differences among the three methodologies were captured by Plano 

Clark and Creswell (2008), shown in Table 3.1 (adapted from Morgan, 2008).  

Table 3.1: Comparison of positivism, interpretivism and pragmatism  

 Qualitative 
methodology  

Quantitative 
methodology 

Mixed-method 
methodology 

Connection to theory 
and data 

Induction Deduction Abduction 

Relationship to 
research process 

Subjectivity Objectivity Inter-subjectivity 

Inference from data Context Generality Transferability 

Source: Morgan (2008:58) 
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This study provides a discourse about pluralism, that is, a pragmatism view that 

focuses on the mixed-method research methodology (Figure 3.1).  

Figure 3.1: Research design 

Abductive reasoning is advanced where the researcher works backwards and 

forwards between induction and deduction. Morgan (2008) defines abductive 

reasoning as research where observations are converted into theories and actions are 

used to assess theories. Inter-subjectivity is explained as research that works back 

and forth through various frames of reference, for example, working through both 

subjectivity and objectivity. He defines transferability as research where investigation 

is carried out on factors that have impact on whether the knowledge gained can be 

transferred to other settings rather than basing arguments on context-based results or 

generalisable results. Morgan (2008) argues that transferability as a mode of inference 

from data arises from a pragmatic focus on what can be done with knowledge 

produced, and further focuses on asking how much of the existing knowledge is usable 

in a new set of circumstances. In this study, a pragmatic point of reference is advanced 

in contributing interventions to produce knowledge through IBF in Euclidean 

Geometry. Facilitator’s knowledge of IBF in Euclidean Geometry can be used in 

observable contexts where the students are assisted to learn through inquiry in order 

to acquire knowledge and understanding from pre-visualisation through to rigour.  

3.2 HYPOTHESIS 

In learning Euclidean Geometry, the teaching approach has an essential role. 

Teaching in Euclidean Geometry happens either as a traditional axiomatic approach 

or as an open system where students become participants with the teacher in 

acquiring knowledge and skills. This study is a mixed-methods study and posits the 

directional hypothesis: IBF influences IBL and consequently increases students’ 

knowledge and understanding of formal deduction levels through visualisation, 

analysis and informal deduction. 

Pluralism Pragmatism 
Mixed Methods 

Research 
Embedded 
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The null hypothesis is that there is no difference between IBF and the traditional 

axiomatic approach in teaching Euclidean Geometry. It is expressed as follows: 

H0: µinquiry-based facilitation = µtraditional axiomatic approach 

3.3 METHODOLOGY 

This study uses a mixed-methods research design. Mixed-method research combines 

both qualitative and quantitative methodologies of data collection and analysis 

(Newby, 2010). In addition, Ponce and Pagan-Maldonado (2014) agree that in a 

mixed-methods study, quantitative and qualitative approaches are combined and 

integrated at different points of the research process. In this study, quantitative and 

qualitative methodologies are combined, integrated and occur at the following points 

of the research process: (1) in integrating quantitative hypothesis and the qualitative 

research questions; (2) in generating quantitative and qualitative data by combining 

quantitative measurements with qualitative research interpretation; and (3) in 

integrating quantitative and qualitative data to present the results of the study. There 

are five purposes of mixed-methods research design, namely, triangulation, 

complementarity, development, initiation and expansion (Greene, Caracelli & Graham, 

2008; Tashakkori & Teddlie, 1998). This study focuses on how IBF influences IBL to 

assist student to attain higher levels of knowledge and understanding in Euclidean 

Geometry. Therefore, the reason for mixing methods is that qualitative findings 

complement the quantitative findings in order to increase the credibility of the 

quantitative findings (McMillan, 2012); and to seek elaboration, illustration and 

clarification of results from quantitative methodology with results from qualitative 

methodology (Greene et al., 2008). McMillan (2012) states that credibility refers to 

accuracy and trustworthiness of the data, data analysis and conclusions. Accurate and 

trustworthy findings are essential in this study; therefore, quantitative analysis is 

complemented with qualitative analysis. 

Ponce and Pagan-Maldonado (2014) emphasise that the other objective of a mixed-

methods research study is to show the philosophy of the researcher. They state that 

the action of research in applying the mixed-methods approach is pragmatic, meaning 

the product is more important than the process. Therefore, this study is a pragmatic 

mixed-methods research study based on the fact that the whole study moves across 
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inductive and deductive reasoning as well as from concrete to abstract reasoning or 

vice versa.  

3.3.1 Model of mixed-method research approach 

According to Ponce and Pagan-Maldonado (2014), the mixed-methods approach 

consists of two models: model 1 uses the qualitative and quantitative approaches in 

an unconnected way, integrating data at the end of the study to answer the research 

questions; while in model 2, qualitative and quantitative data are connected and the 

integration of the approaches occur in the philosophical positioning of the study, 

methodology and data analysis. The basic structure of a mixed-method methodology 

comprises sequential phases design and parallel or convergent phases design. In 

sequential phases two research methods are used separately, that is, the researcher 

begins with one method and then integrate the other at a later stage (Ponce & Pagan-

Maldonado, 2014).  

Types of sequential mixed-method design are classified as explanatory, exploratory, 

whereas concurrent convergent design, multilevel design, emergent designs, 

triangulation design and complementary or embedded mixed-method design are 

classified as parallel phase designs (Creswell & Plano Clark, 2007; Ponce & Pagan-

Maldonado, 2014). This study is constructed as a parallel phase design, structured out 

of the complementary or embedded mixed-methods approach where the study is 

framed by the quantitative data. The qualitative data play a supportive, secondary role. 

Quantitative data collection is advanced through pre- and post-tests, whereas the 

qualitative data is collected through observations and semi-structured interviews 

during the intervention in experimental groups and during usual lessons in comparison 

groups. Capturing, analysis and interpretation in the study incorporate quantitative 

data through a quasi-experimental design approach and qualitative data through 

phenomenographic approach (observation and interviews) being embedded into the 

quantitative data. The embedded experimental model (Figure 3.2) as adapted from 

Creswell and Plano Clark (2007) is the research approach used in this study. 
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Figure 3.2: Research approach  

Adapted from Creswell and Plano Clark (2007) 

3.3.2 Population and sample 

The population comprised the Grade 11 teachers and students of high schools in 

Tshwane North and West districts. Tshwane North district was more convenient as it 

is the most accessible area for the researcher, therefore, the area was marked as the 

experimental group. In any quasi-experimental design, a comparison group is 

necessary. Therefore, a district that is comparable to the experimental group was 

sought, and was found to be Tshwane West. Schools in the two districts, that is, 

Tshwane North and West are comparable in terms of biography, geographical 

standing and background factors. Three schools located in the Northern district served 

as the experimental group and three schools in the Western district as the comparison 

group. The two districts are about 30km apart. In any quantitative quasi-experimental 

approach, absolute control is not possible, therefore, the control group in this study is 

labelled as the comparison group. 

According to Ponce and Pagan-Maldonado (2014) the two, dominant mixed-methods 

types of sampling are primary sampling and alternate sampling. Primary sampling was 

considered in this study based on the fact that the selected sample has been 

maintained up to the end of the study, and no additional sample were needed. 

Participants who were conveniently sampled consisted of six groups of Grade 11 

students, that is, one classroom as one group from each of the six schools. Teachers 

teaching in the sampled classrooms were teacher participants in this research. 
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However, in order to maintain consistency in application of IBF on the side of 

experimental group, I maintained a teacher position in the three grade 11 classroom 

of the experimental group. Three teachers of the comparison group were participating 

by teaching applying the traditional axiomatic approach. The comparison group served 

for the purpose of contrast with the experimental group, an essential factor of quasi-

experimental design. Therefore, there was no need for the comparison group to 

receive intervention and I could not play the dual role of teaching in both approaches. 

In addition, the traditional approach was seen to be ineffective, therefore, the 

effectiveness of IBF implemented as intervention this study is evaluated. Based on the 

fact that the success of intervention is measured through an achievement test, the 

differences in achievement in the pre and post-test results of the comparison and 

experimental group is crucial. The study does not compare teaching methods, but 

achievement test results to check the effect of the newly introduce IBF and IBL. 

Observation in the comparison group applied as a means to ensure that the topic circle 

geometry is taught through the traditional method before the students could take the 

post-test.  Comparison of post-test results would not be valid if the comparison group 

did not receive any teaching, however, teaching approach in the comparison group 

could not be IBL, and the facilitator who facilitates IBL could not be the teacher who 

teaches the comparison group.              

Cohen, Manion and Morrison (2005) refers to convenience sampling as accidental or 

opportunity sampling where the easily accessed group participates in the study. 

Convenience sampling applied in this study based on the reason that data collection 

occurred in a population that was conveniently available to participate in this research. 

Further, the application of convenience sampling contributed in attaining data and 

trends in this study without considering a randomised sample. A total of 18 students 

from the 166 were followed up as the study progressed. They were carefully observed, 

and follow-up interviews were conducted with them. Three teachers in the comparison 

group were observed and interviewed by the researcher. In experimental group, 107 

students wrote the pre-test. However, only 97 participated in the post-test. Similarly, 

97 students wrote a pre-test in the comparison group, while only 69 participated in the 

post-test. The aim of conducting pre- and post-tests was to evaluate the intervention. 

The evaluation of intervention is feasible if the improvement in the post-test is tracked 

against the pre-test. Therefore, a pre-test only would not be useful. Ten students in 
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the experimental group and 28 in the comparison group who did not write the post-test 

were excluded in reporting results. A high attrition rate was evident in C2 of the 

comparison group where 23 students in a class of 30 did not take the post-test. 

Students were absent from the class as research participants as a result of various 

factors such as absenteeism and involvement in other activities in the school. The 

statistics for students who participated in both pre- and post-tests are shown in Table 

3.2.  

Table 3.2: Number of students who participated in all research activities 

Experimental group 

School Number of students Total 

E1 33  
97 E2 40 

E3 24 

  

Comparison group 

C1 31  
69 C2 7 

C3 31 

TOTAL 166 

 
Students participated in pre- and post-test, observations and interviews. The student 

participants were grouped as the experimental and the comparison groups in order to 

determine the true effects of the intervention. 

Schools in experimental and comparison groups were coded for anonymity. The 

schools in the experimental groups were coded as E1, E2 and E3 respectively. The 

letter E describes the category of the school which is experimental and the numbers 

1 to 3 indicate the sequence of school visit. Schools in the comparison group were 

coded as C1, C2 and C3. The letter C denotes the category of the school in the 

comparison group and the numbers 1 to 3 indicate the sequence of visits in this 

category.  

3.3.3 Measurement 

Measurement is the assignment of numbers to indicate different values or variables. 

The purpose of measurement is to obtain information about the variables that are 

being studied. In this study, the dependent variable that is studied is learning. The 

success of intervention is measured through the differences in pre- and post-tests. 

Numbers are used to describe and differentiate achievement of students. The specific 
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technique or instrument used for measurement is an assessment task in a form of a 

test. A specific Euclidean Geometry content assessment task is used to provide a 

basis for measurement of problem-solving in Euclidean Geometry. The information 

collected through measurement forms the basis of the results, conclusions and 

significance of the study.  

Measurement requires that variables be differentiated. The nature of differentiation 

can vary in four basic ways known as scales of measurement. The four scales of 

measurement are outlined by McMillan (2012) as: (1) nominal scale (numbers 

assigned to categories; for example, male=1; female=2); (2) ordinal scale (numbers 

rank-ordered, compared in terms of greater than or less than; for example, more 

creative, greater ability; (3) interval scale, that is, equal intervals between numbers; 

e.g. if J scores 90, U scores 80, and T scores 70 then the distance between them is 

twice the distance between U & J); and (4) ratio scale where numbers expressed as 

scores and ratios can be used in comparing and interpreting scores. The interval/ ratio 

scale applies in this study as the intervals between levels of knowledge and 

understanding have been measured in order to track the students’ development from 

pre-visualisation to rigour levels of knowledge and understanding. Further, the ratio or 

interval scales in this study measure the difference in achievement before and after 

teaching has occurred in both experimental and comparison groups. 

3.3.4 Research Methods 

3.3.4.1 Quantitative component (Quasi-Experimental design) 

The main purpose of doing experiments in research is to manipulate one variable (e.g., 

a teaching technique) to determine its effect on another variable (e.g. students on task 

behaviour in class) (Gall, Gall & Borg, 2010; Lodigo, Spaulding & Voegtle, 2010). This 

study puts more emphasis on manipulating the teaching technique (inquiry-based 

facilitation) as an independent variable to determine its effect on learning (problem-

solving skills through IBL) as a dependent variable.  

Gall et.al. (2010) define the three types of experimental methods as true experiment, 

quasi-experiment and single-case experiment. This study adopted a quasi-

experimental design based on the fact that random assignments do not apply. Intact 

classrooms were used and participants did not have the option of being in a specific 
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group. Some classrooms were used for experimental purposes where some were 

used for comparison. Pre- and post-tests were administered to both experimental and 

comparison groups. I conducted intervention at the three grade 11classrooms in the 

experimental group by employing IBF strategies, and the researcher observed as a 

participant observer. Intervention was not employed at the three schools in the 

comparison group, that is, teachers were teaching as normal by applying the traditional 

axiomatic approach.  

 

The facilitator who executes intervention in the experimental group cannot facilitate in 

the comparison group utilising a different method. The actual stage before intervention 

is that both groups were exposed to the traditional approach. Therefore, it is 

intervention that is new and need to be put on trial.  Impartiality or biasness might be 

a result when one facilitator plays both roles of facilitating in IBL and in the traditional 

axiomatic approach. In order to see the effect of intervention at the experimental 

group, the comparison group has to proceed as normal. The only critical issue in the 

comparison group is that the topic circle geometry had to be taught before the students 

could participate in the post-test. Therefore, I was compelled to apply non-participant 

observations at the comparison group in order to confirm that the topic was taught 

before the students could participate in the post-test. Post –test evaluation could not 

proceed if the students were not taught the topic Circle geometry. I maintained stability 

and consistency in the three grade 11 classes of the experimental group. Similar data 

deductions were drawn from the three classes of the experimental group. Stability and 

consistency in terms of teaching and evaluation were also maintained in the three 

grade 11 classes of the comparison group. Similar data deductions were drawn from 

the three classes of the comparison group.  

 

The experimental group students benefited from the research based on the fact that 

they participated and acquired IBL skills. However, to ensure that the comparison 

group benefit from the study as well, memoranda or feedback for tests and research 

results would be disseminated to teachers of both the experimental and the 

comparison groups at the end of the study. 

 

Pre- and post-tests were conducted to measure the potential effects of an intervention 

by examining the differences between the pre-test and post-test results. Pre- and post-
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tests were in a form of an individual assessment task based on the six levels of 

geometric knowledge and understanding, that is, pre-visualisation; visualisation; 

analysis; informal deduction, formal deduction and rigour. The main aim of the 

assessment task in this study was firstly to assess mathematical inquiry where 

students were expected to display the awareness of the connection between 

mathematical and extra-mathematical systems; to construct mathematical 

representations; and to search for structure, patterns, relationships and principal aim 

of generalisation; and secondly, the pre- and post-tests were aimed at assessing 

application of IBL to advance all levels of geometric knowledge and understanding. 

An assessment task was administered by the researcher as both a pre- and post-test. 

According to Van Hiele’s theory of geometric knowledge and understanding, students 

must achieve lower levels in order to successfully acquire knowledge and 

understanding in upper levels of knowledge and understanding. Therefore, test 

interpretations are based on how students compared with Van Hiele’s levels of 

performance. The tests were based on the Grade 11 space and shape content area 

and the focus was Euclidean Geometry. The section concerned was circle geometry 

(cf Appendix B).  

3.3.4.1.1 Inquiry-based assessment (pre- and post-test) 

In implementing inquiry-based education (IBE), teaching strategies need to be coupled 

with the procedure and application of assessment. IBE in this study refers to 

application of IBF to promote IBL. Formative assessment was not practically executed 

in this study and the contributing barriers were mainly (1) large classes; (2) extensive 

curriculum; (3) the difficulty of meeting diverse students’ needs; (4) formative 

assessment is very demanding when coming to resources; and (5) for the formative 

assessment to be practical, more time is needed (Bernholt, Ronnenbeck, Rophol, 

Koller & Parchmann, 2013). About summative assessment in mathematics inquiry, 

Bernholt et al. (2013) state that summative assessment emphasises constructed 

response or open-ended items as these items establish students’ reasoning or 

problem-solving skills and their mathematical knowledge. Further, they highlight that, 

according to research, the links between formative and summative assessment could 

be strengthened in ways such as drawing on advances in the cognitive sciences; 

developing on-demand assessments; taking advantage of technology; developing 
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complementary diagnostic assessments for students at lower proficiency levels to 

identify specific learning difficulties; and ensuring that standards of validity, reliability, 

feasibility and equity are met. In this study, teaching (intervention) include informal 

assessment through questions that challenge students to think critically for problem-

solving purposes. Probing through questioning that the facilitator adhered to during 

intervention influences inquiry and evaluates a certain level of knowledge and 

understanding of learning, and further determines progression to the next level of 

knowledge and understanding. The pre- and post-tests taken by students adhered to 

progression from lower levels to higher levels of knowledge and understanding. 

Looney (2011) cited in Bernholt et al. (2013) argues that large-scale summative tests 

often do not reflect the development of higher-order skills such as problem-solving and 

reasoning which are key competences in IBE. The assessment task employed in this 

study is of a small scale so that it will reflect the development of higher-order skills 

such as problem-solving and reasoning. Further, Bernholt et al. (2013) agree that 

large-scale summative assessment data are often not detailed enough to diagnose 

individual students’ needs and in some instances, they are not delivered in a time 

frame which enables students to receive feedback or demonstrate improvement at a 

later stage. The assessment task (pre- and post-test) in this study were aimed at 

assessing mathematical inquiry skills in learning and the impact of IBF in a form of 

intervention. Scoring or marking was done according to a memorandum and rating in 

pre- and post-tests was determined firstly based on the total mark according to the 

following categories of achievement: low achievement, LA (0-20 marks); average, AV 

(21-30 marks); and advanced, AD (31+ marks) (cf table 4.8). Secondly, rating is 

determined according to level of knowledge and understanding based on the following 

categories question not answered, low comprehension skills, average, advanced and 

proficient (cf table 3.3). The letter E appearing in each level or question, is used to 

explain that a student did not answer the question completely. Various levels possess 

diverse mark rating from low comprehension to proficient achievement levels. 
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Table 3.3 Rating the pre- and post-test 

 
Level 

 
Total 

 Did not 
answer 
the 
question 

 
Low 

comprehension 
skills 

 
Average 

 
Advanced 

 
Proficient 

Pre- 
Visualisation 

 
16 

 
E 

0  
1-5 

 
6-10 

 
11-16 

Visualisation 9 E 0 1-5 6-9   ------- 

Analysis 26 E 0 1-8  9-16    17 - 26 

Informal 
deduction 

 
13 

 
E 

 
0 

 
1-4 

 
5-8 

 
9-13 

Formal 
deduction 

 
9 

 
E 

 
0 

 
1-4 

 
5-8 

 
9-13 

Rigour 3 E 0 1-3 -------- --------- 

 
Raw quantitative data was captured on SPSS and paired t-test was used to compare 

the variances and the means of the two groups. Quantitative data analysis in this study 

comprised both inferential statistical analysis and descriptive statistical analysis. The 

test for normality was performed by comparing the pre-test variances of the 

experimental and the comparison groups. The aim was to confirm the level of both 

groups before intervention and teaching in the comparison group. Further, inferential 

statistical analysis was used to compare the mean values of the two groups in order 

to track the most improved group. Descriptive statistical analysis employed charts and 

tables to illustrate the analysis of levels of knowledge and understanding, that is, pre-

visualisation, visualisation, analysis, informal deduction, formal deduction and rigour. 

Charts were used to compare the pre- and post-test results of each group and 

comparison between the two groups was illustrated using charts to track the most 

improved group across the levels of knowledge and understanding. 

 

3.3.4.1.2 Validity and reliability in the quantitative component 

Students as participants completed cognitive tasks by responding to a standard set of 

questions; and the answers to the questions were summarised to obtain a numerical 

value that represented a cognitive characteristic; that is, scores were interpreted by 

comparison to a standard or criterion (Macmillan, 2012). Standardised achievement 

tests were used as pre and post-test to test knowledge and inquiry-based problem-

solving skill in Euclidean Geometry (Macmillan, 2012). I have developed the 

achievement test based on the curriculum and focused on grade 11 content area 
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space and shape (cf Appendix B). Further the instrument was developed in line with 

Van Hiele’s theory in order for it to cover all levels of understanding. In addition, the 

instrument was designed to address inquiry-based assessment that aligns with inquiry 

based learning.  The validity and reliability of the instrument were tested in various 

ways, that is, validated through feedback from experts in research and mathematics 

education; conducting a pilot test on the instrument and through ensuring reliable error 

free scores.   

Validity 

Validity pertains to ensuring that the research instrument measures what it is designed 

to measure (Lodigo et.al, 2010). In addition, McMillan (2012) states that validity is a 

judgement of the appropriateness of a measure for the specific inferences or decisions 

that result from the scores generated by the measure. Further, McMillan (2012) 

maintains that validity is established by presenting evidence that the inferences are 

appropriate; and it is the inference that is valid or invalid not the measure. Lodigo et 

al. (2010) identify three types of validity, that is, (1) content validity to examine the 

degree to which an instrument measures the intended content area covered by the 

measure; (2) criterion validity which involves the correlation between two measures; 

and (3) construct validity involving a search for evidence that an instrument is 

accurately measuring an abstract trait or ability.  

In the quantitative component, this study adhered to content validity. According to 

McMillan (2012), evidence based on test content or content validity demonstrates the 

extent to which the sample of questions in the instrument (pre- and post-tests in the 

study) are appropriately representative of the domain of content. Appendix B of this 

study shows the test according to six levels of knowledge and understanding.  

In addition, McMillan (2012) states that, to accumulate evidence based on test content, 

experts are used to judge the instrument criticality and to evaluate the importance of 

various parts of the instrument. Furthermore, experts can judge whether the content 

is research-based, accurate, representative and adequate (McMillan, 2012). Content 

validity in the study was achieved by having experts in mathematics education and in 

research judge the instrument criticality and to evaluate the importance of various 

parts of the instrument, such as the Van Hiele levels of geometric knowledge and 

understanding. One teacher (the head of the mathematics department) was requested 
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to reviewed the instrument in order to ensure that the content was accurate and 

aligned with the Curriculum Assessment Policy Statement (CAPS) as the research 

was conducted in South African classroom where CAPS is practised. Two lecturers, 

one research professor and one mathematics education lecturer reviewed the 

instrument to check whether the instrument was research-based, adequate and 

representative for measuring the geometric knowledge and understanding of students 

based on the Van Hiele levels.  

Further, validity was ensured in this study through internal and external validity. 

Internal validity was applied by ensuring that correspondence existed between the 

data collected and the research problem; and external validity applies as the data were 

applicable beyond the context of the study or in other samples that were not studied 

(Ponce & Pagan-Maldonado, 2015). 

Pilot testing 

A test was administered to a smaller group that did not take part in the main study. 

The school had only 16 grade 11 mathematics students, therefore, the group 

paticipated in only the pre-test as a pilot for the data collection instruments in a form 

of IBL test.   The aim of piloting the test was to determine errors; whether the students 

can answer the questions correctly, whether the questions are oderly placed and 

whether the test will assist students to apply inquiry through deductive and inductive 

reasoning. The first instrument developed contained 5 tests, that is, a test on each 

level of knowledge. Therefore, the instruments did not address the issues mentioned, 

therefore, I developed another instrument that was piloted and taken the instrument 

back to experts for scrutiny. The second instrument (Appendix B) yielded desired 

results, that is, students completed the test at set time; could follow the order of 

questions and answer correctly and the test addressed both inductive and deductive 

levels of knowledge in a correct order based on six levels of knoweldge. All question 

assisted the student to utilised diverse levels of knowledge in resolving a central 

problem.  

Reliability  

Reliability is the consistency of scores or the extent to which participants and/or rate 

scores are free from error (McMillan, 2012). Further, McMillan (2012) outlined five 
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types of reliability estimates as: (1) stability (measured by giving the same instrument 

twice); (2) equivalence (correlation of two forms of the same test); (3) equivalence and 

stability estimate (two forms given at different times); (4) internal consistency 

(correlation of items measuring the same trait); and (5) agreement (existence of some 

type of co-efficient agreement, expressed as either a correlation or as percentage of 

agreement). This study applied stability, that is, test-retest reliability estimate. A set of 

questions as a pre-test was administered to the groups, and after a specified period 

of time, the same set of questions were administered as post-test. The connection of 

the pre- and post-tests was evaluated; and the consistency of the subjects’ 

performance over time (before and after pre-test) was measured.  

Gray (2009) states that another way of improving the reliability of a study is through 

the process of triangulation. He further maintains that, through triangulation, data can 

be interpreted from three or more different viewpoints in order to describe a particular 

area with accuracy. Triangulation to improve reliability was applied through the 

qualitative component of this study, that is, semi-structured observations and 

interviews. Trustworthiness was complied with in the qualitative component of this 

study.  

3.3.4.2 The qualitative component (Phenomenological approach) 

The objective of conducting the qualitative research in this study was to divulge 

concealed realities about both the IBF and the traditional teaching approach. Further, 

qualitative data play a significant role of complementing the quantitative data in this 

study. Phenomenographic approach was employed as a strategy of inquiry in the 

qualitative component of this study. Cohen, Manion and Morrison (2005) highlight that 

phenomenology is concerned with “the study of direct experience taken at face value; 

and one which sees behaviour as determined by the phenomena of experience rather 

than by external, objective and physically described reality” (p 23). Marton (1994) 

avers that phenomenography addresses what a phenomenon looks like and how is it 

seen. In addition, Marton (1994) motivated that in phenomenography experience is 

seen as an internal relation between the person and a phenomenon. In this study, 

social phenomenon, that is, teaching approach was explored and records were made 

from overt participatory and non-participatory observations as well as from semi-

structured face-to-face interviews.  



90 

Observations and semi-structured interviews were employed to investigate the effect 

of IBL on learning in the experimental groups. Direct observation is explained as the 

type of observation that involves an observer collecting data while an individual is 

engaged in some form of behaviour or while an event is unfolding (Gall, et al., 2010). 

Participant observation applied in the study where the researcher applied the 

intervention of IBF while directly observing the students’ interactions in all levels from 

pre-visualisation to rigour through IBL. I used an observation schedule (cf Appendix 

E) that defined each level from pre-visualisation to rigour of the levels of knowledge 

and understanding in Euclidean Geometry. In the comparison group, students’ 

interactions were observed as the teachers applied the traditional axiomatic approach. 

The researcher was a non-participant observer in the comparison group and an 

observation scheduled that defined teacher and students’ interactions was used. 

During the IBF intervention, actions were recorded on video camera and noted on the 

observation form. The participants’ views were regarded as essential in this study, 

therefore, interviews were conducted, noted and recorded and transcribed. Selected 

students participated in semi-structured interviews. Verhoeven (2011) state that in 

semi-structured interviews, participants have freedom to contribute what they feel is 

relevant; however, I acted as the interviewer and utilised a list of questions that guides 

the interview session (cf Appendix F). Observations and the participants’ views were 

compared to explain the performance of students in pre- and post-tests. 

Trustworthiness in the qualitative component 

Instead of referring to validity and reliability to establish the rigour of the qualitative 

data, the qualitative component in this study adhered to trustworthiness which consists 

of four components, that is, credibility, transferability; dependability and confirmability 

(Shenton, 2004). Firstly, to address the issue of credibility, the study presents a true 

picture of IBF and learning in Euclidean Geometry. Secondly, transferability has been 

addressed in this study by describing the research context in detail in order to enable 

readers of this study and other researchers to discern whether the environment of the 

study is similar to what is familiar to them and further to be able to justifiably apply the 

findings of this study in other settings. Thirdly, this study addresses confirmability by 

ensuring that the findings or results presented emerge from the data and not from the 

researcher’s own predisposition. Finally, recommendations are made to enable 

continuation, further study or replicability. Shenton (2004) aligns validity and 



91 

trustworthiness as follows: credibility in preference to internal validity; transferability in 

preference to external validity or generalisability; dependability in preference to 

reliability; and confirmability in preference to objectivity. The alignment and 

combination of validity, reliability and trustworthiness was adhered to in order to 

ensure inference validity in this mixed-methods study.  

3.3.4 Mixed-methods data analysis and interpretation 

According to Ponce and Pagan-Maldonado (2014), analysing data means to extract 

meaning, implicit or explicit, from the information collected in the study. Further, they 

outline three methods of data analysis in mixed-method studies: (1) analysis of 

quantitative data, (2) qualitative data analysis and (3) analysis of mixed data. In 

addition, Ponce and Pagan-Maldonado (2014) state that the analysis of mixed data 

consists of organising and combining quantitative and qualitative data to achieve the 

following objectives in relation to the research topic: (1) triangulation of data; (2) 

complementing data; and (3) deepening the analysis. This study presents firstly the 

quantitative data analysis, secondly the analysis of qualitative data and thirdly a 

combination, that is, mixed-methods analysis. In the mixed-methods data analysis the 

qualitative data supports and complements the quantitative data. That is, the 

quantitative pre- and post-tests revealed the performance of the experimental and 

comparison group, whereas observations and interviews revealed causes of such 

performance. Quantitative and qualitative data were used to complement each other 

in presenting findings. The quantitative data determined the scope of the analysis and 

qualitative data deepened it through complementarity. Data analysis was conducted 

as in the embedded mixed-method design where the data was framed by the 

quantitative data, whereas the qualitative data provided a supportive secondary role 

(Creswell & Plano Clark, 2007). Accuracy and trustworthiness of study results were 

determined by embedding the qualitative data into the quantitative data. 

