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INTRODUCTION

Matrix factorization is a very basic and indispensable tool
1n matrix theory, as 1S clear from well-known
factorizations such as the LU, Polar and Elementary Matrix
Factorizations. In the literature, much research has been
conducted into the factorization of matrices, where the
factors are restricted to certain classes which turned out to
be diagonalizable, hence this dissertation which seceks:

I to investigate the necessary and sufficient conditions
for the factorization of a matrix 1nto diagonalizable
matrices, and

2. to consider the factorization of a matrix 1nto certain
subclasses of diagonalizable matrices,

paying special attention to the least number of factors

required 1n all cases.




“1  declare that: Proeducts of Diagonalizable
Matrices is my own work and that all sources that 1
have wused or quoted have been indicated and

acknowledged by means of complete references.”
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SUMMARY

Chapter 1 reviews better-known factorization theorems of a square
matrix. For example, a square matrix over a field can be expressed
as a product of two symmetric matrices; thus square matrices over
real numbers can be factorized into two diagonalizable matrices.
Factorizing matrices over complex numbers into Hermitian matrices
is discussed. The chapter concludes with theorems that enable one to

prescribe the eigenvalues of the factors of a square matrix, with

some degree of freedom. Chapter 2 proves that a square matrix over

arbitrary fields (with one exception) can be expressed as a product

of two diagonalizable matrices. The next two chapters consider
decomposition of singular matrices into Idempotent matrices, and of
nonsingular matrices into Involutions. Chapter 5  studies
factorization of a complex matrix into Positive-(semi)definite

matrices, emphasizing the least number of such factors required.

Key terms:
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NOTATION

The n dimensional vector spaces over a field F.

The characteristic of a ring or field F: the least
positive integer n such that n.a =0 for all

a € F.

Vector space of all matrices of size m x n over a

field F. When referring to a specific field, for
example the real numbers, F will be replaced

with the appropriate symbol, in this case M,  (R).

Vector space of all square matrices of size n

over a field F.

Group of invertible matrices 1n M,(F).

The subgroup of GL(n,F) consisting of all

matrices with determinant one.

The transpose of matrix 4. Vectors in /° will be
considered as column vectors. A row vector in F”

will be denoted by x'.

The conjugate transpose (adjoint) of matrix A.

The determinant of the matrix A.

The dimenstion of the null space of A.




o (A) The eigenvalues of A (spectrum). Always
repeated according to algebraic multiplicity.

A~ B Matrix 4 is similar to matrix B.

E, The eigenspace associated with the eigenvalue A
of a square matrix or linear opcrator.

rsplA] Row space of matrix 4.

The n x n Companion Matrix C,, associated with the

a(x
monic polynomial a(x) = x" +a,_x"" ...+a,x" +ax+a, will
be represented as follows:

0 0 O O -a,
1 o 0 . . . 0 -
0 1 O 0 -—a,
Ca(x} =
0O 0 O 1 0 =-a,_
0 0 O 0O 1 -a,,:
m End of a proof.

- End of example.




CHAPTER 1

SOME GENERAL MATRIX

FACTORIZATION RESULTS.

The factorization of a matrix into factors having specific
properties is a topic in which research is still in progress.
[t is applied in many fields such as the solving of systems

of linear and differential equations, statistics and

computer programming.

1.1 LU-FACTORIZATION.

The LU-factorization i1s a well-known and much used

factorization of a square matrix A e M(C). The theorem

states that if all the leading principal minors A4

i=1,...,n~1 of a matrix 4 e M(C) are nonzero, then therec

exist unique matrices L,U € M/(C) such that 4 = LU, where

L is lower triangular with diagonal elements equal to one,

and U is upper triangular. See [13], Theorem 1, page 62

for a proof.




When such a factorization exists, solving the linear system

Ax =b, where xe M (C) (if a solution exists), 1is

relatively quick and simple. The method 1s suitable for

computer programs since 1t saves storage space 1nh memory.

See [8], page 129,

The LU-Factorization also computes the determinant of a

matrix efficiently, since, if A = LU then  det(4) =
det(L).det(U), det(L) =1 and det(/) is equal to the product of

the entries in the main diagonal.

This factorization can be extended to give the following

factorization of a square matrix in the complex numbers.

Corollary 1.1

(a) Under the hypotheses of the LU-Factorization, that 1s,

all the leading principal minors A4 | i=1,...,n=1 of a

matrix 4 € M (C) are nonzero, there exist unique lower and

upper triangular matrices L and U’ respectively, with ones

in the main diagonal of both matrices, and a unique

diagonal matrix D, such that 4 = LDU".




(b) If in addition to the hypotheses of the LU-
factorization, A4 is Hermitian, then A= LDL where L is

lower triangular with ones in the main diagonal, and D 1s a

real diagonal matrix. Both L and D are unique. This 1s

known as the Cholesky-factorization.

Proof
. 4,., a -
(a) Partition 4 as A g where ag,,a, € C", then by the
2 R _
LU-factorization, A4 = LU, that 1s
AH—I a . Ln—-l 0 Un—] C
T o T ,
a, a, d 1} 0 u,]
where a,,a,,d,c e M,_,,,(C).
| 1...(n-1
Since A4 #0, A, =L, U ., where both L _, and U
d...(n-1)

are nonsingular and unique. So the main diagonal of L

contains ones, and the main diagonal of U contains

n-1

nonzero entries. Let U = [uvU]’:j=1 (ujj. =0, for i > j). Then

— p—

U, 0O
Uy,
D =
I 0 Uy,




and

0 .. . 0 1

S —

The uniqueness follows from the uniqueness of the LU-

factorization of A.

(b) By part (a) 4= LDU, and since 4 1s Hermitian,

* * * *

A=A =U D L.

*

By the uniqueness of the factorization, L = U and

*

D =D . Finally, D 1s real since 1t 1s diagonal and

Hermitian. ]

The LU-factorization, and in particular the above theorem,
gives the following factorization for a positive-definite
matrix H:

e

H = GG,

where G is a unique lower triangular matrix with positive

diagonal elements. This 1s known as the Cholesky

factorization of positive-definite matrices.




1.2 THE POLAR DECOMPOSITION.

It is well known that for an arbitrary matrix, 4 e M_ (C),

A A and A4 are positive-semidefinite.

The following result is analogous to the polar form of a

complex number: z = z €° where z 2 0 and 0 < @ < 2nx.

o

- . a—

Any matrix A € M (C) can be expressed 1n the form _l

A= HU,

where H = (AA*F and U 1s unitary. Thus H 1s

unique and, if 4 is nonsingular, U is also unique. |

The above decomposition 1s known as the ©polar

decomposition. See [13], Theorem 1, page 190 for a proof.

1.3 SINGULAR-VALUE DECOMPOSITION.

The singular values of 4 are defined as the eigenvalues of

(A*A)%‘ Thus the singular values of any matrix are

nonnegative numbers.




The following decomposition of an arbitrary matrix in C
(even rectangular) 1s known as the singular-value
decomposition of the matrix. See [13], Theorem 2, page

192 for a proof.

L i .

Let 4 be an arbitrary matrix in M__(C) and let |

{s,,...,8,} be the nonzero singular values of 4.

Then 4 can be represented 1n the form

A =UDV",

where U e M

X m

(C) and V e M

XN

(C) are unitary, and

D has s in its (i,i) position and zeros elsewhere.

- e — e ——— SE— ——

1.4 SYMMETRIC FACTORIZATION.

One of the first matrix factorization problems to be
investigated and solved, was that every square matrix over
any field can be expressed as a product of two symmetric
matrices. This was done by Frobenius in 1910. This result
becomes significant when looking at matrices in the real

numbers, since all symmetric matrices are then

diagonalizable.




The proof below 1s a generalization of the one given by

Halmos tn [10]. Radjavi gave a similar proof in [14].

The following Lemma is necessary to prove the results of

Frobenius.

Lemma 1.2 (Halmos [10}] and Radjavi [{14])
Every companion matrix over an arbitrary field [/ is a

product of two symmetric matrices.

Proof

Let C,, be the companion matrix assoctated with the monic

a(x)

polynomial a(x), and S, and S,' be the symmetric matrices

a0 0 0 o a  a, a, a,, 1
a, a, a, a, 1 0
0 a, a, a_, 1 . 1 0 0
a a
1 0 0] and
0 a_, . 1 0 0
a
0 1 0 0 "
- - 1 0 O O_

respectively.
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Then,
f’-——al a, cg a, a, 1 0
—~q, a, §a4 a. a_, | 0 O
C.. S =
a(x}y ~2 [H_l
a1 0 0
_ o _1 ....... 000_
F—aﬂ 0 O 0 O
0 a, a a _, 1
0 a, I O
= 1 0 Of = §
0 a_, .
0 1 O 0
Coy = 9195, .

It remains to observe that the inverse of a symmetric

matrix i1s also symmetric. N

Theorem 1.3 (Frobenius)

Every square matrix over an arbitrary field F 1s the

product of two symmetric matrices over F.

Proof

Let 4 € M(F). By the Rational Canonical Form Theorem, A4

is similar to the direct sum of companion matrices. Thus

by Lemma A.2 it suffices to prove that a matrix 4 in the
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form A=C®...0C,, where (C, 1s a companion matrix

!

(1<i<k), can be expressed as a product of symmetric

matrices. By Lemma 1.2, C, =S8, where S¥ and S are
symmetric matrices (1 <i < k).
4=589SP® . @sPsP = (SPe...esP)(sVe.. . &sP)

Both factors on the right are symmetric. _

The factorization of 4 e€ M(R) into symmetric matrices, and

hence into diagonalizable matrices, 1s not unique. This can

be seen very easily from the fact that 4 = §,§, = (HSI)(—Sz)

for symmetric matrices S, and S,.

The example below is a direct application of the proof of

Lemma 1.2 and Theorem 1.3.

Examgle 1.4

W W O
A O O

i
B = {2
4

— L

The characteristic polynomial of B 1s ¢;(A)=(UA-1D)(A-3)A-6).

o 5\" 14 0\“ "(OY

E =sps|-51;, E,=spq| -3 and E, =spq] 0|;.
N IJJ \ SR )
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-1 0 0 -1 0 ¢ 5 0 0
B=P'90 -3 0|(PH'P10 -1 0|P where P'=|-5 -3 0}.
0 0 -6 0 0 -1 1 5 1

Multiplying together the first three factors, and the last

three gives:

518 23 22,

1 0 0] [-25 25 -5 225 9 15
2 3 0l=1] 25 —-52 50 23 6 3
9 9 3

4 5 6] | -5 50 =821 22 5 |
15 3 )

See [10], page 2, for other symmetric factorizations of the

matrix £B. L

1.5 HERMITIAN FACTORIZATION.

Although the result of Theorem 1.3 1s true over any field
F, it is not the most useful factorization over the field of
cemplex numbers. In this section we 1investigate the
necessary and sufficient conditions under which a complex

matrix c¢an be expressed as a product of Hermitian

matrices.

The first result, which 1s based on the work done by
Halmos 1n {10], gitves the necessary and sufficient

condition for a matrix to be factorized 1into two Hermitian

matrices.
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The following well-known lemma 1s needed for the proof.

Lemma 1.5

Every nilpotent matrix 1s simtlar to 1ts adjoint.

Proof

Let A be nilpotent; then zero 1s the only eigenvalue of A.

A~ J = diag[Jl,...,Jk] where each J, 1s a Jordan block of

{

the form
0 1 0 0
0 0 1
0
. A |
o . . . 0 0

Therefore 4 = SJS' for some invertible matrix S, which

x—1

implies that 4 =S J'S".

*

It suffices to show that J. ~ J since then, 4 ~ J ~ J ~ 4.

Let P be the nxn involution

i =

0 1

then,

P’ =P and PJP, = J".

# M

This completes the proof. n
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Theorem 1.6 (Halmos [10}])

Let A4 e MJ(C), then A4 is the product of two Hermitian

matrices if, and only if, A4 is similar to its adjoint.

Proof

Suppose 4 = EF, where E and F are Hermitian. If E 1s
nonsingular, then A4 = E(FE)E' = EAE" and the result
follows. If F is nonsingular, then 4 = F'(FE)F = F'AF

and again the result follows.
Suppose both F and G are singular, then by Lemmas A.3

and A.6 it suffices to prove the result for 4 in the form

where N is nilpotent and K is nonsingular.

Since A4 = FF,
A"E = EA™" . (1.7)
L M) P QO
Let E = . and F =1 0 . where all the blocks are
M S ¢ R

conformable with N @ K and L, S, P and R are Hermitian.

From equation 1.7:
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‘N" oL M| [L MI|N" 0
0 K"||M S|

L

which implies that K"M' = M'N™ = M'N". This holds for

{

all me Z*, therefore K”M" = 0 if m is sufficiently large.

. . . : L 0
So M = 0 since K is nonsingular, and therefore FE =

Now

N o] [L OP O
0 K| |0 SO R

which implies that K = SR and so both § and R are

nonsingular. From equation 1.7 with m =1 we get
KS = SK'. This implies that X = S'KS. By Lemma 1.5

N = H'NH for some nonsingular matrix H.

S~
Let T = . then
...-0 S--.-
. [N ol [{H'NH )
4 = 1 = N 10 = 77 AT.
0 K| | 0 STKS

Conversely suppose that 4 ~ A, then there exists a

nonsingular matrix 7 such that

&

AT = T A (1.8)

and, by taking the adjoint of both sides,

AT = T°4 ... (1.9).
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Let u € C, then

AT + al") = @T + uTHA ... (18 xu + (1.9 xu.

%

Therefore AE = E, A, where E, = ul + ul") and E, is

114 I

Hermitian, hence AE, is also Hermitian. If » % 0, then

’ —
«—1 U \‘ *

E =1TT + —[|u”l
7]

—

o1 TN . .
and # can be chosen so that 77 + —/ 1s nonsingular (this
U

v

is always assured since the spectrum of T7 1s finite).

Therefore E, is nonsingular and so A4 = (4E)E.. This

]

completes the proof. u

If A is a real matrix, then in terms of Theorem 1.6,

A= FEF, where E and F are symmetric matrices 1f, and
only if, A4~ A" There is nothing gained by this

statement, since a matrix 1s always similar to 1ts transpose
and, as was shown in section 1.4, all matrices are products
of two symmetric matrices. Therefore this theorem and
most of the following results are of interest mainly for

matrices over the complex numbers.

In the following theorem, originally proved by Radjavi

[14], a square matrix can be expressed as the product of
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four Hermitian matrices 1f, and only if, the determinant of

the matrix 1s real. This result 1s a more general result than

that of Theorem 1.6, since if 4 ~ A, then

det 4 = det 4 = det 4,

therefore the determinant of 4 1s real.

Theorem 1.10 (Radjavi [14])

Let 4 be an mnxnrn matrix over any conjugate-closed

subfield F of the complex numbers. Then A4 1s the product

of four Hermitian matrices over F 1f, and only 1f,

det(4) € R.

Proof

By Lemma A.3 we can assume 4 1s in rational canonical

form; that is, 4 = diagld, , ..., A,] where A, has the form

0 £
1 0 t ;)
1 O 3
4; = , J=1,...,m
| S o
i Lt
Then n = n(l) + ...+ n(m) and det(4) = ¢, ¢, ...t ,.

[f det(4d) = O then assume that 7, =0.
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Let 4 =BK, where K is the permutation matrix

0 0 0 0 I
1 0 0 0 0
0 1 0 0 0
0T
T4, o)
0 0 0 1 0

Now by Theorem 1.3, K 1s the product of two real
symmetric matrices, which are Hermitian. It remains to
show that B is the product of two Hermitian matrices over

I

B = AK™' = A. S
0

So B is the permutation of the columns of matrix A4 with
the last column first and the others shifted one to the

right. That 1s

B, C, 0 0
0 B, C, 0

B = >
0 ‘B m-1 Cm—l
C, 0 B

where B, = diag[0,1,1,...,1] € M, ,(F) and
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0o . . . Ol
t, 0 . . .0

|. € Mﬂ(j))(ﬂ(j+l)(F) >

j=1,...,m. In the last formula, and 1n what follows, 1f

2

4
|

J=m then j+1 =1

A diagonal matrix D is constructed as follows:

For each pair of integers (j,4k), 1 < j < mand 1 £ &£ < n()y)
except (m,1), set

L Ut #0
1 if t,=0

i =

and set

\
]

ml

r"l'l rz’l & [ [ r

m-1 1

Let D = diag|lD, ,..., D_ ], where

rfl Jn(j)

D . = diag

j i j * . N }
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Then
'D?'B,D, DYC,D, O .. . 0o
0 D)}'B,D, D;C,D, . . . 0
D' BD=
O : ' ' D r:r]—-l B m—1 D m—1 D r_nl—l Cm—l D 1
D'C D, . . . 0 D'B D,

So a typical block matrix of D'BD is of the form D'B,D,
-1
or D,;C,D,,,.

Now D;'B,D, = B,, since diagonal matrices commute.

J' 2

The only entries of D'C D,, that may possibly be nonzero

i i i+l

are in the first column. The entry in the £” row of the first

1§

J
Hf:l 7;1 rj"'l , 1

e X X - k=1,....n(j).

i Hi:l Fit

This expression is equal to 1 or 0 for all possible values

column of D/'C,D

J+l

of /j and %, except when j =m and £ =1 1In this case

i/
| If:] rfl rl] m—]

Lwi X x 1 = Latl. T
' Hi=1 Ty
m—1
If det(4d) = 0, then ¢, =0, and so i ||, 70 = 0. If
n— 1
det(4) # 0, then IMHM ro, =ttty ...t = tdet(4) € R.
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Thus D'BD = S, where S e M (R), and so by Theorem 1.3,

S =35,5,, where S, and S, are real symmetric matrices.

Therefore B = (DSID*)(D*_}SzD“l) and both brackets are

Hermitian.

The converse follows from the fact that the determinant of

a Hermitian matrix is always real. B

The examplie below i1s a direct application of the proof of
Theorem 1.10 for a matrix in rational c¢anonical form

consisting of one companion matrix.

Example 1.11

Let
0 0 1
A =11 0 1],
01 —-i
then
1 0 0llo 0 1
A= 1|i 1 0ll1 0 ol = BK.
—-i 0 1j[0 1 O
1 0 0 1 0 0
D =10 i 0 and D'BD =111 0
_OO-—-z_ _101_
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The Rational Canonical Form of D'BD is D'BD = QC'Q’1

where

1 1 0 0 -1
O =016 and C
0 1 1

N v — —t

I
S o= O

Applying Theorem 1.3 to the matrix C

1 0 0][0 -1 O
C =S8,8, =10 -1 0]|-1 -2 0
0 0 1[0 o0 1

Thus B = [(DQ)S,(DO)']. (DQ) " S,(DO)" 1.

K = PEP', where

— — —

1 -2 1 0 -1 0
P=|1 1 1land E =11 -1 0}
-2 1 1 0 0 1

Thus K = [PS,P'1.[(P)H"'S,P ]

Finally

A

BK

H

[(DO) S, (DQ)'1.1(DO) ™ S, (DAY 1.[P S, PT1.[PTT S, P']

1l

0 i —il[0 i olf[-2 4 1](% ¥ O
= |-i =1 1| 0-i 1 1].14 1 =2|.l% 0 2%]|. I
i 1 0|0 111 -2 4]||0 % 4%
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The corollary below gives an almost Hermitian
factorization for a complex matrix with non-real

determinant.

Corollary 1.12

If A e M(F), where F is a conjugate-closed subfield of C

1
and det(d) = a ¢ R, then A4 =—HH,HH,, where H, are

H
Z{?

Hermitian, i=1,2,3,4 and =z is a root of the equation

O

- = 0.

Proof

det(z. ) = z'’a = aa € R; therefore by Theorem 1.10,
z, A =HH,H,H,, where H, is Hermitian, i=12734.

The result follows. -

1.6 PRESCRIBING THE EIGENVALUES.

In [{15], Sourour proved that a nonscalar, nonsingular
matrix can be expressed as a product of two matrices with

prescribed eigenvalues.

The following lemma by Fillmore [6] is required to prove

Sourour’s theorem.
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Lemma 1.13 (Fillmore [6])

Let deM (F) be a nonscalar matrix, then 4 1s similar to a

matrix whose (1,1) position is a, for arbitrary fixed ae F.

Proof

Firstly note that every vector x € F”" is an eigenvector of

A 1f, and only 1f, 4 is a scalar matrix. Let ¢,...,¢ be any

IA

n). Let

basis of F" and suppose Ae Ae, for (1 £

X = Zei and Ax = Ax. Then AZ e, = /IZ ¢;, which 1mplies
that Z/l,,ef = Zief; therefore Z(/l,. - A)e, = 0 and so
A = A;. The matrix is scalar since the basis was arbitrary.

The converse 1S obvious.

Thus, since A4 1s nonscalar, there exists a vector ¢ which
is not an eigenvector of 4 and therefore not of 4 —al for
arbitrary a € F. Letting e, = (4 - al)e, it is easily seen
that ¢ and e, are lincarly independent. Now choose an

ordered basis of /" whose first two elements are ¢ and e,.

Then the matrix 4, with respect to this basis, has a first

column (a,1,0,...,0). We conclude that 4 is similar to

4, =

-
44
X

y'
R—n
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where x is the column vector with one 1n i1ts first position

T

and zeros elsewhere, y' 1s a row vector, and R e M, (/). B

Theorem 1.14 (Sourour [15])

Let 4 e M (F) be nonscalar, invertible and let f,

J

and y,
(1 < j < n) be elements of F, such that Hj-:; Py, = det4.

Then there exist B, C € M _(F) with eigenvalues 8, ,..., B,
and y,,...,7, respectively, such that 4 = BC. Furthermore,

B and C can be chosen so that B 1s lower triangularizable

and C is simultaneously upper triangularizable.

Proof
We use induction on n, the size of 4.

For n=1, the result is vacuously true since there are no
nonscalar matrices of s1ze 1 x 1.

FOI' n = 2:: let ﬂlﬂzyﬁlz - detA:- Where /81#)82:7"1:7/2 = F By

-}81}’1 3 4

Lemma 1.13, A4 1s similar to 4, = , where x,y,r € F.
X 7
Now detd, = detd, and so r =xyB, v, + B.¥,.
_ 0T L -
4 = {7:1 Y1 1V - B, C,,
AU /82__0 Va2 o

and 4 = P'B,C,P = BC, where B = P'B P and C

PTC,P.
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This completes the proof of the theorem for n = 2.

let n 2 3 and assume the conclusion for all

Now square

matrices of size less than »n.

to

A, =

By,

X

T

R

where x, y € F"' and R e M, (F).

It can be shown that

S - By iIs not a scalar matrix.
proof. )
B O ] 1 | —1
Since A4, = A, .. e and
i X S ﬁl 7/1 | O !n—]
det(A4,) = det(4),
det(A4,) = p,y,det(S - /61 yxz') = det(4) =
det(S — gy xz") = By T] B, 7,
j=1
By the induction hypothesis there exist
such that o(B,)) ={f,,..., B,}, o(C,) =
S—- By xz' = B C,. 1t follows that
4 = B 0 _-yl %
o lrix B0 C

A ~ 4,

(1.15),

By Lemma 1.13,

~ A,, where 4, =

A ts similar

-
b7,

X

T

S

H /8;‘ 7}"
j=1

paren 1_[ ﬁj ;VJ. ]
J=2

and

( This is done at the end of the

Bﬂr-‘-‘ Cﬂ € MH—I(F):#

7, .. ..

s Vot

and




27

Again by the induction hypothesis there exists a

nonsingular matrix Q, € M, (F), such that Q' B O and

O.;) C, 0, are respectively lower triangular and upper

I 0
triangular. Let = . then
g ¢ 0 0,
04,0 = B o |ix, n"
2 =_ Q;l Bﬂ Qﬂ_'_ Q;l Cﬂ Qﬂ—:

where ¢&,n7 € F"'. Since Q74,0 ~ 4, ~ A, this completes

the induction.

To complete the proof of this theorem we need to show the

existence of the matrix A4,.

Suppose that for 4, in equation 1.15, R - By xy' = al,_,
for some a € F. Since A4 is of full rank, |[x R| must be of
full row rank while the columns of [x R| are linearly
dependent.There exists w e F"', such that w/x = 0 and
w' 'R # 0, since according to the proof of Lemma 1.13 it
may be assumed that x # 0. Define linear transformations

T,:F"" > F and TR:F"'" - F” as follows: T.(w) = w'x and

Te(w) = w' [xR], then nuliy(T,) = n—-2 and nullity(T,) = 0.

Choose any nonzero vector w ¢ ker(7)).
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I'l WT“
Let P = : then
10 7 _,
_ -
Az — P—IAIP — ﬂlyl 4 ’
where
2 =y + By v - w R
and
S=R+ xw.
And so
S—-B rixz = R-p1ylxy" + By xw' R

al,, + B v xw R.

Since x # 0, and w' R # 0, the matrix B y' xw' R is of

rank one, therefore S ~ B ¥ xz" is not scalar. n

Corollary 1.16

Let 4 be a nonsingular matrix of size » over a field F.
Then A4 can always be expressed as a product of two
diagonalizable matrices, provided that the field has at

least n + 2 elements.

Proof

Let 6, ,..., B, be any distinct elements of F not equal to
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zero, one or det(4), and let p, = det(4). Finally, let

] 1 "
Vi = — .o, V. = and y, = 1. Then [] B,7, = det(4)
ﬁl ﬂn—l i=1

and so by Theorem 1.14, there exist matrices B and C with

distinct eigenvalues, such that 4 = BC. Since B and C have

distinct eigenvalues they are diagonalizable. |

From the corollary above it is clear that a nonsingular
matrix over a field with infinitely many elements can be

tactorized into a product of two diagonalizable matrices.

Example 1.17

2 1 0
A=12 1 1| e M,(R).
_101__
I 1
Let g, =1, B, = ,ﬁ3=3,7/1=1,7/2=-2— and y3=-§;

1
A - pyyd; = |2
1

e b

1 0
0 1
0 O

and 1t follows from the proof of Lemma 1.13, that

e, =[1 0 0] is a suitable (non-eigenvector) choice.
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1 1 o1 1 0
Thus e, = (2 0 1[0} = |2|, and take e, =]0]|.
1 0 0|0 1] 1]
Then
11 0] 21 0]t 1 0 1Y -y ] -
A4 = o020 |21 1]jo20] = |1 % y| = |P¥r V¥
o1 1| (1o 1[lo1 1 0 -Y% ¥ X R
B AN 1 1]
and R - "]"1.xT=A 21 - 3y ] =
Py xy __% %_ 0 M A] __% %_
The last matrix 1s nonscalar, so
1:0 Ol[1:¥% -4
A=A - IB ............. ; C ...................
0 110 |
where
B - 11
a o __% %“'

At this point the process is repeated on the 2 x 2 matrix

B,C,. Note that p,y, is already in the (1,1) position,

o 0

therefore

B,C = 2 0\ A A
-1 3110 4|
and
1 0 Ol[1 ¥ -y
A, = 4, =|1 2 0 % Y% |=BC
0 -1 3]|10 0 4




31

Finally, 4 = P4, P = PpBCP" = (PBP")(PCP")

1 1 0
where P = |0 2 0| and so
0 1 1

2 0 0|1 4% O
A =12 1 0 0 1 [
1 =% 3110 -X %
Theorem 1.14 has many applications, for example.
(1) It can be wused to determine a diagonalizable

factorization of a matrix over a field F, as was
1lfustrated in the example above. The only
restriction being on the number of elements in the
field. This restriction was dealt with by Botha in
|3] and [4] and will be discussed in the next

chapter.

