Institutional Repository

Quantum diffusion of isotropic muonium, Mu T, in a 13C diamond

Show simple item record

dc.contributor.author Machi I.Z. en
dc.contributor.author Connell S.H. en
dc.contributor.author Dalton M. en
dc.contributor.author Sithole M.J. en
dc.contributor.author Bharuth-Ram K. en
dc.contributor.author Cox S.F.J. en
dc.contributor.author Baines C. en
dc.date.accessioned 2012-11-01T16:31:36Z
dc.date.available 2012-11-01T16:31:36Z
dc.date.issued 2004 en
dc.identifier.citation Diamond and Related Materials en
dc.identifier.citation 13 en
dc.identifier.citation 08-Apr en
dc.identifier.issn 9259635 en
dc.identifier.other 10.1016/j.diamond.2003.10.059 en
dc.identifier.uri http://hdl.handle.net/10500/7436
dc.description.abstract This study explores the dynamical behavior of hydrogen in diamond, through the study of the hydrogenic analogue species known as the neutral atomic muonium state (Mu T ≡ μ +e -). This can be readily studied by the transverse (longitudinal) field muon spin rotation (relaxation) techniques, briefly known as TF-μSR or LF-μSR respectively. This work focuses on the TF-μSR results for the paramagnetic Mu T state. The Mu T forms when an implanted positive muon captures an electron in crystalline solid-state materials. It occupies the tetrahedral interstitial site and diffuses via a pathway of these sites. The small mass of Mu T is intermediate between the light electron and the heavy hydrogen, and is therefore suitable for studies of quantum diffusion in crystalline materials. In the process of diffusion, the spin polarization of the muon ensemble would be affected by interaction with electrons, via formation of correlated states or with the environment via dissipative processes. Such interactions can be monitored, almost background free and very precisely, in a host of experimental modes. This allows a powerful spectroscopy of the formed states as well as the monitoring of the dynamics of those states. In this work, the observables for both the Mu T (73 ± 5%) and μ d + (4.3 ± 0.5%) states were measured in the 13C sample at temperatures ranging from 11 mK to 320 K, at an applied field of 5 mT. The measured spin relaxation rate for the Mu T in the 13C sample is interpreted within the framework of quantum diffusion. The data show that quantum diffusion of the Mu T state occurs up to unusually high temperatures in diamond. No evidence of diffusion could be obtained for the diamagnetic state. © 2003 Elsevier B.V. All rights reserved. en
dc.language.iso en en
dc.subject Diamond; Diffusion; Muonium Diffusion; Electrons; Hydrogen; Quantum theory; Relaxation processes; Rotation; Atomic states; Dissipative processes; Muonium; Solid state materials; Diamond films; diamond en
dc.title Quantum diffusion of isotropic muonium, Mu T, in a 13C diamond en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics