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Abstract   

The purpose of this study was to investigate physics undergraduate students’ conceptual change 

in the concepts of electric potential and energy (EPE) and electromagnetic induction (EMI). 

Along with this, categorization of students’ conceptions was done based on students’ 

epistemological and ontological descriptions of these concepts. In addition, the effect of 

cognitive perturbation using physics interactive simulations (CPS) in relation to cognitive 

conflict using physics interactive simulations (CCS) was investigated.   

A pragmatic mixed methods approach was used in a quasi-experimental design. Data were 

collected by using the modified Diagnostic Exam of Electricity and Magnetism (DEEM), focus 

group discussions (FGD) and concept maps (CM). Framework analysis was conducted separately 

on FGD and CM qualitative data to categorize students’ conceptions while concentration 

analysis was used to categorize students’ responses to the modified DEEM into three levels, 

during pre and post intervention. In the qualitative results, six categories of alternative 

conceptions (naive physics, lateral alternative conceptions, ontological alternative conceptions, 

Ohm’s P-Primes/ P-Primes, mixed conceptions and loose ideas) and two categories of conceptual 

knowledge (hierarchical and relational) were identified.  The alternative conceptions were less 

frequently and inconsistently revealed within and across the categories. It was concluded that the 

categories have common characteristics of diversified distribution of alternative conceptions and 

multiple alternative conceptions of specific concepts within and across the categories. Most of 

the categories found in pre intervention persisted in post intervention, but with a lesser 

percentage extensiveness of categories of alternative conceptions in the CPS than in the CCS 

class and more percentage extensiveness of categories of conceptual knowledge in the CPS than 

in the CCS class.  

ANCOVA was separately conducted on the scores of 45 students on the modified DEEM and 

CM tests to compare the effectiveness of the CCS and CPS.  The results showed a significant 

difference between the two classes of the post test scores on the DEEM test, (1, 36) = 4.66, 

p=0.04 and similarly, on the CM test, (1, 31) = 8.33, p=0.007. Consequently, it was concluded 

that there is a statistically significant difference between CPS and CCS in changing students’ 

alternative conceptions towards scientific conceptions favoring CPS. To characterize and 
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compare students’ conceptual change of both treatment classes, Hake’s average normalized gain 

<g> from pre to post scores (the modified DEEM and the CM) were analyzed.  Finally, it is 

suggested that in abstract conceptual areas of EM, cognitive perturbation through interactive 

simulations is more effective than cognitive conflict through interactive simulations in 

facilitating conceptual change, and, thus, should guide classroom instruction in the area. 

Furthermore, recommendations are also suggested for guiding future research in this area.  

Keywords: alternative conception; categories of alternative conceptions; concentration analysis; 

conceptual change; electric potential and energy; electricity and magnetism; electromagnetic 

induction; framework analysis; students’ conception; conceptual knowledge; cognitive 

perturbation; cognitive conflict; simulation  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Electricity and magnetism (EM) is an essential domain of physics that deals with 

electromagnetic interaction.  This, in turn, is one of the four interactions in nature1 and plays a 

central role in determining the structure of the natural world. This interaction is the strongest 

after nuclear interaction.  In addition, it is long ranged like gravitational interaction and 

dominates the structure of both living and non living nature. For example, the nature of inter-

molecular and inter-atomic structures of solids and liquids are described by the concepts of 

electricity and magnetism (Serway & Jeweet, 2002).  Furthermore, the knowledge of electricity 

and magnetism are the foundations of most current and emergent technologies and are applied in 

the operation of various electronic devices, such as radios, televisions, electric motors, remote 

sensors, computers, high-energy particle accelerators and different electronic devices used in 

medicine (Chabay & Sherwood, 2006; Serwey & Jewwett, 2002).  

Like mechanics, the concepts of electricity and magnetism are the fundamentals of physics. 

These concepts are prerequisites in the transition of students understanding from classical to 

advanced modern physics. In mechanics, students are introduced to motion of visible 

macroscopic objects, like balls, cars and airplanes. The important concepts in mechanics, such as 

velocity and force, are easily related to their everyday experiences.  As a result, students’ 

conceptions in concepts of mechanics could exhibit a certain degree of coherence. However, the 

concepts in EM are significantly more difficult to understand than those in mechanics (Chabay & 

Sherwood, 2006). In line with this, the research conducted by Planinic (2006) showed that 

student’ difficulties of most EM concepts remain the same; before and after instruction.  A 

possible reason could be because students encounter motion of invisible microscopic objects, 

such as electrons; and abstract concepts, such as field, flux and potential, which are far beyond 

what they have experienced in mechanics. Hence, conceptual change approaches that have been 

                                                             
1 The four interactions in nature are gravitational, electromagnetic, weak-nuclear and strong-nuclear.  



2 
 

used to change students’ alternative conceptions in mechanics are believed inadequate for 

enhancing conceptual change in the abstract concepts of electricity and magnetism.  

For the last three decades, the term conceptual change has existed in the literature of science 

education with regard to changing students’ alternative conceptions of science concepts and 

phenomena.  Most of these concepts studied during this era are those related to students’ daily 

experiences, like the concept of force and motion in classical mechanics in which students 

alternative conceptions exhibit a certain degree of coherence. Moreover, the classical conceptual 

change model adopted the Piaget’s developmental cognitive approach to discern differences in 

students’ conceptions based on the epistemological perspective (Nussbaum & Novick, 1982; 

Posner, Strike, Hewson & Gertzog, 1982). Hence, in this model, students’ learning of science 

concepts is perceived as a process of changing coherent students’ conceptions to the intended 

scientific conceptions.  

Current reviews of progress of conceptual change research shows that there are two prominent 

but competing theoretical perspectives regarding structure of students’ alternative conceptions 

(Özdemir &Clark, 2007). These are alternative conception as a theory perspective (e.g., Chi, 

2005; Ioannides & Vosniadou, 2002; Wellman & Gelman, 1992) and alternative conception as 

elements perspective (e.g., Clark, 2006; diSessa, Gillespie, & Esterly, 2004; Harrison, Grayson, 

& Treagust, 1999). These two theoretical perspectives imply different pathways for conceptual 

change to help students restructure their understanding (Özdemir &Clark, 2007). Earlier research 

literature has predominantly supported alternative conception as a theory perspective and 

consequently hypothesized revolutionary conceptual change through various strategies 

(Ioannides & Vosniadou, 2002; Linder, 1993; Vosniadou & Brewer, 1992). Consequently, 

different types of the classical conceptual change strategies have been distinguished during the 

last three decades. Cognitive conflict is one of the strategies in the classical conceptual change 

model (Hewson & Hewson, 1984; Posner et al., 1982) which has been mostly implemented in 

the learning of science concepts. This strategy is a dominant learning strategy making learners 

dissatisfied with their existing alternative conceptions and rendering the scientific conceptions 

intelligible, plausible and fruitful (Hewson & Thorley, 1989).   
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Alternative conception as a theory perspective has developed in different domains of science, 

such as force and motion (McCloskey, 1983), astronomy (Vosniadou & Brewer, 1992) and heat 

and temperature (Wiser & Carey, 1983). They all emphasize that learners at any given time 

maintain developed coherent alternative conceptions based on their everyday experiences, and 

that these alternative conceptions have explanatory power to make consistent predictions and 

explanations across domains of science.  

However, currently, there are instructional propositions that potentially favor the adoption of 

alternative conception as elements perspective and hypothesize that the structure of students’ 

alternative conceptions consists of multiple conceptual elements at various stages of 

development and sophistication (Özdemir &Clark, 2007). In addition, a growing number of 

studies (Li, 2011; Li, Law & Lui, 2006; Tao & Gunstone, 1999) indicate that students’ learning 

of concepts in science is rather complex and idiosyncratic. From this perspective, conceptual 

change involves a gradually evolutionary process rather than a broad theory replacement process 

(Li, 2011; Li et al., 2006). The cognitive perturbation strategy involves step by step learning of 

concepts based on the understanding that paths of conceptual change for different 

students/groups of students are idiosyncratic, diverse and context sensitive (Li et al., 2006), but 

the cognitive conflict strategy is a one step and revolutionary process of conceptual change 

(Hewson & Hewson, 1984; Nussbaum & Novice, 1982; Tao & Gunstone 1999). 

The concepts in electricity and magnetism are invisible and unfamiliar to students’ daily 

experiences. It is believed that the use of appropriate interactive physics simulations available for 

teaching EM concepts is important to simplify the complex and invisible nature of these 

concepts, because they are designed to be interactive, engaging, and also to make explicit certain 

visual representations (Rutten, van Joolingen & van der Veen, 2012; Urban-Woldron, 2009; 

Wieman et al., 2008b). Furthermore, computer simulations are used to provide discrepant events 

in conceptual learning since they have the capacity to provide learners with an exploratory 

learning environment (Zacharia & Anderson, 2003). Therefore, interactive physics computer 

simulations of selected conceptual areas of the concepts are used as part of the supportive 

learning strategies because of the complex and invisible phenomena in electricity and 

magnetism. 
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Thus, although there is not yet a consensus on the structure of students’ alternative conceptions 

and the strategies of conceptual change, it is important to examine an effective conceptual 

change strategy that may enhance students’ learning of concepts in EM in which motion of 

microscopic objects, complex and difficult concepts exist. Hence, this study is mainly aimed at 

comparing the effectiveness of an emerging strategy from the evolutionary perspective of 

conceptual change with the dominant classical conceptual change strategy from the revolutionary 

perspective of conceptual change, to enhance learning of students in the concepts of EM. In other 

words, this research intends to study students’ conceptual change in EM through cognitive 

perturbation using simulations (CPS) in relation to cognitive conflict using simulations (CCS).   

1.2 Statement of the Problem 

First Phase:  Categorization of Students’ Conceptions 

Students’ conceptions of physics concepts have been studied extensively in mechanics 

(McDermott & Redish, 1999; Minstrell, 1982; Ramadas et al., 1996) and DC circuits in 

electricity (Baser, 2006; Baser & Durmus, 2010; Bilal & Erol, 2009; McDermott & Redish, 

1999; Rosenthal & Henderson, 2006).  However, students’ conceptions of the concepts in EM 

have not been investigated in great detail as in mechanics (Duit, 2009; McDermott & Redish, 

1999; Planinic, 2006; Saglam & Millar, 2006; Soto-Lombana, Otero & Sanjosé, 2005).  The 

investigations in the concepts of EM have mainly focused on the development and evaluation of 

diagnostic tests (Ding et al., 2006; Engelhadt & Beichner, 2004; Maloney et al., 2001; Marx, 

1998; Saglam & Millar, 2004). The diagnostic tests are mostly multiple-choice items which are 

meant to identify students’ conceptions in terms of the provided options only (alternatives). 

Normally, these options have one correct answer (the scientific conception) and three to four 

alternative conceptions.  

However, the current view of identifying students’ alternative conceptions is changing towards 

the emerging view of knowledge structures and categorization of conceptions because of the 

complexities of students’ conceptions in the microscopic world of physics (Özdemir &Clark, 

2007; Rebello, Zollman, Allbaugh, Engelhardt, Gray, Hrepic, et al., 2005).  Consequently, the 

sole identification of students’ alternative conceptions in a domain of science, as studied for the 
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last 30 years, is inadequate for the design of appropriate supportive approaches and curricula in 

abstract and complex concepts, like electricity and magnetism. This inadequacy puts 

science/physics teachers in a difficult position.  This is due to the fact that students’ alternative 

conceptions in science are idiosyncratic and they have characteristics of vacillating from one 

context to another (Tao & Gunstone 1999; Li, 2011; Li et al., 2006).  Moreover, the inadequacy 

of the sole identification of alternative conceptions is due to different perspectives, like 

“coherence versus fragmentation”, on the structure of students’ alternative conceptions (Chi, 

2008; diSessa et al., 2004; Ioannides & Vosniadou, 2002). Previous studies on the structure of 

students’ alternative conceptions have been conducted in the context of classical introductory 

mechanics, especially in relation to concepts of force and motion (Clark, D'Angelo, & Schleigh, 

2011; diSessa, et al., 2004; Elby, 2010).  

Earlier studies in the concepts of physics mostly used an epistemological perspective of 

conceptual change (Posner et al., 1982) to identify and change alternative conceptions of 

students. There are also other concepts where experts’ process views are incommensurate with 

students’ material conceptions (Chi, 2008; Chi & Slotta, 1993) which lead to the change of 

students’ ontological perspective (see Section 2.3.1). In addition, it is believed that the 

categorization of students’ conceptions makes clear some characteristic features of these 

categories, like the extensiveness of the categories and consistency/inconsistency of alternative 

conceptions in and across the categories.  These characteristics are believed to be essential for 

the study of students’ prior knowledge states, which are crucial in enhancing their learning 

towards scientific conceptions.  However, so far, no study has been undertaken to categorize 

students’ conceptions in the conceptual areas of EM based on students’ epistemological 

descriptions and ontological considerations of concepts. In other words, knowledge about 

categories of students’ conceptions that are anchored in students’ own personal epistemological 

and ontological views in the concepts of electricity and magnetism is lacking (see Sections 1.6 & 

1.10). Therefore, it may be important to conduct research on categorization of students’ 

conceptions in EM in order to help them learn and succeed in physics. Hence, the first phase of 

this conceptual change investigation includes the identification of categories of students’ 

conceptions on the basis of their epistemological and ontological views of the concepts in 
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electric potential and energy (EPE) and electromagnetic induction (EMI) (see paragraph 3 in 

Section 1.6). 

Second Phase: Comparison of Cognitive Conflict using Simulations and Cognitive 

Perturbation using Simulations 

Students already face most of the EM concepts in school learning in the context where teachers 

mostly use the traditional transmission model and in this case Ethiopia is no exception. The 

traditional transmission model is ineffective in physics concepts learning (Dykstra, Boyle & 

Monach, 1992; Grayson, 1994; Hake, 1998). Consequently, students’ alternative conceptions in 

EM often remain unstable and inconsistent after instruction.  The concepts in EM are complex 

and involve abstract relations (Chabay & Sherwood, 2006) and can, therefore, be particularly 

problematic in students’ learning. Moreover, studies on the assessment of difficulties in the 

concepts of EM have shown that the difficulties have similar trends across countries and 

universities (Maloney et al., 2001; Planinic, 2006; Saglam & Millar, 2006). Some studies (e.g., 

Finkelstein, 2005; Planinic, 2006) have reported several students scoring low results in 

conceptual diagnostic tests. For example, advanced level undergraduate physics students who 

scored good grades in EM were reported to lack understanding of basic concepts in EM, as they 

failed to answer more than one-half of the questions on the basic conceptual survey of electricity 

and magnetism (Finkelstein, 2005; Pepper et al., 2010).  Along with this, studies reporting on 

students’ concepts in EM at university level showed that the sequential structure of instruction 

which spends most of the course on problem solving was ineffective to reduce students’ 

alternative conceptions (Chabay & Sherwood, 2006; Saglam & Millar, 2006; Planinic, 2006).  

Conceptual change research has been conducted mostly in the context of developed countries 

with less emphasis at university level than in schools (Soto-Lombana, Otero & Sanjosé, 2005).  

In line with this, few studies have been conducted on how to address the conceptual difficulties 

of EM in the context of developing countries.  Consequently, little is known about conceptual 

change research and learning in the context of Ethiopia, because no study has been conducted in 

relation to EM conceptual change. The Ethiopian National Curriculum for the BSc program in 

physics (Ministry of Education, 2009) does not give emphasis to students’ conceptions and 

conceptual change learning. In other words, the learning of physics across universities in the 
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country has not yet exercised the conceptual change approaches of learning. Therefore, a study 

of the students’ conceptual change in electricity and magnetism concepts at the introductory 

undergraduate level is important; otherwise, the alternative conceptions may ultimately affect 

students’ understanding of successive advanced physics concepts.   

Different strategies have been introduced, of which cognitive conflict strategy of the classical 

conceptual change model has been used extensively (Dreyfus et al., 1990; Hewson & Hewson, 

1984; Nussbaum & Novice, 1982). The cognitive conflict has been proposed and viewed as a 

revolutionary process of conceptual change of students with coherent alternative conceptions 

(Nussbaum & Novice, 1982; Tao & Gunstone 1999). However, if students have a minimal level 

of conceptual knowledge and inconsistent alternative conceptions in the concepts of EM, then 

cognitive conflict may not help students to change their alternative conceptions, because of the 

inconsistency of students’ conceptions and the wide cognitive gap that exists between their prior 

conception and the scientific conception. Such remoteness of perceptions may create frustration 

in physics students who have little confidence in their conceptual knowledge of concepts in EM. 

The success of cognitive conflict approach depends strongly on the ability of each individual 

student to recognize and resolve this conflict (Limon, 2001). This means that several 

intellectually less able students may fail to recognize the conflict and some of those who do 

recognize it may not be able to resolve it (Planinic et al., 2005). In addition, students are often 

reluctant or unwilling to abandon their alternative conceptions formed upon their own experience 

(Chan et al., 1997; Planinic et al., 2005). Consequently, students may hold on to inconsistencies 

in a superficial way rather than undergo more radical change implied by the classical conceptual 

change theory (Lee & Byun, 2012; Zohar & Aharon-Kravetsky, 2005). 

As discussed in paragraph 6 in Section 1.1, the fundamental idea of cognitive perturbation is 

based on the understanding that paths of conceptual change for different students/groups of 

students are idiosyncratic, diverse and context sensitive which involves a gradually evolutionary 

process rather than a broad theory replacement process (Li, 2011; Li et al., 2006). The types of 

perturbations necessary for initiating conceptual change would be determined by contexts in 

which students engage.   
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In addition, it is believed that the two competing strategies in this study, the cognitive conflict 

and cognitive perturbation, together with appropriate interactive physics simulations for teaching 

EM concepts may enhance conceptual change in a manner where their effects are investigated. 

As discussed in paragraph 7 in Section 1.1, simulations are useful in concept learning for 

visualization because of the complex and invisible nature of concepts (Rutten et al., 2012), the 

construction of knowledge through less guided exploration (Urban-Woldron, 2009) and the 

provision of discrepant events in exploratory learning environments (Zacharia & Anderson, 

2003). Therefore, a study is needed on the effectiveness of cognitive perturbation using 

simulations in relation to cognitive conflict using simulations to contribute knowledge to the 

theory of conceptual change in science learning.   

1.3 Aim of the Study 

This study aims to investigate undergraduate physics students’ conceptual change in the concepts 

of electric potential and energy (EPE) and electromagnetic induction (EMI). It encompasses two 

phases, the first identifies the categories of students’ conceptions in the concepts of EPE and 

EMI, and the second studies the impact of cognitive perturbation through physics interactive 

simulations (CPS) in relation to cognitive conflict through physics interactive simulations (CCS). 

To this end, the objectives of this study are:  

1. to identify categories of students’ conceptions before intervention;   

2. to identify categories of students’ conceptions after intervention;  

3. to compare effectiveness of conceptual change through cognitive perturbation using 

simulations (CPS) and conceptual change through cognitive conflict using simulations 

(CCS) in the concept of electric potential and energy (EPE) and electromagnetic 

induction (EMI).  

1.4 Research Questions 

The research questions of this study, corresponding to the objectives outlined above, are: 

1. What are the categories of students’ conceptions in the concepts of electric potential and 

energy (EPE) and electromagnetic induction (EMI) before intervention? 
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2. What are the categories of students’ conceptions in the concepts of electric potential and 

energy (EPE) and electromagnetic induction (EMI) after intervention? 

3. How significant is conceptual change through cognitive perturbation using simulations 

(CPS) as compared to cognitive conflict using simulations (CCS) in the concepts of 

electric potential and energy (EPE) and electromagnetic induction (EMI)? 

1.5 Significance of the Study 

This study extends the knowledge base of students’ conceptions and conceptual change in the 

field of electricity and magnetism by means of analyzing the categories of students’ conceptions 

and designing an appropriate supportive approach for conceptual change. The utility of 

categorization of students’ conceptions is mainly to choose an appropriate approach for 

conceptual change, because the current prevalent knowledge of simply identifying alternative 

conceptions is inadequate for designing conceptual change approaches of learning, especially in 

the unfamiliar abstract and invisible concepts of electricity and magnetism.  

This study also extends the knowledge of conceptual change learning within the domain of 

electricity and magnetism. In other words, this study extends the knowledge base from the 

prevalent classical conceptual change (cognitive conflict strategy) to the emerging cognitive 

perturbation strategy in undergraduate students’ learning of the concepts in EM. The 

incorporation of suitable interactive physics simulations with learning strategies may be useful to 

develop insight into their effectiveness in enhancing conceptual change. Therefore, based on the 

above mentioned points, the physics education research community may benefit from the 

categorization of students’ conceptions and the cognitive perturbation strategy through 

interactive simulations used to address conceptual change.  

In addition, in the context of Ethiopia, most students who are majoring in physics become 

teachers in secondary schools after completion of their university study. Consequently, 

addressing these prospective teachers’ alternative conceptions by using an effective conceptual 

change strategy is believed to positively influence their teaching in high schools. Physics 

curriculum experts may also benefit when designing and/or modifying the curriculum by giving 

emphasis to concepts learning in physics.  Also, teacher education colleges across the country 
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may use the results of this study to enhance teachers’ professional development in relation to 

concept learning. Moreover, the strategies designed and results obtained in this study are 

believed to be used as input for school science teachers and university physics instructors in 

developing and formulating syllabi that can promote conceptual change.  

1.6 Delimitation of the Study   

Conceptual change research has different theoretical perspectives, such as epistemological, 

ontological and affective (Treagust & Duit, 2008).  In the epistemological view, conceptual 

change is examined based on students’ descriptions (different representations) of concepts being 

investigated (Duit & Treagust, 2003).  In the ontological view, conceptual change is studied 

based on how students view the nature of a concept being investigated (Chi, 2008). In other 

words, it examines the ways the students consider concepts in terms of their views of reality, 

namely, as a material (substance) or a process. From the affective perspective of conceptual 

change, students’ interests or motivations are examined on a concept or a subject being 

investigated (Pintrich, Marx & Boyle, 1993).  Though motivational factors are important in 

concept learning, the students’ motivations are not explicitly examined in this study.  In other 

words, this study is delimited to epistemological and ontological perspectives of conceptual 

change.  

The course on electricity and magnetism is outlined into 11 chapters according to the Ethiopian 

Harmonized National Curriculum for the BSc degree program in Physics (Ministry of Education, 

2009).  These chapters have different difficulty levels.  The difficulties of comparable conceptual 

contents of EM were assessed by Planinic (2006) in the context of American and Croatian 

students. As a result, he categorized the concepts of EM into six broad conceptual areas with 

different difficulty levels by maintaining conceptual coherence of the concepts. These are 

electric charge and force, electric field and force, electric potential and energy, magnetic field 

and force, electromagnetic induction and Newton’s laws in electromagnetic context.   

This study is delimited to two of the aforementioned conceptual areas, the electric potential and 

energy (EPE) and the electromagnetic induction (EMI), for the following three reasons. Firstly, 

the conceptual areas are the most difficult parts of the EM concepts and challenge students 
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across different countries (Planinic, 2006; Saglam & Millar, 2006). Secondly, students’ 

alternative conceptions in these conceptual areas are so far not well addressed using appropriate 

supportive approaches that can lead to conceptual change. This is mainly because of the fact that 

alternative conceptions in these areas have not been thoroughly studied and documented 

compared to that of classical mechanics and DC circuits. Thirdly, there are recommendations 

(Chabay & Sherwood, 2006; Ding, Chabay, Sheewood, & Beichner, 2006; Maloney et al., 2001; 

Planinic, 2006) for the need to undertake in-depth studies by taking a few conceptual areas of 

EM using multi methods. Therefore, the findings from this study are delimited to the conceptual 

change process in the concepts of EPE and EMI and may not be generalized to other physics 

concepts. 

1.7 Limitations of the Study  

There are some conditions beyond the researcher's control that slightly affected the results and 

interpretations of this study. The first one is the inherent limitation of a case study. As a case 

study, the available sample size was used and therefore the results cannot be generalized beyond 

the specific situation from which the sample is drawn. The other limitation of this study is that 

some of the students who were available in the pre intervention data collection became 

unavailable or unwilling to participate in the post intervention data collection due to the length of 

the study.  Moreover, there were few absentees during the intervention that could affect the result 

of the study.  

1.8 The Research Context  

According to the 2007 national census, Ethiopia is one of the most populous countries in Africa 

with a population of about 74 million (Central Statistical Agency [Ethiopia] & ICF International, 

2012). This country developed a new Education and Training Policy in 1994. According to the 

Policy (Federal Democratic Government of Ethiopia, 1994), the Educational System of Ethiopia 

comprises the following categories:  

1. Kindergarten (4 to 6 years) focuses on all round development of the child in preparation 

for formal schooling. 
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2. Primary education (7 to 14 years) is of eight years duration, offering basic and general 

primary education to prepare students for further general education and training.  

3. Secondary education is of four years duration, consisting of : 

a. The first cycle of secondary education (two years) which enables students to 

identify their interests for further education, for specific vocational and technical 

training and for the world of work. This cycle of general education is completed 

at grade 10.  

b. The second cycle of secondary education and training (preparatory school) 

enables students to choose subjects or areas of training (natural sciences or social 

sciences) which prepare them adequately for higher education and for the world 

of work.  

4. Higher education at undergraduate and graduate levels, is intended to be research 

oriented, enabling students to become problem-solving professional leaders in their fields 

of study and in overall societal needs.  

The Educational System in Ethiopia is decentralized for the first three levels mentioned above, 

from kindergarten to secondary education. These levels are administered by the Regional 

Educational Bureaus through Zonal and Wereda (District) Educational Offices.  

Higher education is centrally administered by the Federal Ministry of Education. This centralized 

system of higher educational administration has an impact on curriculum development and 

improvement. Along with this, the Higher Education Proclamation No. 650/2009 (Federal 

Democratic Government of Ethiopia, 2009) paragraph 21 number 4 states that  

Curricula common to any number of public institutions may be developed 
jointly through the participation of the public institutions responsible for their 
implementation; and such curricula shall serve as the minimum requirements 
applicable to any of the institutions. 

On the basis of this proclamation, harmonizing curricula of public universities started in 2009. At 

the beginning, most of the natural sciences curricula were harmonized and implemented. Along 

with this, the New Harmonized National Curriculum for Undergraduate Physics was designed 

and has been implemented. 
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This study focuses on the undergraduate level of physics in higher education. In the National 

Curriculum for Undergraduate Physics, the courses descriptions (or contents of courses) and the 

recommended books for the courses are similar to those of most international universities. In 

addition, the modes of course delivery (methods of teaching) meant for the courses, including the 

course electricity and magnetism are mostly lecture based, physical and mathematical problem-

solving and demonstration. However, ways of treating students’ alternative conceptions and 

conceptual change strategies are not mentioned in the Physics Curriculum.  

In Ethiopia, the concepts of EM are taught from junior secondary school to university. In school, 

they are incorporated in the subject general physics and are taught in grades 8, 10 and 12. At 

university level, EM is an independent course usually offered in the first year to physics and 

other sciences and engineering undergraduate students.  

Currently, Ethiopia has 22 fully functioning and about 10 newly developing public universities. 

Students enroll in higher institutions after successful completion of two years of preparatory 

school education (grades 11 and 12). The enrollment criteria to all the universities of the country, 

Ambo University being one of them, are the same, and done nationally by the Federal Ministry 

of Education based on the students’ choices, their academic performances and the programs 

offered at the universities.  

In the universities, students can select programs (fields of study) of their interest based on their 

preparatory schools backgrounds.  Students entering the universities have either natural or social 

science backgrounds from preparatory schools.  Students who are allowed to join the department 

of physics are those from the natural science stream of the preparatory school. The universities 

use Higher Education Admission Scores (HEAS) as a criterion for competing and assigning them 

to programs. 

Students from the natural science stream mostly want to study engineering, medicine and other 

health related fields as their first choice. Their second choice is non-physics related programs 

like, biology and chemistry. Currently, students have no interest to study physics at university 

level because of limited job opportunities in the industrial sector (Semela, 2010). In addition, the 

research conducted by Semela (2010) showed that students who have higher physics 
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achievement in preparatory school and strong academic background do not want to join physics 

because the only job opportunity available for graduates is a teaching career.  

In Ethiopia, a new strategic plan that stresses the importance of science and technology has been 

in place since the beginning of 2008 (Ministry of Education, 2008). According to this plan, 

universities are expected to enroll 70% of their students in science and technology and 30 % of 

their students in social science and business.  Therefore, most students are being assigned to the 

department of physics without a choice.  One of the reasons that the students raise for not 

choosing physics as their field of study is the difficult nature of the subject. That is, “physics is 

too abstract and theoretical such that one cannot see the application in the day to day life” 

(Semela, 2010, p 331). Moreover, some students attempt to compare their future benefits after 

graduation from university.  They believe that fields, like engineering, medicine and other health 

related fields can benefit them more than physics after graduation because they imagine that they 

can easily form their own businesses with the knowledge and skills of the former fields rather 

than the latter.  

Accordingly, most high scoring students wish to join study fields of their first and second 

choices, while less scoring students are forced to study physics. The enforcement is mainly due 

to the current higher demand for physics teachers than other science teachers in schools in the 

country.  The other reason for the enforcement is the government plan to attain a 70:30 percent 

enrolment of new students into the public universities (Ministry of Education, 2008). Hence, the 

students who join the physics department to major in physics have little interest in the field and 

are unsuccessful in the competition to join their chosen field of study. Consequently, the majority 

of students assigned to study physics are considered to lack interest, be low achievers and lack 

academic success (Getenet, 2006). 

1.9 Theoretical Framework 

This research is based on the constructivist theory of learning. Constructivism is a theory about 

knowledge and learning that describes both what knowing is and how one comes to know (von 

Glaserfeld & Steffe, 1991; Driver, et al., 1994). In this view, knowledge is not facts which can be 

memorized and repeated temporarily, but developmental, internally constructed and socially 
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mediated (Fosnot, 1996).  Also, knowledge is not treated as accurate representation of external 

things, situations and events but rather as a mapping of actions and conceptual operations that are 

viable in learners’ experience (von Glaserfeld & Steffe, 1991). With this view, scientific 

knowledge is tentative in nature and progressive that leads to approximations of ultimate natural 

phenomena (Lederman & O'Malley, 1990). This means that scientific knowledge is not a copy of 

reality. 

The constructivist theory of learning emphasizes the influences of students’ conceptions in their 

learning. In addition, studies (e.g., Baser & Geban, 2007; Dykstra, Boyle & Monach, 1992; 

Guruswamy, Somars, & Hussey, 1997) show that students come to science classrooms with pre-

instructional conceptions that are often inconsistent with scientific concepts to be taught. 

Accordingly, students’ conceptions are either barriers or bridges to their new learning (Sewell, 

2002). In other words, if students’ conceptions are consistent with the scientific conceptions to 

be learned, it can be used as bridges in the new learning. However, if their conceptions are 

inconsistent with the scientific conceptions, it will cause barriers to the new learning. In other 

words, the theory focuses on the process of knowledge construction by individuals under the 

influence of social contexts.  Hence, this study is based on constructivist theory of learning due 

to the fact that conceptual change is a process of knowledge construction and reconstruction 

(Pinarbasi et al., 2006; Vosniadou, 2007).    

Subsequently, the theory requires primarily the identification of existing students’ conceptions 

(Vosniadou & Brewer, 1987), which constitute both valid and invalid knowledge. In addition, 

there is a claim of epistemological and ontological perspectives that refers knowledge to 

individual experiences rather than to the world and it is constituted by individual conceptual 

structures (Vosniadou & Brewer, 1987).  In this case, conceptual structures constitute knowledge 

when individuals regard them as viable in relationship to their experiences. Hence, in this view, 

students’ conceptions refer to students’ personal understanding of concepts from their 

epistemological and ontological perspectives (Abell & Eichinger, 1998; Treagust & Duit, 2008).  

From the epistemological perspective, students’ conceptions are viewed based on how they 

describe the concepts being investigated; while from the ontological perspective, students’ 

conceptions are viewed based on how they view the nature of the concepts being investigated.  
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This means that these epistemological descriptions and ontological considerations of students on 

the concepts being investigated can form patterns in student’s conceptions (categories of 

conceptions). Therefore, to identify and categorize students’ conceptions, this study follows an 

inclusive perspective that involves students’ epistemological descriptions and ontological 

considerations of concepts in electricity and magnetism. 

Constructivism is seen as a contemporary theory of learning in science in which knowledge is 

not transmitted but is constructed by active learners’ mental interaction with the physical and 

social world (Fosnot, 1993).  In line with this theory and the context of this study, interactive 

computer simulations can enhance the interaction of students in their learning of concepts that 

involve the microscopic physical world. This is because computer interactive simulation is used 

as one of the constructivist learning approaches in physics to facilitate students' active 

engagement in the construction and reconstruction of conceptual knowledge (Jimoyiannis & 

Komis, 2001).  

In addition, according to Vygotsky (1978), cognitive development begins with an interaction 

between the learner and a more knowledgeable other (students in a group or a teacher), and the 

social processes are then transformed into the learner’s internal mental processes. In other words, 

social interaction among individuals plays an integral part in how people learn (Rogoff, 1984; 

Harland, 2003). Student-student and student-teacher interactions in a classroom are important 

components of learning from the constructivist perspective. To the Vygotskian view, the role of a 

teacher in “scaffolding” and “anchoring” students’ learning provides guiding social interaction. 

Based on this theory, one important step in designing instruction to develop complex mental 

functions is the consideration of the “zone of proximal development”, the gap between the actual 

developmental level that is reflected in the learner’s independent learning and the more scientific 

level that is accomplished with guidance. Most importantly, the zone of proximal development is 

created in the interaction between students and the instructor and/or among the students in a 

group (Vygotsky, 1978). 

Currently, conceptual change is viewed as both a gradual process (evolutionary) and a sudden 

shift of theory (revolutionary) (Keiny, 2008). In the revolutionary conceptual change, coherent 

student’s conception is put into conflict with the scientific conception. In this process, students 
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need to have a certain amount of prior knowledge and a certain degree of reasoning abilities to 

reach a stage of meaningful conflict that enable them to grasp the idea of the conflict and to 

understand the scientific conceptions (Limon, 2001). The evolutionary conceptual change is a 

gradual process that considers intermediate conceptions developed during the change process 

(Maloney & Siegler, 1993). Hence, the paths for conceptual change may vary from student to 

student and are based on the contexts in which students engage.   

Therefore, the inclusive epistemological-individual and social constructivist theory of learning- 

(Duit & Treagust, 2003; Vosniadou, 2007) was used as a theoretical basis for enhancement of the 

students’ conceptual change. This theory takes into account what the learners already know and 

that acknowledges students’ personal and social construction of knowledge. Embedded in the 

individual and social constructivist theory, the cognitive perturbation strategy proposed by Li et 

al., (2006) is used to promote conceptual change based on the idea that paths of conceptual 

change for different students are idiosyncratic, diverse and context sensitive.  

1.10 Definition of Key Terms/Phrases 

Concept:  A perceived regularity in events or objects, or records of events or objects, designated 

by a label (mostly by a word) (Novak, 2002). 

Students’ Conceptions:  Pre-existing (pre instruction) understanding of learners that influences 

their new learning (Sewell, 2002).  Some earlier studies have given a combined term to both 

students’ alternative conceptions and conceptual knowledge in a given conceptual domain of 

science, like students’ preexisting understanding (Sewell, 2002) or students’ mental model states 

(Bao & Redish, 2006), Therefore, the term students’ conceptions encompasses both alternative 

conceptions (misconceptions) and conceptual knowledge of students in this study.  

Conceptual Knowledge:  Student’s conception that is consistent with the scientific conception 

(expert-like knowledge).  It is an explicit understanding of a concept and/or of the interrelations 

between concepts in a domain of knowledge (Rittle-Johnson & Alibali, 1999; Streveler, 

Litzinger, Miller & Steif, 2008).   
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Alternative Conception:  Student’s conception that is inconsistent with the scientific conception 

(Gilbert & Watts, 1983; Pinarbasi, Canpolat & Bayrakceken, 2006).   

Conceptual Change: A learning process in which students’ alternative conceptions transform 

(restructure) into the intended scientific conceptions (Pinarbasi et al., 2006; Vosniadou, 2007).  

Epistemological Perspective: A view on students’ conceptions based on how they describe a 

concept being investigated (Abell & Eichinger, 1998; Treagust & Duit, 2008).  

Ontological Perspective: A view on students’ conceptions based on how they consider (view 

the nature) a concept being investigated (Abell & Eichinger, 1998; Treagust & Duit, 2008). 

Categories of Students’ Conceptions: A classification of students’ conceptions which are 

depicted on the bases of their epistemological descriptions and/or ontological considerations of 

physics concepts. This classification encompasses both categories of alternative conceptions and 

conceptual knowledge.  

1.11 Summary of the Chapter 

This introductory chapter describes the background and statement of the problem, objectives, 

research questions, significance, delimitation, limitations, context, theoretical framework and 

finally key terms/phrases of the study. The chapter starts by discussing the nature of electricity 

and magnetism which plays a central role in determining the structure of the natural world and 

becomes the foundations of most current and emergent technologies. Next, it discusses the 

inadequacy of the sole identification of alternative conceptions and the need for categorization of 

students’ conceptions in electricity and magnetism. Consequently, the need to investigate 

students’ conceptual change strategy which is believed to enhance their learning in the abstract 

concepts of electricity and magnetism is described. This study is based on constructivist theory 

of learning due to the fact that conceptual change is a process of knowledge construction and 

reconstruction. It is delimited to epistemological and ontological perspectives of conceptual 

change to categorize and then change students’ conceptions in two broad conceptual areas of 

electricity and magnetism, the electric potential and energy (EPE) and the electromagnetic 

induction (EMI).  
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CHAPTER 2 

 REVIEW OF RELATED LITERATURE 

2.1 Introduction 

This study aims to investigate students’ conceptual change in the concepts of electric potential 

and energy (EPE) and electromagnetic induction (EMI) by supporting their learning through the 

cognitive perturbation strategy using interactive physics simulations. In order to investigate 

students’ conceptual change, literature related to students' conceptions and conceptual change in 

the concepts of electricity and magnetism are reviewed.  In addition, categories of students’ 

conceptions, the theory of classical conceptual change and the role of cognitive conflict strategy 

in conceptual change are discussed. Besides, the need for cognitive perturbation strategy and the 

roles of interactive physics simulations and concept maps in conceptual change are presented. 

2.2 Alternative Conceptions in Electricity and Magnetism 

One of the fundamental goals of research in physics education is to improve students’ 

understanding of physics concepts (McDermott, 2001). To this end, studies on students’ 

conceptions have been done since the last three decades. The theory of classical conceptual 

change (Posner et al., 1982) has been used as the basis in the studies of students’ conceptions. In 

physics, much of these studies have been done in the classical mechanics and in DC circuits 

(Baser, 2006; Baser & Durmus, 2010; Bilal & Erol, 2009; McDermott & Redish, 1999; 

Minstrell, 1982; Ramadas et al., 1996; Rosentha & Henderson, 2006).  

In physics, the concepts of classical mechanics and DC circuits are closest to students’ 

immediate everyday experience. Consequently, this closeness of the concepts to the students’ 

everyday experience makes them to be certain in their conceptions (Planinic et al., 2006).  

Empirical studies on students’ conceptions of the above-mentioned familiar science areas (e.g., 

Clement, 1982) showed consistent features of students’ conceptions.  For example, force implies 

velocity (Halloun & Hestenes, 1985) is the mostly revealed consistent students’ conception about 

motion of macroscopic objects in introductory mechanics.  
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Studies revealed consistent students’ conceptions in DC circuits.  Students’ conceptions in this 

area were studied at different levels of physics learning from schools to universities. Consistent 

conceptions were documented, like the unipolar or sink conception (Fredette & Lochhead, 1980; 

Osborne, 1981), the clashing or two-component conception (Osborne, 1983), the current 

consumption or sequence (attenuation) conception (Osborne, 1983; Shipstone, 1984), the 

constant current source conception (Borges, 1999) and the scientific Ohm’s Law conception 

(Borges, 1999). All of these mentioned conceptions are alternative conceptions with the 

exception of the Ohm’s Law scientific conception. Besides these, undergraduate students’ 

conceptions of DC circuits were reported and documented in the literature (Engelhart & 

Beichner, 2004; McDermott & Shaffer, 1992). For example, current is consumed and that a 

battery is a source of constant current (Fredette & Lochhead, 1980; Licht & Thijs, 1990; 

Osborne, 1981); current originated at the positive terminal and is exhausted at the negative 

terminal (Rosenthal & Henderson, 2006).  

In magnetism, Borges and Tecnico (1998) investigated five conceptions in the context of 

Brazilian students. These conceptions were: magnetism as pulling, magnetism as a cloud, 

magnetism as electricity, a magnet as an electrified object and magnetism as a field. The first 

four were the students’ alternative conceptions while the last field model was an acceptable 

scientific conception.  

However, the other concepts of electricity and magnetism, such as electric potential, electric 

potential energy, induced current, induced emf and fields are unfamiliar to students’ everyday 

experiences and are abstract and invisible. Students face most of these concepts in their formal 

classroom learning.  Accordingly, it is thought that students could have inconsistency in their 

conceptions of these concepts, and therefore needs to be investigated.   

The effects of electric and magnetic fields confuse many students’ understanding. Students show 

misunderstanding and inconsistencies indicating that they do not have a coherent framework of 

ideas about electricity and magnetism concepts (Maloney et al., 2001). For example, students 

have ideas that charges are attracted to magnetic poles and are pushed along magnetic field lines 

(Maloney, 1985; Scaife, & Heckler, 2010). 
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The scientific Ohm’s Law concept of DC circuits influences students’ understanding in the other 

parts of electricity and magnetism. For example, most students regard Ohm’s law as the most 

important concept in electricity and magnetism (Leppavirta, 2012; Thong & Gunstone, 2008). 

This conception makes them to have difficulties in applying ideas of energy and work in the 

contexts of electric and magnetic fields (Saglam, & Millar, 2006). In addition, students at 

university level perceived a neutral object as an object with no charge and a charged body 

contains only one type of charge (Baser & Geban, 2007).    

Students often face difficulties and have alternative conceptions due to their lack of 

understanding Newton’s laws in the contexts of electricity and magnetism (Galili, 1995). For 

example, a larger force is exerted by a larger charge in the Coulomb’s interaction between two 

charges (Leppavirta, 2012; Maloney et al. 2001) and a uniform electric field implies a uniform 

velocity of a charge placed in the field (Planinic, 2006).  

Studies on the assessment of students’ difficulties in the concepts of electricity and magnetism 

(Chabay & Sherwood, 2006; Planinic, 2006) have shown that the concepts are significantly more 

difficult to understand than the concepts in mechanics. They added that student’ difficulties of 

most electricity and magnetism concepts remain the same; before and after instruction. 

Furthermore, the difficulties in electricity and magnetism concepts have similar trends across 

undergraduate students in different countries (American and Croatian) (Planinic, 2006) and 

upper high school students in Turkey and England (Saglam & Millar, 2006).  This shows that 

students have problems with the concepts of electricity and magnetism globally and may cause 

problems in physics learning.  

2.3 Categories of Students’ Conceptions 

As described in paragraph two of Section 1.2, the current view of identifying students’ 

alternative conceptions and difficulties is changing towards the emerging view of knowledge 

structures and categorization of conceptions (Rebello, Zollman, Allbaugh, Engelhardt, Gray, 

Hrepic, et al., 2005) because of the complexities of students’ conceptions in the microscopic 

world of physics.  Consequently, as defined in Section 1.10, categories of alternative conception 

are a classification of depicted students’ conceptions based on epistemological descriptions 
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and/or ontological considerations of physics concepts. Hence, according to the definition given 

in Section 1.10, students’ conceptions constitutes of categories of alternative conceptions and 

conceptual knowledge that are reviewed in the next two sub sections.  

2.3.1 Categories of Alternative Conceptions 

As introduced earlier, alternative conceptions are known as pre-instructional conceptions that are 

often inconsistent with scientific concepts to be taught. In literature, it is also described as a 

theory-like student idea (Ioannides & Vosniadou, 2002), misclassification of concepts within or 

across ontological categories (Chi, 2008; Chi & Slotta, 1993) or fragmented “pieces” of 

knowledge (diSessa, 1993; diSessa, et al., 2004). These distinctions are made noticeable based 

on the nature and structure (representation) of students’ descriptions on concepts.  

The different perspectives on students’ alternative conceptions put science teachers in general 

and physics teachers in particular in indecisive situations with regards to the change of 

alternative conceptions of their students. As discussed in paragraph two of Section 1.2, the only 

identification of students’ alternative conceptions in a given domain of science is believed to be 

inadequate for the design of learning supportive approaches for conceptual change. The 

inadequacy of this process is because of the different disputable perspectives on students’ 

alternative conceptions and conceptual change. In addition, earlier researches (e.g., Chi & 

Roscoe 2002) have raised blurred ideas about students’ conceptions. As they showed, alternative 

conceptions have different meanings due to the different ways they are formed. This complexity 

of alternative conceptions has also posed problems to students’ conceptual change because they 

imply different ways of conceptual change.  

In this study, a categorization of alternative conceptions is made by viewing students’ 

descriptions of concepts from epistemological and ontological perspectives of conceptual 

change. This categorization of alternative conceptions is believed to reduce the complexity of the 

conceptual change process and be more useful than only the identification of the alternative 

conceptions themselves because the type of alternative conception categorized would indicate 

the type of conceptual change needed. 
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Thus, four categories of alternative conceptions can be discerned in the literature of cognitive 

science and science education based on the distinctions noticed in the students’ descriptions (Chi, 

2008; Chi & Slotta, 1993; diSessa, 1993; diSessa, et al., 2004; Ioannides & Vosniadou, 2002; 

McCloskey, 1983). Consequently, categories of alternative conceptions are meant for 

classification of the students’ alternative conceptions that are depicted on the basis of the nature 

and structure of the students’ descriptions of science/physics concepts. These categories are 

naïve physics (diSessa, 1982; McCloskey, 1983), ontological alternative conception (Chi, 2008; 

Chi & Slotta, 1993), lateral alternative conception (Chi, 2008; Chi & Slotta, 1993) and the 

Ohm’s p-prim (diSessa, 1993). The distinctions among these categories are highlighted in the 

subsequent paragraphs. 