(11) It gives a simple characterization of the

commutators of the group GL(n,F), which will be

discussed in the next section.

(111) [t can be used to show that if the determinant of a

square matrix of size n over a field F is + 1, then

it can be expressed as the product of four
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involutions. However, there is a restriction on the
proof given by Sourour, namely the field must

contain at least n + 2 eclements. The general case

was dealt with by Gustafson, Halmos and Radjavi

in [9] and will be discussed in a later chapter.

In [17], Theorem 1, Sourour and Tang proved that a
singular matrix can be expressed as a product of two
matrices with prescribed eigenvalues. In the case of a
nonstngular matrix the only restriction is that the product
of the eigenvalues of the factors must be equal to the
determinant of the original matrix. In the case of a
singular matrix there is an additional restriction on the
choice of prescribed eigenvalues, namely the number of
zeros must be equal to, or exceed, the nullity of the

original matrix.

A ftew preliminaries need to be established before the

theorem by Sourour and Tang can be proved.

Lemma 1.18 (Sourour and Tang {17])

A B . .
(a) If T = ¢ M (F) where 4 is a nonsingular square

C D

matrix, then nullity(T) = nullity(D — CA™B).
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(b) Let D e M, (F) be nonsingular and Y € M,_(F) then,

kxn

Proof

A 0|1 A™B . . .
(a) T = . The first factor is nonsingular

C 11|10 D-CA™'B

and so

rank (') = mnkr] A"B = n — nullit D~ CA™' B)
0 D-CA™'B |

Therefore nullity(D-CA7'B) = n — rank(T) = nullity(T).

7 Yyp™'fo ol[r ~yDp" 0 7
0 I ||0 Dljo I 0 D|

e — - i

(b)

The following theorem is used in the proof of the theorem
by Sourour and Tang. It was first proved in [20] by Wu for
a matrix over the complex numbers. In [12] Laffey and in
|16] Sourour proved the result independently for a matrix

over an arbitrary field.

Theorem 1.19 (Wu [20], Sourour [16], Laffey [12])
Let 4 be a singular matrix over an arbitrary field. Then A4

1s a product of two nilpotent matrices if, and only if, 4 is

not a nonzero 2 x 2 nilpotent matrix.
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Theorem 1.20 (Sourour and Tang [17])

Let 4 € M(F) be a singular matrix over a field F, and B,
and y, (1 < j < n) be elements of F. If 4 is not a nonzero

2x2 nilpotent matrix, then 4 can be expressed as a product

of two matrices B and C with o(B)={8,....08,} and

o(C) = {¥y,...,7,} if, and only if, the number of zeros m in the
set {f,,7,,--->0,.7,4 1s not less than the nullity of 4. If A4

i1s a nonzero 2x2 nilpotent matrix, then 4 can be factored

as above 1f, and only if, 1 <m < 3.

Note The tollowing notation will be used in the proof:

o(B) = {f,,....0,; will be denoted by B and o) ={y,....,7.}

will be denoted by v, B = 0 if g, =p6,=...=8 =0. The
reduced list {#, ,... B, } is denoted by B".
Proof

Suppose 4 = BC with o(B) ={8,,....6,} and o) ={y,,....7.}.
Let m, and m, be the number of zeros in o(B) and o(C)

respectively. Then

nullity(4A) = nullity(BC) < nullity(B)y + nullity(C) < m, + m, = m.

If 4 1s a 2 x 2 nonzero nilpotent matrix, then from the

above m =1 and m # 4. Since if m = 4, then B and C would
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both be nilpotent, and by Theorem 1.19 this 1is not

possible. So 1 < m < 3.

Conversely, suppose that m = nullity(4).
The prootf 1s by induction on n. If n =1, then 4 is the zero

matrix and the result is trivial. Assume the result is true

for all singular square matrices of size less than n. Let A4

be an »n x n singular matrix and B, .,y .,..., 8, .7, be

elements of F, m of which are zero.

Case 1 m < n.

In this case, B # 0 and ¥y # 0. Assume without loss of

generality, that g, # 0 and y, # 0. By Lemma 1.13

T

A"‘*‘A1= ﬂ;yl }Z))

where x, ye F"' and D e M, (F). It suffices to establish

the factorization for A By Lemma 1.18(a),
nullity(D — B, y7 xy") = nullityA, < m. Since the number of

zeros in the reduced sets B’ and v’ i1s still m, the induction

hypothesis may be applied. Thus there exist matrices

B,, C, e M,_[(F), such that o(B,) = B’ and o(C ) = y"'.

b, 0 4 . yr_l
Now D - By xy!l = B C d A, = Lo
W bl vy xy o Lo 41l 1 _71_1-"" B || o C ,

wd L o

which

completes the proof for this case.
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Case 2 n <m=<2n -1.

Assume B # 0 and take S, # 0. Since m > n at least one

v, = 0, take y, =0. An application of the Rational

Canonical Form Theorem shows that 4 ~ A,, whereg

_ _
0 T
4, = | P,

ye F"" and De M, (F). The number of zeros in B'uy’ is

m — 1 where m — 12 n -1 2 nullity(D).
If D 1s a nonsingular matrix other than a 2 x 2 matrix of

the form , then let R e M_ _(I), where R agrees with

D in one row and all the other rows are zero. Then D - R

. |

' _ . (0 a —~b al
1s singular. However 1t D = then take R .
b 0 0 0

Now nullity(D — R)<n-1<m-1, so by the induction

hypothesis, there exist matrices B,, C, € M__(F), such that

o(B,) =pB", o(C,)) = v' and

BC =D -R .. (1.21).

0 0

Risan n -1 x n -1 matrix with only one nonzero row. Let

this be the i'® row, and define z to be the column vector

with one in the i'" position and zero elsewhere: then
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R = zw! where w” is the i'" row of R. Equation (1.21) now

eives D = zw’ + B,C,. Let B and C be the n xn matrices

B 0 0 w
and
z B, 0 C,
respectively.
0 ﬁle_
Then o(B) = B, o(C) =y and BC = 0 ol By Lemma
. 0 0
1.18(b), both 4, and BC are similar to o DI

If D is singular and 4 is not a 3 x 3 nilpotent matrix with
B, =B, =y,=7,=0, then we may apply the induction
hypothesis to D. That is, there exist B,, C, € M__(F), such
that o(B,) = B, o(C,) = y' and D = B,C,. The matrix A4, can
now be factored as follows

B, 01l0 ﬂflyrﬂ
t0 B {10 C. |

0
- - {_ 0 —

A, =

I[f 4 is a 3 x 3 nilpotent matrix of rank one, then

—
bl L — — i il

0 1 0 01 0 g, 0 o]jo B o
A ~10 0 0| and |0 0 O] = 0 O 0]|0 O O}
0 0 0 0 0 0 0 0 0fj0 0 O

If 4 is a 3 x3 nilpotent matrix of rank 2, and
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0 1 0] 010} fo o t}fo 0o 1]
4 ~10 0 1| and |0 0 1} =1 B, 0[/0 0 0O
0 0 0] 0 0 0f |0 0 0f{0 1 0

The last thing to note in this case is that if 8 = 0 then y #

0 since m < 2n - 1. Then we may proceed, as above, to

factorize 4° = RS, where o(R) = y and o(R) = B. The result

then follows, since 4 = ST R”.

Case 3 m = 2n.

In this case A4 1is being factorized into two nilpotent
matrices. This 1s the result of Theorem 1.19.

This completes the proof. B

A direct application of Theorem 1.20 does not necessarily
give a diagonalizable decomposition of a singular matrix,
since the eigenvalue zero may have to occur more than
once 1n the spectrum of either B or C (or both) depending
on the nullity of 4. In which case the minimal polynomials
ot B or C may have x as a factor with multiplicity larger
than one, and will therefore not be diagonalizable. If

however nullit(A) 1s 1 or 2, then Theorem 1.20 will give a

diagonalizable decomposition by choosing each factor with

at most one eigenvalue equal to zero, and the other
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cigenvalues distinct, provided that the field is sufficiently

flarge.
Let A e M), It nulity(A) =1 or 2, and F has at least n
clements, then take B= y where £, =0 and B, ,..., B, are

distinct nonzero elements of F. Then by Theorem 1.20

A = BC where both matrices are diagonalizable.

Although Theorem 1.20 has limitations when looking for a
diagonalizable factorization of a matrix, 1t is very useful
when considering the factorization of a matrix into special
types of diagonalizable matrices over the real or complex
fields. An example of this is the factorization of a matrix
into positive-definite, or positive-semidefinite, matrices.

This will be discussed in a later chapter.

1.7 COMMUTATORS.

It G 1s any group, then the commutator of b, c e G is

defined as the element bcb ' ¢ of G. The commutator

subgroup of G is the subgroup generated by all the

commutators of (.
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The following are some well known properties of the

commutator subgroup H of the group G.

(1) H 1s a normal subgroup of G.

(11) The factor group G/ H is abelian.

(111) G 1s abelian if, and only 1f, H = {I}.

The result of Theorem 1.14 can be used to give relatively

simple proofs regarding the set of commutators of the

group GL(n,F) ={4de M () : det(4) # 0 }. The result was first

proved by Shoda for an algebraically closed field K. In
[19], Thompson showed the same results for all fields F

with one exception, namely when F has only two elements

and n = 2. Theorem 1.22 shows that these results can be

obtained using the result of Sourour’s main theorem in
[15], provided the field contains sufficiently many

elements.

Theorem 1.22 (Shoda — Thompson)

[f F has at least »n + 1 elements, then the set of

commutators of GL(n,F)is SL(n,F) = {4 e M (F) : det(4) =1}.

Proof

Let 4 € SL(n,F). If 4 1s not a scalar matrix, then (since

det(4) =1 ), by Theorem 1.14, 4= BE where B has distinct
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eigenvalues B, ,..., f,, and the eigenvalues of £ are

g>r,....B'. Now B=PD P and E =QD,0" where

D, = diag|B,,..., B,] and D, = diag[B,..., B.']. Therefore
D,=D"=P'B'P. So E =CB"'C” where C = QP”, and the

result follows. If A4 = al then det(d)=a”" =1, so let

H

B = diagla ,a’,...,a"] and E =[a",a"",...,a], then 4= BE and
Lo -0 1] '
EFE=CB C7 where C = J L and once again the result
n-1
follows.

On the other hand, if 4 1s a commutator of GL(n,F), then

there exist matrices B and C 1n M (F), such that

4 = BCB'C™, from which it follows that det(4) = 1. »
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CHAPTER 2
DIAGONALIZABLE FACTORIZATION

OVER AN ARBITRARY FIELD.

[n this chapter, the factorization of a square matrix into
diagonalizable matrices over an arbitrary field s

considered, paying special attention to the least number of

such factors required.

In [3], Botha showed that for a field F, such that

char(f’) # 2 and F # GF(3), then any matrix 4 € M (F) is the

product of two diagonalizable matrices, and if F = GFQ3)
then every matrix over F is the product of three
diagonalizable matrices. In [4], the same author proved a

similar result for a matrix over a field of characteristic

two, provided that the field has at least four elements.

2.1 DIAGONALIZABLE FACTORIZATION OVER A

FIELD F WHICH IS NOT GF(3) AND CHAR(F) % 2.

The following Lemma is needed to prove Botha’s results.
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Lemma 2.1 (Botha [3])
(a) A matrix A = A4, ... 4, over a field F 15
diagonalizable 1f, and only if, each A 1S

diagonalizable.

(b) Let a,b € F and let

1

by L

if n>22 and n 1s even,

1

if n 21 and » 15 odd.
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Then A4,  1s diagonalizable over F 1f, and only 1if,

n

char(F) # 2, and 1in this case o(4,) = {xa, ,. .., *a,} for =

even and o(4,) = {*a, , ..., *du,, , b} for n odd.

(c) Let B be an nxn diagonalizable matrix over a field

F, and suppose a € F is not an eigenvalue of B. Then

A = is diagonalizable, wherex € F".

Proof

(a) For 4 e MJ(F), let E,(4) denote the eigenspace of 4
associated with A e I [E(4) = {0} if A ¢ o(4)], and
m,(A) denote the algebraic multiplicity of A4 with

respect to A.

A 1s diagonalizable

& dimE(4) = m(A) Y A e F.

(See [7], Theorem 5.14 page 257)
k K
& YdAdmE(A4) = Y m(d) V A e F.
i=1 i=1
— dmE,(4,) = m(4) V A e F, 1<i<k.

(Since dmE,(4,) < m(4) V A € F [13], Theorem 1

page 160)

& A, is diagonalizable, 1 <i < k.

|
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(b) First prove by induction that 1f n2>1 then:
%0 o
A~ “1if nis even and
=11l 0
(n=1)7 '0 _2,' '
A ~ bl @ @1 , a(; if »i1s odd.

For n =1 or n =2 the result is trivial.

Suppose that »n > 2, and the result 1s true for all
square matrices of size n — 2 over F.
0 I, 0 0 10
Let Y=|1 0 O0}; then Y =} _, 0 0] and
0 0 1. 0 01
0 0 a’| A, 0 0]
YAYy' = Y|0 4, 0|Y" = | 0 0 af)
I 0 O 0 1 0]

and the result follows.

Hence by part (a) of this lemma it suffices to show

that 4, = ‘| is diagonalizable.

The characteristic polynomial of 4, 1s

2

¥ - g o= (x - a)x + a),

provided that

and so A4, has distinct eigenvalues * a,,

# —a,. This will be the case it char(f) # 2.

a .

I
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This the proof that A,  1is

£

completes diagonalizable

over any field other than one of characteristic two,

with the stated eigenvalues.

Now suppose that char(F) = 2 and A4, is diagonalizable

with eigenvalues @, = —a,. Then A4, ~ a,/, and so there

i i

exists a nonsingular matrix P,, such that

A, = P, (affz)P;I = a,l,. This is a contradiction since

H 4

A, is not scalar.