3.3.4.1 Validity in this mixed-method research study 

In order to ensure the investigative rigour of this study, validity and reliability in 

quantitative research was considered. Further, trustworthiness in qualitative research 

was also reflected upon. However, in this mixed-methods study, inference validity was 

applied in approaching and capturing the complexity of the research problem using 

quantitative and qualitative approaches (Ponce & Pagan-Maldonado, 2015). 
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According to Ponce and Pagan- Maldonado (2015), inference validity in a mixed-

methods study implies that quantitative and qualitative data describe, explain or 

accurately capture the research problem and its complications. 

3.4 DATA COLLECTION PROCESS  

3.4.1 Pre-and post-tests  

The principal instrument for data collection was a standardised (Euclidean Geometry) 

achievement test. Before the intervention, the researcher conducted a pre-test to both 

experimental and comparison groups in order to determine the participants’ initial level 

of Euclidean Geometry knowledge and understanding in pre-visualisation, 

visualisation, analysis, informal deduction, formal deduction and rigour. A post-test 

was applied at the end of the intervention to observe change in the functionality of IBF 

strategies. 

3.4.1.1 Experimental group 

Three schools participated as an experimental group in District 1, and are labelled E1, 

E2, and E3 in this study. The pre-test was conducted and invigilated by the researcher 

in three schools classified as the experimental group. In all experimental group 

schools, the test was written during mathematics periods that were either in the 

morning or in the afternoon. Students could not be kept by the schools for after-school 

sessions; neither could the researcher. The total number of students who wrote the 

pre-test was 107 and the numbers per class at each school were as follows: E1 – 36; 

E2 – 40; E3 – 31.  

Uniformity in schools was adhered to during the data collection process. The 

researcher facilitated IBL at the three schools comprising the experimental group. The 

IBL intervention was uniform in all schools, and mathematics periods were used for 

teaching circle geometry. This topic is part of the content area space and shape in 

Grade 11 in South Africa.  

A post-test was conducted on a different day. The number of students who participated 

in post-test was less that the number in pre-test. An attrition rate of 9.3% was evident 

in the experimental group, that is, an unpredictable but controllable reduction of 

participants where 10 students did not participate in the post-test was evident. The 
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post-test in the experimental group was written by 97 students as 10 students did not 

participate in the post-test. Interviews were conducted after the post-test. 

Experimental group intervention process 

The total duration of intervention at each class of the experimental group 

encompassed two weeks where five days were classroom based, that is, 5 lessons of 

1 hour each for facilitator and learner interaction. Other days were used for pre and 

post-test as well as interviews. The experimental group consisted of the three grade 

11 groups from three schools, that is, E1, E2 and E3. I could not combine the three 

groups, therefore, I visited schools separately. Two full weeks, 10 days were reserved 

for experimental group visits. The schools in the experimental group are in close 

proximity, less than 5km away from each other, therefore, I managed to conduct a 

session of one hour at each school in a day. Cohesion was maintained by ensuring 

that same pace is maintained while dealing with the three groups separately. For 

example, introductions were done in one day separately at the three schools. Pre-tests 

were conducted in one day, one school after the other. All lessons were run 

concurrently, for example, lesson 3 could not proceed in one group while the other 

groups are still behind in lesson 2. After all groups participated in lesson 1, lesson 2 

was carried out. Lessons followed each other until the fifth and last lesson was carried 

out in all the three experimental groups. I have followed a lesson plan from lesson 1 

to 5. The lesson plan I have planned to teach in the experimental groups appear as 

Appendix A of this study. Intervention was conducted by me according to the schedule 

below in each of the three classes of the experimental group.   

Day Activities 

1  Introduction and request for approval from the principal.  

 Request for consent from teachers 

 Planning with the teacher involved. Checking time table to mark 
mathematics periods and do arrangements with other teachers where 
necessary. In the experimental group I have been facilitating, the 
teacher’s role in each group was to connect me with the students in 
particular classes in every session.  

2  Class visit 

 Introducing myself to the students, explaining the rationale behind my 
being in their classroom.  

 Distribute consent forms for parents 
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3  Receive consent forms signed by parents, request student to assent 
to participate by signing the assent form. 

 Students write a pre-test  

4 Lesson 1 

 The attempt in this lesson was to orientate students to the pre-
visualisation stage 

 I facilitated through probing to engage students in recalling all 
information in their real world for learning in pre-visualisation stage 

 Further, I allowed student to manipulate a tangram in order explore the 
different shapes of a tangram. 
 

5 Lesson 2 

 My facilitation role in this lesson was probing to guide students in the 
visualisation level. Teacher-student and student-student interaction 
enabled students to apply free hand drawing and use symbols to 
represent objects outlined and explored in the pre-visualisation stage.  

6 Lesson 3 

 In this lesson I facilitated through probing and engaged students in 
the analysis level of knowledge and understanding. Students in this 
stage interacted to explore properties of shapes such as different 
types of quadrilaerals, circle, types of triangles. Other polygons such 
as pentagon, hexagon and octagon were also explored. The 
properties of separate figures were explored. Constructon of diverse 
figures was advanced and understanding of concepts developed 
around figures developed. For example, chord, diameter, diagonals 
bisect and more other concepts.  

 I allowed students to use different text books for reference and their 
smartphones (taking advantage of the wifi present at their schools) to 
search for concepts and properties in order to explore the properties 
of each figure. 

  

7 Lesson 4 

 In this lesson, I probed further to guide students to explore 
relationships of figures and relations of properties of various figures. 
In exploring relations few theorems were realised. I allowed students 
to use their cell phones and different textbooks at their exposure to 
explore theorems based on the concepts and properties of figures they 
have explored. Further, the concept of inscription of figures arised. 
Inscription of figures based on concepts such as circumcircle of a 
polygon; a square circumscribed about a circle, circumscribed circle in 
a triangle formed by tangents to a circle. Further, the idea of inscribing 
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a quadrilateral in a cycle arised. That is where students realised the 
origin of a cyclic quadrilateral.    

8 Lesson 5 

 In this lesson, I probed to let students dwell deeper into the properties 
of a cyclic quadrilateral in order to discover theorems that describe a 
cyclic quadrilateral, a theme in circle geometry according to grade 11 
syllabi. 

 For application of properties, concepts and theorems, I probed in order 
to guide students to apply in abstract problems as prescribed in their 
grade. 

 In addition, I engaged students in discussions pertaining to application 
of inscriptions in real world and real life situations. For example, in 
construction.  

9 Post-test 

 I conducted a post-test in all the three classes of the experimental group. 

10 Interviews (only students in the experimental group) 

Interviews took place after post-test.  

  

Teachers in the experimental group did not participate in teaching or doing any other 

activity during my presence in their classrooms, therefore, they could not participate 

as interviewees.  While providing consent to participate, teachers in the experimental 

group indicated that they were not ready to teach utilising any new method contrary to 

their then practice, therefore, training the teachers to implement IBF did not 

materialise. In light of this. I continued with facilitation of IBF to engage students in IBL 

in all the three experimental groups.  

Fidelity of intervention 

Discussion of fidelity, that is, the extent to which the intervention is delivered as 

desired, is based on five components of intervention fidelity by Gutman and Murphy 

(2012). The five components are intervention design; training of providers; intervention 

delivery; receipt of intervention and inactmant of skills acquired from intervention. 

Intervention design is relevant based on the following facts: comparison group was 

used; number of intervention sessions in each school are outlined and were adhered 

to. Further, the intervention was conducted as desired based on the six levels of 

knowledge and understanding that constitute the theoretical framework of this study. 



96 

The skill of facilitation through probing as the major constituent of IBF for intervention 

was adhered to in all levels of facilitation. In line with the training of providers, I 

conducted the intervention to circumvent the inconsistencies that could be brought 

about by facilitation that is carried out by three different people and further to avoid 

lack of proper acquisition of IBF skills among the three teachers in the experimental 

group.  

Intervention fidelity in line with intervention delivery pertains to methods used to ensure 

standardisation of the intervention. A common schedule was adhered to in three 

classes of the experimental group for the same duration.  In addition, same pace and 

consistency of facilitation in lessons was adhered to in all three groups. Content 

delivered was based on the current grade 11 syllabi and the same content was 

observed at the comparison group classes for controlling differences during 

comparison. The receipt of intervention is accounted for in this study based on the fact 

that participants in the intervention group acquired knowledge in various steps and 

were able to apply in the next step. For example, students were able to contexualise 

the shapes and figures through out from the pre-visualisation level to rigour. 

Assessment recorded improvement, and student in the experimental group expressed 

their positive views about intervention as a relevant method of learning Euclidean 

geometry and as a method that can impact positively in every day learning. In essence, 

the intervention has shown that IBF promote IBL in order to enhance problem solvng 

skills in Euclidean geometry.  I focused on the comparison group for a complete 

research process. 

3.4.1.2 Comparison group  

The pre-test was conducted at three schools (C1, C2 and C3) during normal 

mathematics periods. A total of 97 students wrote the pre-test. The numbers of 

students who participated per class in the pre-test in each school were as follows: C1 

– 34; C2 – 32, C3- 31. All students in the comparison group participated in the pre-

test, However, an attrition rate of 28.9% was evident, that is, reduction of participants 

was experienced where 28 students did not participate in the post-test. Therefore, 69 

students of the comparison group participated in the post-test. Contributory factors are 

explained in section 3.3.2 of this study. The higher attrition rate contributed to 

reduction of participants from 204 to 166 when both groups are combined; and from 
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97 to 69 in the comparison group. Three teachers in the comparison group were 

observed while teaching circle geometry and cyclic quadrilaterals as usual. The 

researcher conducted non-participatory observations. Lesson observations were 

conducted at all comparison group schools after the pre-test had been written. Five 

lessons of 1 hour each were observed on five separate days. The lessons covered a 

number of theorems including cyclic quadrilaterals. Nine students and three teachers 

were interviewed in the comparison group. 

The group is about 30km from the experimental group. What matters the most in the 

comparison group is the results of the pre and post-test in order to compare against 

the control group and the confirmation that circle geometry upto only cyclic 

quadrilaterals were taught in a traditional approach of teaching. Further, I visited 

schools to ensure that teaching in circle geometry happened before students 

participated in the post-test, as students could not take a post-test when they did not 

receive any teaching on the topic. The schools were in close proximity, therefore, I 

could attend a session in each school in one day, that is, three sessions in different 

groups of the comparison group. The total duration of my interaction in the comparison 

group was two full weeks, that is, 10 days. I have observed the teacher student 

activities as a non-participant onserver. Theorems about circle geometry were taught 

as expected in all the groups.  Five days of observation were classroom based. The 

theorems and circle geometry topics concerned were not treated concurrently, 

however, all topics in cirle geometry were treated during the period I have observed 

the comparison groups. I followed the schedule below in engaging the comparison 

group. 

Day  Activities 

1  Introduction and request for approval from the principal.  

 Request for consent from teachers 

 Planning with three teachers involved. Checking time tables to 
mark mathematics periods and do arrangements with other 
teachers where necessary. The teachers’role in the comparison 
group was to teach and control the class while I only observe  
lesson as a non-participant observer in all lessons. 

2  Class visit 

 Introducing myself to the students, explaining the rationale behind 
my being in their classroom.  
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Distribute consent forms for parents 

3  Receive consent forms signed by parents, request student to 
assent to participate by signing the assent form. 

 Students write a pre-test  

4 Lesson 1 

Theorem 1  

Centre of a cicle perpendicular to chord 

5 Lesson 2 

Theorem 2 & 3 

Angles subtended by an arc at the circumference 

6 Lesson 3 

Theorem 4 

Angles subtended by chord and diameter at the circumference 

7 Lesson 4 

Theorem 5  

cyclic quadrilaterals – supplementary angles are equal 

8 Lesson 5 

Theorem 6  

cyclic quadrilaterals- exterior angle = interiror opposite angle 

9 Post-test 

 I conducted a post-test in all the three classes of the comparison group 
after observing the lassons. 

10 Interviews (students and teachers in the comparison group) 

Teachers in the coparison group were directly involved in teaching, 
therefore, they were interviewed  

Interviews took place after post-test.  
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3.4.2 Interviews 

Interview in this study is grounded in a phenomenological research approach 

concerned with the meaning that people assign to phenomenon (Gray, 2009). Further, 

Gray (2009) motivates that interview “can be used as a means of gathering information 

about a persons’ knowledge, values, preferences and attitudes (p 370). In light of 

Gray’s (2009) ideas on the use of interviews in data collection, in this study, interviews 

were applied to gather information about the respondents’ experiences, attitudes and 

preferences towards their daily teaching and learning practices. The researcher 

applied semi-structured face-to-face interviews to probe for clarity and to get more 

detailed responses from respondents who were comparison group teachers and 

students in both the experimental and the comparison groups. Further, semi-

structured interviews were conducted after intervention and post-test in order to 

elaborate further, enhance, illustrate and clarify the results of pre- and post-tests. The 

qualitative data was embedded into the quantitative data for credibility purposes or to 

increase the integrity of the quantitative findings. The interview schedule of 10 

standardised open-ended questions was drafted based on the research questions, 

hypothesis and the theoretical framework.  Three students in each of the six schools 

were interviewed in a group by the researcher, while three teachers of the comparison 

group were also interviewed individually. The students’ interview lasted for 30 minutes 

in each group in all six schools and the teachers individual interviews lasted 20 

minutes. Respondents were interviewed at their respective schools after the post-test. 

Maximum participation was attained and almost all questions were answered by 

respondents.  The initial plan was to select the students based on their performance 

in pre-tests. Classrooms had large numbers and the marking of pre-tests took a long 

time. Therefore, the researcher requested the teachers to identify the following 

students: one student whose performance was good, one whose performance was 

average and one whose performance was low. The students’ participation was 

monitored during participatory observation in experimental group and during non-

participatory observation in comparison group. A total of 18 students participated in 

interviews, that is, three students per school in both the experimental and the 

comparison group. 
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3.4.3 Observations 

Participatory and non-participatory observations comprised an essential part of this 

study. Overt observations were conducted purported at “gathering ‘live’ data from ‘live’ 

situations” (Cohen, Manion and Morrison, 2005 p 305). Furthermore, the purpose of 

observational data in this study was for the researcher to move beyond opinion-based 

data obtained in interviews and to discover what respondents could not talk about in 

interviews (Cohen, Manion & Morrison, 2005). In addition, as suggested by Cohen, 

Manion and Morrison (2005), observation enabled the researcher in this study to 

gather data on human setting, physical setting, interactional setting and programme 

setting.   

 

Comparison group teachers and students were observed by the researcher (who was 

not participating in teaching and learning activities) to ensure the teachers taught 

Euclidean Geometry, specifically circle geometry including the topic cyclic 

quadrilaterals. Furthermore, non-participatory observation in the comparison group 

was employed to confirm that the traditional axiomatic approach was the strategy 

applied during teaching. However, participatory observations were conducted in the 

experimental group.  I participated in all three schools of the experimental group as 

the IBF facilitator while observing the students’ behaviour, attitude and level of 

participation in learning through IBL.  

 

3.5 DATA ANALYSIS 

3.5.1 Quantitative data analysis 

According to McMillan (2008), a test is an instrument that requires participants to 

complete a cognitive task by responding to a standard set of questions. The answers 

to the questions are marked to obtain a numerical value that represents the cognitive 

level of the participants. All tests measure performance at the time a test is given. 

Furthermore, McMillan (2008) explains that tests differ, and the differentiating 

characteristics are classified into norm-referenced; criterion-based (standard based) 

and self-referenced. Self-referencing means that the reference point is the student’s 

own work; that is, comparison of the student’s achievements with what the student has 

done before. Criterion-referenced (standards-based) means comparing an individual’s 
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performance against an established level of performance or skill. The result is reported 

as a percentage of items answered correctly or as falling within categories such as 

pass, proficient, and advanced. Norm-referencing refers in this study to a situation 

where individual scores are compared to the scores of well-defined (reference group) 

of others who have taken the same test.  

In this study, pre- and post-test were given in order to track the students’ performance 

before and after the intervention. Criterion referencing is applied in this study because 

analysis of students’ scores show how they compare to the following skills: 

mathematical inquiry and application of IBE to advance all levels of geometric 

knowledge and understanding. Further, criterion referencing is applied through 

interpreting scores by classifying the marks against a standard. The standards used 

for are low achievement, average and advanced.   

Students belong to either experimental or comparison group. The group achievement 

of the experimental group was compared with the group achievement of the 

comparison group. Intervention was measured based on comparison of the test scores 

for experimental and comparison groups. Test or assessment task administered was 

designed in a way that questions are in an order from pre-visualisation to rigour. All 

questions were based on a central figure that constituted a problem. Students were 

guided through questions to apply all levels of knowledge and understanding in solving 

the problem posed (cf Appendix B). The achievement test administered was meant to 

evaluate students’ inquiry skills in solving a problem through application of six levels 

of knowledge and understanding. The test was not focused on testing abstract 

knowledge, but in assisting students to develop concrete inductive knowledge in order 

to apply in abstract levels; or in order to assist students to advance abstract knowledge 

with ease and deeper understanding of concepts that are basic and fundamental to 

abstract thinking. Therefore, norm referencing applies in this study. Pre-visualisation 

was addressed by question 1.1. Question 1.2 represented visualisation whereas 

question 1.3 and 1.4.1 addressed the analysis stage of knowledge and understanding. 

Informal deduction was addressed by questions 1.4.2 to 1.6. Formal deduction was 

represented by questions 1.7 to 1.9. The last question which was question 1.10 

addressed rigour where students needed to create a network of mathematical and 

extra-mathematical systems. The same test was administered as both pre- and post-

tests.  
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Paired t-test statistical analysis was used to fairly compare the results of the 

experimental and comparison groups. T-tests were used to test the difference between 

two related variables, that is, pre- and post-test in the experimental and comparison 

group.  

3.5.2 Qualitative data analysis 

The analysis of qualitative data in this study adhered to the principles of content 

analysis. Trochim and Donelly (2008) describe three types of content analysis, 

classified according to purpose: conventional content analysis, directed content 

analysis and summative content analysis. This study employed directed content 

analysis. Directed content analysis is driven by a specific theory or model. In this study, 

qualitative data analysis complements the quantitative data analysis, based on Van 

Hiele’s theory of geometric knowledge and understanding, coupled with Dewey’s 

theory of inquiry. A systematic procedure of qualitative content analysis in this study 

followed Schilling’s (2006) qualitative content analysis spiral as a model of analysis. 

Schilling’s (2006) model of data analysis consists of four levels as shown in figure 3.3. 

 

Figure 3.3: Schilling’s model of content analysis, adapted from Trochim and Donelly 

(2008) 

3.6 ETHICAL ISSUES 

In order to adhere to research ethics, researchers require permission to collect data 

from individuals and sites. Creswell and Plano Clark (2007) indicate that individuals 

are those people who are in charge of research sites, people providing the data 

(teachers, students and their representatives such as parents) and campus-based 

institutional review boards. In light of this, ethical clearance was requested from the 

College of Science, Engineering and Technology’s research and ethics committee of 

Leve 1: From tapes to raw data

Level 2: From raw data to condensed protocols 

Level 3: From condensed protocols to preliminary category system

Level 4: From preliminary category system to coded prtocols

Level 5: Concluding analyses and interpretation
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the University of South Africa (UNISA). Further, DBE in South Africa Gauteng province 

was contacted to ask for permission to collect data at schools in Tshwane North and 

West districts and permission was granted. Approval was sought from principals of the 

participating schools to do research at the respective schools. Prior to data collection 

or engaging with participants, a clear explanation of the research purpose and 

procedures was given to the teachers and students as participants. English as the 

language of instruction in mathematics was used as the main language. However, 

code-switching was adhered to where necessary. Translation into the mother tongue, 

that is, Setswana language of the teachers and students was done by the researcher 

where there was a need in order to afford every participant a chance to understand 

expectations and their role in the study. Consent forms were provided to teachers in 

both experimental and comparison groups. Parents of students who participated also 

received consent forms, and assent forms were given to students. Each participant 

was requested to sign a consent form (assent form for students), and the following 

factors were clarified with participants: participants had a right to withdraw or refuse to 

participate if they so wished; anonymity and confidentiality would be considered when 

publishing the findings; and the findings might be published for academic purposes 

where applicable. 

3.7 CHAPTER SUMMARY 

This study is grounded in the pluralism paradigm which combines realism and 

constructivism. The main emphasis of this study is the pragmatist epistemology that 

maintains that facts exist and can be interpreted, and the ontology is based on the fact 

that pragmatist knowledge exists as an objective reality which can be interpreted 

subjectively. In this study, a pragmatic approach was adopted by using IBF as an 

intervention strategy to assist students to apply IBL in acquiring Euclidean Geometry 

knowledge and understanding.   

The mixed-methods study is described, and a null hypothesis is explained. Sub-

questions were used to answer the main question. Pre- and post-test measurements 

are explained and the qualitative data collection process through observations and 

interviews, is clearly elaborated on. The mixed-methods approach, that is, the 

integration of quantitative methodology (quasi-experimental design) and qualitative 

methodology (phenomenographic approach), is clarified.  
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CHAPTER 4 

PRESENTATION OF RESULTS 

4.1 INTRODUCTION 

Results from data are presented in this chapter. Presentation of results focuses on 

firstly determining the impact of the model that employs IBF on students’ development 

of higher levels of geometric thinking. In order to determine the impact of IBF on 

students’ development, descriptive statistics are used to analyse the pre- and post-

test results in order to track improvement of the experimental group and that of the 

comparison group. Description of the developmental patterns is done in terms of the 

geometric levels of knowledge and understanding and ultimately the most improved 

group is determined. Charts (bar and line) are used to compare the developmental 

patterns of the two groups. The extent of improvement and lack of improvement is 

measured by checking and comparing the average performance of both the 

experimental and the comparison groups.  

Secondly, the results are presented to show the influence of IBL on students’ 

acquisition of knowledge at formal deduction level through pre-visualisation, 

visualisation, analysis and informal deduction. Inferential statistics, that is, paired t-test 

statistical test, are used to analyse the pre- and post-test results to determine if a 

difference exist between the experimental and comparison group. Paired t-test 

statistical measure is used to determine the improvement rate between the pre- and 

post-test in each group. The variances and the mean values between the two groups 

are compared.  

The third objective, that is, determining that IBF can divulge how students learn 

Euclidean Geometry better, is reported through results from participatory and non-

participatory observations as well as from interviews. Two visual models of both the 

experimental and the comparison group are presented in order to present the results 

from data about how students learn Euclidean Geometry better.  

Integrated findings of the mixed- methods design are presented, quantitative findings 

are presented as statistical and descriptive data while an analytical report on 

interviews and observations is also presented as qualitative findings.  
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4.2 QUANTITATIVE FINDINGS 

4.2.1 Paired t-test statistical test 

Paired t-test statistical test was performed on pre and post-test results of 97 students 

of the experimental group and 69 students of the comparison group. However, due 

to the SPSS system or user missing values, the number that participated as 

recorded on SPSS generated tables appear as 68 for the comparison group and in 

some instances 96 for the experimental group. Table 4.1 presents the results of the 

variables for pre-test between the experimental and the comparison groups.  

 

Table 4.1: Paired t-test Variance test: Variable – Pre-test  

Group N Mean Std Dev Std Err Minimum Maximum 

Control 68 7.4265 6.4004 0.7762 0 27.0000 

Experimental 97 8.4845 5.7302 0.5818 1.0000 27.0000 

Diff (1-2)  -1.0581 6.0147 0.9513   

 

  

Method Variances DF t Value Pr > |t| 
Pooled Equal 163 -1.11 0.2677 

Satterthwaite Unequal 133.94 -1.09 0.2773 

 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 67 96 1.25 0.3181 

 

Variances between the pre-tests in the two groups were tested, with the null 

hypothesis that the variances of the experimental and comparison group pre-test are 

not equal. The pooled method has been used in testing the hypothesis. Table 4.1 

reveals that the p-value for the pre-tests is not significant (p > 0.05, that is, 0.318). 

Therefore, the null hypothesis that the variances between the two groups are not equal 

fails to be rejected.   

Further, paired t-test statistical test is used in this study to compare the post-test 

variances of the two groups (Table 4.2). 

 

Group Method Mean 95% CL Mean Std Dev 95% CL Std Dev 

Control  7.4265 5.8773 8.9757 6.4004 5.4763 7.7025 

Experimental  8.4845 7.3296 9.6394 5.7302 5.0217 6.6734 

Diff (1-2) Pooled -1.0581 -2.9365 0.8204 6.0147 5.4267 6.7469 

Diff (1-2) Satterthwaite -1.0581 -2.9766 0.8605    
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Table 4.2: Paired t-test Variance test: Variable – Post-test 

Group Method Mean 95% CL Mean Std Dev 95% CL Std Dev 

Control  7.7681 6.1351 9.4011 6.7978 5.8225 8.1686 

Experimental  16.2577 14.4261 18.0893 9.0879 7.9642 10.5836 

Diff (1-2) Pooled -8.4896 -11.0445 -5.9347 8.2162 7.4150 9.2129 

Diff (1-2) Satterthwaite -8.4896 -10.9250 -6.0543    

 
Method Variances DF t Value Pr > |t| 

Pooled Equal 164 -6.56 <.0001 

Satterthwaite Unequal 163.56 -6.88 <.0001 

 
 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 96 68 1.79 0.0120 

 

The variances between the post-test of the experimental and the control groups were 

tested, with the null hypothesis that the variances of the post-tests for the two groups 

are equal. Satterthwaite test has been used to test the null hypothesis. Table 4.2 show 

that p-value is significant (p<0.05), the null hypothesis that the means are equal for 

post-test scores for the control and experimental group is rejected.  

The paired t-test revealed a difference between the pre- and post-test in both 

experimental and the comparison group (Figure 4.1). However, in the experimental 

group most individuals scored higher on the post-test as compared to the comparison 

group. Paired t-test results for groups are shown in Table 4.3. 

Table 4.3 Paired t-test results for the experimental group 

Variable Label Mean Std Dev Minimum Maximum 

PRE_TEST 
POST_TEST 

PRE-TEST 
POST-TEST 

8.48 
16.26 

5.73 
9.09 

1.00 
1.00 

27.00 
41.00 

 
Table 4.3 provides the statistical analysis of the post- and pre-test mean scores and 

the standard deviation for the experimental group. The mean of the pre-test is 8.48 

and the mean scores range between 1 and 27, while the mean scores for post-test 

scores range between 1 and 41 with the mean of 16.26. In comparing the pre- and 

post-test results of the experimental group, the null hypothesis that there is no 

difference between the pre- and post-test (H0: µPre_test - µPost _test = 0) was tested.  



107 

Table 4.4 displays the mean difference between the pre- and post-test in the 

experimental group as -7.7732 with standard deviation =7.0379. 

Table 4.4: Mean difference between pre- and post-test of the experimental group 

N Mean Std Dev Std Err Minimum Maximum 

97 -7.7732 7.0379 0.7146 -28.0000 10.0000 

 

 

The p-value =0 .0001< 0.05 (significance level), we reject the null hypothesis and 

conclude that the pre- and the post-test mean scores are statistically different. 

Agreement between the pre- and post-test results of the experimental group is shown 

on the scatter plot in Figure 4.1. 

 

Figure 4.1 Agreement between pre- and post-test in the experimental group 
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It is evident from the chart that most of the student in the experimental group scored 

higher on the post-test compared to the pre-test at the following effect size: 

𝑟 =  √
𝑡2

𝑡2+𝑑𝑓
 = √

(10.88)2

(10.88)2+96
 = 0.55 

Small effect is signified by r= 0.1, medium effect is shown by r= 0.3 and a large effect 

is signified by r= 0.5. Therefore, the significance value is recorded as p=0.0001, 

p<0.05 at a larger effect of 0.55.  

In the comparison group, the performance in the pre- and post-test was almost the 

same. Paired t-test results for the comparison group are shown in Table 4.5 below.  

Table 4.5: Paired t-test results of the comparison group 

Variable Label Mean Std Dev Minimum Maximum 

PRE_TEST 
POST_TEST 

PRE-TEST 
POST-TEST 

7.43 
7.77 

6.40 
6.80 

0.00 
0.00 

27.00 
25.00 

 
Table 4.5 provides the descriptive statistics of the post and pre-test mean scores and 

the standard deviation for the comparison group. The mean of the pre-test is 7.43 and 

the mean scores range between 0 and 27 while the mean scores for the post-test 

range between 0 and 25 with the mean 7.77. The null hypothesis tested about the pre- 

and post-test of the comparison group, was that there is no difference between the 

pre- and the post-test scores (H0: µPre_test - µPost _test = 0).  

The tables below record the mean difference between the pre- and post-test results in 

the comparison group as - 0.02206 with the standard deviation =3.6522. 

Table 4.6: Mean difference between pre- and post-test of the comparison group 

N Mean Std Dev Std Err Minimum Maximum 

68 -0.2206 3.6522 0.4429 -10.0000 10.0000 

 

Mean 95% CL Mean Std Dev 95% CL Std Dev  DF t Value Pr > |t| 

-0.2206 -1.1046 0.6634 3.6522 3.1249 4.3953  67 -0.50 0.6201 

 

The p-value =0.6201 > 0.05 (significance level) suggesting not-significant results. 

therefore, the null hypothesis fails to be rejected and the conclusion is that in the 

comparison groups the means for the pre- and post-test are not statistically different. 
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Agreement between pre- and post-test results in the comparison group is shown on 

the scatter plot (Figure 4.2) below.  

