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Summary

Artificial neural networks and optimization techniques are used to solve the relativis-
tic and non-relativistic eigenvalue problem in two-body systems. The numerical results

are in excellent agreement with known analytical or numerical ones obtained via other

methods.

The artificial neural network method used, employs a multilayer perceptron with one
hidden layer as the main approximating element. The trial solutions are constructed
in such a way that they satisfy the required boundary conditions automatically. The

dependence of the accuracy of the approximate solutions on the formulation of the trial

solution and the size of the multilayer perceptron is investigated.

Keywords: Feedforward Neural Networks; Multilayer Perceptron; Optimization; Few-

body Systems; Variational Methods; Coulombic systems; Ground States.
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Chapter 1

Introduction

Different types of methods have been developed for solving a variety of differential equa-
tions. Some of the methods involve approximations of the differential operators in the
equation by some difference equations. Such difference equations are derived from the
Taylor expansion of the solution to the differential equation about a suitable point in the
solution domain. Other methods obtain approximations of the solution to the differen-
tial equation by expanding the solution in terms of a set of known linearly independent
basis functions. Artificial neural networks (ANNs) as numerical tools in solving differ-
ential equations belong to the latter class. In mathematical terms ANNs are non-linear
functions having a set of variable parameters referred to as the connection weights. A
typical ANN computational method generally involves approximating the solution to the
problem at hand by some ANN. An appropriate error function, involving the solution

approximation, is formulated and then minimized, by varying the network weights to

extract the solution.

There is a number of advantages for employing ANNs in computational methods. One

of these advantages is that the approximations obtained via neural networks are differ-
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entiable, compact, and can be used in further calculations [1]. Furthermore, it has been
demonstrated that ANNs are universal approximators [2]. Many results supporting this
fact have been reported (2, 3, 4, 5]. Moreover, there is a possibility for implementing the

method on neuroprocessors [6].

ANNs are used in many areas of different disciplines. For example, ANN algorithms have
been realized on specialized hardware and were also employed in data analysis techniques
that have led to obtaining experimental results that would otherwise be extremely diffi-
cult to obtain in high energy physics (e.g. the mass of the top quark {7, 8]). As numerical
tools ANN were previously employed by Takeda and Goodman [9] and by Barnard and
Casasent [10] to solve systems of algebraic equations. Their approach involved mapping
the equations to be solved on a Hopfield-type network. An energy function relating to
the network was then minimized to obtain the required solution. Lee and Kang {11] used
a similar approach to solve differential equations. They transformed the original prob-
lem, via finite difference methods, into a system of algebraic equations that were then
solved using a Hopfield-type network. Yentis, Jr. and Zaghloul [6] also employed neural
networks to solve finite difference equations resulting from partial differential equations.
Wang and Mendel [12] used a feedforward ANN to solve systems of algebraic equations.
To solve differential equations Meade Jr. and Fernandez [13]| constructed splines by su-

perposing linear transfer functions. The solution was then expressed as an expansion

of these splines, the expansion coefficients of which are to be obtained by solving some
predetermined equations. The splines are then mapped on to a feedforward ANN. These

approaches, unfortunately, are very difficult to generalize and therefore have very limited

application.

Recently, Lagaris et al [1] presented a method that employs a multilayer perceptron,

with one hidden layer, as the main approximation element. The method requires the

construction of the solution approximation to satisty the required boundary conditions
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automatically. The solution approximation is mapped directly onto a chosen network.
Collocation methods are then used to formulate a suitable error function which is to
be minimized, under appropriate constraints, to extract the solution. The method was
applied to a variety of differential equations [1, 14, 15|. In particular, the eigenvalue prob-
lems considered in Ref. {14] included the Dirac and the multi-dimensional Schrédinger
equations. The method showed excellent performance in all the cases. However, the pre-
sentations in Refs. [1, 14, 15] do not explicitly establish aspects of the method related

to the network structure stabilization or regularization.

In this dissertation we use the method presented in Ref. [1] to obtain solutions of the
radial Schrodinger and Dirac equations for selected two-body bound states involving lo-
cal potentials. We investigate the dependence of the accuracy of the numerical solutions
on the form of the trial function and the number of neurons in the hidden layer of a
one-hidden-layer multilayer perceptron. We also consider the influence of the form of
the trial solution on the accuracy of the results. The question of the effect of the size of a
multilayer perceptron with one hidden layer on the accuracy of solution approximations
has been theoretically (or qualitatively) investigated (see for in stance [2, 3]). Most of the
findings of such investigations can, in many cases, be generalized to solutions ot differen-
tial equations [1, 14, 15]. We present results that suggest that approximations achieved
by ANNSs in certain two-body systems require special attention in order to achieve accu-
rate solutions. In our studies we consider, for comparison, selected few-body potentials
that have analytical solutions or have been solved in the literature, using other numerical
methods. The results of this work are meant to complement the work presented in Ref.
[1]. Since ANNs are beginning to receive increased attention in some areas ot physics we

believe that our results will serve as useful relevant reference for further application of

ANNSs in few-body physics.

This dissertation is organized as follows. In chapter 2 we recall the key equations to be
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solved. The main object of the chapter is the solution to the one-dimensional Schrodinger
and radial Dirac equations. A brief outline of the working principle of variational tech-
niques is also given. In chapter 3 we introduce the concept of artificial neural networks
and how their architecture is related to function approximations. In chapter 4 we solve
the eigenvalue problems for the following systems: a simple harmonic oscillator potential,
a Wood-Saxon type potential, some Coulombic-plus-power law potentials, an attractive
Coulombic potential, an exponential potential, and a Yukawa potential. The results

obtained are presented and discussed. The relevant conclusions drawn are presented in

chapter 5.




Chapter 2

Bound States

The main aim of this dissertation is to obtain numerical solutions of the eigenvalue prob-
lems of selected few-body bound systems. The equations we solve are the Schrodinger
equation, for the non-relativistic treatment, and the Dirac equation, for relativistic con-

siderations. In the present work we consider only the systems that interact via central

potentials.

In this chapter we summarize relevant aspects of the time-independent Schrodinger equa-
tion in section 1.1, and highlight the properties of bound state solutions. In section
1.2 we look at the time-independent Dirac equation. We conclude this chapter with a

short description, in section 1.3, of the application of variational methods to the radial

Schrodinger and Dirac equations.
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2.1 The Schrodinger Equation

The eigenvalue problem to be solved is
Hy = FEy (2.1)

where E is the energy eigenvalue and v the corresponding eigenfunction of the Hamilto-
nian H. For the time-independent Schrodinger equation the Hamiltonian, in the center-

of-mass system, reads :
L

where p is the reduced mass of and V(7) the potential representing the interactions in

a given system. If the prevailing forces in the system are central then the potential is

spherically symmetric and Eq. (2.1) is best described in spherical polar coordinates.

2.1.1 The Radial Equation

For spherically symmetric potentials the Hamiltonian operator H in spherical polar co-

ordinates, has the form

10 (,0 1 o (. ,0
H= 2 1 [fr?ar (T E)'Tgsinéga(smgé—g)

52
r2 sin® @ 3(,02] +Vi(r). (2.3)

The eigenfunctions 1 (7) can be written as

_|_

W) = Ru(r) Yim(6,9) = ~ (r) Yiw(6, ). (2.4

Substituting expressions (2.3) and (2.4) into Eq. (2.1) yields two separate equations, the
radial and angular eigenvalue equations. The angular equation can be readily solved for
the functions Y;,,(6, ¢) called the spherical harmonics. The subscripts [ and m are the

orbital angular momentum and magnetic quantum numbers, respectively. These num-

bers are related to the angular eigenvalues corresponding to the functions Y},,(, ¢).
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The radial equation for u;(r) reads

FV(r) | w(r) = Ewlr). (2.5)

B2 dw(r) [ R*I(I+1)
o0u dr?2

20 r?

This equation is simplified by writing it in the form

d? u(k, I(l +1 )
uz(2 7) (+1) FU) | wlk,r) = —k*w(k,r), (2.6)
dr ré |
where
U(r) = % V(r) and k2 — —2};&; E. (2.7)

There are very few potentials U(r) for which the exact solutions to Eq. (2.6) can be

obtained and thus numerical methods are employed to obtain approximate solutions.

2.1.2 Boundary Conditions

Most numerical methods for solving equations like Eq. (2.6) require prior knowledge of
the expected behavior of the solutions w;(k, r) in certain regions of space. Such behavior
can be determined by switching off the potential U(r). When U(r) = 0 Eq. (2.6) has
two sets of linearly independent solutions. One set consists of the Riccati-Bessel and
the Riccati-Neumann functions, j;(kr) and n;(kr), while the other set is made up of

the Riccati-Hankel functions of the first and the second kind, hgl)(k r) and hz(z)(lc r),

respectively. These functions are related by the equation [16]

ikr) = 5 WOk + O] 2.9
n(kr) = % P (kr) — B (k) | (2.9)
R (kr) = gilkr) £im(kr). (2.10)

The solution 7;(kr) is referred to as regular (finite at the point r = 0) and the others as

irreqular. The boundary conditions of the general solutions to Eq. (2.6) are derived from

the behavior of the functions j5;(kr) for small r and hgm)(k r) for large r, respectively.
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The boundary behavior of these functions has the form [16]

Ji(?) — (] 2t (2.11)
C
h7(z) — ~— exp [__z (z (I + 1)71'/2)] } (2.12)

where C; are constants and z = k.

If the potential U(r) is different from zero and it fulfills the conditions

: 2 .
}_1_1}1[]1 r*U(r) =0 (2.13)

and
lim rU(r) =0, (2.14)

then the regular solutions to Eq. (2.6) are defined through the boundary conditions

w(k,r) —3 Gilk,7), (2.15)
and
wlk,r) — f1lk, D) B (k7) + folk, 1) B (k ), (2.16)

=0

where fi(k,1) are the so-called Jost functions.

For bound systems the probability density, | ¥(7) |?, is required to be finite everywhere.

This implies that the bound state solutions u;(k,r) must be normalized so that
o0
N2 f uy(k,r) [2dr = 1, (2.17)
0

where N is a normalization constant. Also, this condition is fulfilled only when u;(ks, 7)

obeys relations (2.15) and (2.16) with fo(z ky) = 0, where £, > 0 and

Therefore, the bound state eigenfunctions to Eq. (2.6) satisfy the boundary conditions

ug(kb, 0) — ?.Lg_(k‘b, OO) = 0. (2.19)
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2.2 The Dirac Equation

The material presented in this section is intended to serve only as a comprehensive sum-

mary of the structure of the Dirac equation for stationary states in a given system.

The time-independent Dirac equation for a particle of mass m in a central Lorentz vector

V,(r) and scalar V,(r) potentials has the form (the units are such that & = ¢ = 1)

{5+ B[m+Vi(r)] +Va(r) }(7) = Ep(7) (2.20)

where E is the total energy and 7 the momentum operator of the system. The Dirac

matrices, & and 8, are defined by

1 0
and f = . (2.21)

_’ -O _1

0

Q1
|

o Qy

o
where & are the Pauli matrices and 1 denotes the unit matrix. We parameterized (7)

as follows | i
Ry (r) Q] (%)

=N i , 2.22

P ik oo -

where Qf are two-component angular spinor functions for a state with orbital angular

momentum ! and total angular momentum j. N is an appropriate normalization factor

defined by the condition

[ v @ dr=1, (2:23)

where 9* is the complex conjugate of 1. Substituting Eq. (2.22) into Eq. (2.20) yields

a set of coupled equations

B +m+Vi(r) - Vo(r) | R-(r) 94, (2.24)
(E—m—V(r) = Vo(r) | R+(r) O . (2.25)

ot
QY
3y
Ny
+
o
'-.3
o ——
=2,
|

-1 5! ﬁR_.. (T) Q‘fi —

We are interested only in the radial component of these equations. To separate the radial
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component from the angular one we proceed as follows. Using the relations |17]

r 7 a 2
(o) ol
T T T T

and the vector identity

it can be shown that [17]

F-gQ = ; 2+ L] u (2.26)
- %(1_5)% (2.27)
and
&5 =~ (1+5), (2.28)
where k = F(j + 1/2). Therefore
id-PRy(r) = i[F-PR(r)]Y +iR.(r)F- P (2.29)
[dR.(r) 11—k 1 ~;
— = ! 2.
T +— R+('r)_ Q (2.30)
and :
. dR 1 .
—30-pPR_(r) ), = [ Rdr(T) | ::H R_(r)| Q. (2.31)

Substituting relations (2.30) and (2.31) into equations (2.24) and (2.25), respectively,

reveals that the radial functions R, (r) and R_(r) satisfy the radial equations

- (d%+ 1_”) R, (r)

|E+m+V,(r) — Vy(r) | B_(r)

:
(% , 11"“’) R.(r) = [E-m-V()-Va()]Ralr),  (232)

For the ground state, k = 1. Using the transformation f(r) = rR,(r) and g(r) = rR_(r)

it follows that
dR..

dr dr dr

"ElizR.I."I"T

-dr




Bound States 11

hence the equations (2.32) take the form

- (; ?) £(r)
(ad?: +-f-) g(r)

In this work we solve these equations numerically using artificial neural network methods.

[E +m + Vy(r) — H,(?“)] g(r)

]

E—m—V,(r) = Vi(r) ]| F(r), (2.33)

2.3 Variational Methods

The Rayleigh-Ritz variational method has proved reliable in estimating ground state so-
lutions to eigenvalue problems of many systems. The description of this method is now

standard textbook material. In this section we, therefore, highlight the basic properties

of this method.

Given an eigenvalue problem

Hi=Ev, (2.34)

the ground state energy eigenvalue Fy of the Hamiltonian H can be estimated via the

functional

_ [Y*Hydr
[ p*epdr

where 1* denotes the complex conjugate of 1. This can be trivially shown (for non-

(H)

(2.35)

degenerate states) by expanding the orthogonal eigenfunctions of H, ,, in terms of a

complete set of basis functions ¢, in the form

where n = 0,1,2,... and ¢, are the variational parameters. Then Eq. (2.35) yields

(2.37)
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Since F,, > FEy then

>n ‘C*n IQ[EH_EU]

2on ‘Cn I2

(HY — Ey = > (. (2.38)

Therefore, Eq. (2.35) is and upper bound to the ground state energy Ej.

The variational approach involves finding a function % such that the variation of Eq.

(2.35) vanishes i.e.
0(H)=0. (2.39)

The technique requires an informed guess of the trial function, v;, containing adjustable
parameters, that can be varied to minimize ( H ). The procedure of adjusting these pa-
rameters varies from method to method [18, 19]. However, for most methods (e.g. basis
expansion), it essentially begins with choosing the initial values for the least possible
number of parameters. The chosen set of parameters is then appropriately varied to
obtain the minimum of { H). With the first parameter set fixed, a new set is initialized
and varied to further minimize ( H). The lowest value of ( H) thus obtained is the
best estimate of the ground state energy and 1/, the corresponding ground state wave
function. If ¢ differs greatly from the ground state of H then equation (2.35) yields
misleading results [16]. This approach of strategic fixing and increasing the number of

variational parameters, although effective, can be very demanding in terms of computer

memory and time [18, 19].

For the variational technique to work, the eigenvalue spectrum of the problem consid-
ered must have an upper or lower bound. Fortunately, this requirement holds for the

Schrodinger equation. For the Schrodinger equation, definition (2.35) translates into [16]

E

N, [ ;L u;(r)dgjjg"") V()i | dr (2.40)

N, / [hz (dut ))2+V(T)uf(fr)] dr | (2.41)
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where use has been made of the fact that u;(r) is real for bound states. The normalization

constant NN, is given by
- 660 —1
N, = fﬂ W2(r) dr] | (2.42)

The dependence of u;(r) on variational parameters is implied.