Since a 1is not an eigenvalue of B, B - al 1s
nonsingular. Therefore there exists y e FF”, such that
(B—-—al)y = x.
¥ T

Let X =\~ y,then

X—l — —[ﬂ y-
and

p B 0

X TAX =

By part (a) of this lemma this matrix 1s

diagonalizable. I
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Theorem 2.2 (Botha [3])

Let F be any field, such that char(F) # 2 and F # GF(3).

Then every square matrix over F is a product of two

diagonalizable matrices.

Proof

By Lemma A.1 1t suffices to prove the theorem for a matrix

A 1n rational canonical form, A4 C, ® ... & C,, where
ecach C, 1s a companion matrix. By Lemma 2.1(a) we need

only prove the result for one companion matrix C.

Let
0 0 a
1
(= ,
O an-z
0 | I )

define P to be the » x n matrix

and note that P°> = |

H L

It a, # £ 1, then C can be factorize as follows
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C . ] 0 1_1 “Pﬂ—l g_i o P _Pn—l .C_l_l (2 3
- P, 0_* 0 a, B 10 a, +3)

r
where g = [aﬂ_l,.._,al] .

By Lemma 2.1(b) P, 1s diagonalizable with eigenvalues =+ 1

/4

and by Lemma 2.1(c) the second factor of equation 2.3 is

also diagonalizable.

[f a, = £ 1 then consider the following two cases:

Case 1 Fl > 5.

It 1s possible 1n this case to choose a e F (a # 0), such

that &> # £a,. Then C can be factorized as follows

0 a*l[P_, a-
C = -
P, Ol 0 “

The first factor 1s diagonalizable by Lemma 2.1(b) and the

second is diagonalizable by Lemma 2.1(c), since a,/a* # *1.

Case 2 F = GF(5).

If »n 1s even, then C can be factorized as follows

0 0 0 | 0 () _};_1 —-a,
C B O O 132_1 O 0 _aﬂ 0 _aﬂa%
0 —-51;- 0 O P, 0 0 a, o (2.4)
L_R?_l 0 0 OJ 0 0 O ao
where _6_1_1 — [an—l 5 ;. aﬂ+l]T and QZ — [aﬂ._l 2 ’ al]T-
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The first factor on the right of equation 2.4 is similar to

0 0 -+
0 -P, 0
P, 0 0

This 1s because one can multiply both sides by

0 [,
X=X"=1 ? |
Now %ﬂ-—:—il:
Hence 1f ), = -1, then this matrix is equal to
0 0 1
0 2°P,, O
P, 0 0
[f % = 1, then 1t 1s equal to
0 22p
P, 0 |

since 2° = —1.

In either case, by Lemma 2.1(b) the first factor on the

right of equation (2.4) 1s diagonalizable.

Partition the second factor on the right of equation (2.4)

as follows
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0 0 -P, ; -a, 0 0 2°P, : —q,

0 -a, 0 !-ga,| | 0 -a 0 i-aa
P%_l 0 0 i a, P%—l (_)_ 0 f a,

000G, 00T g, |

By Lemma 2.1(b) the (1,1) block 1s diagonalizable with

eigenvalues * 2 and -a,. Thus a, 1s not an eigenvalue of

2 a

this block, and so by Lemma 2.1(c) the whole matrix 1is

diagonalizable.

If n is odd, then C can be factorized as follows

0O -P_, -a
O Pn+1 —2_1_ =
2| P 0 a
_—Pf:_l_ 0 H_il —4 I:-
: o 0 aq, |
- r T
WhereQ:}_[anu}&*"ﬂafﬂ and a, = la... ,...,a] .

n=t
2

2

It follows as before that both factors are diagonalizable. B

In the example below, a 4 x 4 companion matrix over GI(5)

is factorized into two diagonal matrices. It 1s a direct

application of Theorem 2.2.
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Example 2.3

0 0 0 1
Let C P00 M ,(GF(5))
— = .
¢ 01 0 0 .
0 0 1 3
Then,
0 0 o tl[o0 0 -1 -3
. 0o 0 1 0llo -1 0 O
10 -1 0 01 0 0o 2
-1 0 0 0Jl0 0 0 1
[0 0 0 11[0 0 4 2
o0 1 0[[0 400
o 4 0 offt 0 0 2
4.0 0 0//0 0 0 1
- AB

A has two eigenvalues, namely 3 and 2. Their respective

elgenspaces are

1] o 31 [ol

E, = Span - ) : 1 - and FE, = Span - ° , X 23
0 3 0 1

30 L], L LY

Thus A4 is diagonalizable, and P AP = diag[3 , 3,2 , 2],

where
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r1030] 3 0 0 1
01 0 3 . 0 3 1 0
- P —
P 03 0 1| 2™ 100 3
30 1 0] 0130

B has four distinct eigenvalues, namely 1, 2, 3 and 4.

Thus B is diagonalizable, and Q7 BQ = diag[l,2,3, 4],

where

and Q7 =

W = O O
o = O N
O = O W
< o= s O
_—0 O O
S WL O

< S~ H N

O O e O

The following corollary is true for all fields except those

of characteristic 2.

Corollary 2.6 (Botha [3])

Any nilpotent matrix 4 over a field F with char(f) # 2 1s a

product of two diagonalizable matrices.

Proof

By the Rational Canonical Form Theorem

A~ 4, @ ...®& 4,
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The result follows from the first part of the proof of

Theorem 2.2, since a, = 0, that 1s a, # £1 (see equation 2.3

in the proof of Theorem 2.2). |

2.2 DIAGONALIZABLE FACTORIZATION OVER THE

FIELD GF(3).

This case was also investigated and solved 1in {3] by Botha.
[t turns out that the only time a nonsingular matrix over
GF(3) can be factorized into two diagonalizable matrices is
tf, and only 1f, the matrix 1s similar to its inverse. This
follows from [11] by Hoffman and Paige, where it was

proved that a nonsingular matrix 4 over an arbitrary field
is the product of two involutions if, and only if, 4 ~ 47"

The result of [11] by Hoffman and Paige will be treated in

a later chapter of this dissertation.

It remains to note that an involution over any field,

other than a field of characteristic two, is always
diagonalizable. Since 1f A4e M (F) is an involution,
then

a(x) = x* -1 =(x - Dx + 1

1s an annihilating polynomial of 4.
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If A =+ I. then the result is clear.

2

If 4 # + I, then a(x) is the minimal polynomial of 4.

If char(F) # 2, then the multiplicity of each linear
factor 1is one. I1f char(F) = 2, then 1 = -1, therefore
a(x) = x* — 1= (x = 1)?, and so the minimal polynomial
contains a linear factor of multiplicity larger then

one, and hence is not diagonalizable.

Theorem 2.7 (Botha [3])

Let 4 e M,(GF(3)):

(a) Then A4 <can be written as a product of three

diagonalizable matrices;

(b) If A4 is nonsingular, then 4 is a product of two

diagonalizable matrices if, and only if, 4 ~ 47,

Proof

(a) Firstly suppose that A4 is nonsingular; then 4 1s a

direct sum of companion matrices of the form
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C can be factorized as follows

F_Pn-l 0 “In-l
C = PH { o v
0 7 O 1

0

where P, was defined in the proof of Theorem 2.2 and

a =|a,,...,a,,].

The ftirst factor is diagonalizable by Lemma 2.1(b),

the second by Lemma 2.1(a) and the third by Lemma
2.1(c).

It A 1s singular, then by Lemma A.6, 4 =N & K
where N is nilpotent and KX is nonsingular. By
Corollary 2.6, N is a product of two diagonalizable

matrices N, and N, (say) and by the first part of this

proof, K 1s a product of three diagonalizable matrices

K,, K, and K,. Thus
A = (Nl NQ) D (KI K, K3) = (Nl D Kl)(Nz D Kz)(1 d K,),

where [ 1s the identity matrix the same size as N.

The last three factors above are all diagonalizable by

Lemma 2.1(a).
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In general, the number three is minimal.

For example if

A = ., then A7

and these matrices are not similar, since their
characteristic polynomials differ. Hence by part (b)
of this theorem, 4 cannot be expressed as a product

of two diagonalizable matrices.

Suppose A= FEF, where £ and i are both
diagonalizable. Then there exist invertible matrices P
and Q@ in  M/(GF@)), such that PEP™ =D, and
QFQ~ =D, , where D, (i =1, 2) are diagonal matrices.
The only nonsingular, diagonal matrices of MH(GF(3))

have + 1 and -1 in the diagonal, which makes them
involutions. Thus £ and F are involutions. By the

note above, 4 ~ A47'. The converse also follows from

the preceding note. B
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2.3 DIAGONALIZABLE FACTORIZATION OVER A
FIELD OF CHARACTERISTIC 2 WITH AT LEAST

FOUR ELEMENTS.

In {4], Botha showed that any square matrix over a field of
characteristic two, with at least four elements, is the

product of two diagonalizable matrices.

Definition 2.8

H

i1 18 called S,-/ower triangular

A square matrix L = [/ ]

it /,, =0 for i —1< . That is

0 0
0 0
[,, 0 O
L =
lﬂl ZHH—Z O 0
Lemma 2.9 (Botha [4])

Let 4 =C + L be a square matrix over an arbitrary field F,
with C a companion matrix and L S,-lower triangular.
Then 4 is similar to a companion matrix. Moreover, the

similarity X7 4X can be achieved by a lower triangular

matrix X with 1°s on the main diagonal and last row equal

to (0... 0 1].
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Proof

For »n = 2 the result 1s trivial.

0 0 ¢ 1 0 0
For n =3, then A=|1 0 ¢| and X =|-a 1 0
a 1 ¢, 0 0 1

completes the proof in this case.

Let A4e M, (f), n=4 and assume that the result holds for

matrices of the size n — 1.

Let A denote the matrix obtained from 4 by deleting the

tirst row and column. Then there exists a nonsingular

matrix X e M, (F) of the specified form, such that

(Xr)—l ArXr . Cr

>

where (' is a companion matrix.

1 _0 - .0
A
Let X = .| X’
xﬂ-—?
u Y | ,h
( 34 ) f X )
and = -
yn-*z xn—2
\ V-1 / \. U J
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ol To [o {}cﬂ_rllg i 0"
] X,
tq |
X'4X = A’ X'
‘rn—z
_ an! | 2 0 _
0 0} . 0. ¢,
27
. ?
- B + C
]
_aﬂ—l | |
where
e
B = [0 . 0 o]
Y n-1 ]
and
_ - - hxl I
a,
U3
= (X)| |+ 4
xn—z
_aﬂ—lh
K_aﬂl_ L 0 _)
B+ C" is clearly a companion matrix.
_xl_ Ha’l ] _1_
. 0
It remains to show that can be chosen so that, .
xﬂul '
0 ., |0
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Xy X31 — 3 I
X34
Let | = p | ., where | is the first column
Xp117 11 X1
_xﬂ—z_ u _a”l _ - 0 el
10 0
dy 10 0
of X' and D =] | . »
§
_an2 ' ' y ann-ﬂ 1__

Lemma 2.10 (Botha [4])
The following holds for an arbitrary field F.

For n even, let

h A~@® " 'l
then e 4




For n odd, let
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a, b,
a(n—l% O b(n—l%
4 = 0 e O
Canny 0 d{ﬁ._%
¢ d,
(e Ta. b )
then A~[el]®| & "
i=1 | c. d.
\. T .
Proof
The result is trivial for #m =1 or n=2. Let n>2 and

suppose the result is true for all matrices of size n — 2.

That 1s, 1f A e M, ,(F) and »n is even, then

y ‘"é;% a, b,
=1 e, d:‘ }
and 1f n» 1s odd, then
((H-i’%-a_ b_\\
A~lel®| @ ° !
i=1i¢c. d.
\ L Ny
0 1 0 0 /7, , 0
Let X =|[7,, 0 0, then X' =1 0 0} and
0 0 1 0 0 l:
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X1'4X = B &

where B e M, _,(F) is obtained from 4 by deleting the first

and last rows and columns of A. The result now follows

from the induction hypothesis. B

In Lemma 2.11 and Theorem 2.14 which follow, F 1s a
field of <characteristic two <c¢ontaining at least four

elements. That i1s, 2.6 =0 for all 6 € F, and F contains

the subfield GF(@4) ={0,1,a,a'}, where a + a” =1 and
2 -1

a” = a”. It 1s worth noting that the following 2 x 2

matrices over GF(4) are diagonalizable

, and

This fact will be used 1n the proof of Lemma 2.11. It 1s
easily verified by determining the eigenvalues for each

matrix. In each case they are distinct.

Lamma 2.11 (Botha [4])
Every companion matrix C over a characteristic two field

F with at least four elements 1s a product of two

diagonalizable matrices.
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Proof

LLet n be the size of the companion matrix C, where C 18

defined as follows

0 C,
1
( =
0
|
Case | n 1S even
Start with the product
K 1 [a w x| [0 0, ¢ |
i 0
0O 0 01 W' 0 u 1 00 O O
0 0 10 0 v 0 o 01000
0 v' v 0 1 00 - 0v 100
w'® 0 0 u wu 010
u 00 01
1 0 |x,, u .
_u“‘ ui| 0 0'c | |u 1y,

where u,ve GF4)" ={1,a,a”’} are chosen as follows:

~1

[f ¢, = a then u =v = a
If ¢, =a” then u = v = da
If c, =1 then u =1 and v = a.
If ¢, 2 ¢ GIF(4)" then u =v =1
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Let Y denote the first matrix on the left. By Lemma 2.10

0 1 0 1 0 1
Y ~ D @ ...

Vv Vv U U (74 U

h el b i — —

By the note preceding this lemma, each of these 2 x 2

matrices are diagonalizable, and hence by Lemma 2.1(a) 7Y

is diagonalizable.

Let Z denote the second matrix on the left. By Lemma 2.10

the (1,1) block of Z 1s similar to

[v] © ...