 

Figure 4.2: Agreement between pre- and post-test results of the comparison group 

The chart shows an even distribution between the pre- and post-test results. Further, 

it is indicated in the scatter plot that there is not much difference in performance 

between the pre- and post-test results of the comparison group.  

4.2.2 Summary of quantitative paired t-test findings 

The normality test carried out by comparing the variances through the pooled standard 

error method, assumed that the variances of the pre-test between the experimental 

and the control were not significantly different; that is, they were equivalent (p=0.2677, 

that is, p> 0.05). However, verification was done through the Satterthwaite 

approximation of standard error which also revealed that the variances of the pre-test 

between the two groups were not significantly different (p=0.2773, that is, p> 0.05). 

Generally, the equality of variances was not significant at p=0.3181, that is, p> 0.05. 

Further, the pooled standard error method and the Satterthwaite approximation of 

standard error revealed that the variances of the post-test between the two groups 

was significantly different at p= 0.0001, p< 0.05. The paired t-test statistical tests 

indicate that the mean values for the pre- and post-test, when comparing the 
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experimental and the comaparison group, were statistically different. Higher scores 

were apparent in the post-test for experimental group. In comparison, the t-test 

statistical test proved that in the comparison group the mean values of the pre- and 

post-test were not statistically different. An improvement was not recorded between 

the comparison group pre- and post-test scores. The conclusion is that there is a 

significant difference between the experimental and the comparison group. 

Improvement was evident in the experimental group while the comparison group 

reflected no improvement. Quantitative data revealed that on average, participants 

that received intervention through IBF acquired IBL skills and improved (M= -7.773, 

SE= 0.7146) as opposed to those who did not receive the intervention (M= -0.221, SE 

= 0.4429). This difference (-7.547), 95% CI (-8.08, 5.69), was significant at t (10.88), 

p = 0.0001, p<0.05 and represented a large effect size of 0.55. The large effect size 

emphasises that IBF contributed significantly towards improvement of IBL and that the 

framework contributed by this study can be considered as a framework of IBF in 

Euclidean Geometry. 

4.3 QUANTITATIVE DESCRIPTIVE STATISTICAL ANALYSIS 

Descriptive statistical analysis employs charts and pecentages based on raw marks 

to report on pre and post-test results of the experimental and the comparison groups. 

Table   

Table 4.7: Raw marks obtained by students 

 Frequency (f) 
Experimental group 

Frequency (f) 
Comparison group 

Marks 
Interval 

Midpoint of 
interval 

Pre-test Post – test Pre-test Post - test 

0-10 5 64 30 51 48 

11-20 15.5 29 41 13 15 

21 - 30 25.5 4 17 5 6 

31 - 40 35.5 --- 8 --- --- 

41 - 50 45.5 --- 1 --- --- 

51 - 60 55.5 --- --- --- --- 

61 – 70 65.5 ---- --- ---- --- 

71 - 80 75.5 --- --- --- --- 

 97 97 69 69 
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4.3.1 Comparison of the experimental and the comparison group according to 

achievement levels 

The students’ achievement in the pre- and post-test were classified as Low 

Achievement, LA (0-20 marks); Average, AV (21-30 marks); and Advanced, AD (31+ 

marks).  

The students’ scores for the pre- and post-tests are shown in Table 4.8. 

Table 4.8: Marks according to achievement levels 

Groups (n=166) Achievement 
category 

Pre-test Post-test 

Experimental group 
(n=97) 

LA 93 (95.9%) 71 (73.2%) 

AV (4.1%) 17 (17.5%) 

AD 0 (0%) 9 (9.3%) 

Comparison group 
(n=69) 

LA 64 (92.8%) 63 (91.3%) 

AV 5 (7.2%) 6 (8.7%) 

AD 0 (0%) 0 (0%) 

 
Table 4.8 reveals that in both groups there was a decrease in low performance in the 

post-test. In the experimental group, the number of students who performed in LA level 

students is 93, that is, 95.9% of students and the number decreased to 71 (73.2%) in 

the post-test. In the comparison group, 64 (92.8%) students are at LA level, and the 

number decreased to 63 (91.3%) in the post-test. A decrease rate of 22.6% in the 

experimental group was recorded against 1.5% in the comparison group. An 

improvement was recorded in both the experimental and the comparison groups for 

students who achieved an average score. In the experimental group, there were 4 

(4.1%) students in the pre-test, while the post-test recorded 17 (17.5%) students who 

achieved at AV level. On the average achievement, the experimental group showed 

an increase rate of 13.4% against the 1.5% in the comparison group.  

Considering students in the advanced category, the experimental group showed an 

increase. The experimental group recorded 0% of students who achieved at the 

advanced level in the pre-test, and the achievement increased to 9.3% after the 

intervention. By contrast, in the comparison group, achievement at the advanced level 

remained constant at 0% achievement in both tests. The differences between the pre- 

and post-test across levels of achievement in both groups were calculated in order to 

determine the decrease percentage in the LA level and the increase percentage in 



112 

both the AV and AD levels of achievement. Table 4.9 shows the decrease and 

increase percentages of the levels of achievement in the pre- and post-test for the 

experimental and the comparison group.  

Table 4.9: Decrease and increase percentage in achievement levels 

Group Level Decrease/increase percentage 

 

Experimental group 

LA - Decrease 22.6% 

AV – Increase 13.4% 

AD – Increase  9.3% 

 

Comparison group 

LA – Decrease 1.5% 

AV – Increase  1.5% 

AD – Increase  00% 

 

Looking at table 4.9, a decrease in lower level of achievement and an increase in 

higher levels imply that the numbers in the lower levels were distributed to higher 

levels. It implies that 22.6% of students who were in the lower achievement category 

improved and achieved better that the lower level. The decrease affected the other 

levels and the number of those who performed better in categories such as average 

and advanced levels inceased. Graphical representation for the comparison of the pre- 

and post-test results as in Table 4.9 is shown on Figure 4.3.  

 

Figure 4.3: Achievement in pre- and post-test (experimental and comparison groups) 
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A conclusion is reached based on the general results for pre- and post-test in both 

groups, that IBF contributed to better results than the traditional axiomatic approach. 

IBF thus positively influences IBL in Euclidean Geometry.  

4.3.2 Descriptive analysis per level of knowledge and understanding 

The main pre- and post-test problems are outlined and thereafter results are presented 

from pre-visualisation, visualisation, analysis, informal deduction, formal deduction 

and rigour. 

4.3.2.1 The test problem   

The problem was centralised to one main question in the pre- and post-test question 

paper (cf Appendix B). The sub-questions addressed all levels of knowledge and 

understanding in order to reach a solution of the main problem. Example 1 as shown 

below was presented as a problem statement as follows:  

Figure 1 is given. Line PS is produced to a point T. Answer the questions that follow to prove whether 

𝑥 = y. 

 

 

 
This problem was posed as a deductive and abstract problem. This is normally how 

problems are posed in classrooms for assessment purposes with expectations that 

students should recall the theorems they have memorised. In order to test 

memorisation of theorems in classrooms, students would have been asked a direct 

statement like “prove whether angles PSR and angle PQR are supplementary”. 

Alternatively, students could have been asked to “prove that angles of a cyclic 

quadrilateral are supplementary”. To answer the question by recalling theorems 

through memorisation, no critical thinking and analysis skills are necessary and a 

y P 

S Z 

T 

O 

Q 

R 

𝑥 

Figure 1 
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direct statement leads to a direct answer. In this study, the majority of students had in 

memory that opposite angles of a cyclic quadrilateral are supplementary which means 

the sum of 𝑥 and 𝑦 is 180°, but could not perceive that 𝑥 ≠ 𝑦 because in any cyclic 

quadrilateral,   𝑥 + 𝑦 = 180°. However, in this study students were led through 

inductive questioning in order to critically build facts to conclude deductively that  𝑥 ≠

𝑦. Building facts revolves around concluding that the two angles are supplementary, 

therefore they are not equal. Questioning was structured in a way that it would enable 

students to firstly apply mathematical inquiry, that is, to display the awareness of the 

connection between mathematical and extra-mathematical systems and to construct 

mathematical representations. In addition, students were expected to search for 

structure, patterns, relationships and the principal aim of generalisation. Secondly, 

questioning was aimed at assisting students to apply IBE to improve all levels of 

geometric knowledge and understanding, that is, students were led to engage in 

sense-making activities, rather than applying a clear, smooth path to the solution. 

Concept discovery through making sense of concepts and exploring the relations of 

shapes and patterns was the focus. Critical thinking and self-discovery of concepts 

and relationships was encouraged through the questions posed. Students are 

supposed to know the origin of relations through exploration and self-discovery. 

However, IBF is the key to the success of students’ discoveries and exploration. 

4.3.3 Descriptive analysis per level of knowledge and understanding 

4.3.3.1 The pre-visualisation stage (question 1.1) 

The pre-visualisation stage was evaluated through question 1.1. Students were 

expected to look at Figure 1, relate the figure with table 1 in the test and draw 

conclusions about whether there was an association based on what they saw or 

perceived. Students’ experience is essential at this level. The problem in figure 1, is 

posed as a more abstract figure, and the solution can be attained at a formal deduction 

level. In order to arrive at the actual abstract solution of the problem, students are led 

to build facts around Figure 1 using their experience in pre-visualisation as the basis. 

Associating Figure 1 with other elements would lead to the ability to link the structure 

in question with other structures perceived through experience. Student struggled with 

this question. Using perceptual skills to create the basis or lay a setting of the problem-

solving was a challenge. Students’ responses are shown below:  
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How can you associate each of the following objects with Figure 1?  

Object Reasons for association with Figure 1 

 

 

Hut 

Student EX4  

Pre-test 

The problem is incorrect usage of the word sphere. Vocabulary is there, 

however, applied incorrectly.  

 

Post-test 

The student is able to locate the shape of the two figures correctly 

 

 

Kite 

Pre-test 

The student knows a kite and has a clue that the main figure of problem 

statement associates with a kite. However, the abstract labelling of PQRS 

is incorrect and the reason of association is not clearly explained. 

 

 

 

 

https://www.google.co.za/url?url=https://en.wikipedia.org/wiki/Rondavel&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjR6JHhhPDOAhUBLsAKHYAAAmYQwW4IHTAC&sig2=vpIpB3FsWc2RyxJCwAMeQQ&usg=AFQjCNE6sC4vvkFEOn8zmnruBtT4JvM-tg
http://www.google.co.za/url?url=http://www.clipartpanda.com/categories/kite-clip-art-images&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjJ8tbuhfDOAhVoBMAKHXKpDoAQwW4IGzAD&sig2=hwPqyKQD646faoNEO3oy6w&usg=AFQjCNFpvpWtPQ16u0aUVGt5M-Tqluu15w
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Post-test 

 

In the post test, the students managed to label PQRS correctly. The 

reason of association is clear and extended to classification of the 

associated figures and a property. 

 

 
In this study, emphasis is made on the fact that pre-visualisation precedes 

visualisation. Pre-visualisation as the basic level enhances the students’ powers to 

perceive the world around them. In this sense, learning happens through perceiving 

real-life objects that have a certain effect on daily activities. If learning had occurred 

through pre-visualisation, students would (according to Clements and Battista, 1992): 

(1) perceive geometric shapes in their surroundings but not attend fully to visual 

characteristics of the particular shapes. In this study, students were expected to look 

at concrete shapes in Table 1 of the question paper and explain the association with 

Figure 1. This indicates the advanced perceptual abilities that students possess. Table 

4.10 shows the results for responses for question 1.1, mainly based on assessing 

students’ pre-visualisation level of knowledge and understanding.  

Table 4.10: Responses to question 1.1 (pre-visualisation level) 

   
No. 

wrote 

 
E 

 
0 

 
1-5 

 
6-10 

 
11-16 

Experimental 
group 

 
Pre – test 

 
97 

 
14 

 
52 

 
28 

 
3 

 
----- 

 

 
Post –test 

 
97 

 
8 

 
54 

 
25 

 
8 

 
2 

Comparison 
group 

 
Pre – test 

 
69 

 
4 

 
44 

 
19 

 
2 

 
----- 

 
Post –test 

 
69 

 
4 

 
46 

 
17 

 
------ 

 
------ 
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E = did not answer the question; 0 – low perception skills; 1-5- average; 6-10 = 

advanced; 11-16 = proficient 

 

Figure 4.4: Pre-visualisation experimental group 

 

Figure 4.5: Pre-visualisation comparison group 

Comparing the experimental and comparison group in the pre-visualisation stage, the 

number of students who did not answer the question in the comparison group was the 

same in both the control and experimental group, while there was a decrease in the 

experimental group. Students in the experimental group gained confidence in 

attempting the question. Low perception skills show a higher rate in post-test for both 

groups; average skills show a decline in both groups in the post-test, while in the 

experimental group there is an increase in the number of students who achieved both 
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the advanced and proficient perception skills in the post-test as compared to pre-tests. 

The advanced and proficient levels recorded an increase of 70 % in the experimental 

group. However, in the comparison group no student achieved at the advanced and 

proficient levels. 

4.3.3 Visualisation stage 

According to Way (2012) students’ specific characteristics apply in the visualisation 

stage. The characteristics include reviewing the pre-visualised shapes through their 

appearance; application of verbal thinking and distinguishing the parts. Further, 

students should be able to formulate or recognise relationships between known 

objects and specific shapes.  Kyllonen and Christal (1990) motivate that spatial 

imagery plays an essential role in yielding creative thinking, which is the critical skill in 

visualisation.  

Question 1.2 addressed the visualisation stage. It does not measure abstract thinking, 

but the students’ ability to apply spatial awareness through everyday demands of 

working memory to maintain and transform images (Kyllonen and Christal, 1990). In 

this question, students were expected to group the items in 1.1 according to similarity 

of shape, that is, match shapes in Figure 1 with shapes in Figure 2 (in column 1 of 

Table 4.11). For example, students were expected to notice that a pyramid has a base 

with four sides; but floor tiles, a garage door and a kite also have four sides. Therefore, 

they need to be able to visualise symbolic representations of the objects.  

Table 4.11: Student responses 

Common name of figures Shape Properties 

Example 

(a) Circle –  

Examples: hut/ rondavel 

 

 

 The section of properties was 

evaluated as analysis level 

 

 

(b) Quadrilaterals 

Examples: Kite, garage 

door and all other 

quadrilaterals appearing on 

table for question 1.1. 
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Table 4.12: Results for experimental and comparison groups in question 1.2 

(Visualisation level) 

  
No. Wrote E 0 1-5 6-9 

Experimental 
Group 

Pre-test 97 24 39 34 ---- 

Post-test 97 35 20 42 1 

Comparison group 
Pre-test 69 20 25 52 ----- 

Post-test 69 25 11 33 ----- 

 

E= did not write the question; 0= low visualisation skills; 1-5= average; 6-9 = advanced 

 

Figure 4.6: Visualisation experimental group

 

Figure 4.7: Visualisation comparison group 
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Group comparison indicates that there was an increase in a number of those who did 

not answer the question and a decrease in a number of those who showed low 

visualisation skills. Average and advanced stages increased in the experimental 

group, whereas there was a decline in the comparison group. In the experimental 

group, only one student achieved up to the advanced level; however, no student 

achieved at the advanced level of visualisation. A large number of those who did not 

answer the question confirm that students experience challenges in relation to 

application of spatial awareness and they lack skills to utilise the working memory in 

creatively transforming concrete pre-visualised images into mental concepts.  

4.3.3.3 Analysis level 

At this level, students start viewing figures in terms of their properties (Mason, 1998). 

For example, properties can be used to differentiate between a circle and a triangle, a 

triangle and a quadrilateral. This study has shown that students experience challenges 

in the analysis level, that is, they cannot specify the connections among properties of 

a figure and among various figures. Further, Mason (1998) outline that students can 

specify the properties but cannot state how and where they apply in problem solving.  

Question 1.3 and 1.4.1 addressed analysis of the Van Hiele levels of knowledge and 

understanding. In this question, students were expected to give the general name of 

each group of shapes, and thereafter outline the general properties of each group. 

Further, in the analysis level of knowledge and understanding, students were expected 

to show ability to dissect isolated figures into parts and discover the properties. They 

were expected to apply own judgement to select and utilise relevant material or 

instruments to perform accurate construction, dissect the constructed figure into parts, 

name the parts and describe each part as in the post-test example displayed in Table 

4.15. Results for analysis level pre and post-test for both the experimental and 

comparison group are shown in table 4.13.     
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Table 4.13: Results for experimental and comparison groups in question 1.3 and 1.4 

(Analysis level) 

  No. Wrote E 0 1-8 9-16 17-26 

Experimental 
Group 

Pre-test 97 1 1 79 16 ------ 

Post-test 97 1 1 47 41 7 

Comparison 
group 

Pre-test  69 --- 13 46 8 ------ 

Post-test 69 2 11 40 14 ------ 

E= did not write the question; 0= low analysis skills; 1-8= average; 9-16 = advanced, 

17-26= proficient 

 

Figure 4.8: Analysis: Experimental group 
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Figure 4.9: Analysis: Comparison group 

Most of the students improved from the low analysis skills to average and through to 

advanced and proficient skills in the experimental group. The comparison group 

indicate improvement in the advanced skills; however, no student achieved proficient 

skill. The experimental group showed a huge improvement compared to the 

comparison group. 

In question 1.3, Pre-test revealed that majority of students were unable to achieve in 

the analysis stage by showing the ability to perform correct constructions based on 

accurate dimensions in order to dissect isolated figures into parts and discover correct 

properties as shown in Table 4.14. In addition, pre-test revealed that constructions 

were not accurately performed due to lack of essential construction instruments.  

Table 4.14: Student EX2’s  construction of a circle 

Pre-test 
(Before intervention) 

Vignette 4.1 
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Post-test 
(After intervention) 

Vignette 4.2 

 
 
A free hand drawing of a figure that is similar to a circle or figure associated by students 

with a circle contributed to wrong analysis of the figure, that is, the circle. Conclusion 

cannot be reached that a figure in vignette 1 is a circle. The argument here is that a 

circle need to be constructed according to dimensions for it to maintain the correct 

centre, its position as a circle and its correct properties. For example, students could 

not understand that a diameter is not any line that divides any spherical, oval or 

elliptical figure, but should divide a circle resulting from accurate dimensions of a circle 

into two equal halves (vignette 4.1). The idea of construction of a circle that is accurate 

in order to present accurate information about a circle was not comprehended by 

students during the pre-test. However, improvement was shown in the post-test where 

accurate constructions were performed and correct properties were presented 

(vignette 4.2).  Further, the line associated with a radius in vignette 4.1 is labelled by 

student VV as E. In vignette 4.2., student VV presented the radius correctly. Further, 

those who understood that a correct construction should be performed failed to 

dissect, label and describe the parts of a circle correctly during the pre-test (table 4.15, 

vignette 4.3). However, student WW could build on knowledge that accurate 

construction of a circle is essential. The student labelled and described the parts 

correctly (vignette 4.4). The same applied to most of the students in the experimental 

group.   
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Table 4.15: Student’s EX19’s answer: pre- and post-test 

Pre-test 
(Before intervention) 

Vignette 4.3 

 
 

Post-test 
(After intervention) 

Vignette 4.4 

 
 

 
4.3.3.4 Informal deduction level 

According to Way (2011) informal deduction level explains the students’ ability to apply 

the acquired knowledge of properties in formulating connections among properties and 

among diverse figures. For example, students should be able to explain with reasons 

why some quadrilaterals can be explained in terms of a square (Way, 2011). Further, 

the author, motivated that students cannot apply acquired knowledge in as theorems 

and converses, however, informal deduction is basic to formal deduction.  

Questions 1.4.2 to 1.6, addressed the informal deduction level. At this level, students 

are expected to move from generalising to being specific. Firstly, they had to work on 

the concept of a circle, that is, draw a circle, name and describe the parts of a circle. 

The teaching at this level guided the students to distinguish shapes in terms of their 

parts and properties. By describing the parts, students would be able to understand 

clearly the properties or characteristics of each specific shape. For example, students 

understood the group named quadrilaterals; in order to deduct informally, they had to 
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understand that, in a group, there specific shapes have underlying different features; 

for example, specific figures like rhombus, square or trapezium. At this level, students 

would be able to distinguish between, for example, angles in a triangle and angles in 

a quadrilateral in terms of size. For example, the sum of angles in a square is 360°, 

and angles of a square are equal, therefore, each angle is equal to 90°. Further, 

informal-deduction level is where relationships between shapes would be speculated.  

Table 4.16: Results for experimental and comparison groups in question 1.4.2 to 1.6 

(Informal deduction level) 

  No. Wrote E 0 1-4 5-8 9-13 

Experimental 
Group 

Pre-test 97 12 40 40 5 ------ 

Post-test 97 2 22 57 15 1 

Comparison 
group 

Pre-test 69 1 38 25 2 3 

Post-test 69 ------ 53 16 ----- ----- 

E=did not write the question; 0= low informal deduction skills; 1 to 4 = average; 5 to 8 

= advanced; 9 to 13 = proficient 

 

Figure 4.10: Informal deduction: Experimental group 
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Figure 4.11: Informal deduction: Comparison group 

In the comparison group, a large number of students who had low informal deduction 

skills was found. Few students obtained an average rating and no student achieved 

up to the advanced and proficient ratings in the post-test. An improvement from low 

informal deduction skills to advanced and proficient was recorded in the experimental 

group post-test. A large number of students who possessed low informal deduction 

skills improved to average, advanced and proficient. 

4.3.3.5. Formal deduction level 

Questions 1.7 to 1.9 address the formal deduction stage, that is, level 4 of Van Hiele’s 

levels of knowledge and understanding. This is the more abstract level of knowledge 

and understanding in Euclidean Geometry. The questioning was structured so that 

students would build on what they had experienced at level 0 to level 3. Students were 

expected to display a higher level of understanding of relationships of figures. 

Question 1.7 was posed as follows:  

Complete the following sentence: 

In figure 1 ……………………….. is inscribed into ……………………… Therefore,  

figure 1 is named ……………………………………….. 
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Student EX1 answered as follows in the pre-test: 

Vignette 4.5 

 

The same student answered as follows in the post-test: 

Vignette 4.6 

 

Student EX1 could not locate the name of the figure in the post-test; however, he could 

describe the combination better compared to the answer in the pre-test. The correct 

answer was presented by student EX15 in the post-test, as follows: 

Vignette 4.7 

 

A conclusion could not be reached about what type of a quadrilateral had been 

inscribed in a circle. It could be a kite or a rhombus, however, Therefore, Vignette 4.7 

provides the most relevant answer. 
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Once the students had recognised Figure 1 and located its name, they were then 

asked to state the properties in question 1.8. Stating the properties would enable them 

to answer question 1.9, that is, they would be able to understand that, if opposite 

angles of a cyclic quadrilateral are supplementary, it means their sum must be 180°, 

meaning that the two angles are not equal. They would be equal if they were right 

angles, but because they are not right angles, it means they are not equal. After the 

IBF intervention, some of the students were able to state that opposite angles of a 

cyclic quadrilateral are supplementary, however, they still struggled to use the 

statement or reason to argue that x ≠ y since x and y are supplementary. Student 

EX18 presented the properties of a cyclic quadrilateral correctly, but could not use the 

properties to draw a conclusion (Vignette 4.8). 

Vignette 4.8 

 

Student EX16 could reason and conclude that x ≠ y based on one of the properties 

discovered that if x and y are opposite angles of a cyclic quadrilateral, and the two 

angles are supplementary; then they cannot be equal (Vignette 9).  
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Vignette 4.9  

 

Table 4.17: Results for experimental and comparison groups in question 1.7 to 1.9 

(Formal deduction level)  

  No. Wrote E 0 1-4 5-8 9-13 

Experimental 
Group 

Pre-test 97 29 46 21 1 ---------- 

Post-test 97 8 23 45 17 1 

Comparison 
group 

Pre-test 69 10 32 24 3  

Post- test 69 9 34 25 1 --------- 

E=did not write the question; 0 = low informal deduction skills; 1 to 4 = average; 5 to 8 

advanced; 9 to 13 = proficient  

 

Figure 4.12: Formal deduction: Experimental group 
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Figure 4.13: Formal deduction: Comparison group 

In the comparison group, no improvement was recorded in the average, advanced and 

proficient ratings. A number of students who show low formal deduction skills 

increased. However, a great improvement from low formal deduction skills to average 

was shown in the experimental group. A number of students in the experimental 

groups achieved to advanced and proficient ratings.  

4.3.3.6. Rigour  

In question 1.10 students were expected to link mathematical and extra-mathematical 

systems. The question they were asked to respond to was: ‘Figure 1 occurs every-

time and everywhere in real life. Briefly discuss the importance of Figure 1 in 

construction of habitats and in architecture’. Table 4.18 shows the results of students’ 

responses in the rigour level.  

Table 4.18: Results for experimental and comparison groups in question 1.10 

(Rigour level) 

  No. Wrote E 0 1-3  

Experimental 
Group 

Pre-test 97 48 38 11  

Post-test 97 23 50 24  

Comparison group 
Pre-test 69 30 34 5  

Post-test 69 13 53 3  

E=did not write the question; 0= low rigour skills; 1- 3 = advanced 
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Figure 4.14: Rigour: Experimental group 

 

Figure 4.15: Rigour: Comparison group 

At the rigour level of knowledge and understanding, the number of students who 

achieved at the advanced stage in the experimental group doubled. This shows 

improvement when comparing the pre- and post-test results. A decline is shown as 

fewer students achieved in the post-test compared to the pre-test in the comparison 

group. 
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A comparative summary of students’ achievements in advanced and proficient levels 

for all levels of knowledge and understanding is outlined in Table 4.19. 

Table 4.19: Summary of students’ achievement in advanced and proficient levels 

 Experimental group Comparison group 

 Pre-test Post -test Pre-test Post-test 

Pre-visualisation 3 % 10.3% 2.9% 0% 

Visualisation 0% 1% 0% 0% 

Analysis 16.5% 49.9% 11.6% 20.3% 

Informal deduction 5.1% 16.5% 7.2% 0% 

Formal deduction 1% 18.9% 4.3 % 1.4% 

Rigour 11.3% 24.7% 7.3% 4.3% 

 
Table 4.19 reveals that there was a constant improvement across levels of knowledge 

and understanding in the experimental group between the pre- and post-test. 

However, the comparison group shows improvement only in the analysis level. A 

decline is recorded in the comparison group in most of the levels. Visualisation stage 

seem to be a challenging stage as both groups recorded 0% at pre-test. However, a 

change to 1% was realised in the experimental group, while the comparison group 

remained at 0%. Change was also realised in the formal deduction stage of the 

experimental group, that is, 1% in the pre-test and 18.9% in the post-test. Generally, 

in the experimental group, student development was perceived from the lower levels 

of knowledge and understanding through to higher levels of knowledge and 

understanding.  

4.3.4 Common errors committed by students in the pre-test 

Table 4.20 displays examples of errors committed by students in both experimental 

and control groups during the pre-test.  

Table 4.20: Summary of errors in the pre-test 

Error type Example 

Vocabulary, spelling and irrelevant words 
Students have the geometric vocabulary but 
do not know how to apply in problem-
solving, for example 

*Circle spelled as “cycle” 
*Quad (for quadrilateral) written as “quaard” 
*Response to question 1.7, 
“a theorem is inscribed in a rider, therefore, the 
figure is named geometrical”; instead of, 
A quadrilateral is inscribed in circle, therefore, the 
figure is named a cyclic quadrilateral. 

Geometric language Referring to vertices as corners 

Labelling of figures 
Labelling the figures incorrectly, that is, 
incorrect positioning of alphabets used for 
naming figures 

In Figure 1 of the problem, students labelled as 
follows: PQSR, RPSR instead of PQRS. 
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Error type Example 

Forcing solutions 
Applying memorised theorems where not 
applicable, therefore, forcing incorrect 
concepts to correspond in order to get 
solutions 

Stating a midpoint theorem when not necessary. 
Stating more other memorised theorems wrongly, 
especially in attempting to answer questions 1.8 and 
1.9. 

Incorrect relation of figures with properties “opposite sides are equal in a hexagon”. 

Instruments not used to construct figures 
Drawing a free hand circle, resulting in a wrong 
radius, diameter. A pair of compass not used to 
draw the circle. 

Wrong reasons 
Visual appearance of diagrams used without 
analysis to solve problems. 

Incorrect application of memorised 
theorems 

Students write any theorem anywhere without doing 
much thinking to get meaning and apply correctly. 

 
4.4. QUALITATIVE FINDINGS 

Below is the analytical report for the qualitative findings. Four codes were used to 

record actions and skills observed, including views narrated by participants. The four 

codes are teaching strategies, learning strategies, skills acquired and content learned.  

4.4.1 Codes for observations   

The four codes seem to be very essential and interconnected as observed in this 

study. The essence emanates from the fact that the type of teaching carried out 

informs learning. Further, particular method of learning yields skills that support 

students in acquiring content in a form of knowledge. For example, teaching strategies 

observed as actions in the experimental group, promotes outlined IBL actions, and 

through IBL strategies, student acquire skills that enable to acquire content. Similarly, 

teaching strategies observed in the comparison group yield learning strategies 

outlined, promoting specific skills that support students to acquire content. However, 

the teaching strategy is observed to be the main determiner of the type of learning 

strategies and skills applied to acquire content.   Table 4.21 below presents an 

analytical report of teaching and learning actions including skills observed in both 

experimental and comparison groups in this study.  
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Table 4.21: Analytical report (participatory and non-participatory observations) 

Code Actions observed in the experimental group Actions observed in the 
comparison group 

Teaching 
strategies 

Discussion, probing by asking questions, 
explanation, facilitation and demonstration 
by showing how to manipulate a tangram, 
showing how gadgets to search for relevant 
mathematical concepts and information; 
writing on the chalkboard to emphasise some 
of the concepts. 

Explanation;  
writing on the chalkboard and 
smartboard to show proofs of 
theorems and terminology; 
retrieving activities and 
exercises from the textbook, 
referring students to notes on 
worksheets provided) 

Learning 
strategies 

Discussion, group work and presentations, 
cooperative learning, experiential, 
explanation, Investigating, discovery, 
imagination, manipulating a tangram and 
think critically; peruse diverse textbooks to 
search for information; manipulate their 
electronic gadgets to search for information; 
write to note findings and group agreements, 
complete activities presented by the 
facilitator to try to commit what they have 
learned to memory. 

Listening to the teacher’s 
presentation; writing notes or 
examples as written by the 
teacher on the chalkboard; 
Complete activities to try to 
commit what they have 
learned to memory.  

Skills acquired Application of inquiry; formulating 
relationships between and among a network 
of concepts, discovery, applying knowledge 
gained from experience; creativity, critical 
thinking, developing patterns, exploration, 
identifying and naming, classifying, 
presentation; solving problems by 
completing activities deductively  

 Memorisation (memorising 
theorems, terminology, 
teachers’ examples as on the 
chalk board); reviewing 
examples in the prescribed 
textbook and on worksheets, 
group work, solving problems 
by completing activities 
deductively; proving 
theorems. 

Content learned *Geometry information related to real-world 
*Properties of figures and application in 
formulating relationships of figures.  
*Relationships of figures or shapes 
*Confirming stated theorem about cyclic 
quadrilateral (inscription and properties of 
inscribed figures).  
*Mathematical vocabulary  

*Theorem ((cyclic 
quadrilaterals; supplementary 
angles) and exterior angle = 
opposite interior angle.  
*Application of theorems in 
activities, that is, exercises in 
the textbook.  

 
4.4.2 Interview codes 

This section presents the students’ and teachers’ coded views on the teaching and 

learning of Euclidean Geometry. Students from experimental and comparison groups 

were interviewed, however, only teachers from the comparison groups were 

interviewed. Ideas from interviewees were based on their experiences in the four 

codes. Students in the experimental group commented more on teaching and learning 

strategies that support student-centred learning, while students in comparison group 

gave comments that show more interest in student centred learning, however, in some 
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instances their ideas about teaching and learning strategies are inclined to traditional 

approaches. The coded results of interviews are presented in Table 2.2 below.   

Table 4.22: Analytical report (interviews) 

Code Experimental group Comparison group 

Teaching strategies 

Students view the teaching of 
Euclidean Geometry as teaching 
that: 

  orientates to properties of 
shapes 

 allow exploration and self-
centred learning 

 promotes cooperative learning 
and group work 

 asks challenging questions 
(probing) 

 guide and advise students 

Students’ expectations 

 Teacher must create more time 
and move at the students’ pace.  

 Teacher must link students’ 
experience. 

 Teacher must relate class work 
with examination (teach for 
examination) 

 
Teachers’ views 

 Teachers confirmed that they 
teach for formal examination 
and for results by assisting 
students to memorise 
theorems.  

 Due to a rigid work-schedule, 
time constraints and lack of 
resources, teachers teach 
through textbook and question 
papers to prepare students for 
examinations 

Learning strategies 

Students view learning of 
Euclidean geometry as:  

 Exploration 

 Self-centred learning 

 Application of teacxhers’ clues 
and taking the teacher’s advice 

 Using manipulatives or 
resources 

 Listening to the teachers’ 
explanation and taking the 
teachers ’examples as notes 

 See questions before 
assessment (memorise the 
questions) 

 Memorise theorems 
*Teachers confirmed that students 
learn Euclidean Geometry by 
memorising theorems.  

Skills 
acquired/envisaged 

Students hinted on having acquired:   

 Visualisation and analysis skills 

 Creativity 

 Understanding of Euclidean 
Geometry 

 Confidence in Euclidean 
Geometry problem-solving 

 Exploration skills 

 Cooperative learning skills 

 Inductive and deductive inquiry 
skills  

 Listening skills 

 Memorisation skills 

 Student outlined the following 
as a challenge, 

 Deductive reasoning 

 Analysis skills 

 Euclidean Geometry problem-
solving skills 

Content 
acquired/envisaged 

Students indicated that they have 
acquired content such as: 

 Geometry that exist in the 
environment 

 previsualisation and 
visualisation 

 Shapes and how to classify 
them according to properties 

 Theorems 

 Student outlined the following 
as lacking: 

 Knowledge of properties of 
figures 

 Basic knowledge (forgotten the 
knowledge accumulated at 
lower grades) 
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Code Experimental group Comparison group 

and characteristics 
(relationships of figures) 

 Properties of shapes 

 Theorems 

Teachers confirmed that students at 
Grade 11 lack basics. Teachers 
cannot reteach the basics due to 
limited teaching and learning time, 
inflexible work schedule 

 
Observation and interviews contribute to pragmatic inferences based on inductive and 

inductive categories of data. All codes encompass both deductive and inductive 

inferences. That is, teaching strategies and learning strategies include both inductive 

and deductive approaches. Skills and content acquired are either inductive or 

deductive. The coded data led to inferencing that yielded the analytical report. The 

analytical report presented in this study comprises the categorised, coded protocols, 

experimental and comparison groups’ visual models, and the mixed-method analytical 

report. The analytical report is summarised in Table 4.23 and from the table emanate 

the two models for the experimental and comparison groups.   
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4.4.1 Coded protocols: summary of qualitative data  

Table 4.23: Summary of qualitative analytical report 

 Teaching strategies Learning strategies Skills acquired Content learned 

Inductive  
*Information or 
inquiry (pre-
visualisation and 
visualisation) 
*Guided or 
directed 
orientation 
(Analysis) 
*Explication 
(informal 
deduction) 

Discussion, probing by asking 
questions, explanation, 
facilitation and demonstration 
by showing how to manipulate a 
tangram, showing how gadgets 
to search for relevant 
mathematical concepts and 
information; 

Discussion, group work and 
presentations, cooperative 
learning, experiential, 
explanation, Investigating, 
discovery, imagination, 
manipulating a tangram and 
think critically; peruse textbook 
to search for information; 
manipulate their electronic 
gadgets to search for 
information; write to note 
findings and group agreements, 

Application of inquiry; 
formulating relationships 
between and among a network 
of concepts, discovery, applying 
knowledge gained from 
experience; creativity, critical 
thinking, developing patterns, 
exploration, identifying and 
naming, classifying, 
presentation; 

Geometry information related to 
real-world 
Properties of figures and 
application in formulating 
relationships of figures.  
*Relationships of figures or 
shapes 
*Mathematical vocabulary 
*Linking geometric and non-
geometric systems 

Deductive 
*Free Orientation 
(Formal 
deduction) 
*Integration 
(Rigour)  
 

*Explanation 
*writing on the chalkboard 
and/or smartboard to 
emphasise some of the 
concepts and to show proofs of 
theorems 

Listening to the teacher’s 
presentation; writing notes or 
examples as written by the 
teacher on the chalkboard; 
Complete activities to try to 
commit what had been learned 
to memory 

Memorisation (memorising 
theorems, terminology, 
teachers’ examples as on the 
chalk board); reviewing 
examples in the prescribed 
textbook and on worksheets, 
group work, solving problems 
by completing activities 

Existing theorem about cyclic 
quadrilateral (inscription and 
properties of inscribed figures). 
*Theorem (cyclic quadrilaterals; 
supplementary angles) and 
exterior angle = opposite 
interior angle  
*Application of theorems in 
problem-solving, that is, 
exercises in the textbook 
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Teaching strategies in both experimental and comparison groups show the influence 

of specific learning strategies. Learning strategies contribute to students acquiring 

particular skills and content. The inductive category refers to the basic levels of 

knowledge and understanding, that is, pre-visualisation, visualisation, analysis and 

informal deduction. The deductive category covers the higher levels of knowledge and 

understanding that are formal deduction level and the rigour level. Based on the four 

analytical codes, visual models for both the control and experimental groups were 

developed (Figures 4.16.and 4.17).  

4.4.2 Comparison group – qualitative results 

 

Figure 4.16: Visual model for the comparison group 

Visual model for the comparison group indicate that teaching strategy applied is 

explanation. Teachers revealed during the interviews that the teaching strategies they 

prefer are question and answer, demonstration and explanation. However, in terms of 

demonstration as a teaching strategy, the teachers’ views contradicted the 

observations where the textbook was observed as the only resource used in teaching. 

There is a lack of resources that hinders demonstration. In emphasis teacher B 

commented as follows, “The problem is that we have only one textbook, as a teacher 

I cannot rely on one textbook, my lesson preparation is confined to only one textbook, 

if I want to demonstrate a sphere or a circle, we do not have those resources. As a 
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teacher I could improvise, but it is only theoretical not practical; computers are 

available, but are not working”. If there are no resources to advance demonstration, 

then demonstration cannot be a method used. Further, the teachers’ preference for 

the question and answer method is based on the fact that the teachers asked 

questions to: (1) keep students alert in order to ensure that they are concentrating; 

and (2) make them focus throughout the lesson. This is confirmed by teacher C saying 

“I prefer applying question and answer method. I apply this method to ensure 

concentration among students, and the advantage thereof is that students become 

alert and focus all the time. The disadvantages observed in this method is that as you 

ask students questions, they seem to have no knowledge of basics”. Teachers cannot 

use questions to probe because students lack basic knowledge. This confirms the 

observation where the teacher asked a question, students became alert but looked at 

the teacher clueless or not knowing how to answer the questions. In order to save 

time, the teacher answered her own question and explained further. Lack of resources 

for demonstration and teachers’ challenges with using questions to probe confirms the 

observation that indicated that explanation is the commonly-used method in the 

comparison group. Explanation as a teaching method does not assist students to learn 

at their own pace. Individualisation or inclusivity is not considered. Teacher cannot 

cater for the needs of all students. This was confirmed when Laddie commented as 

follows: “The teacher must be slow when teaching to help us to understand properly; 

the teacher is fast when teaching, teaches us everything, if two students understands, 

then she takes it that we all understand”. Explanation is necessary; however, based 

on observation and the teachers’ and students’ comments, the disadvantages of 

explanation outweigh its advantages for learning.  

Explanation as a teaching strategy contributes to documentation as a strategy of 

learning. Students listen to the teacher’s explanation of concepts or examples and 

write down in notebooks what the teacher writes on the chalkboard. Further, students 

commit to memory what they have documented and produce later for problem-solving. 

Most students do not realise the need for resources in learning; however, some 

showed awareness of the importance of learning resources, for example, Rod 

commented as follows: “the teacher must liken constructions in class with 

constructions like of a house; teacher must associate with objects we know so that we 

can have practical in class; resources that we need for learning are things like stop 
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sign, model of houses”. Students and teachers view about the need for resources is 

challenged by the fact that teachers believe that there are no resources, therefore, 

learning cannot be hands-on. Text material such as textbook and question papers are 

a means to learn concepts and geometric problem-solving processes. For example, 

Rod echoed, appealed and said: “Textbooks problems are not the same as problems 

in examination or test papers”. What is documented in the textbook and chalkboard is 

reproduced as a way of learning, according to the comparison group.  

Documentation as a learning strategy leads to memorisation of information. Students 

stated during the interviews that the teachers must relate what they do in the class 

with examination and test during teaching. Students’ mind-set is that teaching is aimed 

at preparing them for examination, that is, teaching must teach memorisation for 

examination. Students memorise questions and answers, that is, they see the test or 

examination questions beforehand and reproduce answers later when writing test. For 

example, Lebo commented: “the pre-test was difficult, but the post-test was better 

because we have seen the questions before”. Lebo did not say the post-test was better 

because they have learned and acquired knowledge and understanding, but because 

they have seen the questions before.  

Memorisation skill contribute to retaining existing concepts and theorems as content 

learned. Teachers confirmed that memorisation leads to learning existing theorems as 

content knowledge. Teacher A agreed that the other matter that teachers need to work 

on is to ensure that theorems are not memorised but applied in problem-solving. 

Teachers said that they would focus more on applying theorems in problem-solving as 

a teaching method rather than letting students memorise theorems. However, it was 

clear that geometric concepts that build up theorems were memorised during the 

teachers’ explanations and proving of theorems. Memorisation of concepts and 

information contributes to difficulties and lack of confidence in handling Euclidean 

Geometry problems. All students interviewed in the comparison group attested to the 

fact that memorisation of theorems makes Euclidean Geometry difficult.  Comparison 

group’s students’ comments about the difficulty of Euclidean geometry are 

summarised as follows: 

“My performance is good, but I do not always get more marks, but just a passing mark. 

I take Euclidean Geometry as difficult; Euclidean Geometry is complicated because if 
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you claim about something you must be able to prove it; properties of figures are many, 

from ignorance we forget, and then we cannot solve the problems; when proving there 

are many reasons, when you do not know which reason to apply it becomes a problem. 

Shapes and diagrams can confuse us, especially if the diagram is different from the 

teachers’ example”.  

4.4.3 Experimental group – qualitative results 

 

Figure 4.17: Visual mode for the experimental group 

A visual model for the experimental group (Figure 4.17) displays that the facilitation 

strategy uses probing through questioning. The teacher facilitates by asking questions, 

explaining procedures, demonstrating how to manipulate a tangram, or demonstrating 

and guiding students on how to use their smartphones to search for relevant 

mathematical concepts and information. The teacher writes on the chalkboard to 

emphasise concepts when necessary. In facilitation, probing starts by moving from 

lower levels of knowledge and understanding through to higher levels of knowledge 

and understanding. Katli confirmed on an account about intervention and said: “I 

enjoyed this lesson; mam was going through it bit by bit and step by step. I think every 

chapter should have a lesson like this. This lesson improved my way of understanding 

Euclidean Geometry”. In addition, most of the students responded as the facilitator 

was probing and they managed to recall the lost knowledge. Lemo agreed and said: 
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“I learned the properties of shapes; I remembered something that I forgot”. Teaching 

through probing encouraged students to regulate their learning and recall lower level 

knowledge before they could advance deductive reasoning in the formal stage of 

knowledge and understanding.  

The visual model for the experimental group further displays that questioning through 

probing yields learning by exploration and engaging. Students discuss in groups and 

engage in cooperative learning. In addition, the learning strategies of engagement and 

exploration include experiential learning, explaining ideas, investigating, discovery, 

imagination, using a smartphone and manipulating a tangram, writing to communicate 

ideas and presenting to share ideas. To give an account on how they should be taught, 

students hinted that they would understand concepts better if resources were provided 

for them, such as mathematical instruments, graph paper, calculators and shapes, that 

is, visual geometric models or manipulatives. Students have realised that learning 

should be hands-on and resources are needed for hands-on, self-regulated learning.  

The third code of the visual model for the experimental group, that is, development 

and application of skills, is shown to depend on learning strategies. Specifically, the 

skills acquired include pre-visualisation, visualisation and analysis skills, creativity, 

application of experiential learning, exploration, inductive and deductive reasoning, 

establishing relationships between figures, problem-solving and presentation skills. 

Didi attested to having improved in learning and said: “I learned how to be creative, 

how to solve things easily, especially in mathematics; I have now a knowledge of 

something based on Euclidean Geometry”.  

Skills acquired influence the fourth code of the model, that is, conceptualisation. Tee 

commented as follows, “I have learned a lot about shapes; how to classify them 

according to their properties and characteristics. Euclidean Geometry is not a difficult 

subject; it needs attention; that is all”. Conceptualisation orientates students to the 

application of concepts, vocabulary and relevant geometric language in problem-

solving processes. In the experimental group, conceptualisation was evident and 

students acquired information related to real-world, geometric concepts and 

vocabulary, properties of figures, relationships between figures; inscription of figures, 

properties of inscribed figures and existing theorems about circles and cyclic 

quadrilateral.  

Generally, the model shows that all codes adhere to both inductive and deductive 

categories. Inductively, facilitation probed and oriented students to inductive levels of 
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knowledge and understanding, that is, pre-visualisation, visualisation, analysis and 

informal deduction. Deductively, probing oriented students to deductive reasoning and 

understanding, and formal deduction where students understand the origin of facts 

that comprise theorems, for example, inscribing a quadrilateral in a circle to form a 

cyclic quadrilateral and thereafter exploring the properties of inscribed figures based 

on the knowledge of properties of the quadrilateral and circle separately. Students in 

the experimental group showed increased confidence in handling Euclidean Geometry 

problems through inquiry. This is evident in the following reflections: “I have now a 

knowledge of something based on Euclidean Geometry; Euclidean Geometry is not a 

difficult subject; it needs attention; that is all; This lesson improved my way of 

understanding Euclidean Geometry; I remembered something that I forgot; I have 

learned and managed to focus based on shape and space; I would like the teacher to 

come back again and repeat on finding the volume of shapes”. The visual model for 

IBF and learning in the experimental group contributed to students’ improvement in 

learning strategies, skills and conceptualisation.  

4.4.4 Concluding qualitative findings 

Table 4.24: Contingency framework for the qualitative data 

Code  Experimental Comparison 
group 

 

Teaching 
strategies 

Inductive    Only 
experimental 

 Deductive     Both 

Learning 
strategies 

Inductive    Only 
experimental 

 Deductive     Both 

Skills acquired Inductive    Only 
experimental 

 Deductive     Both 

Content acquired Inductive    Only 
experimental 

 Deductive     Both 

  Inductive and 
deductive in all 
four codes 

Deductive in all 
four codes 

 

 

Based on Table 4.24, what emanated from the qualitative data is that in the 

experimental group, teaching strategies adhered to both inductive and deductive 

approaches; therefore, learning also progressed from inductive to deductive approach. 

A combination of both deductive and inductive learning yielded both deductive and 

inductive skills and content acquired. By contrast, Table 4.24 reveals that in 

comparison groups teaching strategy was more deductive which led to deductive 
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learning. Deductive learning in turn produced deductive skills and content. Table 4.21 

outline the skills observed in each code while table 4.25 shows the classification of 

actions and skills as either inductive or deductive in each code.   
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Table 4.25: Comparison of inductive and deductive teaching and learning (cf table 4.21) 

 Inductive Deductive 

Teaching strategies Discussion, probing by asking questions, explanation, 
facilitation and demonstration by showing how to 
manipulate a tangram, showing how gadgets to search for 
relevant mathematical concepts and information; 

*Explanation 
*writing on the chalkboard to emphasise some of the 
concepts and to show proofs of theorems. 

Learning strategies Discussion, group work and presentations, cooperative 
learning, experiential, explanation, Investigating, 
discovery, imagination, manipulating a tangram and think 
critically; peruse textbook to search for information; 
manipulate their electronic gadgets to search for 
information; write to note findings and group agreements, 

Listening to the teacher’s presentation; writing notes or 
examples as written by the teacher on the chalkboard; 
Complete activities to try to commit what had been learned 
to memory. 

Skills acquired Application of inquiry; formulating relationships between 
and among a network of concepts, discovery, applying 
knowledge gained from experience; creativity, critical 
thinking, developing patterns, exploration, identifying and 
naming, classifying, presentation; 

Memorisation (memorising theorems, terminology, 
teachers’ examples as on the chalk board); reviewing 
examples in the prescribed textbook and on worksheets, 
solving problems by completing activities 

Content learned Geometry information related to real-world 
Properties of figures and application in formulating 
relationships of figures. 
*Relationships of figures or shapes 
*Mathematical vocabulary 
*Linking geometric and non-geometric systems 

*Confirming stated theorem about cyclic quadrilateral 
(inscription and properties of inscribed figures). 
*Theorem (cyclic quadrilaterals; supplementary angles) 
and exterior angle = opposite interior angle 
*Application of theorems in problem-solving, that is, 
exercises in the textbook. 
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4.5 TRIANGULATION OF RESULTS 

Data revealed that the four codes, that is teaching strategies, learning strategies, skills 

acquired and the content acquired appear in both inductive and deductive stances. 

Table 4.25 indicates that in the experimental group, both inductive and deductive traits 

were developed in all codes while in the comparison group deductive traits dominated. 

The descriptive quantitative analysis in Table 4.19 shows that there is an improvement 

in pre-visualisation, visualisation and informal deduction whereas there is no constant 

improvement in the comparison group. In the experimental group, performance in pre- 

and post-tests was recorded as statistically significant at p< 0.05, p= 0.0001 with a 

large effect size of 0.55. This implies that the intervention worked towards improving 

students’ performance, and the visual model for IBF and learning shows a better 

understanding of how students learn Euclidean Geometry. 

In contrast, in the comparison group, the difference in performance on the pre- and 

post-tests was recorded as not significant, that is, p>0.05, p = 6201. The implication 

is that the traditional axiomatic approach did not contribute to any improvement in 

learning in the comparison group. Therefore, the visual model of teaching and learning 

in the comparison group does not provide a better method of learning Euclidean 

Geometry. That is, the way of learning in the comparison group revealed that 

Euclidean Geometry cannot be learned when facilitation is only done by means of 

explanation. Explanation leads to memorisation of documented facts which hones the 

memorisation skills, but the proving of theorems is learned only deductively. The way 

of learning promoted by explanation in the comparison group did not contribute to 

learning development as shown by the statistically not signif icant value of p>0.05, p 

= 0. 6201.  

This study therefore found that facilitation in Euclidean Geometry should consider both 

inductive and deductive teaching through questioning to probe. Inductive and 

deductive IBF should focus on influencing inductive learning as a basis, and thereafter, 

influence deductive learning at a higher level of learning and understanding. Inductive 

and deductive learning should happen through exploration and students’ engagement. 

Students’ engagement through exploration influences development and application of 

both inductive and deductive skills in order to develop both inductive and deductive 

conceptualisation and content knowledge. The statistical results obtained in the 
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experimental group intergarted with the qualitative revealed that the significance value 

and large effect size were achieved through a combination of inductive and deductive 

teaching strategies. Further, the qualitative data revealed that, in the experimental 

group, learning progressed from lower levels (inductive levels) to higher levels 

(deductive levels) of knowledge and understanding.  

In addition, the variances between the pre-tests in the two dependent groups were 

recorded by a pooled statistical method as not significant (p> 0.05, p= 0.3181).  

Similarly, differences were observed through participatory and non-participatory 

observation. In the comparison group, learning commenced at the deductive level of 

knowledge and understanding. The learning that starts at deductive level has been 

confirmed by research (Alex & Mammen, 2014) to be a barrier to cognitive 

achievement in learning Euclidean Geometry. This study indicates that both inductive 

and deductive inquiry supplement each other in learning. The experimental group 

progressed from inductive to deductive learning which is shown to have contributed to 

improvement in cognition in higher levels of knowledge and understanding. The 

improved results of the experimental group show that IBF promoted self-centred 

learning, exploration, discovery, self-regulated learning, reflective thinking and 

metacognition. In addition, students acquired vocabulary and mathematical language 

in order to apply concepts and knowledge in problem-solving. The constant 

improvement in levels of knowledge and understanding reflected in the descriptive 

analysis is confirmed in Table 4.19, in that the students progressed from the concrete 

to the abstract in chronological order of the levels of knowledge and understanding. 

Similarly, the lack of improvement in the comparison group specifically in pre-

visualisation and visualisation levels of knowledge and understanding (Table 4.19) is 

confirmed by the descriptive analysis, in that pre-visualisation and visualisation 

knowledge and understanding were not supported by the traditional teaching method 

and therefore, students attempted the highest deductive knowledge without proper 

knowledge and understanding of basic lower levels. The comparison group results that 

were proved to be not statistically significant (p= 0.6201, p > 0,05) resulted from the 

traditional axiomatic teaching approach that influenced learning through taking notes, 

listening to the teacher, recalling information presented by the teacher in order to 

answer questions, trying to follow the steps presented by the teacher to solve 

problems individually and in groups. In essence, students in the comparison group 
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relied on memorising what the teacher did in order to retrieve the information later. A 

difference was observed between the teaching methods in the two groups, and the 

diverse influence that the two teaching methods have on the two groups was noted.   

However, the combination of inductive and deductive teaching yielded both inductive 

and deductive skills and content. IBF, IBL, skills and content acquired in the 

experimental group contributed to improvement as revealed by pre- and post-test 

results. The mean value for the pre-test in the experimental group was recorded as 

8.48, and improved to 16.26 in the post-test. The percentage increase was recorded 

as 47.8%. The summary of students’ achievement in advanced and proficient levels 

for all levels of knowledge and understanding (Table 14.19) showed an improvement 

in both inductive and deductive levels of knowledge and understanding. Further, the 

paired t-test analysis showed a significant improvement in post-test results to support 

the fact that IBL contributed to better performance.  

Further, Table 4.24 revealed that in the comparison group, deductive teaching and 

learning were the prominent approaches. Deductive teaching influenced deductive 

learning and contributed to students acquiring deductive skills and content. The 

deductive skills and content affected the students’ performance in the post-test, hence 

the statistically not significant value of p= 0. 6201, p > 0.05.  

Both the teaching approaches used group dynamics to engage students in problem-

solving. However, in the experimental group, cooperative learning including 

collaborative investigations, research, exploration, discussion and sharing of self-

found ideas were evident. Furthermore, group work was compulsory and continuous 

in the experimental group. By contrast, group work was not compulsory and 

continuous in the comparison group. The shared ideas were based mostly on recalling 

what the teacher taught and referring to the notes they had written during the lesson. 

Some students worked as individuals although the classroom setting confined them to 

a group. The other common feature was that the facilitators used questioning. In the 

experimental groups, I applied probing as a form of questioning, while in the 

comparison group teachers applied the questioning technique in asking students to 

recall what they had learned previously. In experimental group, the students applied 

skills such as searching for information and exploration in order to provide correct 

answers, but in the comparison group, students struggled to recall the previously-
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learned information without any clues in order to provide answers. Although, there was 

an improvement in both groups, with a 47,8% improvement in the experimental group, 

the improvement in the comparison group was only 2.9%. Lebo’s comment that the 

pre-test was difficult, but the post-test was better, because they have seen the 

questions before, give clarity about why the 2.9% increase is obtained in the 

comparison group, and this is an indication that learning took place based on the 

notion that the question tackled before could be recalled, no matter how little. Lebo’s 

statement hints that the improvement of 2.9% in the comparison group appears to 

have been contributed by few students who are good at recalling previous encounters, 

that is, students who are good at learning by memorising. Learning took place, based 

on traditional method of learning.   

Table 4.19 shows development in all levels of knowledge and understanding in the 

experimental group. However, there was no consistency in the results of the 

comparison group. For example, 0% improvement was recorded at pre-visualisation, 

visualisation and informal deduction levels and no student achieved at advanced and 

proficient levels. These levels, mostly the pre-visualisation and visualisation, require 

more inductive teaching and learning. Inductive teaching and learning at the lower 

levels of knowledge and understanding were not evident in the comparison group 

(Table 4.24). This is confirmed by a comment from Rod that: “when teaching us, the 

teacher must associate with objects we know so that we can have practical in class”. 

Further, teachers in comparison groups attested to the challenge experienced in 

teaching the inductive part of Euclidean Geometry. Challenges were restricted to lack 

of resources. Teacher B commented: “the problem is that we have only one textbook, 

my preparation is confined to only one textbook. If I want to demonstrate a sphere or 

a circle, we do not have those resources”. However, during the intervention in the 

experimental group, students used the internet available at school and on their cellular 

phones to search for the information they needed such as pictures, concepts and 

sketches.  

Teacher X further confirmed that teaching begins at the formal deduction level and 

lower levels of knowledge and understanding are not developed. The teacher 

highlighted that a triangle is what the students learn about at primary school and as a 

Grade 11 teacher, the teacher assumed that students knew all about triangles. 

Students confirmed that shapes and diagrams confuse them, they do not know 
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properties of shapes. Petty, a student from the comparison group confirmed, “at 

another school they taught us, but we have forgotten the properties of figures”. In 

addition, Loli also from the comparison group commented, “from ignorance we forget, 

and then we cannot solve the problems”. Therefore, lack of inductive skills affected 

the levels of knowledge and understanding negatively. Improvement was shown in 

analysis and rigour in the comparison group but the percentage increase was still 

lower than that of the experimental group.  

In comparing the pre-test results in the advanced and proficient categories (Table 

4.19) in the comparison and the experimental groups, the comparison group 

performed at a higher rate (4.3%) as compared to 1% of the experimental group. 

However, in the post-test, the comparison group declined to 1.4% and the 

experimental group achievement percentage increased to 18%. This research 

comments that the large number of attrition in the comparison group could be the 

reason of decline in a number of few students who performed at higher levels. Further, 

as teaching in the control group did not infuse pre-visualisation, visualisation and 

informal deduction, chances were high that students could not recall concrete spatial 

reasoning as they were stronger on abstract reasoning that they have learned before 

writing the post-test, therefore, a declined performance in some levels of knowledge 

and understanding. Performance in the comparison group was unsatisfactory, even in 

higher deductive levels of knowledge, irrespective of the fact that teaching in the 

comparison group started at deductive level as observations and interviews have 

revealed. This supports the literature that teachers teach at higher levels while the 

students have not understood the lower levels. Therefore, a conclusion can be drawn 

that with IBF facilitation, students learn by inquiry that assists them to recover the 

knowledge at inductive lower levels in order to perform better at higher deductive 

levels. In addition, a significance value of 0.002 (p<0.05) was recorded which confirms 

that IBL contributes to learning better than the traditional axiomatic approach. 