Naïve physics: In this context, naïve physics is an intuitive physics (diSessa, 1982; McCloskey, 

1983) defined as a simplified and less organized students’ theoretical view of a concept or 

knowledge experientially acquired. For example, Aristotelian “force implies velocity” is naïve 

physics. Scientifically, Newtonian mechanics states that force implies acceleration but no force 

implies a zero velocity or a constant non-zero velocity. Accordingly, naïve physics have some 

valid elements of a concept or a principle of the physical world. In other words, it represents 

insufficient ideas or particular cases of a concept or a principle. In the area of electricity, for 

example, students’ conception of a charge that moves in the direction of an electric field is naive 

physics. This is so because the conception is valid in a special situation when a point positive 

charge is released in an electric field but it does not apply for a negative charge or a charged 

particle projected with some angle to the direction of an electric field. In general, naïve physics is 

an “incomplete scientific model” or “incomplete mental model” (Chi, 2008) depicted by naïve 

learners.  

Ontological alternative conception: According to Chi (2008), categorization is a process of 

identifying or assigning a concept to a category to which it belongs and is therefore assumed as 

an important process in physics learning. Most of the concepts in physics have attributes of being 

classified into categories based on their nature, properties, and descriptions. In an ontological 

categorization of science concepts, matter and process are two main ontological categories or 

representations (Chi, 2008; Chi & Slotta, 1993). For example, several teachers use tap water 

analogy in teaching their students about the electric current concept.  However, at the end of the 
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lesson some of the students may consider electric current as a fluid. It is known that electric 

current is a process in relation to charge flow, while water is a substance. This means, in such 

instruction, some students could conceive current as a fluid. It is such students’ incorrect 

categorization of concepts which in this study is called ontological alternative conception.   

Lateral alternative conception: Students may misclassify concepts within an ontological 

category (Chi 2008). It means that a concept in a hierarchy of concepts could be incorrectly 

categorized into different branches. For example, young children conceive the Moon as a living 

thing (animism) and an artifact (Venville et al., 2012). In addition, students may consider electric 

potential as a force, i.e., they incorrectly label electric potential under some properties of force. 

Though electric potential and Columbic force can share some properties and they are found in 

the same ontological category, laterally, they belong to different sub-categories. It is such a 

conception which in this study is called lateral alternative conception.  

Phenomenological primitive (P-Prime): According to diSessa (1993), Phenomenological 

primitive is spontaneous physics which is made up of smaller and more fragmented cognitive 

structures. The p-prime can have different forms depending on how students respond to the 

concepts to be investigated. These forms are actuating agency, dying away, resistance and 

interference, and Ohm's P-Prime (diSessa, 1993; Hammer, 1996). In general, the first three 

forms of the p-prime can be related to students’ conceptions of relating proximity to intensity 

(closer means stronger) (Hammer, 1996).  For example, to a question of why it is hotter in the 

summer than in the winter, students’ response may be that the earth is closer to the sun in the 

summer. 

Among the different forms of the p-primes described by diSessa (1993), the Ohm’s P-Prime, 

which means more effort creates more result, is relevant to this study. The Ohm’s p-prime is one 

of the phenomenological primitives (diSessa, 1993) that may be reflected by physics students 

who consider Ohm’s law as a fundamental law of electricity and magnetism. In Ohm’s Law, the 

electric potential difference is the agent that creates an electric current against a resistance in an 

electric circuit. The higher the effect (electric potential difference) is the higher the result 

(current) and the higher the resistance the less the current will be in a circuit. Thus, students’ 

conceptions in the other parts of electricity and magnetism concepts could be influenced by the 



25 
 

Ohm’s Law of electric circuits. For example, in the Columbic interaction of two different 

charges, students may consider an exertion of a larger force because of a larger charge (Maloney 

et al., 2001; Leppävirta, 2012). In this case, the students simply relate larger force to larger 

charge and smaller force to small charge without considering the existence of action and reaction 

force in a system of the two charges. 

2.3.2 Categories of Conceptual Knowledge 

Conceptual knowledge is defined as an understanding of the structure of concepts and the 

relations among concepts (Tennyson & Cocchiarella, 1986). Complementary to this, Rittle-

Johnson (2006) defined conceptual knowledge as the understanding of principles governing a 

domain and the interrelations between concepts in the domain. This definition illustrates that 

concepts such as force or energy, as well as relationships such as Newton’s laws and the laws of 

energy and momentum conservation, are part of conceptual knowledge in the domain of physics. 

Conceptual knowledge plays a crucial role in how we make sense of the world because it allows 

us to categorize concepts and it also impacts what we do with what we have categorized 

(Perkins, 2006).  This means conceptual knowledge is more complex than declarative knowledge 

(the “what” of a concept, i.e., definition or factual knowledge) and influences procedural 

knowledge (knowledge of subject-specific techniques and methods), such as knowledge of 

problem solving in physics.   

Rittle-Johnson et al. (2001) discussed some mechanisms through which conceptual knowledge 

may enhance procedural knowledge. First, conceptual knowledge may help students identify key 

features of a problem in a domain of science. This could help them to apply their conceptual 

knowledge in problem solving by properly understanding the problem and generating a 

successful solution (Redish and Smith, 2008). Second, conceptual knowledge may help students 

recognize errors in their problem solving procedures. Third, conceptual knowledge may 

influence the generation of new procedures by helping students identify and evaluate essential 

elements of correct procedures. In general, conceptual knowledge is knowledge of classifications 

and categorizations, principles and generalizations, and theories, models and structures in an area 
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of science. Accordingly, conceptual knowledge in physics could be categorized into hierarchical, 

relational and scientific models. 

Hierarchical conceptual knowledge: This is classification and categorization of concepts into 

correct ontological and/or lateral categories (Chi, 2008). In addition, an organization of concepts 

from a more to less inclusive concept(s) can be named as hierarchical conceptual knowledge.  

Relational conceptual knowledge:  According to Long (2005), the construction of relationships 

between pieces of information is one form of achieving conceptual knowledge. In other words, it 

is meant for valid qualitative relationships between two or more concepts, like relationship 

between electric potential and charge. 

Scientific model: This is a “correct scientific mental model” (Chi et al., 1994; Vosniadou & 

Brewer, 1994) that may represent changes and generates predictions and outcomes, such as 

prediction of the direction of electric field of a given source.   

2.4 Conceptual Change  

The theory of conceptual change was first developed by science education researchers and 

philosophers in the early 1980's (Posner et al., 1982). The theory was based on both Piaget's 

notion of disequilibration and accommodation and Thomas Kuhn's description of scientific 

revolution (Kuhn, 1970). As defined in Section 1.10, conceptual change is a learning process in 

which students’ alternative conceptions transform or reconstruct into the intended scientific 

conceptions (Vosniadou, 2007). Hence, this theory is based on the constructivist theory of 

learning (Hewson & Thorley, 1989), because it involves guiding of students to reconstruct their 

alternative conceptions towards the intended scientific conceptions (Pinarbasi et al., 2006).   

Since the last three decades, different types of conceptual changes have been distinguished. 

These distinctions are based on different perspectives of researchers in the area. Accordingly, 

from the epistemological perspective, conceptual change is viewed as assimilation and 

accommodation of concepts. “Assimilation” (Posner et al., 1982) or “conceptual capture” 

(Hewson, 1981) of concepts refers to the use of existing conceptions to deal with new (scientific) 

conceptions while “accommodation” (Posner et al., 1982) or “conceptual exchange” (Hewson) 
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involves replacing the learner’s persistent conceptions. These two forms of conceptual change, 

assimilation and accommodation, respectively, are also named as “weak restructuring” and 

“radical restructuring” (Carey, 1985), because the former involves modification or incorporation 

of the existing conceptions while the latter involves the rejection of the existing conception and 

the acceptance of a new conception.  

Analogously, from ontological perspective, conceptual change is distinguished as “tree jumping” 

and “branch switching” (Chi, 2008; Thagard, 1990) to distinguish the conceptual restructuring 

from incorrect to correct ontological categories.  In this perspective, branch switching is meant 

for rearrangement of concepts within an ontological category, while tree jumping is meant for 

restructuring of concepts in different categories.  

2.4.1 Classical Conceptual Change Model and Its Limitations 

In the model proposed by Posner et al. (1982), four conditions for conceptual change were 

specified. In this model, Posner et al. suggested that learning occurs when the learner recognizes 

a need and becomes dissatisfied with existing concepts. For students to change their alternative 

conceptions, the scientific conceptions should appear intelligible, plausible, and fruitful to them 

(Hewson & Thorley, 1989).  In other words, this model suggests creating dissatisfaction in 

students with their alternative conceptions so as to strengthen the status of the desired scientific 

conceptions.  Consequently, according to Posner et al. (1982), the four conceptual change 

conditions are: 

1. Dissatisfaction - students must become dissatisfied with their existing conceptions; 

2. Intelligibility - the new concept must be clear and understandable for students; 

3. Plausibility- the current problem should be solved using the new concept; and 

4. Fruitfulness- similar future problems can be solved by using the new concept. 

Based on these conditions, conceptual change learning approaches have been developed and 

demonstrated positive effects in promoting students’ conceptual understanding of science 

(Gabel, 1998; Hand & Treagust, 1991; Hewson & Hewson, 1983; Stofflett & Stoddart, 1994).  
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Conceptual learning approaches were mainly developed from 1980s to 1990s in science concepts 

learning and appeared more efficient than the traditional approach (Duit & Treagust, 2003). 

Some of these approaches were bridging analogies (Stavy, 1998), disequilibration techniques/ 

cognitive conflict (Hewson & Hewson, 1984) and learning cycles (Dykstra et al., 1992). These 

approaches were based on conceptual change models and cognitive ideas and are known as 

classical conceptual change approaches.  

These classical conceptual change approaches appear more efficient than traditional transmission 

models (Posner et al., 1982).  This is because a number of studies (Dykstra et al., 1992; Grayson, 

1994; Hake, 1998) have shown that conceptual change in physics cannot be achieved solely by 

traditional teaching.  However, difficulties and limitations of such approaches were studied and 

reported (Chan et al., 1997; Demastes et al., 1995; Dreyfus et al., 1990; Limon, 2001; Zohar & 

Aharon-Kravetsky, 2005). The classical conceptual change approaches have limitations due to 

the complex nature of students’ alternative conceptions (Duit & Treagust, 2003). That is, the 

idiosyncrasy and diversity found in students’ conceptual development and the vacillation of 

students’ conceptions from one context to another (Li et al., 2006) constraining conceptual 

change learning. Indeed, it could be argued that the classical conceptual change approaches are 

inadequate and need to be reformed to promote conceptual change.   

2.4.2 The Role of Cognitive Conflict Strategy in Conceptual Change 

Cognitive conflict (Hewson & Hewson, 1984) is one of the strategies of a classical conceptual 

change model which has been mostly implemented in the learning of science concepts. It 

constitutes of a crucial stage in the influential conceptual change model proposed by Posner et al. 

(1982), however, its difficulties and limitations have been reported. For instance, studies (Chan 

et al., 1997; Demastes et al., 1995; Dreyfus et al., 1990) attest that it is difficult for all students to 

reach a stage of meaningful cognitive conflict. In addition, there exist discrepancies among 

students in their willingness to confront and resolve cognitive conflicts (Chan et al., 1997). Thus, 

current research indicates that the cognitive conflict approach has dissimilar effects for students 

of different academic levels.  In this regard, studies (Limon, 2001; Zohar & Aharon-Kravetsky, 

2005) indicate that the cognitive conflict strategy can benefit students with high academic 

achievements while it hinders progress of students with low academic achievements. In addition, 
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as discussed in Section 1.2, students’ responses to scientific conceptions are influenced by their 

prior knowledge (Chinn & Brewer, 1993).  That is, if students have little or inconsistent 

conceptual knowledge about a topic or minimal level of conceptual knowledge, like in abstract 

and complex concepts of electricity and magnetism, then cognitive conflict would not be 

meaningful at all. As discussed in Section 1.2, this is because of the inconsistency of students’ 

conceptions that are found at low levels and the wide cognitive gap that exists between their 

prior conception and scientific conception. As a result, it is less likely to expect effective 

students’ conceptual change.  

Many of the difficulties found in the application of the cognitive conflict strategy are closely 

related to the complexity of factors intervening conceptual learning in the context of classroom 

settings. These are, firstly, the success of cognitive conflict approach depends strongly on the 

ability of the individual student to recognize and resolve the conflict (Limon, 2001). This means 

that several intellectually less able students may fail to even recognize the conflict and some of 

those who do recognize it may not be able to resolve it (Planinic et al., 2005). Secondly, students 

are generally reluctant or unwilling to abandon their alternative conceptions formed upon their 

own experience (Chan et al., 1997; Planinic et al., 2005). However, scientific conceptions are 

often difficult to understand by the students because they are not grounded in their experience 

(Planinic et al.). Therefore, this remoteness of scientific conceptions from the students’ 

experience could create frustration in physics students who have less confidence in their 

conceptual knowledge of concepts in electricity and magnetism and consequently, see it as a 

confirmation of their inability to learn physics. 

There are controversial results regarding the effectiveness of cognitive conflict in learning 

science concepts. According to Lee and Byun (2012) and Zohar and Aharon-Kravetsky (2005), 

students usually own inconsistencies in a superficial way rather than undergo more radical kinds 

of changes implied by the conceptual change theory. This would be one of the reasons that have 

contributed to the current prevalent perspective that views conceptual change as a gradual 

process (evolutionary) rather than a sudden shift of theory (revolutionary) (Vosniadou, 1999). As 

Chan et al. (1997, p 2) argue,  
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Despite much enthusiasm for a conceptual conflict approach, findings have been 
equivocal. Even when students are confronted with contradictory information, 
they are often unable to achieve meaningful conflict or to become dissatisfied 
with their prior conceptions. 

In addition, Limon (2001) appraised a series of explanations given in the literature why the 

cognitive conflict strategy often seems not to work in the classroom, at least to the extent 

expected. As she summarized, students need to have a certain amount of prior knowledge and a 

certain degree of reasoning abilities to reach a stage of meaningful conflict that enable them to 

grasp the idea of the conflict and to understand the scientific conceptions.  

In general, the cognitive conflict of the classical conceptual change model has been proposed and 

viewed as a linear, rational, deterministic, one step and revolutionary process of conceptual 

change (Nussbaum & Novice, 1982; Tao & Gunstone 1999). Nevertheless, it could be suggested 

that perhaps this process may have different paths for different learners, not always being linear 

and revolutionary. We still lack a more scientific knowledge of the intermediate states of the 

conceptual change process that would be based on the contextual need of learners. Therefore, it 

would be necessary to challenge alternative conceptions of students in different contexts of 

classroom setting and to overcome the limitations of cognitive conflict strategy that may appear 

in students’ learning of selected electricity and magnetism concepts.   

2.4.3 Conceptual Change Research in Electricity and Magnetism 

Investigations done to develop students’ conceptual change were mainly in DC electric circuits 

(see paragraph one of Section 1.2). For example, the effectiveness of potential difference 

approach in relation to the usual current concept approach (Rosenthal & Henderson, 2006), the 

use of analogy with the four-step constructivist teaching model (elicit-engage-explanation-

extension) (Ipek & Calik, 2008), conceptual change simulations over the traditional confirmatory 

simulations (Baser, 2006) and the effectiveness of computer-supported versus real laboratory 

inquiry learning environments (Baser & Durmus, 2010) on pre-service teachers. In addition, 

there was supposition to address students’ difficulties and alternative conceptions in electricity 

and magnetism using techniques that could visualize field patterns (Saglam & Millar, 2006).  For 

its realization, Stocklmayer (2010) investigated the success of the field-model as an alternative 

approach to teaching of DC concepts in high school.   
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However, the other parts of EM concepts, like electromagnetic induction and electric potential 

and electric energy in which most students across different countries face difficulties with 

(Planinic 2006; Saglam & Millar, 2006) have not been well addressed. In addition, there was no 

designed technique that can facilitate to address the complexities and idiosyncrasies (Li et al., 

2006) and inconsistencies as well as fragmentariness of students’ conceptions (Albe et al., 2001; 

Greca & Moreira, 1997), like students’ conceptions often appear in electricity and magnetism.  

Such conceptions might need different learning paths (trajectories) for different students or 

groups of students as an instructional strategy (Baser & Geban, 2007; Chinn & Samarapungavan, 

2009). The details of the chosen supportive approach are discussed in the subsequent sections. 

2.4.4 The Need for Cognitive Perturbation Strategy 

Students lack strong confidence and do not have a firm stand on their conceptual understanding 

of electricity and magnetism concepts because of the abstract relations existing in the EM 

concepts (Chabay & Sherwood, 2006). In addition, several undergraduate students scored low 

results in conceptual diagnostic tests of electricity and magnetism (Finkelstein, 2005; Planinic, 

2006). Consequently, these low scoring students failed to change their alternative conceptions 

with the cognitive conflict strategy (Limon, 2001; Zohar & Aharon-Kravetsky, 2005). The 

reason is that students’ responses to electricity and magnetism conceptual tests/questions are 

inconsistent, unlike in mechanics. In classical mechanics, students are quite confident in their 

answers although many of their answers are incorrect. Accordingly, consistent alternative 

conceptions may be recognized through incorrect answers provided with high concentration of 

students (Bao & Redish, 2001). Thus, it would be difficult to make students dissatisfied with 

their alternative conceptions and set them into a state of cognitive conflict because of unstable 

students’ alternative conceptions of the concepts in difficult conceptual areas of EM, like electric 

potential and energy and electromagnetic induction.  

As described in Section 1.2, the fundamental idea of cognitive perturbation strategy is based on 

the understanding that paths of conceptual change for different students/groups of students are 

idiosyncratic, diverse and context sensitive (Li, 2011; Li et al., 2006). The types of perturbations 

necessary for initiating conceptual change would be determined by contexts in which students 

engage. Li et al. proposed and implemented cognitive perturbation strategy through computer-
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supported dynamics modeling learning environment in a qualitative study of a single group of 

elementary science students’ conceptual change and in particular they investigated the 

progression of elementary science students’ conceptual knowledge in the topic of evaporation. 

However, the effectiveness of this strategy in the presence of a controlled group in a classical 

conceptual change learning model has not yet been investigated at any educational level. 

Therefore, a study is needed on the effectiveness of cognitive perturbation strategy in relation to 

cognitive conflict strategy to contribute knowledge to the theory of conceptual change in science 

learning.  

The cognitive perturbation strategy differs from the classical conceptual change approach in a 

number of ways. In the classical conceptual change, students’ conceptions are often demarcated 

as either alternative conceptions or scientific conceptions, but the cognitive perturbation strategy 

considers the intermediate conceptions developed during the change process (Maloney & 

Siegler, 1993). In addition, Li et al. (2006) argue that the classical conceptual change approach 

suffers from lack of sensitivity to classroom social contexts essential for conceptual change. 

With these views, students fail to make sense of the discrepant events in complex concepts like 

electricity and magnetism and maintain their alternative conceptions after instruction (Chabay & 

Sherwood, 2006; Finkelstein, 2005). Thus, the cognitive conflict in the classical conceptual 

change model could have limitations to provide appropriate conceptual anchors to bridge the gap 

between the students’ alternative conceptions and scientific conceptions. 

Cognitive perturbation strategy is based on the constructivist theory of learning (Driver et al., 

1994), like cognitive conflict strategy (Hewson & Hewson, 1984) of the classical conceptual 

change approach. The cognitive conflict strategy often puts conflict between students’ alternative 

conceptions and scientific conceptions intended to be taught. It rejects students’ alternative 

conceptions at the beginning without considering the intermediate conceptions developed during 

the change process (Maloney & Siegler, 1993). However, cognitive perturbation strategy 

provides appropriate perturbations to initiate students’ conceptual change towards more 

scientifically viable intermediate conceptions than their preconceptions, before suddenly 

reaching scientific conceptions (Li et al., 2006).  In addition, the classroom contexts in which 

students would immerse determine the types of perturbations necessary for initiating conceptual 

change.  
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Moreover, the researcher believes that the need for cognitive perturbation is because of the 

supposition that students’ alternative conceptions are inconsistently diversified due to their 

different background. For example, on a concept of electric potential, students would have 

different conceptions and consequently, different ways of learning are needed to support their 

learning. A student who consider electric potential as a force and another one who consider 

electric potential as a charge need different supports. In this case, contexts do not mean the 

contexts of the problems but they are students’ different contextual needs or different ways to 

address states of conceptions. Hence, during the learning of an individual student/group of 

students, their contextual needs are decided by the facilitator of the learning. This is the reason 

that cognitive perturbation is initiated based on the students’ contextual needs. 

Therefore, the purpose of cognitive perturbation strategy is different from that of the cognitive 

conflict strategy. The cognitive conflict strategy of the classical conceptual change starts with 

conflict and then rejects alternative conceptions. However, to initiate conceptual change with the 

cognitive perturbation strategy, the students are gradually provided appropriate perturbation from 

their preconceptions towards scientifically more viable intermediate conceptions before they are 

guided to scientific conceptions. This means, in this strategy, the students are not suddenly 

directed to face the scientific conceptions and engage in cognitive conflict with their alternative 

conceptions.  Therefore, it is due to the aforementioned points that the cognitive perturbation 

strategy (Li et al., 2006) is intended to be used to achieve the desired conceptual change in 

selected conceptual areas of electricity and magnetism. 

2.4.5 The Role of Interactive Simulations in Conceptual Change 

The use of appropriate interactive visualization simulated software available for teaching 

concepts of physics in the classroom has become important to overcome the limitations of real 

experiments and helps students to construct their knowledge through less guided exploration 

(Urban-Woldron, 2009). In addition, computer simulations are used to provide discrepant events 

in conceptual learning because they have the capacity to provide learners with an exploratory 

learning environment (Zacharia & Anderson, 2003). Computer simulations can also motivate and 

actively engage students towards construction of their knowledge.  For example, the research of 

the Physics Education Technology (PhET) project (Wieman et al., 2008a) particularly related to 
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simulation and students’ motivation has developed more than 60 interactive simulations on the 

topics of physics. These simulations are freely available on the website (http:// phet.coloado.edu) 

and can be easily run online or may be downloaded to a local computer or installed to a CD 

(Wieman et al., 2008b). Moreover, if students in groups are given a chance to run the 

simulations, then the simulations can offer them opportunities to actively interact in their 

learning at reasonable scale and time frame.  In short, the simulations are designed to be 

interactive, engaging, and also to make explicit certain visual representations (Wieman et al., 

2008b). Rutten et al. (2012) reviewed 51 articles between 2001 and 2010 and found that 

simulations are useful for visualisation and reported large effect sizes of well-designed 

simulation-based instruction. Therefore, because of the complex and invisible phenomena in 

electricity and magnetism, interactive physics computer simulations of selected conceptual areas 

of the concepts are used as part of the supportive learning strategies. 

2.4.6 The Role of Concept Maps in Conceptual Change 

Concept maps are two-dimensional graphical representation of individuals’ knowledge structure 

of a particular conceptual topic (Novak & Gowin, 1984). The theoretical basis for concept maps 

is the Ausubel-Novak-Gowin theory of meaningful learning (Novak & Gowin, 1984). In relation 

to this theory, the difference between meaningful learning and rote learning must be cleared. 

Rote learning occurs when learners make no effort to relate new concepts and propositions to 

their prior relevant knowledge, whereas meaningful learning occurs when learners seek to relate 

new concepts and propositions to their relevant existing concepts and propositions (Novak & 

Gowin, 1984). In other words, meaningful learning involves reorganization of existing 

knowledge or integration of new knowledge with existing knowledge. Therefore, this theory of 

learning considers concept and propositional learning as the basis on which individuals construct 

their own idiosyncratic meanings. This theory is among the three influential theories of learning 

(Ausubel’s, Piaget’s & Vygotsky’s), which commonly agree on the influence of students’ 

conceptions in learning and are the bases for the constructivist view of learning (Cakir, 2008).  

Experts and novices are distinguished by the organization of their knowledge, and not by the 

content of their knowledge (Zajchowski & Martin, 1993). Expert’s conceptual knowledge is 

structured around key concepts and principles (Hardiman, Dufresne, Robert & Mestre, 1989). In 
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addition, an expert has contextually appropriate access to possession of knowledge (Redish, 

1994). Such access could be shown by the structure of interconnections between knowledge 

elements (Mestre & Touger, 1989). Therefore, for the purpose of assessing students’ conceptions 

with respect to physics concepts, a need exists for concept maps that can probe students’ 

conceptual knowledge structure. 

As mentioned earlier, most students do not have well developed models or conceptions in the 

microscopic physical phenomena of physics. In such cases the solely use of common research 

tools such as survey tests may be inadequate to understand students’ ways of thinking (Rebello et 

al., 2005). A tool that may be particularly useful in exploring the dynamics of students’ 

conception is needed as an additional method of data collection. Thus, to categorize students’ 

conceptions of electricity and magnetism concepts, structural and relational writing discourse 

(Roth & Roychoudhury, 1994) of students as data collection instrument is found useful. In other 

words, concept maps are found useful for an in-depth exploration of learners' knowledge 

structures in the complex and abstract science concepts, like electricity and magnetism. The 

details of concept maps are discussed in the methodology section. 

A concept means a perceived regularity in events or objects, or records of events or objects, 

designated by a label (mostly by a word) (Novak, 2002). In concept maps, concepts are included 

in boxes or ovals (see Figure 1.1). Concept maps have characteristic components to represent 

individual students’ conceptions. These components are propositions, hierarchies, cross-links and 

examples (Novak & Gowin, 1984). Propositions, as a characteristic of concept maps, are 

meaningful relationships between concepts (Novak & Gowin, 1984; Novak, 2002). They are 

indicated by connecting lines and linking words and are used to measure students’ ability of 

relating two or more concepts.  Hierarchy, another characteristic of concept maps, refers to the 

breaking down of the super-ordinate concept into valid levels (subordinates), i.e., from the 

general to a specific concept (Novak & Gowin, 1984). It can measure students’ ability of 

hierarchical categories and organizations of conceptual knowledge.  Another characteristic of 

concept maps is the inclusion of cross-links (Novak, 2002).  Cross-links are meaningful 

connections between concepts under different hierarchies of the concept-maps. Cross-links can 

indicate students’ in-depth conceptual understanding in a domain of knowledge. Examples are 

the most specific differentiation of the subordinate concepts that help to clarify the meaning of a 
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given concept. They are valid instances or illustrations of subordinate concepts that can measure 

individual’s specific contextual understanding of the concepts. Usually examples are not 

included in ovals or boxes, since they are specific events or objects and do not represent 

concepts. 

 

Figure 1. 1: Concept maps showing the nature and structure of concept maps (Novak, 2002) 

A concept map, in its simplest form, is two concepts connected by a linking word to form a 

proposition. For example, ‘force is a vector’ is a single concept map that forms a valid 

proposition of the concepts force and vector. Accordingly, concept maps are formed by 

combination of more than two related concepts and propositions. 

Concept maps can have hierarchical or non-hierarchical (e.g., cyclic or chain) structure based on 

the nature of the subject under investigation. Studies (Novak & Gowin, 1984; Zoller, 1990; Ruiz-

Primo & Shavelson, 1996; van Zele et al., 2004) have pointed out that in subjects such as physics 

and biology the concept maps possibly reflect a hierarchical ordering of concepts whereas, in 

subjects such as chemistry, the underlying structure of knowledge is not necessarily hierarchical.  

In general, concepts maps can be used for several purposes. They can be used to visualize and 

measure the depth, breadth and organization of an individual’s knowledge (Huer, 2005), for 
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identifying prior knowledge (Stoddart et al., 2000) and to reveal alternative conceptions 

(Mistades, 2009).  

2.5 Summary of the Chapter 

This chapter discussed the review of related literature. It involved review on students’ 

conceptions and conceptual change in electricity and magnetism, categories of students’ 

conceptions, the classical conceptual change model and its limitations, the role of cognitive 

conflict strategy in conceptual change, the role of computer interactive simulations in conceptual 

change, the need for cognitive perturbation strategy and the role of concept maps in conceptual 

change.  

In the review of related literature, the students’ difficulties in learning of the concepts of 

electricity and magnetism, such as electric potential, electric potential energy, induced current, 

induced emf and fields which are unfamiliar to students’ everyday experiences and also abstract 

and invisible phenomena were discussed. In addition, review on categorization of students’ 

conceptions was done by viewing students’ descriptions of concepts in different literature from 

epistemological and ontological perspectives of conceptual change. This categorization of 

alternative conceptions was believed to reduce the complexity of the conceptual change process 

and be more useful than the only identification of the alternative conceptions themselves. 

Moreover, the limitation of classical conceptual change approaches, like the cognitive conflict, in 

the complex nature of students’ alternative conceptions and the need for the cognitive 

perturbation and interactive physics simulations as a supportive learning strategy in the complex 

and invisible phenomena in electricity and magnetism were discussed.  
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Introduction 

This study encompasses two phases. The first is diagnosing the categories of students’ 

conceptions in the concepts of EPE and EMI. The second is studying the impact of the cognitive 

perturbation through physics interactive simulations (CPS) in relation to the cognitive conflict 

through physics interactive simulations (CCS). 

In order to diagnose the categories of students’ conceptions in the concepts of EPE and EMI, 

qualitative data were collected using focus groups discussions (FGD) and students’ concept maps 

(CM) and then analyzed separately using framework thematic analysis. The students scores on 

the Conceptual Survey of Electricity and Magnetism (CSEM) was used to form homogenous 

focus groups. 

In order to study the impact of the CPS in relation to the CCS in enhancing students’ conceptual 

change in the concepts of EPE and EMI, quantitative data were collected using the modified 

DEEM and CM and then analyzed separately using ANCOVA. 

3.2 Research Design 

Studies (Stavy, 1998; Vosniadou, 2007) have shown that the nature of the study of conceptual 

change is a very complex and gradual ongoing learning process. This is mainly because of the 

fact that students’ conceptions vacillate from one context to another, and idiosyncratic features 

found in students’ conceptual change are diversified (Li et al., 2006).  

To address these concerns, therefore, this study employed a quasi-experimental design and used 

concurrent mixed methods research. Taking into account the limitations of exclusively relying on 

qualitative or quantitative research design, the mixed method research has emerged and is 

viewed as the third methodological movement (Johanson & Onwuegbuzie, 2004; Doyle et al., 

2009). In other words, this study followed a pragmatic approach (Doyle et al., 2009) which 
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encourages researchers to use different approaches for research questions that, in fact, cannot be 

thoroughly addressed using a single method.  

3.2.1 Case Study 

The basic idea of a case study is that a case (or perhaps a small number of cases) is studied in 

detail using whatever methods and data seen appropriate (Punch, 2009). Accordingly, the 

researcher sought a better understanding of a particular case (first year physics students of Ambo 

University) in relation to their conceptions and conceptual change of the concepts in EPE and 

EMI.   

3.2.2 Quasi-experimental Design 

As discussed in Section 1.3, this study investigated first year physics undergraduate students’ 

conceptual change in selected conceptual areas of EM by supporting their learning in the context 

of Ambo University, Ethiopia.  The students’ learning was supported by two constructivist 

learning approaches, the CCS and the CPS, in which their effects were compared.  

In a quasi-experiment, comparisons are possible because of natural occurring treatment groups 

that are fairly clear cut, though not set up for research purposes (Punch, 2009).  Accordingly, the 

first year students enrolled at the Physics Department in 2010 were assigned to two lab groups by 

the Department. These two lab groups were taken as naturally occurring treatment groups.   This 

means, there was no random selection of individuals to the groups, but the researcher had control 

over when to measure outcome variables (pre and post tests) in relation to exposure to the 

independent variables (the CPS and CCS). In addition, the researcher had statistical control over 

the variables with analysis of covariance (ANCOVA). Thus, a quasi-experimental design was 

appropriately chosen to study the students’ conceptual change and compare the effects of the two 

constructivist supportive approaches.   

3.2.3 Mixed Methods Research 

Mixed methods research focuses on collecting, analyzing and mixing of both quantitative and 

qualitative data in a single study or series of studies for a better understanding of a research 
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problem (Creswell & Clark, 2007). The selection for the mixed methods was to benefit from 

their complementary nature and non-overlapping limitations since mixed-methods has its goal of 

not to replace either of them but rather to draw from the strength and minimize the weaknesses 

of both in single research and across the approaches (Johanson & Onwuegbuzie, 2004). To this 

end, mixed concurrent quantitative and qualitative research approach was used to increase the 

validity of the study.  In other words, mixed data collections were concurrently done in both pre 

and post treatments to better understand the research problem and triangulate the results for each 

research question. In short, triangulation design of multiple-methods was selected for this study. 

3.2.3.1 Triangulation Design 

The purpose of triangulation design is to obtain complementary qualitative and quantitative data 

on the same topic, bringing together the different strengths of the two methods (Creswell & 

Clark, 2007). It is a one phase design, where the two types of data are collected in the same time 

frame and are given equal weight. Typically it involves concurrent but separate collection and 

analysis of two types of data which are then merged at the interpretation of the results stage.  

Thus, in this study, qualitative and quantitative strands were conducted separately and 

concurrently and merged at the point of interpretation.  They were believed to form a more 

complete understanding of the students’ conceptions and conceptual change in abstract concepts 

of electricity and magnetism. 

3.3 Research Sample  

The research sample included 45 first year physics undergraduate students (aged between18 to 

23) who were registered for the course electricity and magnetism in the year 2011 at Ambo 

University, Ethiopia.  The students were assigned into two lab groups, group A and group B, by 

the Department of Physics. The department used the students’ alphabetical order list, as usual, to 

divide the class into two lab groups. From the naturally existing two lab groups for the course, 

control and experimental classes were randomly assigned into cognitive conflict strategy using 

simulation (CCS) and cognitive perturbation strategy using simulation (CPS), respectively.  
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3.4 Instruments 

This study employed a number of different data collection instruments, including conceptual 

tests, focus group discussions (FGD) and concept maps (CM). The tests were the Conceptual 

Survey of Electricity and Magnetism (CSEM) and a modified Diagnostic Exam of Electricity 

and Magnetism (DEEM) developed by Maloney et al. (2001) and Marx (1998), respectively. The 

CSEM was meant not to collect data for the research questions, but used to obtain data on the 

students’ prior conceptual knowledge level and form approximately homogenous ability focus 

groups for discussions.  The other multiple data collection methods (the modified DEEM, FGD 

and CM) helped to obtain an in-depth and corroborative understanding of students’ conceptions 

and the process of conceptual change in the concepts of EPE and EMI. 

3.4.1  The Conceptual Survey of Electricity and Magnetism  

The Conceptual Survey of Electricity and Magnetism (CSEM) is a survey diagnostic test with 32 

items developed by Maloney et al. (2001) to assess students’ alternative conceptions and 

conceptual knowledge in conceptual areas of electricity and magnetism. It is a multiple-choice 

test with a combination of conceptual knowledge as a correct answer and alternative conceptions 

as distracters, because so far no test has been developed to test alternative conceptions alone. The 

CSEM has less number of items per conceptual area with each item measuring more than one 

concept. However, the test has been widely implemented in different contexts of physics 

education research related to electricity and magnetism (Maloney et al., 2001; Planinic, 2006; 

Pollock, 2008; Zavala & Alarcon, 2008). Therefore, the CSEM was believed to supply useful 

data to form approximately independent homogenous focus groups for discussions.  

3.4.2 The Modified Diagnostic Exam of Electricity and Magnetism  

The Diagnostic Exam of Electricity and Magnetism (DEEM) developed by Marx (1998) is a 

diagnostic test of 66 items with more items per conceptual area compared to the CSEM; each 

item measures conceptual knowledge of a particular concept. Compared to the CSEM, it 

provides more quantitative data because the CSEM has fewer items per conceptual area with 

each item measuring more than one concept. The correct responses in the DEEM represent 

answers commonly accepted by experts (scientific conceptions) concerning electricity and 
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magnetism concepts while the distracters are based on students’ most common alternative 

conceptions of those concepts.  Its purposes are to measure overall achievement and progress of 

individual students and relate students’ response patterns to alternative conceptions and to 

measure the effectiveness of a particular learning approach in electricity and magnetism (Marx, 

1998).  

The DEEM was modified and adapted for pretest and posttest in relation to conceptual contents 

in the two conceptual areas of electricity and magnetism selected for this study. All the 

conceptual areas of electricity and magnetism could not be dealt with due to time constraints, 

nature of the treatments and the unavailability and unsuitability of the interactive computer 

simulations. Some questions in the conceptual areas intervened were selected from the CSEM 

and from another test, the Diagnostic Test of Students’ Ideas in Electromagnetism (DTSIEM), 

developed by Saglam & Millar (2004) and then added to the modified DEEM. Thus, the 

modified DEEM have fewer main items but more items per conceptual area based on the extent 

of conceptual areas intervened. It was accepted that, in so doing, a more detailed study of a 

smaller number of conceptual areas would be facilitated (Planinic, 2006). Thus, the DEEM was 

modified to 30 multiple choice questions with five options each (see Appendix A). Out of these 

conceptual questions, 16 were from the EPE and 14 were from the EMI concepts. The EPE 

included questions 1-14 and 17-18 while the EMI part included questions 15-16 and 19-30 (see 

Table 3.1). 

Table 3. 1: Contents of the modified DEEM 

Item No EPE conceptual area 

1, 2 Motion and energy of an electric charge in a uniform field  
3,4,5,6,7 Electric potential of point charges 
17,18 Electric potential of two point charges system 
8,9,10,11 Electric potential energy of two point charges system 
12,13,14 Equipotential lines, electric field, electric potential energy & work 

Item No EMI conceptual area 

15,16 Induced current due to changing area of a loop 
19,20, 21,22,26 Induced current due to motion of a  loop in a magnetic field 
23,24 Induced current due to a non-uniform magnetic field and motion of a coil 
25 Induced current due to relative motion of a magnet and a coil  
27, 28, 29, 30 Magnetic flux & Induced emf  
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3.4.3 Focus Groups Discussion  

A focus group is defined as a research technique that collects qualitative data through group 

interaction on a topic determined by the researcher (Morgan, 1996). In other words, a focus 

group consists of small group of informed people who are engaged in a social process based 

upon the collection of discussion as data. It was originated previously, in social sciences research 

and developed to market research as a convenient method of obtaining data from clients and 

customers (Wilson, 1997). In addition, Wilson reviewed that much of the published research that 

used focus groups discussion as their method of data collection were in health-related fields.  

However, focus group discussion has currently gained acceptability in academic institutions due 

to the insights it provides into participants’ experiences (Jarrell, 2000). Its purpose is generally to 

stimulate conversations around carefully constructed questions that are initiated by the researcher 

for a specific purpose of obtaining data relevant to the research questions (Wilson, 1997). 

Specifically, focus group discussion in education research can be used to elicit participants’ 

feelings, attitudes and perceptions about a particular topic through conversations (Parker & 

Tritter, 2006; Puchta & Potter, 2004).  In addition, focus groups can be used to elicit students’ 

view (Franklin & Knight, 1995), gather useful data about the effectiveness of an instruction 

(Lederman, 1990), evaluate students’ knowledge (Bauchner, Boardman, & Palmer, 1996) and 

enhance survey results in education research (Panyan, Hillman & Liggett, 1997).  

According to Wilson (1997), researchers who employ focus group discussion in educational 

research usually choose one of the following strategies. These are using focus groups:   

 in combination with quantitative data collection to deepen the researcher's 

understanding;  

 to help researchers understand previous data collected by quantitative methods; 

and  

 in concurrence with other qualitative methods. 

This study follows the last two options to strengthen the data obtained with both quantitative and 

qualitative methods. This means, firstly, the results of the focus groups discussions help to 

understand the quantitative results of data collected with diagnostic tests and concept maps. 
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Secondly, the qualitative results from focus groups discussions are triangulated with the 

qualitative results from individual students’ concept maps.  

In this study, four focus groups (two groups per treatment class) were formed. Their formation 

was based on the students’ baseline conceptual knowledge, which was measured using their 

responses in the CSEM test (see Appendix B). The intention for using the test was to form 

approximately independent homogeneous ability students in each focus group discussion (see 

Section 3.6.2.1& Appendix B). It was believed that such grouping of students can reduce the 

influence of dominating participants in the discussions.  

The researcher, as moderator, was attentive to the group interactions that allowed him to observe 

and understand the agreement or disagreement between participants concerning the electricity 

and magnetism concepts.  The discussions were open-ended to yield additional alternative 

conceptions and conceptual knowledge for strengthening the data obtained with the modified 

DEEM and concept maps. To this end, the participants’ discussions were audio-taped.   

3.4.4 Concept Maps  

Concept maps (CM) formations in the selected conceptual areas of electricity and magnetism 

were another empirical data source of this study. As a research tool, concept maps were used to 

visualize the individual student’s conceptions in terms of their graphic representation or 

organization and consequently evaluate their conceptual change of electricity and magnetism 

concepts. 

The students were asked to construct concept maps before and after intervention. They were told 

to take ‘electricity and magnetism’ as core (central) concept for their concept maps.  

Correspondingly, list of concepts from the selected two conceptual areas were provided to them 

in referring to the widely used standard textbooks for the course (Appendix C). In addition to the 

concepts provided, the students were allowed to add more related concepts (if they had some) to 

their own concept maps.  

Before the creation of their actual concept maps, participants in both control and experimental 

groups were given a training of 4 hours on the construction of concept maps. The contents of the 
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training were focused on examining the purpose of concept maps, sharing examples of concept 

maps and a description of how to construct concept maps (Miller et al., 2009). During the 

training, concepts used as example in the concept maps were not from the electricity and 

magnetism concepts in order not to influence the scores in their actual concept maps. 

3.5 Ethical Considerations 

Concerning ethical issues, the research participants were treated as autonomous individuals 

whose decisions on whether or not to participate were respected.  The participants’ permission 

was requested along with the department’s support before data collection commenced. The 

students were informed that the research test scores were confidential and would have no impact 

on their classroom assessment. They were informed that the research test scores and any other 

means of data collection were confidential and will have no impact on their classroom 

assessment. In addition, written consents were given by the participants (see Appendix D).  

Moreover, as per the requirement of the Institute for Science and Technology Education at 

UNISA, a student conducting research as part of his/her study must seek ethical clearance from 

the University’s Ethical Review Committee. Accordingly, a request for ethical clearance was 

made and approval was granted (see Appendix E). 

After the treatments process was completed and all the post data collections were done, the 

intervention process was reversed for two sessions to make an effort of balancing the knowledge 

gained by the students in both experimental and control groups. 

3.6 Issues of Trustworthiness 

Efforts were made to address trustworthiness of the data collection methods in this study. Thus, 

the issues of the validity (the degree to which a method/instrument measures what it purports to 

measure) and the reliability (the consistency with which it measures it over time) were addressed 

as described in the following subsections.     
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3.6.1 Validity and Reliability of the Diagnostic Tests 

The validity and reliability of the CSEM as a research tool was shown by (Maloney et al., 2001; 

Planinic, 2006) for a broad conceptual survey of students’ knowledge bases in electricity and 

magnetism conceptual areas. However, a pilot test was conducted and the face and content 

validity of the test were verified by three experienced lecturers of the field in the Department of 

Physics at Ambo University. In other words, they were asked to ensure that the essential 

conceptual areas of electricity and magnetism were covered in the items so that the test is valid 

for the survey of concepts of electricity and magnetism.  In addition, the reliability of the test 

was checked using the Kuder Richardson-21 estimation (KR-21= 0.86), which was an acceptable 

value for both individual and group testing (Ding & Beichner, 2009).  

With regards to the DEEM, although Marx (1998) had checked its validity and reliability as a 

research tool a pilot test was conducted to contextualize the test items and then assure validity 

and reliability of the modified DEEM version for this particular context. To this end, the face and 

content validity of this test was also checked by three experienced lecturers of the field in the 

Department of Physics. The test items are short which most of them are accompanied with self 

explanatory figures.  As result, they are found easy to understand by the students. This was 

checked during the pilot test that no student complained about interpreting the items because of 

their English knowledge. In addition, the KR-21 estimation of the test was calculated as 0.87 

which was acceptable value for both individual and group testing.  

3.6.2 Validity and Reliability of Focus Group Discussions 

For validity of focus groups discussion, the factual fitness of the participants’ discussion was 

checked (not to omit and/or incorrectly transcribe). With regards to its reliability a guide for 

focus groups formation and discussion was developed for implementation and replication of the 

discussions. 

3.6.2.1 Focus Groups Formation and Discussion Guide 

Focus groups formation and discussion guide was developed to keep consistency of the 

discussions among the focus groups and help other researchers who need to undertake similar 
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investigations or who need to replicate the study in a similar or other context. The guide 

incorporates the selection methods of the participants, the number and size of the groups, the 

type and number of discussion questions, the time schedule and the moderator’s background in 

relation to the domain of the study.  

Selection Method of Participants: Students were asked to participate voluntarily in the focus 

group discussions. Each focus group was homogeneous with regard to their scores in the CSEM 

test to minimize influences of possible dominant students during the discussions. To this end, the 

following activities were sequentially done.  

First, the CSEM test was administered to all the participants and their scores’ mean and median 

were described. The mean and median scores of the students were 20.8% and 21.9%, 

respectively (See Table B1 in Appendix B). Next, the students were divided into four groups 

using their median score. In this division, each laboratory class for the course was made to have 

one focus group of students who scored above the median and another focus group of students 

who scored below the median (See Table B2 in Appendix B). The students in the control and 

experimental groups were coded as CC and CP groups, respectively. 

The number and size of the groups: Initially, 45 students who were registered for the course 

EM agreed to participate in this study. Accordingly, four focus groups, each with 11 to 12 

students, were formed on the basis of their score in the CSEM test (See Table B2 & B3 in 

Appendix B). However, two to three students from each group were absent from the discussions 

which reduced the total number of participants to 35 with group size of 8 to 9 students each (See 

Table B4 in Appendix B). However, it was believed that the absence of two to three students 

from each group did not affect the result as their scores were found in the same level (See Tables 

B3& B7 in Appendix B) because the students’ average score (20.8%) was found in the low 

random response state2 (Bao & Reddish, 2001).  From the participants, 98% of them scored 

below 31% and only one student (2% of them) scored 40.6%, the maximum score for the class 

(see Table B2 in Appendix B). This means that the students’ scores found nearly in the low 

random response state. Therefore, it was noticed that the students’ conceptual knowledge was in 
                                                             
2 The random response state is a low-level response state in which the students’ responses are somewhat evenly 
distributed among more than three choices. 
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the same low-level that their dominance on each other during discussions was assumed 

insignificant.  

In addition, the homogeneity of the students in terms of their scores in the focus groups was 

shown by the pair wise comparison tests before and after attrition of some students. In other 

words, the mean scores of the formed four focus groups were compared by using ANOVA with 

pair comparisons to check whether they had significant differences.  As a result, no statistical 

differences were found between the means scores of students in the two focus groups (CC1 & 

CP1) who scored above the median as well as the two groups (CC2 & CP2) who scored below 

the median (See Tables B5 & B6 in Appendix B).  