Again by the note preceding this lemma, each 2 x 2 matrix
is diagonalizable, and hence by Lemma 2.1(a) the (1,1)
block of Z is diagonalizable. By the way u# and v were

chosen c¢. is not an ecigenvalue of this matrix. Since 1f

O

c =a' (or a) the eigenvalues are a and 1 (respectively

a' and 1); if ¢, =1 the eigenvalues are a and a7; if

a >

¢c ¢ GF(4)* then this matrix has eigenvalues 1, a and a’.

0

Therefore by Lemma 2.1(c), Z is diagonalizable.

LLet V denote the matrix on the right. By Lemma 2.9
X'V X =C, where C' is a companion matrix and X is a

lower triangular matrix with 1°s on the main diagonal and

the last row of the form [0 .. . O 1j.




03
Ylyzx = (.

[t remains to show that the values x, ,..., X, 1n the last

column of Z can be chosen so that C' = C.

Because of the nature of X, the product Z X does not

affect the last column of Z. Therefore the last column of

C' is given by

X'v| (2.12).

Since X~ and Y are both nonsingular, there exists a unique

vector x = [%, , ..., X,, » X,]', such that
. _
c,. X,
. .. .
Y- x - L (2.13).
cn-z xﬂ—l
_Cﬂ—l_ _'xn _

A direct calculation of Y7 X shows that the last row is
1 0o . . . O], thus x_ = c¢,. Putting equation 2.13 1into

equation 2.12, the last column of C 1is |[c¢c, , ..., e, 1"

?

and hence C = (.
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Case 2 nis odd

Start with the product

0 11 {u™ “ x| 0 c,
1 ¥y
0 I 2" 1 000
! 1 0 - 0100
THE 1 u u 10
w 0 0 1
. 1 | 0 e .
u ul| 0 . . . 0 ic, ' L v,
where u.ve GF@" ={1,a,a’} are chosen as follows:
iIf ¢, = «a then u = a’.
If ¢, =a” then u = a.
If ¢ #aand a° then u = 1.
The rest of the proof is the same as Case 1. _

Theorem 2.14 (Botha [4])

Every square matrix 4 over a characteristic two field F
with at least four elements 1is a product of two

diagonalizable matrices.

Proof

By the Rational Canonical Form Theorem A~ C @...8 C,

where C. is a companion matrix. The result now follows

I

from Lemma 2.11 and Lemma A.1l. H
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2.4 DIAGONALIZABLE FACTORIZATION OVER THE

FIELD GF(2).

In [2], Ballantine proved that any matrix 4 € M (F), where

F is an arbitrary field, can be expressed as a product of %
idempotent matrices if, and only if, rank(l — A) < k. nullity(A).
The proof of Ballantine’s result will be discussed i1n a

later chapter. However it does give some insight into the

diagonalizable factorization of a matrix over the field

GF(2).

Before making use of this result we note the following:

(1) An idempotent matrix 1s diagonalizable over any
field. This can be seen since 1f 4 is an 1dempotent
matrix over any field F, and 4 1s not the zero or
identity matrix, then m(1) = 4(4 -~ 1) is the minimal
polynomial of 4. Thus the minimal polynomial of A4

can be expressed as linear factors of multiplicity

one over F.

(11) Clearly from (i), the i1dentity matrix 1s the only

nonsingular idempotent matrix.
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(111) If 4e M, (GF(2)), then the concept of i1dempotence

and diagonalizability are equivalent. Suppose that

A is diagonalizable. Then  there eX15ts a

nonsingular matrix Pe M (GF(2)), such that

A=PDP', where D is a diagonal matrix. But the

diagonal of D consists of zeros and ones and so
is 1idempotent. The result now follows from

Lemma A.4.

The following results mnow follow 1from Ballantine’s

theorem and the notes above.

Theorem 2.15 (Botha [3])

IV

A matrix A4 over F =GF2) 1s a product of &£

diagonalizable matrices if, and only 1f,

rank(l — A) < k. nullit(A) . ‘

Corollary 2.16 (Botha [3])

The only nonsingular matrix over F = GF(2) expressible

as a product of diagonalizable matrices, 1s the 1dentity

matrix.
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CHAPTER 3

PRODUCTS OF IDEMPOTENT

MATRICES.

Definition 3.1

A matrix S e€ M (FF), where F is an arbitrary field, 1s
idempotent if S* = §.
The following well-known lemma gives a necessary and

sufficient condition for a matrix to be idempotent. It will

be used to prove the main result in this chapter.

Lemma 3.2

Let SeM(F). Then S 1is 1i1dempotent 1f, and only If,

ker(S) = Im(/ -S).

Proof

Firstly for any matrix § over F, ker(d) ¢ Im(/ — §). Since 1t
x € ker(S) then (I —S)x=1Ix-8x=x. That i1s x € Im({{ - J).

S and let x elm(/ — S). Then there

H

Now suppose that S°

exists y € F", such that (/ - S)y = x, and so S(/ - S)y = Sx,

which implies that Sy — S°y = Sx. Therefore Sx = 0.
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Conversely let x € F", then there exists y € Im(/ - §), such

that (/-S)x=y, which implies that S(-S)x = Sy = 0. Therefore

Sx — S?x =0, and the result follows. n

In [5], Erdos proved that every singular matrix A4 over any
field can be written as a product of 1idempotent matrices.
In [2], Ballantine e¢stablished a more detailed result by
prescribing the number of idempotent matrices required 1n

the factorization. Here follows a proof of Ballantine’s

results.

In what follows a row-partitioned matrix will be denoted

as
W A
L = colld B, B| = col[A B C], etc..
- C

so that in the expression col[A B C] it 1s understood that

A, B and C all have the same number of columns, but not

necessarily the same number of rows.

Lemma 3.3 (Ballantine {2])

Let S be an nxn matrix, c¢ = nullity(S) and d = nullity(I — S§).
Then ¢ + d < n and § ts similar to a matrix 7, such that

the last ¢ columns of 7 and the first d rows of /-7 are

ZCTO.
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Proof

The only vector common to both ker(S) and ker(/-S) is the
zero vector, therefore ¢ + d < n.

Now S can be reduced by elementary column operations to
a matrix with the last ¢ columns being zero. Therefore

there exists an invertible matrix P (consisting of products

of elementary matrices), such that SP has zeros in the last
¢ columns. Then PSP is also of this form, that is,

P7SP =[S, 0], where S, e M, ,(F) and 0 is the nxc zero

nx{n-
matrix.

Partition P'SP as follows

prigp - S, 0} (n—-c¢)

S, 0 (o)

where the size of ecach partition 1s indicated in parentheses
on the right and the diagonal blocks are square.

Now

[, -8, O (n—c)
Prlu-syp=\"°_ "
( ) _SE [r: (C)

and since d < n-c, there exists a nonsingular matrix

Pre M, (F), such that the first d rows of P (,_, —S§,) are

zero, therefore

0 0 0 (d)
S Sy S5 (n—c—d)

‘Pl(In—c ‘ Sl)}:‘)lm1 =

}

.. (3.4).
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T Q—ISQ _ _Pi Sl Pl—l 0 (3 5)
- LS, Pt 0 o
From equation (3.4):
] o | [I, 0] (d
Pl Sl Pl_l _ d _ d ( ) |
-S, I, , . — Sﬁ_ _Aﬂ A (n—c—-d)

Substitute this into equation (3.5), with S, P~ partitioned

as [C, (]
I, 0 0| (d)
T={A A4 0 (a) where a =n-d — c. |
G € 0 (o
Lemma 3.6 (Ballantine [2])

Let Ade M, gun(F), Be My, .., ,(F) and C e M ,.,) with a <c
and either A4=0 or rank(B) =b. Then there 1s a mafrix

De M, (F), such that the matrices

. . A
B
and B
C + DA
- - C

have the same row space.

Proof

If 4=0 then take D =0, so assume rank(B) = b.
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Let x, ,...,x, be the rows of B. Then since B has full

row rank, these vectors are linearly independent. Let

PeM(F) and Q e M/(F) be permutation matrices so that if

Vi ».v-5 Yy, Qare the rows of PC then x, ,..., Xy, ¥ >--..¥

B
(/ <c¢) is a basis for rsp - and if z,,...,z, are the rows of
QA then x; ,...,X3, Y 5---5YsZ15---57%2n (m<a) 1s a
o
basis for rsp|B|. Since the dimension of the Tow space of a
C

matrix is equal to the dimension of its column space,

b+1+m < a+b, which implies that / +m < a=c.

0 0| ()
Let £ e M__(F) be the matrix £ =1/, 0} (m) .
0 0} (c-1-m)

Then PC+EQA::COZ[ylﬂ“'ayi‘:yHl-l_Zl="'=~ yI+m+Zm?y.’+m+1ﬁ"'= yc]:
therefore C + P'EQA is a permutation of the matrix on the
right. Now X\ sy Xg s V1o Vi Vit 2y s Yiem ¥ 20 are

linearly independent and therefore constitute a basis for

s
rspl Bf, but at the same time constitutes a basis for
L.C_
B h D=P'EQ |
rs , where = .
p_C+DA_
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Note If =0 in the above lemma, then the matrix B 1s

missing; but the result 1S still true, namely

A
.l

rsp[C + DA] = rsp

Theorem 3.7 (Ballantine [2])

Let F be an arbitrary field and SeM (F). Then S=HFF ... K
where P (1<i<k) is idempotent if, and only 1if,

rank(I — S) < k.nullity(S).

Note

1. The theorem is trivial (but of little interest) 1f § 1s
nonsingular. Since then nullity(S) = 0, and the last

inequality implies that S =171 which can trivially be
expressed as the product of any k£ =2 1 copies of [/ (the
only idempotent matrix which 1s also nonsingular).

2. It was shown in chapter 2 that an idempotent matrix ts
diagonalizable over any field F. Thus this theorem
gives a factorization of a matrix (in particular a
singular matrix) into diagonalizable matrices of a
specific type, and the minimum number of such
factors required. It is for this reason that in [3]

Botha was able to use this result to factorize a

singular matrix over the field F of order 2.
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Proof of Theorem 3.7

Suppose that P ,F,,..., P are idempotent matrices and
that S =P8 P, ... P,. Then:
rank(l - §)

rank((I - B)+(F,— BB)+(BP, - BRPR)+...+(P..P. ~P..P))

{

IA

rank(1 — B)+ rank B(I - P,) + rank BB,(I - B,) + ...+ rank P..P,_(I - P,)

IA

k
Zmnk (I-P), since rank(AB) < min{rank(A) , rank(B)} for
J=1

any A, B € M (F)

k
= Znuﬂhy(ﬂ.), by Lemma 3.2
j=1

< k.nullity(P, ... P)

k.nullity (S).

Conversely, suppose that rank(lI—-S) < k.nullin(S)

For the case k = 1:

That 1s, rank(I-S) < nullity(S), but nullity(S) < rank (I -S). Thus

nullity (S§) = rank (I - S) and, by Lemma 3.2, S is idempotent.

For the case k=2:

By Lemmas A.4 and 3.3, it suffices to prove the theorem

I, 0 0 (d)
for the matrix S =14, A 0 (@) , where c¢ = nullity(S),
c, € 0 (c)

d = nullity(I-S) and a =n-d - c.
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By the hypothesis, rank(7/-8) < 2. nullity(S).

That 1s n—-d

I

2c or n—d-c¢c £ ¢, therefore a < c.

N

So we may apply Lemma 3.6 (with B missing) to

N

Replace S with the similarity copy,

I, 0 ol[7z, o of[7, 0o o

T =10 I, O|{A A4 0[.[0 I 0

0 D I]|C, C0jl0 -D I,
s 0 0
= A 4 0],

o

C,+DA, C+DA4 O

where D 1s the matrix given by Lemma 3.6, and

rspC + D A] = rsp . In particular, rsp{d] < rmp[C + D A];

hence there exists an a x ¢ matrix H, such that

A = H(C + DA).

Then
i I, 0 0| I, 0 0
T = |A, - HC, - HDA, 0 H]|. 0 I, 0
0 0 7.||C, + DA, C+DA4 0O

and both factors are idempotent.

For the case k > 2

Assume that R 1s a product of # — 1 idempotent matrices, if

rank (I — R) < (k — 1). nullity (R).
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Now suppose that S e M (F) and rank(I — S) < k.nullity(S). Let

IA

¢ = nullity(S) and d = nullity(I — S), then n-d kc, which
implies that n~d - (k-)c <c. If a=n-d-(k-1)c =0,
then rank(l - S) < (k — 1).nullity(S). By the hypothesis, § 1s
already a product of %k -1 idempotent matrices. S0 we

assume that a = n—-d —-(k -1Dc > 0. By Lemma A.4 and 3.3

it can be assumed that S has the form

(7, 0 0 0] (d)
A, 4, A4, O (a)
> = |8, B, B, 0| ()
LCa C, G, O_ (¢)

where the diagonal blocks are square, with the dimensions

indicated in parenthesis. Now a+b+c+d = n, therefore
b = (k- 2c. Let 4 =4, 4], B = [B, B,] and C = [C, (], then

we may assume that either 4 = 0 or B has full rank. (Since

if this is not the case then there exists a nonsingular

4 L.
matrix Pe M__, (F), such that P B has zeros tn 1ts top rows,

and the remaining rows are linearly independent, and then

PSP has the required form).

a=n—-d-(k-VDc =rank(I - 8S) - (k-1Dc =< kc—-(k-1)c = c,

so we can apply Lemma 3.6, that 1s
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v _ ﬂ
B| = rs 5
PPN T Pl v D4
|_C_.. )
for some matrix D e M_ _(£). Replace S with the similarity
copy T1':
7, o 0 olf[7, O o0 o]/, O 0O O
o I, 0 0|4, 4 A4, 0,10 I, O O
T—OOIE,O'BGBIBZO 0o 0 I, O
0 D 0 [ LC.;. c, C, O _.0 -D 0 [L__
T, 0 0 0
A, A, A, 0
- B, B, B, 0}
DA, + C, DA + C, DA, + C, 0
icul A B Thus in what follows we
S .
In particular rsp[4] < rp_c v DA

B
C

may assume that S is such that rsp[A4] < rsp| |, hence there

B ..
exists H e M, 4., (), such that 4 = H . Partition H as

C

H = [H, H,] where H, € M, ,(F) and H, € M_ (F).