4.5 CHAPTER SUMMARY 

Inferential statistical analysis using the paired t-test statistical test showed that 

intervention through IBF is effective. The experimental group that received IBF 

intervention improved (M= -7.773, SE= 0.7146) while those who did not receive 

intervention (M= -0.221, SE = 0.4429) did not improve. This difference (-7.547), 95% 
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CI (-8.08, 5.69), was significant at t (10.88), p = 0.0001, p<0.05 and represented a 

large effect size of 0.55. Similarly, the descriptive statistical analysis across levels of 

knowledge and understanding as summarised in Table 4.19 reveal that there was a 

constant improvement across levels of knowledge and understanding in the 

experimental group between the pre- and post-test. However, the comparison group 

showed improvement only in the analysis level. On other levels, the comparison 

groups showed no improvement. IBF assisted students in the experimental group to 

improve in all levels of knowledge and understanding. Generally, in the experimental 

group, student development was perceived in lower levels of knowledge and 

understanding through to higher levels of knowledge and understanding. The 

quantitative results showed that, to a large extent, IBF assisted students to improve in 

the post-test and in all levels of knowledge and understanding. 

Qualitative data analysis showed that the improvement in the experimental group 

(visual model for the experimental group) was caused by using probing questions as 

a teaching strategy. Probing teaching strategy influences learning by exploration and 

engagement that influenced development and application of skills such as 

conceptualisation in pre-visualisation, visualisation, analysis, creativity, application of 

experiential learning, exploration, inductive and deductive reasoning. On contrary, the 

qualitative data analysis showed that in the comparison group (visual model for the 

comparison group) lack of improvement was initiated by explanation as a teaching 

strategy that prompted documentation of facts as a learning strategy, and 

memorisation as a skill developed. Content memorised was existing concepts and 

theorems. Explanation, documentation and memorisation of existing concepts and 

theorems contributed only to deductive reasoning; inductive learning was not included 

in the comparison group. Students in the comparison group found deductive reasoning 

difficult for them, while students in the experimental group perceived that inductive 

reasoning is essential in deductive reasoning.  

The triangulation of the quantitative and the qualitative data shows that the visual 

model for the experimental group is effective in facilitating the learning of Euclidean 

Geometry; the intervention contributed to improvement in the experimental group with 

a large effect size. The model supports the directional hypothesis as there was a 

significant difference between the experimental and the comparison group, that IBF 
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influences IBL and therefore enhances students’ problem-solving skills in attaining 

higher deductive levels of geometric reasoning.   
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CHAPTER 5 

INTERPRETATION OF DATA AND DISCUSSION 

5.1 INTRODUCTION  

This study argues that implementing IBL through IBF enhances students’ problem-

solving skills in Euclidean Geometry. Further, this study asserts that the Grade 11 

students’ knowledge and understanding of pre-visualisation, visualisation, analysis 

and informal deduction influence learning at formal deduction level. The interpretation 

and discussion of results involves elaborating on the hypothesis, responding to the 

research questions and evaluating the research objectives. Reference is made to the 

theories and literature adopted for this study. In addition, the interpretation and 

discussion of results focus on clarifying the argument and assertion presented in this 

study by contributing a model as a framework of IBF.  

5.2 HYPOTHESIS 

This study posits a null hypothesis that there is no difference between IBF and the 

traditional axiomatic approach. The related directional hypothesis states that IBF in 

Euclidean Geometry influences IBL and consequently increases the students’ 

knowledge and understanding of the formal deduction level through lower levels of 

knowledge and understanding, that is, pre-visualisation, visualisation, analysis and 

informal deduction.  

The paired t-test statistical test compared the variances between the experimental and 

the comparison group. Utilising paired t-test statistical test, the test for normality 

applied comparing the pre-test variances of the two groups. The comparison between 

the two groups revealed that pre-test variances were not significantly different 

(p=0.3181; p> 0.05), that is, they are statistically equivalent. Based on the equivalence 

of the pre-test in the experimental and the comparison groups, the pooled standard 

error method was relevant because the variances of the two groups are equivalent. 

The pooled standard error method confirmed that the variances were not statistically 

different and were equivalent at p=0.2677, that is, p> 0.05. The Satterthwaite 

approximation of standard errors verified the findings from the pooled standard error. 

The Satterthwaite approximation of the standard errors revealed the same result as 

the pooled standard error method confirming that the variances in the pre-test results 
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between the control and the experimental groups were not statistically different. These 

result confirmed that the groups were at the same level before the intervention. The 

test of normality before any form of intervention or teaching had a p-value > alpha 

(p=0.3181, p> 0.05). From these results, the assumption of normality is accepted, 

meaning that there is a normal distribution in the pre-tests between the two groups, 

that is, both experimental and control groups were at the same level at the beginning, 

at pre-test level before any form of teaching could commence. It is worth noting that 

at the pre-test level all students form both experimental and the comparison groups 

were departing from a traditional axiomatic approach situation.  The normal distribution 

between that two groups initiated that the paired t-tests statistical test could proceed. 

On the same note of testing variances, the pooled method of standard error revealed 

that the variances in the post-test results were statistically significant (p= 0.0001, 

p<0.05). This shows that after intervention there was a non-normal distribution 

between the two groups in the post-tests, that is, the variances of the two groups were 

not equal. This also indicated that the paired t-test statistical analysis could proceed 

(Field, 2013; Rosner, 2006). Therefore, the paired t-test statistical test was an 

appropriate method of comparing the mean values of the experimental and the 

comparison group in order to track the most improved group.  

Applying the paired t-test statistical test to compare the mean values between the 

experimental and the comparison group, focusing on pre- and post-tests, the 

conclusion was reached that, in the experimental group, the variances between the 

pre- and post-test mean scores (mean difference of 7.7732) were statistically 

significant (p=0.001<0.05). Most individuals in the experimental group scored higher 

in the post-test (range between 1 and 41) than in the pre-test (range between 0 and 

27). In the comparison group, the variances in the mean scores (mean difference of 

0.2206) in the pre- and post-test were not statistically significant (p= 0.6201> 0.05). 

The t-test revealed that improvement was not observed between the pre-test (range 

between 0 and 27) and the post-test (range between 0 and 25). The pre- and post-test 

scores were statistically the same for the comparison group. In addition, looking at the 

normality plot (figure 4.1) for the experimental pre and post-test, data deviates more 

to the side of the post-test, it is skewed to the post-test side. This indicates a non-

normal distribution that the pre and post test scores are not equal. Much better 

performance is evident in the side of the post-test scores.  
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In the comparison group, the normality plot (figure 4.2) shows that data falls on the 

line and equally distributed and the sides of both pre and post-test.  Therefore, data is 

skewed to neither side, shows a normal distribution that the comparison group pre and 

post-test mean scores are equal.    

Therefore, the experimental group improved in performance but no improvement was 

evident in the comparison group. The means in the experimental group are 

significantly different, therefore, a conclusion is reached that the independent variable 

has an effect on the dependant variable (Field, 2016). The variable of the traditional 

axiomatic teaching approach was substituted with IBF. The significant difference 

between the means of the experimental and the comparison group shows that the IBF 

intervention led to improvement in performance of the experimental group.  

The conclusion is reached that there is a statistically significant difference between the 

experimental and the comparison group when comparing the post-test results. 

Quantitative data revealed that on average, participants that received intervention 

through IBF acquired IBL skills (M= -7.773, SE= 0.7146) while the results for those 

who did not receive the intervention (M= -0.221, SE = 0.4429). This difference (-7.547), 

95% CI (-8.08, 5.69), was significant at t (10.88), p = 0.0001, p<0.05 and represented 

a large effect size of 0.55. The large effect size emphasises that IBF contributed 

significantly towards improvement in IBL and that IBF can be considered as an 

appropriate method of teaching in Euclidean Geometry.   

The paired t-test statistical test results in this study showed a statistically significant 

difference of p< 0.05, that is, 0.0001, in the experimental group as compared to the 

comparison group (p>0.05, that is, p= 0.6201). The statistical significant differences 

in this study, show that the IBF (intervention) and the traditional axiomatic approach 

have different impacts on student performance. The intervention was successful and 

contributed towards a significant improvement in the experimental group, whereas the 

traditional axiomatic approach contributed towards a not significant effect on the 

learning of the comparison group. Therefore, this study rejects the null hypothesis and 

the rejection of the null hypothesis provides enough evidence to support the alternative 

hypothesis, that is, IBF strategies in teaching Euclidean Geometry influence IBL; 

consequently, increasing students’ understanding of the formal deduction level 

through pre-visualisation, visualisation, analysis and informal deduction.  
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The IBF intervention is shown to have contributed towards enhancing IBL as a means 

to problem-solving. The contribution of IBF includes guiding students through 

engagement in concept discovery and application (Love, et al., 2015). Through active 

involvement in their learning, students used learning by inquiry; that is, after 

discovering concepts, they applied the concepts in exploring, conjecturing, creating, 

and communicating in order to solve problems. Therefore, performance in the 

experimental group improved compared to the comparison group that received the 

traditional approach of teaching. Therefore, the null hypothesis that there is no 

difference between IBF and the traditional axiomatic is rejected and directional 

hypothesis is supported 

Further, based on the fact that IBF increases IBL for student development in geometric 

problem-solving, this study provides answers to the following sub-questions: (1) To 

what extent does IBF assist students to reach higher levels in geometric thinking? (2) 

Does inquiry-based intervention influence students’ development in geometric thinking 

through the Van Hiele levels? (3) How does IBF lead to a better understanding of how 

students learn Euclidean Geometry successfully?   

5.3 RESPONDING TO THE RESEARCH QUESTIONS 

5.3.1 To what extent does IBF assist students to reach higher levels in geometric 

thinking 

A statistically significant difference of p< 0.05, that is, p = 0.001, and p>0.05, that is, 

p= 0.6201 between the experimental and the comparison group confirms that IBF 

influences inquiry skills in geometric problem-solving. However, the question asked is 

how does this compare to the traditional axiomatic approach and to what extent does 

IBF equip students with problem-solving skills more than the traditional approach can 

offer. The test of normality after the pre-test showed that both the experimental and 

comparison groups were at the same level, that is, influenced equally by the traditional 

axiomatic approach. The pre-test results indicated that students in both groups 

committed the same errors such as inappropriate application of geometric vocabulary, 

language and wrong spelling of geometric words. For example, writing the word circle 

as “cycle”, quad as “quaard” (cf Table 4.20). Wrong spelling and application of 

vocabulary show lack of conceptual understanding and meaning of geometric 

concepts, therefore, wrong application of concepts resulted in lack of meaning in 
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solutions. However, the post-test showed improvement in the experimental group, that 

is, errors were minimised and students in the experimental group improved in spelling, 

vocabulary and application of concepts (cf Vignettes). When students make mistakes 

or fail to apply rules correctly, it shows that learning occurred procedurally, but 

conceptual understanding of the rule is evident when a student is in a position to see 

why the rule does not apply (Luneta, 2017).  

The visual model for the comparison group (Figure 4.16) shows that the teaching of 

Euclidean Geometry in the traditional axiomatic approach occurs through explanation 

which leads to learning by documentation and memorisation of existing theorems. This 

study asserts that the traditional axiomatic approach results in erroneous procedural 

problem-solving, and hence contributes to cognitive load. Cognitive load is evident in 

the pre-test that indicated that learning could not take place as procedural knowledge 

did not help students to apply concepts correctly in problem-solving. However, 

conceptual knowledge (attained through exploration and active engagement) as 

contributed by IBF eases the cognitive load.  

The post-test in the experimental group showed that learning took place because 

students were able to apply concepts correctly in their solutions and errors committed 

in the pre-test were not committed in the post-test. Errors in the experimental group 

post-test problem-solving were minimised and the implication is that IBF assisted 

student to employ self-centred learning in order to formulate own concept images, 

utilising cognitive structures linked to self-explored concepts rather than utilising only 

cognitive structures linked to what was imparted by the teacher. Further, minimal 

errors imply that students could explore and discover concepts meaningfully and in 

totality rather than committing definitions, formulae and concepts presented by the 

teacher to memory. In addition, students attained the skill of connecting prior 

knowledge or existing concept image to new knowledge. Another milestone that the 

students in the experimental group accomplished was the ability to construct concepts 

well, and therefore, to demonstrate good conceptual understanding. Therefore, this 

study suggests that facilitation of Euclidean Geometry in Grade 11 should focus on 

probing through questioning to allow students to engage in exploration and develop 

conceptual understanding and skills for application in conceptualisation and ultimately 

to acquire Euclidean Geometry content knowledge.  
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This study affirms that teaching should start at lower levels of knowledge and 

understanding; that is, it should follow a chronological fixed order of levels to 

encourage students to progress from the lowest to the highest level of knowledge and 

understanding. This is in agreement with Van Hiele’s idea that in learning Euclidean 

Geometry, students follow hierarchical levels that are in a fixed order. Visualisation 

appear to be the most difficult learning stage for most of the student. It is the level 

where students’ scores are low in both pre and post-test. In visualisation specifically, 

the study has shown that students experience difficulties in making decisions based 

on perception, that is, inductive reasoning. Further, the lower performance in 

visualisation is accounted in this study that students struggle with spatial imagery 

therefore cannot apply critical thinking to critically represent spatial objects from 

diverse perspectives. The other stages especially those based on deductive reasoning 

appear to be better in performance. This study accounts on this that students are used 

to applying deductive thinking in problem solving. The students are acquainted of 

applying ready-made substantiations in geometric proofs, memorise the proofs in 

order to apply in problem solving. As this study attempted to assist students to use 

inductive reasoning to advance deductive reasoning, it is more evident that the part 

that was more easy to students seemed to be the part they are used to, that is, 

deductive reasoning. However, in the pre-test all students experienced challenges in 

tackling both the deductive and inductive part. Nonetheless, the analysis stage, where 

abstract reasoning coincides with concrete reasoning showed improvement. To show 

that learning by inquiry supported them in all levels, students in the experimental group 

recorded improvement in all levels, no matter how little in the visualisation stage.   

The visualisation stage remains lower in achievement; however, improvement was 

recorded between the pre and post - test. A report by the National Academy of 

Sciences (2018) states that spatial abilities are essential in diverse fields, for example 

in creating visual images for processes occurring in the real world, in graphic 

technologies, in computing and more; nonetheless, spatial skills work in relation to 

other abilities such as verbal skills, memory retrieval and logical reasoning. Therefore, 

this study supports Van Hiele’s statement that geometric levels of knowledge and 

understanding are hierarchical. Assertion is maintained in this study that a foundation 

from lower levels is necessary in order to achieve at higher levels of understanding.    
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In addition, the report by the National Academy of Science motivates that in order to 

relate diverse capabilities effectively, students should possess the capability to switch 

from one ability to another when necessary. Further, the report alerts that the deficit in 

one ability may be compensated by excellence in other abilities. It is evident in this 

study that spatial abilities are compensated by other abilities like memorisation. This 

is the reason that visualisation stage remained lower as students in the experimental 

group were also struggling to learn how to apply critical thinking based on space and 

shape; construct mental representations of real objects and present spatial objects 

from diverse perspectives. Further, compensation by memorisation is evident in the 

analysis stage that operates with concrete and lower level of abstraction. Teaching 

that allow students to explore the facets of spatial abilities, that is, to apply spatial 

orientation, spatial visualisation and explore spatial relations, impacts on the 

improvement of pre-visualisation and visualisation. This is evident in this study based 

on the finding that through inquiry, students’ performance in the visualisation on stage 

in the experimental group display a shift from 0% to 1%, while no change (0%) was 

observed in the comparison group (cf Table 4.19). In light of reason furnished, this 

study asserts that IBF assisted student to apply inquiry skills and were able to develop 

in all levels and the more the knowledge students acquire in lower levels the more the 

chances are that they will be able to retrieve and apply at the higher levels of 

knowledge and understanding.  

This study segregates the levels of knowledge and understanding in geometry by 

using the degree of concreteness and abstractness, and contributes a middle level 

between the lowest and highest levels of knowledge and understanding. That is, pre-

visualisation and visualisation are more concrete and basic levels of geometric 

knowledge and understanding; analysis and informal deduction are a combination of 

both concrete and abstract factors at the middle levels; and informal deduction and 

rigour are abstract and occur at the highest levels (Figure 5.1). In addition, it is 

apparent in this study that at the basic levels of geometric knowledge and 

understanding, facilitation through utilising diverse sources or teaching and learning 

aids promotes learning by applying experience, perception and visualisation. This 

study observed that the middle levels of knowledge and understanding, that is, firstly 

analysis and secondly informal deduction lies between the concrete and the abstract. 

Hershkowitz et al. (1996) confirm that diverse perspectives of shape and space as well 
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as the interplay between concrete and abstract contribute to analytical thinking in the 

cognitive process. This study supports this principle because during analysis, IBF 

leaded students to employ analytical skills in order to explore what they have 

perceived and visualised through reference to diverse learning aids. Informal 

deduction also refers students to concrete material while they apply analytical thinking 

to formulate conjectures relating to properties and relationships of figures through 

abstract representations. The relation between concrete and abstract reasoning is 

emphasised by Hoekstra (2016) motivating that mental development relies on 

concrete reasoning which provides the appropriate base for abstract reasoning. 

Analysis and informal deduction allow students to utilise concrete connotations to 

establish deductive connotations.  

This study views the middle stage as convenient to students as it is a stage that 

requires lower level of abstract thinking. This is evident as displayed on a summary of 

students’ achievement in advanced levels (table 4.19). Both the experimental and the 

comparison group achieved better at analysis as compared to other levels. This also 

supports the finding that the comparison group showed improvement only at the 

analysis level (section 4.5). This middle level contributed by this study shows that 

analytical thinking is essential in geometric reasoning. Forster, Friedman and 

Lieberman (2004) highlight that analytical tasks need to be processed concretely 

whereas abstract mental representations require abstract reasoning.   Basic, concrete 

levels (that is, pre-visualisation and visualisation) mean acquiring essential concepts, 

images and vocabulary for application at the middle and highest levels. In addition, 

both concrete and deductive connotations established at the middle levels are 

essential for conceptualisation and application at the highest abstract levels. 

Therefore, this study contributes a hierarchy of levels of knowledge and understanding 

that enables IBF and ultimately IBL that proceeds from the lowest inductive level 

through the middle levels to the highest deductive levels of knowledge and 

understanding (Figure 5.1). 
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Figure 5.1: Hierarchical concrete to abstract levels of knowledge and understanding 

Van Hiele’s theory confirms that students cannot skip a level and they must be 

competent at the lower levels in order to advance to higher levels. This study also 

deduces that in both teaching and learning, knowledge acquired in the basic stage is 

important for the succeeding stage. Figure 5.1 displays interconnected relationships 

among the geometric levels of knowledge and understanding. Failure to connect the 

levels in a chronological order creates a gap in learning; for example, the inability to 

establish declarative or conceptual knowledge before the establishment of procedural 

knowledge. This is evident in the comparison group (cf. Table 4.24) where teaching 

did not consider basic and middle levels. This study confirms that the traditional 

axiomatic teaching approach operates on only abstract levels of knowledge and 

understanding and students strive to memorise in order to acquire procedural 

knowledge; as a result, learning does not take place particularly for the majority of 

students who are unable to memorise. Students’ achievement in advanced and 

proficient levels (Table 4.19) indicates a difference in both groups in the pre- and post-

test. The experimental group recorded a consistent improvement in all levels of 

knowledge and understanding, whereas in the comparison group an inconsistent and 

minimal improvement is evident. Further, it is deduced in this study that based on the 

improvement by the experimental group at all levels, teaching that commences by 
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assisting students to achieve lower inductive levels, leads to improvement at higher 

deductive levels.   

Non-participatory observation, that is, observation in comparison group, revealed that 

abstraction is needed at all stages of teaching; for example, in order to assist students 

to recall prior knowledge, teachers ask questions that demand abstract thinking for 

students to recall from memory what they might have acquired in the lower grades or 

the previous lesson. Recalling the memorised information without any prompts or 

clues poses difficulties to students. Furthermore, observation (non-participatory) 

revealed that most students were unable to respond to questions related to recalling 

pre-knowledge, but the teachers proceeded with presenting new knowledge. 

Therefore, acquiring new knowledge becomes difficult and students are compelled to 

memorise the new information without linking it with existing knowledge. Thus, higher 

deductive levels such as the formal deduction level of knowledge and understanding 

remain a challenge when students are supposed to apply the memorised theorems.  

Van Hiele’s theory of knowledge and understanding in Euclidean Geometry outlines 

that during learning in geometry, students should learn a network of relationships that 

link concepts and processes, which are eventually organised into schema (Clements 

& Battista, 1992). Further, Van Hiele’s theory accentuates that students do not learn 

only facts, rules and names. Hamilton and Ghatala (1994) state that memory should 

contain the meaning of information, not its exact form. In concurrence, this study avers 

that learning facts, rule and names calls for students to memorise, that is, to commit 

to the schemata the exact form of information, whereas inductive inquiry in conjunction 

with deductive inquiry enables students to commit into schemata knowledge and 

understanding of concepts, network of relationships and processes, namely, the 

meaning of information acquired.  

As compared to the traditional axiomatic approach, IBF equips students with problem-

solving skills. IBF promotes perception and recognition, and leads students to 

conceptualise their perceptions and visualisation for analysis and conjecturing. 

Furthermore, IBF enables students to validate their conjectures and apply acquired 

knowledge and understanding in problem-solving.  

The study revealed that the IBF teaching process encompasses six stages. The first 

stage involves orientation by probing and providing resources to promote perception. 
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Secondly, orientation by probing encourages recognition. The third stage involves 

probing to ensure conceptualisation through analysis. The fourth stage involves 

probing to encourage conjecturing; the fifth stage requires probing to encourage 

inferencing and confirmation of conjectures through existing concepts, axioms and 

theorems; and the sixth stage requires probing to allow students to apply concepts, 

vocabulary, mathematical language, axioms and theorems in problem-solving. The 

main teacher action is probing and providing resources, as IBL is student-oriented or 

student-centred. In the student-centred learning process, diverse resources are 

essential for facilitation of learning. Further, in IBF, probing is done through 

questioning. This study agrees with Chao, Murray and Star (2016), that facilitation 

through probing enables the facilitator to (1) understand the students’ mathematical 

thinking; (2) evaluate the students’ mathematical knowledge; (3) guide the students in 

their own thinking; and (4) encourage students to articulate their own ideas.  

5.3.1.1 Orientation by probing and providing resources to promote perception 

In the pre-test, 14.4% of students did not answer question 1.1 that focused on 

assessing the students’ perception skills. However, in the post-test only 8.2% did not 

answer, and 3.1 % were at an advanced stage in the pre-test while the post-test 

recorded 10.3% at the advanced level. This shows that after the intervention, students 

gained confidence in perception and attempted the question in the post-test, and that 

some students improved to advanced and proficient levels. The comparison group 

recorded the same percentage, that is, 5.8% in both the pre- and post-test. The 

perception stage or pre-visualisation stage was not accomplished at all through the 

traditional teaching approach in the comparison group. In addition, no student 

achieved at the advanced and proficient levels in the post-test.  

Constructions based on prior knowledge in memory rather than reproduction of stimuli 

is the focal point of perception (Hamilton & Ghatala, 1994). IBF contributed largely to 

the enhancement of students’ perception skills in the experimental group; in other 

words, to remember environmental and experience matters, students were able to 

reconstruct their perceptions on diverse events (Hamilton & Ghatala, 1994). 

Participatory observation showed that, during the intervention, the facilitator 

commenced by orientating the students to engage their experience and prior 

knowledge in refining their perception skills. Dewey’s ideology about thinking refers to 
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inquiry as a process that requires reflection on prior knowledge (Tarricone, 2011). 

However, the teacher remains the main challenger of student thinking through probing 

and questioning to enable students to draw on prior knowledge. In the perception 

stage, students acquire knowledge from what they see (environment) and can touch 

(manipulating available resources). Action, visual and verbal learning play a major 

role. Refining their perception skills involves reflecting on the environment, that is, 

learning by seeing, touching and sensing. Moreover, learning is deepened when 

students are able to link the environmental issues to the classroom context. Findings 

from the intervention revealed that students engage in reflective thought when the 

teacher probes and provides resources. Furthermore, recalling experience or prior 

knowledge and manipulating materials become essential activities in learning. 

Students share their experiences with one another and they can establish sense from 

shared experiences. The inquiry-based facilitator and students deliberated upon the 

meaning of space and shape in the perception or pre-visualisation state. Further, the 

students and facilitator considered and reflected on shapes in space; deliberated on 

the relation between space and shape and ultimately linked the environment to 

classroom learning. Students accumulated vocabulary in this stage. Knowledge that 

resulted from experience and perception is essential to recognition or visualisation 

where the teacher probes through questioning to challenge students to learn by 

visualisation and imagination. Students carry over the concepts and vocabulary that 

they establish during experiential learning at the perception stage to explore the 

visualisation stage. 

5.3.1.2 Orientation by probing to encourage visualisation and imagination  

The visualisation stage seemed to be very challenging to both groups. Table 4.19 

revealed that, in the experimental group, only 1% achieved at the advanced level in 

the post-test from 0% in the pre-test. The comparison group recorded 0% in both pre- 

and post-test at the advanced level; in other words, no student achieved the advanced 

level in visualisation. The outcome from the comparison group resulted from the 

traditional teaching approach that did not apply any method to orientate students to 

the visualisation level; in other words, inductive or concrete teaching that is essential 

at the visualisation stage. In the experimental group, the facilitator probed to 

encouraged students to visualise and use their imagination to make sense of the 

mathematical setting. The facilitator guided the students to notice the similarity 
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between real objects and to relate the objects to geometric symbols; for example, to 

recognise that a garage door is four-sided and associate it with a four-sided figure. 

Students were also encouraged to name the figure; for example, a quadrilateral. The 

facilitator guided students to represent visualised objects symbolically. The facilitator’s 

guidance in the visualisation stage initiated students’ actions such as critical thinking 

(for imagination), using technology to verify their knowledge in the imagination level, 

sharing views, and the ability to use symbols to represent what they perceived and 

imagined. Student actions contributed to skills such as symbolic representations and 

visualisation (imagination or recognition). Knowledge acquired while students were 

involved in learning pertains to relational understanding, symbols for diverse real 

shapes and types of figures by symbolisation. Hamilton and Ghatala (1994) 

emphasise that competency in visualisation or imagery pertains to students’ ability to 

represent knowledge formed around physical objects and events. Representation of 

knowledge in this study refers to using sketches and symbols to represent perceived 

objects. In addition, Hamilton and Ghatala (1994) motivated that problem-solving 

involves the use of images that enhance memory and aid the acquisition of 

information. The visualised information, that is, symbolic representations of perceived 

and experienced knowledge is essential at the analysis level for further problem-

solving.  

5.3.1.3 Probing to ensure conceptualisation through analysis 

The analysis stage recorded better results in both the groups. A lower number was 

recorded for students who did not answer the question. Only 1 student for both pre- 

and post-tests in the experimental group, and 0 in the pre-test and 2 in post-test for 

comparison group (cf table 4.13). However, for advanced and proficient achievement 

levels in the analysis level, the experimental group recorded 16,5% in pre-test and 

improved to 49,9% in the post-test; whereas the comparison group recorded 11,6% in 

the pre-test and 20.3% in the post-test respectively (cf table 4.19). This stage is 

between concrete and abstract, where students still refer to concrete knowledge, but 

need to name abstractly the properties of geometric figures they know and search 

further for knowledge about the properties they do not know. The abstract knowledge 

of students in the comparison group enabled students to acquire some knowledge. 

However, in the experimental group, the facilitator applied the questioning and probing 

strategy to promote conceptualisation through analysis. Conceptualisation deals with 
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the development and clarification of concepts. In the analysis stage, the facilitator led 

students to explore and distinguish the component parts and properties of shapes. In 

addition to what they knew, the teacher probed to promote further search to engage 

students in in-depth understanding of the characteristics of diverse figures. The 

students’ action triggered by IBF pertains to reflective thinking, exploring and sharing 

ideas, and using instruments to perform constructions. The skills and knowledge 

acquired at this stage encompass relational understanding, ability to distinguish 

among shapes, group characteristics; properties of separate shapes or figures and 

producing figures through accurate constructions. In the visualisation stage, only free 

hand symbolic representations apply without attaching any characteristics to figures. 

However, in the analysis stage, accurate constructions are encouraged by using 

relevant instruments and materials such as a pair of compasses, protractor, ruler and 

other instruments.  

Students were not aware that any free hand constructed round shape is not a circle, 

but a figure similar to a circle. They were not knowledgeable that if a circle is not drawn 

according to the right dimension, then the centre is not correctly positioned, therefore, 

the radius and the diameter are not correct. Therefore, a large number of students 

could not achieve in this question. In the interviews, the students attributed their act of 

wrong or inability to perform correct constructions to having “no instruments like a pair 

of compasses to use for construction”. They claimed that they had mathematical 

instruments but they left the instruments at home. They were asked by the researcher 

“when do you bring your mathematical instruments to school?” Student E22 answered, 

“When Sir says that we are going to measure”. The researcher prompted further and 

asked, “Does Sir always tell you when the section he is going to teach the next day 

will need instruments?” Student E34 responded “No”, and student E36 said, “the 

problem is that when we bring the instruments to school, other students steal them, 

and we face a problem when there is a need to use them”. Students in the 

experimental group became aware during the intervention that relevant instruments 

are needed to produce accurate figures like a circle. Therefore, most of the students 

as shown by the post-test results improved their constructions, ability to dissect a 

figure in terms of properties and describing the properties of a figure. Further, students’ 

improved in terms of awareness that accurate constructions yield accurate dissection 

of figures and hence correct analysis.   
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Van Hiele’s theory outlines that during analysis, students can describe objects they 

know. In addition, this study asserts that students are supposed to describe each 

object and each figure in totality during analysis based on what they know and search 

further to find what they do not know. For this reason, students resort to inquiry to 

search for additional information on each object or figure they know. Holistic 

knowledge and understanding of each figure simplifies the conjecturing or informal 

deduction stage where students need to formulate propositions about individual 

figures, relate diverse figures and formulate conjectures about the network of 

relationships of objects.  