The existence of both positive- and negative-energy solutions for the Dirac equation,
on the other hand, indicates that the corresponding energy eigenvalue spectrum is not
bounded. Therefore the straightforward application of the Rayleigh-Ritz variational
technique in determining the ground state solutions of the Dirac equation constitute an
ill-posed problem. However, with appropriate modification, the variational technique
can be applied to the Dirac equation [20]. Most of such modifications, however, can be

implemented by simple choices of the trial solutions. In this work we employ the form

used in Ref. [14],
E=N, [{[n+V0)] [£0)+FO] + V@) [£0) -] Jar,  (243)

where
N, = { /U TP - gg(r)]dfr}_i . (2.44)

Again, the fact that the wave functions are real for bound states has been considered.

This form of the variational energy is obtained by rearranging the sum of the coupled

radial equations.




Chapter 3

Artificial Neural Network Methods

Artificial neural networks (ANNs) are devices constructed from weighted interconnec-
tions of processing units or artificial neurons. The terminology, structure, and processing
mechanism of these devices are derived mainly from the biological nervous system. Even
the explanation of their processing mechanism is simpler from the perspective of the bio-
logical nervous system. These devices have seen application in many disciplines. One of

the many applications is the function approzimation, which can be extended to solutions

of differential equations.

The use of artificial neural networks in solving differential equations involves approximat-

ing the solution with a function that depends, directly or indirectly, on neural networks.

An appropriate error function is then formulated in terms of the trial solution. The
resulting error function, therefore, depends on the network parameters. Thus, to ob-
tain the required approximate solution the error function is minimized with respect to
these parameters. This procedure highlights general features of a typical artificial neural
network numerical method. Neural network methods differ mainly by the technique of

constructing trial solutions to a given problem and the way the trial solution relates to

14
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the chosen network. The effectiveness of the method relies essentially on these techniques.

In what follows we introduce the general features of neural networks and the accompany-
ing terminology. In section 3.1 we summarize features and the mathematical realization
of the basic operation of an artificial neuron. In section 3.2 we introduce the concept ot
neural networks where we highlight their basic attributes. In section 3.3 we summarize
key aspects of the learning process. A summary of the properties of the optimization
environment employed in this work, Merlin [21], is presented in this section. In section
3.4 we discuss the utilization of artificial neural networks as numerical tools. A reader
interested in the details of the subject of artificial neural networks is referred to the

relevant texts in the literature, see, for example, Refs. [22, 23] and references therein.

3.1 The Artificial Neuron

The basic operation of an artificial neuron can be mathematically described as mapping
two different classes of vectors that are in the same space. This mapping is accomplished
by the use of the so-called activation or transfer function embedded into the neuron. The

input-output mechanism of an artificial neuron is generally described by the relation
y=uv fwz+u), (3.1)

and is illustrated by the block diagram in Fig. 3.1. Here x represents the input, v, w, and
u are the connection weights, f the transfer function, and y the output of the neuron.
The input weight w and the bias weight w transform z into a different variable, say z,
with w scaling z and u setting the new origin 2 = 0 in the domain of x. The output
weight v scales f. The scaling process (obtaining the desired values of the weights) is
called training or learning. The internal processing mechanism, during training, of an

artificial neuron can be conceptualized as in Fig. 3.2. In region 1 the inputs are summed
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and weighed. Then the weighed sum is transfered to region 2 where it is transtormed ac-

cording to the transfer function of the neuron. Depending on the threshold 71" the results

of the transformation are weighed and reflected as the overall output of the neuron.

Any function with appropriate characteristics can be employed as a transfer function for

a given neurons. The most frequently used functions tor this purpose are :

e The step function

1: z > ()
f(z) = (3.2)
0: 2z <0,
e The Piecewise-linear function
1 2> Q
f(z) = Z —a<z<a (3.3)
— 1 < —a,
¢ The sigmoid function
1
— , 3.4
f2) l+e™ %2 (34)

This function is continuous and bounded in (0,1). The sigmoid function is also

infinitely differentiable. Given the first derivative of the sigmoid function
— =0(1—-0), (3.5)

higher derivatives can be readily generated. The above mentioned scaling effects,
when the transfer function is chosen to be the first derivative of the sigmoid func-

tion, are illustrated graphically in Fig. 3.3.

e The hyperbolic tangent function
1 —e™ 22
C14em 22

f(z)

is continuous and bounded in (-1,1).
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Z =W+ u

Figure 3.1: An schematic representation of an artificial neuron.

1 2 3
'LU3 I |
" .. : : 2 Y2
Z =0 s fle) T o
T ud. > : : [%)]

z=Zwimi+u
g

Figure 3.2: A conceived internal processing mechanism of an arti-

ficial neuron.
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Figure 3.3: (a) The first derivative of the sigmoid. The effect of varying (b)

w, (¢} v and (d) v on the function shown in (a) when the function is used

in neuron activation.

The choice of a transfer function is generally informed by the role of the neuron and the

task at hand.

3.2 A Multilayer Perceptron

For increased efficiency, artificial neurons are usually connected to form clusters, artificial
neural networks. The processing mechanisms of such networks are generally similar to
that of a single neuron. These networks, in general, possess structure (architecture) that
is determined by the arrangement of and the role assigned to the constituent neurons.

The classification of artificial neural networks is generally based on the architecture and
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the input processing mechanism. In this work we employ a layered network in the ap-
proximation of the solutions to differential equations. As a result we summarize general

aspects of this type of networks.

A layered network is constructed by arranging all the neurons performing the same tunc-
tion in layers. This architecture is illustrated in Kig. 3.4. These networks are further
classified according to their input-output processing mechanisms. For instance, a feed-
forward network is one in which processing is progressive, one-directional only. That is,
the output of neurons in a given layer serves as input only to neurons in the proceeding
layer. This type of network consists of an input layer, an output layer and one or more
hidden layers, with no interconnections among neurons in the same layer. A recurrent
network, on the other hand, allows for forward and backward processing, as illustrated
in Fig. 3.5. When the output of neurons in a given layer does not satisty certain pre-
determined conditions, then such an output is propagated backward and fed back into
the input layer, in this type of network. Radial basis function networks employ radial
basis functions as transfer functions of the hidden layer. The most general network ar-

chitecture is the Williams-Zipser architecture [24], which does not assign fixed roles to

the network neurons.

A feedforward artificial neural network (or multilayer perceptron)' is popular in the field of
function approximation. In function approximation, it is customary to use linear transfer

functions, (3.3), in the input and output layers, respectively. 'The hidden layer(s), on

the other hand, require(s) nonlinear transfer functions to alter the representation of the
inputs. The output of a three-layer feedforward network, N (7, p), for a given input

vector,

= ('rla Ty ooty T'n) ; (37)

1The meaning of the terms input-,output-, and hidden-layer are illustrated in Fig. 3.4
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is described by the weighted sum

T
N(7, 4,7, w) = Z v; f(2), (3.8)
i=1
where f(z) is the transfer function of the hidden layer and
7L
R = Z Wij T + Ui (3.9)
j=1
is the transformation variable. The output of the four-layer network, illustrated in Fig.

3.4, is given by

o m M2y 1
NG, 5,5) =3 v fo | 2w fiz) — i | | (3.10)
i=1 j=1 d
with
T 1)
2; = Z wgk Tk T+ Uj, (3.11)
k=1

and @ is an array of matrices. For every additional hidden layer the corresponding

output of the network is obtained by replacing z with f(2) in Eq. (3.10).

Input Hidden Hidden Output
Layer Layer Layer Layer

s e

Figure 3.4: A typical architecture of a multilayer feediorward

artificial neural network with two hidden layers.