Then

(A4, A4,] = [H, H,].

therefore 4 = H, B, + H,C, and A4, = H B, + H,(, .
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I, 0 0 0][f, 0 0 0

A -HB -H,C,L 0 H H,\|0 I, 0 0

> = PR = 0 o I. O0||B, B, B, 0
_ 0 0 0 I,||C, ¢, C, 0

P 1S idempotent and rank(Il — R) < b+ ¢ = (k - Dec
= (k — 1).nullity(R). Therefore by the induction hypothesis, R
is a product of k-1 i1dempotent matrices. This completes

the proof. u

The proof of Ballantine’s theorem gives a way to

determining these factors.

Example 3.8

o el

oo O

]
0
J,
1

] | W) e D
oN T oo o O

5 6
9 10 11|12
13 14 15|16
17 18 19 |20

o S e I e B o 2 B = T e S e B
o O O O O o O O

o O O o0 Cc O O
o OO OO0 IO O O

then rank(l — §) = 5 £ 2. mdlity(S) = 8.

Therefore there are two 1dempotent factors. These factors

are not unique, since any H=[a b c¢ d where

8a + 12b + 16¢c + 20d = 0 will suffice according to the above

proof. If H=[0 0 0 0] then § = PR where
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1 0 0;0,0 0 0 O 1 0 0,0,0 0 0 0
01 0000 0 0 0 1 0[0l0 0 0 0
10 0 1|00 0 0 0© 0 0 110,00 0 0
1 2 3/0/0 0 0 O 0 06 0,10 0 0 0
P = it and R =
0 0 0/0/1 0 0 O 5 6 7,8(0 0 0 0
0 00,0010 0Ol 9 10 11/12]/0 0 0 0©
0 0 0/0/0 0 1 0 13 14 1516/ 0 0 0 0
10 0 0i0/0 0 0 1 17 18 1912010 0 0 0O
If H=|-10 2 1 2| then S = QR where
1 0 01010 O O O
0 1 0,00 00 O
0O 0 1/0]/0 0 0 0
-14 -8 -2|01]-10 2 1 2
C=1% 0o olol1 0o o
0 0 0,00 1 0 0
0 0 000 01 O
0 0 0/0/0 00 1
-

When a singular matrix i1s expressed as a product of

idempotent factors B, and each P is expressed as P2=0,D.Q

!

where D, 1s a diagonal matrix, the only nonzero value in

the diagonal is one.

Since 1t follows easily that rank(/ — S) < n < n.nullity(S) for

any singular matrix of order »n, we have by Ballantine’s

Theorem that:
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Corollary 3.9

Every singular matrix tn M (F), where F 1s an arbitrary

field, 1s a product of at most n 1dempotent matrices. H

Note There are singular nxn matrices over F that are not a

product of less than »n 1dempotent matrices. For

example the nxn nilpotent Jordan block:

then nullity(S) = 1 and so rank(l — J,)) = n = n.nullity(S).
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CHAPTER 4
PRODUCTS OF INVOLUTIONS.

Definition 4.1

A square matrix 4 e M (F), where [/ 1s an arbitrary field,

is called an involution, if 4° = 1.

-/, and P, where P, was

7 H #l

For any positive 1integer n, [

defined 1n the proof of Theorem 2.2, are examples of

involutions. Other than [, and -/7,, all other 2 x 2

involutions over ~ have the form:

a b )
where a“ + bc

Il

C —d

LLemma 4.2
Let F be a field of characteristic different from two. If 4

is an 1nvolution over F, then A 1s diagonalizable.

Furthermore A~ 1, ©® -1 _, for 0 < k £ n i1f, and only if, 4 is

an involution over .

Proof

The first part was shown in Section 2.2. If A~] ® -1 _,

then there exists an invertible matrix P € M (F), such that

A=P[l, ® -1 _ 1P, and the result follows.
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if A =-1_, then % 0

n?2

then &t = n

Conversely, 1if 4 =1

n? b

otherwise the minimal polynomial of A 18

A =1 =4 -1DA + 1) and thus A4 is diagonalizable with 1

and —~1 as the only e1genvalues. -

The factorization of a matrix A4 1into 1nvolutions 1is a

specific type of diagonalizable factorization if char(F) = 2.

4.1 PRODUCTS OF TWO INVOLUTIONS.

In [11}], Hoffman and Paige showed that a necessary and
sufftcient condition for a nonsingular matrix to be a
product of two involutions, is that the matrix be similar to
its 1nverse. A proof of this result 1s given in this section.
The following fact 1s used 1in the proof: the property of
being the product of 1nvolutions 1s 1invariant wunder

similarity. The proof 1s similar to that of Lemma A.1.

Definition 4.3

m

Let g(x) = x"+a,,x"" +...+a,x+a, be a monic poly-
nomial of degree m over a field F, such that a # 0. Define

g(x) to be the monic polynomial

" a a
g(x) = . 8(“1"] = x" 4+ Lxmt ey 1.
d (1

o

X
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Lemma 4.4
(a) g(w) =0 1f, and only if, g(V) = 0.

(b) If g(x) is irreducible over F then so is g(x).

(¢c) If g(x) = h(x)k(x) then Z(x) = A(x)k(x).

Proof:

(a) Since a, #0, 1t gw) =0 then w # 0. Therefore

o

g(w) = 0 if, and only if, g(}) = 1m.g(w) = 0.
a,w
(b) Suppose that 2(x) 1S irreducible and
g(x) = L(bax“’ +...+b,_ x+b,)(c,x" +... . +c _,x+c,),

a

where p +g=m and p, g =1 (that 1s, g(x) 18

reducible).

g) = a,5" g1

X
1 { b b \YAY: c A
= aq,x"—| =< +.. .+ L2+, || Z+. .+ L+,
a,\ x"’ X JLx? X y
= (bﬂ + ...+ bpﬁlx""_l + b, x‘”)(cﬂ + ...+ cg_l.xq’l -+ quq)

This 1s a contradiction since g(x) was assumed to be

irreducible.

p . q .
(¢) Let A(x) = Zbix’ and k(x) = Zcfx’, where p + g = m,
i=0 i=0

then a, = b_,c,A and:
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h(x)k(x) = lz—i h(l) . X k[l)

| Il
Q|5-¢ S
S 3 O 3
o9 '::;:“:h :::
| P
N
N
>
SN
S| e
N—

= g(x) -

Definition 4.5

The monic polynomial g(x) 1s said to be symmetric over a

field F if g(x) = 8(x).

Note:

1. If g(x) 1S symmetric and a, =1 then:
x" +a, _ x" M+ +rax+1l=x"+ax"" + . . +a,_ x+1, and
sO a, . =a,, where 1 < i < m -1

2. [ £ g(x) 1S symmetric and a, = —1 then:
" +a, x" '+ . . +ax-1=x"-agx""'-. .. -a,_ x-1, and
so a, , =—a,, where 1 < i < m-1. If, in addition, m is

even, then a,, = —a,, that 1s, a, = 0.

2
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Theorem 4.6 (Hoffman and Paige [11])

Let Ae M (F) be invertible (n>1), then 4 is the product of

two involutions if, and only if, 4 is similar to 47"

Proof

First suppose that 4 ~ 47'. Since a product of involutions

1s 1nvariant wunder similarity, we¢ may assume that

A=0Cy ®... 0 C where the polynomials 2(x) (12i <)

(%)

are the (non-trivial) invariant factors of 4.

Let A(x) = x" +a,,x"" +...+ax+a, and define P, e M _(F)

to be the involution

0 0 1
1 O
P =1,
0 .
1 0 . 0
Then
pic. po=|0 Pl O N0 Py
h (%) _1 0 _L]m_l b __1 0 ]
-1
B ( f;f(.r)) ?
- 7T
a. a _ -
where b6 = ..., —1| , thatis, C. _ ~\C, .. .
a, a h{x) ( A ( ))

Now,
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Chyo Ch oo

-1
Cht(-‘:)_i_ Ch:(-‘:)

C

ho(x)

and so we can conclude that Zj(.x) = h(x) (1< j <1t), since

the invariant factors of 4~ are Zl(x) s .. s Z,(.x) and must be

the same as those for 4.

Consider one companion matrix C where m(x) = m(x).

mi{x)

Then when m(x) is expressed as the product of powers of
prime polynomials, these primes must either be symmetric,

or occur in pairs, ¢,(x) and g,(x). That 1s
m(x) = [Ile.o] . TTla.xng, ]
i=1 i=1

where the p.(x), g¢g,(x) and qﬂ;(x) are all distinct and

irreducible and p,(x) (1 £i £ n) are symmetric. This

follows from Lemma 4.4(c).
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By the Primary Decomposition Theorem

- - Cq-(x)’”*’ 0
Coi ~ ®C, 0 ® DG

pf(x)nl ~ g
g;(x)
By Lemma 4.4(c), f?df(JC)mf = qf(x)mf,, therefore
_ r~ -1
Ca“,-(x)"’f = C ~ (qu(_r)'"f) :
q;(x)"!
Thus
C 0
¥ 3 q;(x) "’
Cﬂ’t'(x) ~ @ Cp.(_x)ﬂi C_D -
i=1 " i=1 0 C ..
B q;(x) B
—Cq-(x)”” 0 _
It remains to show that C , and -1 are both
Pf(x) 0 C
i ( QE(I)Mij _
products of two involutions.
Now
C . 0o (¢ o
qg,(x) q;(x)
-1 = Pl P -1 ]
0 (C ,,fj 0 (C ,,,!,)
i iq:(X) _ \ i g,(x) Ry,
where
0 1,,“ |
P — ‘I with n = degg, (x)™

and it follows readily that both P and




C

-1
0 (c ]
q;(x)

0

Qi(I)ME
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are tnvolutions.

= (Cu)™

and

We have seen earlier in the proof, that P, C; =~ F,

It then h(x) 18 symmetric SO

h(x) = (p,(x))",
P,Cun b, = (Ch(_r))_l. Hence

I =

m

(P, Ch(x) P,) Ch(x) = (P, Ch(x))zj

that is, P,C,, 1s an involution. It follows as above that

Cusy = Pn(P,Chuy) 18 a product of two 1nvolutions.

F

]

Therefore there exist involutions £ and such that

et - (@7 (@)

A

(‘BE;&E =

\
are also

To conclude this part, note that [@E,] and [(—BF;
i i /

involutions.

Conversely, if A =587, where § and 7 are tnvolutions, then

'S =(ST)" = 4. That is, 4 ~ 47"

T AT~
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4.2 PRODUCTS OF FOUR INVOLUTIONS.

[n [9] Gustafson, Halmos and Radjavi showed that a matrix
7 over an arbitrary field F 1s a product of not more than

four involutions 1f, and only if, det(7) = £1. The result of
Section 4.1, Theorem 4.6 is a special case of this, since 1f

A ~ A7, then det(4) = =*1.

The following lemmas will simplify the proof of the

Gustafson, Halmos and Radjavi Theorem.

Lemma 4.7

|l

Let n=n, +...+ n, + m, with n, 22 and m 2 0, P,

and let Be M (F) be the permutation matrix

B=diagll, , P, 1,,P . ..Ph1,,PP...P1]

if m is even, and without the last diagonal entry, 1f m 1s

odd. Then B is an involution.

Proof
The result follows from a direct computation of 5. I
Note If m = 0 in Lemma 4.7, then B becomes:

B = diag|l, , P, I Py... P 1, ]

n—1

Hy—2
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Definition 4.8

Let S € M (F), then S i1s said to be a weighted permutation

matrix if each row and each column of § contains exactly

Oone nNnonzero entry.

Permutation matrices S ={s;,],.,5., (weighted or not) are in

a natural correspondence with the indices of the nonzero

entries; j is mapped onto / where the nonzero entry is 1n

column j and row . That 1s, s,, # 0.

For example, consider the matrix §, e M (F):

[0 0 0 0 s, 1 — 3
0 0 0 s, O 2 > 5
S =15y 0 0 0 0| then 3 —» 4 .
0 0 s, 0 O 4 —> 2
0 s5, 0 0 0] 5 = 1

We will refer to a weighted permutation matrix tn which
the associated permutation 1s a full cycle, as a cyclic

maitrix. (Note: A full cycle on [,2,...,n 1s a cycle of

length »n). The example §, above 1s a cyclic matrix. The

associated permutation of §, 1s the full cycle

(/1 , 3,4, 2, 95).

Note Without loss of generality, 1t can always be

assumed that the cycle starts with /.
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Lemma 4.9

Let C e M (F) and D e M_(F) be cyclic matrices of order
m, n=21 respectively, and let A =C & D, then BA is
cyclic, where B is the i1nvolution diag(l, _,,P,,I,_,], where
P, was defined 1n Lemma 4.7.

(It m or/and n 1s/are equal to one, then the respective

identity matrix/matrices in B is/are missing.)

Proof
Let (/,4i,,...,1i, ) be the associated permutation of C,
then there i1s an integer s, / < s < n, such that i, = n.

For m =1 1t 1s easily seen that BA is a cyclic matrix with
associated permutation:
s 2 I

(],zzj...,,zs_j,n+],,: R N B

For m>1 let (j,,j,=1,...,j. ) be the associated

permutation of D, then A consists of two cycles namely:
(1,4, ,...,1)

and

(j,+n, j,+n=1+n, j,+n , ..., j,+tn),

and BA 1s a cyclic matrix with the associated permutation

(1,..‘,1'5__1.,1+n,j3+n,...,jm+n,j‘,+n:i=n,is+,,...,,in).l

A




93

The next lemma gives a more general result than that of
Lemma 4.9, with one restriction. The dimension of each
cyclic matrix must not be less than two. The proof is by

induction.