5.3.1.4 Probing to encourage conjecturing 

At this stage, students have to make informal deductions about the concepts or 

knowledge they have accumulated and analysed. According to Hamilton and Ghatala 

(1994), a proposition or a conjecture means that students compose statements of two 

connected concepts that asserts something about the world. In addition, Hamilton and 

Ghatala (1994) emphasise that a conjecture can be judged as true or false. The 

performance in the pre- and post-tests indicated that most students possess low to 

average informal deduction skills. The experimental group recorded 12.4% of students 

who did not answer the question but the percentage of non-responses was reduced 

to 2% in the post-test. Students in the experimental group gained confidence in 

attempting the question. In the comparison group, 1.4% did not answer the question 

in the pre-test and the number fell to 0% in the post-test. When comparing the 

advanced and proficient levels for the experimental group, 5.1% in the pre-test 

improved to 16.5% in post-test; whereas, in the comparison group, 7.2% in the pre-

test declined to 0% in the post-test. The teaching approach in the comparison group 

oriented students to theorems that exist, but no conjecturing was encouraged and 

students were not offered a chance to connect concepts and find the origin of axioms 

and theorems, and the network of relations of concepts that result in theorems. 

Students’ participation was minimal in comparison groups and students were 

presented with worksheets to memorise the theorems that appeared on the 

worksheets. The teaching approach required memorisation that led to difficulties in 
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answering 1.4.2. to 1.6 on the pre- and post-test. In the experimental group, the 

probing strategy applied by the facilitator encouraged students to formulate 

conjectures in terms of relationships of various figures based on relationships between 

properties. Through the facilitator’s guidance, inscriptions were explored. Common 

properties of inscribed and related figures were explored. The action taken by students 

in order to deduce informally was to explore the information they had accumulated at 

lower levels and establish conjectures as facts. Skills and knowledge acquired by 

students at this stage include critical thinking, discovery and relationships of figures 

including properties that emanate when figures are inscribed. In support, Van Hiele’s 

theory outlines that competence in analysis means students understand logical 

implications and class inclusions and can create meaningful definitions and justify their 

reasoning. Creative critical thinking in logical implications, class inclusions as well as 

justified reasoning that emanated during conjecturing is essential in confirming the 

conjures that leads to formal deductions through the facilitators’ guidance.   

5.3.1.5 Probing to encourage inferencing and confirmation of conjectures  

Only deductive inquiry applies at this stage. Van Hiele’s theory outlines that, at this 

stage, a formal system of relationships of objects is developed. This includes 

fundamental logical systems, suppositions, theorems and their proofs. Further, Van 

Hiele’s theory affirms that at the formal deduction level, students can construct proofs 

and understand the role of axioms and definitions. Knowledge and understanding at 

the formal deduction level can assist students to confirm their conjectures. Questions 

1.7 to 1.9 assessed students’ formal deduction skills. The experimental group showed 

a great improvement of 29.9% from those who did not answer the question in the pre-

test. The post-test recorded 8.2% who did not answer the question showing that most 

students gained confidence to attempt the question in the post-test. The comparison 

group recorded 14.5% that did not answer the question in the pre-test and 13% that 

did not answer in the post-test. When comparing achievement at advanced level in the 

pre- and post-tests of the two groups, the experimental group improved from 1% to 

18,9%. A decline was recorded in the comparison group: 4.3% was recorded in the 

pre-test for those who had achieved the formal deduction level while this declined to 

1.4% in the post-test. Teaching at the formal deduction stage in the comparison group 

progressed from where the teacher presented a theorem from the textbook and 

explained it to the students while writing the steps to prove it on the chalkboard. 
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Research indicates that the traditional axiomatic approach to teaching starts at this 

level. Table 4.24 confirms that teaching started at a more deductive level in the 

comparison group (Alex & Mammen, 2014). Student actions involved writing and 

documenting what the teacher wrote on the chalkboard.  

Teaching in the experimental group included probing to encourage inferences and 

ability to search for existing information on theorems, axioms and geometric figures to 

confirm conjectures. Teacher allowed students to use diverse text materials, their 

cellular phones and the internet to search for more information about existing 

concepts, relevant axioms and theorems. The IBF intervention prompted students’ 

actions of searching and exploring existing axioms and theorems to test their 

conjectures, the main conjecture being on the characteristics of a quadrilateral 

inscribed in a circle to form a cyclic quadrilateral. Students acquired deductive 

reasoning skills as well as geometric problem-solving skills at this stage. Knowledge 

accumulated comprise geometric theory, concepts and problem-solving technique. 

Hamilton and Ghatala (1994) consider propositions as units of declarative or 

conceptual knowledge, while productions (condition-action rules) are a way of 

representing procedural knowledge. Students confirm propositions, validate the 

information they have discovered in order to understand reality and know how to apply 

the principles in real-world problem-solving and for academic purposes. In essence, 

students’ formal deduction knowledge and understanding are required at the rigour 

level of knowledge and understanding.  

5.3.1.6 Probe to allow students to apply concepts, vocabulary and knowledge in 

problem-solving. 

According to Van Hiele’s theory, rigour level of knowledge and understanding refers 

to students being able to apply the principles of formal deduction where they are able 

to compare Euclidean and non-Euclidean systems. By way of example, Sherman 

(2012) outlines the importance of mathematics in real-life problem-solving. He states 

that the buildings that we stay in are not designed simply to look attractive; some are 

designed to withstand earthquakes and major disasters; some buildings bring, design, 

form and function to new levels; limitations of buildings can be determined by 

mathematical designs and the calculations of forces that apply to roofs, balconies and 

structures. Designs are available where building structures are inscribed into others 
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for various functions. Mathematical designs and computations (such as calculations 

of forces that apply on structures, balconies and roofs) could be used, for example, to 

determine limitations of buildings. In this stage, most of the students (49.9% and 43%) 

did not answer the question in the pre-test, but in both the experimental and 

comparison group, 27,7% and 18.8% of the students respectively gained confidence 

to answer the question in the post-test. However, the comparison group showed a 

decline in performance, that is, 7.3% in pre-test and 4.3% in the post-test. The 

experimental group recorded an improvement with 11.3% in the pre-test and 24.7% in 

the post-test.  

The performance dropped in the comparison group because the teaching remained 

abstract focusing only on deductive problems from the textbook solely for classroom 

purposes. Out of the classroom problem-solving was not considered; therefore, 

students were challenged in showing how the knowledge on cyclic quadrilaterals apply 

in real-life problem-solving. Rodin (2012) agrees that contemporary mathematics is 

abstract and disconnected from physical experience; therefore, students cannot 

include physical experience in learning. Further, students confirmed their lack of 

knowledge and understanding in lower and concrete levels of knowledge and 

understanding. Common problems voiced by students are: (1) they do not know the 

properties of isolated figures; (2) they could not perceive the relations between 

shapes; (3) they had forgotten what they learned at primary level. 

In the experimental group, abstract problem-solving for the classroom was considered, 

but the facilitator at some stage probed and led discussions that made students aware 

that knowledge and concepts in circle geometry and cyclic quadrilateral applies in 

problem-solving out of classroom context as well. The facilitation strategies in the 

rigour stage in the experimental group comprised of probing to allow students to apply 

concepts, vocabulary, axioms and theorems in problem-solving in exercises provided 

on worksheets and in discussions about application in a real-life context. Marzano 

(2014) confirms that teaching for rigour involves asking students to research, weigh 

evidence, allowing students to display authentic knowledge and skills, and guiding 

students to solve problems that are related to the real-world. The action taken by 

students in response to facilitation during the IBF intervention in this study involved 

discussions and solving problems in writing. Students presented the written solutions 

to other groups, and groups shared ideas. The skills and knowledge gained in the 
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rigour level pertains to knowledge of application of geometric concepts, vocabulary in 

geometric and non-geometric systems, and problem-solving skills. The relevance of 

axioms and theorems was realised by students.  

To some extent, IBF enabled students to use basic inductive inquiry in order to handle 

advanced deductive inquiry. Furthermore, there was an indication that teaching that 

embraces inductive inquiry can to some extent promote learning ability in deductive 

formal inquiry. In addition, this study asserts that teaching that starts at the formal 

deduction learning does not promote knowledge of concepts but memorisation of 

concepts. In essence, teaching of Euclidean Geometry at Grade 11 should progress 

from inductive inquiry to deductive inquiry. The inductive to deductive order enables 

students to (1) bring the knowledge they have missed in lower levels into context; (2) 

to establish relations between concrete lower levels and abstract higher levels of 

knowledge and understanding; (3) link their experiences with the classroom context; 

and (4) apply prior knowledge into the new knowledge. It is the view of this study that 

the action of IBL the development of inductive and deductive inquiry skills needs 

integrated teaching and learning, metacognition, student-centred learning, 

cooperative learning and the use of technology and other relevant teaching and 

learning material. Autonomy and authentic learning are evident products of IBL.    

The pre-test confirmed that students are lacking in basic knowledge of levels like pre-

visualisation, visualisation and analysis and students confirmed this by indicating 

during interviews that they had forgotten what they had learned at primary level. 

Teachers also attested to the fact that students lack basic knowledge, and in Grade 

11, teachers cannot go back and teach the basics that the students have missed. The 

reason for the teachers’ inability to teach the basics and being forced to stick to the 

traditional axiomatic approach of teaching is due to rigid timeframes teachers and 

students operate under, and the prescribed Grade 11 syllabus that guides them to 

teach at more advanced formal deduction level. Furthermore, limited or lack of 

resources restricts them to the traditional teaching approach.  

This study shows that to some extent, IBF influences both inductive and deductive 

inquiry. A constant improvement across the cognitive levels was evident in the 

experimental group while the comparison group showed inconsistency in the 

development across cognitive levels (Table 4.19). Therefore, development at pre-
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visualisation, visualisation, analysis and informal deduction levels support 

development at formal deduction and rigour levels. 

Teaching from the known to unknown, concrete to abstract, and inductive to deductive 

benefits students in a number of ways such as attaining geometric vocabulary and 

minimising errors when engaging in geometric problem solving. Feza and Webb 

(2005) deduced that language competency in general became a barrier to the 

attainment of higher levels of understanding among Grade 7s who were second 

language students. In addition, Makhubele, Nkhoma and Luneta (2015) found that in 

solving Euclidean Geometry problems students “misapplied rules, demonstrated signs 

of weak conceptual knowledge and had weak problem-solving skills” (p. 26). 

According to them, all the challenges served as barriers in the students’ ability to solve 

problems or provide proofs that occur at a most formal deduction level. Furthermore, 

Cassim (2007) outlines a number of errors that also arose in the current study (cf Table 

4.20). Teaching that does not close the gap between the known and the unknown, the 

concrete and the abstract; inductive and deductive learning cannot assist students to 

improve their geometric language or to understand geometric systems in order to 

avoid errors. Student highlighted that they had forgotten the basic and hinted that they 

would like to be assisted with basic knowledge like properties of figure; therefore, IBF 

that leads to IBL is a way of enabling students to learn the properties of shapes, 

relationships of figures, mathematical language and the vocabulary.  

According to the pragmatist view, effective teaching that yields meaningful learning 

means bridging the gap between subjective and objective inquiry, connecting the 

contradictions between theory and practice and not separating facts from experience 

(Mougan, 2013; Ozmon, 2012; Shields, 2003). In light of this, this study confirms that 

it is possible to bridge the gap between subjective and objective learning during IBL 

through the application of IBF. Descriptively, the comparison of the pre- and post-test 

results shows a link between lower inductive levels and higher deductive levels. 

Improvement at lower levels positively affected improvement at higher levels. Further, 

concepts and vocabulary learned in lower inductive levels through inductive inquiry 

are of essence in applications in higher deductive levels. This is an indication that in 

any balanced lesson, there is a link between inductive and deductive learning. 

Learning by inquiry is necessary to bridge the subjective and objective gap. Table 4.24 

revealed that IBF in the experimental group adhered to both inductive and deductive 



173 

facilitation and learning. Therefore, a constant improvement across inductive and 

deductive levels of knowledge and understanding was evident as shown in Table 4.19. 

By contrast, Table 4.24 shows that in the comparison group, teaching adhered to 

deductive teaching and learning. Therefore, no constant improvement was recorded 

in achievement of the comparison group as shown in Figure 4.19. Through the IBF 

intervention, a slight achievement was shown in pre-visualisation, visualisation and 

analysis; hence there was an improvement in informal deduction, formal deduction 

and rigour in the experimental group. Therefore, a gap between subjective and 

objective learning is evident. Through the teachers’ guidance to merge objective and 

subjective inquiry, students could overcome lack of understanding at lower levels, 

recognise what is different in isolated parts, and through the teacher’s guidance to 

critical inquiry, students could seek and understand the relationships between isolated 

parts. 

The process of IBF, according to Socratic inquiry, implies that both teacher and 

students ask probing questions meant to clarify basic assumptions underpinning a 

claimed truth or the logical consequences of a particular thought. Teacher questioning 

and students asking questions to seek knowledge and clarity as applied during 

intervention in the experimental group, enabled both teacher and students to unpack 

the meaning of space and shape and to find isolated parts in space and shape, and 

ultimately question and determine the relationships between isolated parts. In addition 

to Socratic inquiry as a basis for IBF, Dewey’s inquiry method highlights that the 

process of learning involves sensing perplexing situations, clarifying the problem, 

formulating a tentative hypothesis, testing the hypothesis, revising with rigorous tests, 

and acting on the solution. In their critical subjective inquiry, students could establish 

the relation between space and shape; understand the isolated parts of the shapes 

and establish the characteristics of each part. Further, students could critically 

establish relationships between isolated shapes and draw conclusions about the 

common characteristics of a combination of shapes. The understanding of space and 

shape that students have inductively acquired could lead them to understand and 

acquire deductive knowledge as well. Much as the process of learning equipped 

students with critical inquiry skills, in the pre- and post-tests, students dealt with 

perplexing situations of working on isolated parts of space and shape, and then 

attempted to determine the relationships among these isolated parts. Further, a 
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tentative hypothesis had to be created that some isolated parts can create one 

complete part (that is, inscribing figures like a quadrilateral within a circle); and the 

created bigger part has different characteristics from the parts that formed it; 

nonetheless, the characteristics of the isolated parts still influence the characteristics 

of the major part.  

IBF contributed to the enhancement of students’ problem-solving skills. Through IBF, 

the Grade 11 students learned to bridge the gap between theory and practice or 

subjective and objective reality. In this balanced form of learning, improvement was 

recorded in the results of the experimental group.  

5.3.2 Does inquiry-based intervention influence students’ development in geometric 

thinking? 

Van Hiele’s theory confirmed that in classrooms that are inclined to traditional teaching 

approach, students apply rote learning when they operate with mathematical relations 

that they do not understand; and students know only what the teacher has taught them 

and what has been deduced from it. In the non-participatory observation, teachers 

encouraged students to recall previous information through thinking hard to retrieve 

what was stored in their memory. Further, teachers led students to recall and repeat 

previously taught and learned theorems with the aim that recalled theorems would 

assist students in contextualising the new theorem introduced. In the activity provided 

to recall pre-knowledge, the teacher gave the answers without checking thoroughly 

whether each student had acquired the pre-knowledge. In this case, it would be hard 

for students to apply the new theorem introduced, as they were struggling to recall the 

terminology and concepts they had learned through repetition in the pre-knowledge 

section. The teachers in the comparison group were compelled to keep on giving 

correct answers to each question they asked as they progressed through the lesson. 

If the teacher did not provide the answer, students would not easily recall these from 

memory. Learning abstractly by repetition and memorising concepts does not enable 

students to retain concepts in long-term memory. This is consistent with the findings 

of Reagh and Yassa (2014) that repetition of facts and concepts improve recognition, 

but may reduce the reliability of representations in memory. They confirmed their 

hypothesis that repetition elicits a similar, but non-identical memory trace, and 

memorisation disadvantages students because some of the items in memory actually 
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are not recalled. Memorisation does not guarantee long term retention of information 

in the memory. In emphasis, Carr (2010) states that memorisation only teaches 

students procedures that they might not know where, how and when to use. In 

addition, non-participatory observations recorded spelling errors committed by a 

teacher during the lesson; for example, writing isosceles as “isoscelles”. Errors such 

as this contribute to students’ misconceptions and errors leading to the lower 

performance of the comparison group.   

The IBF approach promoted conceptual understanding where declarative and 

procedural knowledge were regarded as supplementary. However, memorisation of 

concepts is not promoted by IBF. In support, Chao, Murray and Star (2016) state that 

contemporary mathematics is based on inquiry and the teaching thereof is 

characterised as inquiry and reform-oriented mathematics that emphasises 

conceptual understanding and procedural fluency rather than memorisation aided by 

prompts. As suggested by Shields (2003), the teachers’ duty as the inquiry-based 

facilitator encompasses developing teaching tools, treating students as a community 

of inquiry and opening the classroom for public scrutiny. 

Intervention through IBF in the experimental group encouraged IBL. In other words, 

IBF encourages students to explore the problem on their own in order to understand 

what the facilitator was asking and to formulate a strategy (Chao et al., 2016); and 

through the facilitator’s guidance, the strategies that are formulated by students 

individually or in a group are linked to general strategies in the classroom. The 

intervention showed that, to ensure IBL in Euclidean Geometry, IBF must follow a 

number of steps. Firstly, the teacher leads students to start by engaging in concrete 

activities to develop conceptual understanding through inductive learning. Secondly, 

the IBL facilitator guides students to discover properties through analogical thinking. 

Thirdly, the teacher directs students to establish relationships among discovered 

properties. Lastly, students are encouraged to apply the established relationships and 

properties in deductive inquiry and problem-solving. IBF, in this study, revealed two 

essential components of learning Euclidean Geometry: a link between concrete or 

inductive inquiry and deductive inquiry and a link that is achieved through discovery, 

analogical thinking and ability to construct relations among properties of diverse 

mathematical structures. With IBF, students’ critical learning is evident, students’ 

creativity also manifests, students’ independence and self-reliance is established; and 
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finally, knowledge and understanding are acquired by students. IBF discourages drill 

and recitation in teaching and learning; therefore, IBL should replace learning by 

memorisation. IBF as effective teaching enables meaningful learning that is learning 

for a lifetime.  

Implementation of IBF in this study has shown that to certain extent, some of the skills 

listed in table 5.1 as focal points in teaching and learning geometry are achievable. 

Through application of IBL, to some degree students acquire skills as stipulated as 

focal points. Acquiring skills according to the listed skills, and improvement was 

evident when comparing the pre- and post-test of the experimental group at all levels 

of knowledge and understanding.  

Table 5.1: Focal points of teaching and learning geometry  

 developing spatial awareness, geometrical intuition and the ability to visualise 
providing geometrical experiences in two and three-dimensional objects; 

 developing knowledge, understanding and application of geometrical properties 
and theorems  

 promoting the ability to formulate and use conjecture, deductive reasoning and 
proof 

 develop skills of applying geometry through modelling and problem-solving in 
real-world contexts  

 developing beneficial ICT skills in specific geometrical contexts;  

 stimulating a positive attitude to Euclidean Geometry 
 developing awareness of the geometry in society, and of the contemporary 

applications of geometry. 

Adapted from Jones (2000) 
 
 
5.3.2.1 Spatial awareness, geometrical intuition, experiences in two- and three-

dimensional objects and the ability to visualise  

IBF’s focus on developing geometric intuition, spatial awareness, experience with 

objects and visualisation skills was successful as students in the experimental group 

performed better in post-test in questions 1.1 and 1.2. The facilitator’s action of 

probing, providing resources and allowing students to manipulate resources to re-

establish concepts functioned in building the geometric intuition and perception of 

three-dimensional objects. The intuition and perception enabled students to visualise 

the three-dimensional objects as two-dimensional through symbolic representation of 

real objects perceived from experience. A conclusion is reached in this study that 
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students in the experimental group were aided by IBF to develop spatial reasoning, 

that is, ability to draw conclusions about three-dimensional objects in terms of the 

objects’ two-dimensional representations from own explored information. 

Furthermore, students developed spatial abilities where they could visualise how real 

objects would look when represented two-dimensionally.  

5.3.2.2 Develop skills of applying geometry through modelling and problem-solving in 

real-world contexts  

IBF assisted students to acquire necessary skills and concepts through experience 

and interaction with real-world contexts at the lower levels of knowledge and 

understanding. The concrete levels enabled students to interact with the real world 

they live in, in other words, to react to their intuition and learn from perception. The 

geometry perceived and observed by students daily in their real world is shown in this 

study to apply in the conceptual classroom world. Students’ real-world observations 

were analysed and modelled into concepts and constructions or drawings; for 

example, properties and shapes that could assist students to formulate conjectures 

and predict the relationships between geometric concepts and figures. Through 

modelling, real-world knowledge, that is, knowledge and experience at the concrete 

levels, could be transformed into conceptual knowledge and abstraction could be 

established. Expressing the practical world in terms of the conceptual world by 

applying models to describe real objects contributes to bridging the gap between lower 

and higher levels of knowledge and understanding. Usage of resources and 

smartphone technology-based facilitation enhanced concrete interaction and 

therefore, modelling skills. The inquiry-based facilitator established an atmosphere 

that involved IBL that enabled students to recognise and understand the mathematical 

limitations of smartphone-based technology, produce and interpret technology-

generated results and to use smartphone technology to develop and evaluate diverse 

approaches to solutions (Lingefjard & Holmquist, 2001). Making conceptual models in 

real and practical contexts enhanced problem-solving skills in the group that received 

the intervention. This study showed that visual representations (shapes), 

conceptualised geometric objects and symbolic or graphical representations of real 

objects are a means for constructing Euclidean Geometry theory, and therefore 

application in problem-solving. Hershkowitz et al. (1996) outlined the cognitive process 

in Euclidean Geometry as in Figure 5.2. 
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Figure 5.2: Cognitive process in Euclidean Geometry 

Source: Hershkowitz et al. (1996) 

In light of Figure 5.2, this study contributes the Euclidean Geometry modelling 

framework as a process shown in Figure 5.3.  

 

Figure 5.3: Geometric modelling framework 

Emanating from the geometric modelling framework illustrated in figure 5.3, this study 

emphasises that cognitive processing in Euclidean Geometry is a modelling process 

of four stages. In the first stage, modelling to advance problem-solving considers 

interacting the real-world objects or phenomena and mathematics. The interaction 

leads to utilising drawings, figures, symbols and numeric representations to complete 

analysis, formulating conjectures, making predictions and translating the geometric 

modelling skill back to the real world, that is, applying geometric modelling in solving 

geometric problems out of the classroom context or in the real-world. Furthermore, 

this study avers that geometric modelling and technology are intertwined in the sense 

that students are bound to apply IBL skills to complete geometric modelling through 

using the internet to inquire more about geometric concepts. Evidence that geometric 

and mathematical modelling in general and technology are intertwined is provided in 
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this study as students in the experimental group utilised their smartphones and internet 

available at the school to search for more information to enhance their geometric 

knowledge and understanding.  

Hershkowitz et al. (1996) agree that diagrams made on a sheet of paper are not the 

starting point of the cognitive process in Euclidean Geometry. It is evident in this study 

that, in the comparison group (traditional axiomatic teaching approach), the cognitive 

process commences with Euclidean Geometry theory, followed by application. The 

type of cognitive process that occurred in the comparison group contributed to 

cognitive load; and students did not achieve in the task assigned to them (p> 0.05, p= 

0.221). Therefore, this study asserts that the cognitive process in Euclidean Geometry 

commences with visualising space and shape, followed by graphic and symbolic 

representations; and ultimately modelling the conceptualised and visualised symbolic 

representations into geometric theory. This cognitive process contributes to 

knowledge and understanding that allows for easy application in Euclidean Geometry 

problem-solving. In essence, this study emphasises that IBF is essential for teaching 

Euclidean Geometry and influences learning by modelling.  

5.3.2.3 Developing beneficial ICT skills in specific geometrical contexts 

Developing ICT skills is essential to stimulate the thinking of a technologically-oriented 

21st century student. In this research, participating schools were equipped with 

computers and computer laboratories (computer labs) and Wi-Fi was available on the 

schools’ premises. The availability of internet at schools and students having 

advanced cellular phones (smartphones) became an advantage to IBF that enhanced 

the development of IT skills in geometrical contexts. The use of smartphones during 

IBL was beneficial in this study. It was an advantage (as supported by Chao et al., 

2016) that, firstly, smartphones are used every day by students; therefore, the phones 

were accessible and easy to use with the available internet. Secondly, smartphone 

technology is simple because access to video, images, and text is not linked to a 

particular operating system and access to information is immediate. Lastly, 

smartphones in this study were a digital technology used to inculcate inquiry, 

metacognition, self-regulated and student-centred learning. The inculcated 

metacognition supported students to use existing strategies; for example, students 

applied the declarative and procedural metacognitive knowledge to discern how, why 
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and when to use strategies and resources at all levels of knowledge and 

understanding. Lingefjard and Holmquist (2001) agree that it is not sufficient for a 21st 

century mathematics teacher to know only how to define terms and execute 

algorithms. They emphasised that teachers must be well informed about the role of 

technology in pedagogy in order to exploit current technology. In agreement, this study 

suggests that teachers need to be equipped to take advantage of the available 

resources without using the socio-economic status of areas where schools are located 

as a justification of non-usage of diverse resources in teaching. The facilitator in the 

experimental group encouraged students to utilise their smartphones and available 

internet in learning, while the teachers in the comparison group complained of lack of 

technological teaching and learning resources.  

5.3.2.4 Stimulating a positive attitude to Euclidean Geometry 

Table 4.8 reveal achievement according to levels, that is, low achievement, average 

and advanced in the pre- and post-test. For example, the experimental group pre-test 

recorded 95.9% of the learners who obtained 0-20 marks which is the lower level. The 

number of learners who achieved at a lower level decreased at a rate of 23.7% in the 

post test and 73.3% of learners achieved at a lower level. This is an indication that 

there was improvement from the lower to either the average or advanced achievement 

level. When comparing the experimental and the comparison group, the comparison 

group recorded 92.8% in pre-test and 91.3% in the post-test of learners who were at 

the lower achievement level, the difference being 1.2%. th comparison 

groupcomparison groupA large number of students in the experimental group gained 

confidence and expertise in answering questions through IBF compared to the 

comparison group. The advanced category as well show that 0% achieved in the pre-

test, but 9.3% achieved in the post-test; while in the comparison group achievement 

in the advanced achievement category was 0% in both pre- and post-tests. Students’ 

achievement in the experimental group recorded a shift from low to average and 

advanced levels. A decrease at lower achievement levels and an increase at  average 

and advanced achievement levels in the experimental group shows that numerable 

students performed better at post-test and advanced to higher achievement levels (cf 

table 4.8). Therefore, it is evident that IBF influenced IBL in learning, and hence 

improvement in problem solving through IBL.   
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Inquiry-based intervention in this study showed that IBF promotes critical inquiry. This 

study showed that the traditional axiomatic teaching approach does not allow for 

remedial or re-teaching of the information that students have not acquired; therefore, 

the gap between geometric knowledge lost in lower levels and the deductive 

knowledge learned at Grade 11 is not bridged. This study confirmed that critical inquiry 

assisted students to recover geometric knowledge they had forgotten from lower 

levels. Table 4.19 shows improvement across all levels in the post-test, signifying that 

the inquiry-based intervention influenced students’ development in geometric thinking. 

Students’ comments in the interviews also indicate that the students’ geometric 

thinking had developed. For example, students highlighted that they did not know the 

properties and relationships of figures and students were not aware that the 

knowledge they had missed in lower levels was necessary in Grade 11 to enable them 

to understand how to prove theorems. However, students in the experimental group 

realised that learning does not commence with memorising a stated proof of a theorem 

in order to solve Euclidean Geometry problems.  

In a study conducted by Makhubele, Nkhoma and Luneta (2015), it was found that 

students’ inability to solve problems or provide proofs is caused by misapplication of 

rules, weak geometric conceptual knowledge and weak problem-solving skills. In 

agreement, it is deduced in this study that knowledge missed in lower levels created 

a knowledge gap. Therefore, students struggled with problem-solving and made errors 

relating to vocabulary, geometric language, labelling or naming figures, forcing 

solutions, relating known properties to incorrect figures, free hand constructions where 

instruments were needed, giving known reasons where they did not apply and 

incorrect application of memorised theorems. Intervention through IBF assisted the 

students in minimising the errors through critical inquiry. For example, wrong spellings 

like “cycle” were improved to the correct spelling “circle”. Naming or labelling of figures 

improved, for example, in Figure 1 of the problem, some students, who labelled the 

figure RPQS and PQSR, improved and labelled it correctly as PQRS. Lack of prior 

knowledge and the inability of teaching to bridge the gap contributes to lack of learning 

at higher levels. Therefore, students end up being forced to memorise concepts they 

are presented with in higher grades like Grade 11; and errors are evident as a result 

of learning by memorisation and trying to recall concepts during problem-solving.  
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Intervention through IBF influences students’ development in geometric thinking. The 

influence emanates from the facilitator’s role of ensuring that students are presented 

with material to use for inquiry purposes. Further, the influence is enabled by opening 

the classroom for participation and treating students as a community of inquiry where 

facilitator presence influences social presence in order influence cognitive presence. 