The moderator: In this study, the moderator was the researcher himself, who has more than 20 

years experience of teaching physics in both high school and university. The reason the 

researcher and moderator was the same person was due to the nature of the study. That is, 

conceptual change research needs knowledge of subject matter (knowledge of concepts of 

electricity and magnetism), knowledge of students’ conceptions in the field and knowledge of 

theories of conceptual change. All these need a moderator who has done extensive review of 

literature in study area which was very rare case in the context of my county. Hence, it was 

believed that the moderator has the necessary subject matter knowledge, which is essential in 

relation to alternative conceptions and conceptual change research.   

The type and number of discussion questions: Nine open-ended conceptual questions from the 

concepts of EPE and EMI (see Appendix F) were prepared for discussion. The number of 

questions was corresponding to the minimum number of concepts and relationship between 

concepts intended to measure the students’ conceptual understanding in the two conceptual 

areas.  Accordingly, the questions in the conceptual areas of EPE were related to the concepts of 

electric potential, electric potential energy, relationship between electric potential and electric 

field and relationship between electric potential and electric potential energy. Similarly, the 

questions in the conceptual areas of EMI were associated to the concepts of electromagnetic 

induction (general question), magnetic flux, ways of producing induced emf and/or induced 

current, relationship between induced current and induced emf, the concept of Faraday’s Law of 

induction (see Appendix F). 
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Every member of the group was expected to participate actively in the discussions. The first 

round of discussion (before intervention) were held before the semester’s classroom learning 

commenced and was used to record their preconceptions. The second round of discussion was 

held after intervention, two months later after the first round of discussion. This was used to 

record the shift of their conceptions (if any). Both pre and post intervention discussions lasted 

until ideas of the participants were exhausted and no additional and new EPE and EMI 

conceptions were made.  

The time schedule: The maximum time allocated for the discussion of each group was 

approximately 2 hours. However, each group’s discussion was almost finished within 90 minutes 

on the nine discussion questions of the two conceptual areas.                          

3.6.3 Validity and Reliability of Concept Maps 

According to McClure et al. (1999), the validity of decisions made using information from 

concept maps assessment are influenced by both the nature of the question and evaluation of 

concept maps. Thus, the concept maps task was used to reflect on the content of electricity and 

magnetism concepts intervened (see Appendix C).  

According to Mistades (2009), the reliability of concept maps is interpreted as the consistency of 

the scores on the various concepts given to students. To this end, the researcher and one senior 

lecturer in the field were used as raters. The lecturer was orientated with regards to the 

evaluation procedure. The two raters independently scored randomly selected CM of students 

before the actual scoring. The raters’ agreement on the scores was compared for an estimation of 

inter-rater reliability. As a result, the scores were correlated and the inter-rater reliability estimate 

was 0.71, which was a reasonable result. 

3.6.4 Assumptions and Mechanisms for Reducing Contamination Threat 

Contamination is defined as the process whereby an intervention intended for members of one 

group of a study is received by members of another group (Howe,  Keogh-Brown, Miles & 

Bachmann, 2007).  In short, it is the sharing of information among the treatment groups. 
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Therefore, contamination or diffusion can be categorized under the transmission model of 

information sharing. 

3.6.4.1 Assumptions 

Diffusion is most likely to occur when an intervention is perceived as beneficial. For example, if 

the outcome of the process of intervention is included in a classroom examination for grading, it 

would be eagerly and frequently discussed outside the classroom between the students of the two 

groups, which was not the case in this study. In addition, simple interventions like recalling or 

recognition of information which are obvious to the members of the different groups are most 

likely to lead to contamination.  

Complex and multifaceted interventions, on the other hand, are less prone to contamination 

because they cannot easily be transferred from one participant to another (Howe et al., 2007; 

Keogh-Brown et al., 2007). Alternative conception, for instance, is very stable and cannot be 

removed by simple transmission of information or by the transmission model of learning. Thus, 

conceptual change is a complex process that needs insight and intervention (Planinic, 2007), and 

cannot be effected through information sharing between students by itself (Baser &Gerban, 

2007; Dykstra et al., 1992; Hake, 1998). Thus, conceptual change learning that involves the 

transformation of alternative conceptions into scientific conceptions on the bases of the 

constructivist learning model cannot be attained simply by students’ information sharing 

(transmission model of learning).  Although students may share information after the class, they 

cannot repeat the conceptual change learning environment provided in the class. Hence, 

negligible error due to interference of data was assumed. 

3.6.4.2 Mechanisms 

In this study, the students were not aware to which class they were allocated; either the CCS or 

CPS class. The conceptual topics presented to both groups of students and the simulations used 

during the treatments were the same. Also, the way the students were grouped in each class in 

order to share computers were similar. The students were interested in the simulations and 

indicated that the simulations helped them in their learning.  Also, they considered themselves 

fortunate as they were taught by using only computer simulations.  As a result, the students’ 
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discussions outside the class were possibly about the simulations and not about the concepts. 

This means that the design of the interventions was imperceptible for contamination. 

Classical conceptual change has limitations for students learning of complex concepts (Duit & 

Treagust, 2003; Li et al., 2006).  The support provided by the teacher (the cognitive perturbation) 

was done at appropriate junctures during the learning process in the classroom. This support 

varied from group to group, based on their contextual needs within the experimental class. Thus, 

it was believed that simple arbitrarily talk of the students to each other about the concepts or 

their sharing of information outside the classroom had an insignificant effect on the treatments. 

This was so because initiation of the supportive approaches was done by the teacher and its 

implementation outside the class by the students was believed to be impractical.  

Therefore, based on assumptions proposed and the efforts made, it was believed that 

contamination had an insignificant effect on the students’ conceptual change.  

3.7 Methods of Data Analyses  

In this study, data collected by CSEM was quantitative analyzed first because of the need to use 

the students’ scores in the test for the formation of focus groups for all the participants. Then, the 

analyses of data from FGD, CM and modified DEEM were independently done both before and 

after interventions. The data collected by the focus groups discussions were qualitatively 

analyzed, while the data collected by the means of students’ concept maps were analyzed both 

qualitatively and quantitatively. The data collected by the modified DEEM were analyzed 

quantitatively.   

The qualitative analyses of FGD and CM data were done to answer the first and the second 

research questions, while the quantitative analyses of data collected by the modified DEEM and 

students’ concept maps were done to answer the third research question.  In addition, the results 

of the quantitative analyses of both concept maps and the modified DEEM data supplemented 

that of the qualitative analyses. Moreover, qualitative analyses results helped to understand and 

explain the quantitative results.  
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3.7.1 Qualitative Analyses: Framework Thematic Analyses of Focus Groups Discussions 

and Concept Maps Data 

The framework analysis method (Rabiee, 2004; Ritchie & Spencer, 1994) was independently 

adapted for focus groups discussions and concept maps qualitative data analyses. The specific 

reason for adapting this method was its characteristic feature that allows themes to develop both 

from the literature and from the discussion or depiction of the research participants (Rabiee, 

2004). In addition, the diagnosed categories or themes of the students’ conceptions were 

considered as structure or framework of their understanding in the context of the study. 

Consequently, in the analyses, the categories of students’ conceptions discussed in the literature 

review were considered to develop the framework themes of conceptions. Besides, there was an 

open-mindedness to include additional emerging themes from the discussions of the students. 

Thus, five-stages of the framework analysis described by Ritchie and Spencer (1994) were used 

as the basis for the focus groups discussions and concept maps data analyses. These were 

familiarization, identifying a thematic framework, coding, charting and interpretation.  

3.7.1.1 Familiarization 

For the focus groups discussion data, the audio-taped interviews were transcribed verbatim and 

complemented with observation notes. Repeated listening to tapes and reading the observational 

notes were done to understand a sense of the entire discussions. In short, a systematic review of 

observational notes and transcripts were conducted at this level. Similarly, for the concept maps 

data, individual student’s concept maps was transcribed into statements. Repeated reading of the 

transcriptions was made to have a broad overview of all the ideas of the students’ depictions 

before categorizing them into themes. 

3.7.1.2 Identifying a Thematic Framework 

 In this stage, for the two sources of qualitative data, the predetermined themes were identified 

and additional themes were developed in accordance with the conceptions expressed by the 

students. Simultaneously, the conceptions of the students were filtered and classified 

(categorized) into themes. Filtering, in this case, was meant to keep aside the irrelevant 

participants’ statements, which were irrelevant to the research question.  
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Regarding the concept maps data, the bases for the thematic framework were the conceptions 

expressed by the students. It means that the valid (relevant) and invalid (inappropriate) responses 

that appeared on every student’s CM as propositions, hierarchies, cross-links and examples were 

used in the organization of the themes. Then, the transcribed statements generated from each 

student CM were classified into alternative conceptions and conceptual knowledge. In other 

words, the valid or relevant statements of students were categorized as conceptual knowledge, 

while their invalid or inappropriate statements were categorized into the alternative conceptions. 

Furthermore, both parts of the students’ conceptions (alternative conceptions and conceptual 

knowledge) were categorized based on the ways they were represented or described by the 

students.  

In this part of the framework analysis, for both FGD and CM data, open-mindedness was 

maintained so as not to force the data to fit with the predetermined themes.  Consequently, in 

addition to the predetermined themes, extra themes were categorized.  The extra themes were 

meant for those students’ ideas that did not fit into the preset themes. These additional themes 

were labeled as mixed conceptions and loose ideas. The additional conceptions were the 

students’ incorrect descriptions of concepts that possibly could be categorized into more than one 

predetermined category, while the loose ideas were incorrect descriptions of the students that 

could not be categorized into one or more categories.  Therefore, in this iterative process, a 

framework of students’ conceptions were developed and structured from both the preset and the 

emergent categories of the students’ conceptions.   

3.7.1.3 Coding 

 This third stage was applied to all the transcribed data that correspond to particular themes 

(categories). At this stage, for the data extracted with FGD, segments of transcripts were 

independently coded in terms of the categories they belonged to with their respective focus 

groups. For example, a segment of the transcripts of data that belonged to naïve physics and 

which was discussed by the first focus group was coded as NPFG1. Likewise, a segment of 

transcript that belonged to lateral alternative conception and which was discussed by the second 

focus group was coded as LACFG2 and so on.  
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Similarly, segments of the transcripts of students’ concept maps data were coded in terms of the 

categories they belonged to with the corresponding students (coded identifications) discussed the 

segments. For example, a segment of the transcribed data a student (say, code S01) described and 

belonged to naïve physics category was coded as NPS01. In both FGD and CM data analyses, 

the codes were annotated at the margins beside the texts. 

3.7.1.4 Charting 

 In this fourth stage of the analysis, the specific pieces of data that were coded in the previous 

stage were arranged in tables of the themes (categories of students’ conceptions).  Firstly, the 

coded segments of the transcribed data were organized into categories in relation to the concepts 

in the discussion questions. In other words, coded descriptive statements of the students’ 

conceptions in EPE and EMI concepts were set into categories. Then the data were shifted from 

their original textual context and illustrated in tables that consist of headings and subheadings 

that were drawn during the thematic framework. 

3.7.1.5 Interpretation 

 This fifth and last stage involved the analysis of key characteristics of students’ conceptions in 

the categories that were presented in tables. This analysis was able to provide tables of the data 

set. In short, interpretations were done on the developed categories or the framework in terms of 

frequency, extensiveness, consistency/inconsistency (Rabiee, 2004) and distribution of the 

students’ conceptions within and across the categories. These key characteristics were analyzed 

as follows. 

i. Frequency and Extensiveness: The term frequency (f) relates to the consideration of how 

often a conception or an idea was made within the participants (in the case of individual 

data collected with CM) or across focus groups discussions (in the case of group data 

collected with FGD), while the term extensiveness refers to the total frequency of the 

conceptions in a category.  

In the case of FGD data, the frequencies of students’ conceptions discussed across the 

four focus groups were analyzed. In other words, this frequency was the same as the 



55 
 

number of focus groups independently discussed a conception. The maximum of this 

frequency of a conception was four, which is equal to the number of the focus groups, 

while its minimum was one, i.e., when only one focus group discussed a conception. 

Correspondingly, the total frequency (extensiveness) was analyzed in each category of 

students’ conceptions. The extensiveness was analyzed to study how often the students’ 

conceptions were found in the categories. The frequency and extensiveness of the 

conceptions in each category were provided by tables in the results section to guide the 

interpretation. 

In the case of CM data, the term frequency (f) relates to the consideration of how often a 

conception or an idea was depicted within the participants.  The maximum frequency of a 

conception would be equal to the number of participants involved in the concept maps.  

Correspondingly, the total frequency was equal to the total number of students described 

conceptions in a category. It was analyzed to study the extensiveness of the students’ 

conceptions in the category. Thus, the extensiveness referred to the total number of the 

students who described the conceptions in a category. Also in this analysis, both the 

frequency and the extensiveness of students’ conceptions in categories were provided in 

the tables to guide the interpretations of the results. 

ii. Consistency or Inconsistency: Consistency/inconsistency was considered as the changes 

or the variations in conceptions of a concept by the students within and across the 

categories. The consistency/inconsistency of the students’ alternative conceptions was 

presented in a table in the results section to guide the interpretation.  

iii. Distribution: Distribution referred to the total number of alternative conceptions in a 

category of students’ conceptions. Correspondingly, percentage distribution referred to 

the percentage of the ratio of the number of conceptions in a category to the total number 

of conceptions and ideas in all the categories. 
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3.7.2 Quantitative Analyses 

3.7.2.1 Concentration Analysis of Data Collected with the Modified Diagnostic Exam of 

Electricity and Magnetism 

Concentration analysis is a new statistical approach developed by Bao and Redish (2001) in 

order to analyze the number of alternative conceptions used in students’ responses to multiple-

choice tests. In addition, the analysis is used to investigate the degree of relative importance of 

the alternative states/models of students’ responses in a given population. Consequently, the 

fundamental nature of this analysis is its ability to find patterns in the students’ alternative 

conceptions and conceptual knowledge. In other words, if students consistently choose 

distracters that represent particular alternative conceptions, then some conclusion on the 

students’ conceptions of physics concept can be made.   

Accordingly, in this approach, every item of a diagnostic test is mainly represented by two 

parameters, the concentration score (S) and concentration factor (Cf). The concentration score is 

the fraction of number of students’ correct answer to each multiple-choice question. It is 

expressed as:  

N
nS c

  
                                           eq. (1) 

In the equation, nc stands for the number of correct answers to an item and N is the total number 

of items. Its values vary from 0 to 1.  

The concentration factor (Bao & Redish) is the concentration of the students’ responses to the 

different options of each item. It could be expressed as:  
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In the equation, m stands for the number of multiple options and ni is the number of students’ 

responses to the ith option, where i varies from 1 to m and N is the total number of items of a test. 

The values of concentration factor also vary from 0 to 1.  

 

In addition, Bao & Redish introduced concentration deviation (Cd), the concentration of students’ 

alternative conceptions. The concentration deviation formula is given as: 
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In this case, ns stands for the number of students’ responses to the correct answer and all the 

notations in this equation are also the same as that of the concentration factor. 

Therefore, students’ responses to the modified DEEM were analyzed using concentration 

analysis (Bao & Redish, 2001). This means that the concentration of alternative conceptions and 

conceptual knowledge were analyzed before and after the intervention in terms of concentration 

factors [0, 1] and concentration scores [0, 1]. In addition, concentration deviation (the 

concentration of alternative conceptions), as in Bao & Redish, was analyzed before and after 

intervention to see the shift or change in students’ conceptions. Moreover, the concentration 

factor and the concentration deviation were compared using paired samples t-test in order to 

determine whether the students’ responses were consistent or not in the DEEM test. 

Students’ Model States: Another important part of the concentration analysis is the 

characterization and categorization of students’ model states. For its realization, the students’ 

response patterns were formed by combining their response concentration scores with their 

response concentration factors and concentration deviations. Then three-levels coding (Bao & 

Redish, 2001) were used to categorize students’ response states (see Table 3.2). 

Table 3. 2: Three-level students’ model states categorization  

Concentration 
Score (S) 

Concentration 
factor (Cf) 

Concentration 
deviation (Cd) 

Levels 

0 ≤ C< 0.4 0 ≤ C< 0.2 0 ≤ C< 0.2 Low (L) 
0.4 ≤ C< 0.7 0.2 ≤ C< 0.5 0.2 ≤ C< 0.5 Medium (M) 
0.7 ≤ C≤ 1.0 0.5 ≤ C≤ 1.0 0.5 ≤ C≤ 1.0 High (H) 

This combination helped to code the concentration score and concentration factor that provide 

the student response patterns for each conceptual multiple-choice question.  For this purpose, the 

possible students’ model states categorization was done by combining concentration scores with 

concentration factors and concentration deviation deviations (see Table 3.3).  
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Table 3. 3: Students’ possible model states categorization 

One model state 
(Pure state) 

HH One correct model 
LH One dominant incorrect model 

 

Two models state 

LM Two possible incorrect models 
MM Two popular models 
ML Two non popular models 
MH Two non popular models 

Null model state LL Near random situation 

Consequently, the students’ response patterns (during both pre and post intervention) were 

formed by combining the response concentration factors with the response scores. The 

combination helped to code for the score and concentration factor that provided the student 

response patterns for each conceptual multiple-choice question.  

3.7.2.2 Quantitative Analysis of Data Collected with Concept Maps  

The propositions, hierarchies, cross-links and examples that appeared on every participant’s CM 

were scored quantitatively before and after the intervention. A scoring rubric (McClure et al., 

1999; Miller et al., 2009) adapted from outline of Novak and Gowin (1984) and protocol of 

Shaka and Bitner (1996) (see Appendix G). The scoring was done by involving all the elements 

of concept maps that appeared on every participant’s mapping as propositions, hierarchies, cross-

links and examples (see paragraph 4 in Section 2.4.6). In the scoring rubric, students’ 

representations or descriptions of concepts in terms of the four elements were categorized into 

five levels that were scored from zero to four (see Appendix G).  

3.7.2.3 Analysis of Covariance  

Analysis of covariance was used on both quantitative data which were collected by the modified 

DEEM test and the students’ CM in order to triangulate the results. ANCOVA was used to 

determine if there was a significant difference between the treatments on the modified DEEM 

post-test scores, with pre-test scores as covariate.  Likewise, the difference between the averages 

of post CM scores of both treatment classes were analyzed using ANCOVA with pre CM scores 

as covariate and to examine the effectiveness of the CPS in comparison with the CCS.  
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3.7.2.4 Average Normalized Gain 

The average normalized gain <g> is the average actual gain [<%post> - <%pre>] divided by the 

maximum possible average gain [100% - <%pre>], where the angle brackets indicate the class 

averages (Hake, 1998). To characterize and compare students’ conceptual change of both 

treatment groups, Hake’s average normalized gains of the two quantitative data (the modified 

DEEM and the CM) from pre to post scores were analyzed  

Physics education researchers characterize normalized change (<g>) (Hake, 1998) of students’ 

scores in survey of conceptual tests as: <g> ≥ 0.7- High, 0.3 < <g> < 0.7 - Medium and <g> < 

0.3 - low. Hence, in this study, these three levels categorization of average normalized gain was 

used to characterize students’ conceptual change. 

3.8 Procedures for Treatments of the two Classes: Cognitive Conflict using 

Simulations and Cognitive Perturbation using Simulations  

Though the supportive approaches for both CCS and CPS classes were different, the same 

content was taught to both classes by the same instructor (researcher). The content taught was 

based on their alternative conceptions and conceptual knowledge identified in the two conceptual 

areas selected for the study before intervention.   

Students have basic computer literacy from their high school education. Also, they took one 

general computer course in the first semester before the intervention. In their first session before 

treatment (2hrs), all the students were instructed how to use interactive simulation software. 

Following the instruction, students in both control and experimental classes were divided into 

four groups each, comprising five to six students per group. The way the students were grouped 

in order to share computers were similar for both classes. Each group was assigned to a computer 

and was required to use interactive physics simulations selected to suit the conceptual areas of 

electricity and magnetism meant for the study. Then, both control and experimental classes were 

separately treated for two sessions per week (the duration of each session was two hours) for two 

consecutive weeks.    
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3.8.1 Characteristics of the Selected Simulations  

The same interactive simulations were chosen for both treatment classes (the CPS and CCS 

classes), to support the students’ learning in the concepts of electric potential and energy and 

electromagnetic induction.  As mentioned in Section 2.4.5, these simulations were selected from 

the PhET website http://PhET.colorado.edu online free distribution. The basis for their selection 

was the contents of the concepts selected for this study. In short, the simulations were believed to 

support and make students interactive in their learning of the selected concepts for this study. 

The selected simulations for EPE and EMI concepts were Charges and Fields (see Figure 3.1) 

and Faraday’s Electromagnetic Lab (see Figure 3.2), respectively.  

3.8.1.1 Charges and Fields Simulation and Its Characteristics  

In this simulation, the students were guided to measure electric potentials of positive and 

negative point charges, run electric field lines and equipotential lines, measure electric potentials 

and electric fields using simulated voltage reader (potential tool) and field sensor, respectively. 

The students can place and move point charges around on the playing field and then view the 

electric field, electric potential and equipotential lines (See Figure 3.1).  

 

Figure 3. 1: The Charges and Fields Interactive Simulation 
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The simulation is interactive that can be easily adjusted to move and put any kind and amount of 

charge at a point or different points needed (using a computer mouse), measure electric 

potentials and plot equipotential lines (using the voltage reader or potential tool) and indicate the 

direction of electric fields at different points in the field (using the field sensor).  In addition, the 

option buttons: grid, show numbers and tape meters are used to display exact location of charges 

and measure the values of electric potential and electric field at different points point in the 

playing field (see Figure 3.1). The students played around the playing field and discussed on the 

outputs of the interactive simulations. 

3.8.1.2 The Faraday’s Electromagnetic Lab Simulation and Its Characteristics 

This application software has been used as series of four simulation panels. These panels are bar 

magnet, bar magnet with a coil and electromagnet, transformer and generator.  

 

Figure 3. 2: The Faraday’s Electromagnetic Lab3 

                                                             

3 This simulation has a series of panels in which students can explore bar magnets and electromagnets, induced 
currents/induced emf, transformers and then hydroelectric power generation.  
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 All parts of this Electromagnetic Lab simulation panels have common different operating 

options which help to: show field, show compass, show field meter and change magnetic field 

strength. In addition, except the bar magnet panel, all of the panels have operating options that 

help to change number of loops and loop area. Besides, a bulb or a voltmeter option is used as 

indicator for induced electromotive force.  Moreover, the direction of flow of electrons in the 

loops can be shown while the emf is induced. The field meter is a movable interactive part that is 

used to detect magnetic field strength at different points in the field region. It can also detect 

variation of magnetic field at a point. Thus, the simulation is highly interactive that allows the 

students to do tasks in reaction to their actions. 

3.8.2 Cognitive Conflict with Simulations Class 

The cognitive conflict strategy was used with selected physics interactive simulations for the 

learning of students in the control group. The simulations suited the conceptual areas for 

intervention. The identified alternative conceptions were presented under the topic of a session or 

a conceptual area. This means that the students’ existing ideas about the concepts under 

intervention were made explicit and were then directly challenged.  The intention was to create 

cognitive conflict in the students and to make them dissatisfied with their alternative conceptions 

and to increase the status of scientific conceptions. With this in mind, the researcher requested 

the students, prior to their interaction with the simulations to present their predictions of the 

outcomes based on their existing ideas. After they had had the opportunity to do the simulations 

the students realized that the outcomes turned out to be different from their initial predictions. 

This discrepancy between predictions and outcomes created cognitive conflict in the students 

because the discrepant events provided contradicted the students’ alternative conceptions and 

invoked cognitive conflict (Hewson & Hewson, 1984; Baser, 2006). In trying to resolve this 

conflict, the researcher guided the students to abandon their alternative conceptions and replace 

them with the scientific conceptions. In doing so, the conditions for the classical conceptual 

change model, namely dissatisfaction, intelligibility, plausibility and fruitfulness (Posner et al., 

1982) were followed to guide students’ learning and to evaluate the level of their conceptual 

understanding (see Appendix H).  
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3.8.3 Cognitive Perturbation with Simulations Class 

In the experimental class there were various reasons for using cognitive perturbation with 

interactive simulations as a supportive intervention. Firstly it was supposed to reduce the number 

of students who failed to change their alternative conceptions. This was done by supporting them 

gradually, by posing cognitive perturbation, to move step by step from their preconceptions 

towards scientific conceptions. This provision of cognitive perturbation by the researcher was 

based on the status of the students’ explanations of the simulations. In addition, the students were 

constantly challenged by the researcher with questions which were based on their explanations of 

concepts in the EM interactive simulations. This was due to the contention that cognitive 

perturbation would help the students’ learning towards the forming of intermediate and more 

scientific conceptions than their preconceptions. The second reason was the lack of sensitivity of 

the cognitive conflict approach towards non-cognitive elements and social contexts (Li et al., 

2006). To overcome this limitation, the learning situation in the classroom setting was designed 

to provide for both individual and social involvement of students. For this purpose the researcher 

provided pedagogical social support and cognitive perturbations to students in addition to the 

student-student interactions in groups. However, he did not provide the students with immediate 

solutions or direct them to follow a predetermined path of learning during the interaction with 

the simulations. Hence, the researcher’s facilitation was focused on working with rather than 

against the students’ alternative conceptions in the process of their learning with the help of the 

interactive simulations.  

Unlike in the CCS class, the students in the CPS class were not asked to predict the outcomes of 

the simulations. The students’ conceptions of EM concepts were supposed to be inconsistently 

diversified. In addition, their conceptual knowledge was so low that they lacked conceptual 

resources (capacities) to engage themselves in the classroom interaction. Thus, instead of 

attempting to set the students of the CPS class into cognitive conflict, the researcher used a 

mechanism of gradually supporting their learning by providing cognitive perturbation at 

appropriate junctures. Accordingly, the tasks that all the groups of students performed with the 

help of interactive physics simulations were made to have three phases: the undertaking phase, 

the presentation phase and the refining phase (see Appendix I).  
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In the undertaking phase, the students were asked to run the simulation and do the task given to 

them in groups. In this part, each group of students was given the chance to discuss (student-

student discussion) the tasks they performed in the interactive simulations. 

In the presentation phase, the students reflected on their understanding of the concepts.  During 

the students’ reflections, the researcher valued their ideas to motivate them in their progressive 

learning. This phase was found to be an appropriate situation to notice their learning 

(understanding) gap and then provide them cognitive perturbation based on their contextual 

difficulties to support their learning towards the intended scientific conception. In this study, it 

was mostly given in the form of a question and was believed to rectify the students’ 

misunderstanding. 

In the refining part, the students were expected to incorporate the teacher’s comments and use 

the cognitive perturbations as a scaffold in their construction of conceptual knowledge towards 

the scientific conceptions. 

Therefore, the CCS and the CPS classes differed only in the support the researcher was offering:  

the cognitive conflict strategy for the CCS class and the cognitive perturbation strategy for the 

CPS class.   

3.9 Summary of the Chapter 

This chapter described the research methodology which involves the research design, research 

sample, instruments, ethical considerations, issues of trustworthiness (validity and reliability of 

the instruments) and methods of data analyses (framework thematic analysis, concentration 

analysis, analysis of covariance and average normalized gain) and treatment procedures.   

Due to the nature of the study of conceptual change which is a very complex and gradual 

ongoing learning process, this case study employed a quasi-experimental design and used 

concurrent mixed methods research in which the results were merged at the point of 

interpretation.  Naturally existing two lab groups for the course were randomly assigned into 

CCS and CPS classes.  Data collection instruments were the Modified DEEM, FGD and CM. 

Validity and reliability of the test were estimated using experts’ consensus and Kuder 
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Richardson-21statistical estimation, respectively. For validity of FGD, the factual fitness of the 

participants’ discussion was checked. For its reliability, a guide was developed for 

implementation and replication of the discussions. The concept maps task was used to reflect on 

the content of EM concepts intervened for its validity and raters’ agreement on the scores was 

compared for an estimation of inter-rater reliability. In addition, assumptions were proposed and 

efforts were done to minimize contamination effect. Data from FGD and CM in pre and post 

intervention were analyzed qualitatively using framework thematic analysis to answer the first 

and the second research questions while data from the modified DEEM and CM in pre and post 

intervention were analyzed quantitatively using concentration analysis, ANCOVA and also 

average normalized gain to answer the third research question.  
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CHAPTER 4 

PRE INTERVENTION RESULTS 

In this chapter, the qualitative and quantitative results of the pre-intervention study are presented 

and discussed. These pre-intervention study mainly provided results to answer the first research 

question.  Baseline data are needed in order to answer the second and third research questions. 

These baseline results will be used to compare the students’ conceptual changes after the 

intervention.    

PART I: QUALITATIVE RESULTS  

In this part, the results to the first research question namely ‘What are the categories of students’ 

conceptions in the electric potential and energy (EPE) and electromagnetic induction (EMI) 

conceptual areas before intervention?’ were analyzed.  In order to answer this question, the 

results of the pre intervention data from focus groups discussions and concept maps of the 

students who participated in the study were presented and discussed. Group-based data analysis 

was used to analyze data from the focus groups discussions while individual-based data analysis 

was used when analyzing the concept maps. Both analyses were independently done using the 

framework thematic analysis step by step starting from the first stage of familiarization to the last 

stage of interpretation (see Section 3.7.1). The transcribed and coded data were then categorized 

into categories (themes) of students’ alternative conceptions and conceptual knowledge. 

4.1 Qualitative Results of Focus Groups Discussions Data  

In the pre intervention results of the group-based data from the four focus groups, six categories 

of alternative conceptions and two categories of students’ conceptual knowledge were identified. 

Among the categories of alternative conceptions, four were the presupposed categories based on 

the literature review namely naive physics, the lateral alternative conceptions, the ontological 

alternative conceptions and the Ohm’s p-primes while the other two that emerged were termed 

mixed conceptions and loose ideas.  The two categories of students’ conceptual knowledge were 

diagnosed as hierarchical and relational conceptual knowledge (see Section 2.3.2).  
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4.1.1 Categories of Students’ Alternative Conceptions 

4.1.1.1 Category1: Naïve Physics 

Naive physics is defined as a simplified and less organized students’ theoretical view of a 

concept (see paragraph 5 in Section 2.3.1). 

Naïve Physics in the Concepts of EPE  

The students’ alternative conceptions of the concepts of EPE were categorized into the naïve 

physics in relation to their frequency and extensiveness (see Table 4.1). As illustrated in the 

Table, from the 17 alternative conceptions categorized to the naïve physics, eleven were 

discussed only once by any one of the focus groups and six were discussed only twice by any 

two of the focus groups. However, there were no naïve physics discussed by more than two focus 

groups in this case.  

The alternative conceptions were further categorized in terms of electric potential, electric field, 

and electric potential energy (see Table 4.1). From these alternative conceptions, seven were in 

electric potential, four in electric field and six in the energy concepts.  For example, from electric 

potential, two of the focus groups described that there is an electric potential only when a charge 

is at rest and they considered the potential difference as the difference between only positive and 

negative potentials. Also, they perceived that electric potential of two opposite charges separated 

by some distance is zero. This statement would be true if the two opposite charges are equal and 

the potential is calculated at their midpoint.  From electric field concept, another example was 

that of uniform electric field implies a uniform velocity. The students considered that a charge 

released in a uniform electric field moves at a constant velocity. This was a consequence of 

“force implies velocity” from Aristotelian physics. This means, the students had some intuitive 

reasons for their explanation of uniform electric field implies a uniform velocity. However, they 

were unable to visualize that the electric field can change the velocity of a moving body or 

consequently, it can accelerate a charged particle released in it. From the energy concept, kinetic 

and potential energies are constant in electric field. In this case, two focus groups of students 

considered as if the two forms of a charge’s energy are independently constant in an external 

electric field. 
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Table 4. 1: Pre intervention naïve physics in the concepts of EPE with their frequency and extensiveness 

Concepts Naïve physics in EPE concepts Frequency  
Electric 
potential 

1. Charge at rest implies electric potential. 2 
2. Electric potential of two opposite charges system is zero. 2 
3. Potential difference is the difference between positive and negative potentials. 2 
4. The potential difference of charges separated by large distance is zero.  1 
5. An electric potential is confined only in an atom.  1 
6. Equipotential lines have only circular structure.  1 
7. A changed body has only one type of charge 1 

Electric 
field  
 

8. Positive charge is the only source of electric field. 2 
9. Uniform electric field implies a uniform velocity of a charge.  2 
10. In an electric field, positive charge accelerates but the negative charge 

decelerates. 
1 

11. Uniform electric field implies a projectile motion of a charge 1 
Energy 12. Kinetic energy of a charge is constant in a uniform electric field. 1 

13. Kinetic and potential energies are constant in an electric field (naïve energy 
idea). 

2 

14. Positive charges have positive energy; negative charges have negative energy. 1 
15. Work is done on an equipotential line. 1 
16. Moving charges have no electric potential energy. 1 
17. The kinetic energy of a charge changes on an equipotential line. 1 

 Extensiveness of Naïve physics in EPE concepts 23 

Naïve Physics in the Concepts of EMI  

In the concepts of EMI, seven alternative conceptions were categorized into the naïve physics 

(see Table 4.2). From these alternative conceptions, three were in the magnetic field and 

magnetic flux and another three were in the induced current/emf concepts. For example, two 

focus groups of students described that induced current is implied by magnetic field. In this case, 

the students considered the presence of magnetic field as the cause for induced current. In 

general, the naïve physics in the EMI concepts were less extensive than those in the concepts of 

EPE (see Tables 4.1 & 4.2).   

From the seven alternative conceptions depicted and categorized into naïve physics of EMI 

concepts, only two of them were discussed twice by two of the focus groups, while the other five 

were discussed only once (see Table 4.2). However, in a similar way to the naive physics of EPE 

concepts, there were no naïve physics of EMI concepts discussed by more than two focus 

groups.   
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Table 4. 2: Pre intervention naïve physics in the concepts of EMI with their frequency and extensiveness 

 Concepts Naïve physics in EMI concepts Frequency 
Magnetic 
field & 
Magnetic 
flux 
 

1. Normal unit vector to an area should be normal to the magnetic field to produce 
magnetic flux. 

1 

2. Motion of a magnet as a cause for magnetic flux: the magnetic flux is due to 
motion of a magnet through its field. 

1 

3. Motion of a magnet accelerates charges: motion of a magnet causes a force that 
accelerates or decelerates charged particles. (magnet pushes or pulls charged 
particles) 

1 

Induced 
emf/induce
d current 

4. Magnetic field implies induced current: electromagnetic induction is the 
process of producing current using magnetic field.  

2 

5. Magnet implies induced current: electromagnetic induction is a process of 
producing or inducing current from a magnet.  

2 

6. Presence of coils implies emf: when one coil is placed near another coil, an 
induced electromotive force is produced. 

1 

7. Constant current implies constant emf: a constant current in one coil induces an 
emf in the other coil. 

1 

 Extensiveness of naïve physics in EMI concepts 9 

4.1.1.2 Category 2: Lateral Alternative Conceptions  

The lateral alternative conception is defined as a concept in a hierarchy of concepts that could be 

incorrectly categorized into different branches (see paragraph 7 in Section 2.3.1).   

Lateral Alternative Conceptions in the Concepts of EPE  

In the concepts of EPE, there were 14 lateral alternative conceptions identified (see Table 4.3). 

For example, three focus groups of students exclusively considered electric potential as a force. 

It means that they incorrectly labeled electric potential under some properties of force. Although 

electric potential and force can share some properties and they are found in the same ontological 

category; laterally, they belong to different sub categories.  

Out of the 14 alternative conceptions in this conceptual area, eight were in the concept of electric 

potential, four were in the concept of electric potential energy and two were in the electric field 

concept (see Table 4.3). In addition, among the lateral alternative conceptions of the concepts in 

EPE, two of them were discussed three times, four of them were discussed twice and eight of 

them were discussed only once in the four groups (see Table 4.3).  There were no lateral 

alternative conceptions discussed by all the focus groups.   
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Table 4. 3: Pre intervention lateral alternative conceptions in EPE concepts with their frequency and extensiveness 

Concepts Lateral Alternative Conceptions in EPE concepts Frequency 
Electric 
potential 

 

1. Electric potential as a force: electric potential is the attraction or repulsion of two 
charges. 3 

2. Electric potential as an attractive force: electrostatic potential is a potential of 
positive and negative charged particles.  2 

3. Electric potential as potential energy: electric potential is a potential energy that 
electric charges possess.  2 

4. Electric potential as kinetic energy: electric potential is created by an electric 
field because of moving charges.  1 

5. Electric potential as a vector: electric potential is a vector which is based on the 
signs (directions) of charges.  2 

6. Electric potential as charge flow/current: electric potential is made up of flow of 
charges from negative to positive charged materials.  1 

7. Potential as position & potential difference as a distance: potential difference is 
the distance between two equipotential lines. 1 

8. Equipotential lines as electric field lines: equipotential lines are electric field lines 
that are equal and parallel to each other. 1 

Electric 
field 

9. Electric field as force: electric field is the force on any test charge. 1 
10. Electric field as magnetic field: electric field changes the direction of  motion of 

charges 1 

Electric 
potential 
energy 

 

11. Electric energy as a force: electric potential energy is a conservative force. 
Electric potential energy exists between two unlike charges (electric potential 
energy implies attraction force). 

2 

12. Electric potential energy as a potential difference: electric potential energy is the 
difference between electric potentials.  

1 

13. Electric potential energy as kinetic energy: electric potential energy is when 
charges are in motion- (motion implies energy). 

3 

14. Electric potential energy as a vector: electric potential energy is a vector that 
depends on the signs (+ or -) of charges.  

1 

 Extensiveness of lateral alternative conceptions in EPE concepts 22 

Lateral Alternative Conceptions in the Concepts of EMI  

In the concepts of EMI, 15 conceptions were developed into lateral alternative conceptions (see 

Table 4.4).  Out of these conceptions seven were in the process of electromagnetic induction, two 

were in magnetic flux and six were in the induced current/emf concepts. Except for one 

alternative conception, all of these depicted lateral alternative conceptions occurred only once in 

the four focus groups discussions.  
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Table 4. 4: Pre intervention lateral alternative conceptions in EMI concepts with their frequency and extensiveness 

Concepts Lateral Alternative Conceptions in EMI Concepts Frequency 

Electromagnetic 
induction 

1. Electromagnetic induction as a flow of charges by magnetic field: 
magnetic field produces potential difference that causes a flow of 
charges form one coil to another.  

 
 
1 

2. Current as induction: the process of electromagnetic induction takes 
place when a flow of charges produces current. 

 
1 

3. Electromagnetic induction as a process of charging/charge transfer: to 
relate the current from one coil to the voltage in another coil, charges 
should move from one coil to another.   

 
1 

4. Electromagnetic induction as a static charging process: induced current 
is produced by attracting electrons from materials. 

 
1 

5. Electromagnetic induction as conduction current: electromagnetic 
induction occurs when an electromagnetic material is connected to 
non-electromagnetic material and causes flow of charges from one to 
another 

 
 
1 

6. Charging by induction process as electromagnetic process: 
electromagnetic induction is charging a neutral body without 
connection  

 
2 

7. Electromagnetic induction as a formation of electromagnet: 
electromagnetic induction means an electromagnet created without 
contact.  

1 

Magnetic flux 8. Magnetic flux as electric flux: magnetic flux means an electric field 
lines passing through an area.  

1 

9. Magnetic flux as a magnetic field:  
-magnetic flux is magnetic field lines crossing a given electric field 
-an induced emf equals to flux multiplied by area over change of time 

 
 
1 

Induced 
emf/induced 
current 

10. Induced emf as a potential difference: electrostatic force of charges 
produces electromotive force.  

 
1 

11. Induced current as magnetic field: The cause for induced current is 
either a moving charge or a magnet.  

 
1 

12. Induced emf as magnetic field: moving charge is a source for induced 
emf.  

 
1 

13. Induced emf as a force: an exertion of electromotive force may cause 
induced current between the coils. 

 
1 

14. Ampere’s Law confusion with the Faraday’s law: the relation between 
magnetic field and the induced current is that it is the induced current 
that produces magnetic field. 

1 

15. Magnet as a charged object: in electromagnetic induction, electrons are 
induced from a magnet to uncharged object.   

1 

 Extensiveness of Lateral Alternative Conceptions in EMI concepts 16 

4.1.1.3 Category 3: Ontological Alternative Conceptions 

The ontological alternative conception is a concept which the students categorize it into incorrect 

ontological category (see paragraph 6 in Section 2.3.1). Students used some distinctive words for 

substance (or material object), like connect, flow, move and release to describe the EPE concepts.  



72 
 

In this theme, nine alternative conceptions were documented.  Among these alternative 

conceptions, four were in the concept of electric potential, three were in the electric field concept 

and two were in the concept of electric potential energy. For example, the students considered 

electric potential, electric field and energy as substances (see Table 4.5). It means that they 

considered the concepts as an ontological nature of substance or matter. Among the nine 

ontological alternative conceptions, only two of them were discussed twice whereas the rest 

seven were discussed only once in the four focus groups.   

This category of alternative conceptions was developed only in the concepts of EPE based on the 

data analyzed from the students’ focus groups discussions.  In other words, there was no 

students’ alternative conception identified and categorized into ontological alternative 

conceptions category from the EMI concepts.  The energy and force concepts are more familiar 

to the students in relation to material objects than the concepts in EMI, like induced emf.  This 

made the students to conceive the ontological alternative conceptions only in the concepts of 

EPE. 

Table 4. 5: Pre intervention ontological alternative conceptions in the concepts of EPE with their frequency and 
extensiveness 
Concepts Ontological Alternative Conceptions in EPE concepts Frequency 
Electric 
potential 

 

1. Electric potential as material object:  
 positive potential is connected to positive charge; negative potential is 

connected to a negative charge  
 when electric potential is released charge is also released 

2 

2. Electric potential as charges: electric potential is divided into two: negative 
charges and positive charges. 1 

3. Electric potential as a charge at rest: electric potential is an electric charge 
which does not possess motion. 1 

4. Equipotential lines as real lines: equipotential lines move in a parallel 
direction. 1 

Electric 
field 

5. Electric field as a substance:  
 electric field flows from positive to negative 
 electric field exists due to flow of charges through a given surface 

2 

6. Electric lines as a flow of charges: electric field lines pass through a surface 
with charges.  1 

7. Field lines as a flow of potential: the negative charge is used for storage of 
electric potential-students considered electric field lines as electric potential. 1 

Electric 
potential 
energy 

 

8. Potential energy as a material object: potential energy moves parallel to 
each other with equal speed. 1 

9. Kinetic energy as a substance: when electric potential and charges are 
released, kinetic energy is also released. 1 

 Extensiveness of ontological alternative conceptions in EPE concepts 11 
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4.1.1.4 Category 4: Ohm’s Phenomenological Primitives  

The Ohm’s p-prim is one of the phenomenological primitives (diSessa, 1993) that could be 

reflected by physics students who consider Ohm’s law as a fundamental law of electricity and 

magnetism (see paragraph 9 in Section 2.3.1). In both conceptual areas of EM selected for this 

study, the Ohm’s P-Prime category of alternative conceptions was reflected in the focus groups 

discussions of the students.  

 Ohm’s P-Primes in the Concepts of EPE  

In the concepts of EPE, four alternative conceptions were identified and categorized as Ohm’s p-

primes namely in electric potential (two) and in electric potential energy (two). For example, 

students discussed that when distance from a charge increases electric potential also increases 

(see Table 4.6). In this case, the students considered electric potential as it increases proportional 

to the position. All the Ohm’s P-Primes were discussed only once in the focus groups. 

Table 4. 6: Pre intervention Ohm’s P-Primes in the concepts of EPE with their frequency and extensiveness 

Concepts Ohm’s P-Primes in EPE concepts Frequency 
Electric 
potential 

1. When distance from a charge increases electric potential also increases.  1 
2. An electric potential is directly proportional to kinetic energy. 1 

Electric 
field & 
energy 

3. In an electric field, electric potential energy and kinetic energy of a charge 
are directly proportional. 1 

4. Electric potential energy is directly proportional to the distance. 1 
 Extensiveness of Ohm’s P-Primes in EPE concepts 4 

      
Ohm’s P-Primes in the Concepts of EMI  

Only three alternative conceptions which focused to the induced emf/current concept were 

categorized as Ohm’s p-primes in the EMI conceptual area (see Table 4.7).  

Table 4. 7: Pre intervention Ohm’s P-Primes in the concepts of EMI with their frequency and extensiveness 

Concepts Ohm’s P-Primes in EMI concepts Frequency 
Induced 
emf/induced 
current 

1. Current in one coil is proportional to induced emf in another coil.  2 
2. In an induction involves two nearby coils, the current in the first coil is 

inversely proportional the emf in the second coil. 
2 

3. Circuit model: current in one coil is related to voltage in another nearby coil 
based on their connection type (series or parallel); for series coils, the 
induced current is constant but in parallel coils, induced voltage is constant.  

1 

 Extensiveness of Ohm’s P-Primes  in EMI concepts 5 
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4.1.1.5 Category 5: Mixed Alternative Conceptions 

In this study, a mixed conception was meant for an alternative conception that was viewed to 

have characteristic features of at least two of the predetermined categories (see paragraph 3 in 

Section 3.7.1.2). Mixed Conceptions were identified in both EPE and EPI concepts selected for 

this study.  

Mixed Conceptions in the Concepts of EPE  

Table 4.8 illustrates the alternative conceptions which were identified and categorized into the 

mixed conceptions.  There were two mixed conceptions analyzed in this category which had 

characteristics of naïve physics, lateral alternative conception and Ohm’s P-Prime.  

Table 4. 8: Pre intervention Mixed Conceptions in EPE concepts with their frequency and extensiveness 

Concepts Mixed type Mixed Category Alternative Conceptions in EPE Frequency 

Electric 
field 

Naïve physics  and 
Lateral alternative 
conception 

1. Motion of changes in a field as capacitor’s charging 
process: In a uniform electric field, a positive charge 
moves to the positive terminal and a negative charge 
moves to the negative terminal.  

1 

Energy Naïve physics and 
 Ohm’s p-primes 

2. Total energy increases and they are proportional to each 
other: when a charged particle is released in a uniform 
electric field, its energy will increase and become 
positive. i.e., when potential energy increases the kinetic 
energy also increases. Here, the students conceived as if 
both are directly proportional to each other.  