Lemma 4.10

Let R=C, & ... C, with C, a cyclic matrix of size n,. If
n,z2 tor i =1, ..., k, then BR is cyclic, where B is the

involution defined 1n Lemma 4.7 (with m = 0).

Proof

For k =1 the result 1s trivial since B = [, and for £ = 2 the
result follows from Lemma 4.9. Suppose &£ > 2 and the
result 1s true for a matrix that 1s the direct sum of k£ — I

cyclic matrices.

Now
BR = B, (B, R)
where
(k-1
B, =diag[l, , P, , 1, ,1, t=|Yn,| -1
\s=1
and

B, =diagll, ,. 0 ,...,1, _,.1,]1.

B,R=C®C,, and by the hypothesis, C 1is cyclic. By

Lemma 4.9, B (C @ C,)=BR is cyclic. B
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The corollary below shows that the restriction on the size

of the last cyclic matrix 1n Lemma 4.10 can be relaxed.

Corollary 4.11

Let R=C,®...® C, with C, a cyclic matrix of size n,. If
n,22 ftor i=1,...,%k~-1 and n, =1, then BR is cyclic,

where B is the involution defined in Lemma 4.7.

Proof

Let B, = diag|/ P, 1 £, 1, 4, 1],

Hl"']. ? HE_Z ?

then

BZR=C®C£’

and by Lemma 4.10 C 1s cyclic. Let

k-1
B, = diag[I, , P,] where t = ) n, — 1,
s=1

then by Lemma 4.9, B,(C ©®C,)= B, B,R=BR is cyclic. .

Lemma 4.12

Let S e M (FF) be a cyclic matrix and det(S) = 1. Then S is

a product of two involutions.

Proof

Let (1,1,,1;,...,1,) be the permutation associated with S

and let {e;},”, denote the basis that is obtained after
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ordering the standard basis of F" according to this

permutation.

Then:
S(e,) = 8; i -€¢y for 1 <k < n -1
> ... (4.13)
S(e,) = s;; .¢€,
For simplicity denote Sik;lik by s,, then (4.13) becomes:

S(e,) = s,.e,,, for 1 < k£ <n-1 and S(,) =5,.¢.

n

Let {f,,...,f,} be the ordered basis of F" defined by:

fi=e , f, =8¢ , f,=8%e , ..., f, =8..5_¢€,.
Then:

S(f) = S(e)) = s,e, = f, , S(f,) = 5,5(e;) = s;8,¢; = f;, ...,

S(f,)=s5,...s,e, = ¢€f,, where ¢ = 5,...58, = *1.

The last equation follows since det(S) = £ /.

So S = P'S P, where

0 0 O £

1 0 0 0

0O 1 0 0
S, =

0 0 O 1 0

and P is the transition matrix from the standard ordered

basis to { £}




L%
|l

ek

1

C'1 Dl'
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Both C, and D, on the right are involutions. The result now

follows from the note at the beginning of Section 4.1.

Theorem 4.14 (Gustafson, Halmos and Radjavi [9])

Let 7e M(F), then T is the product of not more than four

involutions 1f, and only 1f, det(7) = =*1.

Proof

First suppose that det(7) = 1.

[t is sufficient to prove the theorem for the matrix 7 1n

the form T

P®.. ®©P &0,

where

P (1<i<k)

companion matrix of size n, 22 and @ 1s diagonal :

0

— Pio |
= Pi

a
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—1 0 . . .0 0 1 )
pii_ i O
piu 0 1
: f I O
P! = | [ and Q =
pini—-l
0 1
piﬂ
B - ] O
- 1—

(the last row and column of (O are missing if m 1s even).

A direct calculation shows that 4 1s an involution and

I' = AR,

0 0 pl[} H-O qz ]
0 q 0
0 g,
'Pi” — 1 and Q” — ‘.?3 0
n—1
!,
| -
O qm—&
Qm—i 0
. Dn_

Once again, if m ts even, then the last row and column of

(0" are missing, and the subscripts of the last diagonal

block are increased by one.

det(tR) = £tpo ... Puo 4y - - - 4, = det(4) = =1

LLet B be the permutation matrix defined in Lemma 4.7 and

R =BS. Then § can be obtained from R by the same
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permutations. Also def(B) = 1, therefore det(S) =%l since
det(R) = £1. § = BR since B is an involution, by Lemma 4.7.

R is a direct sum of cyclic matrices of size larger than two
with the exception of the last diagonal block which may be
of size one. Therefore, by Lemma 4.10 or Corollary 4.11,

S is a cyclic matrix, and so by Lemma 4.12 § = CD, where

both C and D are 1involutions. This completes the

necessary part of the proot.

The converse 1s immediate since the determinant of an

involution 1s *1. |

The following example is a direct application of the proofs

of Theorem 4.14 and the preceding lemmas.
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A = ; and R

-------

R = 8BS where

1 0 0 0 0 O 0 -1 0 0 0 0
0 01 0 0 O 0O 0 0 0,1 0 O
0 1 0 0 0 O 1 0 0 0 0 O
B = and S = :
0 0 0 0 1 0 0O 0 0 0 0 2
0 0 01 0 O 0 0 1 0 0 O
0 0 0 0 0 1 0 0 0 0 5 0

The cycle associated with § 1s (1,3,5,6,4,2) and so the

basis {e,..,e} as defined in Lemma 4.12 is:
€1 =€, € =03, € =05, €4=C, €5=C4, € =
: th
where ¢ is the i column of /.

Then:

Se, = ¢e,, Se, = ¢&,, Sey, =5¢,, Se, = 2e,, Se; =0,le,, Se, = —e¢,.
Let

fl — 6’1, fz = 62: f3 = 63: f4 — 564? fS — 1065: fﬁ — 66'

The transtformation matrix from the basis {f, ,..., f.} to

the standard basis for R® is
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(1t 0 0 0 0 O
001 0 0 O
P=000010
0 00 0 0 02
00 0 01 0 O
010 0 0 0

S = P's, P = (P'c,P)(P"D,P), where S,, C, and D, were

defined in Lemma 4.12

Therefore:

0 0 0 0 0 1 O 1 0 O 0 O
0 0 0 0 1 O 1 0 0 O 0 O
410 0 0 1 0 O 0O 0 0 01 0 0O
C — F P —
0O 01 0 ¢ O 0 0.10 0 O O
c 1 0 0 0 0 0 0 0 0 0 02
1 0 0 0 0 O 00 0 0 5 0
0 0 0 01 0 0 0 0 01 0 0
0 0 01 0 O 0O -1 06 0 0 0
40 01 0 0 O 0O 0 0 0 0 02/
D —_— P P — s
O 1 0 0 0 0O 10 0 0 0 0 o
1 0 0 0 0 O 6 0 0 0 1 0
10000 0 -1 0 0 5 0 0 O
finally 7 = ABCD and A, B, C and D are involutions. (]

In [15, Theorem 5] Sourour gave a simpler proof for
Theorem 4.14. However this proof does not work for an

arbitrary field, only for a field with at least n+2 elements

1n the case of n x n» matrices.
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The following corollary gives another factorization of a
nonsingular matrix over the real field into diagonalizable

matrices, some of which are involutions.

Corollary 4.16

Every nonstngular matrix 7 € M _(R) 1s the product of three

involutions and a diagonalizable matrix. Moreover the

det(T)|

diagonalizable matrix has at most two ecigenvalues ﬁ

and "d

Proof

det(7)|.

Let det(7) = . The case where a = £1 was dealt with in

Theorem 4.14. If ¢ # =1, then consider the matrix \/1_| T
o

The determinant of this matrix is 1 and so, by Theorem

4.14, there exist four 1nvolutory matrices 4, B, C and D

such that L ' = ABCD, therefore

i/la]

r = 48clyfla] D)

Since D 1s an involution, by Lemma 4.2 it is

diragonalizable and has at most two eigenvalues, namely 1

and —1. Let n, be the algebraic multiplicity of 1 then,




Kl
a|D = P | "

Y

0

T

for some invertible matrix P € M, (R).

44

/

H'—'Hl

102
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CHAPTER 5

PRODUCTS OF POSITIVE-DEFINITE

AND POSITIVE-SEMIDEFINITE

MATRICES.

In Chapter 1 it was proved that every square matrix over
the field of real numbers can be expressed as a product of
two symmetric matrices. It is a well known fact that the
spectrum of a symmetric matrix over the field of real
numbers is real and the matrix ts diagonalizable.
Similarly, for a square matrix over the field of complex
numbers, it was proved that it is the product of at most
four Hermitian matrices, provided that the determinant of
the matrix is real. Like a symmetric matrix over the field
of real numbers, the spectrum of a Hermitian matrix 1s real
and the matrix is diagonalizable. Thus in both cases 1t 1s
reasonable to ask under what conditions will these factors
have positive (non-negative) ecigenvalues. A Hermitian
matrix (symmetric matrix over the real numbers) 1s said to

be positive-definite (positive-semidefinite) 1f the spectrum

consists of positive (non-negative) real numbers.
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In Section 5.1 we consider the case of factorizing a square
matrix over the field of real or complex numbers 1into
positive-definite matrices. In Section 5.2 we consider the
similar case for positive-semidefinite factors. In both
cases a necessary condition for a square matrix A4 to be
factorized into positive-(semi)definite matrices, 1s that

det(4) must be positive (non-negative).

In what follows, F will denote the field of real or complex
numbers unless stated otherwise. For simplicity we will
continue to use the terms Hermitian matrix and unitary

matrix, keeping in mind however that for F = R these

concepts are equivalent to symmetric matrix and

orthogonal matrix respectively.

5.1 PRODUCTS OF POSITIVE-DEFINITE MATRICES.

Most of the results in this section are due to Ballantine
[1]; however some of the proofs can be derived more eastly

using the results of Sourour’s main theorem 1n [15].

Lemma 5.1(a) below is true for all matrices (even

rectangular) over the field F.
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Lemma 5.1

(a) For any matrix 4 over the field F, A4 and A4 4 are
positive-semidefinite.

(b) Let 4Ae MJ(F), then 4 4 and AA are positive-definite

if, and only if, 4 is nonsingular.

Proof

(a) Let Ae M, (F), then 4 Ae M, (F). Let (, ), be the
standard inner product over F”" and ( , ), the standard

inner product over /" then:

(A" Ax , x), = (A4x , Ax), =2 0 V xe F"
The result follows from [13] Theorem 3, page 179.

The proof is similar for 44 .

(b) The proof is immediate from the result of part (a). B

Note:

(i) [f H is a Hermitian matrix tt has the following

similarity relation

H = UDU’ (5.2)
where U is a unitary matrix (i.e. UU =7I) and D is a

diagonal matrix of real numbers. By definition, A 1s

positive-definite (positive-semidefinite) 1f, and only
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if, the diagonal entries of D 1n equation (5.2) are

positive (non-neggative).

(11) If H 1s positive-definite (positive-semidefinite) then

so is VHV for any nonsingular matrix V.

Product of two positive-definite matrices.

Lemma 5.3 below forms part of Theorem 2 of Ballantine’s
results tn {1]. Although his proof ts restricted to the field
of real numbers, 1its generalization to the field F 1s
simple. The proof given below is by Taussky {18]. The
actual result of Lemma 5.3 does not give the best
classification of matrices over F that can be factorized
into two positive-definite matrices; its usefulness 1s in the

proof of the next theorem.

Lemma 5.3 (Taussky [18])

Let Ae M (FF) (where F 1s the field of real or complex

numbers) and det(4) > 0. Then A 1is a product of two

positive-definite matrices 1f, and only if, 4 is similar to a

positive-definite matrix.
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Proof

1l

Suppose A4 = P P, where P, and P, are both positive-definite

matrices. Then P, = U,D,U,;, i =1, 2, where U, is unitary

and D, is a diagonal matrix with positive real numbers 1n

the main diagonal. Now A4 = PI%(PI%PZPI%)P{% where P/ =

*

U, , D = D, and:

0

U, D

a2

PI%P2P1% = (UlDuUr)PZ(UIDaU:)

(UIDUUI*)PZ(UID{}U;)* :
Therefore by note (11) above, P”% P, P” is positive-definite

and so A is similar to a positive-definite matrix.

Conversely, suppose that 4 is similar to H where H 1s a

positive-definite matrix. Then there exists a unitary matrix
U. such that H = U DU, where D 1is a diagonal with
positive entries. Therefore:

Ad=RTU DUR

(R"R")R"U DUR

= (R™ (R*l)*)((UR)* DU R))
By Lemma 5. 1(b) the first factor on the right is positive-

definite. By the note following Lemma 5.1, the second 1s

positive-definite, since A is nonsingular. N
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Theorem 5.4 below was proved by Ballantine in [1]. In that
paper he restricted the results to a square matrix over the
field of real numbers. The proof below shows a similar

result holds for a matrix over F.

Theorem 5.4 (Ballantine [1])
A 1s a product of two positive-definite matrices 1f,
and only 1f, A4 1i1s unitarily similar to a diagonalizable

lower triangular matrix of positive diagonal.

Proof

Suppose A4 1s a product of two positive-definite matrices,
then by Lemma 5.3 4 = RPR™, where P 1is positive-

definite. Hence the spectrum of 4 1s full and consists of

positive real numbers. Now by [7] Theorem 6.21 page 363,

W

A" = UT 'U", where U is unitary and 7 is upper triangular,

therefore A4 = UTU ™ (note that this result also holds over
F'= R since the characteristic polynomial of 4 splits). The

diagonal elements of 7 are its eigenvalues which are in
turn the eigenvalues of 4, which are positive real numbers.

Thus 7 1s of the required form.