Artificial Neural Network Methods 21

Figure 3.5: An illustration of structural connections of neurons

allowing for reprocessing of the unsatisfactory output.
3.3 Minimization

The use of artificial neural networks in function approzimation can be derived from the
generalization of concepts in curve-fitting. Suppose that we wish to approximate a given
function f(z) with a neural network g(z, p), where 7 are the network weights. This task

can be achieved by minimizing the error distance

e(p) = f(z) — g9(z, D) . (3.12)

It is found that minimizing the function

L(§) = f ¢2(f) dz | (3.13)

instead, is more effective. However, in practice, the simpler form

L(p) = 3_ € (zi, ), (3.14)

is the one minimized. Minimization in this case becomes the result of training the net-

work.

Learning can be described by the general relation

pn+1)=pn)+ AP, (3.15)
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between the given value of the parameters, p(n), and the changed (updated) one p(n+1).
The techniques of determining the desired values of the updates Ap are referred to as
learning algorithms. Many such algorithms exist and are available in the literature [23].
However, for convenience, most of the algorithms have been compiled mnto computer
software packages that are also available to the research community. One such software
is Merlin, [21]. This particular software package offers a portable, open and integrated
optimization environment with numerous desirable features. Its main objective is to
locate a local minimum of a real function that depends on some variable parameters,
within suitable constraints. The error functions (3.12) and (3.14) belong to those func-

tions that can be minimized via Meriin.

Some of the key features of Merlin include an operating system and a control language
to help in devising suitable optimization strategies, and a variety of optimization al-
gorithms. The optimization algorithms included are direct, gradient, and conjugate
gradient methods. The direct methods are the Roll method and Simplex (or Polytope)
method. The gradient methods are the Quasi-Newton methods that use the so-called
BFGS and DFP updates [21]. The different implementations of these methods are

e BEFGS - uses a line search approach with the Choleski factorization of the Hessian

matrix.

e TRUST - uses a trust region search approach and maintains the Choleski factor-

1zation.

e TOLMIN - uses a line search approach with Goldfarb-Idnani factorization of the

Hessian matrix.

The conjugate gradient methods are those of Fletcher-Reeves and Polak-Ribiere (in-

cluding the generalized Polak-Ribiere method). The Levenberg-Marquardt method is
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included for sum of squares.

This software is maintained and supported. It is also freely available to the scientific

community. It can be downloaded from :

http://nrt.cs.uoi.gr/merlin/

All the minimization in this dissertation is done using Merlin.

3.4 Numerical Applications

Some methods of solving differential equations involve approximating the ditterential
operators in the equation by some finite difference equations. Such difference equations
are derived from the Taylor expansion of the solution about a suitable point. The
resulting system of equations can then be transformed into matrix equations, which can
then be solved by using relevant standard techniques. Some of the previous applications
of ANNs as computational tools involved solving such systems of equations. The system
of equations was mapped onto an ANN. The energy error function of the network was

then minimized to extract the desired solution [9, 11].

3.4.1 Neural Splines

The solution, ¢(r), to a differential equation can be expanded in terms of a known

linearly independent set of (basis) functions s;(r)

o(r) = i v; $i{(T) (3.16)
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where v; are the expansion coefficients. There are different types of basis functions avail-
able for use in this expansion. One of them are the spline functions, which are said
to offer a lot of advantages [25]. A spline function 1s a piecewise polynomial which is
non-zero only inside a small interval. The optimal degree of the polynomial chosen is
determined by the requirement that the polynomial should have a continuous kth deriva-

tive for it to approximate efficiently the solution to a (k 4 1)th order differential equation.

The piecewise-linear functions, Eq. (3.3), can be combined to construct Chapeau func-

tions [13],
Xa(x) — - 3 Zi-1 ST < T,
Li — Lj—-1
T — I;
yi(z) = g ;z , T ST K Tiga,
vilr) = 0, otherwise. (3.17)

This is accomplished by adding two piecewise-linear functions with certain constraints

imposed on the weights. As a neural spline such a construction involves adding the

output of two neurons to obtain
si(x) = v falz?) + v fu(z]). (3.18)

and then require the output weights to relate in the form

1

1 T 2
The labels A and B denote two adjacent intervals in which the piecewise-linear functions

are non-zero. The sum of the linear transfer functions leads to
27 (x) — 27 (z) = 2:(z) — 1, (3.19)

whence the input and bias weights are given by

2 2 XT;_
wi = ,up = o, (3.20)
Lj — Li—1 Xy — Lj—1
2 21;

Ti+1 — &y Lit1 ™ &
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To obtain the required solution only the expansion coefficients v; need to be determined.
In Ref. [13] an inner product of the differential equation with some weight function was
used to construct a system of algebraic equations which were then solved by standard

techniques of solving matrix equations.

3.4.2 The ANN Method

In the approaches summarized above the ANNs were employed not as the main approx-
imating elements of the solutions to differential equations. Theretore, the accuracy ot
the resulting approximate solutions cannot be entirely attributed to the performance of
ANNs. A method that employs ANNs as the main approximating elements of the solu-
tions to differential equations was presented in Ref. [1]. In this work we investigate the

performance of this method in the solution of eigenvalue problems involving differential

equations.

Eigenvalue problems are described by the general equation

H(r) = Ey(r). (3.22)

Bound state solutions to this problem are characterized by discrete eigenvalues £ and
the specific behavior of the eigenstates ¥ (r). Eigenstates of a bound system vanish at
the origin of the coordinate system, and at large distances. Solving this equation for

bound states means determining the quantities £ and (r).

The method presented in Ref. 1] relies on, firstly, discretizing the coordinate space. By

doing so Eq. (3.22) is transformed into a system of equations
H(r) = Ed(ri), mneD. (3.23)

where D defines the domain of the variable . This set of equations 1s to be solved subject
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to the appropriate boundary conditions. This method uses the artificial neural network
as the basic approximating element. In this case the solution to the eigenvalue problem
is approximated by the output of the network. The construction of the approximate

(trial) solution is done in such a way that the desired boundary conditions are satisfied

automatically. To extract this solution the error function [1]

L@) =N Y [Hou(ri,p) - En(ri$)| . mieD, (3.24)

*

z

where
1—1

Ne=| [ 1o Par|

il

is minimized by varying the network parameters p, weights, subject to suitable con-

straints. The eigenvalue F is also expressed in terms of the parameters p via the

Rayleigh-Ritz variational technique :

(@) = Ne [ wi(ri, ) H u(ri, 5) dr (3.25)

The lowest value of the function L(7) thus attained yields the approximate solution to
the problem. The ideal minimum of L(p) in this case is zero. However, not any com-

bination of parameters that yield the lowest minimum for the error function solve the

problem. A very reliable minimization technique is thus required.

The explicit error function for the radial Schrodinger equation is

LG) =N, ¥ { - LA 1 [V(r) ~ B] welr) } , (3.26)

while for the Dirac equation we use

T

L@ = Nay {{dﬁf’i) ft("f“') | [m+E+VS(n-)——%(m)]gt(ri)}

4 {figt(m‘) | gt(n) [m — FE + Vs(?"z') + V;,(n-)] ft(frz—)} }

dr T,

(3.27)
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N, (Ny) is the normalization coeflicient of the Schrddinger (Dirac) trial solutions

[ fﬂ 2 (r) dr]_l (3.28)

{ [Um [ff(fr') + gf(fr)] d*r} . (3.29)

N

Ny

|

These factors appear in the error function to ensure that the trial solutions are normal-

1zed.