2 

 Extensiveness of mixed conceptions in EPE concepts 3 
 

Mixed Conceptions in the Concepts of EMI  

In the concepts of EMI, two mixed conceptions were analyzed.  One was a mix of naïve physics 

and lateral alternative conception while the other was a mix of naïve physics and Ohm’s P-Prime 

(see Table 4.9).   
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Table 4. 9: Pre intervention mixed conceptions in EPE concepts with their frequency and extensiveness 

Concepts Mixed type  Mixed Category Alternative Conceptions in EMI Frequency 
Induced 
current 
and/or 
induced 
emf 

Naïve physics 
and  lateral 
alternative  
conception 

1. Naïve circuit model: An emf is induced only in a closed 
coil of wire (naïve physics).  Students considered an emf 
as induced current (lateral alternative conception). 

1 

Naïve physics  
and 
Ohm’s P-Primes 

2. Coils as a source for induced current/induced emf: 
Induced current and voltage are produced from coils of 
wire (naïve Physics), because when number of turns of a 
coil is increased the induced current is also increased 
(Ohm’s p-prime). 

1 

 Extensiveness of mixed alternative conceptions in the concepts of EMI  2 

4.1.1.6 Category 6: Loose Ideas 

Loose ideas are meant for incorrect students' descriptions that were believed not to be attached to 

any of the four predetermined categories (see paragraph 3 in Section 3.7.1.2). The conceptions in 

this theme have characteristics of flexibility that pose a problem not to definitely categorize them 

into either the predetermined or the mixed category.   

Loose Ideas in the Concepts of EPE  

Table 4.10 presents the loose ideas discussed by the students in the EPE concepts. For example, 

electric potential is a potential that depends on given two charges was one of the students’ 

conceptions categorized into the loose ideas theme. In this case, it was impossible to be certain 

whether the students conceived the electric potential as a force, as electric energy or as a 

summation of the potentials of the two charges because all these concepts are dependent on a 

system of two charges. This conception was discussed by three of the focus groups. 

Table 4. 10:  Pre intervention loose ideas in the concepts of EPE with their frequency and extensiveness 

Concept Loose  ideas Frequency 
Electric 
potential 

1. Electric potential depends on two given charges. In this case, no evidence 
was shown by the students whether they described the potential of two 
charges or they considered electric potential as electric potential energy. 

3 

2. Electric potential is related to kinetic energy. 1 

Energy  3. Equipotential energy is the energy stored in a charge at equal distances. The 
students did not mention whether they described equipotential lines or 
electric potential energy. 

1 

 Extensiveness of loose ideas in EPE concepts          5 
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 Loose Ideas in the Concepts EMI  

Table 4.11 illustrates only one loose idea identified in the EMI concepts. In this idea, the 

students did not definitely mention the type of relation that could result electromagnetic 

induction. 

Table 4. 11:  Pre intervention loose idea in the concept of EMI with its frequency and extensiveness 

Loose  idea Frequency 
Electromagnetic induction is any relationship between electricity and magnetism. 1 

Extensiveness of loose idea in the concepts of EMI          1 

4.1.2 Categories of Conceptual Knowledge 

Tables 4.12 & 4.13 show the students’ conceptual knowledge in both EPE and EMI concepts. 

Two types of conceptual knowledge, hierarchical and relational, were categorized. Hierarchical 

conceptual knowledge refers to classification and categorization of concepts into correct 

ontological and/or lateral categories (Chi, 2008). In addition, an organization of concepts from a 

more to less inclusive concept(s) can be named as hierarchical conceptual knowledge (see 

paragraph 4 in section 2.3.2). Relational conceptual knowledge refers to the construction of 

relationships between pieces of information (Long, 2005) (see paragraph 5 in section 2.3.2). 

4.1.2.1 Category 7: Hierarchal Conceptual Knowledge 

In the data of students’ focus groups discussions, hierarchical conceptual knowledge was 

observed only in the concepts of EPE. Consequently, three statements that were believed to have 

characteristics of hierarchical conceptual knowledge were analyzed (see Table 4.12).  

Table 4. 12: Pre intervention students’ conceptual knowledge in the concepts of EPE  

 Category Pre intervention students’ conceptual knowledge  Frequency 
CPS 
class 

CCS 
class 

All 
FGD   

Hierarchical 1. Electric potential is a scalar quantity. 
2. Electric potential energy is a type of energy due to charges. 

1 
1 

 
 

1 
1 

3. Electric field is a vector.  1 1 
 Relational  

 
1. If there is a charge there will be electric potential and electric 

field. 
2. Electric potential is directly related to charge.  
3. If the electric force between two charges is calculated, then it is 

possible to calculate the electric potential energy.   

 
2 
2 
 
2 

 
2 
1 

 
4 
3 
 
2 
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4. Electric potential energy is a product of electric potential and 
charge. 

5.  Electric field and electric potential are directly proportional to 
each other. 

 
1 
 
2 

 
1 
 
2 

6. The potential difference at equipotential is zero 
7. On equipotential the work done is zero because work is directly 

proportional to the potential difference  
8. Electric potential energy is directly proportional to charges  
9. The electric field influences the electric potential value. 

 1 
 
2 
2 
1 

1 
 
2 
2 
1 

Total number and extensiveness  7 (11) 7 (10) 12 (21) 

4.1.2.2 Category 8: Relational Conceptual Knowledge   

In the data of students’ focus groups discussions, relational conceptual knowledge theme was 

observed in both EPE and EMI conceptual areas. Relational conceptual knowledge was less 

extensively discussed in the EMI concepts than EPE in the concepts (see Tables 4.12 & 4.13).  

Table 4. 13: Pre intervention students’ conceptual knowledge in the concepts of EMI  

Category Pre intervention students’ conceptual knowledge  Frequency  

CPS 
class 

CCS 
class 

All 
FGD 

Relational  1. As electric flux is created by a charge, magnetic flux is occurred due 
to a magnet. 

2. Induced current is produced by electromotive force.   
3. Magnetic field is the region of a space in which electric current or 

moving charges experience force. 

 
1 
1 
 
1                            

  
1 
1 
 
1 

4. Magnetic flux is created due to magnetic field. 
5. Movement of a magnet or a coil can produce induced current. 
6. Magnetic flux equals the product of a magnetic field, an area and 

cosine of an angle between the magnetic field and the normal line 
perpendicular to the area. 

 1 
1 
 
 
1 

1 
1 
 
 
1 

Total Total number and extensiveness  3 (3) 3 (3) 6(6) 
            

4.1.3 Distribution of Students’ Conceptions in the Categories  

Table 4.14 presents a summary of categories of students’ conceptions in the two conceptual areas 

selected for this study. The students’ conceptions in the diagnosed categories were presented in 

terms of their distribution, frequency and extensiveness in order to guide the interpretation of the 

results.  
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Table 4. 14: Distribution of students’ conceptions in the concepts of EPE and EMI with their frequency and 
extensiveness of the categories 
             Category Conceptual 

area 
Distribution 
of 
Students’ 
Conceptions 

Frequency Extensiveness 
4 3 2 1 

A
lte

rn
at

iv
e 

co
nc

ep
tio

ns
 

Naïve 
physics  

EPE 17 (27.9%) - - 6 11 23(25.8%) 
EMI 7 (20.6%) - - 2 5 9 (23.1%) 
EPE & EMI 24 (25%) - - 8 16 32 (25%) 

Lateral  EPE 14 (22.9%) - 2 4 8 22 (24.7%) 
EMI 15 (44.1%) - - 1 14 16 (41.0%) 
EPE & EMI 29 (31%) - 2 5 22 38 (30%) 

Ontological  EPE 9 (14.8%) - - 2 7 11 (12.4%) 
EMI - - - - - - 
EPE & EMI 9 (9%)   2 7 11 (9%) 

Ohm’s p-
primes 

EPE 4 (6.6%) - - - 4 4 (4.5%) 
EMI 3 (8.8%) - - 2 1 5 (12.8%) 
EPE & EMI 7 (7%) - - 2 5 9 (7%) 

Mixed EPE 2 (3.3%) - - 1 1 3(3.4%) 
EMI 2(5.9%) - - - 2 2 (5.1%) 
EPE & EMI 4 (4.2%) - - 1 3 5 (4%) 

Loose Ideas EPE 3 (4.9%) - 1 - 2 5(5.6%) 
EMI 1 (2.9%) - - - 1 1 (2.6%) 
EPE & EMI 4 (4.2%) - 1 - 3 6 (5%) 

Total EPE 49(80.3%) - 3(6.1%) 13(26.5%) 33(67.3%) 68(76.4%) 
EMI 28(82.4%) - - 5(17.9%) 23(82.1%) 33 (84.6%) 
EPE & EMI 77(81.1%)  3(3.9%) 18(23.4%) 56(72.7%) 101 (78.9%) 

C
on

ce
pt

ua
l k

no
w

le
dg

e Relational EPE 9(14.8%) 1 1 4 3 18(20.2%) 
EMI 6 (17.6%) - - - 6 6 (15.4%) 
EPE & EMI 15 (16%) 1 1 4 9 24 (19%) 

Hierarchical  EPE 3 (4.9%) - - - 3 3(3.4%) 
EMI - - - - - - 
EPE & EMI 3 (3%) - - - 3 3 (2%) 

Total EPE 12(19.7%) 1(8.3%) 1(8.3%) 4(33.3%) 6(50%) 21 (23.6%) 
EMI 6 (17.6%) - - - 6(100%) 6 (15.4%) 
EPE & EMI 18(18.9%) 1(5.6%) - 4(22.2%) 12(66.7%) 27(21.1%) 

Total EPE 61 1(1.6%) 4(6.6%) 17(27.9%) 39(63.9%) 89 
EMI 34 - - 5 (14.7%) 29(85.3%) 39 
EPE & EMI 95 1(1%) 4(4.2%) 22(23.2%) 68(71.6%) 128 

The table illustrated that the percentage distribution of the number of students conceptions 

(81.1%) in the categories and the corresponding extensiveness (78.9%) were comparable.  This 

means that high percentages of the students’ conceptions were discussed only once (72.7%) and 

twice (23.4%) in the four focus groups. Only 3.9% of the students alternative conceptions were 

discussed three times in the focus groups and no alternative conception was discussed by all the 

four focus groups. These results showed that the students’ conceptions in the categories were 

diversified and vacillated among the students.  
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In both EPE and EMI conceptual areas, the percentage distribution of alternative conceptions 

was greater than 80%, while the distribution of the conceptual knowledge was less than 20%. 

This means that there is exceedingly greater distribution of the students’ alternative conception 

than their conceptual knowledge which showed that the students’ conceptual understanding in 

the concepts in EPE and EMI were incredibly low.  

In addition, the distributions of alternative conceptions and conceptual knowledge in both EPE 

and EMI were compared (see Table 4.14). As a result, on the one hand, the distribution of the 

number of alternative conceptions was slightly less in EPE concepts (80.3%) than in the EMI 

concepts (82.4%). On the other hand, the distribution of the number of conceptual knowledge 

was slightly greater in EPE concepts (19.7%) than in the EMI concepts (17.6%). 

Correspondingly, the extensiveness of alternative conceptions and conceptual knowledge in both 

EPE and EMI were also compared (see Table 4.14).  The extensiveness of the alternative 

conceptions was less in EPE concepts (76.4%) than in the EMI concepts (84.6%) while the 

extensiveness of the conceptual knowledge was greater in EPE concepts (23.6%) than in the EMI 

concepts (15.4%). Therefore, based on these results, it could be concluded that the concepts in 

EMI were more difficult to understand for the focus group students than the concepts in EPE.   

Furthermore, from the total number of conceptions identified in all the categories (95 

conceptions), 61(64%) of them were in the EPE concepts while 34 (32%) were in the EMI 

concepts. This showed that the students’ experiences are more related to the concepts of EPE 

than to the concepts of EMI. 

4.1.4 Inconsistency of the Alternative Conceptions  

Table 4.15 presents the inconsistency of the students’ alternative conceptions in the concepts of 

EPE and EMI within and across the categories. For example, the alternative conceptions of 

electric potential emerged in all the existing categories. These alternative conceptions were 

electric potential as a force (lateral alternative conception), rest implies electric potential (naive 

physics), electric potential as a material object (ontological alternative conception), electric 

potential is proportional to distance (Ohm’s P-Prime) and electric potential could be related to 
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kinetic energy (loose idea).  Besides, within the category of lateral alternative conceptions, the 

electric potential was considered as a force, energy, a vector and a current.  

Similarly, inconsistencies were observed in the students’ alternative conceptions of the EMI 

concepts. For example, within the lateral alternative conceptions, induced emf was considered as 

a potential difference, magnetic field and force. Therefore, in both EPE and EMI concepts, the 

students’ alternative conceptions were inconsistently revealed within and across the categories.   

Table 4. 15: Inconsistency in the students’ alternative conceptions of EPE and EMI concepts 

Category Concepts in EPE  Concepts in EMI 
Electric potential Induced emf 

N
aï

ve
 p

hy
si

cs
 

 Rest implies electric potential 
 Potential of two opposite charges system is zero 
 The potential difference is the difference between positive and 

negative potentials 
 The potential difference of charges separated by large distance 

is zero 
 An electric potential is confined only in an atom 
 Equipotential lines have only circular structure  
 A changed body has only one type of charges 

 Magnetic field implies induced 
current 

 Magnet implies induced current 
 Presence of coils implies emf 
 Constant current  implies 

constant emf 

Electric field 
 Positive change is the only source of electric field  
 Uniform electric field implies a uniform velocity 
 In a uniform electric field,  positive charge accelerates; while 

negative charge decelerates  
 Uniform electric field implies a projectile 
Energy 
 Kinetic energy of a charge is constant in a uniform electric 

field 
 Kinetic and potential energies are constant in an electric field  
 Positive charges have positive energy; negative charges have 

negative energy. 
 Work is done on an equipotential line 
  Moving charges have no potential energy 
 Kinetic energy of a charge changes on an equipotential line 

La
te

ra
l a

lte
rn

at
iv

e 
co

nc
ep

tio
ns

 

Electric potential  
 Electric potential as a force 
 Electric potential as an attractive force 
 Electric potential as potential energy  
 Electric potential as kinetic energy   
 Electric potential as a vector 
 Electric potential as charge flow/current 
 Electric potential as position and potential difference as a 

distance 
Equipotential lines as electric lines 

 Magnetic flux as electric flux 
 Magnetic flux as a magnetic 

field 
 Electromagnetic induction as 

charges flow in magnetic field 
 Electromagnetic induction as a 

process of charging 
 Electromagnetic induction as 

conduction current 
 Charging by induction process 

as electromagnetic process 
 Induced emf as a potential 

Electric field 
 Electric field as a force 
 Electric field as a magnetic field 
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Energy difference 
 Induced current as magnetic 

field 
 Induced emf as magnetic field 
 Induced emf as a force 

 Electric energy as a force 
 Electric potential energy as potential difference  
 Electric potential energy as kinetic energy 
 Electric potential energy as a vector 

O
nt

ol
og

ic
al

 a
lte

rn
at

iv
e 

co
nc

ep
tio

ns
 

Electric potential  
 Electric potential as material object 
 Electric potential as charges 
 Electric potential as a charge at rest 
 Equipotential lines as real lines 

 

Electric field 
 Electric field as a substance  
 Electric lines as a flow of charges  
 Field lines as a flow of potential 
Energy 
 Potential energy as a material object 
 Kinetic energy as substance 

O
hm

’s
 p

-P
rim

es
 

Electric potential  
 An electric potential is proportional to distance 
 Electric potential proportional to kinetic energy 

 Current in one coil is 
proportional to induced emf in 
another coil. 

 In an induction involves two 
nearby coils, the current in the 
first coil is inversely 
proportional the emf in the 
second coil 

Energy 
 In an electric field, electric potential energy and kinetic energy 

of a charge are directly proportional to each other 
 Electric potential energy is directly proportional to the distance 

M
ix

ed
 

co
nc

ep
tio

ns
 Electric Field  An emf is induced only in a 

closed coil of wire  
  A coil with a number of turns 

is used as a source for induced 
current/induced emf 

 Motion of changes in a field as capacitor’s charging process 
Energy 
 The total energy of a charge increases and they are proportional 

to each other 

Lo
os

e 
id

ea
s 

Electric Potential  
 Electric potential depends on a given two charges. 

Electric potential could be related to kinetic energy. 
 

Energy  
 Equipotential energy is the energy stored in the charge at equal 

distances 
 

4.2 Qualitative Results of Concept Maps Data  

Similar to the FGD data results, the qualitative data results of the students’ concept maps (CM) 

were mainly to answer the first research question which is about the categories of students’ 

conceptions in the conceptual area of EPE and EMI.  That is, the results of the research question 

‘What are the categories of students’ conceptions in the electric potential and energy (EPE) and 

electromagnetic induction (EMI) conceptual areas before intervention?’ were analyzed. 
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However, the results in this subsection were based on individual students’ responses while the 

results of the previous subsection were based on group of students’ responses.  

The thematic framework analysis was used when analyzing the data collected with CM (see 

Section 3.8.1). This analysis was applied step by step from the first stage of familiarization to the 

last stage of the interpretation. Then, the transcribed and coded data were categorized into 

categories of students’ conceptions.  

4.2.1 Categories of Students’ Alternative Conceptions 

Six categories of students’ alternative conceptions progressed. These were the naive physics, 

lateral alternative conceptions, ontological alternative conceptions, phenomenological primes, 

mixed conceptions and loose ideas. Among these, the first four categories were the presupposed 

categories from the literature review. These were naive physics, lateral alternative conceptions 

and ontological alternative conceptions and phenomenological primes. In addition, similar to the 

FGD results, mixed conceptions and loose ideas identified. 

However, in the CM data results, unlike in the FGD results, the phenomenological prime was 

developed as a category of alternative conceptions while the Ohm’s p-prime was developed as a 

subcategory (subset) of phenomenological primes. This was the main distinction observed 

between the group-based data and individual-based data on the results of the first research 

question.  

4.2.1.1 Category 1: Naïve Physics 

The naive physics was one of the categories developed from the students’ alternative conceptions 

in both EPE and EMI conceptual areas. There were in total eight naïve physics in the concepts of 

EPE and seven in the concepts of EMI diagnosed with an extensiveness of 9 and 51, respectively 

(see Tables 4.16 & 4.17).   

Naïve Physics in the Concepts of EPE  

The number of naïve physics developed in the concepts of EPE was comparable with its 

extensiveness that almost each naïve physics conception appeared once (see Table 4.16). This 



83 
 

shows that there were no frequently revealed naïve physics in the EPE conceptual area. 

However, only one of the naïve physics which was the students’ perception of potential 

difference as the difference between potentials of two charges was revealed twice (see Table 

4.16). In this case, the students simply perceived the potential difference as the difference 

between the potentials of positive and negative electric charges. Accordingly, the students failed 

to understand that the potential difference of a charge is due to the difference in positions from 

the charge.  

Table 4. 16: Naïve physics category in the concepts of EPE  

            
 
 
 

 

 

 

 

 

In addition, the revealed naïve physics of the concepts of electric potential, potential difference 

and energy are found inconsistently in this category. As illustrated in Table 4.16, the first two 

naive physics described the electric potential. The first one described the electric potential as it 

exists only on equipotential lines while the second described the electric potential as it exists 

only at the location of charge. These different naïve physics about the concept of electric 

potential were inconsistent with each other. Similarly, the naïve physics of potential difference 

concept was described as: a charge implies potential difference and potential difference is the 

difference between potentials of two charges. These categories of naïve physics were also 

inconsistent with each other. The reason was based on the students’ description of potential 

difference. In the former naïve physics, a student considered only one point charge; while in the 

latter naive physics a student considered two point charges. In addition, regarding the electric 

energy concept, inconsistent naive physics were revealed that described constant kinetic and 

electric potential energies independently in equipotential lines and also described the existence of 

both kinetic and electric potential energies only in the charges. In general, the students’ naïve 

physics in the concepts of EPE are inconsistent and less frequently revealed.  

Concepts Naïve physics category in  EPE concepts Frequency 
Electric 
potential 

1. Electric potential exists only on equipotential lines.  1 
2. Electric potential is potential at location of a charge. 1 

Potential 
difference  
 

3. Potential difference is the difference between potentials of two 
charges. 

2 

4. Charge implies potential difference. 1 
5. Potential difference implies kinetic energy. 1 

Electric field 6. Electric field causes charge. 1 
Energy 7. Equipoterntial lines are lines on which kinetic and potential energies 

remain constant or equal. 
1 

8. Energies (potential and kinetic) exist only in the charges. 1 
 Extensiveness 9 
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Naïve Physics in the Concepts of EMI  

Table 4.17 presents the revealed naïve physics in the EMI conceptual area with respect to their 

frequency and extensiveness.  

Table 4. 17: Naïve physics category in the concepts of EMI  

Concepts  Naïve physics in  EMI concepts  Frequency 
Induced emf 
and/or 
induced 
current  

1. Magnetic field lines imply induced emf 19 
2. Magnetic field implies induced emf 16 
3. Magnetic flux implies induced emf/ induced current 6 
4. Current implies induced emf 6 
5. Potential difference implies induced emf 2 
6.  Conservative electric field as an effect of induction: Faraday’s 

law states electric field  
1 

7. An induced emf shows the presence of induced current. 1 
 Extensiveness 51 

         

In the concepts of EMI, naïve physics were highly concentrated in relation to the concept of an 

induced emf and/or an induced current. The first two naïve physics were frequently revealed in 

comparison to the other alternative conceptions in the category. In this two naïve physics, the 

students’ independently considered magnetic field lines and magnetic field as the causes for 

induced emf. This means that these two naïve physics were the most considerably revealed 

alternative conceptions from the entire categories. The second two naïve physics appeared with 

similar frequencies. This means, the magnetic flux and the current were independently 

considered as the causes for an induced emf with equal frequencies (see Table 4.17). In the last 

three naïve physics, the frequency was so low that the conceptions were slightly revealed in the 

category (see Table 4.17). In addition, the last conception in the table uniquely revealed naïve 

physics. A student with this naïve physics failed to understand the presence of an induced emf in 

an open circuit. Another uniquely appeared naïve physics was the depiction of static electric field 

as an effect of Faraday’s Law of induction. In this case, the student failed to understand the 

difference between the conservative and the non-conservative electric fields. It is the non-

conservative time dependent induced electric field which is caused by electromagnetic induction. 

However, the student considered the conservative electric field as the effect of an 

electromagnetic induction.  
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In general, based on the identified and categorized naïve physics in the concepts of EMI, most of 

the students failed to understand the cause for induced emf which is the time rate of change of 

magnetic flux. For example, the students considered magnetic flux as a cause for an induced emf. 

In this case, the students might have some intuitive reasons for their explanations. But, they were 

unable to visualize that an induced emf is caused by the time rate of change of magnetic flux and 

it cannot be produced by a constant magnetic flux. In addition, although there was no single 

consistent naïve physics identified in this conceptual area, the frequency and extensiveness of 

naïve physics were comparatively higher in the EMI concepts than in the EPE concepts. 

4.2.1.2 Category 2: Lateral Alternative Conceptions 

There were several alternative conceptions identified and then categorized into the lateral 

alternative conceptions in both the EPE and EMI concepts. The alternative conceptions in this 

category were presented in the next two subsections.   

Lateral Alternative Conceptions in the Concepts of EPE  

Table 4.18 illustrates lateral alternative conceptions in the EPE concepts. There were totally 14 

alternative conceptions in this category. The entire lateral alternative conceptions in the concepts 

of EPE was the most extensively described category (extensiveness=52) as compared to the other 

categories. In addition, the lateral alternative conceptions in EPE concepts were diversified; but 

there was a frequently revealed lateral alternative conception which a considerable number of 

students (n=13) interchanged and failed to differentiate electric potential and electric potential 

energy (see Table 4.18). In other words, the students of this conception attached descriptions of 

electric potential to that of energy and vice versa. As illustrated in Table 4.18, there were also  

considerable students’ lateral alternative conceptions (n=6) that the students interchange vector 

field lines with scalar field lines, like electric field lines as equipotential lines and equipotential 

lines as magnetic field lines.  

There were also incorrectly described lateral alternative conceptions (n=5), such as consideration 

of an electric field as a magnetic field and an electric field as an electric potential, electric field 

as a cause for Faraday’s Law of induction and electric field lines as a cause for formation of 

magnetic flux. Besides, students incorrectly labeled electric potential under some properties of 
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electric field (n=5). This means that they considered electric potential as an electric field. Though 

electric potential and electric field can share some properties and they are found in the same 

ontological category; laterally, they belong to different subcategories. Another lateral alternative 

conception was the students’ consideration of an electric flux as a magnetic flux. For example, 

they imagined electric charge as a source of magnetic flux (see number 8 in Table 4.18). 

    Table 4. 18: Lateral alternative conceptions in the concepts of EPE  

Concepts    Lateral alternative conceptions  in  EPE concepts  Frequency 
Electric 
potential 

1. Interchange of potential and potential energy, considering electric potential as an 
electric potential energy and vice versa. For example, electric potential is divided 
into potential energy and kinetic energy; Electric potential can be change into 
kinetic energy. 

13 

Potential 
difference 

2. Potential difference is considered as an energy, examples are: 
 Potential difference is the difference between potential energy and 

kinetic energy 
 Potential difference is due to motion of electric charges 

4 

Electric 
field 

3. Electric field as electric potential: e.g., Electric field is represented by 
equipotential lines. 

5 

4. Electric field is considered as magnetic field: 
 Electric field produces electromagnetic induction (Electric field causes 

Faraday’s law of induction) x4 
 Electric field lines can form magnetic flux. 

5 

5. Gauss’ law of electricity as Faraday’s law of induction 
 Electric charges are explained by Faraday’s law (3) 

3 

6. Vector field lines are considered as scalar field lines, such as: 
 Electric field lines can be equipotential lines (3) 
 Equipotential lines are magnetic field lines (3) 

6 

Electric 
flux 

7. Electric flux as electric field, e.g. kinetic & potential energies of a charge are 
due to electric flux. 

2 

8. Electric flux as Magnetic flux  
 Electric charge in an equipotential gives magnetic flux 
 Electric field produces magnetic flux 
 Electric charge produces magnetic flux 
 Electric potential energy (possessed by charges) results magnetic flux  

4 

Energy  9. Energy is considered as a force, examples are 
 Electric potential energy is an electrostatic force. 
 Kinetic energy moves electric charge. 

3 

10. Electric potential energy as electric field:  
 Potential energy results in electric flux. 
 Potential energy gives electric field lines. 

3 

11. Potential energy is described as a capacitance: 
 Electric potential energy can be a capacitance. 

1 

12. Electric potential energy as an electric flux:  for example, a student described as 
if electric potential energy can be an electric flux. 

1 

13. Kinetic energy as electric potential energy 
 Electric potential energy is found in the form of motion of charges.  

1 

14. Kinetic energy is considered as a flow of electric charge. 1 
 Extensiveness 52 
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Also, there were students (n=3) who mismatched Gauss’s law of electricity with Faraday’s law 

of induction.  For example, they considered electric charge as a cause for the Faraday’s Law of 

induction (see number 5 in table 4.18). That is, they visualized a charge as an essential concept 

for induction instead of a charge as a source for an electric flux.   

Further, there were students (n=4) who considered a potential difference as energy. Examples are 

students’ consideration of potential difference as the difference between potential energy and 

kinetic energy and their perception of motion of electric charges as the cause for potential 

difference (see number 2 in Table 4.18). 

There were students (n=3) who considered electric potential energy as electric force. These 

students also considered kinetic energy as a cause for motion of an electric charge. In addition, 

electric potential energy as electric field lateral alternative conception was observed in some 

students’ concept maps (n=3).  These students considered electric potential energy as a cause for 

electric flux because they represented electric potential energy by electric field lines. 

Furthermore, as illustrated in Table 4.18, there were lateral alternative conceptions depicted with 

a frequency of one each. These were the students’ description of potential energy as a 

capacitance and an electric flux. There were also students’ descriptions of kinetic energy as 

electric potential energy and as a flow of electric charges. 

The lateral alternative conceptions of EPE concepts were also inconsistently revealed.  Examples 

were that the electric potential and potential difference were independently considered as energy 

(see numbers 1 & 2 in Table 3.18). Also, electric field was independently considered as electric 

potential and magnetic field (see numbers 3 &4 in Table 4.18). Furthermore, the electric 

potential energy was considered as: a force, a kinetic energy, a capacitance, an electric field and 

an electric flux (see numbers 9, 10, 11 & 12 in Table 4.18). These results showed inconsistency 

of the students’ lateral alternative conceptions in the concepts of electric potential and energy.  

In the concepts of EPE, the number and the extensiveness of lateral alternative conceptions (14, 

52) were higher than the number and the extensiveness of naïve physics (8, 9) (see Tables 4.16 & 

4.18).  
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Lateral Alternative Conceptions in the Concepts of EMI  

In the conceptual area of EMI, 10 students’ alternative conceptions (with extensiveness =25) 

were categorized into lateral alternative conceptions (see Table 4.19).  

Table 4. 19: Lateral alternative conceptions in the concepts of EMI  

Concepts Lateral alternative conceptions in  EMI concepts  Frequency 
Induced emf  
and 
Induced 
current 

1. Induced emf as a potential difference 
 Electromagnetic induction is measured by potential difference (2) 
 Magnetic field lines cause potential difference 
 Potential difference is proportional to induced current (incorrect crosslink)(2) 
 Potential difference is due to electric field according to Faraday’s law (2) 

7 

2. Induced emf as a force 
 Induced emf is a force in electromagnetic induction 
 Magnetic force can induce current 
 Electromagnetic induction gives magnetic force 
 Faraday’s law is related to electric force (Faraday’s law as Coulomb’s law)- 

(Emf as electrostatic force) 

4 

3. Induced emf & induced current as vectors: Induced current is a vector; Induced 
emf is a vector 

2 

4. Induced current as kinetic energy 
 Induced current is kinetic energy 

1 

Magnetic 
field 

5. Magnetic field as magnetic flux  
 Magnetic field is magnetic flux which is stated by Faraday’s law 

1 

Magnetic 
flux 

6. Magnetic flux as emf: magnetic flux is described by Faraday’s law (2); Induced 
emf can be magnetic flux; Faraday’s law deals with magnetic flux 

4 
 

Electromag
netic 
induction/ 
Faraday’s 
law  

7. Electromagnetic induction process was considered as charging process 
 Induced emf is produced in a capacitor 
 Faraday’s law can be divided into series capacitor and parallel capacitor.   

2 

8. Faraday’s law as Lenz’s law:Faraday’s law determines directions of induced 
emf and induced current 

1 

Field lines 9. Vector field lines as scalar field lines: magnetic field lines can be equipotential 
lines; in a magnetic field there are magnetic field lines which are equipotential 
lines 

2 

10. Magnetic lines as electric lines: magnetic field lines are in to and out of a 
magnet 

1 

 Extensiveness 25 
       

The relatively extensive lateral alternative conception (n=7) was students conception of an 

induced emf as potential difference between two points in a static electric field (see number 1 in 

Table 4.19).  Though potential difference and induced emf have the same unit (volt), they have 

different sources. The former is related to conservative electrostatic field while the later is 

connected to the non-conservative electric field (induced electric field). In other words, the 

students who imagined induced emf as potential difference were unable to differentiate the 
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potential difference (the work done by electrostatic field per unit charge) from the induced emf 

(the work done by time dependent non-electrostatic field per unit charge). 

Subsequently, two lateral alternative conceptions of students were depicted with comparably low 

extensiveness (n= 4 each) in the concepts of EMI (see numbers 2 & 6 in Table 4.19). These were 

the students’ imagination of an induced emf as a force and magnetic flux as an induced emf. The 

students of the former conception perceived an induced emf as a magnetic force exerted to move 

charged particles in the process of electromagnetic induction while the students of the latter 

conception were noticed to have lack of understanding of the difference between magnetic flux 

and time rate of change of magnetic flux. In other words, they were not aware of the concept of 

an induced emf in terms of the rate of change of magnetic flux.  

Also, three lateral alternative conceptions (with frequency of two each) were identified (see 

numbers 3, 7 & 9 in Table 4.19). These were the students’ thoughts of the electromagnetic 

induction process as a charging process, scalar field lines as vector field lines and induced emf 

and/or current as vectors. In addition, the students thought as if a capacitor is used to induce emf 

during its charging process. In other words, students of this conception were confused with the 

concept of a capacitor and an inductor (a coil). 

The misclassification of scalar and vector field lines by the students was mainly seen with their 

view of magnetic field lines as equipotential lines (see number 9 in Table 4.19).  In this case, the 

students mismatched the concentric circles around a point charge (equipotential lines) to a 

magnetic field lines. In addition, the clockwise or anticlockwise sense of induced current in a 

closed loop contributed to their conception of emf and/or induced current as vectors. This 

confusion of the students was arisen due to their misunderstanding of the Lenz’s law.  

Lastly, four lateral alternative conceptions that considered induced current as kinetic energy, 

magnetic field as magnetic flux, magnetic lines as electric lines and Faraday’s law as Lenz’s law 

were less extensively revealed (frequency of one each) (see numbers 4, 5, 8 & 10 in Table 4.19).  
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4.2.1.3 Category 3: Ontological Alternative Conceptions 

In the results of this study, ontological alternative conceptions emerged frequently and 

extensively in the concepts of EPE than in the concepts of EMI (Tables 4.20 & 4.21). In the 

concepts of EMI, only one ontological alternative conception, i.e., magnetic field as a substance 

was identified (see Table 4.21).  

Ontological Alternative Conceptions in the Concepts of EPE  

In the concepts of EPE, five ontological alternative conceptions (with extensiveness of 13) were 

revealed. This showed that students’ ontological alternative conceptions were appeared less 

extensively than lateral alternative conceptions (with extensiveness of 52) (see Tables 2.18 & 

3.20). 

Table 4. 20: Ontological alternative conceptions of the students in the concepts of EPE  

Concepts   Ontological alternative conceptions in  EPE concepts  Frequency 

Electric potential 
energy 

1 Students perceived potential energy as a source for electric field. 
 An electric potential energy is an electric charge. 

4 

Electric field 2 Students described field lines as real lines 
 Electric field can produce electric field lines. 
 Electric charges form electric field lines. 
 Equipotential lines are defined as lines flow equally from 

electrically charged area.    

3 

3 Electric field as flow of charges 
 The flow of electric charges makes electric field. 
 Electric charges change motion of electric field. 
 Electric field causes magnetism (electric field as a moving charge)-

incorrect crosslink 

3 

4 Electric field as charges 
 Electric field can be positive or negative. 
 Electric fields are electric charges. 

2 

Potential 
difference 

5 Potential difference as electric charge 
 Potential difference can be electric charge. 

1 

 Extensiveness 13 

     

As shown in Table 3.20, there were students (n=4) described electric potential energy as charge 

and vice versa. Also, the description of electric field lines as real lines was another ontological 

alternative conception. For example, some students (n=3) described electric field lines as a real 

entity under the ontological category of substance or matter. Another example was the students’ 
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consideration of electric field as flow of electric charges (see number 3 in Table 4.20).  The flow 

of electric charges is a process that the students matched it to the field concept. They imagined 

electric field as a substance that moves like a material body. The students’ description of electric 

field as charges was also another ontological conception (see number 4 in Table 4.20).    

The ontological alternative conceptions in the concepts of EPE also showed inconsistency. As 

illustrated in Table 4.20, electrical potential energy, electric field and potential difference were 

independently considered as charges (see numbers 1, 4 & 5 in Table 4.20).   

Ontological Alternative Conceptions in the Concepts of EMI  

Table 4. 21: Ontological alternative conception in the concepts of EMI  

Concepts    Ontological alternative conceptions in  EMI concepts  Frequency 
Magnetic field Magnetic field as a substance:  magnetic field is magnetic 

substance. 
1 

The ontological alternative conception in the concepts of EMI is a unique category in which only 

one alternative conception emerged. Therefore, the ontological category of alternative 

conceptions in the concepts of EMI concepts is an inconsiderable result to this study.   

4.2.1.4 Category 4: Phenomenological Primitives  

As describe in Section 2.3.1, the P-Primes category is meant for alternative conceptions that are 

smaller pieces of fragmented knowledge structures abstracted from students’ relatively primitive 

experiences lacking explanations.  Though the Ohm’s P-Primes category was presupposed, the 

P-Primes as a category was emerged from students’ concept maps in the concepts of the EM (see 

Tables 4.22 & 4.23). As a result, the analysis of the students’ CM data directed the researcher to 

consider the Phenomenological Primitives (P-Primes) (diSessa, 1993) rather than the Ohm’s P-

Primes as a category. As a category of alternative conceptions, the P-Primes are more inclusive 

than the Ohm’s P-Primes (see paragraphs 8 & 9 in Section 2.3.1). Thus, the Ohm’s P-Prime was 

made to be assigned as a subcategory (see Table 4.22).  
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P-Primes in the Concepts of EPE  

There were four P-Primes with extensiveness of five depicted in the EPE concepts. Out of these, 

three of them were the Ohm’s P-Primes (see Table 4.23). For example, electric charge is 

proportional to induced current, and electric potential energy and kinetic energy of a charge in an 

electric field are directly proportional to each other.  In this regard, it was noticed that students’ 

P-Primes were fragmented that they were found unable to relate their description to the 

conservation of energy principle.  

Students also considered inter-related concepts as independently fragmented concepts with no 

relationships. For example, electric charge and electric field were considered as independent 

concepts in electricity (see number 4 in Table 4.22). 

Table 4. 22: Phenomenological Primitives of the students in the concepts of EPE  

 P-Primes  in  EPE concepts  Frequency 
Ohm’s P-Primes   

1. Electric charge is proportional to induced current (incorrect crosslink).  
2. Electric field lines are proportional to equipotential lines. 
3. Electric potential energy of a charge is proportional to its kinetic energy. 

3 

Fragmented pieces of knowledge 
4. Electric charge and electric field were considered as independent concepts:  

 In electricity there are electric charge and electric field. 
 In electric field there are electric charges. 

2 

Extensiveness 5 
       
As its name implies, the P-Primes are described as independent pieces of knowledge. Thus, the 

conceptions reveled and categorized into this category were fragmented and disintegrated pieces 

of ideas.  Accordingly, the P-Primes were diversified within it and they were less extensively 

revealed in comparative to the other categories of alternative conceptions.  

P-Primes in the Concepts of EMI  

In the concepts of EMI, the students’ alternative conceptions were also noticed in the form of 

fragmented descriptions of concepts (n =18) and Ohm’s P-Primes (n =4) (see Table 4.23). For 

example, several students extensively considered induced emf and induced current as two 

independent concepts in electromagnetic induction. In this regard, the students failed to 

understand the dependence of induced current on an induced emf. Also less extensively, the 

students considered magnetic field and magnetic force as independent concepts in 
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electromagnetic induction. The Ohm’s P-Primes, like students’ thought of ‘magnetic flux is 

proportional to electric charge’ was also depicted from the students’ concept maps.   

Table 4. 23: Phenomenological Primitives in the EMI concepts 

Category   Students’ alternative conceptions in  EMI concepts  Frequency 
P-primes   
 

Fragmented pieces of knowledge 
1. Induced emf and induced current are considered as independent concepts. 

 Electromagnetic induction (divided into or has two forms) - induced 
emf and induced current. 

2. Magnetic field and magnetic force are considered as independent concepts. 
 Magnetism is branched into magnetic field, magnetic force, 

electromagnetic induction & magnetic field lines. 

 
 

16 
 
 
 

2 
Ohm’s p-primes   

3. Magnetic flux is proportional to equipotential lines (incorrect crosslink). 
4. Induced current gives induced emf.  
5. Induced emf depends on induced current. 
6. Magnetic flux is proportional to electric charge (incorrect crosslink) 

4 

Extensiveness 22 
 

The P-Primes of EMI concepts were less diversified but extensively revealed. In addition, these 

P-Primes were inconsistently revealed. For example, as shown in table 4.23, the students 

depicted contradictory conceptions regarding induced emf, such as: induced emf and induced 

current are independent concept; induced current gives induced emf and induced emf depends on 

induced current.   

4.2.1.5 Category 5: Mixed Alternative Conceptions 

As described in Section 4.1.1.5, mixed alternative conceptions were emerged as a category to 

represent the students’ incorrect descriptions of the concepts that were categorized into more 

than one predetermined category. Accordingly, six alternative conceptions in the concepts of 

EPE and EMI were identified and categorized into the mixed conceptions (see Table 4.24). 

These mixed alternative conceptions were diversified and less extensively described.  

Mixed Alternative Conceptions in EPE concepts 

There were four mixed alternative conceptions in the concepts of EPE. For example, students’ 

conception of ‘electric potential is zero on an equipotential line’ was a mixed alternative 

conception (see number 1 in Table 4.23). The reason was that two categories of alternative 
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conceptions (naïve physics and lateral alternative conception) were mixed in this conception. On 

the one hand, the conception is naïve physics in the sense that a potential at a point could be 

zero, for example, at an infinite distance from a point charge. On the other hand, the conception 

can be lateral alternative conception because it is the potential difference that becomes zero on 

any equiptential line. In other words, this shows that a student was mismatching between electric 

potential and potential difference.  Another example, a charge at rest/in motion was considered 

as kinetic energy. This was categorized as mixed conception that involved ontological and lateral 

alternative conceptions. The reason was that charge is a property of matter while its motion is a 

process (electric current). In addition, kinetic energy is a process that a moving body posses. 

Therefore, a student consideration of a charge at rest or in motion as kinetic energy was meant to 

have both incorrect categorization of the concept charge (ontological and lateral alternative 

conceptions). 

   Table 4. 24: Mixed conceptions in EPE and EMI concepts 

Concepts Mixed alternative conceptions Frequency 
EPE  
 

1. Electric potential is zero on an equipotential line (mixed naïve physics and 
lateral alternative conception). 

1 

2. Charge motion implies electric field. (mixed naïve physics and lateral 
alternative conception) 

1 

3. Potential difference is uniform in an equipotential line. (mixed naïve 
physics and lateral alternative conception) 

1 

4. Charge implies kinetic energy irrespective of its state.(ontological and 
lateral) 

1 

Extensiveness 4 
EMI  
 

5. Potential difference is due to magnetic field according to Faraday’s law. 
(naïve physics & lateral alternative conception) 

1 

6. Magnetic flux is proportional to electric charge (incorrect crosslink) - 
(Ohm’s p-prim & lateral alternative conception) 

1 

Extensiveness 2 
 

Mixed Alternative Conceptions in the concepts of EMI  

As shown in Table 4.24, there were two emerged mixed conceptions of students in the concepts 

of EMI. These were the students’ consideration of potential difference as if it is due to magnetic 

field according to Faraday’s law and magnetic field is proportional to electric charge. In the 

former, a student considered potential difference as an induced emf (lateral alternative 

conceptions) and magnetic field as a cause for induced emf (naive physics). In the latter, a 
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student considered charge as a source for magnetic flux (lateral alternative conceptions) and 

magnetic flux is proportional to charge (Ohm’s P-Prime). 

4.2.1.6 Category 6: Loose Ideas  

The loose ideas were descriptions of the students that could not firmly categorized into one or 

more categories of the students conceptions (se Section 4.1.1.6). For example, students’ 

conception of ‘energy implies induced emf/current’ (see Table 4.25) was considered as loose 

idea, because the students’ did not specify the form of energy resulted the induced emf.  Was it 

the energy needed to change the magnetic flux or the energy due to flow of electric current in a 

coil?  Certainly, some energy, either mechanical or electrical, is needed to change the magnetic 

flux that results an induced emf; however, none of them were mentioned by the students.  

In addition, there were students (n=4) that had attempted to express electric field in terms of the 

Faraday’s law of induction. However, the students did not describe clearly the type of electric 

field that could be explained by the law. As a result, the conception was considered as a loose 

idea (see Table 25) because it is the Faraday’s law of induction that can explain the non-

electrostatic time dependent induced electric field not the electrostatic electric field.  

Table 4. 25: Loose Ideas in EPE and EMI concepts 

Category Loose Ideas in EPE and EMI Frequency 
Loose Ideas  
 

1. Energy implies induced emf/current  5 
2. Electric field is explained by Faraday’s law or electromagnetic 

induction results in an electric field (crosslink) 
4 

 Extensiveness 9 
  

4.2.2 Categories of Conceptual Knowledge  

Besides the alternative conceptions categories, two categories of the students’ conceptual 

knowledge developed as hierarchical and relational conceptual knowledge (see Section 4.1.2).  

4.2.2.1 Category 7: Hierarchical Conceptual Knowledge 

In this study, one statement each, in EPE and EMI concepts, was identified and categorized into 

hierarchical knowledge (see Table 4.26).  
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Hierarchical Conceptual Knowledge in the Concepts of EPE  

In the concepts of EPE, only one alternative conception that a student described as: electric 

potential can be determined by potential difference,  was considered as hierarchical conceptual 

knowledge because the concept of electric potential could be explained in terms of potential 

difference. This means, the concept of electric potential was considered as a more general 

concept than the concept of potential difference.  

Hierarchical Conceptual Knowledge in the Concepts of EMI  

In the EMI concepts, a student’s description of ‘magnetic field is a vector’ was considered as 

hierarchical conceptual knowledge because the vector concept is more inclusive than the concept 

of magnetic field. 

Table 4. 26: Categories of conceptual knowledge in the concepts of both EPE and EMI 

Category conceptual 
area 

conceptual knowledge Frequency 

Hierarchical EPE 1. Electric potential can be determined by potential difference. 2 
Extensiveness 2 

EMI 1. Magnetic field is a vector. 1 
Extensiveness  1 

Relational EPE 1. Electric potential energy can be changed into kinetic energy. 
2. Electric potentials on an equipotential line are equal. 
3. Electric field can be related to electric potential 
4. Electric potential energy depends on potential difference 
5. Electric charge creates electric field. 
6. Electric charges cause electric potential energy.  
7. Electric field causes electric flux. 
8. Electric potential is due to electric charge. 

4 
1 
3 
3 
4 
1 
1 
1 

Extensiveness  18 
EMI 1. Magnetic field gives magnetic flux. 

2. Magnetic flux is directly proportional to magnetic field. 
3. Induced emf causes flow of electron (induced current) 

5 
2 
1 

Extensiveness 8 

4.2.2.2 Category 8: Relational Conceptual Knowledge 

The relational conceptual knowledge categories of the students’ conceptions in the two 

conceptual areas of EM were depicted and charted (see Table 4.26). Accordingly, nine and three 

simple qualitative descriptions of EPE and EMI concepts, respectively, were categorized as 

relational conceptual knowledge. 
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4.2.3 Distribution of Students’ Conceptions in the Categories 

Table 4.27 illustrates the distribution of the students’ conceptions in terms of the number and 

extensiveness of the conceptions in the existing categories.  