In addition, the facilitator’s influence involves probing in order to help students to 

understand what the facilitator asked, requiring students to explore on their own and 

formulate a problem-solving strategy. The facilitator uses the students’ mathematical 

thinking trends that emerge. These trends are utilised as clues to probe further to 

ensure holistic understanding of concepts and acquiring of knowledge. IBF revealed 

a better view of how students learn Euclidean Geometry successfully. This study 

asserts that inquiry-based intervention influences students’ IBL skills. Therefore, the 

acquired IBL skills, contribute to development in geometric thinking and spatial 

awareness; geometrical intuition and the ability to visualise; providing geometrical 

experiences in two and three-dimensional objects; developing knowledge, 

understanding and application of geometrical properties and theorems; promoting the 

ability to formulate and use conjecture, deductive reasoning and proofs; developing 

skills of applying geometry through modelling and problem-solving in real-world 

contexts; developing beneficial smartphone technology skills in specific geometrical 

contexts; stimulating a positive attitude to Euclidean Geometry; and developing 

awareness of the geometry in society, and of the contemporary applications of 

geometry.  

5.3.3 How does IBF divulge a better understanding of how students learn Euclidean 

Geometry successfully? 

It is observed in this study that the learning of Euclidean Geometry occurs in diverse 

ways. In particular, IBF promotes IBL through mathematical modelling, reflective 

thought, relational understanding and metacognition. At lower levels of knowledge and 

understanding, students in the experimental group learned by observing reality and 

analysing their observations using words, sketches, symbols and drawings. IBL 

enabled students to get intensely immersed in the construction of concepts, 

knowledge and understanding. Facilitator flexibility in utlising digital and visual 

resources enabled students to use digital resources as well as other resources like 

visual and text in order to (1) become intensely immersed in acquiring concepts, 
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knowledge and understanding in Euclidean Geometry; and (2) become actively 

engaged in mathematical modelling, that is, engagement in activities involving thinking 

about and creating models in diverse forms (concepts, sketches, symbols) to describe 

real objects and how the objects function (including properties of diverse objects); for 

example, describing real figures such as buildings in terms of sketches and symbols. 

Further, sketches and symbols were modelled into axioms and theorems through 

conjecture and deductions. Reflective thought and relational understanding were 

prominent in the orientation and conceptualisation stages of the intervention as applied 

in this study. That is, students were able to grasp basic conceptual relationships during 

the investigations.  

Tarricone (2011) agrees that reflective thinking is the basis for learning. For example, 

search and inquiry are processes that evolve, and these processes become part of 

problem-solving. Furthermore, Tarricone (2013) describes metacognition during 

learning in terms of Dewey’s phases of reflective thinking. That is, firstly, the teacher 

challenges students to reflect and think about a problem in a state of doubt and 

puzzlement. Secondly, thinking and reflecting on the problem leads the student to 

search, explore and inquire, and attempt to find resources that will assist in finding the 

solution. Intervention through IBF called for the teacher to provide accessible 

resources, that is, text material and allowing students to use their smartphones, using 

the internet to search, explore and inquire. However, students judged for themselves 

when and at what stage to use text, digital or both resources to search for information. 

Azevedo and Aleven (2013) agree that leaving students to take control of the available 

support material assumes that students are “judges of their own learning process and 

possess the metacognitive skills to determine when and how to use the support 

material” (p. 188). Supporting student’s creative thinking by using diverse material 

including digital material, contributes to authentic instruction. Authentic instruction 

refers to facilitation that applies real-world issues and authentic problems to inspire 

students’ learning and creativity (Cennamo, Ross & Ertmer, 2010). The authors further 

state that authentic instruction builds and provides autonomy for students.   

Authenticity, autonomy, cooperative learning and self-centred learning were traits 

evident at all stages of learning during the intervention. These traits initiated 

metacognition at all stages of learning. Students were aware of how they learned, that 

is, they had knowledge of their own cognition and process of learning; in addition, 
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students could regulate their learning process (Clarebout, Elen, Juarez Collazo, Lust 

& Jiang, 2013; Tarricone, 2011). For example, students realised that they were 

challenged in learning some of the concepts. This awareness fostered a need in them 

to search for further information as they were afforded a chance and guidance to do 

so. The use of technology and text materials to search for information was evident at 

all stages. This is evidence that students owned their learning. Azevedo and Aleven 

(2013) state that to foster metacognition students must have control over the use of 

tools and the facilitator’s support. The students’ ability to search for concepts and 

information is evidence that students became involved in exploration and discovery 

through self-centred learning. The teacher’s act of probing encouraged students to 

learn by getting completely involved, that is, learning by applying intellect, senses, 

feelings and exercising personal preferences. Further, IBF yielded open-ended 

learning, that is, informal learning that is not based on specific formulae. According to 

Kilpatrick, Swafford and Findell (2001), teaching should support students’ informal 

knowledge and move beyond it. For example, giving an instructional sequence to help 

students to identify specific classes of quadrilaterals and understand the relationships 

among the classes. In addition, Kilpatrick et al. (2001) state that instruction that assists 

students to move from informal to formal learning promotes students’ ability to learn 

how to arrange the figures from the most to the least general members of the class 

(e.g. from quadrilaterals to squares), to embed hierarchies in the names they gave to 

shapes (e.g. “squares to rectangles”), and to examine the characteristics of figures. 

Through IBF, this study has shown that students learn by exploring the informal 

knowledge that enables them to acquire formal knowledge. In order to assist Grade 

11 students to recall the knowledge they have lost at lower grades, Euclidean 

Geometry lessons should commence by teachers orientating students to explore their 

informal knowledge at levels such as pre-visualisation and visualisation. Without 

building on informal knowledge, formal knowledge becomes difficult to acquire as seen 

in the case of the comparison group where teaching did not link formal knowledge with 

students’ informal knowledge.  

IBF as applied in this study yielded IBL characterised by traits such as self-centred 

learning, authentic learning and autonomy. The traits acquired contributed to 

metacognition and ultimately to critical creative thinking. According to Cennamo et al. 

(2010), involving students in critical thinking tasks, the teacher facilitates and inspires 
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high levels of engagement in the content learned, and therefore, deeper learning is 

promoted. In addition, Cennamo et al. (2010) define creative thinking as higher-order 

thinking, considering multiple possibilities in problem-solving, Further, Cennamo et al. 

(2010) agree that types of critical thinking include inductive thinking (that is, moving 

from parts or examples to whole or generalisations) and deductive thinking (that is, 

moving from the whole or generalisations to the parts or underlying concepts and 

examples). Table 4.24 show that intervention, that is, facilitating through IBF fostered 

both types of critical thinking in IBL, that is, inductive and deductive thinking. However, 

Table 4.24 shows that, in the comparison group, only deductive reasoning applied in 

learning, and it was perpetuated by the traditional approach of teaching.  

When critical thinking happens whether deductively or inductively, the following 

characteristics should be evident, according to Cennamo et al. (2010): non-algorithmic 

process, complexity, multiple solutions, nuanced judgements and interpretation, 

multiple criteria, uncertainty, self-direction, imposing meaning and conscious problem-

solving. Intervention through IBF contributed to the characteristics of critical thinking 

through both inductive and deductive teaching (Tables 4.24 and 4.25). However, 

teaching through the traditional axiomatic approach that occurred only deductively 

(Tables 4.24 and 4.25) contributed to algorithmic approach to problem-solving, rote 

learning; passive problem-solving; lack of critical thinking with the teacher being the 

only disseminator of knowledge.  

IBL enables students to learn how to organise information for them to comprehend 

how communal knowledge erupted from the ancient contexts, what knowledge should 

be retained and what essentials should be transformed (Ozmon, 2012). Linking 

knowledge and experience is essential in achieving inductive learning. The 

intervention conducted in this study, as well as pre-tests, oriented students to draw on 

their prior experience through pre-visualisation linking with visualisation. Knowledge 

and understanding of the world as perceived by an individual is very important. 

Perceptual powers (how an individual perceives the world) are essential in achieving 

the pre-visualisation level which lays the foundation for visualisation. Table 4.19 

indicates that students struggled with pre-visualisation and visualisation was thus also 

affected. The two levels of knowledge and understanding that need real-life 

experience are lacking. However, the experimental group recorded an improvement 

in the post-test. Further, awareness of the importance of perceived real-life information 
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experience was evident after the pre-test as students in both groups stated that they 

were aware that there were shapes everywhere they went.  

It is believed that the difficulties encountered by students in visualising and clarifying 

their thoughts is impacted by inexperience and immature rational status (Gutierrez, 

Leder & Boero, 2016: 111). Further, visualisation means the capability to characterize, 

text, produce, alter and build a conversation on facts that are visual. In visualising, 

visual insight is prioritised. However, Gutierrez et al. (2016) state that geometry 

exploits visual intuition which is the most dominant of our senses. The advantage 

experienced when visual intuition is exploited is that students do not perceive reality 

and provide global insight to inspire conjecture that will lead to understanding proof. 

Despite the essence of visualisation in the learning of geometry, students still 

struggled with visualisation skills as recorded in Table 4.19. The improvement in the 

experimental group showed a lower rate, and in the comparison group no 

improvement is recorded. Although minimal performane rate, IBF posed a good impact 

on the students’ visualisation abilities. 

Group work and cooperative learning appeared to be essential in the students’ 

cognitive growth. Continued collaboration in groups and discussions, that is, teacher-

student discussions and student-student discussions assisted students to share ideas 

and individual students to benchmark their own ideas against other students’ ideas. 

Students could interact with each other to explore, discover and analyse in order to 

advance IBL. To maintain cooperative learning during the intervention, the facilitator 

maintained control of the learning environment, designed learning activities, structured 

teams work, and ensured that facilitation actions did not influence the students’ views 

and participation (Li & Lam, 2013).  

In general, this study revealed that IBF through questioning provides direction to 

students on learning Euclidean Geometry. The direction relates to enabling students 

to start by applying perception and intuition to build experience. Secondly, students 

put what is perceived into visual connotations. In the third stage, the visual 

connotations are analysed in order to identify concepts, vocabulary and mathematical 

language that will assist students to build conjectures. Fourthly, suppositions were 

tested and validated in accordance with existing and confirmed proofs, axioms and 
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theorems. Developed knowledge about geometric concepts, axioms and theorems 

could be applied later in problem-solving for classroom and real-world contexts. 

While researchers conceptually comment IBF and learning as a necessary means to 

alleviate the problems of learning in the South African context, this study has 

embarked on practical application of IBF in promoting IBL in Euclidean Geometry. The 

confidence in implementing IBF is benchmarked against the good achievement 

recorded in countries like Netherlands, where the success is attributed to IBL. IBL is 

student-centred. Therefore, the teaching or monitoring of IBL in this study is mentioned 

as IBF. The focus in this study was to assist teachers with facilitation strategies to 

employ in their teaching of circle geometry in order to support students to reach higher 

levels in geometry thinking. IBF was applied to enhance IBL based on the pragmatist 

view of inquiry learning from John Dewey’s theory of pragmatism as related to IBL. 

This study has shown that teaching Euclidean Geometry applying the traditional 

approach only, contributes to drill and practice that leads to memorisation. 

Memorisation, in turn, contributes to lack of learning problem-solving skills properly. 

However, this study does not promote the complete exclusion of traditional disciplines 

in facilitation, although IBF initiates IBL that equips students with skills such as 

creativity, critical thinking, student-centred learning and confidence in order to identify, 

pose and solve problems. 

5.4 IBF FRAMEWORK 

IBL has been proven in this study to enhance the students’ mathematical problem-

solving skills in Euclidean Geometry (at statistical significance of p=0.001, p< 0.05 and 

a larger effect size of 0.55). Rather than ignoring the students’ knowledge gap among 

levels on knowledge and understanding, IBL needs to be used to bridge the gap 

between lower inductive levels that students have missed and the higher deductive 

levels that students in Grade 11 are faced with.  

This study found that in the first step of facilitating learning in Euclidean Geometry, the 

teacher should provide resources and engage students to intuitively interpret their 

experiences in their physical world. Secondly, the teacher should probe and question 

students to involve them in utilising what was perceived in the physical world and 

creating visual images in their mental world. Visualisation should lead to a collection 
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of ideas contributing to associating the physical world with the visual mental world. 

Thirdly, the visualised information should be applied at the analysis level to explore 

meaning and relationships between concepts. At this stage, more searching for 

information is necessary to acquire deeper knowledge and understanding of meanings 

and concepts. More vocabulary and geometric language is accumulated at this stage. 

In the fourth stage, analysed parts and the information or concepts that emerged are 

used to formulate conjectures based on relations of concepts. Fifthly, through search 

for information and supporting facts inferences are made, conjectures are tested, 

confirmed and validated. Conclusions are drawn from conjectures at this stage. This 

is the stage where conclusions as theorems are comprehended. The students do not 

only comprehend the theorems as memorised concepts, but understand the origin of 

concepts that combine to build a theorem. The last and the sixth stage is where the 

conclusions reached have to be applied in problem-solving and in external 

mathematical systems. Generally, the process of IBF influences IBL, that is, the 

facilitator: (1) directs orientation to perception and visualisation; (2) coordinates 

conceptualisation for analysis and conjecturing and (3) guides students to conclusions 

for validation and application. The steps of facilitation are: (1) orientation to perception; 

(2) orientation to visualisation; (3) coordinating conceptualisation through analysis; (4) 

directing conceptualisation for conjecturing; (5) guiding conclusions to validate 

conjectures; and (6) guiding conclusions for application of knowledge and 

understanding. The findings of this research study have led to the creation of the 

following model as the framework of IBF for geometry problem-solving (Figure 5.4). 
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Figure 5.4: IBF framework for geometry problem-solving 
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In Figure 5.4, the facilitator follows the steps in chronological order, which is, step 1 

should be completed, followed by step 2 and follows the conclusion step. In the whole 

process of IBL, concrete materials such as a tangram and exploration through digital 

media assist students with abstraction, building of spatial sense, collecting relevant 

and existing geometric concepts, exploring geometric concepts and acquiring the 

vocabulary. Teacher role through IBF is of essence to guide students through the 

process of inquiry. In the IBF framework for geometry problem- solving (Figure 5.4), 

the teacher role is displayed as coordinator, orchestrator and a guide. The teacher 

plays the role of facilitation mostly through probing, questioning as well as validating 

and concluding the ideas and geometric thinking contributed by students. Further, the 

teacher is the leader in terms of channelling the broad ideas that students accumulate 

in the process of inquiry. In order to achieve the IBF successfully, the teacher displays 

principal skills in geometric system. In addition, the teacher contributes in each step 

the students take. The students do the thinking, searching, analysing, conjecturing, 

testing, inferencing, conclusions and applications. The teacher guides them to think 

logically and confirms the students’ conclusions.  

Further, in the process of a strategic IBL, skills are acquired and there is a connection 

between and among the skills acquired. In addition, students acquire knowledge of 

content, concepts and vocabulary. A connection should be realised among the content 

concepts and vocabulary. Spatial understanding enable students to interpret, 

understand, and appreciate their innately geometric world. In addition, students 

acquired more insight and intuitions about two- and three-dimensional shapes and 

their characteristics, the interrelationships of shapes, and the effects of changes to 

shapes. Through spatial understanding and knowledge, students develop a strong 

sense of spatial relationships and acquire efficiency in concepts and language of 

geometry. Students are better prepared to learn advanced mathematical concepts 

such as axioms and theorems deductively because of having a rigorous spatial sense 

and being concretely efficient in geometric concepts and language. 

The IBF framework in Figure 5.4 is envisaged at assisting teachers to conduct IBF for 

the successful implementation of IBL. The model benefits learning as students are 

active participants in discovering and creating knowledge in order to apply in formal 

and informal education systems.  
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5.5 EVALUATING THE STUDY OBJECTIVES 

5.5.1 Objective 1: The impact of IBF strategies on students’ development of higher 

levels of geometric thinking.  

The improvement of lower levels of knowledge and understanding had influenced the 

development in higher levels of geometric thinking positively (Table 4.19). The lower 

the pre-visualisation and visualisation skills, the lower are the skills in the formal 

deduction level. For example, in the comparison group, the perception and 

visualisation skills of 0% achievement yielded 1.4% achievement at deduction level in 

the comparison group. These basic stages also affected the rigour level. Improved 

pre-visualisation and visualisation skills at post-test in the experimental group yielded 

a better improvement rate in the formal deduction and rigour level. Among other 

reasons, research has attributed the difficulties experienced by grade 11 students in 

learning geometry to lack of background from lower classes Alex & Mammen, 2014; 

Malati, 2014). Further, research affirmed that only higher levels are recognised at 

grade 11, regardless of the fact that students did not achieve the lower levels. The 

implication is that, in lower classes, lower levels of knowledge and understanding were 

either not addressed through teaching or not achieved by students. The improvement 

of formal deduction and rigour levels in this study is attributed to improvement in 

problem-solving at lower levels. Lower and more concrete levels, that is, pre-

visualisation, visualisation; including middle levels of knowledge (analysis and informal 

deduction) as depicted by this study, are levels where students were guided through 

IBL to acquire vocabulary and conceptual understanding. This study has shown that 

the errors committed by experimental group students in the pre-test were lessoned in 

the post-test. Through IBL, students learnt the importance of accurate constructions 

in their interaction with the IBL facilitator during intervention (cf Vignettes). Formal 

deduction and rigour levels require a solid foundation in conceptual understanding, 

geometric vocabulary, ability to perform accurate constructions of figures, and ability 

to describe and contextualise the figures they construct or they are exposed to. In this 

study, IBF orientated students to most of the skills mentioned above required in 

problem solving at formal deduction and rigour levels. Therefore, this study has shown 

and asserts that good performance in problem solving at formal deduction and rigour 

levels is attainable on condition that lower levels were addressed through IBF and 

students achieved the levels not through memorisation, but through cognitive 
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processes such as IBL that enables students to retain knowledge and understanding 

in their long term memory.         

5.5.2 Objective 2: The influence of intervention in activating IBL  

IBL influenced by IBF has contributed to students’ development of basic levels. In 

these basic levels, students acquired inductive learning skills that assisted them to 

acquire vocabulary and mathematical language that needs to be applied at the formal 

deduction level. For example, geometric vocabulary and concept understanding was 

accumulated which assisted in deductive inquiry to complete the problem in place.  

5.5.3 Objective 3: If IBF can divulge how students learn Euclidean Geometry  

The study had shown that students learn Euclidean Geometry through reasoning by 

linking the inductive and deductive parts of space and shape geometry. In essence, it 

had shown that exploration, discovery, modelling, creativity, metacognition and self-

centred learning are key to both inductive and deductive inquiry that lead to better 

understanding of concepts. Further, students learn by applying critical thinking to 

utilise perception and experience in order to construct conjectures. After constructing 

the conjectures, they need to inquire deductively by utilising existing facts and 

knowledge (such as axioms and theorems) to confirm the conjectures they have 

constructed. After confirming the conjectures, that is, adopting what is right and 

rejecting what is wrong, students, can apply knowledge and understanding in problem-

solving for geometric and non-geometric systems.   

5.6 IMPLICATIONS OF THE STUDY TO THE PRACTICE 

5.6.1 Theoretical implications  

Study results supports the supplementary role of inductive teaching to deductive 

teaching and learning. Pragmatism is effective in terms of bridging inductive and 

deductive teaching. It is of essence that teachers consider re-teaching and fostering 

prior inductive knowledge. However, teaching that promotes long-term knowledge and 

understanding merges learning through inductive and deductive inquiry. Students are 

likely to retain information for long when they own their learning, that is, when learning 

is student regulated and centred, authentic and autonomous. The teacher is not 

regarded as the source of all information, however, due to lower levels of students’ 
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expertise in Euclidean Geometry, the teacher remains the guide in all processes of 

learning. Therefore, traditional disciplines are not completely ignored, but are applied 

to guide dtudents through. Metacognition also plays a major role to assist students to 

be aware of how they progress and where they fall short in the process of acquiring 

knowledge and understanding.  

5.6.2 Methodological implications 

The pragmatist philosophy in this study expresses that a subjective discourse is 

essential to interpret objective reality.  Both objectivity and subjectivity stances 

provided a frame of reference for this study. Pragmatically, this study addresses 

research that operates between induction and deduction. Further, pragmatic 

arguments in this study are context-based, generalizable and can be transferred to 

other settings. Mixed methods research followed an embedded approach. 

Nonetheless, only the observation part of the qualitative research was embedded 

during intervention at experimental groups and during teaching at comparison 

groups. Interviews were embedded, however, conducted at the end of the post-test 

for both the experimental and the comparison groups. This was convenient for all 

participants in the study. Quantitative data analysis through paired t-test addresses 

objective stance of the study, while qualitative data through content analysis 

addresses the objective stance. The two standpoints were triangulated in order to 

provide a pragmatic stance of this study. The dominance of the qualitative data led to 

the rejection of the null hypothesis, therefore, acquiring a stand to support the 

alternative hypothesis. Qualitative data provided evidence through observations and 

interviews to support the alternative hypothesis. In addition, the qualitative findings 

played a role of complementing quantitative findings, therefore, the credibility of the 

quantitative finding was increased. Further, results from the qualitative stance 

provided clarity of the results in the quantitative stance. Pragmatically, knowledge 

contributed as IBF processes and framework in improving IBL is an essential product 

towards teaching, facilitating and learning transformation in Euclidean geometry. In 

essence, the pragmatic stance of this study asserts that research needs to move 

back, forth and across objectivity and subjectivity in order contribute towards change.  
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5.6.3 Pedagogical implications 

This study revealed that IBF is effective than the traditional axiomatic approach. IBF 

is the teaching method that begins by concretely tapping on students’ experience to 

allow students to understand inductive and hence deductive stages better, and this 

method of teaching is proven to enhance problem-solving skills in Euclidean Geometry 

in this study. IBF allows students to improve through self-centred learning, therefore, 

learning by memorisation is limited. Further, students are led to explore and discover 

to acquire concepts and vocabulary. In the whole process of IBF, teacher operates 

according to the belief that students are motivated to learn. Therefore, the teacher, 

treats students as individuals who are at diverse levels of learning, and the implication 

thereof is that diverse facilitation methods should be used to accommodate all student. 

The intervention revealed challenges encountered in implementing IBL. Firstly, time 

constraints remain a challenge. More time is needed to let the students learn at their 

own pace. Discussions should be allocated enough time to enable the IBF facilitator 

to perceive the students’ thinking and guide them step by step leading them to 

metacognition and to allow self-centred learning. Secondly, learning through inquiry 

needs tools or resources and facilitator creativity. The socio-economic status is not 

supposed to serve as the facilitator’s reason for not allowing students to make use of 

any available resources for inquiry purposes. For example, when interviewed, 

teachers complained about lack of resources. The schools that participated were 

equipped with Wi-Fi in the school premises. Students own smartphones, however, 

most schools’ rules do not allow students to operate phones in classroom. The 

intervention in this study has revealed that if students are guided and given a clear 

direction while operating smartphones as the available technology tool, educational 

inquiry can be advanced through smartphones. In essence, guided inquiry while 

manipulating gadgets like smartphones contribute to authentic inquiry. Lester, Mott, 

Robison, Rowe and Shores (2013) outlined that authentic inquiry refers to a situation 

where students generate research questions and guide themselves through the 

problem-solving process, and Clark (2012) motivated that guided inquiry refers to 

situation where the teacher engages students in class discussions where every 

student will be involved. In this study’s intervention, no irregularities were found when 

students were using their smartphones during the mathematics period under my 

supervision as the facilitator. Further, no inconsistencies were found during teacher-
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student dialogue, student-student discussions, and students’ self-regulated as well 

self-centred learning.  

5.7 CONCLUSION  

This section presents the conclusion from literature, qualitative and qualitative 

sections.  

5.7.1 Conclusion from literature review 

Literature show that declarative and procedural knowledge are both essential in 

learning. Therefore, facilitation need to recognise both. It is a challenge to students 

when facilitation orientates them to procedural knowledge only while they have missed 

declarative knowledge as a basic requirement. However, literature recommends 

learning through search and analogy as a means to close the gap between declarative 

and procedural knowledge. Search and analogy are components of inquiry. IBL is 

student-centred and instead of providing a straight and simple route to solutions, it 

engages students in sense making activities that causes them to apply critical thinking 

in problem-solving.  

IBF technique directs teachers to utilise well-crafted problems and questioning 

techniques to guide students through an IBL process. The IBL process generated 

through students’ response to IBF, encompass skills such as conjecturing, experiment, 

exploring, creating, applying and communicating. The mentioned skills perpetuate IBL 

process that contributes fully in assisting students to acquire declarative knowledge. 

For example, knowing what, that is, knowing and understanding geometric concepts 

and vocabulary. Declarative knowledge acquired can further assist students to 

advance procedural knowledge, that is, how to, or application of declarative knowledge 

in deductive inquiry.  

Engaging in sense making activities inductively to acquire declarative knowledge for 

application in advancing procedural knowledge, enables students to learn a network 

of relationships that link geometric processes and concepts other than memorising 

facts, rules and names. The network of relationships in geometry, geometrical 

processes and concepts could be advanced in totality when students possess self-

acquired knowledge and understanding in pre-visualisation, visualisation, analysis, 

informal deduction, formal deduction and rigour. IBF through questioning enables 
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students to adhere to a hierarchy of levels of knowledge and understanding without 

skipping any level. Facilitation that focuses on advanced levels while the students 

have not mastered the basic levels contribute to cognitive load. Further, the facilitator’s 

reasoning that is different and higher than the levels of knowledge and understanding 

that students are exposed to, aggravates the cognitive load. Facilitation in each level 

of knowledge and understanding must address the needs of that level according to 

students’ levels of learning.  

Different levels of knowledge and understanding are influenced by diverse learning 

experiences such as action learning, visual learning and verbal learning. For example, 

pre-visualisation and visualisation concerns visual learning more than verbal learning, 

whereas analysis and informal deduction may need less visual learning and formal 

deduction and rigour concerns more of verbal and abstract learning. The learning 

experiences involves both inductive and deductive learning. Diverse facilitation 

resources, that is, visual, audio-visual, text and digital resources are necessary in 

order to assist students to advance diverse learning experiences in diverse levels of 

knowledge and understanding.  

IBF orientates students to both formal and informal education. Further, communication 

and cooperative learning are of essence in IBL. Education acquired in both deductive 

and inductive ways assist students not only to gain classroom knowledge but to also 

learn how to live and how to apply critical thinking by solving problems that concerns 

out of the classroom context.  

5.7.3 Conclusion from the Quantitative Component 

A conclusion is presented based on what emanated from the intervention as well as 

pre- and post-test. Intervention has had an influence on the improvement of learning 

and has shown that inductive and deductive learning supplement each other in 

learning Euclidean Geometry. Descriptive analysis displays a constant improvement 

of all levels from pre- to post-test in experimental group as compared to the 

comparison group. Further, post-test results indicate that students gained confidence 

to attempt answering questions they could not answer in pre-test, regardless of a zero 

mark they have obtained. The number of students who obtained lower scores in 

different questions decreased in the post-test, while the number of students who 

obtained higher scores increased, specifically in the experimental group. In some 
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instances, the comparison group had shown an increase but lower than that in the 

experimental group. As the increase in experimental group is attributed to the 

intervention, a slight increase in some of the levels in the comparison group is 

inferenced to a comment given by one student that because they have seen the 

questions before, the post-test was not difficult as the pre-test. The t-test scale has 

recorded an improvement with a p-value of 0.0001, p< 0.05 in the experimental or 

intervention group. This shows that there is a chance that IBL enhances problem-

solving skills in Euclidean Geometry. 

5.7.4 Conclusion from the qualitative component 

Based on observations, teachers and students’ views, a conclusion for this section is 

presented. Optimum time is necessary for facilitation and to enable students to 

explore, discover new and old concepts, learn from experience in order to acquire 

successfully knowledge in all levels of learning in Euclidean Geometry. Students are 

able to evaluate their own thinking and learn from others through cooperative learning 

and teamwork. Basic concrete knowledge such as skills learned in pre-visualisation, 

visualisation and analysis, is necessary for students’ success in abstract levels such 

as informal deduction, formal deduction and rigour. Facilitation that can bridge the gap 

among all levels of knowledge and understanding can enable students to display 

awareness of the connection between mathematical and extra-mathematical systems; 

to construct mathematical representations; and to search for structure, patterns, 

relationships and the main aim of generalisation.  

However, availability of resources such as digital and visual resources enhances IBF 

and therefore IBL. Learning by inquiry encourages every student present in the 

classroom to participate actively. Participation becomes authentic because students 

have to search for knowledge by themselves through application of critical thinking. 

The more the facilitator prompts by asking questions, it is the more students will ask 

to seek clarity. The other important factor of IBF is that students are guided to explore 

and discover facts other than to memorise ready-made theorems. Most students 

cannot learn by memorisation but can readily discover facts and concepts comprising 

theorems in the Euclidean Geometry system. Facts and concepts learned through self-

discovery can be retained for long in memory as compared to memorised facts and 

concepts. In addition, students are able to see the origin of concepts as they participate 
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in IBL and therefore, they are able to retain knowledge and understanding in their long-

term memory. To some extent student interviews had shown that, (1) through IBL, 

students realised that they have full potential to solve problems in Euclidean 

Geometry; (2) they should be actively involved in the learning process; (3) it is 

important to concretise Euclidean Geometry in order to fully comprehend the abstract 

component.  

5.8 LIMITATIONS 

Only Grade 11 students in selected Tshwane West and South schools participated, 

hence generalised conclusions cannot be made in this study. For example, conditions 

of study in Tshwane West and South district might not be the same as at other schools 

in other parts of South Africa. Therefore, findings and conclusions refer mostly to 

Tshwane North and West areas. Only circle geometry part of geometry as chosen from 

topics in the Grade 11 syllabus was studied, therefore, conclusions cannot be made 

that IBL can be practised in all parts of mathematics. However, the IBF framework that 

developed from this study can be modified to suit application in other sections of 

geometry. The study was limited to intact classes that posed a threat to internal 

validity. Absolute control of research environment could not be maintained, therefore, 

high internal validity cannot be claimed. In addition, high internal reliability cannot be 

claimed as a result of test retest measure. Situational factors such as absenteeism or 

lack of students’ interest especially in the comparison group, contributed to high 

attrition mainly during post-test period. Therefore, pre and post test results are limited 

to students who wrote both the test.   