In the method summarized above the type of the network used and the functional form
of the trial solution remain arbitrary. In Ref. [14] the trial solutions were formulated in

such a way that the behavior of these solutions near the boundaries,

limr ! f(r)=1 and lim e*" f(r) =1, (3.30)

r—3{) T-—200

where a is a constant, is explicitly included. The trial function has the general form

Yu(r, ) = B(r, a) N(r, p). (3.31)

N(r,p) is a multi-layer perceptron with one hidden sigmoid layer. The function B(r, a)
serves to enforce the correct behavior of the numerical solution at the boundaries. The

constant a is treated as an additional adjustable parameter. The trial solutions can be

expressed in the form
bi(r, ) =1 N(r,p), (3.32)

where the asymptotic behavior of the trial solution is implied by the transter function
embedded in the hidden neurons. This parameterization, (3.32), is similar to expres-
sion (3.31) but with the factor B free from adjustable parameters. This increases the
dependence of the trial solution on the network. We consider the first derivative of the
sigmoid as the transfer function. Note that the first derivative of the sigmoid displays

the asymptotic behavior,

lim N(r,p) =0, (3.33)

r—00
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as desired. The third derivative of the sigmoid, on the other hand, satisfies both the
conditions (3.30). However, we choose the first derivative to establish the general etfect

of the form of the solution approximation. The input and output layers are linear.

In this work we compare the influence of the two forms of the trial solutions (3.31) and

(3.32) on the accuracy of the numerical results. The method can be used also to compute

excited states. These may be constructed in the form

Pn41 (7, D) = di(r, D) — z_;] Cn Yn(r) | (3.34)
where
in = [ $u(@) ¥n(a) da (3.35)

and 1, are known normalized numerical states. In this case the functions ¢, are the
ones formulated as in (3.31) or (3.32). With this construction the excited states are, in

addition, automatically orthogonal to the lower states, as required.




Chapter 4

Results and Discussions

We applied the neural network method using a three-layer feedforward ANN with two
different formulations of the trial solutions, as described in the previous chapter. Integrals
were calculated using Gauss-Legendre quadratures and the networks were trained only at
the integration points. To simplify discussions of our results we employed the following
notations: We used N to denote the number of neurons in the hidden layer, AL = F,—E,
the deviation of the numerical energy E, from the analytical one E,, and Au = u, — u,

the deviation of the numerical wave function u, from the analytical one u,.

4.1 The Schrodinger Equation

In what follows we present results for the lowest, at most, three excited states of selected

potentials. We generated the excited states from the most accurate of the lower numerical

ones.

29
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4.1.1 The Simple Harmonic Oscillator Potential

This potential is given by the simple form
V() = 22, (4.1)

and is known to approximate the vibrational modes of most diatomic molecules quite

well [26]. The variable z is dimensionless in this case. The Schrodinger equation for this

potential has analytical solutions
un(z) = Ny o™ %/2 H,(x), n=0,1,2,..., (4.2)

where N, is the normalization constant, £, = 2n+1 are the corresponding energies and
H,(z) the Hermite polynomials. We considered the domain [-10,10] with two hundred
integration points. In the case of the ansatz (3.31) we approximated the boundary

behavior of the trial solution by the form

2

B(z,a) =e %, (4.3)

and used the sigmoid function for the transfer function of the hidden neurons. With
this representation the ansatz (3.31) boils down to approximating just the Hermite poly-
nomials. For the first excited state we exploited the knowledge that u,(0) = 0 and
formulated the problem independently from the ground state. We display the energies
obtained for the lowest three states of this problem as a function of N in table 4.1 for the
ansatz (3.32) while in table 4.2 we show the deviations of the numerical energies from
the analytical values, as a function of N, for the ansatz (3.31). In Fig. 4.1 we show the
graphs of the numerical wave functions of the ansatz (3.32) corresponding to the most

accurate eigenvalue in table 4.1.

The results obtained with ansatz (3.32) display, in general, some familiar features. As

seen in table 4.1 the accuracy in the energies generally converged to the analytical value

as N is increased. This observation is in agreement with the findings of Ref. [2]. The
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accuracy in the energies of the excited states is generally lower than that of the ground
state. Also, the rate of convergence appears to be slower in the case ot the excited states.

This is due to cumulative errors as the excited states are obtained using lower eigenstates.

It is customary to compare the deviations Au and AF (28]. In Fig. 4.2 we present the
deviations Awu. As can be observed from this figure the maximum Awu are generally less
than VAE. The deviations are very small around the minimum of the potential. This
accuracy shows that this ansatz represents the correct solution quite well in this region.
However, the deviations become significant toward the tail of the wave functions. The
ansatz overestimates the asymptotic exponential decay of the exact solution. This can
be attributed to the strong convergence of the derivative of the sigmoid. The ansatz
(3.31), on the other hand, produces exceptionally accurate results, especially for the
ground and first excited states. The deviations AE are shown in table 4.2. 1t 1s seen In
this table that the calculated energies, to all practical purposes, for the ground and first
excited states are exact. The second excited state was also computed within nine digits

of accuracy. It is clear from these results that the way the trial solution is constructed

is crucial.
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Table 4.1: The energies for the lowest three states of the simple harmonic

oscillator potential as functions of the number N of neurons in the hidden

layer. These energies were obtained using the ansatz (3.32).

N Ey = 1. B, = 3. E, = 5.

1 10158384  3.0755280  6.0369568
o 1.0033040  3.0193306  5.0856387
3 1.0009653  3.0064398  5.0310690
4 1.0003345  3.0024667  5.0099337
5 1.0001285  3.0010273  5.0025493
6  1.0000531  3.0004557  5.0008563
7 1.0000232  3.0002114  5.0003645
&  1.0000106  3.0001018  5.0001464
9  1.0000050  3.0000012  5.0000714
10 3.0000258  5.0000344

1.0000024
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Table 4.2: The deviations of the numerical energies, from the analytical
values, for the lowest three states of the simple harmonic oscillator potential

as functions of the number N of neurons in the hidden layer. The energies

were obtained using ansatz (3.31). a(—b) = a x 107°.

N AE, AF, AE,

1 3.75(-16) 5.01(-16) -1.98(-10)
2 6.26(-16) 0. -3.25(-11)
3 6.26(-16)  -8.77(-16) 1.17(-10)
4 5.01(-16) 6.26(-16) 3.81(-11)
5 7.52(-16) 5.01(-16) 1.70(-10)
6 7.52(-16)  -5.01(-16) 4.39(-11)
7 2.51(-16) 0. 1.52(-11)
8 7.52(-16)  -5.01(-16) 2.78(-10)
9 5.01(-16) 1.25(-15) -8.04(-12)
10  3.75(-16) 2.50(-16) -1.37(-11)
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Potential —

Figure 4.1: The simple harmonic oscillator potential and the numerical wave

functions of its lowest three states for the ansatz (3.32).
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Figure 4.2: The deviations of the numerical wave functions, shown in Fig.

4.1, from the corresponding analytical ones.
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4.1.2 The Optical Potential

This potential has the form

Viz) = 11j:t [1 a0(1t+ t)] (4-4)

where t = exp[(z — Z,)/a, ], The values of the constants are given by [27]
u, = —=50fm=2, a,=06fm, and =z,=7fm.

The bound state energies, for the s-states, of this potential have been calculated in Ref.
27]. The lowest three states are relatively close to one another: By = -49.457788728
fm~2, E, = -48.148430420 fm~2, and E3 = -46.290753954 fm~* [27]. Thus, this potential
poses an interesting test for the present approach. We solved the problem in the interval
[0,15] with two hundred integration points. We approximated the boundary behavior of

the trial solution by the form
B(r,a) =re *7", (4.5)

for the ansatz (3.31) and used the sigmoid function for the transter function of the hidden
neurons. We show the variation of the energies of the three lowest states as a function of
N in tables 4.3 and 4.4 for the ansatz (3.32) and ansatz (3.31), respectively. We compare
these energies with the corresponding ones quoted above. Fig. 4.3 shows the graphs of
the numerical wave functions obtained with the ansatz (3.32) corresponding to the most

accurate eigenvalue in table 4.3 .