Table 4. 27: Categorical distribution of the students’ conceptions in the Concepts of EPE and EMI  
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Naïve Physics 8 (18%) 9(9%) 7 (23%) 51(46%) 15(20%) 60(27%) 
Lateral   14(32%) 52(50%) 10(33%) 25 (23%) 24(32%) 77(35%) 

Ontological 5(11%) 13(13%) 1(3%) 1 (1%) 6(8%) 14(6%) 

P-Primes 4(9%) 5(5%) 6(20%) 22(20%)  10(13%) 27(12%) 

Mixed 4 (9%) 4 (4%) 2(7%) 2(2%) 6(8%) 6(3%) 

Loose ideas - - - - 2(3%) 9(4%) 

Total 35 (80%) 83(81%) 26 (87%) 101 (92%) 63 (83%) 193 (87%) 
Percentage 
difference 

1% 5% 4% 

% of extensiveness > % of number of alternative conceptions 

C
on
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pt
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l 

K
no

w
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e 

Hierarchical 1(2%) 2 (2%) 1(3%) 1(1%) 2(3%) 3(1%) 

Relational 8(18%) 18(17%) 3(10%) 8(7%) 11(14%) 26(12%) 

Total  9(20%) 20(19%) 4(13%) 9(8%) 13(17%) 29(13%) 
Percentage 
difference 

1% 5% 4% 
% of extensiveness <  % of number of alternative conceptions 

 Total 44 103 30 110 76 222 

Totally, 76 students’ conceptions were described with corresponding extensiveness of 222. Out 

of these conceptions, 44 were in the concepts of EPE with extensiveness of 103, while 30 were 

in EMI concepts with extensiveness of 110. Overall, in both EPE and EMI concepts, 83% of the 

students’ conceptions were their number of alternative conceptions while 17% were that of their 

conceptual knowledge. Correspondingly, the alternative conceptions were described extensively 

(87%) while the conceptual knowledge was described less extensively (13%).   Thus, these 

results showed that the students’ conceptual knowledge was very low and their concept maps 

dominantly represented their alternative conceptions.  

The percentages of the number of students’ conceptions and their corresponding extensiveness 

can infer an important interpretation.  The percentages of the numbers of the alternative 
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conceptions in the categories were slightly less than the percentages of the corresponding 

extensiveness, but the percentages of the numbers of the conceptual knowledge in the categories 

were slightly greater than the percentages of their corresponding extensiveness (see Table 4.27). 

These results showed that the tendency or inclination of the students’ conceptions was towards 

their alternative conceptions, though the slight percentage shifts indicated diversification of the 

students’ conceptions. However, these change of percentage distributions of the number and 

extensiveness of alternative conceptions and conceptual knowledge was higher in EMI (5%) than 

in EPE (1%) concepts (see Table 4.27). This confirmed that the concepts of EMI are more 

difficult than the concepts of EPE to the students.  

4.2.4 Inconsistency of the Alternative Conceptions  

Similar to the alternative conceptions from the focus groups data, the individual students’ 

alternative conceptions were inconsistent within and across the categories because the individual 

students made multiple statements of the key concepts in EPE and EMI (Table 4.28). For 

example, the alternative conceptions of electric potential emerged in the existing categories as: 

electric potential exists only on equipotential lines (naïve physics), interchange of electric 

potential and potential energy (lateral alternative conception), potential difference as electric 

charge (ontological alternative conception) and electric potential is zero on an equipotential line 

(mixed conception). In addition, within the category of lateral alternative conceptions, the 

electric potential energy was considered as a force, an electric field, a capacitance, an electric 

flux, a kinetic energy and a flow of electric charge.  

In the EMI concepts, individual students’ alternative conceptions were similarly inconsistent. For 

example, across the categories of alternative conceptions students made multiple conceptions, 

like magnetic field implies induced emf (naïve physics), magnetic flux as emf (lateral alternative 

conception), magnetic field as a substance (ontological alternative conception) and thought of 

magnetic field and magnetic force as independent concepts (P-Prime). Also, within the lateral 

alternative conceptions, induced emf was considered as a potential difference, a force, a kinetic 

energy and a vector.   
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Table 4. 28: Inconsistency in the students’ alternative conceptions of EPE and EMI concepts 

Category Concepts in EPE  Concepts in EMI 
Electric potential Induced emf 

N
aï

ve
 p

hy
si

cs
 

Electric potential exists only on equipotential lines. 
Electric potential is potential at location of a charge. 
Potential difference is the difference between potentials of 
two charges. 
Charge implies potential difference. 
Potential difference implies kinetic energy. 

Magnetic field lines imply induced emf. 
Magnetic field implies induced emf. 
Magnetic flux implies induced emf/ 
induced current. 
Current implies induced emf. 
Potential difference implies induced emf. 
Conservative electric field as an effect of 
induction: Faraday’s law states electric 
field.  
An induced emf shows the presence of 
induced current. 

Electric field 
Electric field causes charge. 
Energy 
Equipoterntial lines are lines on which kinetic and 
potential energies remain constant or equal. 
Energies (potential and kinetic) exist only in the charges. 
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Electric potential Induced emf 
Interchange of potential and potential energy. 
Potential difference is considered as energy. 

Induced emf as a potential difference. 
Induced emf as a force. 
Induced emf & induced current as vectors. 
Induced current as kinetic energy. 

Electric field Magnetic field and Magnetic flux 
Electric field as electric potential 
Electric field is considered as magnetic field 
Gauss’ law of electricity as Faraday’s law of induction 
Vector field lines are considered as scalar field lines 
Electric flux as electric field 
Electric flux as Magnetic flux 

Magnetic field as magnetic flux  
Magnetic flux as emf 

Energy Faraday’s Law and Induction 
Electric potential energy is considered as a force 
Electric potential energy as electric field 
Electric potential energy is described as a capacitance 
Electric potential energy as an electric flux 
Kinetic energy as electric potential energy 
Kinetic energy is considered as a flow of electric charge 

Electromagnetic induction process was 
considered as charging process. 
Faraday’s law as Lenz’s law 
Magnetic lines as electric lines 

O
nt

ol
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lte

rn
at

iv
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co
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ns
 

Electric potential Magnetic field 
Potential difference as electric charge Magnetic field as a substance 
Electric field  
Students described field lines as real lines. 
Electric field as flow of charges 
Electric field as charges 

 

Energy  
Students perceived potential energy as a source for electric 
field. 

 

P-
Pr

im
es

 

Electric charge and Induced emf 
Electric charge is proportional to induced current (incorrect crosslink) 
 Induced emf 
 Induced emf and induced current are 

considered as independent concepts. 
Induced current gives induced emf.  
Induced emf depends on induced current. 

Electric field Magnetic field 
Electric field lines are proportional to equipotential lines. Magnetic field and magnetic force are 
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Electric charge and electric field were considered as 
independent concepts. 

considered as independent concepts. 
Magnetic flux is proportional to 
equipotential lines (incorrect crosslink). 
Magnetic flux is proportional to electric 
charge (incorrect crosslink). 
 

Energy  
Electric potential energy of a charge is proportional to its 
kinetic energy. 

 
 
 

M
ix

ed
 c
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pt
io

ns
 

Electric potential  
Electric potential is zero on an equipotential line (mixed 
naïve physics and lateral alternative conception). 
Charge motion implies electric field. (mixed naïve physics 
and  lateral alternative conception). 

Potential difference is due to magnetic 
field according to Faraday’s law (naïve 
physics & lateral alternative conception). 
Magnetic flux is proportional to electric 
charge (incorrect crosslink) - (Ohm’s p-
prim and lateral alternative conception). 

Electric field  
Charge motion implies electric field (mixed naïve physics 
and lateral alternative conception). 

 

Energy  
Charge implies kinetic energy irrespective of its state 
(ontological and lateral). 

 

Lo
os

e 
id

ea
s Electric field and Faraday’s Law 

Electric field is explained by Faraday’s law or electromagnetic induction results in an electric field 
(crosslink). 

Energy and induced emf 
Energy implies induced emf/current. 

 

PART II: QUANTITATIVE RESULTS    

Quantitative data collected with the modified DEEM (see Section 3.7.2.1) and concept maps (see 

Section 3.7.2.3) will be presented in the next section.  In addition, the students’ responses were 

categorized into model states using the quantitative data of the DEEM test (see Section 3.7.2.1). 

This categorization of the students responses on the DEEM test helped to study the students’ 

level of conceptual knowledge.  Moreover, the students’ response concentration factor and 

concentration deviation were compared using paired samples t-test (see section 3.7.2.1) in order 

to determine whether the students’ responses were consistent or not in the DEEM test.  Finally, 

these quantitative results were triangulated with the qualitative FGD and CM results (see Section 

4. 5.3) 



101 
 

4.3 Quantitative Results of the Modified Diagnostic Exam of Electricity and 

Magnetism Data  
4.3.1 Concentration Analysis  

The concentration analysis method was discussed (see Section 3.7.2.1).  In Table 4.29 the 

concentration analysis results of the students’ responses on the adapted DEEM pre test were 

presented in terms of concentration scores (S) [0, 1] and concentration factors (Cf) [0, 1].  

Concentration deviation (Cd) [0, 1] (concentration of students’ incorrect responses) was 

presented to indicate the concentration of students’ alternative conceptions. The formulas used to 

calculate the concentration score, concentration factor and concentration deviation were given in 

Section 3.7.2.1. 

Table 4. 29: Students’ response score, concentration factor and concentration deviation with corresponding model 
states 

No A=n1 B=n2 C=n3 D=n4 E=n5 nc S Cf Cd Model  
(S &Cf) 

Model  
(S &Cd) 

1 6 10 14 6 9 14 0.31 0.04 0.03 LL LL 

2 17 7 7 11 3 3 0.07 0.11 0.07 LL LL 

3 11 11 15 2 5 15 0.33 0.09 0.1 LL LL 

4 10 18 8 6 3 18 0.40 0.12 0.07 ML ML 

5 12 6 8 10 9 10 0.22 0.02 0.03 LL LL 

6 16 8 15 3 3 16 0.36 0.14 0.21 LL LM 

7 14 16 9 5 1 14 0.31 0.14 0.23 LL LM 

8 8 9 7 17 4 7 0.16 0.09 0.12 LL LL 

9 6 12 17 7 3 12 0.27 0.11 0.19 LL LL 

10 13 8 13 6 5 13 0.29 0.06 0.07 LL LL 

11 6 17 11 10 1 6 0.13 0.13 0.16 LL LL 

12 2 8 11 17 7 7 0.16 0.11 0.15 LL LL 

13 3 9 11 8 14 14 0.31 0.06 0.07 LL LL 

14 1 5 13 16 10 16 0.36 0.13 0.18 LL LL 

15 4 9 12 11 9 12 0.27 0.04 0.05 LL LL 

16 3 6 15 15 6 15 0.33 0.12 0.17 LL LL 

17 6 22 9 5 3 22 0.49 0.20 0.07 MM ML 

18 8 13 8 12 4 12 0.27 0.05 0.07 LL LL 

19 4 11 12 13 5 12 0.27 0.07 0.10 LL LL 

20 7 13 8 9 8 8 0.18 0.02 0.03 LL LL 
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21 7 10 9 13 6 13 0.29 0.03 0.02 LL LL 

22 3 11 11 16 4 16 0.36 0.11 0.13 LL LL 

23 9 16 13 3 4 9 0.20 0.12 0.18 LL LL 

24 18 6 14 5 2 18 0.40 0.16 0.20 ML MM 

25 14 11 11 6 3 11 0.24 0.07 0.12 LL LL 

26 10 11 13 9 2 10 0.22 0.07 0.11 LL LL 

27 17 10 13 3 2 3 0.07 0.15 0.13 LL LL 

28 5 9 20 2 9 2 0.04 0.17 0.13 LL LL 

29 14 10 8 8 5 14 0.31 0.04 0.03 LL LL 

30 12 10 14 7 2 7 0.16 0.08 0.11 LL LL 

            

4.3.2 Categorization of Students’ Responses: Students’ Model States  

The results of the students’ responses categorization are presented that were done by combining 

their response concentration scores with their response concentration factors and concentration 

deviations (see Table 4.30).  Three-levels coding of students’ response states were used for each 

conceptual multiple-choice question of the modified DEEM (see Table 3.9).  Furthermore, the 

possible students’ model states categorization (Bao & Redish, 2001) (see Table 3.2) was used to 

combine concentration scores with concentration factors and concentration deviations.  

Table 4. 30: Conceptual questions that were found in the model states 

Model state 
(S and Cf) 

Conceptual question % Model state 
(S and Cd) 

Conceptual question % 

HH No  0% HH No 0% 
LH No 0% LH No 0% 
LM No 0% LM 6, 7 6.7% 
MM 17 3.3% MM 24 3.3% 
ML 4, 24 6.7% ML 4,17 6.7% 
LL 

 
1,2,3,5,6,7,8,9,10,11,12,13,14,
15,16,1819,20,21,22,23,25,26,

27,28,29,30 

 
 

90% 

 
 

LL 

1,2,3,5,8,9,10,11,12,13, 
14,15,16,1819,20,21,22,
23,25,26,27,28,29,30 

 
 

83.3% 

This result showed that 90% of the students’ responses patterns in the diagnostic test during their 

pre instruction are found in the null model state (LL) or near the random response state (see 

Table 4.30).  Only 10% of their responses occurred in the medium score with low and medium 

concentration factors (ML and MM). This means that the pattern of students’ responses was 

mostly found in the low concentration score and the low concentration factor.   
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Similarly, 83.3% of the students’ responses pattern was found in the null model state (LL) with 

low score and low concentration deviation. Only 16.7 % of their response patterns occurred in 

the medium state (LM, MM and ML) (see Table 4.30). In addition, there were no cases of 

occurrence of pure states. The pure states are the correct one model state (HH) and the 

alternative one model state (LH).   

Only students’ response in one item (item number 17) was found in the medium level (See Table 

4.30). This item was about electric potential of two equal and oppositely charged point charges. 

With regards to this item, about half of the students had chosen the correct answer (see Table 

4.29). Similarly, in the results of the focus groups discussions, out of the four focus groups for 

this study, two of them had described that ‘electric potential of two opposite charges system is 

zero’ (see Table 4.1).  

4.3.3 Comparing Concentration Factor and Concentration Deviation of Students’ 

Responses 

The two concentrations (see Table 4.29) and their corresponding means (see Table 4.31) were 

independently calculated and considered as two conditions for the sample. Then, the two 

concentrations (concentration factor and concentration deviation) of students’ responses on the 

30 items conceptual questions were compared by conducting paired samples t-test.  

Table 4. 31: Descriptive Statistics: score, concentration factor and concentration deviation on DEEM 

 N Minimum Maximum Mean Std. Deviation 
S 30 0.04 0.49 0.26 0.11 
Cf 30 0.02 0.20 0.10 0.05 
Cd 30 0.02 0.23 0.11 0.06 
Valid N (list wise) 30         

 

As a result, there was no statistically significant difference between the two concentrations of 

students’ responses, that is, t (29) = 1.99, p > 0.05 (see Table 4.32).  This result was in 

agreement with the students’ responses model state categorization result in Section 4.3.2 that 

there were no cases of occurrence of pure states in the students’ responses. 
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Table 4. 32: Paired Samples Test 

 
  
  

Paired Differences    

Mean 
  

Std. 
Deviation 

  

Std. Error 
Mean 

  

95% Confidence Interval of 
the Difference 

t df Sig. (2-tailed) 

Lower Upper 

Pair 1 Cf - Cd -0.02 0.04 0.00 -0.03 0.00 -1.99 29 0.06 

In other words, the students’ responses to both correct and incorrect answers of the multiple 

choice questions were random. This implied that their scores were dominantly in the extreme 

low state. 

4.4 Quantitative Results of Concept Maps Data  

The descriptive statistics of the students’ scores with respect to the components of CM were 

analyzed (see Table 4.33).  The propositions, hierarchies, cross-links and examples that appeared 

on every participant’s CM were scored quantitatively based on the scoring rubric (see Appendix 

F) in which each CM component was measured from 0 (minimum) to 4 (maximum). Hence, the 

total maximum score of a student would be 16. The average students’ score was converted to 

percentage for the purpose comparison with the other results.  

Table 4. 33: Descriptive statistics of students’ concept maps scores 

 CM components N Minimum Maximum Mean  
Propositions (out of 4) 34 0.00 2.00 0.57  
Hierarchies (out of 4) 34 0.00 2.50 1.00  
Cross links (out of 4) 34 0.00 1.00 0.10  
Examples  (out of 4) 34 0.00 1.50 0.09  
Total (out of 16) 34 0.00 5.50 1.76 (11%)  
Valid N (list wise) 34        

As shown in Table 4.32, the students’ average scores on the propositions and the hierarchies 

were, respectively, 0.57 and 1.0; while their average scores on the cross links and examples were 

0.10 and 0.09, respectively. This shows that in the results of the students’ concept maps, the 

propositions and the hierarchies comparatively represented their conceptual knowledge. In other 

words, the conceptual knowledge of the students involved in this study was relatively 

represented and reflected with their hierarchical (super-ordinates to subordinates) and simple 

propositional relationships between few concepts in EPE and EMI. In addition, the results 
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showed that the conceptual knowledge of the students represented by the cross links and 

examples were so weak that implied that the students lacked in-depth conceptual understanding 

of the EPE and EMI concepts (see Table 4.33).  

Overall, the average score of students’ concept maps was 1.76 out of 16 points or 11% (see 

Table 4.33).  This implied that the students’ conceptual knowledge in the concepts of EPE and 

EMI was low. This low students’ CM score was in agreement with their low level concentration 

score on the modified DEEM (see Table 4.30). 

4.5 Triangulation of the Pre Intervention Results 

To strengthen the validity and reliability of the results, four types of results were presented and 

triangulated based on the data collected with the FGD, CM and modified DEEM. These were the 

qualitative results of data collected with the FGD, the qualitative and quantitative results of data 

collected with the CM and the quantitative results of data collected with the DEEM test. The 

triangulation enabled the researcher to explain one form of the results (qualitative or 

quantitative) in terms of the other. To this end, the four pre intervention results were triangulated 

in three ways. These were triangulation of: the qualitative results of FGD and CM data, the 

quantitative results of the modified DEEM test and CM data, and the qualitative and the 

quantitative results. 

4.5.1  Triangulation of Qualitative Results 

The aim of this chapter was to provide data to answer the first research question about the 

categories of students’ conceptions with regards to the EPE and EMI concepts.  Accordingly, the 

results of the two qualitative data were triangulated at categorical level. The need for this 

categorical level triangulation of the qualitative results (the results of individual-based CM data 

and group-based FGD data) was to ensure validity and reliability of the existed categories of the 

students’ conceptions in the context of this study.   

In general, according to the results from both the FGD and CM data, six categories of students’ 

alternative conceptions and two categories of conceptual knowledge existed in the concepts of 

EPE and EMI. These six categories of the students’ alternative conceptions were naïve physics, 
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lateral alternative conceptions, ontological alternative conceptions, p-primes (Ohm’s p-primes), 

mixed conceptions and loose ideas. The two categories of conceptual knowledge were 

hierarchical and relational conceptual knowledge. Almost all of these diagnosed categories of the 

students’ conceptions in the results of both methods of qualitative data collection were similar, 

except the emergence of the P-Primes as an inclusive category in the results of CM data and the 

Ohm’s P-Primes as a category in the results of FGD data. In the CM data results, the Ohm’s P-

Prime was considered as a subcategory (see Tables 4.34 & 4.35). 

Tables 4.34 and 4.35 illustrate triangulation of the qualitative results from the FGD and CM data 

in terms of number of students’ conceptions in the categories and extensiveness of the categories. 

Table 4. 34: Triangulation of categories of students’ conceptions in terms of their distribution  

Category FGD results  
(Group-based data) 

CM results 
(Individual-based data) 

Distribution of students’ 
conceptions 

Distribution of students’ 
conceptions 

EPE EMI EPE EMI 

Alternative conceptions 49(80.3%) 28 (82.4%) 35 (80%) 26 (87%) 
Naïve physics 17 (27.9%) 7 (20.6%) 8 (18%) 7 (23%) 
Lateral  14 (22.9%) 15 (44.1%) 14(32%) 10(33%) 
Ontological  9 (14.8%) - 5(11%) 1(3%) 
P-Primes - - 4(9%) 6(20%) 
Ohm’s P-Primes 4 (6.6%) 3 (8.8%) - - 
Mixed conceptions 2 (3.3%) 2(5.9%) 4 (9%) 2(7%) 
Loose ideas 3 (4.9%) 1 (2.9%) - - 
Conceptual knowledge 12(19.7%) 6 (17.6%) 9(20%) 4(13%) 
Relational  9(14.8%) 6 (17.6%) 8(18%) 3(10%) 
Hierarchical  3 (4.9%) - 1(2%) 1(3%) 

In the results of both qualitative data, the naïve physics and the lateral alternative conceptions 

were dominantly developed because they were extensively described (more than 50%) by the 

students. However, on the one hand, in the results of FGD data, the naïve physics category 

exceeded the other categories in terms of the number of conceptions depicted and their 

extensiveness. On the other hand, in the results of CM data, the lateral alternative conceptions 

category exceeded the other categories in terms of its extensiveness and the number of 

alternative conceptions in the categories.  

In both qualitative results, the students’ alternative conceptions were considerably more 

extensive than their conceptual knowledge. This means, the extensiveness of the categories of 
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alternative conceptions was greater than 80%, while extensiveness of categories of conceptual 

knowledge was less than 20% (see Table 4.35). The less extensiveness of conceptual knowledge 

in both the focus groups discussions and concept maps showed that the students’ conceptual 

knowledge was low and they lacked in depth conceptual understanding of concepts in EPE and 

EMI. 

Table 4. 35: Triangulation of categories of students’ conceptions in terms of their extensiveness  

Category  FGD results  
(Group-based data) 

CM results 
(Individual-based data) 

Extensiveness Extensiveness 

EPE EMI EPE EMI 

Alternative Conceptions 68(76.4%) 33(84.6%) 83(81%) 101 (92%) 
Naïve physics 23(25.8%) 9 (23.1%) 9(9%) 51(46%) 
Lateral  22 (24.7%) 16 (41.0%) 52(50%) 25 (23%) 
Ontological  11 (12.4%) - 13(13%) 1 (1%) 
P-Primes - - 5(5%) 22(20%)  
Ohm’s P-Primes 4 (4.5%) 5 (12.8%) - - 
Mixed conceptions 3(3.4%) 2 (5.1%) 4 (4%) 2(2%) 
Loose ideas 5(5.6%) 1 (2.6%) - - 
Conceptual Knowledge 21 (23.6%) 6 (15.4%) 20(19%) 9(8%) 
Relational  18(20.2%) 6 (15.4%) 18(17%) 8(7%) 
Hierarchical  3(3.4%) - 2 (2%) 1(1%) 

Table 4.35 illustrated that the alternative conceptions in the concepts of EMI were more 

extensive than those in the concepts of EPE while the reverse was true for conceptual 

knowledge. In short, students’ conceptual knowledge of the concepts in EMI was less 

extensively discussed and described than that of the EPE concepts. This result showed that the 

electromagnetic induction concepts were more difficult to understand for the students than the 

electric potential and energy concepts. This result agreed with Planinic (2006) quantitative study 

of assessment of difficulties in some concepts of electricity and magnetism. 

4.5.2 Triangulation of Quantitative Results 

The quantitative results were also triangulated using the average scores of the students in the 

modified DEEM test and their CM. In the DEEM test data, the average concentration score of 

the students was approximately 0.26 (see Table 4.31).  According to Bao and Redish (2001), this 

score was found in the low score state (0.0 to 0.4) (see Table 3.2). In the concepts maps, the 
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students’ average score was only 11%, which was very low (see Table 4. 33). In addition, the 

students’ answers in their CM were more of simple proportional relations (simple relational 

conceptual knowledge).  Moreover, the students’ answers in their CM lacked cross-links and 

examples that were believed to measure their in-depth conceptual understanding. Therefore, the 

pre intervention quantitative results of the modified DEEM and CM data indicated that the 

students’ conceptual knowledge in the concepts of electricity and magnetism, especially, in the 

concepts of EPE and EMI was low.   

4.5.3 Triangulation of Qualitative and Quantitative Results 

Inconsistent students’ conceptions of the concepts in EPE and EMI were found within and across 

the existing categories of alternative conceptions according to the qualitative evaluation in 

Section 4.1.3, 4.1.4 & 4.2.4 (see Tables 4.14, 4.15 & 4.28).  The comparison of the concentration 

factor and concentration deviation of the students’ responses on the DEEM test items was 

conducted using paired samples t-test. As a result, there was no statistically significant difference 

between the two concentrations of students’ responses, that is, t (29) = 1.99, p > 0.05 (see Table 

4.32).  In general, the inconsistencies of the students’ conceptions in all the analyses were 

triangulated. This means that the inconsistency of student conceptions in both qualitative 

analyses (see Tables 4.15 & 4.28) and the dominant non-modal random response states (LL) in 

quantitative analysis are in agreement (see Table 4.30). In addition, the insignificant statistical 

difference between the two concentrations (Cf and Cd) of the DEEM scores was another 

indication for inconsistency of the students’ conceptions (see Table 4.32). Moreover, both the 

concentration factor and the concentration deviation of the students responses to the DEEM test 

were found in the low null model state (see Table 4.30), which indicated the inconsistency of the 

students responses. Therefore, these pre intervention quantitative and qualitative results 

confirmed that the students’ conceptions were inconsistent in the concepts of EPE and EMI.  

The extensiveness of the students’ conceptual knowledge in both EPE and EMI concepts was 

generally less than 20% in this pre intervention data analysis (see Table 4.35). Specifically, the 

extensiveness of students’ conceptual knowledge was less in EMI concepts than in EPE concepts 

(see Table 4.35). This result was triangulated with the low average scores of the students in the 

DEEM test and their CM (see Tables 4.30 & 4.31). Also, the result was used to explain the low 
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scores of the students’ in the quantitative results, because the less extensive the students’ 

conceptual knowledge in the qualitative results implied their low scores in the quantitative 

results.  

Moreover, the categorization of quantitative students’ response states indicated that the students’ 

responses were found in the low random response state (LL). This implied that there were no 

consistent pure model state in the students responses to the DEEM test.  Correspondingly, the 

categorization of qualitative students’ conceptions showed that their conceptions were 

inconsistently diversified in and across the categories developed. Therefore, the low random 

response state of students’ responses to the quantitative diagnostics test was in agreement with 

the inconsistently appeared and diversified students’ conceptions in the qualitative FGD and CM 

data results. 

4.6  Discussion 

This pre intervention study was conducted mainly to categorize undergraduate first year physics 

students’ conceptions in the concepts of electric potential and energy and electromagnetic 

induction in one University in Ethiopia.  Besides, the extensiveness of the alternative 

conceptions in the categories and the inconsistencies of the alternative conceptions within and 

across the categories were investigated. The first reason was the existence of a research gap with 

regards to the categories of students’ alternative conceptions in the concepts of electricity and 

magnetism. The second reason was its practical implication for designing both instruction and 

curriculum. The third reason was its theoretical implication to contribute to the existing 

disputable perspectives of the structure of students’ alternative conceptions (Clark et al., 2011; 

diSessa et al., 2004; Elby, 2010). Finally, it was to undertake an in-depth mixed methods study 

by focusing on a few concepts of EM as recommended in earlier studies (Planinic, 2006).   

To categorize the existing students’ conceptions of the concepts in EPE and EMI in the situation, 

mainly, the students’ FGD and CM data were separately analyzed and then triangulated. During 

both of these analyses, six categories of alternative conceptions and two categories of conceptual 

knowledge were diagnosed. The categories of alternative conceptions were naïve physics, lateral 

alternative conceptions, ontological alternative conceptions, Ohm’s P-Primes (Phenomenological 
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Primitives), mixed conceptions and loose ideas. In addition, relational and hierarchical categories 

of conceptual knowledge were identified.  

The categories have different distributions of students’ conceptions. However, the overall 

percentage distribution of alternative conceptions categories was greater than 80%, while 

percentage distribution of conceptual knowledge was less than 20% (see Tables 4.14 & 4.27). 

This means that the students’ conceptions identified in the conceptual area of EPE and EMI were 

dominantly categorized into the categories of alternative conceptions. Among these, the total 

distribution of naïve physics and lateral alternative conceptions in the students’ FGD and CM, 

respectively, were more than 60% and 50%, (see Table 4.34). These two categories were more 

dominant than the ontological alternative conceptions and the Ohm’s P-Primes and/or P-Primes. 

In addition, as illustrated in Tables 4.14 & 4.27, the overall extensiveness of categories of 

alternative conceptions (mostly greater than 80%) was significantly higher than the 

extensiveness of categories of conceptual knowledge. 

In this study, the FGD helped to generate more conceptions than the CM, because the researcher 

guided the students until no new conceptions were added regarding the concepts under 

investigation. However, the CM helped to generate specific individual conceptions better than 

the FGD.   

In addition, the inclination of the students’ conceptions towards the naïve physics in the FGD 

was believed to be due to the contribution of the students’ discussion towards development of 

conceptions (group dynamics). Accordingly, it could be argued that the naïve physics is more 

‘scientific’ than the lateral alternative conception. This is due to the fact that naïve physics have 

some valid elements of a concept or a principle of the physical world (see Section 2.3.1).  For 

example, two students’ alternative conceptions revealed in this study can be compared. These are 

students’ understanding of ‘electric potential of two opposite charges system is zero’ and 

students’ consideration of ‘electric potential as a force’.  The former is more scientific than the 

later, because there is a special case at which electric potential of two point charges separated by 

some distance becomes zero. Thus, the more ‘scientific’ conceptions of the students’ alternative 

conceptions (the naïve physics) were tended to dominate during their focus groups discussions 

because it was believed that the group dynamics contributed towards their conceptions. 
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The distributions of alterative conceptions and their extensiveness showed similar patterns in the 

existing categories. This means both of them were found to have approximately comparable 

values. In other words, a category with the largest number of alternative conceptions was found 

to have the largest of extensiveness of alternative conceptions and vice versa. This also showed 

the diversification of alternative conceptions in all the categories (see Tables 4.15 & 4.28).  

The students’ alternative conceptions were not only found in multiple categories but also in 

multiple conceptions of a concept within a category. For example, the concept of electric 

potential were considered as a force, as potential energy, as a kinetic energy as a current and as a 

vector (see Table 4.15).  In addition, the electric potential energy was considered as a force, an 

electric field, a capacitance, an electric flux, a kinetic energy and a flow of electric charge (see 

Table 4.28). All these conceptions were categorized as lateral alternative conceptions. A similar 

situation was investigated in the ontological alternative conceptions.  As illustrated in Table 4.15, 

several students considered independently electric potential as a material body and as a charge. 

In this case, although the dependence of electric potential on charges is known, the students are 

unaware of the cause and effect relation; instead, they simply consider potential and charge as 

the same concept that share similar properties. Furthermore, in the Ohm’s P-Primes, it was 

independently considered that electric potential is proportional to distance and also proportional 

to the kinetic energy (see Table 4.15).  

In this study, the students have also multiple conceptions of a concept in different categories (see 

Table 4.15 & 4.28). As an example, the students’ alternative conceptions in the concept of 

electric potential were found in almost all the existing categories. These were electric potential as 

charges (ontological alternative conception), as electric potential energy (lateral alternative 

conception), a zero electric potential for two opposite charges system (naïve physics) and electric 

potential proportional to kinetic energy (Ohm’s P-Prime). This indicates the inconsistency of the 

students’ alternative conception across the categories.   

In the four focus group discussions, a total of 95 conceptions (77 alternative conceptions and 18 

conceptual knowledge statements) were revealed in the concepts of both EPE and EMI. From all 

these conceptions nearly no alternative conception (1%) was discussed by all four focus groups; 

about 4% of the alternative conceptions were discussed three times in the focus groups; 23% of 
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the alternative conceptions were discussed twice in the focus groups and 72% of the alternative 

conceptions were discussed only once in the focus groups (see Table 4.14). This implied that 

most of the students’ alternative conceptions were inconsistent. In other words, the students’ 

conceptions were vacillated highly among and within the focus groups. This result agrees with 

the inclusive idea of vacillation of students’ conceptions in science concepts (Li et al., 2006; Tao 

& Gunstone, 1999). 

In addition, a total of 76 conceptions (63 alternative conceptions and 13 descriptions of 

conceptual knowledge) were revealed in the students’ CM formation of the concepts (see Table 

4.27). The percentages of the total number of the alternative conceptions and their corresponding 

extensiveness were both comparable and greater than 80% (see Tables 4.34 & 4.35). This 

comparable number of alternative conceptions and their extensiveness could indicate the 

inconsistently diversified students’ conceptions. 

In the aforementioned two paragraphs, although the inconsistencies of the students’ alternative 

conceptions in the categories were described, few alternative conceptions were revealed 

frequently.  From the FGD data, only two lateral alternative conceptions were frequently 

revealed (n=3) in which the students’ considered both electric potential and electric energy as a 

force (see Table 4.3). In addition, from the CM data results only four alternative conceptions 

were frequently revealed.  These were two naïve physics: magnetic field lines imply induced emf 

(n= 19) and magnetic field implies induced emf (n=16) (see Table 4.17); one lateral alternative 

conception: students’ consideration of potential as potential energy and vice versa (n=13) (see 

Table 4.18) and one P-Prime: students’ consideration of induced emf and induced current as 

fragmented independent concepts (n=16) (see Table 4. 23).  

Among the alternative conceptions identified in this study, there are some similar alternative 

conceptions identified in earlier studies. For example, studies (Galili, 1995; Planinic, 2006) have 

identified ‘uniform field implies uniform velocity’ naïve conception. Also, Baser and Geban 

(2007) identified ‘a charged body contains only one type of charge’ naïve conception. However, 

most of the ontological and lateral alternative conceptions are newly identified.  In addition, 

alternative conceptions from the naïve physics category, like potential of two opposite point 

charges is zero; rest implies electric potential; a potential difference of charges separated by large 
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distance is zero; and moving charges have no electric potential energy are newly identified 

alternative conceptions. 

4.7  Summary of the Chapter 

This chapter presented and discussed pre intervention results of the study. These were the 

categorization of students’ conceptions before intervention, extensiveness of categories of the 

students’ alternative conceptions and inconsistency of the students’ alternative conceptions. In 

addition, baseline results were presented in this part to be used to measure effectiveness of the 

intervention in the next chapter. 

 Group-based data from the FGD and individual-based data from the CM were independently 

analyzed using the framework thematic analysis. In both pre intervention results, six categories 

of alternative conceptions and two categories of students’ conceptual knowledge were identified. 

Among the categories of alternative conceptions, four were the presupposed categories based on 

the literature review namely naive physics, the lateral alternative conceptions, the ontological 

alternative conceptions and the Ohm’s P-Primes while the other two that emerged were termed 

mixed conceptions and loose ideas.  The two categories of students’ conceptual knowledge were 

diagnosed as hierarchical and relational conceptual knowledge. The quantitative baseline results 

show that that 90% of the students’ responses patterns in the diagnostic test during their pre 

instruction are found in the null model state (LL) or near the random response state. In addition, 

there was no statistically significant difference between the two concentrations of students’ 

responses, that is, t (29) = 1.996, p > 0.05. This result was in agreement with the students’ 

responses model state categorization result that there were no cases of occurrence of pure states 

in the students’ responses. 
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CHAPTER 5 

POST INTERVENTION RESULTS 

In the previous chapter, the qualitative and quantitative results of the pre intervention study were 

presented and discussed. These results were mainly to answer the first research question. In 

addition, baseline data that are needed to answer the third research question were obtained.   

In this chapter, the qualitative and quantitative results of the post intervention study are presented 

and discussed. These post intervention results are to answer the second and third research 

questions. These questions are: 

 What are the categories of students’ conceptions in the concepts of electric potential and 

energy (EPE) and electromagnetic induction (EMI) after intervention? 

 How significant is conceptual change through cognitive perturbation using simulations 

(CPS) as compared to cognitive conflict using simulations (CCS) in the concepts of 

electric potential and energy (EPE) and electromagnetic induction (EMI)? 

Data were analyzed and presented both qualitatively and quantitatively in two parts. Part One 

presented qualitative data and analyses while Part Two presented quantitative data and analyses. 

Finally, triangulations of the post intervention results were made. 

PART I: QUALITATIVE RESULTS 

In this part, the results to the second research question which was about categorization of 

students’ conceptions in the concepts of EPE and EMI after intervention were analyzed 

qualitatively.  In other words, the results of the post intervention data from focus groups 

discussions and concept maps of the students who participated in the study were presented and 

discussed. Similar to the pre intervention analyses, group-based data analysis was used to 

analyze data from the focus groups discussions while individual-based data analysis was used 

when analyzing the concept maps (see paragraph 2 in Chapter 4). Both analyses were separately 

done using the framework thematic analysis (see Section 3.7.1) step by step starting from the 

first stage of familiarization to the last stage of interpretation. The transcribed and coded data 
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were then categorized into categories of students’ alternative conceptions and conceptual 

knowledge with respect to the two treatment classes (cognitive conflict with simulations (CCS) 

and cognitive perturbation with simulations (CPS) classes).  

5.1 Qualitative Results of Focus Groups Discussions  

From the 45 students who agreed to participate in this study only 34 students took part in the post 

intervention focus group discussions (see Section 3.3).   

5.1.1 Categories of Students’ Alternative Conceptions after Intervention  

In the post intervention results of the group-based data from the four focus groups (two focus 

groups in each of the CCS and CPS classes), six categories of alternative conceptions were 

identified. Among the categories of alternative conceptions, four were the presupposed 

categories based on the literature review namely naive physics, lateral alternative conceptions, 

ontological alternative conceptions and Ohm’s P-Primes while the other two that emerged were 

termed mixed conceptions and loose ideas (see Section 4.1.1). The categories of students’ 

alternative conceptions before and after intervention persisted but there were changes in the 

distribution and extensiveness of the alternative conceptions in the categories.  

5.1.1.1 Category 1: Naïve Physics  

The naive physics category of the students’ alternative conceptions was also identified in the post 

intervention students’ focus group discussions in both CCS and CPS classes.  

Naïve Physics of the CCS Class 

In the two focus groups of the CCS class, there were a total of 21 alternative conceptions 

categorized into naïve physics in the concepts of EPE and EMI. Among these, nine of them were 

in the concepts EPE while 12 were in the concepts of EMI (see Table 5.1). 
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Table 5. 1: Naïve Physics of CCS and CPS classes in the concepts of EPE and EMI  

 Naïve physics of students in CCS class freq Naïve physics of students in CPS class freq 
EPE  1. Electric field creates charges.   1 1. Electric field direction is towards 

positive or negative based on direction 
of the charges (sign implies direction).  

2 

2. Charges have electric potential if they are 
in electric field. 

 1 2. A charge in a uniform electric field 
moves with a constant velocity 

2 

3. The potential at the midpoint between 
two point charges separated by some 
distance is zero. 

 2 3. Opposite charges released in an 
external uniform electric field cannot 
move 

1 

4. A released point charge increases the 
strength of an electric field.   

1 4. Potential difference is the difference 
between potentials of two opposite 
charges 

1 

5. Positive charge is the only source of 
electric field. 

1 5. Charge motion implies electric 
potential  

1 

6. Uniform electric field implies constant 
velocity 

1 6. Electric potential is only at charge’s 
location 

1 

7. Uniform electric field implies uniform 
electric potential. 

1 7. Motion of a charge is in the direction 
of electric field 

1 

8. A charge rotates around a source of 
uniform electric field. 

1 8. A released charge has zero energy 1 

9. Motion implies electric energy. 2   
Extensiveness of  naïve physics in EPE 11 Extensiveness of  naïve physics in EPE 10 

EMI 1. Rotation of magnetic field creates 
induced current. 

1 1. Magnetic field implies emf 1 

2. Change in time cause emf. 1 2. Magnetic flux implies emf 2 
3. Change in both magnetic field and area of 

a coil at a time cannot induce emf. 
2   

4. Current in first coil implies emf in the 
second coil. 

1   

5. Variation of magnetic field implies 
increase induced current 

2   

6. Change in an area of a coil changes 
magnetic field 

1   

7. Magnet results electromagnetic induction 1   
8. Rotation of a coil near a magnet implies 

electromagnetic induction 
1   

9. Electric charge produces magnetic field.   2   
10. Presence of a coil and a magnet implies 

emf. 
2   

11. Magnetic field parallel to an area implies 
maximum flux; whereas magnetic field 
perpendicular to an area gives no flux. 

1   

12. The magnetic field makes charge in 
motion. 

1   

 Extensiveness of  naïve physics in EMI 16 Extensiveness of  naïve physics in EMI 3 
 Extensiveness of  naïve physics in 

EPE& EMI 
27 Extensiveness of  naïve physics in EPE& 

EMI 
13 
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Naïve Physics of the CPS Class 

In the two focus groups of the CPS class there were in total 10 alternative conceptions 

categorized into naïve physics in the concepts of EPE and EMI. Among these, eight of them 

were in the concepts EPE while two of them were in the concepts of EMI (see Table 5.1). As 

illustrated in Table 5.1, the number and extensiveness of naïve physics were less in the CPS class 

(10, 13) than in the CCS class (21, 27). 

5.1.1.2 Category 2: Lateral Alternative Conceptions 

Lateral Alternative Conceptions of the CCS Class  

In the two focus groups of the CCS class there were seven alternative conceptions categorized 

into lateral alternative conceptions in the concepts of EPE and EMI. Among these, four of them 

were in the concepts EPE while three of them were in the concepts of EMI (see Table 5.2). 

Table 5. 2: Lateral alternative conceptions of CCS and CPS classes in the concepts of EPE and EMI  

 Lateral alternative conceptions of students in 
the CCS class 

freq Lateral alternative conceptions of 
students in the CPS class 

freq 

EPE  1. Electric potential is a vector 1 1. Potential difference is electric 
potential energy 

1 

2. Electric energy and electric potential are 
vectors because both of them depend on 
charges. 

2 2. A moving charge is a vector but a 
stationary charge is a scalar 
(motion implies vector; rest 
implies scalar). 

1 

3. Charge motion implies vector. 2   
4. Moving charge  implies electric potential 2   
Extensiveness 7 Extensiveness 2 

EMI 1. Electromagnetic induction means production 
of magnetic field. 

1 Electromotive force is induced current 1 

2.  A magnet and a moving charge cause emf.  1   
3. Induced current, emf and magnetic flux are 

vectors 
1   

 Extensiveness 3 Extensiveness 1 
 Extensiveness of lateral alternative conceptions 

in EPE& EMI 
10 Extensiveness of  lateral alternative 

conceptions in EPE& EMI 
3 

 

Lateral Alternative Conceptions of the CPS class  

In the two focus groups of the CPS class, there were in total three alternative conceptions 

categorized into lateral alternative conceptions in the concepts of EPE and EMI. Among these, 
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two were in the concepts EPE while the other one was in the concepts of EMI (see Table 5.2). 

The number and the extensiveness of lateral alternative conceptions were less in the CPS class 

(3, 3) than in the CCS class (7, 10) (see Table 5.2).  

5.1.1.3 Category 3: Ontological Alternative Conceptions   

Ontological Alternative Conceptions of the CCS Class 

Only two ontological alternative conceptions were developed in the focus groups discussions of 

the CCS class (see Table 5.3).  These were the students’ description of electric potential as a 

charge, and their consideration of electromagnetic induction process as a collection of electric 

and magnetic fields. This means that the students’ pre intervention perception of fields as 

material bodies persisted after intervention.    

Table 5. 3: Ontological alternative conceptions of CCS and CPS classes in the concepts of EPE and EMI  

 Ontological Alternative Conceptions of 
the CCS class 

freq Ontological Alternative conceptions of the 
CPS class 

freq 

EPE  Electric potential is a charge. 1 1. Potential difference is a connection 
between positive and negative charges. 

1 

  2. If electric field goes with a charge, then 
the charge will be accelerated. 

1 

Extensiveness 1 Extensiveness 2 
EMI Electromagnetic induction is a collection 

of electric and magnet fields. 
1 1. The process of electromagnetic induction 

as magnetic field 
1 

 Extensiveness 1 Extensiveness 1 
 Extensiveness of  ontological alternative 

conceptions in EPE and EMI 
2 Extensiveness of  ontological alternative 

conceptions in EPE and EMI 
3 

Ontological Alternative Conceptions of the CPS Class 

Three ontological alternative conceptions, two alternative conceptions in the concepts of EPE 

and one in the concepts of EMI, were developed in the two focus groups discussions of the CPS 

class (see Table 5.3).  The number and extensiveness of these alternative conceptions were 

slightly greater in the CPS class (3, 3) than in the CCS class (2, 2).  
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5.1.1.4 Category4: Ohm’s P-Primes 

Ohm’s P-Primes of the CCS Class 

Three P-Primes, two of them in the concepts of EPE and one of them in the concepts of EMI, 

were developed from the focus groups discussions of the CCS class.  

Table 5. 4: Ohm’s p-primes of CCS and CPS classes in the concepts of EPE and EMI  

 Ohm’s p-primes of the CCS class freq Ohm’s p-primes of the CPS class freq 
EPE  1. Electric field varies inversely as the 

distance. 
1   

2. Electric potential of a charge increases as 
position of a test charge increases.  

1   

Extensiveness 2   
EMI When motion of a coil increases in a magnetic 

field, the induced current increased. 
1 1. Current in one coil is directly 

proportional to the voltage in 
another nearby coil. 

2 

  2. The relationship between magnetic 
field and induced current is direct 
proportional. 

1 

   3. The stronger the magnetic field the 
higher its variation. 

1 

 Extensiveness 1 Extensiveness 4 
 Extensiveness of  Ohm’s P-Primes  in EPE 

and EMI 
3 Extensiveness of  Ohm’s P-Primes  in 

EPE and EMI 
4 

 

Ohm’s P-Primes of the CPS Class 

As shown in Table 5.4, only three Ohm’s P-Primes in the concepts of EMI were identified from 

the focus groups discussions of the CPS class.  The number of Ohm’s P-Primes in the CPS and 

CCS classes was the same, which was three each, but the extensiveness was slightly greater in 

the CPS class than in the CCS, three in the CCS and four in the CPS. 

5.1.1.5 Category 5: Mixed Alternative Conceptions  

 Mixed Alternative Conceptions of the CCS Class 

Two mixed alternative conceptions were identified from the students’ focus groups discussions 

of the CCS class (see Table 5.5). One was a combination of naive physics and lateral alternative 

conception while the other was a blend of lateral alternative conception and Ohm’s P-Prime. 
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Table 5. 5: Mixed alternative conceptions of CCS and CPS classes in the concepts of EPE  

 Mixed conceptions of students in CCS 
class 

freq Mixed conceptions of students in CPS class freq 

EPE  1. For several charges, the electric 
potential is directly proportional to 
the sum of the charges (naïve 
physics and Ohm’s p-prime).  