Conversely, suppose that 4 = UTU", where U 1is unitary

and T 1s a diagonalizable lower triangular matrix with
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positive entries in the main diagonal. Since 7T is

diagonalizable, 7 ~ D where D i1s a diagonal matrix. Since

the spectrum of 7 1is the diagonal entries of 7, D is a
posttive diagonal matrix and hence 1s positive-definite.

But 4 ~ T therefore A ~ D and the result now follows

from Lemma 5.3. m

Product of three positive-definite matrices.

The lemma below 1s based on a proof by Ballantine in [1]. As
in the previous section, Ballantine showed the results are
true for a square matrix over the real numbers. In what
follows, similar results are proved for a square matrix over

I

The following facts are used in the proof below:

(1) The property of being the product of two positive-

definite matrices 1s invariant under similarity. This is
casily seen since if 4 = P P, where P, is positive-
definite i =1, 2 then,

RAR" = (RP R )(RY P,R™)

for any nonsingular matrix R € M _(F).
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*

(ii1) P e M (F) is positive-definite if, and only 1f, P = BB
for a nonsingular matrix B € M (F). See, for example,

[13], Colollary 1, page 185.

Lemma 5.5 (Ballantine. {1}])

Let A be a nonsingular matrix in M, (F), then the following

statements are equivalent:

(a) A is a product of three positive-definite matrices.

(b) A is congruent to a matrix that is a product of three
positive-definite matrices.

(c) A is congruent to a matrix that is a product of two

positive-definite matrices.

Proof

All matrices in this proof are nonsingular and P, 1s
positive-definite (/ =1, 2, .. .).
(a) = (b) Suppose that 4 = P, P, P, and let U be an unitary

matrix. Then 4 =UU PUYU P,UYU RBUYU".

#*

(b) = (¢) Suppose 4 = CP,P,P,C" and P = BB . Then

e

4 =c(BB)P,P(B)' B)C" = (CB)B" P, P BHY)(CB)

X

(¢) = (a) 4 = CPP,C° = CP*P"P,C" =

(crkct)cnHprc)cp,c) -
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Theorem 5.6 (Ballantine [1])

Let 4 € M/ (F), then 4 is a product of three positive-

definite matrices if, and only if, 4 is congruent to a lower

triangular matrix with positive diagonal.

Proof

If 4 is a product of three positive-definite matrices then,

by Lemma 5.5 (¢c), 4 = RP,P,R° where P, and P, are

positive-definite and R is nonsingular. By Theorem 5.4,
PP, = UTU , where U is unitary and 7 1s lower triangular
with positive diagonal. The result now follows since
unitarily congruent and unitarily similar are the same.

Conversely, if A4 = RTR, where R is nonsingular and T is
a lower triangular matrix with positive diagonal, then DT

is similar to a diagonal matrix with positive diagonal, for

suitably chosen diagonal matrix D. By Lemma 5.3

DT = P,P,, where P, and P, are positive-definite. The result

1

follows from Lemma 5.5 (b) with 4 = D' P P,, where D™ is

a diagonal matrix with positive dtagonal. __

In [1] Ballantine showed that the following two statements

are also equivalent to that of a matrix 4 € M, (R) being a

product of three positive-definite matrices:
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(i) A is congruent to a matrix all of whose leading

principal minors are positive.

(ii) A4 is positive-definite itself, or its symmetric part

1

2(S + ST) is not nonpositive-definite.

Product of four positive-definite matrices.

The conditions under which a matrix over the field of real
numbers is a product of four or five positive-definite
matrices was also proved by Ballantine in [1]. He proved
similar results for a matrix over the complex numbers. The
proofs below are a result of Sourour’s main theorem [15].

The matrix is not restricted to one over the real numbers.

Theorem 5.7 (Sourour {15}])

Let A e M, (F), then 4 is a product of four positive-definite

matrices if, and only if, det(4d) > 0 and 4 is not a scalar

matrix al, unless a > 0.

Proof

Il

Assume det(4d) > 0. The case 4 al, a >0, 1s trivtal. So

suppose that 4 is not scalar, then by Theorem 1.14

there exist distinct, positive real numbers B,,71,---s Pns¥u>
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such that det(4) = ]—Iﬁ’f;/jE and 4 = BC where o(B) = {f#,,..., 8.}
i=1

and o(C) = {»y,...,7,}. Now B = R"DR where D is a diagonal

matrix consisting of the positive numbers f,,...,0,.

Therefore B = (R“‘R*_l)(R*DR) and both factors on the right

are positive-definite. Similarly C 1is a product of two
positive-definite matrices. This completes the proof of the

necessary condition.

Conversely, suppose that 4 = FARFAF, where H,F,FP and F
are positive-definite, then clearly det(4d) > 0. Furthermore,
if A = @l then PP, = aP'P', PP, and P/ P, are similar to

positive-definite matrices and hence have positive

spectrum. Therefore a > 0. N

Product of five positive-definite matrices.

Theorem 5.8

A is a product of five positive-definite matrices 1f, and

only 1f, det(4) > O.

Proof

If 4 is nonscalar the result follows from Theorem 5.7, thus

we need only consider the case where 4 = al/. Let P be a
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nonscalar positive-definite matrix, then 4 = aP' P and
det(aP™") = a” det(P™) = det(4A)det(P™) > O SINCe det(4) > 0.
Therefore by Theorem 5.7, aP” can be expressed as the

product of four positive-definite matrices and the result

follows. B

5.2 PRODUCTS OF POSITIVE-SEMIDEFINITE MATRICES.

In [21] Wu treated the case of factorizing a matrix over the
field of complex numbers into positive-semidefinite matrices.
Clearly this case is only of interest if the matrix is singular,
otherwise the results of Section 5.1 may be applie.d. Wu’s
results for a square matrix over the field of complex numbers
into three positive-semidefinite matrices, is inconclusive and
is omitted here. As in Section 5.1, some of the results proved
by Wu are more easily obtained using the main theorem of
Sourour and Tang in [17]. It was shown in this paper that a
singular matrix can be factorized into two matrices with
prescribed eigenvalues. The only restriction is that the

number of zero eigenvalues in the two factors must not be

less than the nullity of the original matrix.
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Product of two positive-semidefinite matrices.

In what follows we use the terms positive-semidefinite and

non-negative interchangeably.

Lemma 5.9

The only nilpotent matrix in M, (F) that is the product of

two non-negative matrices is the zero matrix.

Proof

Let T = AB where A, B =2 0 and T is nilpotent, therefore:

s((4B%)B%) by [13] Exercise 10 page 165

J(T)

J(B% (AB%))

{

|1
o,

-
-’

But B”AB” is Hermitian, so it is diagonalizable with
spectrum {0}; this implies that B%" AB” = 0.
Since

B% 4% = (4%B%) (4% B%) = 0,

we have that

A%B" = 0;
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Theorem 5.10

Let 7T eM/J(F). Then the following statements are

equivalent:

(a) T is the product of two non-negative matrices.

(b) 7T is the product of a positive-definite matrix and a
non-negative matrix.

(c) T is similar to a non-negative matrix.

Proof

(b) = (¢). Let I = AB, where 4 > 0 and B 2 0. Then since
A is nonsingular so 1s A% therefore 7 ~ AT A" = A" B A"
which i1s non-negative.

(c) = (b). Suppose 7 = X' CX, where X is nonsingular

and C is non-negative, then 7T = (X‘1 (X")*)(X*CX). The
first factor on the right is positive-definite and the second

iS non-negative.
(b) = (a). This is trivial.
(a) = (c). Let T = AB, where A4, B =2 0. Since the

property of being the product of two non-negative matrices

is invariant under similarity, we may (by Lemma A.6)

assuinec




on the space F”

is nonsingular.

Let

i

i
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® H,, where N is nilpotent, and X

4,

and

B

where all the blocks are conformable with N & K and A4,

A,, B, and B, are non-negative. Since A4 and B are

Hermitian in particular, it follows exactly as 1n the proof

of Theorem 1.6 that X = 0 and 4,, B, are nonsingular.

Thus

so that 4,Y =0; hence ¥ =0 also.

Therefore

.11

which implies that N = 4, B, and K =

Since N 1is nilpotent and A4, and B, are non-negative, by
Lemma 5.9, N = 0.
Since K is nonsingular A, and B, are both positive, thus

K is similar to a non-negative matrix ((b) = (c¢})). That 1s,

K =

X'CX where C 2 0. Equation 5.11 now becomes
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Product of four positive-semidefinite matrices.

Theorem 5.12 (Sourour and Tang [17])

Let 4 € M, (F) be a singular matrix, then 4 1s a product of

four positive-semidefinite matrices, three of which may be

taken to be positive-definite.

Proof

First suppose that nulliy(4) = 1. Then by Theorem 1.20
A = BC, where the eigenvalues of B are distinct and

positive, and those of C are distinct, one of which 1s zero

and the rest are positive. Therefore B = T PT, where
P = diaglp, ,..., P,] (p, >0,i=1,...,n) and C = R SR,
where S = diag[s, ,...,s,] (s, =0 and s, >0,i=2,...,n).
The equation

A= (r*pay Nr'r)(RH(RH )R SR)
gives A as a product of three positive-definite factors, and

one positive-semidefinite factor.

If mullin(4) = k, £k 2 1, then using standard canonical forms,
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A~ 4 & . . . ® A4,,
where mulliy(4,) =1 for 1 < i < k. The first part of the

proof may now be applied to each 4,, from which the result

will follow. That 1s,

A, = P,P,P,P,, where P,, P,, P, > 0 and P, 2 0,
and
A ~ (P P,PsP) @ . .. @ (Py Py PisPrs)
= (Py...P)® (Py...Pu) ® (Py..P;) ® (Py ... P,). W

5.3 CONCLUDING REMARKS.

So far we have shown that for a square matrix 4 over the

field of real or complex numbers:

[f det(4d) € R:

Then A is a product of four Hermitian matrices.

If det(4) > O:

If 4 is not a scalar matrix al (unless a > 0) then 4

can be expressed as the product of positive-definite

matrices, four being the maximum number of factors
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required. Otherwise five positive-definite factors are

required.

If det(4) = O:

Then A can be expressed as a product of positive-
semidefinite matrices, with the maximum number of

such factors required being four.

For det(4) < 0 and det(4) ¢ R we offer the following

results:

Corollary 5.13

( \ oK
Let A4 = MJ(F) and det(d) < 0 then, A =P F E)P
\_i=l / \_i=]

where P are positive-definite, ¢ is at most 5 and P 1s an

I

involution that exchanges two rows or columns of /.

Proof

Let A = PA, where P is the involution described above.

Then det(4) > 0 and so, by Theorems 5.7 or 5.8, it tfollows

that
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where P are positive-definite. The result follows since P

!

is an involution. B

Corollary 5.14

f

{
[f 4 e M(C) and det(4) = @ ¢ R, then A=—[[P, where P
Za i=1

are positive-definite matrices, f is at most five and z, 1s a

root of the equation Z"—a =0.

Proof

det(z. 4) = z,ax = aa > 0. The result follows from Theorem

5.7 or 5.8. B
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APPENDIX

The following well known Ilemmas show that certain
properties of products of matrices are 1invariant under
similarity. They are used frequently 1n this dissertation
and enable us to restrict our study to simpler canonical
forms of a matrix 1n order to obtain the required

factorizations.

Lemma A.l
The property of being the product of k diagonalizable

matrices over a field F is invariant under similarity over

K

Proof

DD,...D, where D, 1s a diagonalizable

I

H

Suppose that 4

matrix (1<i<k) and A~B. Then B=P AP for some

invertible matrix P.
B = P'D(PPYD,(PPY...(PPHYDP = (P'DPYP'D,P)...(P"DP)

and diagonalizability of the factors 1s preserved by

similarity. B
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Lemma A.2

The property of being the product of symmetric matrices

over a field F 1s 1nvariant under similarity over F.

Proof

Suppose that A4=35,5,...5,, where § 1s a symmetric matrix

(1<i<k) and A~B. Then B=P'4P for some invertible

matrix P.

I[f k is even:

B = PS,((P"y'PT)s, (PP7) ... (PTY'PT)S, P

= Py )ers,p) ... (P's,P)
Each factor on the right 1s symmetric.

If k 1s odd:

B = PIS((PTY'PT)s,(pP) ... (PP)S, ((PTY PT)P

= (Pis,(PyNPS,P) . (PSP NPT

Again each factor on the right 1s symmetric. N

Note The number of symmetric factors of a matrix similar

to A 1in Lemma A.2 will be the same as the number of
symmetric matrices that make up A4, if this number is even.

It will be one more if A4 is a product of an odd number of

symmetric matrices.
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Lemma A.3
The property of being the product of Hermitian matrices

over a field F is invariant under similarity over F.

Proof

The proof is similar to that of Lemma A.2. Insert the

appropriate products of P, P*_I, P and P' between the

factors of A=H, H,...H,, where H, 1s Hermitian (1<i<%k). B

Lemma A.4

The property of being the product of idempotent matrices

over a field F 1s invariant under similarity over F.

Proof

The proof is similar to that of Lemma A.1l B

Lemma A.S

The property of being the product of nilpotent matrices

over a field F is invariant under similarity over F.

Proof

Let A=N,... N, where N, (1 i< %) are nilpotent

I

matrices. Let the degree of nilpotency of each matrix N, be
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m,. If A, ~ A then A4 = P'AP = (P N,P) . (P'N,P) ... (PTNP)

I

and (P7N,P)" =N =0. B

i

We also refer to the following well known result whose

proof follows from the Rational Canonical Form Theorem.

Lemma A.6

Every matrix 4 e€ M/(F) is similar to a matrix of the form

N 0 |
0 x| where N is nilpotent and K is nonsingular.
Proof

A ~ dfag[Cl,...,Ck], where each C, is the companion matrix

associated with an elementary divisor of 4. Let C ,...,C,

denote the companion matrices associated with polynomials

which are powers of x. Then N = diag[Cl,...,CpJ and

K = diag|C,, ,...,C,] and the result follows. =

p+l 2
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