The relative accuracy of the energies obtained with the ansatz (3.32) appear to converge
more rapidly and smoothly to the values reported in Ref. [27] as N is increased. We
achieved an accuracy of ten digits with N = 10 for the ground state. The accuracy in the
energies of the excited states is, once again, lower than that of the ground state. Since

the states are close to one another the range of the wave functions is the same. This can

be clearly seen from Fig. 4.3
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Table 4.3: The energies for the lowest three states for the optical potential, |

as functions of the number N of neurons in the hidden layer, obtained with

the ansatz (3.32).

N Ey[fm2] B,[tm™? E,[fm™2
1 _40.273300476  -A7.042383505  -45.953188341
2 40.319483607  -48.004244993  -46.192208217
3 40.443115265  -48.131857890  -46.260181905
4 49457702399  -48.127867361  -46.280937589
5 40457774686 -48.146200212  -46.290170033
6 40457787225 -48.147453435  -46.289555696
7 49457788181  -48.148382580  -46.290448035
g 49457788664  -48.148415021  -46.200094972
9 49457788622  -48.148137226  -46.290708008
10 49.A5TTR8T24  -A8.148425068  -46.290620574
Ref. [27]  -40.457788728  -48.148430420  -46.200753954
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Table 4.4: The energies for the lowest three states of the optical potential,

as functions of the number N of neurons in the hidden layer, obtained with

the ansatz (3.31).

N Fi[fm™?] Es[fm™2] Es[fm =]
1 -49.445441445 -48.033460663 -46.147913397
2 -49.454784635 -48.111376104 -46.238465097
3 -49.456828832 -48.146419706 -46.290484170
4 -49.457731332 -48.143231053 -46.289516582
O -49.457733292 -48.148323225 -46.290647015
6 -49.457781998 -48.148299499 -46.290667077
7 -49.457734639 -48.148390012 -46.290661092
8 -49.457788692 -48.148395420 -46.290656837
9 -49.457787283 -48.148381978 -46.290655162
10 -49.457787569 -48.148410132 -46.290656265
Ref. [27] -49.457788728 -48.148430420 -46.290753954
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Figure 4.3: The optical potential and the numerical wave functions of its

lowest three s-states for the ansatz (3.32).
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4.1.3 Quarkonium

The interactions of the constituent ’particles’ in a mesonic system, quark-antiquark

bound state, can be estimated by potentials of the form

V(r) = Fbre, (4.6)

Vi(r) = i - 27 (4.7)
Vao(r) = i 27 (4.8)
Va(r) = —}1— +2(r+71°), (4.9)

where the unit of length is the Bohr radius. The ground state of the latter potential

Vs(r) corresponds to the exact eigenfunction [28]
u(r) = Nyrexp(—r—1°) (4.10)

with eigenvalue 2.5. N is the normalization coefficient. We treated Vi(r) and V3(r) with
fifty integration points in the interval [0,10], and V,(r) with forty integration points in
the interval [0,4]. For these potentials we computed only the ground states. Also, we
treated only Va(r) with both ansatz 3.31 and ansatz 3.32 and compared results obtained
with the exact ones (see Fig. 4.4). We again approximated the boundary behavior ot

the trial solution by
B(r,a) =re™ %", (4.11)

for the ansatz (3.31) and used the sigmoid function for the transter function ot the hidden

neurons. For V;(r) and V,(r) we only used the ansatz (3.32). The numerical energies as

a function of N are given in table 4.5.

The energies of these potentials also showed convergence as N was increased. This con-

vergence is illustrated in Fig. 4.4(a) and Fig. 4.5. Again the convergence is very fast.
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The highest accuracy of the energy for V3(r) we could obtained with ansatz (3.32) is
nine digits (N = 9). The ansatz (3.31) on the other hand produced the lowest deviation
AE ~ 10712 with the same number of neurons. This ansatz, (3.31), could fit the ground
state energy to about nine digits with only three neurons in the hidden layer. Using
the results of V3(r) and Fig. 4.5 we estimate the accuracy of the energies for V4(r) and
Vo(r) for N = 9 to at least eight digits. We compared the numerical wave tunctions
obtained with the analytical one. The wave functions used were the ones for which the
value of the corresponding numerical energies differed from the analytical one by ~ 107.
The deviations Au are shown in Fig. 4.4(b) and (c). These figures show that the maxi-
mum Au, in both cases, is approximated by Vv AE. These deviations occur mainly in the

interaction region. However, the ansatz (3.32) produced relatively higher deviations, Au.

In the studies of the properties of few-body systems the quantities {7 ), {r*), and (0)

are usually required. One way of approximating the quantity 4(0) numerically is via the

relation 28]

$*(0) = 2 < m;?(f) > . (4.12)

In table 4.6 we compare our numerical results of these quantities with results from other

numerical methods in the literature. Except for the value of ¥?(0) the ANN method
produces, comparatively, accurate results. The energy is reproduced to nine digits, and
the corresponding wave function to four digits, of accuracy. The expectation values, {7 )
and (72), on the other hand, are reproduced to at least seven digits of accuracy. As can
be observed from the results of Ref. [28] it is not unusual for a numerical wave function

to produce accurate energy values but poor estimates of the quantity 1(0).
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Table 4.5: Ground state energies, in a.u., for the quarkonium potentials as

functions of the number N of neurons in the hidden layer.

Va(r)
N Vilr) Valr) (3.32) (3.31)
1 1421317794  1.287659018  2.567574234  2.505377798
2 1404523739  1.230396959  2.506794595  2.500006103
3 1403314774  1.223708670  2.500423735  2.500000006
4 1.403161714  1.223705266  2.500027409  2.500000065
5 1.403130685  1.223705136  2.500000628  2.500000000
6 1403130512 1.223705128  2.500000370  2.500000102
7 1403130213 1.223705126  2.500000001  2.500000019
8 1.403130350  1.223705117  2.500000002  2.500000000
9 1403130220  1.223705121  2.500000000  2.500000000
10 1403130211 1.223705117  2.499999956  2.500000001
Exact 2.500000000  2.500000000

42
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Table 4.6: Results for the potential V3(r) = —1 + 2 (7 +72).

oVi(r
E (1) (r%) 2 < () >
9500 000 000  0.605 867 0.447 07256 24.960 17
Ref. [28] 0.605 863 0.447 069 25.693 80

"This work 2.000 000 002 0.605 862 91 0.447 068 58 24.423 451
Exact 5/2 0.605 862 89 0.447 068 56 25.693 806
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Figure 4.4: (a) The variation of the numerical ground state energy of V3(r)
with the number of neurons in the hidden layer. The deviations of the
neural ground state wave functions of V3(r) from the analytical one. (b)
was computed with ansatz (3.32) (N = 6), while (c) was obtained with
ansatz (3.31) (N = 3). AFE ~ 107" in both cases. The unit of length is the

Bohr radius.
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Figure 4.5: The variation of the numerical ground state energies ot Vi(r),

(a), and Va(r), (b), with the number of neurons in the hidden layer.
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4.1.4 The Coulomb Potential

The ground state of the potential
V:S(T) — T T (413)
in Hartree atomic units (a.u), admits the analytical solution

u(r) =2re”" (4.14)

with the corresponding bound state energy being F; = -0.5 a.u. We solved this prob-
lem with twenty-one integration points in the interval [0,19]. For the ansatz (3.31) we

approximated the boundary behavior of the trial solution by the form
B(r,a) =re”*", (4.15)

and used the sigmoid function for the transfer function of the hidden neurons. In table

4.7 we give the deviations AE of the computed energies as a function of N.