1 1. The total potential of several point charges is 
directly proportional to their total charge 
(naïve physics and Ohm’s p-prime) 

2 

2. Electric potential is proportional to 
the product of charges (lateral 
alternative conceptions and Ohm’s 
p-prime) 

1 2. The total potential of several point charges is 
proportional to the product of the charges 
(lateral alternative conceptions and Ohm’s p-
prime) 

2 

  3. Electric potential energy is proportional to 
charge (lateral alternative conceptions and 
Ohm’s p-prim) 

2 

  4. The electric potential varies inversely as the 
square of the distance between a point 
charge and test charge(lateral alternative 
conceptions and Ohm’s p-prime) 

1 

  5. Quantities (electric potential & electric field) 
which are proportional to charges are vectors 
(lateral alternative conception and Ohm’s p-
prime) 

2 

 Extensiveness 2 Extensiveness 9 

Mixed Alternative Conceptions of the CPS Class 

Five mixed alternative conceptions were depicted from the students’ focus groups discussions of 

the CPS class (see Table 5.5). Four of them were a combination of lateral alternative conception 

and Ohm’s P-Prime while one was a blend of naïve physics and Ohm’s P-Prime. The mixed 

alternative conceptions in terms of their number and extensiveness were found greater in CPS (5, 

9) class than in CCS class (2, 2) (see Table 5.5). 

5.1.1.6 Category 6: Loose Ideas  

Only one loose idea was developed in the focus groups discussions of the CCS class (see Table 

5.6). There was no such idea depicted in the CPS class. 

Table 5. 6: Loose idea of the CCS class in the concepts of EPE  

Loose Idea of students in the CCS  class freq 
Relation between electric field and magnetic field results electromagnetic induction  1 

Extensiveness 1 
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5.1.2 Categories of Conceptual Knowledge after Intervention  

The thematic framework analysis also helped to obtain two categories of students’ conceptual 

knowledge which were named as hierarchical and relational conceptual knowledge (see Section 

2.3.2). 

5.1.2.1 Category 7: Hierarchical Conceptual Knowledge 

Hierarchical Conceptual Knowledge of the CCS class 

Six statements of hierarchical conceptual knowledge, three each in the concepts of EPE and 

EMI, were discussed in the focus groups of the CCS class (see Table 5.7). 

Table 5. 7: Hierarchical conceptual knowledge of CCS and CPS classes in the concepts of EPE and EMI 

 Hierarchical Conceptual Knowledge of 
Students in CCS class 

freq Hierarchical Conceptual Knowledge of 
Students in CPS class 

freq 

EPE  1. Charge is a scalar 1 1. Charge is a scalar not a vector; it has 
no direction. 

2 

2.  Electric potential is a scalar 2 2. Electric potential is a scalar quantity 
and its addition is a scalar.  

2 

3. Electric field is a vector  2 3. Electric field is a vector quantity.  2 
  4. Electric potential energy is a scalar 1 

 Extensiveness  5 Extensiveness 7 
EMI 1. Electromagnetic induction is one 

way of producing electric current or 
energy. 

1 1. Electromagnetic induction is a 
process of producing an emf that 
drives current in a coil. 

1 

2. Sources of magnetic field are 
magnets and moving charges. 

2   

3. Change of magnetic flux is changing 
of magnetic field by keeping area 
constant or changing of area by 
keeping the magnetic field constant 

1   

 Extensiveness 4 Extensiveness 1 
 Hierarchical Conceptual Knowledge of 

CCS class 
9 Hierarchical Conceptual Knowledge of 

CCS class 
8 

 

Hierarchical Conceptual Knowledge of the CPS class 

Five statements of hierarchical conceptual knowledge were discussed in the focus groups of the 

CCS class (see Table 5.7). Among these, four were in the concepts of EPE while one was in the 

concepts of EMI. As shown in the table, the students’ hierarchical conceptual knowledge in 
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terms of its number and extensiveness was slightly less in the CPS (5, 8) class than in the CCS 

(6, 9) class. 

5.1.2.2 Category 8: Relational Conceptual Knowledge 

Relational Conceptual Knowledge of the CCS class 

There were in total 13 descriptions that showed relational conceptual knowledge of the students 

in the CCS class. Among these, seven were in the concepts of EPE while four were in the 

concepts of EMI (see Table 5.8). 

Table 5. 8: Relational conceptual knowledge of CCS and CPS classes in the concepts of EPE and EMI 
 Relational Conceptual Knowledge of 

Students in CCS class 
freq Relational Conceptual Knowledge of 

Students in CPS class 
freq 

EPE  1. The existence of electric field shows 
the presence of charges (Charge 
implies electric field) 

2 1. Electric potential is determined by a 
charge at a given specific position.  

2 

2. Electric potential exists due to a 
charge (Charge implies electric 
potential) 

2 2. Electric potential is determined by one 
point charge; but electric potential energy 
is determined by two charges with 
separation between them.  

2 

3. The relationship between electric 
field and electric potential is directly 
proportional 

2 3. Electric potential is proportional to charge 
and inversely to distance  

2 

4. Electric potential energy is energy 
between two or more charges 
separated by some distances. 

2 4. Electric potential and electric field are 
directly proportional to each other, i.e., 
V=Ed 

2 

5. Electric potential is directly 
proportional to charge.  

2 5. Electric potential and energy are directly 
proportional.  

2 

6. Directions of electric field lines are 
determined by the sign of charges 

1 6. The difference between electric potential 
and electric field is that E 1/r2 but V 1/r. 

2 

7. Closer means stronger electric field 1 7. Electric potential energy varies directly 
proportional to the product of two charges 
and inversely proportional to the distance 
between them.  

2 

  8. At a given point, electric potential of 
several point charges can be added.  

2 

  9. Charges in an electric field have potential 
energy.  

1 

  10. Electric potential difference is equal to 
work done per unit charge and it is 
proportional to electric potential energy 

2 

  11. Electric field is force acting on test charge 
per positive test charge. 

2 

Extensiveness 12 Extensiveness 21 
EMI 1. Magnetic flux is created when 

magnetic field lines are penetrating 
some area. 

1 1. If there is no emf induced a coil then there 
will be no induced current in the coil.  

1 
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2. When the number of turns increases, 
induced current also increases. 

1 2. When we increase the number of turns of a 
coil, the bulb gives more light. So number 
of turns and emf can be related 

1 

3. Relative motion of a magnet and a 
coil implies induced emf. 

2 3. Magnetic flux is the number of magnetic 
lines that cross a given area 
perpendicularly 

2 

4. Motion of magnetic field 
source(current carrying coil)  in a 
coil results in induced emf 

2 4. Change of a magnetic flux can result an 
induced emf. 

1 

  5. Relative motion of a magnet and a coil 
produces induced emf and induced current 
in the coil 

2 

  6. A magnet field can result magnetic flux  2 
Extensiveness 6 Extensiveness 9 

 Extensiveness relational conceptual 
knowledge of CCS class 

18 Extensiveness relational conceptual 
knowledge of CCS class 

30 

 

Relational Conceptual Knowledge of the CPS class 

There were in total 17 students’ descriptions of relational conceptual knowledge in the CPS 

class. Among these, 11 were in the concepts of EPE while six were in the concepts of EMI. The 

relational conceptual knowledge was the category in which the two treatment classes showed a 

significant difference in terms of their number and extensiveness.  This means that the number 

and extensiveness of relational conceptual knowledge were found more in the CPS class (17, 30) 

than in CCS class (11, 18) (see Table 5.8). 

5.1.3 Post Intervention Distribution of Students’ Conceptions from their Focus Groups 

Discussions  

A summary of post intervention categories of students’ conceptions in the two conceptual areas 

selected for this study is presented (see Table 5.9). The categories of students’ conceptions were 

analyzed and presented in terms of the number of alternative conceptions, frequency and 

extensiveness in order to guide the interpretation of the results.   
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Table 5. 9: Distribution of students’ conceptions in the concepts of EPE and EMI with extensiveness of the 
categories 

Category Conceptual 
area 

CCS Class CPS Class 
Number of 
conceptions 

Frequency extensiv
eness 

Number of 
conceptions 

Frequency extensiv
eness 2 1 2 1   

 A
lte

rn
at

iv
e 

co
nc

ep
tio

ns
 

Naïve 
Physics  

EPE 9 2 7 11 8 2 6 10 
EMI 12 4 8 16 2 1 1 3 
EPE & EMI 21 6 15 27 10 3 7 13 

Lateral  EPE 4 3 1 7 2 - 2 2 
EMI 3 - 3 3 1 - 1 1 
EPE & EMI 7 3 4 10 3 - 3 3 

Ontological  EPE 1 - 1 1 2 - 2 2 
EMI 1 - 1 1 1 - 1 1 
EPE & EMI 2 - 2 2 3 - 3 3 

Ohm’s p-
primes 

EPE 2 - 2 2 - - - - 
EMI 1 - 1 1 3 1 2 4 
EPE & EMI 3 - 3 3 3 1 2 4 

Mixed EPE 2 - 2 2 5 4 1 9 
EMI - - - - - - - - 
EPE & EMI 2 - 1 2 5 4 1 9 

Loose Ideas EPE 1 - 1 1 - - - - 
EMI - - - - - - - - 
EPE & EMI 1 - 1 1 - - - - 

Total EPE 19 5 14 24 17 6 11 23 
EMI 17  4 13 21  7 2 5 9 
EPE & EMI 36 

(68%)  
9 
(25%) 

27 
(75%) 

45 
(62%) 

24 
(52%) 

8 
(33%) 

16 
(67%) 

32 
(46%) 

C
on

ce
pt

ua
l k

no
w

le
dg

e 

Hierarchical  EPE 3 2 1 5 4 3 1 7 
EMI 3 1 2 4 1 - 1 1 
EPE & EMI 6 3 3 9 5 3 2 8 

Relational EPE 7 5 2 12 11 10 1 21 
EMI 4 2 2 6 6 3 3 9 
EPE & EMI 11 7 4 18 17 13 4 30 

Total EPE 10 7 3 17 15 13 2 28 
EMI 7  3 4 10 7 3 4 10 
EPE & EMI 17 

(32%) 
10 
(59%) 

7 
(41%) 

27 
(38%) 

22 
(48%) 

16 
(73%) 

6 
(27%) 

38 
(54%) 

Total EPE 29 12 17 41 32 19 13 51 
EMI 24 7 17 31 14 5 9 19 
EPE & EMI 53 19 34 72 46 24 22 70 

The percentage of occurrences of alternative conceptions in the pre intervention discussions was 

greater than 80% while the percentage occurrences of conceptual knowledge was less than 20% 

(see discussion in section 4.1.3). This showed that before intervention the students’ discussions 

were dominantly more of alternative conceptions than the conceptual knowledge.  

However, after intervention, the percentage of occurrences of the students’ conceptions in both 

the CCS and CPS classes showed differences which were compared. In the CCS class, 53 
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conceptions were identified in all the categories. Among these conceptions, 36 (68%) of them 

were in the categories of alternative conceptions while 17 (32%) of them were in the categories 

of conceptual knowledge. In the CPS class, 46 conceptions were identified in all the categories.  

Among these conceptions, 24 (52%) of them were in the categories of alternative conceptions 

while 22 (48%) of them were in the categories of conceptual knowledge (see Table 5.9).  This 

showed that the students’ conceptual knowledge was discussed more in the CPS class (48%) than 

in the CCS class (32%). Conversely, the alternative conceptions were discussed more in the CCS 

class (68%) than in the CPS class (52%) (see Table 4.9). 

The percentage distribution of the number of students’ alternative conceptions (81%) in the 

categories and the corresponding extensiveness (79%) were comparable in the pre intervention 

students’ focus groups discussions.  Similarly, the percentage distribution of the number of 

students’ conceptual knowledge (19%) in the categories and the corresponding extensiveness 

(21%) were comparable (see Table 4.14). This indicated that the students’ conceptual knowledge 

in the pre intervention was low. 

After the intervention, the percentage distribution of the number of conceptions and the 

extensiveness in both the treatment classes were analyzed and compared. Accordingly, in the 

CCS class, the percentage of alternative conceptions and corresponding extensiveness were 68% 

and 62%, respectively. In the CPS class, the percentage of alternative conceptions and 

corresponding extensiveness were, respectively, 52% and 46% (see Table 5.9).  These showed 

that, after intervention, the number of alternative conceptions and extensiveness of categories of 

the alternative conceptions was lesser in the CPS class than in the CCS class.   

In addition, in the CCS class, the percentage of the students’ conceptual knowledge and the 

corresponding extensiveness were 32% and 38%, respectively; while in the CPS class, the 

percentage of the students’ conceptual knowledge and the corresponding extensiveness were, 

respectively, 48% and 54% (see Table 4.9).  These showed that the total number of the students’ 

conceptual knowledge and their corresponding extensiveness were more in the CPS class than in 

the CCS class.   

In the pre intervention analysis of the students’ FGD, most of the students alternative 

conceptions (73%) were described only once, 23% of them were described twice and  4% of 
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them were discussed three times in the four focus groups discussions (see Table 4.14). However, 

this diversification of the students’ alternative conceptions was changed after the intervention. In 

the two focus groups’ discussions of the CCS class, 25% of their alternative conceptions were 

discussed by both of the focus groups while 75% of their alternative conceptions were discussed 

only once in the two focus groups (see Table 5.9) . In the two focus groups’ discussions of the 

CPS class, 33% of their alternative conceptions were discussed by both of the focus groups while 

67% of their alternative conceptions were discussed only once in the two focus groups. This 

means that after intervention, diversification of the students’ alternative conceptions was lesser 

in the CPS class in than in the CCS class. 

In addition, the diversifications of the students’ conceptual knowledge after intervention were 

compared. In the CCS class, 59% of the students’ conceptual knowledge was discussed by both 

of the focus groups while 41% of their conceptual knowledge was discussed once in the two 

focus groups (see Table 5.9). Similarly, in the CPS class, 73% of the students’ conceptual 

knowledge was discussed by both of the focus groups while 27 % of their conceptual knowledge 

was discussed once in the focus groups. These indicated that students’ conceptual knowledge 

were more consistent in the CPS class than in the CCS class.  

5.2 Qualitative Results of Concept Maps Data 

In this study, the results from individual students’ concept maps (individual-based data) were 

used to compare the results obtained from the students focus groups discussions (group-based 

data). The results in the following section will also be used to supplement and explain the 

quantitative results from the modified DEEM and CM (see Section 5.4.3). 

5.2.1 Categories of Students’ Alternative Conceptions after Intervention  

In this post intervention analysis of the students’ CM, like the pre intervention analysis, five 

categories of students’ alternative conceptions were developed in both the CCS and CCS classes. 

These were naive physics, lateral alternative conceptions, ontological alternative conceptions, 

phenomenological primes and mixed conceptions. The loose ideas did not appear in the students’ 

concepts maps of both treatment classes. However, the distribution of the alternative conceptions 
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in the categories and the extensiveness of the categories were different in both the treatment 

classes. 

5.2.1.1 Category 1: Naïve Physics  

Naïve Physics of the CCS Class 

In the CCS class, there were in total 13 alternative conceptions categorized into naïve physics in 

the concepts of EPE and EMI. Among these, six were in the concepts EPE while seven were in 

the concepts of EMI (see Table 5.10). 

Table 5. 10: Naïve Physics of CCS and CPS classes in the concepts of EPE and EMI  
 Naïve physics of students in CCS class freq Naïve physics of students in CPS class freq 
EPE  1. Electric potential produces electric charge.  1 1. Electric potential energy exists in 

the constant equipotential lines. 
1 

2. Motion implies electric potential: kinetic 
energy results electric potential. 

1 2. Electric force is due to charges at 
rest. 

1 

3. Electric field causes electric charge 1 3. Electric field results electric charge. 3 
4. Electric potential is zero on equipotential 

lines.  
1 4. An electric potential at a point 

results kinetic energy 
1 

5. Electric potential exist only in 
equipotential lines 

1 5. Electric field is produced from 
electric charge at rest 

1 

6. Potential difference is equal on 
equipotential line 

1   

Extensiveness 6 Extensiveness 7 
EMI 1. Magnetic flux produce induced emf 5 1. Magnetic flux results induced emf  11 

2. Magnetic field produces induced emf 1 2. Magnetic field causes induced 
current/emf 

2 

3. Magnetic field lines produce induced emf.   1 3. Magnetic field lines cause induced 
current/emf 

3 

4. Electric charge produces magnetic field 2 4. Magnetic force acts on an electric 
charge.  

1 

5. Electromagnetic induction is caused by 
current 

1 5. Magnetic flux can cause electric 
flux 

1 

6. Magnetic field lines are like equipotential 
lines 

1 6. Faraday’s Law states electric field 1 

7. Magnetic field lines are formed by moving 
charges 

1 7. Magnetic flux can give electric field 1 

  8. Magnet cause electromagnetic 
induction 

1 

  9. Induced emf is caused by electric 
potential energy.  

1 

  10. Electromagnetic induction is caused 
by electric potential 

1 

Extensiveness 12 Extensiveness 23 
Extensiveness of  naïve physics in CCS 18 Extensiveness of  naïve physics in CPS 30 
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Naïve Physics of the CPS Class 

In the CPS class, there were a total of 15 alternative conceptions categorized into naïve physics 

in the concepts of EPE and EMI in which five of them were in the concepts of EPE while ten of 

them were in the concepts of EMI (see Table 5.10). The number and extensiveness of naïve 

physics depicted with the students’ CM were found lesser in the CCS (13, 18) than in the CPS 

(15, 30). 

5.2.1.2 Category 2: Lateral Alternative Conceptions 

Lateral Alternative Conceptions of the CCS class  

In the CCS class, there were totally 15 alternative conceptions categorized into lateral alternative 

conceptions in the concepts of EPE and EMI. Among these, ten of them were in the concepts 

EPE while five of them were in the concepts of EMI (see Table 5.11). 

Table 5. 11: Lateral alternative conceptions of CCS and CPS classes in the concepts of EPE and EMI  

 Lateral alternative conceptions  of students in 
CCS class 

freq Lateral alternative conceptions of 
students in CPS class 

freq 

EPE  1. Electric potential as electric field: Electric 
potential produce electric flux 

1 1. Electric potential is electric 
potential energy 

1 

2. Electric potential as potential difference: 
Electric potential produce kinetic energy; 
Potential difference is an electric potential 

2 2. Equipotential lines represents 
magnetic field; equipotential lines 
are magnetic field lines 

2 

3. Electric potential as energy: Electric 
potential has two types: electric potential 
energy and kinetic energy. 

2 3. Electric field as magnetic field: 
kinetic energy of a charge results 
in electric field  

1 

4. Potential difference as electric potential 
energy: Potential difference is a form of 
electric potential energy 

1 4. Electric potential energy is 
kinetic energy 

5 

5. Potential difference as kinetic energy: 
Potential difference is found in the form of 
kinetic energy 

1 5. Electric field lines as 
Equipotential lines:  

 Electric field gives equiptential 
lines;equipotential lines result in 
electric flux 

3 

6. Electric potential energy as kinetic energy: 
Electric potential energy is due to 
movement of charges 

1 6. Electric flux as magnetic flux: 
Electric flux induces emf 

1 

7. Electric potential energy as electric 
potential: electric potential energy results 
equipotential lines; electric potential energy 
is equal on equipotential lines 

2   

8. Electric field as magnetic field: Electric 
field produces magnetic flux 

1   
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9. Induced electric field as electrostatic 
electric field: electric field is describe by 
Faraday’s law 

1   

10. Electric field as a force: electric field is 
given by Coulomb’s law 

1   

Extensiveness 13 Extensiveness 13 
EMI 1. Faraday’s Law as Gauss’ Law:  magnetic 

field is given by Faraday’s law 
 Magnetic flux is stated by Faraday’s law of 

induction 

4 1.  Gauss law as Faraday’s law: 
Magnetic flux is explained by 
Faraday’s law;  Magnetic flux is 
described by electromagnetic 
induction; Faraday’s law explains 
electric charge 

4 

2. Magnetic field lines as electric field: 
Magnetic field lines produce electric field 
lines 

1 2. Magnetic flux as magnetic field: 
Magnetic flux is  represented by 
magnetic field lines 

2 

3. Magnetic field results induced emf 1 3. Induced current is produced in a 
capacitor (induced current as 
displacement  current) 

1 

4. Magnetic flux is the flow of induced current 1 4. Electromagnetic induction 
process generates magnetic field 

1 

5. Induced emf can be electric potential 1 5. Electric potential is  an induced 
emf  

1 

Extensiveness 8 Extensiveness 9 
Extensiveness of  naïve physics in CCS 21 Extensiveness of  naïve physics in 

CSS 
22 

Lateral Alternative Conceptions of the CPS class  

In the CPS class, there were totally 11 alternative conceptions categorized into lateral alternative 

conceptions in the concepts of EPE and EMI. Among these, six of them were in the concepts of 

EPE while five of them were in the concepts of EMI (see Table 5.11). The number of lateral 

alternative conceptions revealed by the CM was found greater in the CCS class (15) than in the 

CPS class (11). The extensiveness of lateral alternative conceptions (21, 22) revealed by the CM 

was found comparable in both the CCS class and CPS class. 

5.2.1.3 Category 3: Ontological Alternative Conceptions 

Ontological Alternative Conceptions of the CCS Class 

This category of alternative conceptions was only developed in the concepts of EPE. In the CCS 

class, six ontological alternative conceptions were developed (see Table 5.12).  
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Table 5. 12: Ontological Alternative Conceptions of CCS and CPS classes in the concepts of EPE  

 Ontological alternative conceptions  of 
students in CCS class  

freq Ontological alternative conceptions of 
students in CPS class 

freq 
 

EPE  1. Electric potential energy is caused by 
equipotential lines 

1 1. Equipotential lines are combination 
of potential and field lines. 

1 

2. When potential difference moves, it gives 
kinetic energy 

1 2. Electric field lines are electric 
potential energy 

1 

3. Electric potential energy as a charge:  
Electric potential is formed from electric 
potential energy  

1 3. Electric flux is flow of  electric 
charges; Electric flux is a current  

2 

4. Electric field as a charge: electric field can 
be positive or negative  

1   

5.  Electric charge as electric potential: 
Electric charge results in equipotential lines.  

1   

6. Current as charge: electric potential 
difference causes electric charges 

1   

Extensiveness 6 Extensiveness 4 

Ontological Alternative Conceptions of the CPS Class 

In the CPS class, only three ontological alternative conceptions were developed (see Table 5.12). 

As illustrated in the table, the number (6, 3) and extensiveness (6, 4) of ontological alternative 

conceptions were more in the CCS class than in CPS class. 

5.2.1.4 Category 4: P-Primes 

P-Primes of the CCS Class 

In the CCS class, eight P-Primes, four each in both of EPE and EMI concepts, were depicted 

from the students’ concept maps.  

Table 5. 13: P-Primes of CCS and CPS classes in the concepts of EPE and EMI 

 P-Primes of students in CCS class  freq P-Primes of students in CPS class freq 
EPE  1. Electric potential produces electric charge 

and electric field 
1 1. Electric field is proportional to 

charge and distance 
1 

2. Electric potential energy is proportional to 
distance 

1 2. In electricity, there are electric field 
and electric charge 

1 

3. Electric field is directly proportional to 
number of charges and inversely proportional 
to distance from the charge 

1 3. Electric potential energy is 
proportional to kinetic energy 

1 

4. Electric field consists of electric potential and 
electric charge. 

1   

 Extensiveness 4 Extensiveness 3 
EMI 1. Magnetic flux is proportional to induced emf 1 1. Induced emf is proportional to 

magnetic flux.  
1 

2. Magnetic flux is magnetic field and magnetic 1 2. Magnetic force is inversely 1 
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field lines proportional to magnetic field 
3. Magnetic flux consists of  magnetic field and 

magnetic field lines 
1   

4. Magnetic field consists of magnetic field 
lines and magnetic flux 

1   

Extensiveness 4 Extensiveness 2 
Extensiveness of  P-Primes in EPE and EMI in CCS 8 Extensiveness of  P-Primes in EPE and 

EMI in CPS 
5 

 

P-Primes of the CPS Class 

In the CPS class, five P-Primes were depicted from the students’ concept maps. Among these, 

three of them were in the concepts of EPE while two of them were in the concepts of EMI. The 

number (8, 5) and extensiveness (8, 5) of the students’ P-Primes were found more in the CCS 

class than in the CPS class. 

5.2.1.5 Category 5: Mixed Alternative Conceptions 

Mixed Alternative Conceptions of the CCS Class 

Two mixed alternative conceptions, one each in the concepts of EPE and EMI, were developed 

from the students’ CM formations of the CCS class (see Table 5.14).  

Table 5. 14: Mixed conceptions of CCS and CPS classes in the concepts of EPE and EMI 

 Mixed Conceptions of students in CCS 
class 

freq Mixed Conceptions of students in CPS 
class 

freq 

EPE  Lateral and ontological alternative 
conceptions: equipotential lines are produced 
by the movement of electric field.  

1 Ohm’s p-prime and lateral alternative 
conceptions: electric potential is 
proportional to distance between charges. 

1 

EMI Ohm’s p-prime and Naïve physics: induced 
emf is directly proportional to strength of the 
field  

1   

Extensiveness 2 Extensiveness 1 
 

Mixed Alternative Conceptions of the CPS Class 

Only one mixed alternative conceptions in the concepts of EPE was identified from the students’ 

CM of the CCS class and no alternative conception was occurred in the concepts of EMI in (see 

Table 5.14).   
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5.2.2 Categories of Conceptual Knowledge after Intervention  

5.2.2.1 Category 6: Hierarchical Conceptual Knowledge 

Hierarchical Conceptual Knowledge of the CCS class 

Five statements of hierarchical conceptual knowledge, two in EPE and three in EMI concepts,   

were depicted from the students’ CM of the CCS class. 

Table 5. 15: Hierarchical conceptual knowledge of CCS and CPS classes in the concepts of EPE and EMI 

 Hierarchical Conceptual Knowledge of 
Students in CCS class 

freq Hierarchical Conceptual Knowledge of 
Students in CPS class 

freq 

EPE  1. Electric field is a vector. 3 1. A charge in electric field can have 
kinetic energy and potential energy.  

7 

2. Electric potential is a scalar 1 2. Electrical potential energy is a scalar 1 
  3. Electrical potential energy can be 

changed to  kinetic energy 
1 

Extensiveness 4 Extensiveness 9 
EMI 1. Electromagnetic induction can be 

seen in terms of induced current or 
induced emf 

11 1. Electromagnetic induction involves 
induced emf and induced current 

17 

2. Magnetism deals with magnetic 
effects of magnetic field. 

1 2. Faraday’s law states electromagnetic 
induction. 

2 

3. Magnetic field is a vector 1   
 Extensiveness 13 Extensiveness 19 
Extensiveness of  hierarchical conceptual 
knowledge in EPE& EMI in CCS 

17 Extensiveness of  hierarchical conceptual 
knowledge in EPE& EMI in CPS 

28 

 

Hierarchical Conceptual Knowledge of the CPS class 

Five statements of hierarchical conceptual knowledge, three in EPE and two in EMI concepts,   

were also depicted from the students’ CM of the CPS class. The number of conceptual 

knowledge of the students in the two treatment classes was equal but their extensiveness were 

more in the CPS class (28) than in the CCS class (17) (see Table 5.15). 
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5.2.2.2 Category 7: Relational Conceptual Knowledge 

Relational Conceptual Knowledge of the CCS class 

There were in total 14 descriptions that showed relational conceptual knowledge of the students 

in the CCS class. Among these, nine of them were in the concepts of EPE while six of them were 

in the concepts of EMI (see Table 5.16). 

Table 5. 16: Relational conceptual knowledge of CCS and CPS classes in the concepts of EPE and EMI 

 Relational Conceptual Knowledge of 
Students in CCS class 

freq Relational Conceptual Knowledge of 
Students in CPS class 

freq 

EPE  1. Potential difference can be related to 
energy (electric potential energy & 
kinetic energy).  

1 1. Electric field relates to electric 
potential.  

3 

2. Electric field causes electric force on a 
charge. 

1 2. Potential difference is proportional 
to electric potential energy 

2 

3. Kinetic energy can be transformed in to 
electric potential energy. 

2 3. Kinetic energy is proportional to 
potential difference 

2 

4. Electric field gives electric potential 
energy to a charge. 

1 4. Electric potential energy is equal to 
potential difference times charge, 
i.e.  

4 

5. Electric charge produces electric field 7 5. Electric charge results electric field 2 
6. Electric potential is directly proportional 

to charge and inversely to the distance 
2 6. Electric charge can generate kinetic 

energy 
1 

7. Potential difference can put charge in to 
motion that gives it kinetic energy 

2 7. Electric charge can generate electric 
potential energy 

1 

8. Potential difference can be related to 
work done on a charge  

1 8. Electric potential energy of a charge 
can be changed to kinetic energy 

3 

9. Potential difference is zero on 
equiptential lines.  

2 9. Potential difference is the difference 
between potentials of two 
equipotential lines, i.e., Vb- Va 

3 

   10. Electric potential is expressed in 
terms of charge and distance, i.e., 
V=kq/r. 

3 

  11. Electric charges cause electric force 1 
  12. Electric flux is proportional to 

Electric field. 
1 

Extensiveness 19 Extensiveness 26 
EMI 1. Induced emf produces induced current 6 1. Magnetic flux is proportional to the 

product of magnetic field and area 
10 

2. Magnetic flux is related to Faraday’s law 
according to  

4 2. Induced emf is proportional to 
induced current 

5 

3. Magnetic field causes magnetic flux. 3 3. Magnetic force on a charge is due to 
its motion.  

1 

4. Magnetic flux depends on magnetic field 
and area 

2   
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5. Magnetic field is produced by a moving 
charge and a magnet. 

1   

 Extensiveness 16 Extensiveness 16 
Extensiveness of  relational conceptual knowledge 
in EPE and EMI in CCS 

35 Extensiveness of  relational conceptual 
knowledge in EPE and EMI in CPS 

42                                                

 

Relational Conceptual Knowledge of the CPS class 

There were 15 descriptions that showed relational conceptual knowledge of the students in the 

CPS class. Among these, 12 of them were in the concepts of EPE while three of them were in the 

concepts of EMI (see Table 5.16). As shown in the table, the extensiveness of the students’ 

relational conceptual knowledge was found higher in the CPS class (42) than in the CCS class 

(35). 

5.2.2.3 Category 8: Scientific Model 

Scientific model is described as a “correct scientific mental model” (Chi et al., 1994; Vosniadou 

& Brewer, 1994) that may represent changes and generates predictions and outcomes, such as 

prediction of the direction of electric field of a given source (see Section 2.3.3).  Accordingly, 

scientific model was one of the categories only identified after the intervention.  

Scientific Model in the CCS class 

There was only one scientific model identified which indicated a student understanding of 

magnetic field representation. That is, magnetic field lines show the direction of a magnetic field.  

Table 5. 17: Students’ scientific model in the concepts of EPE and EMI with extensiveness of the categories 

 Scientific model of Students in 
CCS class 

freq Scientific model of Students in CPS class  freq 

EPE    1. Electric field is represented by electric field 
lines  

1 

  2. Electric potential is represented by 
equipotential lines.  

4 

  3. An electric potential is constant  on an 
equipotential line 

1 

  4. Kinetic energy of a charge is constant in an 
equipotential line 

1 

  5. Electric potential lines are field lines 1 
  6. Electric potential lines are perpendicular to 

electric field at a point  
1 

   Extensiveness 9 
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EMI Magnetic field lines show the 
direction of magnetic field 

1 Magnetic field is represented by magnetic field 
lines  

9 

 Extensiveness 1 Extensiveness 9 
Extensiveness of  scientific model in 
EPE& EMI in CCS 

1 Extensiveness of  scientific model in EPE and 
EMI in CPS 

18 

 

Scientific Model in the CPS class 

In the CPS class, seven students’ scientific models were depicted in their CM representation of 

the concepts. Six scientific models were found in the concepts of EPE while only one was 

obtained in the concepts of EMI. The extensiveness of the scientific models depicted was found 

significantly more in the CPS class (18) than in the CCS class, which was only one.  

5.2.3 Post Intervention Distribution of Students’ Conceptions from their Concept Maps  

Table 5.18 illustrates the distribution of the students’ conceptions in terms of the number of 

conceptions and extensiveness of the diagnosed categories in both treatment classes.  

Table 5. 18: Distribution and extensiveness of the categories of conceptions in the concepts of EPE and EMI  

Category Conceptual 
area 

CCS class CPS class 
No conceptions extensiveness No conceptions extensiveness 

A
lte

rn
at

iv
e 

co
nc

ep
tio

ns
 

Naïve physics EPE 6 6 5 7 
EMI 7 12 10 23 
EPE & EMI 13 18 15 30 

Lateral ACs EPE 10 13 6 13 
EMI 5 8 5 9 
EPE & EMI 15 21 11 22 

Ontological 
ACs 

EPE 6 6 3 4 
EMI - - - - 
EPE & EMI 6 6 3 4 

P-primes EPE 4 4 3 3 
EMI 4 4 2 2 
EPE & EMI 8 8 5 5 

Mixed 
conceptions 

EPE 1 1 1 1 
EMI 1 1 - - 
EPE & EMI 2 2 1 1 

Total EPE 27  30  18  28  
EMI 17  25  17  34  
EPE & EMI 44(69%) 55(51%) 35(56%) 62(41%) 

C
on

ce
pt

ua
l 

kn
ow

le
dg

e 

Hierarchical EPE 2 4 3 9 
EMI 3 13 2 19 
EPE & EMI 5 17 5 28 

Relational EPE 9 19 12 26 
EMI 5 16 3 16 
EPE & EMI 14 35 15 42 
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Scientific 
model 

EPE - - 6 9 
EMI 1 1 1 9 
EPE & EMI 1 1 7 18 

Total  EPE 11 (29%) 23 (43%) 21 (54%) 44 (61%) 
EMI 9 (35%) 30 (55%) 6 (26%) 44 (56%) 
EPE & EMI 20(31%) 53(49%) 27(44%) 88(59%) 

Total EPE 38 53 39 72 
EMI 26 55 23 78 
EPE & EMI 64 108 62 150 

 

Distribution of Conceptions and Extensiveness of the Categories in the CCS class 

In the CCS class, 64 students’ conceptions were described with the corresponding extensiveness 

of 108. From these conceptions, 38 were in the concepts of EPE with extensiveness of 53 while 

26 were in EMI concepts with extensiveness of 55. Overall, in both EPE and EMI concepts, 69% 

of the students’ conceptions were alternative conceptions, while 31% belonged to conceptual 

knowledge. Correspondingly, percentage extensiveness of the alternative conceptions and the 

conceptual knowledge were, respectively, 51%, and 49%.   These results showed that the post 

intervention extensiveness of students’ alternative conceptions and their conceptual knowledge 

were comparable in the CCS class. 

Distribution of Conceptions and Extensiveness of the Categories in the CPS class 

There were 62 students’ conceptions described with corresponding extensiveness of 150 in the 

CPS Class. From these conceptions, 39 were in the concepts of EPE with extensiveness of 72, 

while 23 were in EMI concepts with extensiveness of 78. Overall, in both the EPE and EMI 

concepts, 56% were the number of the students’ alternative conceptions while 44% were that of 

their conceptual knowledge. Correspondingly, percentage extensiveness of the alternative 

conceptions and the conceptual knowledge were, respectively, 41%, and 59%. Thus, these results 

showed that the post intervention extensiveness was less for students’ alternative conceptions 

than for their conceptual knowledge. In other words, in the post intervention CM formation of 

the CPS class, their conceptual knowledge was more extensive than their alternative conceptions.  
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Comparison of Alternative Conceptions and Conceptual Knowledge of the CCS and CPS 

Classes 

In both the CCS and CPS classes, the percentages of the numbers of the alternative conceptions 

in the categories were greater than the percentages of their corresponding extensiveness while 

the percentages of the numbers of the conceptual knowledge in the categories were less than the 

percentage of their corresponding extensiveness (see Table 4.18). These results showed that after 

intervention the tendency or inclination of the students’ conceptions was towards their 

conceptual knowledge. 

 As illustrated in Table 5.18, in the CCS class, the percentages of number of alternative 

conceptions and corresponding extensiveness were, respectively, 69% and 51%; while in the 

CPS class, the percentages of number of alternative conceptions and corresponding 

extensiveness were, respectively, 56% and 41%.  These results showed that the students’ 

alternative conceptions after intervention had more number and extensiveness in the CCS class 

than in the CPS class. 

Alternatively, as illustrated in Table 5.18, in the CCS class, the percentages of number of 

conceptual knowledge and corresponding extensiveness were, respectively, 31% and 49%; while 

in the CPS class, the percentages of number of alternative conceptions and corresponding 

extensiveness were, respectively, 44% and 59%.  These results showed that the students’ 

conceptual knowledge after intervention had more number and extensiveness in the CPS class 

than in the CCS class. 

PART II: QUANTITATIVE RESULTS  

In this part, the results of the cognitive perturbation strategy using simulations (CPS) and 

cognitive conflict strategy using simulations (CCS), used to support the students learning in the 

two treatment classes, the CPS class and the CCS class, are presented and compared, 

respectively. The results obtained in chapter four were used as baseline in this chapter to 

compare the students’ conceptual change after the intervention. In short, this part was to answer 

the third research question: How significant is conceptual change through cognitive perturbation 
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using simulation (CPS) as compared to cognitive conflict using simulation (CCS) in the 

conceptual areas of electricity and magnetism? 

In this section, quantitative data was collected after the interventions with the modified DEEM 

(see Section 3.7.2.1) and concept maps (see Section 3.7.2.3) were analyzed, presented and 

compared with the pre intervention results.  In addition, the students’ responses in the CCS and 

CPS classes were categorized into model states using the quantitative data of the DEEM test (see 

Section 3.7.2.1). This categorization of the students responses on the DEEM test helped to 

compare the students’ level of conceptual knowledge in the CCS and CPS classes after the 

interventions.     

5.3 Post Intervention Results of DEEM Data 
5.3.1 Students’ Scores Levels 

The students’ response states to the modified DEEM post test is presented in Table 5.19. The 

students’ scores and concentration factors with their corresponding levels for the two treatment 

classes were analyzed. The scores and concentration factors were, respectively, analyzed using 

equations 1 and 2 in Section 3.7.2.1. The classification of the students’ response states into three 

levels was based on the categorization scheme discussed in section 3.7.2 and presented in Table 

3.2. 

Table 5. 19: Post intervention students’ scores and concentration factors of the two treatment classes 
Item 

No 
CCS Class CPS Class 

S Cf  level S Cf  
level 

1 0.26 0.18 LL 0.40 0.19 ML 
2 0.05 0.55 LH 0.10 0.08 LL 
3 0.63 0.44 MM 0.60 0.36 MM 
4 0.53 0.27 MM 0.50 0.37 MM 
5 0.32 0.16 LL 0.50 0.32 MM 
6 0.37 0.21 LM 0.35 0.07 LL 
7 0.26 0.28 LM 0.65 0.47 MM 
8 0.32 0.13 LL 0.20 0.08 LL 
9 0.58 0.33 MM 0.40 0.15 ML 

10 0.26 0.18 LL 0.30 0.09 LL 
11 0.05 0.22 LM 0.40 0.12 ML 
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12 0.00 0.14 LL 0.20 0.16 LL 
13 0.16 0.11 LL 0.60 0.38 MM 
14 0.58 0.36 MM 0.40 0.15 ML 
15 0.42 0.15 ML 0.35 0.07 LL 
16 0.32 0.07 LL 0.45 0.21 MM 
17 0.74 0.56 HH 0.80 0.67 HH 
18 0.58 0.37 MM 0.55 0.33 MM 
19 0.21 0.12 LL 0.55 0.28 MM 
20 0.37 0.13 LL 0.35 0.11 LL 
21 0.63 0.41 MM 0.45 0.22 MM 
22 0.05 0.15 LL 0.45 0.17 ML 
23 0.32 0.15 LL 0.40 0.22 MM 
24 0.37 0.24 LM 0.30 0.09 LL 
25 0.21 0.08 LL 0.30 0.14 LL 
26 0.37 0.10 LL 0.40 0.12 ML 
27 0.11 0.24 LM 0.15 0.05 LL 
28 0.11 0.13 LL 0.35 0.14 LL 
29 0.42 0.18 ML 0.40 0.19 ML 
30 0.05 0.16 LL 0.25 0.06 LL 

 

Students’ scores levels were categorized separately for the two treatment classes (see Table 5.20) 

in which 70% and 40% of the students’ responses in the CCS and CPS classes were, 

respectively, found in the low score level.  Also, 26.7% and 56.7% of the students’ responses in 

the CCS class and CPS class were, respectively, found in the medium score level.  These results 

showed that the CPS strategy was better than the CCS strategy in transforming the students’ 

responses states from low to medium score levels.  However, the two strategies did not show 

difference in shifting the students’ response level from medium to high because the high score 

level of the two classes was the same, 3.3% each.  This was because the students’ initial (pre 

intervention) response states were dominantly (90%) found in the low level (see Table 4.29 in 

section 4.3.2). Accordingly, the students lacked cognitive resources (necessary background in 

conceptual knowledge) that made them unable to reach to the high response level. 

Table 5. 20: Students’ Scores levels of the CCS and CPS classes 

Levels CCS Class Responses CPS Class Responses 
Low 21 (70%) 12(40%) 
Medium 8 (26.7%) 17 (56.7%) 
High 1(3.3%) 1(3.3%) 
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5.3.2 Model Categorization of the Students’ Responses 

The post intervention responses of the students in the CPS and CCS classes to the modified 

DEEM post test were analyzed, categorized and presented. These were done by combining the 

students’ response concentration scores with their response concentration factors (see Table 

5.19). Three-levels coding of students’ response states were used for each conceptual multiple-

choice question of the modified DEEM (see Table 3.9).  Furthermore, the possible students’ 

model states categorization (see Table 3.10) was used to combine concentration scores with 

concentration factors.  

 Table 5. 21: Categories of the CCS and CPS students’ responses  

Model States Explanation CCS Class CPS Class 
One model state          
(Pure state) 

HH One correct model 1(3.3%) 1(3.3%) 
LH One dominant incorrect model 1 (3.3%) - 

 

Two models state 

LM Two possible incorrect models 5 (16.7%) - 
MM Two popular models 6 (20%) 10(33.3%) 
ML Two non popular models 2 (6.7%) 7 (23.3%) 

Null model state LL Near random situation 15 (50%) 12 (40%)  
 

As shown in Table 5.21, 50% and 40% of students’ responses in the CCS and CPS classes were, 

respectively, found in the null model state (random response situation) which again showed that 

the CPS was a better approach than the CCS in changing the students’ response states from low 

null model state to medium response states. 

5.3.3 Effectiveness of Cognitive Perturbation using Simulations 

The scores of the two treatment groups, the CCS and CPS classes, were compared by using one 

way analysis of covariance (ANCOVA). This analysis was done twice on two different 

quantitative scores, the DEEM and CM scores, that were meant for comparison of the results.  

5.3.3.1 Analysis of Covariance on Diagnostic Exam of Electricity and Magnetism the 

Students’ Scores  

A one way between groups ANCOVA on the modified DEEM post-test scores, with pre-test 

scores as covariate, was used to analyze if there was any significant difference between the 

results of the two treatments. The students’ pre and post scores on the modified DEEM were 
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shown in Table 5.22. Initially, 45 students wrote the DEEM pre test; while 40 students wrote the 

post test and 39 students participated in both pre and post tests.  

Table 5. 22: Pre and post intervention scores of the students in the CCS and CPS classes 

Code Pre 
DEEM 
Score 

Post 
DEEM 
Score  

Class 

ST01 16.70 33.33 CPS      
ST02 23.30  - CPS      
ST03 26.70 50.00 CPS      
ST04 26.70 36.67 CPS      
ST05 20.00 - CPS      
ST06 20.00 40.00 CPS      
ST07 26.70 26.67 CPS      
ST08 46.70 50.00 CPS      
ST09 30.00 63.33 CPS      
ST10 10.00 43.33 CPS      
ST11 33.30 50.00 CPS      
ST12 10.00 33.33 CPS      
ST13 20.00 36.67 CPS      
ST14 33.30 30.00 CPS      
ST15 26.70 43.33 CPS      
ST16 26.70 36.67 CPS      
ST17 20.00 30.00 CPS      
ST18 30.00 40.00 CPS      
ST19 23.30 46.67 CPS      
ST20 16.70  - CPS      
ST21 33.30 23.33 CPS      
ST22 30.00 30.00 CPS      
ST23 16.70 30.00 CPS      
ST24 26.70 33.33 CCS      
ST25 20.00 43.30 CCS      
ST26 16.70  - CCS      
ST27 23.30  - CCS      
ST28 26.70 23.30 CCS      
ST29 13.30  - CCS      
ST30 26.70 56.70 CCS      
ST31 - 40.00 CCS      
ST32 26.70 33.30 CCS      
ST33 30.00 33.30 CCS      
ST34 16.70 43.30 CCS      
ST35 26.70 16.70 CCS      
ST36 26.70 13.30 CCS      
ST37 30.00 36.70 CCS      
ST38 30.00 33.30 CCS      
ST39 20.00 20.00 CCS      
ST40 36.70 33.30 CCS      
ST41 13.30 30.00 CCS      
ST42 30.00 33.30 CCS      
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ST43 26.70 40.00 CCS      
ST44 23.30 33.30 CCS      
ST45 36.70 20.00 CCS      
ST46 40.00 23.30 CCS      

The outputs from ANCOVA were assessed by taking the following three conditions into account 

namely descriptive statistics, measuring the reliability of the covariate and the Levene’s test of 

equality of error variances: 

First, the descriptive statistics of the students’ scores were analyzed and presented (see Table 

23).  

Table 5. 23: Descriptive statistics of students’ score on the DEEM test 
 
         Dependent Variable: Post DEEM test score  

CPS and CCS classes Mean Std. Deviation N 
CCS 31.56 10.51 19 
CPS 38.67 9.88 20 
Total 35.21 10.68 39 

In relation to the quasi experimental design of this study, the main assumptions for using one-

way ANCOVA were also checked.  The first condition fulfilled for using ANCOVA was 

measuring the covariate prior to the intervention or experimental manipulation (Pallant, 2007). 

This was done to reduce interaction effects between the covariate (pre test score) and the 

dependent variable (post test score).   

The second condition fulfilled before running ANCOVA was measuring the reliability of the 

covariate.  Accordingly, the reliability of the DEEM pre test was checked using the Kuder 

Richardson-21 estimation (KR-21= 0. 86), which was an acceptable value for both individual 

and group testing (see Section 3.6.1). 