5.9 RECOMMENDATIONS 

This mixed-method study focused on implementing IBL to enhance students’ 

mathematical problem-solving skills in Euclidean Geometry. The implementation of 

IBL through IBF is envisaged to assist mathematics teachers and mathematics 

practitioners with strategies to teach or facilitate the learning of Euclidean Geometry 

or other sections of geometry in order to support students to acquire knowledge and 

understanding in both inductive and deductive levels of knowledge and understanding. 

This study has shown that IBF influences IBL that assist students to improve lower 

levels of learning in order to advance higher levels of knowledge and understanding. 

In addition, this study had shown that IBF equips students in concrete levels to enable 
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them to advance the abstract levels of geometric thinking.  Therefore, to assist 

students to apply knowledge from lower concrete levels in higher abstract levels of 

geometric knowledge and understanding, IBL implemented through IBF based on 

integration of Van Hiele’s theory of geometric knowledge and Dewey’s theory of 

pragmatism is recommended by this study.   

5.10 RECOMMENDATIONS FOR FURTHER RESEARCH  

Teachers at experimental groups displayed lack of confidence in terms of facilitating 

IBL. Based on the fact that IBL enhances students’ problem-solving skills, teachers 

need to be empowered to be able to facilitate IBL. Further, students are still struggling 

in basic levels of knowledge and understanding in Euclidean Geometry. For example, 

the visualisation level of knowledge and understanding reflected low performance. The 

IBF framework contributed by this study need to be applied in order to assist teachers 

to support students to learn meaningfully across all levels of knowledge and 

understanding in geometry. Therefore, further research on the model that the study 

contribute as the framework of IBF is recommended.  
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APPENDICES 

APPENDIX A: LESSON PLAN (EXPERIMENTAL GROUP) 

Content area:            

Space and shape (Euclidean Geometry) 

Topic:            

Circle geometry: focus on cyclic quadrilaterals 

Specific aims applicable:          

The lesson is aimed at implementing IBL to empower students to acquire problem 

solving skills and cognitive skills that will equip them to apply acquired knowledge in 

diverse contexts out of the classroom situations.   

Specific skills appropriate 

 Advance the appropriate utilisation of mathematical language.  

 Assess and review results for quantitative data collected, organised, and 

analyse.  

 Apply critical thinking skills to solve problem utilising mathematical processes.  

 Usage of properties of figures and spatial skills as well as creative thinking skills 

in problem solving.  

Context that is applicable: 

Classroom, group work, students’ self-centred and self-regulated learning skills, 

teacher Inquiry – based facilitation 

 
 
Teacher’s activity (applying IBF)  
 
Student activity  (implementing IBL) 
 
Methods of teaching: Facilitation through questioning, probing, demonstration and explanation 

Instructional phase and 
the cognitive level 

Teacher activity (facilitating 
IBF) 

Student activity (IBL approach) 

 
Information or inquiry 
(level 0 pre-
visualisation) 
 

For pre-visualisation teacher 
asks questions to let students 
recall relevant geometric 
information related to their real 
world. 

Students recall geometric figures in their 
real world. Name prominent shapes and 
figures. 
For example, recognising figures at the 
students’ exposure such as shapes of 
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Name other prominent shapes 
in habitat construction, 
architecture, economy, 
industry 
Engage students in 
discussions through probing 
to rationalise space and 
shapes observed at the 
moment. 

road signs, soccer pitch, buildings and 
more.  
 
Manipulate a tangram to explore 
different shapes contained in a tangram 
 
Discussions referring to prominent 
shapes to answer the following 
questions: What is geometry, what is 
space, what is shape? How is geometry 
relevant in everyday life? What is the 
relationship between space and shape? 

Information or inquiry 
(level 1– Recognition/ 
Visualisation) 
 

Teacher makes objects or 
materials available for 
students to view, identify, and 
classify according to what they 
see.  
Probing questions are asked 
by the teacher to confirm 
students’ orientation and 
conceptualisation.  
 

Through discussions students explore 
(through action learning) the presented 
material related with their pre-
visualisation knowledge; and asks clarity 
seeking questions. (Orientation 
according to IBL framework). 
Student do free hand constructions 
shapes outlined in the pre-visualisation.  
 

Guided or directed 
orientation 
(level 2 – Analysis) 

Teacher facilitates through 
guiding students, affording 
them a chance to learn more 
about the properties of 
explored during visualisation, 
and teacher can lead students 
to provide sketches for 
materials according to classes  

Students participate in activities 
empowering them to discover implied 
connections. 
Produce sketches denoting relations 
among shapes or figures, and outline the 
properties according to groups of 
materials. For examples, four-sided 
figures, three sided figures, round figure, 
etc. (Conceptualisation according to IBL 
framework) 

Explication 
(level 3 – Informal 
deduction) 

Teacher emphasises the 
terminology once the students 
have obtained a good 
conceptual background. The 
discoveries are made as 
explicit as possible 
Concept mapping and 
construction 

The students’ experiences are linked to 
shared linguistic and symbols (for 
example, quadrilaterals as rhombus kite, 
triangles as scalene, equilateral and 
individual figures are explored in relation 
to properties, for example properties of a 
square, rectangle, rhombus, isosceles 
triangle etc. 
*concept mapping and construction of 
figures must be considered.  
(Conceptualisation stage according to 
IBL framework 

Free orientation 
(level 4- Formal 
deduction) 

A teacher might present more 
information to afford the 
students a chance to learn 
what they could not acquire 
clearly. For example the 
relation of a circle and other 
figures like pentagon, 
triangles and quadrilaterals 

Students advance difficult activities in 
order to get empowered with knowledge 
on systems of relations. For example 
understanding a cyclic quadrilateral, 
relating properties of a circle and a 
selected quadrilateral to formulate 
conjectures, and proof conjectures 
(Investigation stage according to IBL 
framework) 

Integration 
(Level 5 – Rigour) 

The teacher does not 
introduce new information, 
sum up what was taught, and 
review the acquired 
information together with 
students.  

Students sum up the acquired 
information for retention. Conclusions 
are made; students look forward and 
back to verify the solutions they got. 
(Conclusion stage according to the IBL 
framework) 
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Content range that is applicable-  

 Connecting mathematical structures 

 Build mathematical illustrations 

 Exploring patterns, constructions, relationships as well as principal aims of generalisation in circle 

geometry. 

 Application of IBL to advance pre-visualisation, visualisation, analysis, informal deduction, formal 

deduction and rigour in circle geometry.  

Teaching and learning support material necessary 

 Tangram 

 Mathematical instrument 

 Projector 

 Textbooks 

 Cell phones and internet  

Assessment (types of assessment, assessment approaches and assessment evidence collection 

techniques; also specify what will be assessed and how it will be assessed).  

Formative assessment- short questions by the teacher to encourage inquiry and to lead student 

through different levels of learning. 

Summative assessment  

Students will write pre- and post-tests  

What will be assessed? 

Mathematical inquiry 

 awareness of the connection amid mathematical structures 

 ability to build mathematical illustrations 

 Exploring patterns, constructions, relationships as well as principal aim of generalisation. 

Application of Inquiry-Based Education (IBE) to advance pre-visualisation, visualisation, analysis, 

Informal deduction, formal deduction and rigour.  

 

  



216 

APPENDIX B: ASSESSMENT TASK  

Euclidean Geometry 

Student code: .............................................  

Age: ................. 

Grade: .................... 

School code: ............................................................ 

Date: ...................... 

Duration: 60 minutes 

Marks: 80 

OBJECTIVES OF THE ASSESSMENT TASK 

This assessment task is aimed at assessing: 

 Mathematical inquiry 

awareness of the connection between mathematical and extra-mathematical 

systems 

ability construct mathematical representations 

ability to search for structure, patterns, relationships and principal aim of 

generalisation. 

 Application of Inquiry-Based Education (IBE) to advance all levels of geometric 

knowledge and understanding 
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Question Total Marks Marks 
Obtained 

Level of 
knowledge and 
understanding 

1.1. 16  Pre-
visualisation 

1.2. 9  Visualisation 

1.3.  

26 

 

 

 

Analysis 1.4.1. 

1.4.2.  

 

13 

  

Informal 
deduction 

1.4.3.  

1.5.  

1.6  

1.7.  

9 

  

Formal 
deduction 

1.8.  

1.9.  

1.10 3  Rigour 

Total 76   
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Problem  

Figure 1 is given. Line PS is produced to a point T. Answer the questions that follow 

to prove whether 𝑥 = y.  

 

  

 

 

 

1.1. How can you associate each of the following objects with Figure 1? 

Table 1 

Object 
 

Reasons for association with Figure 1 

 
Pyramid 

 
 

 

 
Hut 

 
 

 

 
Diamond 

 
 

  
Floor tiles 

 
 

 

Stop sign 

 
 

  
 

T 

P 

S 

Zy 

O 

Q 

R 

𝑥 

y

http://www.google.co.za/url?url=http://famouswonders.com/great-pyramids-of-giza/&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwizxNvAhPDOAhUKDMAKHalOCX0QwW4IMDAF&sig2=062ifqWViavWDpKEo93hxw&usg=AFQjCNGf2yJ7EQq0Oyy38AQ69H377TQMXQ
https://www.google.co.za/url?url=https://en.wikipedia.org/wiki/Rondavel&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjR6JHhhPDOAhUBLsAKHYAAAmYQwW4IHTAC&sig2=vpIpB3FsWc2RyxJCwAMeQQ&usg=AFQjCNE6sC4vvkFEOn8zmnruBtT4JvM-tg
http://www.google.co.za/url?url=http://dreamatico.com/diamond.html&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjM-qT9hPDOAhWJL8AKHUrFCqAQwW4INTAD&sig2=AfDu3_h9E6pUw8vMW8BNwA&usg=AFQjCNFicD92tnyiJf45e06zdXSWtJ5uOA
https://www.google.co.za/url?url=https://en.wikipedia.org/wiki/Tile&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjciOmVhfDOAhXGIsAKHTf2ANAQwW4IZTAF&sig2=6Uflf8n1oUIO0ZVS7Qz02Q&usg=AFQjCNErZNUwi7tM1sqWaTelKNnGWJIClw
http://www.google.co.za/url?url=http://www.clipartpanda.com/categories/stop-sign-clip-art-microsoft&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiFyqqohfDOAhWoIsAKHatzAOcQwW4IGTAC&sig2=844ESxpMOd_9EEh6DPi19Q&usg=AFQjCNGy_ZwOSLkRvIwt9asIUIawTofqrw
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Garage door 

 
Traffic sign 

 
 

 

 
Kite 

 
 

1.2. Group the items in 1.1 according to similarity of shape. Complete Table 2 

(attached) and choose a general shape that represent each group of items. . 

1.3. Name the shapes and discuss the properties or characteristics of each shape 

in Table 2. 

1.4. Consider Table 3 and answer the following questions: 

1.4.2.  A diameter is a part of Figure F in Table 3. The diameter divides Figure F into 

two equal halves. Draw Figure F, show the other four parts, name them and describe 

the part. 

Space for your answer 

 

 

1.4.2. Figures A & C in Table 3 are the same as Figure G. Give reasons and discuss 

how true is the statement. 

………………………………………………………………………………………….. 

………………………………………………………………………………………….. 

1.4.3. Are there chances that Figure G can be described in terms of Figure B? Name 

the figures and give reasons to support your doubts.  

…………………………………………………………………………………………………. 

http://www.google.co.za/url?url=http://www.smalltowndjs.com/garage-door-pics/&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwj8_sO6hfDOAhVLBsAKHXQMA6gQwW4IXzAH&sig2=4cfc4zq4fcHrc4A2CiowkQ&usg=AFQjCNHeLgrD18j1EsYtnjk1yT3PpPARaQ
http://www.google.co.za/url?url=http://chainimage.com/stocks/3m-reflective-warning-triangle-road-traffic-signs-and-symbols&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiry_ndhfDOAhXBKMAKHSIPBOsQwW4IGzAD&sig2=5T7r0tcbnkf5qU-hwRjoJg&usg=AFQjCNHYqNf5GwSDYp3iUnP6Gyw-YbqOQQ
http://www.google.co.za/url?url=http://www.clipartpanda.com/categories/kite-clip-art-images&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjJ8tbuhfDOAhVoBMAKHXKpDoAQwW4IGzAD&sig2=hwPqyKQD646faoNEO3oy6w&usg=AFQjCNFpvpWtPQ16u0aUVGt5M-Tqluu15w
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1.5. Check if Figure 1 shows a connection between some of the shapes in Table 2 

and Table 3. Describe the connection you have noticed. 

………………………………………………………………………………………. 

1.6. Write down the relationship between properties of the connected shapes?  

……………………………………………………………………………………………. 

Complete the following sentence: 

1.7. In Figure 1 ……………………….. is inscribed into ……………………… 

Therefore, Figure 1 is named ……………………………………….. 

1.8. Study Figure 1 as named in 1.7. Outline the three properties (characteristics) 

of Figure 1.  

……………………………………………………………………………………………… 

1.9. Based on the properties (characteristics) named in 1.8, conclude with reasons 

whether in Figure 1 

𝑥 = y.  

………………………………………………………………………………….. 

1.1.0. Figure 1 occurs every-time and everywhere in real life. Briefly discuss the 

importance of Figure 1 in construction of habitats and in architecture.  

……………………………………………………………………………………………. 
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Table 2 

Common 
name of 
figures 

               Shape Properties 

Example 

Circle –  

Examples: hut/ 
rondavel 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

 

 

 

 

 

 

 

(e)  
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Table 3 

 

 

 

 

 

 

 

 

  

B 
G 

E 

F 
I 

H 

D  C 
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APPENDIX C: ETHICAL CLEARENCE CERTIFICATE 
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APPENDIX D: GDE RESEARCH APPROVAL 
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APPENDIX E: OBSERVATION SCHEDULE 

Research Title 

IMPLEMENTING INQUIRY-BASED LEARNING TO ENHANCE GRADE 11 

STUDENT PROBLEM-SOLVING SKILLS IN EUCLIDEAN GEOMETRY 

Data collection instrument 

Qualitative data (Observation) 

[A] Experimental group  

E0. Observation Focus Variable: Visualisation (level 0) 

Variable themes Observation Results  
(Data)  Teacher Activity Students’ activity 

Resources in the form of geometric 
figures (or other forms related to 
Euclidean Geometry) are availed to 
students 
Seating arrangement is well 
organised 
Teacher presents a question and 
allow students to brainstorm and find 
the possible answers from existing 
knowledge 
Teacher presents a different notion 
and permits students to engage in 
the idea posed.  
 

Student identifies and operates 
figures (for example, squares, 
circles,) and more geometry 
configurations (for example, angles, 
lines,) according to the shapes’ 
appearance. 
 

 

 
E1. Observation Focus Variable: Analysis (level 1) 

Variable themes Observation Results  
(Data)  Teacher Activity Students’ activity 

The teacher gives clarification based 
on proof assembled throughout the 
probing procedure  
Teacher provides a method and 
poses questions that will lead to 
students unpacking properties of 
diverse geometric shapes 

Students review the shapes based 
on properties and connections 
among properties,  
(brainstorming applying existing 
knowledge and working with new 
concepts) 
Students perform activities leading 
them to exploration of hidden 
relationships.  
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E2. Observation Focus Variable: Informal deduction (level 2) 

Variable themes Observation Results  
(Data)  Teacher Activity Students’ activity 

2.1. The teacher poses questions to 
confirm knowledge and 
understanding of vocabulary and 
properties. The main goal is to design 
the method of investigating by 
formulating conjectures.  

2.1 Student use properties to 
formulate arguments and conjecture. 
2.2 The students’ skills are 
connected to general language 
networks.  

 

 
E3. Observation Focus Variable: Formal deduction (level 3) 

Variable themes Observation Results  
(Data)  Teacher Activity Students’ activity 

3.1 Teacher poses a question that 
will provide students with methods of 
testing the given question and prove 
conjectures they have made. 
3.2. Teacher encourages students to 
apply inquiry in order to search for 
information and construct their own 
enquiries.  

3.1 Student establishes, within a 
postulation system, theorems and 
interrelationships between networks 
of theorems.  
3.2 Students understand the 
characteristics of shapes they have 
learnt, however, they attempt 
improve on how to link the systems of 
connecting the characteristics to 
address diverse contexts.  
3.3 Students perform intricate 
activites empowering with skills to 
apply systems of connections they 
gave acquired.  

 

 
E4. Observation Focus Variable: Rigour (level 4) 

Variable themes Observation Results  
(Data)  Teacher Activity Students’ activity 

4.1. Teacher must allow open inquiry 
and students must present their 
results at the end of the process. 
4.2. Teacher lead presentations and 
allow open discussions 
4.3. Teacher gives explanations and 
conclusions based one investigative 
findings and proofs 

4.1 Students rigorously do a 
comparison and analysis on 
supposition networks in order to build 
statements as theorems.  
4.2 Students sum up the acquired 
information for retention.  
4.3 Students present their work and 
share ideas with others. 
4.4 Students present their ideas for 
correction by the teacher. 

 

 
[B] Comparison group 
C1. Observation Variable: Recalling pre-knowledge and actualisation of pre-knowledge 

Teacher Students Observation results 
(Data) 

1.1 How did the teacher assist 
student to recall relevant pre-
knowledge? 
1.2 How was pre-knowledge made 
relevant to the topic in place? 
1.3 Were there any resources used? 
1.4 How were the resources used? 
1.5 How was the classroom seating 
planned? 

1.1 How was the students’ reaction or 
response to the teacher’s style of 
recalling pre-knowledge 
1.2 Was the students’ pre-knowledge 
relevant? 
1.3 Could the students’ pre-
knowledge be actualised or linked to 
the new topic? 
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C2. Observation Variable: New Knowledge 

Teacher Students Observation results 
(Data) 

2.1 How did the teacher introduce the 
new topic and content? 
2.2 What material/resources were 
used to deliver the new content? 
2.3 What teaching method did the 
teacher employ? 

2.1 Did the students participate in 
finding new knowledge? 
2.2 Were they dependent on the 
teacher? 
2.3 How was the students’ reaction to 
the teaching method and resources? 

 

 
C3. Observation Variable: Functionalisation (New knowledge) 

Teacher Students Observation results 
(Data) 

What type of examples and 
questions/problems did the teacher 
use to apply new knowledge in 
problem-solving? 

3.1 Did the students understand and 
grab the new knowledge? 
3.2 Did they successfully apply new 
knowledge in problem-solving? 
3.3 Did the students work individually 
or as a group? 

 

 
C4. Observation Variable: Conclusion 

Teacher Students Observation results 
(Data) 

4.1. How did the teacher link the 
whole content with real-life 
problems? 
4.2. How was assessment planned to 
evaluate student knowledge and 
understanding? 

4.1. How were the students engaged 
in finding solutions to real-life 
problems posed to them? 
4.2. How as the students’ response 
or performance in the assessment? 
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APPENDIX F: INTERVIEW QUESTIONS 

Research Title 

IMPLEMENTING INQUIRY-BASED LEARNING TO ENHANCE GRADE 11 

STUDENT PROBLEM-SOLVING SKILLS IN EUCLIDEAN GEOMETRY 

Data collection instrument 

Qualitative data 

Interview questions 

Questions for students  

2 What do you understand by the word Euclidean Geometry? 

3 Can you outline the challenges you encounter in learning Euclidean Geometry? 

4 What strategies do you apply when solving problems in Euclidean Geometry? 

5 How would you prefer to be taught in order to improve knowledge and 

understanding in Euclidean Geometry? 

6 What material or resources do you need to help you understand geometry 

concepts better? 

7 Do you think Euclidean Geometry can be applied in problem-solving out of the 

classroom? 

8 If yes, how? 

9 If no, explain why? 

10 How can you rate your performance in Euclidean Geometry (poor, average, good)? 

11 What is the main cause of such performance? 

12 How would you like to your teacher to help you to improve in learning Euclidean 

Geometry? 

13 Are you looking forward to any future through learning Euclidean Geometry? 

14 Questions for teachers  

15 Can you outline the importance of teaching Euclidean Geometry at school? 

16 What strategy/teaching method do you apply in teaching cyclic quadrilaterals (or 

Euclidean Geometry in general)? 

17 What challenges do you encounter in teaching Euclidean Geometry? 

18 Do you prefer a specific classroom setting/seating during you Euclidean Geometry 

lessons? 
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19 If yes, what setting/seating? 

20 If no, how specifically do you organise your classroom? 

21 What material/ or resources do you find necessary to teach Euclidean Geometry 

topics? 

22 Do you use any of the mentioned materials? How and what was the outcome in 

your last lesson? 

23 How can you rate your teaching and your students’ performance in Euclidean 

Geometry last year and this year (poor, average, good)?  

24 What is the main cause of such performance? 

25 What improvements would you like to make for better facilitation and learning in 

Euclidean Geometry?  
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APPENDIX G: PRINCIPAL’S PERMISSION LETTER 

College of Graduate Studies 

Institute of Science and Technology Education 

UNISA 

Date..................................... 

---------------------------------------------------------------------------------------------------------------- 

The Principal 

......................................................  

(Name of School)  

Dear Sir/Madam 

Research title: Implementing inquiry-based learning to enhance Grade 11 students’ 

problem-solving skills in Euclidean Geometry.  

My name is Motshidisi Masilo. I am a Doctor of Philosophy (Mathematics education) 

student at the University of South Africa. I am conducting a research study that will 

involve mathematics teachers and students in Grade 11 at your school. I request your 

permission to conduct research at your school. The research study will focus on 

teaching strategies applied in Euclidean Geometry in order to improve the students’ 

problem-solving skills.  

Your school is one of the selected schools representing your district in Gauteng, and 

it is classified as the experimental group. Your role in the research study will involve 

allowing the researcher to execute pre- and post-test in one Grade 11 Mathematics 

classroom and to observe teachers and students as they will be engaging in classroom 

activities. Your permission to train and interview the subject teacher on inquiry-based 

teaching in the selected classroom is requested. Further, I request permission to 

interview only three students whose progress will be tracked during the lesson. I am 

looking forward to spending one or two weeks at your school in a very productive 

interaction with one teacher and his/her mathematics class in Grade 11. 
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This research study will not only benefit the institution involved, but will contribute to 

the improvement of the teacher’s teaching strategies as well as students’ problem-

solving skills in Euclidean Geometry. Please note that if you allow one teacher and 

his/her Grade 11 Mathematics class to participate in the research study, the following 

ethical values will apply: the teacher and students’ participation is voluntary; all 

information will be treated with confidentiality and anonymity in order to ensure that no 

harm or bad effect will be caused to participants by the research study; all observation 

videos and interview recordings will be destroyed at the end of the study; participants 

will be granted the right to withdraw when they so wish, they may also refrain from 

answering questions when they see it necessary. 

I will avail to you the summary of the study results at the time of completion if you 

would wish to have the summary. 

Thank you in advance for your support 

Yours sincerely 

Motshidisi Masilo 

(Please complete the consent form below and return to me) 
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Permission to conduct research 

I....................................... the principal of .......................................... understand the 

context of the research study and I grant permission that the research study (title: 

Implementing inquiry-based learning to enhance Grade 11 students’ problem-solving 

skills in Euclidean Geometry) may be conducted at the school. I am aware that the 

teacher and students’ participation is voluntary; all information will be treated with 

confidentiality and anonymity in order to ensure that no harm or bad effect will be 

caused to participants by the research study; all observation videos and interview 

recordings will be destroyed at the end of the study; participants will be granted the 

right to withdraw when they so wish, they may also refrain from answering questions 

when they see it necessary. 

Principal’s signature: .................................................. 

Date: ............................................................................ 
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APPENDIX H: TEACHER CONSENT LETTER 

College of Graduate Studies 

Institute of science and Technology Education 

UNISA 

Date..................................... 

---------------------------------------------------------------------------------------------------------------- 

Dear Teacher 

Re: Request for your participation in a research study  

My name is Motshidisi Masilo. I am a Doctor of Philosophy (Mathematics education) 

student at the University of South Africa. I request you to participate in a research 

study titled: Implementing inquiry-based learning to enhance Grade 11 students’ 

problem-solving skills in Euclidean Geometry. Your school is classified as the 

experimental group. Your interaction with the researcher will involve allowing the 

researcher to execute pre- and post-test in your classroom, to work with you in 

administering inquiry-based learning in your classroom. I will further request to 

interview only three students whose development will be tracked during the lesson. I 

am looking forward to spending two weeks in your classroom engaging in a very 

productive interaction with your students.  

Your participation is voluntary. You may discontinue participation at any time if you so 

wish. You may also refrain from answering some interview questions when there is a 

need to do so. I am looking forward to your participation in the research study. I request 

you to sign the consent form provided if you accept my request to participate. 

Thank you in advance for your support 

Yours sincerely 

Motshidisi Masilo 

(Please complete the consent form below and return to me) 
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Teacher’s participation consent  

I ......................................... understand the context of the research study titled:  
      (Name & Surname) 
  
Implementing inquiry-based learning to enhance Grade 11 students’ problem-solving 

skills in Euclidean Geometry. I am aware that optionally I can allow video and audio 

recording during participation. I am aware that anonymity and confidentiality will be 

adhered to in this study. I am informed that I may withdraw my consent to participate 

at any time without penalty by advising the researcher. I agree on my free will to 

participate in the research study. 

Participant’s signature: ........................................... 

Date: ........................................... 
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APPENDIX I: PARENT/GUARDIAN CONSENT LETTER 

College of Graduate Studies 

Institute of Science and Technology Education 

UNISA 

Date..................................... 

---------------------------------------------------------------------------------------------------------------- 

Dear Parent/Guardian 

Re: Request for your child to participate in a research study 

My name is Motshidisi Masilo. I am a Doctor of Philosophy (Mathematics education) 

student at the University of South Africa. I request you to allow your child to participate 

in a research study titled: Implementing inquiry-based learning to enhance Grade 11 

students’ problem-solving skills in Euclidean Geometry. Your child’s role in the 

research study will be to participate in problem-solving activities. His/her progress will 

be observed during participation in problem-solving. I will also conduct pre- and post-

test in order to track the progress of your child. Further, interviews will be conducted 

to find out how your child experienced the problem-solving activities during lessons. 

At the end of the research study your child is expected to show improved problem-

solving skills in Euclidean Geometry. 

If you allow your child to participate in the research study, take note that the following 

ethical values will apply: your child’s participation is voluntary; he/she may discontinue 

participation at any time if a need arise; he/she may also refrain from answering some 

interview questions when there is a need to do so. I am looking forward to your child’s 

participation in the research study. I request you to sign the consent form provided if 

you give permission that your child may participate. 

Thank you in advance for your support 

Yours sincerely 

Motshidisi Masilo 

(Please complete the consent form below and return to school) 
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---------------------------------------------------------------------------------------------------------------- 

Participation consent 

I..................................., parent/guardian of ................................................ understand  

 

the context of the research study titled: Implementing inquiry-based learning to 

enhance Grade 11 students’ problem-solving skills in Euclidean Geometry. I am aware 

that optionally I can allow video and audio recording of my child’s participation during 

problem-solving sessions. I am aware that anonymity and confidentiality will be 

adhered to in this study. I am informed that I may withdraw my consent for my child to 

participate at any time without penalty by advising the researcher. I agree on my free 

will that my child will participate in the research study. 

Parent’s/Guardian’s signature: ........................................... 

Date: ........................................... 

  



238 

APPENDIX J: STUDENTS’ ASSENT LETTER 

 

College of graduate studies 

Institute of science and Technology Education 

UNISA 

Date..................................... 

---------------------------------------------------------------------------------------------------------------- 

Dear Student 

Re: Request for your assent to participate in a research study  

My name is Motshidisi Masilo. I am a Doctor of Philosophy (Mathematics education) 

student at the University of South Africa. I request you to participate in a research 

study titled: Implementing inquiry-based learning to enhance Grade 11 students’ 

problem-solving skills in Euclidean Geometry. Your role in the research study will be 

to participate in classroom problem-solving activities. Your progress will be observed 

during participation in problem-solving. I will also conduct pre- and post-test in order 

to track your progress of. Further, interviews will be conducted to find out how you 

have experienced the problem-solving activities during the lesson. At the end of the 

research study you are expected to show improved problem-solving skills in Euclidean 

geometry. 

If you agree to participate in the research study, take note that the following ethical 

values will apply: your participation is voluntary; you may discontinue participation at 

any time if a need arise; you may also refrain from answering some interview questions 

when there is a need to do so. I am looking forward to your participation in the research 

study. I request you to sign the assent form provided if you agree to participate in the 

study.  

Thank you in advance for your support 

Yours sincerely 

Motshidisi Masilo 
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(Please complete the assent form below and return to school) 

---------------------------------------------------------------------------------------------------------------- 

Participation assent 

I ........................................................., understand the context of the research study 

titled: Implementing inquiry-based learning to enhance Grade 11 students’ problem-

solving skills in Euclidean Geometry. I am aware that optionally I can allow video and 

audio recording of my participation during problem-solving sessions. I am aware that 

anonymity and confidentiality will be adhered to in this study. I am informed that I may 

withdraw my assent to participate at any time without penalty by advising the 

researcher. I agree on my free will to participate in the research study. 

Student’s signature: ........................................... 

Date: ........................................... 

 