As seen in table 4.7 the accuracy in the ground state energies of this system shows little
dependence on N for ansatz 3.31 and ansatz 3.32. The accuracy of these energies seemed
to depend mainly on the range of integration. The average deviation of the numerical
energies from the analytical value is ~ 107** a.u. But the lowest deviation, ~ 107'* a.u.,
was obtained with the ansatz (3.32) and N = 2. We compared the numerical ground
state wave functions, obtained with N = 1 for both ansatz 3.31 and ansatz 3.32, with the
analytical one. And we obtained the results shown in Fig. 4.6. As seen from this figure

the maximum Awu are considerably less than v AFE. Also, the deviations in the case of

the ansatz (3.31) are comparatively higher than those of the ansatz (3.32).
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Table 4.7: The deviations, from the analytical value, of the ground state
energies, in a.u., of the Coulombic potential as functions of the number

N of neurons in the hidden layer. a(—b) = a x 107°.

N (3.32) (3.31)

1 -1.24(-13)  -1.27(-13)
2 1.60(-14)  -1.27(-13)
3 -8.93(-14)  -1.27(-13)
4 1.20(-13)  -1.27(-13)
5 1.10(-13)  -1.27(-13)
6 1.27(-13)  -1.27(-13)
7 1.27(-13)  -1.27(-13)
g 11.27(-13)  -1.27(-13)
9 -1.27(-13)  -1.27(-13)
10 -1.27(-13)  -1.27(-13)
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Figure 4.6: The deviations of the neural ground state wave functions of the

Coulomb potential computed with (a) ansatz (3.32) and (b) ansatz (3.31)

for N = 1. The unit of length is the Bohr radius.




Results and Discussions 49

4.1.5 Deuteron

We assume that the interactions between the nucleons in the deuteron can be represented

by the exponential potential
Ve(r) = —Ae™®7, (4.16)

(4.17)

where A, o, B, and B are constants. We computed the ground state energies ot the
deuteron (h*/2 p = 41.47 MeV) for each of the two potentials. We considered the intervals
0,3] with fifty integration points in each case. Again, we represented the boundary

behavior of the trial solutions by the form
B(r,a) =re” %" (4.18)

and used the sigmoid function for the transfer function of the hidden neurons, for the
ansatz (3.31). The results are given in table 4.8. In Fig. 4.7 we show the wave functions

corresponding to the singlet s-state, for V,(r), and the triplet s-state, for V().

For the exponential potential, V,(r), we used the parameter set A = 104.2 MeV and «
= 0.73 fm [29]. These parameters give rise to a virtual state with energy 0.039913 fm—*
[29] . In this work we obtained the value 0.039049 fm~*. The convergence of the energy
value, as N is increased, is relatively fast and smooth with the ansatz (3.32). For the
Yukawa potential, V,(r), we used the parameter set suggested in [30], B = 14.3 MeV and
B = 2.5 fm. These values of the parameters yield an energy value of 0.2354038389 fm™1.
This value is close the one obtained in Ref. [29], 0.23640 fm~*, with the exponential
potential using the parameter set A = 155.17 MeV and o = 0.76 fm. For this potential,

the convergence of the energy value, as N is increased, is faster with the ansatz (3.31).
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Table 4.8: The ground state energies of the deuteron, in fm~!, for the exponential and

Yukawa potential as functions of the number N of neurons in the hidden layer.

Ve(r) Vy(r)

N (3.32) (3.31) (3.32) (3.31)

1 0.0612097533 0.0612097519 0.2357756418 0.2354104880
2 0.0391158653 0.0391114703 0.2354071620 0.2354038462
3 0.0390502394 0.0390493855 0.2354038491 0.2354038389
4 0.0390493825 0.0390499544 0.2354038389 0.2354038389
5 0.0390493730 0.0390493837 0.2354038389 0.2354038389
6 0.0390493729 0.0390493742 0.2354038389 0.2354038389
7 0.0390493729 0.0390493732 0.2354038389 0.2354038389
8 0.0390493729 0.0390493770 0.2354038389 0.2354038389
9 0.0390493729 0.0390493734 0.2354038389 0.2354038389
10 0.0390493729 0.0390493742 0.2354038389 0.2354038389

Ref. [29] 0.039913 0.039913 0.23640 0.23640
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Figure 4.7: The singlet, (a), and triplet, (b), s-state wave functions of the
deuteron computed with the ansatz (3.32), N = 5.

4.2 The Dirac Equation

There are very few potentials for which the Dirac eigenvalue equation can be solved

analytically. The Coulomb potential is one such potential [31].

4.2.1 The Dirac-Coulomb Problem

The non-relativistic treatment of the Coulomb potential suggested that the accuracy of
the results could be independent of the size of the hidden layer of the perceptron. We
therefore considered the Dirac-Coulomb eigenvalue problem for further investigation. In

this case we solved the problem with the same ansatz but for different transter functions.
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The Exact Solution

The Dirac eigenvalue problem for the Coulomb potential constitutes the Dirac-Coulomb

problem [26]. The analytical ground state solution of this problem can be found in the

literature [16],

flz) = CV/I+eaTe ®® (4.19)
1—e¢€
@) = |15 1) (420
where C is a constant, and
r
= d e=7=v1-aZ. _
T Y and € V1- o« (4.21)

For the present work we chose the Coulomb potentials

%1(27) — *—%, (422)
Violz) = #%3 (4.23)

where o; = 1/137.0359895 and oy = 0.49. In the case of o, we used the mass 2.385

GeV, which is the reduced mass of the bottonium.

We treated the Coulomb potentials as Lorentz vectors. We began by computing the

normalization coefficients parameterizing the trial solutions in the exact solution form,

fe(z, D) = p12Pexp(—ps ) (4.24)

gt(mz -‘g)

py 275 exp(—ps ), (4.25)

where the p; were treated as minimization parameters. With this parameterization we
determined the numerical values of the p; that solved the relevant eigenvalue equation for

the ground state, for each of the two potentials, and compared them with the analytical

ones. The results are shown in table 4.9.
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As can be seen in table 4.9 the reproduction of the values of all the parameters is excellent,
especially for the V,1(z) case. With ay (> ;) the range of the Coulomb potential
becomes shorter. The amplitude of the small part of the wave function for a short range
potential is comparatively significant. As a result the probability of convergence of the

variational energy to the ground state energy is small. That is one of the reasons {for the

lower accuracy attained in the case of .
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Table 4.9: Comparison of the numerical and analytical values of the param-

eters of the exact solutions to the ground state of the Dirac equation for

the Coulombic potentials V,;(x) and V(x).

Ve(z) Vea(2)

1 1.0000061750086550 0.73940238035
Dy 0.0036487476462711 0.19356885132
ps/pr 0.0036487251153620  0.26179095215
Y 0.0036487251153640 0.26179095329
09 0.9999733739645460 0.87172243251
P 0.0999733730645862  0.87172243047
b 0.9999733739645427 0.87172243289
3 0.0072973530796413 1.16864396100
D 0.0072973530796413 1.16864996144
o 0.0072973530796448 1.16865000000
E 0.99997337396405437 2.07905793126
E, (0.9999733739045427 2.07905800243
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The Numerical Treatment

We then proceeded to solve the problems by parameterizing the trial solutions in terms

of neural networks. Each radial function was represented by a separate network,

ft(xa _*f)

g;(ﬂ:, _’Q)

z N(x,pf) (4.26)

|

x N(z,p,) - (4.27)

We solved the Dirac-Coulomb problem for the coupling constant oy in the interval
0,2500] with two hundred integration points. The ’variations’ of the energies with N for

both transfer functions are displayed in table 4.10.

As seen in the table the energies appear to be almost independent of N for both transfer
functions. However, the exponential transfer function produced higher accuracy than
the derivative of the sigmoid. We managed to reproduce the ground state energy up to
ten digits of accuracy with the exponential transfer function (N = 2). The reason for this
high accuracy could be the relationship between the transter function and the form of the
exact solutions. In contrast, the best fit attained with the sigmoidal derivative was only
six digits of accuracy (N = 4). We plotted the graphs of the large (small) component
of the ground state wave function in Fig. 4.8(a) (Fig. 4.9(a)) for the exponential and
Fig. 4.10(a) (Fig. 4.11(a)) for the sigmoidal derivative transfer functions. The average
deviation from the analytical wave functions of the numerical large (small) component,
illustrated in Fig. 4.8(b) (Fig. 4.9(b)) for the exponential and Fig. 4.10(c) (Fig. 4.11(c))
for the sigmoidal derivative, does not exceed the square root of the absolute error in the
numerical energies in both cases. In general, the numerical wave functions tend to ap-
proach zero a little slower as z — 0 with the sigmoidal derivative vanishing a little faster

as © — oo than the analytical ones.