The third condition needed prior to running ANCOVA was checking the Levene’s test of 

equality of error variances (Pallant, 2007). This condition was checked which showed that the 

assumption of equality of variance was not violated because the significance value was 0.978 

which was greater than 0.05 (see Table 5.24). In other words, homogeneity of error variances 

was not violated because the variability of scores for each of the groups was equal. 
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Table 5. 24: Levene's Test of Equality of Error Variances across groups 
 

Dependent Variable: Post DEEM test score 
F df1 df2 Sig. 

.001 1 37 0.98 
 

Hence, a one-way between groups ANCOVA was conducted to compare the effectiveness of two 

different interventions designed to change students’ alternative conceptions in the concepts of 

EPE and EMI.  The independent variable was the type of intervention (CCS, CPS) and the 

dependent variable was students’ scores on post DEEM test. The students’ scores on pre DEEM 

test was used as the covariate in this analysis. After adjusting for the pre intervention scores 

using ANCOVA, there was a significant difference between the two intervention groups on the 

post test scores on the DEEM test, (1, 36) = 4.66, p=0.04 (see Table 5. 25). In other words, in 

changing the students’ alternative conceptions to the scientific conceptions the CPS classes was 

statistically more significant than the CCS classes. 

Table 5. 25: Between- Subjects Effects: Tests between the CCS and CPS Effects 

Dependent Variable: Post DEEM test score  
Source Type III 

Sum of 
Squares 

df Mean Square F Sig. Partial Eta 
Squared 

Corrected Model 496.78(a) 2 248.39 2.33 0.11 0.12 
Intercept 3435.25 1 3435.25 32.25 0.00 0.47 
Pre DEEM 5.36 1 5.36 0.05 0.82 0.00 
Class 496.75 1 496.75 4.66 0.04 0.12 
Error 3834.89 36 106.53       
Total 52672.53 39         
Corrected Total 4331.66 38         

 

5.3.3.2 Analysis of Covariance on Students’ Concept Maps Scores 

A one-way between groups ANCOVA on the CM post-test scores, with CM pre-test scores as 

covariate, was used to analyze if there was any significant difference between the treatments. 

The students’ CM pre and post scores were shown in Table 5.26. In this case, 34 students 

participated in both pre and post tests.  
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Table 5. 26: Students pre and post CM scores 

Code Rater1 Rater2 average Rater1 Rater2 average Class 
100% 100% 100% 100% 100% 100% Class 

CPS1 12.5 18.75 15.63 25.00 25.00 25.00 CPS 
 CPS2 6.25 12.5 9.38 25.00 31.25 28.13 CPS 
CPS3 6.25 12.5 9.38 18.75 12.50 15.63 CPS 
CPS4 6.25 6.25 6.25 31.25 31.25 31.25 CPS 
CPS5 12.5 6.25 9.38 37.50 25.00 31.25 CPS 
CPS6 6.25 6.25 6.25 31.25 18.75 25.00 CPS 
CPS7 12.5 6.25 9.38 37.50 31.25 34.38 CPS 
CPS8 12.5 12.5 12.50 37.50 37.50 37.50 CPS 
CPS9 12.5 12.5 12.50 18.75 25.00 21.88 CPS 
CPS13 6.25 0 3.13 12.50 18.75 15.63 CPS 
CPS15 31.25 37.5 34.38 56.25 50.00 53.13 CPS 
CPS16 6.25 18.75 12.50 18.75 18.75 18.75 CPS 
CPS17 6.25 18.75 12.50 12.50 18.75 15.63 CPS 
CPS18 6.25 6.25 6.25 18.75 25.00 21.88 CPS 
CPS19 12.5 6.25 9.38 43.75 37.50 40.63 CPS 
CPS20 6.25 0 3.13 12.50 25.00 18.75 CPS 
CPS21 6.25 6.25 6.25 18.75 31.25 25.00 CPS 
CPS23 0 6.25 3.13 18.75 18.75 18.75 CPS 
CCS28 6.25 0 3.13 18.75 25.00 21.88 CCS 
CCS30 12.5 6.25 9.38 12.50 12.50 12.50 CCS 
CCS32 18.75 18.75 18.75 6.25 12.50 9.38 CCS 
CCS33 18.75 6.25 12.50 12.50 25.00 18.75 CCS 
CCS34 25 25 25.00 31.25 25.00 28.13 CCS 
CCS35 6.25 0 3.13 31.25 25.00 28.13 CCS 
CCS36 6.25 12.5 9.38 6.25 25.00 15.63 CCS 
CCS38 18.75 25 21.88 25.00 18.75 21.88 CCS 
CCS39 6.25 0 3.13 12.50 12.50 12.50 CCS 
CCS40 0 6.25 3.13 18.75 12.50 15.63 CCS 
CCS41 18.75 12.5 15.63 37.50 37.50 37.50 CCS 
CCS42 18.75 12.5 15.63 18.75 18.75 18.75 CCS 
CCS43 6.25 6.25 6.25 12.50 18.75 15.63 CCS 
CCS44 25 25 25.00 31.25 37.50 34.38 CCS 
CCS45 18.75 12.5 15.63 25.00 12.50 18.75 CCS 
CCS46 18.75 12.5 15.63 12.50 18.75 15.63 CCS 
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Similar to the previous analysis in section 5.3.3.1, the conditions which helped in interpreting the 

output from ANCOVA were checked. First, the descriptive statistics of the students’ CM scores 

were analyzed and presented (see Table 5. 27).  

Table 5. 27: Descriptive statistics of students’ scores on CM 
 
      Dependent Variable: post CM score 

Class Mean Std. Deviation N 
CC 20.32 7.99 16 
CP 26.57 10.07 18 
Total 23.62 9.55 34 

Then, the main assumptions for using one-way ANCOVA were also verified.  The first condition 

fulfilled for using ANCOVA was measuring the covariate prior to the intervention or 

experimental manipulation (Pallant, 2007). This was done to reduce interaction effects between 

the covariate (pre test score) and the dependent variable (post test score).   

The second condition to confirm before running ANCOVA was measuring the reliability of the 

covariate.  Accordingly, a reasonable result of inter-rater reliability (0.71) of the pre CM score 

was estimated (see Section 3.6.3). 

The third condition was the Levene’s test of equality of error variances which showed that the 

assumption of equality of variance was not violated because the significance value was 0.543 

which was greater than 0.05 (see Table 5. 28). In other words, homogeneity of error variances 

was not violated because the variability of scores for each of the groups was equal. 

Table 5. 28: Levene's Test of Equality of Error Variances across groups 

Dependent Variable: post CM score  
F df1 df2 Sig. 

0.38 1 32 0.54 

Hence, a one-way between groups ANCOVA was conducted to compare the effectiveness of the 

two different interventions designed to change students’ alternative conceptions in the concepts 

of EPE and EMI.  The independent variable was the type of intervention (CCS, CPS) and the 

dependent variable was the students’ CM post scores. The students’ scores on their pre CM was 

used as the covariate in this analysis. After adjusting for the pre intervention scores using 

ANCOVA, there was significant difference between the two intervention groups on the CM post 
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intervention scores, (1, 31) = 8.33, p=0.007 (see Table 5. 29). In other words, in changing the 

alternative conceptions of the students, the CPS class was statistically more significant than the 

CCS classes. 

Table 5. 29: Between- Subjects Effects: Tests between the CCS and CPS Effects 
 

Dependent Variable: post CM score 
Source Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial Eta 
Squared 

Corrected Model 1075.51(a) 2 537.76 8.61 .001 0.36 
Intercept 2456.33 1 2456.33 39.33 .000 0.56 
Pre 744.69 1 744.69 11.92 .002 0.28 
class 520.35 1 520.35 8.33 .007 0.21 
Error 1936.08 31 62.45       
Total 21986.95 34         
Corrected Total 3011.59 33         

 

5.3.3.3 Average Normalized Gain  

Average normalized gain (Hake, 1998) (ranging from 0 to 1) (see Section 3.7.2.4) from pre to 

post scores in the modified DEEM was analyzed to characterize and compare students’ 

conceptual change of both treatment classes.  

Table 5. 30: Average normalized gain 
 CCS Class CPS Class 

DEEM Score <g>=0.05 <g>=0.17 
CM Score <g>=0.08 <g>=0.18 

The average normalized gain of scores was found greater in the CPS class than in the CCS class 

in both the DEEM test and the CM data (see Table 5.30). This showed that the CPS approach 

was more effective than the CCS to change the students’ alternative conceptions. 

However, the normalized average gains of both classes were less than 0.3, which was found in 

the low level according to physics education researchers (Hake, 1998; Coletta, Phillips & 

Steinert, 2007). The details of this categorization were discussed in section 3.7.2.4.  This means 

that though the CPS approach was statistically effective in comparison to the CCS there was no 

significant change observed in students’ conceptual knowledge. The average post test scores in 

both classes were less than 40% which was found in the low score level. The possible reason for 
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this low average normalized gain was that the student conceptual knowledge level was low 

which limited their interactive engagement in the conceptual learning.  

5.4 Triangulation of the Post Intervention Results 

Similar to triangulation of the pre intervention results (see Section 4.5) which were done to 

strengthen the validity and reliability of the results, , four types of post intervention results were 

presented and triangulated based on the data collected with the FGD, CM and modified DEEM. 

These were the qualitative results of data collected with the FGD, the qualitative and quantitative 

results of data collected with the CM and the quantitative results of data collected with the 

DEEM test. To this end, the four post intervention results were triangulated in three ways. These 

were triangulation of: the qualitative results of FGD and CM data, the quantitative results of the 

modified DEEM test and CM data, and the qualitative and the quantitative results.  

5.4.1 Triangulation of Qualitative Results 

The qualitative analyses of data from the FGD and CM were mainly to answer the second 

research question about the categories of students’ conceptions after intervention with regards to 

the concepts of EPE and EMI.  Accordingly, as discussed in section 4.5.1, the results of the two 

qualitative data (the results of individual-based CM data and group-based FGD data) were 

triangulated at categorical level to ensure validity and reliability of the existed categories of the 

students’ conceptions after intervention.  

In the post intervention results from both FGD and CM data, in total, six categories of students’ 

alternative conceptions and three categories of conceptual knowledge existed in the concepts of 

EPE and EMI.  These six categories of the students’ alternative conceptions were naïve physics, 

lateral alternative conceptions, ontological alternative conceptions, P-Primes (Ohm’s P-Primes), 

mixed alternative conceptions and loose ideas. The three categories of conceptual knowledge 

were hierarchical conceptual knowledge, relational conceptual knowledge and scientific model. 

Among these categories of the students’ conceptions, four categories of alternative conceptions 

(naïve physics, lateral alternative conceptions, ontological alternative conceptions, mixed 

alternative conceptions) and two categories of conceptual knowledge (hierarchical and relational) 

were commonly developed from the two qualitative analyses (see Tables 5.31 & 5.32). The p-
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primes emerged as an inclusive category in the results of CM data while the Ohm’s p-primes as a 

category in the results of FGD data (see Tables 5.4 & 5.13). This means that the Ohm’s p-prim 

was considered as a subcategory in the CM data. In addition, the scientific model as a category 

of conceptual knowledge was developed only from the students CM data (see Table 5.17). Based 

on these results, it could be confirmed that the results from the two qualitative methods mostly 

complemented each other. 

Tables 5.31 and 5.32 illustrate triangulation of the qualitative results from the FGD and CM data 

in terms of number of students’ conceptions in the categories and extensiveness of the categories. 

In addition, these tables were used to compare the number of students’ conceptions and the 

extensiveness of the categories in both the CCS and CPS classes. 

Table 5. 31: Triangulation of categories of conceptions in terms of their distribution 

Category CCS Class CPS Class 

Distribution of students’ conceptions in EPE &EMI 

FGD CM FGD CM 
Alternative Conceptions 36(68%) 44(69%) 24(52%) 35(56%) 

Naïve physics 21 13 10 15 
Lateral  7 15 2 11 
Ontological  2 6 4 3 
P-primes - 8 - 5 
Ohm’s p-primes 3 - 2 - 
Mixed  2 2 6 1 
Loose ideas 1 - - - 
Conceptual Knowledge 17 (32%) 20(31%) 22(48%) 27(44%) 
Hierarchical  6 5 5 5 
Relational 11 14 17 15 
Scientific model - 1 - 7 

 

In the CCS class, the percentage distribution of alternative conceptions from the FGD and CM 

data were, respectively, 68% and 69%; while in the CPS class, the percentage distribution of 

alternative conceptions from the FGD and CM data were, respectively, 52% and 56% (see Table 

5.31). On the contrary, in the CCS class, the percentage distribution of the students conceptual 

knowledge from the FGD and CM data were, respectively, 32% and 31%; while in the CPS 

class, the percentage distribution of the students conceptual knowledge from the FGD and CM 

data were, respectively, 48% and 44% (see Table 5.31). These results showed that the CPS was a 

better approach than the CCS in reducing the number of alternative conceptions and increasing 
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the number of conceptual knowledge of the students. In other words, there was a shift in 

students’ conceptions from alternative conceptions to scientific conceptions which was higher in 

the CPS class than in the CCS class because the total number of conceptual knowledge in both 

the concepts of EPE and EMI were more in the CPS class than in the CCS class.  

In the CCS class, the percentage extensiveness of alternative conceptions in the categories from 

the FGD and CM data were, respectively, 62% and 51%; while in the CPS class, the percentage 

extensiveness of alternative conceptions from the FGD and CM data were, respectively, 46% and 

41% (see Table 5.32). In contrast, in the CCS class,  the percentage extensiveness of the students 

conceptual knowledge from the FGD and CM data were, respectively, 38% and 49%; while in 

the CPS class, the percentage extensiveness of the students conceptual knowledge from the FGD 

and CM data were, respectively, 54% and 49% (see Table 5.32). These results again showed that 

the CPS was a more appropriate approach than the CCS in reducing extensiveness of students’ 

alternative conceptions and increasing the extensiveness of conceptual knowledge of the 

students. 

Table 5. 32: Triangulation of categories of students’ conceptions in terms of their extensiveness 

Category CCS Class CPS Class 

Extensiveness of students’ conceptions in EPE &EMI 

FGD CM FGD CM 
Alternative conceptions 45 (62%) 55 (51%) 32 (46%) 61(41%) 

Naïve physics 27 18 13 30 
Lateral  10 21 2 22 
Ontological  2 6 4 4 
P-Primes - 8  5 
Ohm’s P-Primes 3  3 - 
Mixed  2 2 10 1 
Loose ideas 1 - - - 
Conceptual knowledge 27(38%) 53(49%) 38 (54%) 88 (59%) 
Hierarchical  9 17 8 28 
Relational 18 35 30 42 
Scientific model - 1 - 18 
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5.4.2 Triangulation of Quantitative Results 

After intervention, the triangulation of the quantitative results was also done using the results 

from ANCOVA and the average normalized gain on the two quantitative data sources for this 

study.  

An ANCOVA was separately conducted to compare the effectiveness of the CCS and CPS using 

the students’ scores on the DEEM test and CM data.  As a result, there was significant difference 

between the two intervention groups on the post test scores on the DEEM test, (1, 36) = 4.663, 

p=0.038 (see Table 5. 25) and similarly, on the CM test, (1, 31) = 8.332, p=0.007 (see Table 5. 

29). These results showed that in changing the alternative conceptions of the students towards 

scientific conceptions the CPS was statistically more significant than the CCS.  

In addition, the average normalized gains (see Table 5.30) from pre to post scores in the 

modified DEEM were, respectively, 0.05 and 0.17 for the CCS and CPS classes. Similarly, these 

values from pre to post scores in the CM were, respectively, 0.08 and 0.18 for the CCS and CPS 

classes. These results indicated that the average normalized gains from the two different 

quantitative data were comparable and were more in the CPS class than in the CCS class (see 

Table 5.30). This implied that the CPS strategy was more effective than the CCS strategy to 

change the students’ alternative conceptions.  

5.4.3 Triangulation of Qualitative and Quantitative Results 

In both effectiveness measures of quantitative analyses, it was shown that the CPS was 

statistically significant than the CCS in enhancing conceptual learning in the concepts of EPE 

and EMI (see Tables 5.25 & 5.29). Similarly, in both qualitative analyses of FGD and CM data, 

on the one hand, the percentage distribution of alternative conceptions and extensiveness of the 

categories of alternative conceptions were more in the CCS than in the CPS; on the other hand, 

the percentage distribution of the students conceptual knowledge and extensiveness of the 

categories of their conceptual knowledge were more in the CPS than in the CCS (see Table 5.31 

& 5.32). Hence, these qualitative and quantitative results were in agreement to each other which 

the triangulation enabled to clarify one form of the results (qualitative or quantitative) in terms of 

the other. 
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Moreover, as illustrated in Table 5.20, the categorization of quantitative students’ scores in the 

CCS and CPS classes indicated that 70% of the students’ responses in the CCS class and 40% of 

the students’ responses in the CPS class were found in the low score level.  In the medium score 

level, 26.7% of the students’ responses in the CCS class and 56.7% of the students’ responses in 

the CPS class were found (see Table 5.20).  These results were in agreement with the 

comparative qualitative results of the percentages of the number and extensiveness of conceptual 

knowledge categories in both treatment classes (see Tables 5.31 & 5.32). This means that the 

percentages of the number and extensiveness of the categories of the conceptual knowledge were 

more in the CPS class than in the CCS class. 

5.5 Discussion  

The categories of students’ conceptions existing in the pre intervention remained persist also in 

the post intervention but with different distribution and extensiveness of conceptions in the 

categories. In general, the number of alternative conceptions and extensiveness of categories of 

alternative conceptions became less in the post intervention than in the pre intervention results.  

However, in the post intervention results, significant difference was obtained between the two 

treatment classes’ distributions of alternative conceptions and conceptual knowledge. This means 

that the total number of alternative conceptions in the categories was found less while the total 

number of conceptual knowledge was found greater in the CPS class than in the CCS class. 

Similarly, the extensiveness of all alternative conceptions in the categories were found less in the 

CPS class than in the CCS class but the extensiveness of all conceptual knowledge categories 

were found greater in the CPS class than in the CCS. 

However, such exceeding pattern of the number and extensiveness of alternative conceptions in 

the CCS were not held true in all categories. Hence, the following were discussed based on 

summarized results given in Tables 5.31 & 5.32: 

 The number and extensiveness of naïve physics, lateral alternative conceptions and P-Primes 

(Ohm’s P-Primes) were less in the CPS class than in the CCS class;  

 The number and extensiveness of ontological alternative conceptions were slightly greater in 

the CPS class than in the CCS class;  
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 The mixed alternative conceptions in terms of their number and extensiveness were found 

greater in CPS class than in CCS class (see Table 5.5); 

 The extensiveness of students’ hierarchical conceptual knowledge was slightly greater in the 

CPS class than in the CCS class; 

 The relational conceptual knowledge was the category in which the two treatment classes 

showed a significant difference in terms of their number and extensiveness.  This means that 

the number and extensiveness of relational conceptual knowledge were more in the CPS 

class (17, 30) than in CCS class (11, 18); and 

 Scientific model was more identified in the CPS class than in the CCS class because the 

number and extensiveness of scientific model depicted was more in the CPS class (7, 18) 

than in the CCS class (1, 1) (see Tables 5.31 & 5.32). This showed that the CPS strategy was 

more effective than the CCS strategy to develop students’ knowledge of representing scalar 

and vector fields, such as representation of electric and magnetic fields and equipotentials 

with field lines in abstract concepts of electricity and magnetism.  

Therefore, based on the above discussed points, it could be confirmed that the CPS strategy was 

more effective than the CCS strategy in reducing the number and extensiveness of naïve physics, 

lateral alternative conceptions and P-Primes (Ohm’s P-Primes) and increasing the number and 

extensiveness of conceptual knowledge categories. In addition, the number and extensiveness of 

mixed alternative conceptions were also more in the CPS class than in the CCS class which was 

in agreement with the quantitative students’ responses state categorization (see Table 5.21). This 

means that the CPS approach was more effective than the CCS approach in changing the 

students’ alternative conceptions from a null model to two models conceptions. 

A one-way between groups ANCOVA was conducted to compare the effectiveness of the two 

different interventions designed to change students’ alternative conceptions in the concepts of 

EPE and EMI.  The students’ post intervention scores on the modified DEEM and concept maps 

were independently used to compare the effects of the intervention. As a result, there was 

statistically significant difference between the two intervention groups on the post test scores on 

the DEEM test, (1, 36) = 4.66, p=0.04 (see Table 5. 25) and on the CM test, (1, 31) = 8.33, 

p=0.007 (see Table 5. 29) which showed that the CPS was more effective than the CCS in 

changing the alternative conceptions of the students towards scientific conceptions.  



153 
 

In addition, the average normalized gain of scores was found greater in the CPS class than in the 

CCS class in both the DEEM test and the CM data (see Table 5.30). This also showed that the 

CPS approach was more effective than the CCS to change the students’ alternative conceptions. 

However, the normalized average gains of both classes were less than 0.3, which was found in 

the low level according to physics education researchers (Hake, 1998; Coletta, Phillips & 

Steinert, 2007). This means that though the CPS approach was statistically effective in relation to 

the CCS there was no significant conceptual knowledge gain attained by the students because the 

average post test scores in both classes were less than 40% which was found in the low score 

level. The possible reason for this low average normalized gain was that the students’ conceptual 

knowledge level in the concepts of EM was low which limited their interactive engagement in 

the learning of the concepts.  

This study was not intended to measure the intermediate conceptions which were the learning 

progression that students follow to attain a target conception developed during the process 

conceptual change. However, supplementary were annexed (Appendices H & I) to show readers 

the details of the learning progression of the students. Undoubtedly, this study relied on pre-post 

assessments to measure the effectiveness of the two conditions.   

Although the use of group work when five to six students sharing computers might have 

advantages for concepts learning, it was thought disadvantageous because it might limit hands-

on learning as all the group members could not run the simulation at a time. Besides, the short 

period of eight hours dedicated to the intervention of two broad conceptual areas of physics 

might have contributed to the low learning gain in conceptual knowledge. Moreover, as 

discussed in Section 1.8, most of the students assigned to study physics are those less scoring 

who lack interest to study physics. This also partly can explain their poor performance in the 

study tasks that their alternative conceptions were considerably more extensive than their 

conceptual knowledge. 

5.6 Summary of the Chapter 

This chapter presented post intervention results on categorization of students’ conceptions and 

effectiveness of the CPS in relation to the CCS to enhance conceptual change.  
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The group-based data from the FGD and the individual-based data from the CM were 

independently analyzed using the framework thematic analysis to categorize the students’ post 

intervention conceptions. Almost all the categories of students’ conceptions in the pre 

intervention persisted in the post intervention, but there were changes in the distribution and 

extensiveness of their conceptions in the categories. In addition, the percentage of occurrences of 

the students’ conceptions in both the CCS and CPS classes showed differences which were 

compared. This means, the number of alternative conceptions and extensiveness of categories of 

the alternative conceptions was lesser in the CPS class than in the CCS class while number of the 

students’ conceptual knowledge and their corresponding extensiveness were more in the CPS 

class than in the CCS class.  Also, the diversification of the students’ alternative conceptions was 

lesser in the CPS class than in the CCS class. These indicated that students’ conceptual 

knowledge were more consistent in the CPS class than in the CCS class.  

From the quantitative concentration analysis, it was found that the CPS was a better approach 

than the CCS in changing the students’ response states from low null model state to medium 

response states. In addition, the outputs from ANCOVA were assessed on post test DEEM and 

CM scores independently to compare the effectiveness of two different interventions, CCS and 

CPS, designed to change students’ alternative conceptions in the concepts of EPE and EMI. In 

both cases significant differences between the two intervention groups on the post test scores 

were obtained in favoring the CPS. Moreover, the average normalized gain of scores was found 

greater in the CPS class than in the CCS class in both quantitative scores which also showed that 

the CPS was more effective than the CCS to change the students’ alternative conceptions to 

scientific conceptions. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

This study was to investigate Ethiopian physics undergraduate students’ conceptual change in the 

concepts of electric potential and energy (EPE) and electromagnetic induction (EMI) by 

supporting their learning through Cognitive Perturbation using interactive physics simulations. 

The study encompassed two phases. The first phase was the categorization of the students’ 

conceptions in the concepts of EPE and EMI based on the students’ epistemological and 

ontological descriptions of the concepts. The second phase was studying the impact of cognitive 

perturbation through physics interactive simulations (CPS) in relation to cognitive conflict 

through physics interactive simulations (CCS).  

In relation to the problem investigated, the literature from students’ conceptions and conceptual 

change in electricity and magnetism (see Section 2.2 & 2.4.3), categories of students’ 

conceptions (see Section 2.3), the classical conceptual change model and its limitations(see 

Section 2.4.1), the role of cognitive conflict strategy in conceptual change (see Section 2.4.2), the 

role of computer interactive simulations in conceptual change (see Section 2.4.5), the need for 

cognitive perturbation strategy (see section 2.4.4)  and the role of concept maps in conceptual 

change (see section 2.4.6) were reviewed. The literature review helped the researcher to identify 

the problem and design the research questions.  

Accordingly, the research questions addressed in this study were: 

1. What are the categories of students’ conceptions in the concepts of electric potential and 

energy (EPE) and electromagnetic induction (EMI) before intervention? 

2. What are the categories of students’ conceptions in the concepts of electric potential and 

energy (EPE) and electromagnetic induction (EMI) after intervention? 

3. How significant is conceptual change through cognitive perturbation using simulations 

(CPS) as compared to cognitive conflict using simulations (CCS) in the concepts of 

electric potential and energy (EPE) and electromagnetic induction (EMI)? 
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The theoretical framework used for this study was the constructivist theory of learning (von 

Glaserfeld & Steffe, 1991; Driver, et al., 1994) which also helped the researcher in the design of 

the study. According to this theory, the students’ conceptions were viewed as their personal 

understanding of the concepts under investigation from their epistemological and ontological 

descriptions of concepts (Abell & Eichinger, 1998; Treagust & Duit, 2008).  

This study employed a quasi-experimental design and used concurrent mixed methods research 

to conduct an in depth investigation of the students’ conceptions and conceptual change in the 

selected concepts of electricity and magnetism.  A pragmatic approach (Doyle et al., 2009) was 

followed, which involved concurrent but separate collection and analysis of multiple types of 

data which were then triangulated for interpretation of the results. 

The research sample included 45 first year physics undergraduate students (aged between18 to 

23) who were registered for the course electricity and magnetism in the year 2011 at the Ambo 

University in Ethiopia.  The students were randomly assigned into two lab groups (group A and 

group B) by the Department of Physics (see Section 3.3). From these existing two lab groups for 

the course, control and experimental classes were randomly assigned into cognitive conflict 

using simulation (CCS) and cognitive perturbation using simulation (CPS), respectively.  The 

students in the research group were treated as autonomous whose decisions on whether or not to 

participate in research was respected and not dominated by the researcher (see Section 3.6). 

This study employed a number of different data collection instruments including conceptual 

tests, focus group discussions (FGD) and concept maps (CM). The tests were the CSEM 

(Conceptual Survey of Electricity and Magnetism) and a modified DEEM (Diagnostic Exam of 

Electricity and Magnetism) developed by Maloney et al. (2001) and Marx (1998), respectively. 

The CSEM was meant not to collect data for the research questions, but used to study the 

students’ prior conceptual knowledge level and form homogenous ability focus groups for 

discussions. The different data collection instruments (the modified DEEM, FGD and CM) 

assisted to obtain an in-depth and close understanding of students’ conceptions and the process 

of conceptual change in the concepts of EPE and EMI. These conceptual areas of electricity and 

magnetism were selected because they challenge students across different countries (Planinic, 

2006; Saglam & Millar, 2006) and their alternative conceptions have not been well studied 
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compared to classical mechanics and DC circuits. In addition, there are recommendations for the 

need to undertake in-depth studies by taking a few conceptual areas of EM using multi methods 

(Chabay & Sherwood, 2006; Ding, Chabay, Sheewood, & Beichner, 2006; Maloney et al., 2001; 

Planinic, 2006).  Experts’ consciences and statistical approximations were, respectively, used to 

check validity and reliability of the research instruments.  The reliability of the modified DEEM 

test and the students’ CM were approximated with the KR-21 and inter-rater reliability, 

respectively,  in which the results were found suitable for both individual and group tests.  

 A five stage framework analysis method (Rabiee, 2004; Ritchie & Spencer, 1994) which 

involved familiarization, identifying a thematic framework, coding, charting and interpretation 

was separately used for focus groups discussions and concept maps qualitative data analyses in 

both the pre and post intervention study. The specific reason for adapting this method was its 

characteristic feature that allows themes to develop both from the literature and from the 

discussion or depiction of the research participants (Rabiee, 2004). The framework analysis was 

used in each of the group-based data (data collected with the focus groups discussions) and 

individual-based data (data collected with the students’ concept maps) to categorize the students’ 

conceptions. 

Concentration analysis (Bao & Redish, 2001) was used to analyze the students’ response to the 

multiple-choice modified DEEM test and find patterns in the students’ alternative conceptions 

and conceptual knowledge in pre and post treatments. In this analysis, characterization and 

categorization of students’ responses were done in which the students’ response patterns were 

formed by combining both their responses concentration scores and concentration factors. 

Consequently, three-levels coding (Bao & Redish, 2001) were used to categorize students’ 

response states (see Table 3.2). 

The qualitative analyses of FGD and CM data were used to answer the first and the second 

research questions while quantitative analyses of data collected by the modified DEEM and 

students’ concept maps were used to answer the third research question.  In addition, the results 

of the quantitative analyses of both concept maps and the modified DEEM data were used to 

supplement the qualitative analyses. Moreover, the qualitative results helped to understand and 

explain the quantitative results.  
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Analysis of covariance was conducted on the data which were collected by the modified DEEM 

test and the students’ CM in order to compare the results. ANCOVA on the modified DEEM 

post-test scores, with pre-test scores as covariate, was used to analyze if there was any significant 

difference between the treatments.  Likewise, the difference between the averages of post CM 

scores of both treatment classes were analyzed using ANCOVA with pre CM scores as covariate 

to examine the effectiveness of the CPS to the CCS. In addition, average normalized gain <g> 

(Hake, 1998) of the two quantitative data (the modified DEEM and the CM) from pre to post 

scores were analyzed to characterize and compare students’ conceptual change of both treatment 

groups.  

The results of this study were presented in Chapters Four and Five, in which the pre and post 

intervention results were, respectively, analyzed and presented. The pre intervention findings 

were to answer the first research question while the post intervention findings were to answer the 

second and third research questions (see Sections 1.4 and 6.1).  Then, the study came up with the 

following major findings.  

1. The first research question investigated the categories of students’ conceptions in the electric 

potential and energy (EPE) and electromagnetic induction (EMI) conceptual areas before 

intervention.  From the analysis, six categories of alternative conceptions and two categories 

of conceptual knowledge were identified.  Among these categories of alternative 

conceptions, four were presupposed categories based on the literature review namely naive 

physics, lateral alternative conceptions, ontological alternative conceptions and Ohm’s p-

primes (P-Primes) while the other two that emerged were termed mixed conceptions and 

loose ideas.  In addition, the two categories of students’ conceptual knowledge were 

diagnosed as hierarchical and relational conceptual knowledge (see Section 2.3.2). Almost 

all the identified categories of the students’ conceptions in the analyses of both qualitative 

data were similar, except the emergence of the p-primes as an inclusive category in the 

results of the CM data and the Ohm’s p-primes as a category in the results of the FGD data. 

In the CM data results, the Ohm’s p-prime was considered as a subcategory (see Tables 4.34 

& 4.35). 

In the qualitative results of the pre intervention study, the extensiveness of the categories of 

alternative conceptions was greater than 80% while the extensiveness of categories of 
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conceptual knowledge was less than 20% (see Table 4.35). This means that the extensiveness 

of conceptual knowledge in both the focus groups discussions and concept maps showed that 

the students’ conceptual knowledge was low and they lacked in depth conceptual 

understanding of concepts in EPE and EMI.  

This categorization of students’ conceptions in the concepts of electricity and magnetism can 

contribute to the current literature because earlier studies in students’ conceptual change were 

mainly focused on the identification of alternative conceptions based on epistemological 

perspectives of students’ conceptions (McDermott & Redish, 1999; Soto-Lombana, Otero  & 

Sanjosé, 2005). This means that the results of this study are believed to promote the sole 

identification of alternative conceptions using epistemological perspective, which have been 

done for the last 30 years, towards categorization of conceptions in which inclusive 

epistemological and ontological perspectives of conceptions were used. This is the first major 

contribution of this study towards the theory of conceptual change. 

Although this study was not intended to settle the dispute between the coherence and 

fragmentation of alternative conceptions (Clark et al. 201; diSessa, et al., 2004; Elby 2010; 

Ioannides & Vosniadou, 2002), however, the diagnosed alternative conceptions are in favor 

of fragmentation over coherence perspectives because the diagnosed alternative conceptions 

are diversified, inconsistent within and across the categories and are less frequent and less 

extensive (see Sections 4.1.4, 4.2.4 & 4.5.3 and tables 4.15 & 4.28).  

Concentration analysis was conducted on the data of the DEEM test to categorize the 

students’ responses states (see Section 4.3.1) by using three-levels coding and categorization. 

Accordingly, the categorization indicated that the students’ response states were mainly 

found in the low non-modal random response state. The quantitative results were also 

compared using the average scores of the students in the modified DEEM test and their CM. 

In the DEEM test data, the average concentration score of the students was approximately 

0.26 (see Table 4.30).  According to Bao and Redish (2001), this score was found in the low 

score state (0.0 to 0.4) (see Table 3.9). In the data of the concepts maps, the students’ average 

score was only 11%, which was also low (see Table 4. 32). In addition, the students’ answers 

in their CM were more of simple proportional relations (simple relational conceptual 

knowledge) (see Section 4.4).  Moreover, the students’ answers in their CM lacked cross-

links and examples that were believed to measure their in-depth conceptual understanding 
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(see Section 2.4.6). Therefore, the pre intervention quantitative results of the modified 

DEEM test and CM data indicated that the students’ conceptual knowledge in the concepts of 

EPE and EMI was low. These results are in agreement with the finding of Planinic (2006) 

which shows that the conceptual areas EMI and EPE are among the most difficult conceptual 

areas of electricity and magnetism. 

2. The second research question which was in the post intervention study was about 

categorization of students’ conceptions in the concepts of EPE and EMI after intervention 

(see Sections 1.4 and 6.1). In this post intervention analyses, similar to that of pre 

intervention, both the group-based data and individual-based data were analyzed separately 

using the framework thematic analysis (see Section 3.7.1). The categorization of students’ 

conceptions was presented with respect to the two treatment classes, the CCS and CPS 

classes. Accordingly, except the scientific model category which was identified extensively 

in the CPS class, almost all the categories of students’ conceptions which existed in the pre 

intervention study persisted also in the post intervention study (see Sections 5.1, 5.2 & 

5.2.2.3). However, after intervention, the percentage distributions of the students’ 

conceptions and their extensiveness in both the CCS and CPS classes showed differences.  

In the CCS class, the percentage distribution of alternative conceptions from the FGD and 

CM data were, respectively, 68% and 69%; while in the CPS class, the percentage 

distribution of alternative conceptions from the FGD and CM data were, respectively, 52% 

and 56% (see Table 5.31). On the contrary, in the CCS class, the percentage distribution of 

the students conceptual knowledge from the FGD and CM data were, respectively, 32% and 

31%; while in the CPS class, the percentage distribution of the students conceptual 

knowledge from the FGD and CM data were, respectively, 48% and 44% (see Table 5.31). 

These results showed that CPS is a better approach than CCS in reducing the number of 

alternative conceptions and in increasing the students’ conceptual knowledge. In other words, 

there was a change in students’ conceptions from alternative conceptions to conceptual 

knowledge which was higher in the CPS class than in the CCS class because the percentage 

distribution of conceptual knowledge in both the concepts of EPE and EMI were more in the 

CPS class than in the CCS class.  

Besides, in the CCS class, the percentage extensiveness of alternative conceptions in the 

categories from the FGD and CM data were, respectively, 62% and 51%; while in the CPS 
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class, the percentage extensiveness of alternative conceptions from the FGD and CM data 

were, respectively, 46% and 41% (see Table 5.32). In contrast, in the CCS class,  the 

percentage extensiveness of the students conceptual knowledge from the FGD and CM data 

were, respectively, 38% and 49%; while in the CPS class, the percentage extensiveness of the 

students conceptual knowledge from the FGD and CM data were, respectively, 54% and 59% 

(see Table 5.32). These results again showed that CPS is a more suitable approach than CCS 

in reducing the extensiveness of alternative conceptions and in increasing the extensiveness 

of conceptual knowledge of these students.  

The aforementioned two results are in line with the earlier studies (Limon, 2001; Zohar & 

Aharon-Kravetsky, 2005) about the cognitive conflict approaches’ hindrance effect on 

progress of students with low academic achievement (see Section 2.4.2).   In addition, studies 

(e.g. Chinn & Brewer, 1993) show that students’ responses to scientific conceptions are 

influenced by their prior knowledge.  That is, the students were having little or inconsistent 

conceptual knowledge in the concepts of EPE and EMI investigated in this study that the 

cognitive conflict had an insignificant effect in relation to the cognitive perturbation on 

students’ concepts learning. Moreover, Lee and Byun (2012) show that in cognitive conflict, 

the most common responses of students indicate superficial conceptual change. As discussed 

in Section 2.4.2, this is because of the inconsistency of students’ conceptions that are found 

at low levels and the wide cognitive gap that exists between their prior conception and 

scientific conception. As a result, the CCS becomes less effective than the CPS in these 

students’ conceptual change of the concepts in EPE and EMI.  

3. The third research question was about the effectiveness of the cognitive perturbation using 

simulation (CPS) and the cognitive conflict using simulation (CCS) to enhance students’ 

conceptual change in the concepts of EPE and EMI (see Sections 1.4 & 6.1).  

A one-way between groups ANCOVA was separately conducted to compare the 

effectiveness of the CCS and CPS using the students’ scores on the DEEM test and CM.  A 

significant difference between the two intervention groups on the post test scores on the 

DEEM test, (1, 36) = 4.66, p=0.04 (p < 0.05) (see Table 5. 25) and similarly, on the CM test, 

(1, 31) = 8.33, p=0.007(p < 0.05) (see Table 5. 29) was found. These results showed that the 

CPS was more effective than the CCS in changing the alternative conceptions of the students 

towards scientific conceptions. 
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In addition, the average normalized gains (see Table 5.30) from pre to post scores in the 

modified DEEM were, respectively, 0.05 and 0.17 for the CCS and CPS classes. Similarly, 

these values from pre to post scores in the CM were, respectively, 0.08 and 0.18 for the CCS 

and CPS classes. Although the CPS approach was statistically effective than the CCS 

approach, the students’ scores after intervention were low in both treatment groups because 

the average normalized gain was by far less than 0.3 (see Section 5.3.3.3).   

The students’ alternative conceptions were found to be inconsistent in the concepts of EPE 

and EMI within and across the existing categories of alternative conceptions (see Tables 4.14 

& 4.15 and 4.27 & 4.28).  In addition, the comparison of the concentration factor and 

concentration deviation of the students’ responses on the DEEM pre test items was 

conducted using paired samples t-test which showed insignificant statistical difference 

between the two concentrations of students’ responses, that is, t (29) = 1.99, p > 0.05 (see 

Table 4.32).  Moreover, both the concentration factor and the concentration deviation of the 

students responses to the DEEM test were found in the low null model state (see Table 4.30), 

which also indicated the inconsistency of the students responses. Therefore, the pre 

intervention quantitative and qualitative results confirmed that the students’ conceptions were 

inconsistent in the concepts of EPE and EMI.  

The average concentration score of the students on the DEEM pre test was approximately 

0.26 which was found in the low score state (see Tables 3.9 & 4.31).  In addition, the 

students’ answers in their CM lacked cross-links and examples that were believed to measure 

their in-depth conceptual understanding (see Section 4.4). Hence, these results indicated that 

the students’ conceptual knowledge in the concepts of EPE and EMI was low.   

Therefore, based on the above discussed results, this study shows that for students with low 

conceptual knowledge and inconsistent alternative conceptions, like the concepts of EPE and 

EMI, the CPS is more effective than the CCS to progress their conceptual learning. 

Earlier studies on students’ conceptual change compared constructivist learning strategies 

with non constructivist learning strategies (traditional model of learning) (Baser, 2006; Baser 

& Geban, 2007;  Rosen & Salomon, 2007) but this study compared the CCS and CPS, in 

which both were based on constructivist theory of learning (see Section 2.4.4). Although, the 

students in the CCS and CPS were treated differently (see Section 3.8.2 & 3.8.3 and 

Appendices H & I) the concepts thought and the simulations used were the same in both 
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classes. In the CCS class, students’ conceptions were demarcated as either alternative 

conceptions or scientific conceptions, but in the CPS class, intermediate conceptions which 

were the learning progression that students follow to attain a target conception during the 

learning process were considered in order to support them in changing of their alternative 

conceptions (Maloney & Siegler, 1993). This helped to identify the fact that students in the 

CCS class failed to make sense of the difference between alternative and scientific 

conceptions in the complex concepts of EPE and EMI and maintained their alternative 

conceptions after instruction. In addition, classroom social contexts were considered to 

support the students in the CPS class (see Appendix I).  Therefore, conceptual change that 

involves evolutionary (gradually step by step) process of learning is found to be more 

appropriate than conceptual change that involves revolutionary (radical) process of learning 

for students with low conceptual knowledge and inconsistent alternative conceptions. This is 

another main contribution of this study to the theory of conceptual change in addition to the 

categorization of alternative conceptions. 

The computer interactive physics simulations were intended to engage the students in both 

CCS and CPS classes into interactions and help them to visualize and understand the abstract 

concepts and phenomena in EM concepts. However, their low level conceptual knowledge 

impeded their learning and not to show significantly progressed conceptual change because 

their average normalized gains were low (less than 0.3 in both classes) (see Section 5.3.3.3).  

This showed that prior conceptual knowledge influences students’ interactive engagement in 

conceptual learning. 

6.2 Conclusions 

Based on the findings of this study which were presented and discussed in Chapters 4 & 5 and 

then summarized in Section 6.1, conclusions are drawn in the subsequent paragraphs.  

In the pre intervention categorization of students’ conceptions in the concepts of electric 

potential and energy and electromagnetic induction, six categories of alternative conceptions and 

two categories of conceptual knowledge were identified (see Sections 4.1.1 & 4.2.1) which were 

complex and holistic in nature.  Hence, the following conclusions are drawn from this 

categorization of students’ conceptions.  
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 The existing categories have different distributions of the alternative conceptions; 

 Across the different categories, a specific concept is found to have different forms of 

alternative conceptions;  

 Within the categories, the students have multiple conceptions of specific concepts;  

 The naïve physics and lateral alternative conceptions are found more extensive than the 

others;  

 Alternative conceptions in both epistemological and ontological perspectives are 

comparable and considerable. This means that the extensiveness of naïve physics and P-

Primes is comparable to the extensiveness of lateral and ontological alternative 

conceptions and they are also significant with respect to extensiveness of the others 

categories (see Tables 4.34 & 4.4).  

 Across and within the categories, the students’ conceptions are inconsistently diversified 

(see Tables 4.15 & 4.28);  

 The percentage distribution of the extensiveness of alternative conceptions exceeds the 

percentage distribution of number of students’ alternative conceptions in the categories, 

but for the conceptual knowledge the situation is reversed (see Tables 4.14 & 4.27). 

In addition, post intervention categorization of students’ conceptions in the concepts of electric 

potential and energy and electromagnetic induction were investigated. As discussed in Sections 

5.1.1 and 5.2.1, almost all the pre intervention existing categories of students’ conceptions 

persisted after the intervention but with different percentage of distributions of the conceptions 

and their extensiveness after intervention in both the CCS and CPS classes. Hence, the following 

conclusions were drawn from these results. 

 The categories of the students’ conceptions persist after intervention; 

 Extensiveness of students’ conceptual knowledge increases from less than 20% of pre 

treatments to more than 40% of after treatments; 

 The extensiveness of students’ conceptual knowledge was credibly higher in the CPS 

class (54% in FGD & 59% in CM ) than in the CCS class (38% in FGD & 49% in CM);  

 The naïve physics and relational conceptual knowledge categories are more extensive 

than the rest of the  categories;  
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 Epistemological alternative conceptions are more extensively described than ontological 

alternative conceptions;  

 The percentage distribution of the number of students’ conceptions in the categories 

exceeds the percentage distribution of the extensiveness, but for the conceptual 

knowledge the situation is reversed. 

The following conclusions were drawn based on the results of the third research question. 

 For students with low conceptual knowledge and inconsistent alternative conceptions, the 

CPS approach is more effective than the CCS approach to change their alternative 

conceptions; 

 The students’ response states can be improved  by the CPS approach rather than the CCS 

approach; 

 Low pre scores of students have negative impact on conceptual change because they limit 

students’ interactive engagement in the learning of concepts.  

In general, this study used the epistemological and ontological descriptions of students’ 

conceptions to categorize the students’ descriptions of the concepts in EPE and EMI. However, if 

one of the perspectives, either epistemological or ontological, was preferred as a view of this 

study, then such a holistic categorization would not be investigated. For example, on the one 

hand, if the epistemological perspective was traced, then the dominant categories would be naïve 

physics and the Ohm’s p-primes that could overlook the ontological and lateral alternative 

conceptions of the students. On the other hand, if the ontological perspective was traced, then the 

reverse would be the case. One of the bases for the dispute that exists on the structure of 

alternative conceptions is due to the fact that different theoretical framework are used by 

different researchers of alternative conceptions. Hence, a pragmatic inclusive perspective is 

helpful to study these complex and holistic classifications of students’ conceptions. 

6.3 Recommendations 

Based on the findings of this study, the following recommendations were forwarded for 

improving instruction and for further research. 
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6.3.1 Recommendations for Instruction  

 Curriculum developers should be aware of the most common identified categories of 

students’ conceptions in each specific topic and should design the textbooks and 

curriculum based on these findings. 

 Teachers of physics at all levels should emphasize the correct epistemological and 

ontological categorization of concepts during their teaching. 

 Ministry of Education should design a means to build knowledge of in-service and pre-

service physics teachers’ in relation to contemporary theories of science learning. 

6.3.2 Recommendations for Future Study  

This thesis has covered only a selected area of physics concepts, the concepts of EPE and EMI. 