In the case of the coupling constant ay we solved the problem in the domain {0,24] with
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three hundred integration points. As observed from table 4.11 and Fig. 4.12 to Fig. 4.15
the results have the same features as those obtained with «;. However, the accuracy is
unsatisfactory in this case. The average deviation of the numerical energies is ~ 0.001
GeV while the maximum deviation of the numerical wave functions is ~ 0.001 fm. The

numerical energies do not indicate any pattern in the dependence on N, as was the case

in the non-relativistic treatment of a similar potential.
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Table 4.10: Ground state energies for the Coulomb potential with the cou-
pling constant c; as functions of the number N of neurons in the hidden

layer. These values were obtained with the sigmoidal and the exponential

as transfer functions. The exact value is 0.9999733739645427.

N Sigmoid Ea:poneniial

1 0.99997855 0.9999733738579
2 0.99997647 0.9999733739217
3 0.99997424 0.9999733739215
4 0.99997380 0.9999733739214
D 0.99997484 0.9999733739212
6 0.99997466 0.9999733739212
7 0.99997461 0.9999733739213
8 0.99997452 0.9999733739213
9 0.99997448 0.9999733739211

0.99997439 0.9999733739211

(-
-

b7
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Table 4.11: Ground state energies, in GeV, for the Coulomb potential with
the coupling constant cs as functions of the number N of neurons in the
hidden layer. These values were obtained with the sigmoidal and the expo-

nential as transfer functions. The exact value is 2.07905800243 GeV.

N Stgmord Exponential
| 2.08105 2.07888
2 2.08049 2.08496
3 2.08145 2.08571
4 2.08477 2.08676
5 2.08557 2.08620
6 2.08031 2.08610
7 2.07666 2.08483
3 2.07640 2.08560
9 2.08076 2.08227
10 2.09139 2.08399

D8
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Figure 4.8: The normalized large part of the exponential neural ground
state wave function, upper figure (a), of the Dirac-Coulomb problem (),

computed with N = 2 and its deviation, lower figure (b), from the analytical

one.
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Figure 4.9: The normalized small part of the exponential neural ground
state wave function, upper figure (a), of the Dirac-Coulomb problem (a:),

computed with N = 2 and its deviation, lower figure (b), from the analytical

ole,
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0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600
x

Figure 4.10: The normalized analytical (a), and the sigmoidal derivative
neural large part of the ground state wave function (b), of the Dirac-

Coulomb problem (a;), computed with N = 4 and its deviation (c) from

the analytical one.
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Figure 4.11: The normalized analytical (b), and the sigmoidal derivative
neural small part of the ground state wave function (a), of the Dirac-

Coulomb problem (), computed with N = 4 and its deviation (c) from

the analytical one.
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Figure 4.12: The normalized analytical (b), and the exponential neural large
part of the ground state wave function (a), of the Dirac-Coulomb problem.
(ag), computed with N = 1 and its deviation (c) from the analytical one.

Distances were measured in fermi (fm).
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0.25
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0.15

Figure 4.13: The normalized analytical (b), and the exponential neural small
part of the ground state wave function (a), of the Dirac-Coulomb problem
(o), computed with N = 1 and its deviation (c) from the analytical one.

Distances were measured in fermi (fm).
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Figure 4.14: The normalized analytical (b), and the sigmoidal derivative
neural large part of the ground state wave function (a), of the Dirac-
Coulomb problem (a3), computed with N = 1 and its deviation (c) from

the analytical one. Distances were measured in fermi (fm).




Results and Discussions 66

Figure 4.15: The normalized analytical (b), and the sigmoidal derivative
neural small part of the ground state wave function (a), of the Dirac-
Coulomb problem {(a»), computed with N = 1 and its deviation (c) from

the analytical one. Distances were measured in fermi (fm).




Chapter 5

Conclusions

We have used the artificial neural network method of Ref. [1] to determine bound
state solutions to selected two-body potentials. Because of the known approximation
capabilities of feedforward multilayer perceptrons, we employed a three-layer perceptron
in our calculations. We focused mainly on the effect of the size of the hidden layer on
the accuracy of the results. The dependence of the accuracy on the form of the trial

solution was also investigated. Our conclusions can be summarized as follows:

¢ In the case of potentials that satisfy the conditions

lim r?V(r) =0 and lim rV(r)=0,

r—0 P00

a three-layer perceptron with a higher number of neurons in the hidden layer
generally yields very accurate results. This was explicitly demonstrated by the
results for the simple harmonic oscillator and Coulomb-plus-power law potentials.

This inference is in line with the findings of Ref. {2].

e The accuracy achieved by the three-layer perceptron is greatly enhanced by explic-

itly incorporating characteristic features and properties of the expected solution

67
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when constructing a trial solution. This observation was demonstrated by the re-
sults obtained for the simple harmonic oscillator potential. For example, the first
excited state could be constructed using the orthogonality condition. However,
such a construction would have resulted in less accurate results as is clearly seen

from the results of the second excited state.

In the variational method, when the numerical energy is correct to second order
then the corresponding wave function is generally correct to first order [28]. The
results of the neural network method used in this work did not display a definite
relationship between the deviations in the energies and the deviations in the corre-
sponding wave functions. Although the accuracy in the numerical wave functions
was lower than that of the corresponding energies, this accuracy was generally
higher than the first order predictions of the variational method. The observed or-
der of accuracy of the eigenvalues and the corresponding eigenfunctions emanates
from the fact that, unlike the variational method which minimizes the functional

( H), the ANN method minimizes the variance ([ H — (H ) [*).

The accuracy of the results obtained for the Coulomb, Yukawa, and exponential
potentials showed little dependence on the size of the hidden layer. For a hid-
den layer with more than three neurons, the results referred to do not indicate
any pattern that suggests that a more dense hidden layer will yield more accurate
results. Instead, the accuracy of the results depended on other factors, for exam-
ple, the range of integration. However, the relativistic treatment of the Coulomb
potentials indicate that certain transfer functions will produce better results than

others. Therefore, for these potentials, a network with three hidden neurons will

yield very accurate results.

The factoring-out of the asymptotic behavior of the bound state wave functions in
the formulation of the trial solution has certain advantages. However, if the form

of the chosen factor differs greatly from the exact one, then this technique will

inhibit the process of obtaining better results. This observation is demonstrated by
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the results of the simple harmonic oscillator potential, where factorizing produced
exceptionally accurate results, and the results of the Woods-5axon potential, where
factoring was not so effective. Incorporating the asymptotic behavior of the bound
state wave functions in the formulation of the trial solution, by an appropriate
choice of the transfer function, also has advantages. For instance, not only is the
resulting trial solution simpler, but it also requires fewer minimization parameters

than the corresponding factored form.

e The artificial neural network method can be readily generalized to higher dimen-
sions. Therefore, the findings of this work are applicable also for systems consisting
of more than two particles such as in the bound state of a three-particle system:.
Since the corresponding networks for higher dimensions are relatively large, they

will require comparatively larger computer memory and longer computation times.

e The accuracy of the artificial neural network method also depends on a number of
factors, some of which are not directly related to neural networks. For example, the
accuracy of the estimations of integrals. Although the Gauss-Legendre integration
technique is comparatively accurate, integration methods based on adaptive mesh
size may prove to be better choices. The effect of the number of hidden layers on

the accuracy of the solution approximation for multi-layer perceptrons and other

network architectures need to be investigated also.
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