The selection of the topics was largely motivated by the conceptual difficulties of these concepts 

in the domain of electricity and magnetism. Thus, future research could perform a similar design 

of the study using different physics topics to have a more general idea of the categorization of 

different concepts.  In addition, in order to build an inclusive theory on the categories of 

students’ conceptions, cross-sectional and longitudinal studies on the same or similar concepts of 

physics are needed.  

The conceptual change process studied in this thesis considered only epistemological and 

ontological perspectives of students’ conceptions. However, conceptual change is a complex 

process that needs also affective perspective of students’ conceptions (see Section 1.6). Hence, 

an inclusive multi-perspective conceptual change research that includes epistemological, 

ontological and affective perspective of students’ conceptions should be undertaken in order to 

have more understanding of the theory.    

As indicated in this study, conceptual change requires changes of naïve physics to expert 

physics, lateral alternative conceptions to correct lateral categories, ontological alternative 

conceptions to correct ontological categories and fragmented concepts to interrelated concepts. 

However, both the CCS and CPS strategies were limited in changing all the categories of 

alternative conceptions simultaneously. To address this limitation, a holistic confrontation (Chi, 

2008, Gadgil et al., 2012) with concept maps may help to address all the categories of alternative 
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conceptions. This means that students can examine a visual representation (e.g., concept maps) 

of their alternative conceptions of concepts in the categories and contrast them with concept 

maps of the correct categories of the concepts (expert maps), in terms of their predictions, 

explanations and elements of each category. 
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Appendix A: Modified Diagnostic Exam of Electricity and Magnetism 

Diagnostics Test of Electric Potential, Energy and Electromagnetic Induction (Modified DEEM) 

In any question referring to current, conventional current will be used (where conventional 
current is the flow of positive charges). In addition, all effects due to the earth’s magnetic 
field will be so small that they will be ignored. Note that the term “particle” is meant to be 
an object without size or structure. 

          FOR QUESTIONS 1-2 

A positive charge is placed at rest at the center of a region of space in which there is a uniform, 

three-dimensional electric field.  (A uniform field is one whose strength and direction are the 

same at all points within the region) 

1) When the positive charge is released from rest in the uniform electric field, what will its 
subsequent motion be? 

A) It will move at a constant speed. 
B) It will move at a constant velocity. 
C) It will move at a constant acceleration. 
D) It will move with a linearly changing acceleration. 
E) It will remain at rest in its initial position 

2) What happens to the electric potential energy of the positive charge, after the charge is 
released from rest in the uniform electric field? 

A) It will remain constant because the electric field is uniform. 
B)  It will remain constant because the charge remains at rest. 
C)  It will increase because the charge will move in the direction of the electric field. 
D) It will decrease because the charge will move in the opposite direction of the 

electric field. 
E)  It will decrease because the charge will move in the direction of the electric field. 

For questions 3-11, a point (•) is representing location in space. The minus sign (–) represents 

particles with a net negative charge and positive sign (+) represents a net positive charge. The 
magnitudes of the net charges are all equal. Fields presented in each figure are only due to charges 
in the figure.  

Items 3-10 ask questions about the values of quantities, not their magnitudes. For example, the 

value of 1 is greater than the value of -5.  

 

 

 

 +                                                    • 

Fig. 1 
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3) What is the value of the electrostatic potential at the point in the figure 1?     
A) The exact value cannot be determined, but it must be less than 0.  
B) The value is zero.  
C) The exact value cannot be determined, but it must be greater than 0.  
D)  The electrostatic potential is not defined at the point.  
E) There is not enough information to determine anything about the value.  

4) Relative to the value of electrostatic potential at the point in the figure 1 for question 3, 
what would happen to the value of the electrostatic potential at the point, if the point 
moves farther to the right?  

A) The value of the electrostatic potential at the point would be greater.  
B) The value of the electrostatic potential at the point would be less.  
C) The value of the electrostatic potential at the point would not change.  
D) The electrostatic potential is not defined at the point.  
E) There isn’t enough information.  

5) What is the direction of the electrostatic potential at the point in the figure 1?  
A)        
B)  
C) Since the electrostatic potential at the point is zero, it cannot have a direction. 
D) Electrostatic potential does not have a direction. 
E) The electrostatic potential is undefined at the point. 

6) What is the value of the electrostatic potential at the point in the figure 2?  

 

 

 

A) The exact value cannot be determined, but it must be less than 0.  
B) The value is zero.  
C) The exact value cannot be determined, but it must be greater than 0.  
D) The electrostatic potential is not defined at the point.  
E) There is not enough information to determine anything about the value.  

7)  Relative to the value of electrostatic potential at the point in the fig. 2 for question 6, what 
would happen to the value of the electrostatic potential at the point, if the point were moved 
farther to the right?  

A) The value of the electrostatic potential at the point would be greater.  
B) The value of the electrostatic potential at the point would be less.  
C) The value of the electrostatic potential at the point would not change.  
D) The electrostatic potential is not defined at the point.  
E) There isn’t enough information.  

 

 –                                                    • 

Fig. 2 
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8) What can be said about the value of the electrostatic potential energy for the system of 
charged particles in the figure 3?  

 
 
 
 

A) The exact value cannot be determined, but it must be less than 0.  
B) The value is zero.  
C) The exact value cannot be determined, but it must be greater than 0.  
D) The electrostatic potential energy is only defined at a specific location in space.  
E) There is not enough information to determine anything about the value.  

9) Relative to the electrostatic potential energy of the system in figure 3 for question number 8, 
what would happen to the value of the electrostatic potential energy if the two charged 
particles were moved to a new position farther apart?  

A) The value of the electrostatic potential energy would be greater.  
B) The value of the electrostatic potential energy would be less.  
C) The value of the electrostatic potential energy would not change. 
D) The electrostatic potential energy is only defined at a specific location in space.   
E)  There is not enough information.  

10)  What can be said about the value of the electrostatic potential energy for the system of 
charged particles in the figure 4?  

 

 

 

 

A) The exact value cannot be determined, but it must be less than 0.  
B) The value is zero.  
C) The exact value cannot be determined, but it must be greater than 0.  
D) The electrostatic potential energy is only defined at a specific location in space.  
E) There is not enough information to determine anything about the value.  

 

11) Relative to the electrostatic potential energy of the system in figure 4, what would happen 
to the value of the electrostatic potential energy if the two charged particles were moved to 
a new position farther apart?  

A) The value of the electrostatic potential energy would be greater.  
B) The value of the electrostatic potential energy would be less.  
C) The value of the electrostatic potential energy would not change. 
D)  The electrostatic potential energy is only defined at a specific location in space. 
E)  There is not enough information.  

12)  An electron is placed at a position on the x-axis where the electric potential is + 10 V. 
Which idea below best describes the future motion of the electron? 

 –                                                    – 

Fig. 3 

 –                                                    + 

Fig. 4 



186 
 

A) The electron will move left (-x) since it is negatively charged. 
B) The electron will move right (+x) since it is negatively charged. 
C) The electron will move left (-x) since the potential is positive. 
D) The electron will move right (+x) since the potential is positive. 
E) The motion cannot be predicted with the information given.  

FOR QUESTIONS 13-14 

In the figures below, the dotted lines show the equipotential lines of electric fields. (A charge 
moving along a line of equal potential would have a constant electric potential energy.)  A 
charged object is moved directly from point A to point B. The charge on the object is +1 µC. 

10V 10V 10V
20V 20V

20V30V 30V 30V
40V 40V

40V50V 50V 50V

A B A B A B

I
II III

 
13) How does the amount of work needed to move this charge compare for these three cases? 

A) Most work required in I. 
B) Most work required in II. 
C) Most work required in III. 
D) I and II require the same amount of work but less than III. 
E) All three would require the same amount of work. 

14) How does the magnitude of the electric field at B compare for these three cases? 
A) I > III > II   
B) I > II > III  
C) III > I > II  
D) II > I > III    
E) I = II = III  
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Questions 15 and 16 refer to figure 5. A thin, circular, conducting loop, in the plane of the page, 
is immersed in a uniform, magnetic field pointed perpendicularly out of the page. 
 

 

 

 

 

 

 

 

15) If the magnitude of the magnetic field does not change, but the radius, r, of the loop decreases, then 
which answer below describes something that happens to the loop? 

A) Nothing. 
B) A clockwise current is produced in the loop. 
C) A counterclockwise current is established in the loop. 
D) The loop will rotate clockwise in the plane of the page. 
E) The loop will rotate counterclockwise in the plane of the page. 

16) If the radius, r, of the loop does not change, but the magnitude of  the magnetic field 
decreases, then which one below describes something that happens to the loop? 

A) Nothing. 
B)  A clockwise current is produced in the loop. 
C) A counterclockwise current is established in the loop. 
D) The loop will rotate clockwise in the plane of the page. 
E)  The loop will rotate counterclockwise in the plane of the page. 

 

For questions 17 and 18 consider only the space contained within the finite area of figure 6. The 
magnitudes of the net charges are all equal. 
 

 

 
 
 

17) For the charges in the figure 6, where is the electrostatic potential zero?  
A) Somewhere to the left of the two particles.  
B) Exactly halfway between the two particles.  
C) Somewhere to the right of the two particles.  
D)  Nowhere in the figure.  
E) More information is needed.  

•    •     •      •      •    •    

•     •      •      •    •    •     

•    •     •      •      •    •    
•     •      •      •    •    •     
  

•   • 

• • 
r 

Fig.5 

    +                                     – 

Fig. 6 
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18) For charges in the figure 7, where is the electrostatic potential zero?  
 

 

 

A) Somewhere to the left of the two particles.  
B)  Exactly halfway between the two particles.  
C) Somewhere to the right of the two particles.  
D) Nowhere in the figure.  
E)  More information is needed. 

For questions 19-22 the thick, black rectangles represent conducting, wire loops. Assume the 
wire to be of negligible thickness. The gray areas represent regions of magnetic field directed 
perpendicularly into the page. The black arrows represent the direction of motion of the wire 
loops. No arrow indicates that the loop is not moving. Look at the sample figure below for an 
example.  

 

 
 
 
 
 
 
 

19) Choose an answer that describes something that happens to the wire loop as it moves as shown in 
the figure 8 to the right. The magnetic field in the gray region is uniform.  

 

 

 

 

 

A) There is not enough information given to answer the question.  
B)  A counterclockwise current is produced.  
C)  A clockwise current is produced.  
D) No current is produced.   
E) The wire loop tends to rotate 

     +                                   + 

Fig. 7 

Sample Figure 

                                                                          
                                                                       Conducting wire loop  
                                                                                                                            
                                                                                                                            Direction of the 
                                                                                                                            Loop is moving 
                                                                                                                                                                                                     
 
 
 
The white area inside the figure resents the region no magnetic field  
 

Region of magnetic field 
directed into the page 

 

Fig. 8 
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20) Choose an answer that describes something that happens to the wire loop as it moves as 
shown in the figure 9 to the right.  The magnetic field in the gray region is non-uniform.  

 

 

 

 

A) There is not enough information given to answer the question.  
B) A counterclockwise current is produced.  
C) A clockwise current is produced.  
D) No current is produced.   
E) The wire loop tends to rotate 

21) Choose an answer that describes something that happens to the stationary wire loop in the 
figure 10 to the right.  The magnetic field in the gray region is uniform.  

 

 

 

 

 

 

A) There is no enough information given to answer the question.  
B) A counterclockwise current is produced.  
C) A clockwise current is produced.  
D) No current is produced.  
E) The wire loop tends to rotate. 

22) Choose an answer that describes something that happens to the wire loop as it moves as 
shown in the figure 11 to the right? The magnetic field in the gray region is uniform.  

 
 
 
 
 
 
 
 

A) There is not enough information given to answer the question.  
B)  A counterclockwise current is produced.  
C)  A clockwise current is produced.  
D) No current is produced.   
E) The wire loop tends to rotate 

Fig. 9 

Fig. 10 

Fig. 11 
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23) An observer watches a thin, circular, conducting, wire loop enter a region of a non-uniform 
magnetic field (see Figure A- TOP VIEW). The thick, dotted, black arrow in both views 
indicates the direction the loop is moving. Looking at the loop as it enters the non-uniform 
magnetic field directed into the page (see Figure A- SIDE VIEW), which answer below 
describes something, if anything, that happens to the loop as viewed by the observer? 

 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

A) A counterclockwise current is created in the wire loop. 
B)  A clockwise current is created in the wire loop. 
C) Nothing could happen to the wire loop as it enters any magnetic field. 
D) Nothing happens because the field is non- uniform. 
E) No answer can be given based on the information given. 

 

24) An observer watches a region of a non-uniform magnetic field pass across a thin, circular, 
conducting, wire loop (see Figure B- TOP VIEW). The thick, dotted, black arrow in both 
views indicates the direction the magnetic field is moving. Looking at the loop, as the non-
uniform magnetic field begins to passes across it (see Figure B- SIDE VIEW), which 
answer below describes something, if anything, that happens to the loop as viewed by the 
observer? 

 

 
 

Observer                                       SIDE VIEW 

                                                       

 

 

 

      

Observer                                TOP VIEW 

                                           x       x       x 
                                        x      x    x     x    x 
                                        x   x  x  x x x  x   x 
                                         x      x   x    x     x 
                                           x       x       x 
       B into the page                                           

Figure- A 
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A)  A counterclockwise current is created in the wire loop. 
B) A clockwise current is created in the wire loop. 
C)  Nothing could happen to the wire loop as it enters any magnetic field. 
D) Nothing happens because the field is non- uniform. 
E) No answer can be given based on the information given. 

 
The four separate figures below involve a cylindrical magnet and a tiny light bulb connected to 
the ends of a loop of copper wire.  These figures are to be used in the following question.  The 
plane of the wire loop is perpendicular to the reference axis.  The states of motion of the magnet 
and of the loop of wire are indicated in the diagram.  Speed will be represented by v and CCW 
represents counter clockwise.  
 

25) In which of the below figures will the light bulb be glowing? 
A) I,III,IV 
B) I, IV 
C) I, II, IV 
D) IV 
E) None of these 

     

Figure- B 

Observer                                SIDE VIEW 

                                                       

 

 

 

      

Observer                                TOP VIEW 

                                           x       x       x 
                                        x      x    x     x    x 
                                        x   x  x  x x x  x   x 
                                         x      x   x    x     x 
                                          x       x       x 
       B into the page                                           
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S N axis 

S N axis 

S N axis 

S N axis 

moving left 

stationary 

stationary 

stationary 

I 

II 

III 

IV 

stationary 

collapsing loop 

loop rotating 
CCW about axis 

moving left 

bulb 

bulb 

bulb 

bulb 

v 

v  

26) A very long straight wire carries a large steady current i.  Rectangular metal loops, in the 
same plane as the wire, move with velocity v in the directions shown.  Which loop will 
have an induced current? 

             

                                             

 

 
 
 

A) only I and II   
B) only I and III   
C) only II and III   
D) all of the above  
E) none of the above 

 
 

 
 

 

                

 

i 

v 

III 

 

i

v

I
i

v

II
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27) A variable power supply is connected to a coil and an ammeter, and the time dependence 
of the ammeter reading is shown.  A nearby coil is connected to a voltmeter. 

 
 Ammeter                                                                                                                                  
 reading          
 
 
          
          
  
 
             Ammeter 
                time 
 

Which of the following graphs correctly shows the time dependence of the voltmeter reading? 
 
Voltmeter     Voltmeter    
reading     reading 
             (A)                                     (B) 
 
              time                                                                           time 
 
Voltmeter            
                                                                            Voltmeter 
reading                                           reading 
 
      
 
                                                                     time  
     
                                      (C)                                                            (D) 
 
                   
                                                                                                                                                 
                                                                                                                                                time 
  
    Voltmeter 
 reading 
                              
                                         (E) 
    
       
                           
                                                                 time 
 

Power 
supply Voltmeter 
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The diagram below shows six identical flat coils moving with the same constant speed v. The 
strength of the magnetic field is the same in each case. The field is confined to the region 
indicated by the dashed lines. 
 
 
 

 

 

 

 

 1                 2          3 

 

 

 

 

 4       5                           6 

28) In which of the coil in the above diagram there is any induced emf ? 

 

A) In all 1, 2 & 3  B)  In all 4,5 & 6  C)  In all 1, 3,4 & 6  D) In both 1&3  E) In both 2&5 

The diagram below shows a flat coil moving at constant speed in a uniform magnetic field. The 
magnetic field is confined to the region indicated by the dashed lines. 
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29) Which of the graphs below shows how the magnetic flux B through the coil changes 
from the moment it enters the field until the moment it leaves the field?  

 

B    B      B             B                   B    

 

   

 

A)                        B)                   C)                     D)             E) 

 

30) Which of the graphs below shows how the induced emf    in the coil changes from the 
moment it enters the field until the moment it leaves the field?  

                                                            

 

 

  

A)        B)                 C)   D)      E) 

 
 

 

 

 

 

 

 

 

 

time time time 

time time 
time time time 

time time 
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Appendix B: Focus Groups Formation  

Table B1: Descriptive Statistics of CSEM score 

               N Minimum Maximum Mean 
 
Median Std. Deviation 

CSEM score 45 9.4 40.6 20.8 21.9 6.4 
Valid N (list wise) 45          

 

Table B2: Initial four Focus groups (n=45) 

CP1 CP2 CC1 CC2 

CODE Score 
 

CODE Score 
 

CODE Score 
 

CODE Score 
 

CP04 28.1  
CP11 28.1  
CP13 28.1  
CP16 28.1  
CP05 25.0  
CP10 25.0  
CP12 25.0  
CP18 25.0  
CP23 25.0  
CP07 21.9  
CP08 21.9  

 

CP15 21.9  
CP22 21.9  
CP02 18.8  
CP06 18.8  
CP09 18.8  
CP14 18.8  
CP20 18.8  
CP19 15.6  
CP21 15.6  
CP01 12.5  
CP17 12.5  
CP03 9.4  

 

CC17 40.6  
CC23 31.3  
CC07 28.1  
CC18 28.1  
CC06 25.0  
CC10 25.0  
CC02 21.9  
CC09 21.9  
CC11 21.9  
CC13 21.9  
CC20 21.9  

 

CC08 18.8  
CC19 18.8  
CC21 18.8  
CC22 18.8  
CC12 15.6  
CC14 15.6  
CC03 12.5  
CC04 12.5  
CC05 12.5  
CC15 12.5  
CC16 9.4  

 

 

Table B3: CSEM mean scores of the four focus groups (n=45) 

 

 

Tukey HSDa,b

12 16.1583
11 17.3545
11 24.1455
11 26.1455

.935 .758

Focus group 
CC2
CP2
CP1
CC1
Sig.

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 11.234. a. 

The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are 
not guranted 

b. 
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Table B4: Descriptive statistics of students participated in the focus groups discussion (n=35)  
 

Group Mean Std. Deviation N Std. Error 95% Confidence Interval 

    
 Lower 

Bound Upper Bound 

CC1 26.7444 6.25822 9 1.435 23.818 29.671 

CC2 16.0375 3.53510 8 1.522 12.933 19.142 

CP1 25.3444 2.42338 9 1.435 22.418 28.271 

CP2 15.9889 3.97978 9 1.435 13.062 18.916 

Total 21.1714 6.56042 35    

 
 

Table B5: Multiple Comparisons of means of focus groups (n=45) 

  

                  

 

 

 

 

 

 

 
Dependent Variable: CSEM score
Tukey HSD

9.98712* 2.00642 .000 4.6147 15.3596
2.00000 2.04958 .764 -3.4880 7.4880
8.79091* 2.04958 .001 3.3029 14.2789
-9.98712* 2.00642 .000 -15.3596 -4.6147
-7.98712* 2.00642 .002 -13.3596 -2.6147
-1.19621 2.00642 .933 -6.5686 4.1762
-2.00000 2.04958 .764 -7.4880 3.4880
7.98712* 2.00642 .002 2.6147 13.3596
6.79091* 2.04958 .010 1.3029 12.2789
-8.79091* 2.04958 .001 -14.2789 -3.3029
1.19621 2.00642 .933 -4.1762 6.5686
-6.79091* 2.04958 .010 -12.2789 -1.3029

(J Focus group
CC2
CP1
CP2
CC1
CP1
CP2
CC1
CC2
CP2
CC1
CC2
CP1

(I)Focus group
CC1 

CC2 

CP1 

CP2 

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level. *. 
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  Table B6: Multiple Comparisons of focus groups’ means scores (n=35) 

 
Table B7: Focus groups after withdrawal of some members (n=35)  

 

  

 

 

Tukey HSD a,b,c

9 15.9889
8 16.0375
9 25.3444
9 26.7444

1.000 .904

Group
CP2
CC2
CP1
CC1
Sig. 

N 1 2
Subset

Means for groups in homogeneous subsets are displayed. 
Based on Type III Sum of Squares 
The error term is Mean Square (Error) = 18.532. 

Uses Harmonic Mean Sample Size = 8.727.a. 

The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are
not guaranteed.

b. 

Alpha = .05.c. 

 

Dependent Variable: CSEM score
Tukey HSD

10.7069* 2.09180 .000 5.0297 16.3842
1.4000 2.02934 .900 -4.1078 6.9078

10.7556* 2.02934 .000 5.2478 16.2633
-10.7069* 2.09180 .000 -16.3842 -5.0297
-9.3069* 2.09180 .001 -14.9842 -3.6297

.0486 2.09180 1.000 -5.6287 5.7259
-1.4000 2.02934 .900 -6.9078 4.1078
9.3069* 2.09180 .001 3.6297 14.9842
9.3556* 2.02934 .000 3.8478 14.8633

-10.7556* 2.02934 .000 -16.2633 -5.2478
-.0486 2.09180 1.000 -5.7259 5.6287

-9.3556* 2.02934 .000 -14.8633 -3.8478

(J) Group 
CC2 
CP1 
CP2 
CC1 
CP1 
CP2 
CC1 
CC2 
CP2 
CC1 
CC2 
CP1 

(I) Group
CC1

CC2

CP1

CP2

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

Based on observed means. 
The mean difference is significant at the .05 level. *. 
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Appendix C: Concept Maps Question 

Draw concept maps of electricity and magnetism concepts listed below.  You are free to include 

additional related concepts to the list and incorporate them to your concept maps. 

List of Concepts in Electricity and Magnetism 

1. Electric potential 
2. Potential difference 
3. Electric potential energy 
4. Kinetic energy 
5. Equipotential lines 
6. Electric charge 
7. Electric field 
8. Magnetic flux 
9. Faraday’s law 
10. Magnetic field lines 
11. Magnetic field  
12. Electromagnetic induction 
13. Induced electromotive force 
14. Induced current 
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Appendix D: Student Research Consent Form 
 

(To be completed by student participant aged 18 years and above) 

 
1. Research Topic: Conceptual Change through Cognitive Perturbation using Simulations in 

Electricity and Magnetism: a Case Study in Ambo University, Ethiopia 
2. Purpose of the Research: The purpose of this study is to investigate students’ conceptual change 

in selected conceptual areas of undergraduate electricity & magnetism by supporting their learning 
with Cognitive Perturbation strategy through interactive physics simulations. 

3. Researcher’s Details:- Name:  Bekele Gashe Dega (DEGA B G)  
Address: Ambo University, P.O.Box 19, AMBO, Ethiopia 
Telephone: 251911894519 (mobile), 251112365296 (Home)                                                                                 

4. Research Site: Ambo University, Oromia Regional State, Ethiopia  

Participant’s Name: ____________________________ Position___________________  
 
 Address: __________________________________ Telephone: _________________  
 
5. Participant Rights and Assurances 
  
I have received a copy of the Consent Letter for the aforementioned research study. Having read the 

application I am familiar with the purpose, methods, scope, and intent of the research study.  

Please check one of the following:  

 

I am willing ______ I am not willing_______ to participate in the research study. I understand that during 

the course of this research my responses will be kept strictly confidential and that none of the data 

released in this study will identify me by name or any other identifiable data, descriptions, or 

characterizations. Furthermore, I understand that I may discontinue my participation in this study at any 

time or refuse to respond to any questions to which I choose not to respond. I am a voluntary participant 

and have no liability or responsibility for the implementation, methodology, claims, substance, or 

outcomes resulting in any adverse consequences or disparate treatment due to that decision. I fully 

understand that this research is being conducted for constructive educational purposes and that my 

signature gives my consent to voluntarily participate in this study.  

Participant’s Signature _______________________________________ 

Date_____________________________________________________ 
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Appendix E: Ethical Clearance 
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Appendix F: Focus Groups Discussion Questions 

  

I. Electric Potential and Energy (EPE) 

1. What is electric potential?  
2. What is electric potential energy?  
3. What relationships between electric potential and electric field could exist? 
4. How would electric potential and potential energy be related? 

II. Electromagnetic Induction (EMI) 

1. What is electromagnetic induction? 
2. What is magnetic flux? 
3. How could an induced current/induced voltage be produced in a coil? 
4. How could current in one coil be related to the voltage in another nearby coil?  
5. How would motion of a coil or a source of magnetic field motion or variation of 

magnetic field be related to an induced current? 
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Appendix G: Scoring Rubric for Concept Maps 
 

CM elements 4 3 2 1 0 
Propositions Complete, 

meaningful and 
valid. 

Most are 
meaningful and 
valid. 

Some are 
meaningful and 
valid. 

Incomplete, few 
are meaningful. 

Missing or not 
meaningful. 

Hierarchy Superordinate 
and subordinate 
concepts are 
present and 
valid. 

Most but not all 
are present and 
valid 

Some are present 
and valid. 

Few are present 
and/or valid. 
Several subordinate 
concepts are 
missing. 

Hierarchy is 
missing or 
invalid. 

Cross links All are valid 
and non trivial. 
Strong evidence 
of higher level 
of thinking/ in-
depth 
conceptual 
understanding. 

Most are valid 
and non trivial. 
Some evidence 
of higher level/ 
in-depth 
conceptual 
understanding. 

Some valid but 
trivial. Some 
evidence of 
higher level / in-
depth conceptual 
understanding. 

Most are invalid or 
trivial. Little 
evidence of higher 
level / in-depth 
conceptual 
understanding. 

Missing or 
invalid. No 
evidence of 
higher level / in-
depth conceptual 
understanding.  

Examples Complete set; 
valid, 
illustrative, and 
significant. 

Incomplete set; 
but most are 
present and 
valid, 
illustrative and 
significant.  

Incomplete set; 
but some are 
present and 
valid, illustrative 
and significant. 

Incomplete set; few 
are present and 
valid, illustrative or 
significant. 

Missing or 
invalid. 

Rubric for scoring concept maps adapted from Novak & Gowin, 1984 and Shaka & Bitner, 1996 

 

 

 

 

 

 

 

 

 

 

 



204 
 

Appendix H: Treatment of Cognitive Conflict with Simulations Class  

1. EPE Concepts (A Session of One Group for Sample) 

 At the beginning, all the groups of students in the CCS class were inquired to predict the values 

of electric potential of positive and negative charges at different points say 1m, 2m from the 

point charges. They were asked to show their response on a piece of paper.  

However, the students’ predictions were diversified. Some said that to calculate electric 

potential, the given quantities are incomplete and they need to have another charge to measure 

the distance between them. Others said that the mass of the charge was not given and therefore 

they couldn’t calculate the potential. There were also several students that attempted to multiply 

a charge by a distance to calculate electric potential. Few students used the formula for the 

electric potential and calculated its value. However, they consider electric potential to the right of 

and above the point charge as positive, while they consider electric potential to the left of and 

below the point charge as negative.  

The students’ predictions were in agreement with their already identified and diagnosed pre 

intervention conceptions about electric potential. The students who needed to add another charge 

to calculate the electric potential considered electric potential as a Columbic force. The students 

who needed the mass of a charge to determine the electric potential viewed electric potential as a 

gravitational potential energy. Those who multiplied a charge by a distance had ideas of direct 

relationship between electric potential and distance. Some students who attempted to estimate 

the electric potential using the formula failed to understand its scalar nature.  

After their prediction, they were told to activate the grid, show numbers and tape meters options 

buttons on the right-hand-side of the Charges and Fields application (See Figure 3.1). Then, they 

were asked to place a positive charge in grid’s center using their PC mouse. As shown in figure, 

the amount of charge on each point charge was 1 .  Then, the students were asked to measure 

the distance between a positive point charge and point(s) in the field at which they were 

interested to calculate electric potential (see Figure H1). They were asked to repeat the same 

procedure with a negative point charge (see Figure H2). Then, the conditions for cognitive 
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conflict of the classical conceptual change model were attempted to guide their conceptual 

learning as follows. 

Dissatisfaction: Firstly, to dissatisfy the students with their existing alternative conceptions and 

then increase the status of the desired scientific conceptions, the students were asked to check 

their predictions by dragging the potential tool on different points around the charge. They were 

asked to do so for both negative and positive point charges. But, for most of the students, what 

they measured and plotted were different from what they predicted.  

 

Figure H1: Electric potential and equipotential curves around a positive charge that the students were guided to draw 
with simulation after their prediction. 
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Figure H2: Electric potential and equipotential curves around a negative charge that the students were guided to 
draw with simulation after their prediction 

Intelligibility: Secondly, for the intelligibility of the desired scientific conceptions (the concept of 

electric potential) the interactive simulation helped the students to clearly measure the electric 

potential and plot the curves. In fact, without the use of the simulation the concept of electric 

potential is abstract and difficult to understand and make it intelligible for the students.  

The researcher further asked the students about the potential curves they had plotted. What was 

represented by the curves?  Some of the students replied, ‘it represents electric field.’  Others 

said, ‘it is electric potential line.’ 

Though the students observed the difference between their prediction and the simulation result 

about the concept of electric potential, most of them were unable to explain the quantities the 

curves represented on the simulation. 

Plausibility: For the plausibility of the electric potential concepts they learned, the researcher 

asked them to crosscheck the reading from the potential tool of the simulation with the 

calculated value of electric potential (the distances were measured with the tape meters of the 

application). In addition, to increase the degree of plausibility of the concept, they were made to 

measure electric potential at different points in the playing field of the simulation and plot 

potential curves using the potential tool (See Figure H3).  
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Fruitfulness: For fruitfulness of the scientific concepts, the students were asked to extend their 

conceptual knowledge by running the simulation for two and more point charges. First, they took 

two and more positive charges then two and more negative charges and lastly by taking two and 

more positive and negative charges.    

 

Figure H3: The students were made to draw electric potential and equipotential curves around several charges with 
simulation  

However, only few students in each group were able to extend their knowledge of electric 

potential of a single point charge to several point charges. This was because of the inconsistency 

and diversity of the students’ alternative conceptions at the beginning of the treatment.  Their 

situation before the treatment made them not to be fully dissatisfied with their existing 

conceptions and then not to accept and apply the new concept as desired.   

2. EMI Concepts (A Session of One Group for Sample) 

The main concept of the electromagnetic induction is the production of induced current. For this 

reason, the CCS class was treated with the most complete panel (only the last panel), the 

generator panel (see Table H4), of the Faraday’s Electromagnetic Lab simulation to initiate 

cognitive conflict between their existing conceptions and the scientific conceptions. Thus, at the 

beginning, all the groups of students in the CCS class were required to predict the cause for 
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induced current/induced emf.  The students’ predictions were diversified alike to the pre 

intervention results.  The dominant alternative conceptions depicted from their predictions were  

 Magnetic field produces induced current,  

 Magnetic field lines produce induced current,  

 Magnetic flux produces induced current, 

 Current implies induced emf and 

 Magnet implies induced emf. 

The students failed to understand the cause for induced emf/induced current. The cause for 

induced current is explained by the Faraday’s Law of induction. This Law states that the time 

rate of change of magnetic flux causes induced emf that derives induced current in a closed loop 

of conductor.  

Dissatisfaction: After their prediction, they were told to run the Electromagnetic Lab simulation 

by activating the options show field, show compass, show field meter, change number of loops, 

change loop area and change magnetic field strength (See Figure 3.2). Then, to dissatisfy the 

students with their existing alternative conceptions and then increase the status of the desired 

scientific conceptions, the most complete panel (the generator panel) of the Electromagnetic Lab 

that can fully display Faraday’s Law of induction, was selected. The students were then asked to 

check their predictions by changing the options of the simulation and noticing the field meter 

reading at a point and different points in the simulation field.  

First, in order to dissatisfy them with their existing conceptions, they were asked to put the 

turbine off and then observe the situation of the simulation. There was a magnet and a magnetic 

field in the coil. They measured the presence of magnetic field with the field meter.  They 

observed the presence of magnetic field lines by activating the show field button of the 

simulation. Besides, there was a magnetic flux due to the presence of a magnetic field in the area 

of the coil. However, there was no induced emf or and consequently no flow of electrons 

observed in the coil.  

Next, to increase the status of the scientific conception, the students were required to put the 

turbine on and then observe the event as shown in Figure H4.  By using the field meter, they 
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noticed the change of magnetic field in the coil as a result of the rotation of the magnet by the 

turbine. Consequently, they observed a flow of simulated electrons which was an indication of 

the presence of an induced current in the coil.  Also, they observed deflection of the simulated 

voltage reader and/or the bulb which indicated the presence of the induced emf.  

 

Figure H4: Faraday’s Law induction shown by simulated generator to dissatisfy students’ alternative conceptions  

Intelligibility: For the intelligibility of the desired scientific conceptions (the concept of induced 

emf/induced current) the interactive simulation helped the students to clearly observe how the 

induced current is produced in a coil. The interactive simulation was easily run and then 

controlled to see the resulted change and the effect caused.  In fact, without the use of the 

simulation the concept of induced current is abstract and difficult to understand and will not 

make it intelligible for the students.  

However, the students’ conceptual knowledge about the concepts of electricity and magnetism in 

general and the concept of electromagnetic induction in particular were low as shown in the pre 

intervention result. Thus, this situation of the students limited the degree of intelligibility to 

understand the scientific conceptions. This limited degree of intelligibility of the scientific 

conceptions was noticed because the students’ group discussions about the concepts were low 

during their learning. In other words, the students were not well engaged into interactions due to 
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their low conceptual knowledge. However, most of the students’ discussions were emphasized 

more to the simulations rather than to the concepts.  

Plausibility: For the plausibility of the induced current and/or induced emf scientific 

conceptions, the researcher asked the students to vary the rotation speed per minute (RPM) of the 

turbine and then take the reading of the magnetic field variation inside the coil with the 

application of the field meter. At the same time, they were asked to observe the reading on the 

voltmeter attached to the coil. They were then supported to compare the value of the emf from 

the reading of the voltmeter with its value calculated with the help of the formula for Faraday’s 

Law of induction.  

Fruitfulness: For fruitfulness of the scientific conceptions induced current and/or induced emf, 

the students were asked to extend their conceptual knowledge by activating the different 

contextual panels of the Faraday’s Electromagnetic Lab Simulation. These were the moving of a 

magnet into and out of a coil and viewing of the induced emf, varying of current in one coil and 

then observing the voltage induced in another coil, varying of the number of turns of the coil and 

then viewing the emf induced and varying the area of the coil and viewing the emf induced.  
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Appendix I: Treatment of Cognitive Perturbation with Simulations Class 

1. EPE Concepts (A Session of One Group for Sample) 

Undertaking phase:  At the beginning, alike to the CCS class, all the groups of students in the 

CPS class were asked to open the Charges and Fields application (See Figure 3.2).  First they 

were told to activate the grid, show numbers and tape meters options buttons on the right-hand-

side of the application. Second, they were asked to place a positive charge in grid’s center using 

their PC mouse and measure the value of electric potential at different points by measuring the 

distance between the point charge and different points in the playing field. In addition, they were 

inquired to drag the potential tool around the playing field to measure electric potential and plot 

potential curves. Moreover, they were asked to repeat the same task for a negative charge after 

removing a positive charge from the playing field.  

In this phase, the researcher’s main role was giving social support and working with them, but 

not to elicit conflict with their ideas, while they were manipulating variables in the interactive 

simulations.  

 

Figure I1: Students were guided to manipulate electric potential of a positive charge and equipotential curves 
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Figure I2: Students were guided to manipulate electric potential of a negative charge and equipotential curves 

Presentation phase: This was an appropriate situation to identify students need to support their 

learning. In short, it was used to identify the difficulties which impeded their learning and 

needed the instructor’s support in the form of cognitive perturbation. For example, students in 

one of the groups presented their undertaking as shown in Figures E1 & E2. 

They explained their understanding of what they measured and plotted as follows. ‘We (the 

students) measured potential of a charge at different points and plotted curves of the electric field 

around a positive and a negative charge one after another. The electric potential for a positive 

charge is positive, but it is negative for a negative charge. As the distance from a charge 

increases, potential decreases.’  

What does the positive or negative sign of the electric potential represent?  The instructor asked.  

Some students said, ‘positive represents repulsion, while negative represents attraction.' 

From the above students’ explanation, two ideas that needed support (cognitive perturbation) 

were identified.  The first idea was their interpretation of potential curves (equipotential lines) as 

electric field lines, because they said, ‘we plotted electric field.’ The second idea was their 
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consideration of electric potential as a force: ‘positive represents repulsion, while negative 

represents attraction.’ 

The instructor thanked the students for their presentation and then asked the following questions 

to guide them step by step towards scientific conception of electric potential.  

The instructor: You put positive charge and took measurements, and then you replaced by a 

negative charge and did the same. How could attraction or repulsion be happen?  

The students looked and laughed at each other. Then, one of the group members said, ‘we don’t 

know what we are doing.’ He continued, ‘you know attraction or repulsion is for force, but we 

measure electric potential.’  Another student said, yes! ‘Force is between two charges, but what 

we measure using the simulation is for only one charge.’ 

The instructor: So, what do the signs (+) and (-) represent?  

A student: ‘The sign comes from the charges. Negative electric potential is for negative charge 

and positive electric potential is for positive charge.’ 

Another student: ‘Before this simulation I thought electric potential as a vector because of the 

signs positive and negative. Now, it can’t be a vector.’ 

The instructor: So, who can tell me what the signs represent.  

The group members did not speak for some minutes. Their silence indicated their failure to 

clearly understand the electric potential in relation to signs. Then, the researcher instructed them 

to put two opposite charges at some distance between them, say 1m (measured by simulated tape 

meter), and then measure electric potential at different points: between the two charge,  to the 

right and left of the positive charge, and  to the right and left of the negative charge (See Figure 

I3).  
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Figure I3: Students’ manipulation of electric potential of two point changes  

After the students accomplished the task, the instructor asked what they have noticed in the 

simulation. 

One of the group members said, representing most members’ consensus, ‘we see that near the 

positive charge and far from the negative charge electric potential is positive. Near the negative 

charge and far from the positive charge the electric potential is negative.  As we move the 

potential tool from positive to negative, the electric potential is decreasing and becomes zero. 

Past zero electric potential is becoming more negative.’  

From this explanation, it was thought that majority of the students have scientific understanding 

of electric potential, like positive (high) electric potential, negative (low) electric potential and a 

condition at which electric potential becomes zero.  

Another students’ idea that impeded their learning was their supposition of electripotential lines 

as electric field lines. To support their learning towards replacing this idea and enhancing of the 

scientific concept, the instructor asked the students to activate the E-field and field sensor buttons 

(See Figure I4) to notice the electric field magnitude and direction. 
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Figure I4: Students’ manipulation of equipotential lines and electric field lines  

With the help of these detectors, the students easily noticed that the electric field lines are out of 

the positive and into the negative charges.  In addition, they observed that the lines for electric 

potential and the lines for electric field are perpendicular at a point. 

Refining phase: This was the phase after presentation in which the students were to incorporate 

the comments from the discussion and redo the task the researcher inquired to enable them 

correct their difficulties. Also, the researcher checked each group’s work and continued his 

social support and cognitive perturbation in their contextual needs so that they would rectify their 

alternative conceptions. 

In this phase, the students repeatedly manipulated the simulations and measured electric potential 

and potential curves for: a positive change, a negative charge, two positive charges, two negative 

charges, a negative and a positive charge and several like and unlike charges.  The utility of 

guiding the students in this phase was to enable them stabilize their conceptual understanding of 

the electric potential concepts. 
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2. EMI Concepts (A Session of one Group Sample) 

In order to suit the Faraday’s Electromagnetic Lab simulation for the CPS class, the four steps 

(four panels) of the simulation were used as scaffold to support the students learning from their 

preconceptions towards scientific conceptions of EMI concepts.  

Undertaking phase:  At the beginning, all the groups of students in the CPS class were asked to 

open the Faraday’s Electromagnetic Lab simulation.  Then, they were to interact with the four 

panels of the simulations step by step starting from a simple bar magnet to the inclusive 

generator simulation.  

Undertaking Phase with a Bar Magnet: This was the first of the undertaking phase in which the 

students were instructed to move the bar magnet and then observe the reading of magnetic field 

strength from the field meter at a point as well as different points in the field (see Table I5).  

 

Figure I5: Magnetic field strength of a bar magnet measured with the field meter 

Presentation Phase: The students explained their observation as follows. When the magnet was 

not moved the reading of the field meter was constant. But, when the magnet was moving 

forward the magnetic field strength was increasing. When the magnet was moving backward the 

magnetic field was decreasing.  

The instructor asked the students with what position or point they had measured motion of the 

bar magnet?  
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The students: We mean forward and backward of the magnet motion. Forward magnet motion 

increases magnetic field strength, while backward magnet motion decreases magnetic field 

strength. 

From this students’ explanation, the instructor noticed that the students were not aware of the 

position they were measuring the magnetic field. In other words, the instructor noticed where 

their gap in understanding lay to give them cognitive perturbation and help them to rectify their 

learning. Thus, the instructor inquired the students to shift the position of the field meter to 

different points and then measure the magnetic field strength in both cases (when the magnet was 

at rest or in motion). 

The students: They attempted to address the researcher’s task of moving the field meter and 

observing its reading, keeping the field meter at a point and then moving the magnet. After they 

undertook the task (the task posed by the researcher as a cognitive perturbation) they were able 

to explain that they measured magnetic field with respect to position of the magnet at a point 

(field point) in the space. That field point is the point where they placed the field meter, the 

detector.   

Undertaking Phase with Pickup a Coil: In this part, the second panel of the Faraday’s 

Electromagnetic Lab simulation was used (see Table I6). The undertaking phase in this case was 

more composite than in the previous bar magnet only simulation. In this phase, the students were 

instructed to move the bar magnet into and out of the coil and observe the field meter reading at 

the center of the coil. Simultaneously, they were asked to observe the voltage reading or 

alternatively the bulb connected to the coil.  
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Figure I6: Relating magnetic field strength variation with the deflection of the voltmeter 

Presentation Phase: The students interacted with the simulation as they were instructed and then 

explained what they had observed in the simulation as follows. ‘When the magnet moves to the 

right into the coil, the voltage is deflected to the left. When the magnet moves to the left out of 

the coil, the voltage is deflected to the right.’ 

The instructor asked, what caused this deflection of the voltage reader? 

The students said, ‘It is the motion of the magnet.’ 

The students still failed to understand how an induced current/voltage can be produced in a coil.  

Thus, the teacher posed additional cognitive perturbation he believed will help them understand 

the concept. 

The instructor instructed them to place the bar magnet inside the coil. Then, he asked them to 

vary the strength of the magnetic field using the simulated change the field strength option and 

then observe the reading of the voltage reader. The students’ explanation follows. 

Students’ explanation: The students’ said that an increase or decrease of the magnetic field 

strength results a deflection of the voltage reader. We understand that moving a magnet with 

respect to a point can result in a variation of magnetic field strength at that point.  

Undertaking Phase with Electromagnet and Transformer: The students’ were asked to vary the 

voltage of the battery connected it to the coil of an electromagnet and observe the corresponding 
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magnetic field strength with the field meter (see Table 17). They were also required to run the 

transformer panel and then observe the readings of the field meter and the voltage reader. 

 

Figure I7: Relating magnetic field strength variation with the deflection of the voltmeter 

Students’ Explanation: The students explained what they had observed as follows. When we put 

the voltage of the battery to some value to the right (they meant it positive) there is some positive 

magnetic field as read with the field meter, when the voltage of the battery is move to the left 

(they meant it negative) the magnetic field is negative. When the voltage of the battery is kept at 

zero the field meter read zero.  

The instructor: What do you notice if you continuously changing the voltage of the battery? This 

question was asked in order to support the students (give cognitive perturbation) into a more 

scientific conception. This means to enable them to understand that a variation of current in a 

coil can result in a variation of magnetic field strength, which is a precondition for an induced 

emf. 

The students: For some minutes, the students interacted with the simulation and gave their 

response to the question as follows. ‘When we increase or decrease the voltage of the battery, 

similar conditions are observed, like the deflection of the voltmeter. The directions of the 

deflections are opposite.’ 
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The instructor:  Can you relate the change of the battery’s voltage to the current in the first coil 

and consequently relate this change of current in the first coil to the deflection of voltmeter 

connected to the second coil? 

Students’ explanation:  When voltage of the battery is the same (constant), the current in the coil 

is also constant and no deflection of the voltmeter connected to the second coil. But, when 

current in the first coil is changed due to the change of the battery’s voltage, then there is a 

deflection of the voltmeter connected to the second coil.  

The instructor: Who can tell me the name of this deflecting voltage? 

The students:  Some students said, ‘it is simply a voltage’. 

The instructor: What type of voltage? 

The students: ‘Just the same as voltage of the battery supplied to the first coil.’ One of the 

students said, ‘it is a potential difference.’ Another one added, ‘it is an induced voltage.’  

The instructor: Why do you call it induced voltage? 

A student: I remember the equation of induced voltage from school physics learning.  But, I 

haven’t understood it like this at that time.  I learned in theory. Now, the way we were taught 

helps me to understand.  

As noticed from the students’ explanation, there were only a few of them able to understand the 

concept of induced current. Though the mechanism used (cognitive perturbation) was supporting 

the students learning step by step, their low conceptual knowledge had hindered the progress of 

their concept learning. Because the students still have alternative conception of considering an 

induced voltage as a potential difference.  

Refining phase: This is the last phase in which the students would incorporate the comments 

from the discussion and redo the task the researcher inquired to enable them correct their 

difficulties. Also, the researcher checked each group’s work and continued his social support and 

cognitive perturbation in their contextual needs so that they would rectify their alternative 

conceptions. 

In this phase, the last inclusive panel of Faraday’s Electromagnetic Lab simulation, the 

generator simulation, was used by the students to repeatedly manipulate the simulations and 
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observe the induced emf (See Figure I8).  The students were guided to run the turbine of the 

generator at different RPM (rotations per minutes), varying the strength of magnetic field from 

minimum to maximum, changing the number of turns and the area of the coil. The guiding of the 

students in this phase was to enable them stabilize their conceptual understanding of the induced 

emf concept. 

 

Figure I8: Hydroelectric generator simulation used for refining students understanding of induction 

 

 

 

 

 


